DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu; Chen, Jing; Schlueter, Connie F.
Chlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection. Multiple parameters were varied to produce formulations with a wide range of in vitro release kinetics. Testing of selected formulations in chlorine-exposedmore » mice demonstrated efficacy against key aspects of acute lung injury. The results show the feasibility of developing microencapsulated formulations that could be used to treat chlorine-induced acute lung injury by intramuscular injection, which represents a preferred route of administration in a mass casualty situation. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Countermeasures for treatment of chlorine-induced acute lung injury are needed. • Formulations containing rolipram, triptolide, or budesonide were produced. • Formulations with a wide range of release properties were developed. • Countermeasure formulations inhibited chlorine-induced lung injury in mice.« less
Parvathaneni, Kaushik; Belani, Sanjay; Leung, Dennis; Newth, Christopher J L; Khemani, Robinder G
2017-01-01
The Pediatric Acute Lung Injury Consensus Conference has developed a pediatric-specific definition of acute respiratory distress syndrome, which is a significant departure from both the Berlin and American European Consensus Conference definitions. We sought to test the external validity and potential impact of the Pediatric Acute Lung Injury Consensus Conference definition by comparing the number of cases of acute respiratory distress syndrome and mortality rates among children admitted to a multidisciplinary PICU when classified by Pediatric Acute Lung Injury Consensus Conference, Berlin, and American European Consensus Conference criteria. Retrospective cohort study. Tertiary care, university-affiliated PICU. All patients admitted between March 2009 and April 2013 who met inclusion criteria for acute respiratory distress syndrome. None. Of 4,764 patients admitted to the ICU, 278 (5.8%) met Pediatric Acute Lung Injury Consensus Conference pediatric acute respiratory distress syndrome criteria with a mortality rate of 22.7%. One hundred forty-three (32.2% mortality) met Berlin criteria, and 134 (30.6% mortality) met American European Consensus Conference criteria. All patients who met American European Consensus Conference criteria and 141 (98.6%) patients who met Berlin criteria also met Pediatric Acute Lung Injury Consensus Conference criteria. The 137 patients who met Pediatric Acute Lung Injury Consensus Conference but not Berlin criteria had an overall mortality rate of 13.1%, but 29 had severe acute respiratory distress syndrome with 31.0% mortality. At acute respiratory distress syndrome onset, there was minimal difference in mortality between mild or moderate acute respiratory distress syndrome by both Berlin (32.4% vs 25.0%, respectively) and Pediatric Acute Lung Injury Consensus Conference (16.7% vs 18.6%, respectively) criteria, but higher mortality for severe acute respiratory distress syndrome (Berlin, 43.6%; Pediatric Acute Lung Injury Consensus Conference, 37.0%). Twenty-four hours after acute respiratory distress syndrome onset, the presence of severe acute respiratory distress syndrome (using either Berlin or Pediatric Acute Lung Injury Consensus Conference) was associated with nearly 50% mortality. Applying the Pediatric Acute Lung Injury Consensus Conference definition of acute respiratory distress syndrome has the potential to significantly increase the number of acute respiratory distress syndrome patients identified, with a lower overall mortality rate. However, severe acute respiratory distress syndrome is associated with extremely high mortality, particularly if present at 24 hours after initial diagnosis.
Hoyle, Gary W.; Chen, Jing; Schlueter, Connie F.; Mo, Yiqun; Humphrey, David M.; Rawson, Greg; Niño, Joe A.; Carson, Kenneth H.
2016-01-01
Chlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection. Multiple parameters were varied to produce formulations with a wide range of in vitro release kinetics. Testing of selected formulations in chlorine-exposed mice demonstrated efficacy against key aspects of acute lung injury. The results show the feasibility of developing microencapsulated formulations that could be used to treat chlorine-induced acute lung injury by intramuscular injection, which represents a preferred route of administration in a mass casualty situation. PMID:26952014
Functional genomics of chlorine-induced acute lung injury in mice.
Leikauf, George D; Pope-Varsalona, Hannah; Concel, Vincent J; Liu, Pengyuan; Bein, Kiflai; Brant, Kelly A; Dopico, Richard A; Di, Y Peter; Jang, An-Soo; Dietsch, Maggie; Medvedovic, Mario; Li, Qian; Vuga, Louis J; Kaminski, Naftali; You, Ming; Prows, Daniel R
2010-07-01
Acute lung injury can be induced indirectly (e.g., sepsis) or directly (e.g., chlorine inhalation). Because treatment is still limited to supportive measures, mortality remains high ( approximately 74,500 deaths/yr). In the past, accidental (railroad derailments) and intentional (Iraq terrorism) chlorine exposures have led to deaths and hospitalizations from acute lung injury. To better understand the molecular events controlling chlorine-induced acute lung injury, we have developed a functional genomics approach using inbred mice strains. Various mouse strains were exposed to chlorine (45 ppm x 24 h) and survival was monitored. The most divergent strains varied by more than threefold in mean survival time, supporting the likelihood of an underlying genetic basis of susceptibility. These divergent strains are excellent models for additional genetic analysis to identify critical candidate genes controlling chlorine-induced acute lung injury. Gene-targeted mice then could be used to test the functional significance of susceptibility candidate genes, which could be valuable in revealing novel insights into the biology of acute lung injury.
Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musah, Sadiatu; Schlueter, Connie F.; Humphrey, Da
Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbitsmore » were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure–volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. - Highlights: • A novel rabbit model of chlorine-induced lung disease was developed. • Acute effects of chlorine were pulmonary edema, hypoxemia and impaired lung function. • Persistent small airway disease developed following recovery from acute injury. • Small airway disease included inflammation and bronchiolitis obliterans lesions. • The model should be useful for studying chlorine lung injury and testing treatments.« less
The role of innate immunity in acute allograft rejection after lung transplantation.
Palmer, Scott M; Burch, Lauranell H; Davis, R Duane; Herczyk, Walter F; Howell, David N; Reinsmoen, Nancy L; Schwartz, David A
2003-09-15
Although innate immunity is crucial to pulmonary host defense and can initiate immune and inflammatory responses independent of adaptive immunity, it remains unstudied in the context of transplant rejection. To investigate the role of innate immunity in the development of allograft rejection, we assessed the impact of two functional polymorphisms in the toll-like receptor 4 (TLR4) associated with endotoxin hyporesponsiveness on the development of acute rejection after human lung transplantation. Patients and donors were screened for the TLR4 Asp299Gly and Thr399Ile polymorphisms by polymerase chain reaction using sequence-specific primers. The rate of acute rejection at 6 months was significantly reduced in recipients, but not in donors, with the Asp299Gly or Thr399Ile alleles as compared with wild type (29 vs. 56%, respectively, p = 0.05). This association was confirmed in Cox proportional hazards and multivariate logistic regression models. Our results suggest activation of innate immunity in lung transplant recipients through TLR4 contributes to the development acute rejection after lung transplantation. Therapies directed at inhibition of innate immune responses mediated by TLR4 may represent a novel and effective means to prevent acute rejection after lung transplantation.
Regulation of alveolar macrophage death in acute lung inflammation.
Fan, Erica K Y; Fan, Jie
2018-03-27
Acute lung injury (ALI) and its severe form, known as acute respiratory distress syndrome (ARDS), are caused by direct pulmonary insults and indirect systemic inflammatory responses that result from conditions such as sepsis, trauma, and major surgery. The reciprocal influences between pulmonary and systemic inflammation augments the inflammatory process in the lung and promotes the development of ALI. Emerging evidence has revealed that alveolar macrophage (AM) death plays important roles in the progression of lung inflammation through its influence on other immune cell populations in the lung. Cell death and tissue inflammation form a positive feedback cycle, ultimately leading to exaggerated inflammation and development of disease. Pharmacological manipulation of AM death signals may serve as a logical therapeutic strategy for ALI/ARDS. This review will focus on recent advances in the regulation and underlying mechanisms of AM death as well as the influence of AM death on the development of ALI.
Ferret lung transplant: an orthotopic model of obliterative bronchiolitis.
Sui, H; Olivier, A K; Klesney-Tait, J A; Brooks, L; Tyler, S R; Sun, X; Skopec, A; Kline, J; Sanchez, P G; Meyerholz, D K; Zavazava, N; Iannettoni, M; Engelhardt, J F; Parekh, K R
2013-02-01
Obliterative bronchiolitis (OB) is the primary cause of late morbidity and mortality following lung transplantation. Current animal models do not reliably develop OB pathology. Given the similarities between ferret and human lung biology, we hypothesized an orthotopic ferret lung allograft would develop OB. Orthotopic left lower lobe transplants were successfully performed in 22 outbred domestic ferrets in the absence of immunosuppression (IS; n = 5) and presence of varying IS protocols (n = 17). CT scans were performed to evaluate the allografts. At intervals between 3-6 months the allografts were examined histologically for evidence of acute/chronic rejection. IS protects allografts from acute rejection and early graft loss. Reduction of IS dosage by 50% allowed development of controlled rejection. Allografts developed infiltrates on CT and classic histologic acute rejection and lymphocytic bronchiolitis. Cycling of IS, to induce repeated episodes of controlled rejection, promoted classic histologic hallmarks of OB including fibrosis-associated occlusion of the bronchiolar airways in all allografts of long-term survivors. In conclusion, we have developed an orthotopic lung transplant model in the ferret with documented long-term functional allograft survival. Allografts develop acute rejection and lymphocytic bronchiolitis, similar to humans. Long-term survivors develop histologic changes in the allografts that are hallmarks of OB. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.
Clinical outcomes of lung transplant recipients with telomerase mutations.
Tokman, Sofya; Singer, Jonathan P; Devine, Megan S; Westall, Glen P; Aubert, John-David; Tamm, Michael; Snell, Gregory I; Lee, Joyce S; Goldberg, Hilary J; Kukreja, Jasleen; Golden, Jeffrey A; Leard, Lorriana E; Garcia, Christine K; Hays, Steven R
2015-10-01
Successful lung transplantation for patients with pulmonary fibrosis from telomerase mutations may be limited by systemic complications of telomerase dysfunction, including myelosuppression, cirrhosis, and malignancy. We describe clinical outcomes in 14 lung transplant recipients with telomerase mutations. Subjects underwent lung transplantation between February 2005 and April 2014 at 5 transplant centers. Data were abstracted from medical records, focusing on outcomes reflecting post-transplant treatment effects likely to be complicated by telomerase mutations. The median age of subjects was 60.5 years (interquartile range = 52.0-62.0), 64.3% were male, and the mean post-transplant observation time was 3.2 years (SD ± 2.9). A mutation in telomerase reverse transcriptase was present in 11 subjects, a telomerase RNA component mutation was present in 2 subjects, and an uncharacterized mutation was present in 1 subject. After lung transplantation, 10 subjects were leukopenic and 5 did not tolerate lymphocyte anti-proliferative agents. Six subjects developed recurrent lower respiratory tract infections, 7 developed acute cellular rejection (A1), and 4 developed chronic lung allograft dysfunction. Eight subjects developed at least 1 episode of acute renal failure and 10 developed chronic renal insufficiency. In addition, 3 subjects developed cancer. No subjects had cirrhosis. At data censorship, 13 subjects were alive. The clinical course for lung transplant recipients with telomerase mutations is complicated by renal disease, leukopenia with intolerance of lymphocyte anti-proliferative agents, and recurrent lower respiratory tract infections. In contrast, cirrhosis was absent, acute cellular rejection was mild, and development of chronic lung allograft dysfunction was comparable to other lung transplant recipients. Although it poses challenges, lung transplantation may be feasible for patients with pulmonary fibrosis from telomerase mutations. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Quasney, Michael W; López-Fernández, Yolanda M; Santschi, Miriam; Watson, R Scott
2015-06-01
To provide additional details and evidence behind the recommendations for outcomes assessment of patients with pediatric acute respiratory distress syndrome from the Pediatric Acute Lung Injury Consensus Conference. Consensus conference of experts in pediatric acute lung injury. A panel of 27 experts met over the course of 2 years to develop a taxonomy to define pediatric acute respiratory distress syndrome and to make recommendations regarding treatment and research priorities. The outcomes subgroup comprised four experts. When published data were lacking, a modified Delphi approach emphasizing strong professional agreement was used. The Pediatric Acute Lung Injury Consensus Conference experts developed and voted on a total of 151 recommendations addressing the topics related to pediatric acute respiratory distress syndrome, seven of which related to outcomes after pediatric acute respiratory distress syndrome. All seven recommendations had strong agreement. Children with acute respiratory distress syndrome continue to have a high mortality, specifically, in relation to certain comorbidities and etiologies related to pediatric acute respiratory distress syndrome. Comorbid conditions, such as an immunocompromised state, increase the risk of mortality even further. Likewise, certain etiologies, such as non-pulmonary sepsis, also place children at a higher risk of mortality. Significant long-term effects were reported in adult survivors of acute respiratory distress syndrome: diminished lung function and exercise tolerance, reduced quality of life, and diminished neurocognitive function. Little knowledge of long-term outcomes exists in children who survive pediatric acute respiratory distress syndrome. Characterization of the longer term consequences of pediatric acute respiratory distress syndrome in children is vital to help identify opportunities for improved therapeutic and rehabilitative strategies that will lessen the long-term burden of pediatric acute respiratory distress syndrome and improve the quality of life in children. The Consensus Conference developed pediatric-specific recommendations for pediatric acute respiratory distress syndrome regarding outcome measures and future research priorities. These recommendations are intended to promote optimization and consistency of care for children with pediatric acute respiratory distress syndrome and identify areas of uncertainty requiring further investigation.
Kor, Daryl J; Erlich, Jason; Gong, Michelle N; Malinchoc, Michael; Carter, Rickey E; Gajic, Ognjen; Talmor, Daniel S
2011-11-01
To evaluate the association between prehospitalization aspirin therapy and incident acute lung injury in a heterogeneous cohort of at-risk medical patients. This is a secondary analysis of a prospective multicenter international cohort investigation. Multicenter observational study including 20 US hospitals and two hospitals in Turkey. Consecutive, adult, nonsurgical patients admitted to the hospital with at least one major risk factor for acute lung injury. None. Baseline characteristics and acute lung injury risk factors/modifiers were identified. The presence of aspirin therapy and the propensity to receive this therapy were determined. The primary outcome was acute lung injury during hospitalization. Secondary outcomes included intensive care unit and hospital mortality and intensive care unit and hospital length of stay. Twenty-two hospitals enrolled 3855 at-risk patients over a 6-month period. Nine hundred seventy-six (25.3%) were receiving aspirin at the time of hospitalization. Two hundred forty (6.2%) patients developed acute lung injury. Univariate analysis noted a reduced incidence of acute lung injury in those receiving aspirin therapy (odds ratio [OR], 0.65; 95% confidence interval [CI], 0.46-0.90; p = .010). This association was attenuated in a stratified analysis based on deciles of aspirin propensity scores (Cochran-Mantel-Haenszel pooled OR, 0.70; 95% CI, 0.48-1.03; p = .072). After adjusting for the propensity to receive aspirin therapy, no statistically significant associations between prehospitalization aspirin therapy and acute lung injury were identified; however, a prospective clinical trial to further evaluate this association appears warranted.
A Pathophysiologic Approach to Biomarkers in Acute Respiratory Distress Syndrome
Blondonnet, Raiko; Constantin, Jean-Michel; Sapin, Vincent; Jabaudon, Matthieu
2016-01-01
Acute respiratory distress syndrome (ARDS) is an acute-onset hypoxic condition with radiographic bilateral lung infiltration. It is characterized by an acute exudative phase combining diffuse alveolar damage and lung edema followed by a later fibroproliferative phase. Despite an improved understanding of ARDS pathobiology, our ability to predict the development of ARDS and risk-stratify patients with the disease remains limited. Biomarkers may help to identify patients at the highest risk of developing ARDS, assess response to therapy, predict outcome, and optimize enrollment in clinical trials. After a short description of ARDS pathobiology, here, we review the scientific evidence that supports the value of various ARDS biomarkers with regard to their major biological roles in ARDS-associated lung injury and/or repair. Ongoing research aims at identifying and characterizing novel biomarkers, in order to highlight relevant mechanistic explorations of lung injury and repair, and to ultimately develop innovative therapeutic approaches for ARDS patients. This review will focus on the pathophysiologic, diagnostic, and therapeutic implications of biomarkers in ARDS and on their utility to ultimately improve patient care. PMID:26980924
Hong, Zhen-Yu; Lee, Hae-June; Choi, Won Hoon; Lee, Yoon-Jin; Eun, Sung Ho; Lee, Jung Il; Park, Kwangwoo; Lee, Ji Min; Cho, Jaeho
2014-07-01
In a previous study, we established an image-guided small-animal micro-irradiation system mimicking clinical stereotactic body radiotherapy (SBRT). The goal of this study was to develop a rodent model of acute phase lung injury after ablative irradiation. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice using a small animal stereotactic irradiator. At days 1, 3, 5, 7, 9, 11 and 14 after irradiation, the lungs were perfused with formalin for fixation and paraffin sections were stained with hematoxylin and eosin (H&E) and Masson's trichrome. At days 7 and 14 after irradiation, micro-computed tomography (CT) images of the lung were taken and lung functional measurements were performed with a flexiVent™ system. Gross morphological injury was evident 9 days after irradiation of normal lung tissues and dynamic sequential events occurring during the acute phase were validated by histopathological analysis. CT images of the mouse lungs indicated partial obstruction located in the peripheral area of the left lung. Significant alteration in inspiratory capacity and tissue damping were detected on day 14 after irradiation. An animal model of radiation-induced lung injury (RILI) in the acute phase reflecting clinical stereotactic body radiotherapy was established and validated with histopathological and functional analysis. This model enhances our understanding of the dynamic sequential events occurring in the acute phase of radiation-induced lung injury induced by ablative dose focal volume irradiation.
Dosimetric and clinical predictors of radiation-induced lung toxicity in esophageal carcinoma.
Zhu, Shu-Chai; Shen, Wen-Bin; Liu, Zhi-Kun; Li, Juan; Su, Jing-Wei; Wang, Yu-Xiang
2011-01-01
Radiation-induced lung toxicity occurs frequently in patients with esophageal carcinoma. This study aims to evaluate the clinical and three-dimensional dosimetric parameters associated with lung toxicity after radiotherapy for esophageal carcinoma. The records of 56 patients treated for esophageal carcinoma were reviewed. The Radiation Therapy Oncology Group criteria for grading of lung toxicity were followed. Spearman's correlation test, the chi-square test and logistic regression analyses were used for statistical analysis. Ten of the 56 patients developed acute toxicity. The toxicity grades were grade 2 in 7 patients and grade 3 in 3 patients; none of the patients developed grade 4 or worse toxicity. One case of toxicity occurred during radiotherapy and 9 occurred 2 weeks to 3 months after radiotherapy. The median time was 2.0 months after radiotherapy. Fourteen patients developed late irradiated lung injury, 3 after 3.5 months, 7 after 9 months, and 4 after 14 months. Radiographic imaging demonstrated patchy consolidation (n = 5), atelectasis with parenchymal distortion (n = 6), and solid consolidation (n = 3). For acute toxicity, the irradiated esophageal volume, number of fields, and most dosimetric parameters were predictive. For late toxicity, chemotherapy combined with radiotherapy and other dosimetric parameters were predictive. No obvious association between the occurrence of acute and late injury was observed. The percent of lung tissue receiving at least 25 Gy (V25), the number of fields, and the irradiated length of the esophagus can be used as predictors of the risk of acute toxicity. Lungs V30, as well as chemotherapy combined with radiotherapy, are predictive of late lung injury.
Effect of Ergothioneine on Acute Lung Injury and Inflammation in Cytokine Insufflated Rats
Repine, John E.; Elkins, Nancy D.
2012-01-01
Objective The Acute Respiratory Distress Syndrome (ARDS), the most severe form of Acute Lung Injury (ALI), is a highly-fatal, diffuse non-cardiogenic edematous lung disorder. The pathogenesis of ARDS is unknown but lung inflammation and lung oxidative stress are likely contributing factors. Since no specific pharmacologic intervention exists for ARDS, our objective was to determine the effect of treatment with ergothioneine---a safe agent with multiple anti-inflammatory and antioxidant properties on the development of lung injury and inflammation in rats insufflated with cytokines found in lung lavages of ARDS patients. Method Sprague-Dawley rats (3-10/group) were given 15 mg/kg or 150 mg/kg L-ergothioneine intravenously 1 hour before or 18 hours after cytokine (IL-1 and IFNγ) insufflation. Lung injury (lavage LDH levels) and lung inflammation (lavage neutrophil numbers) were measured 24 hours after cytokine insufflation. Results Ergothioneine pre- and post- treatment generally decreased lung injury and lung inflammation in cytokine insufflated rats. Conclusion Ergothioneine should be considered for additional testing as a potential therapy for treating and preventing ARDS. PMID:22197759
Animal Models of Fibrotic Lung Disease
Lawson, William E.; Oury, Tim D.; Sisson, Thomas H.; Raghavendran, Krishnan; Hogaboam, Cory M.
2013-01-01
Interstitial lung fibrosis can develop as a consequence of occupational or medical exposure, as a result of genetic defects, and after trauma or acute lung injury leading to fibroproliferative acute respiratory distress syndrome, or it can develop in an idiopathic manner. The pathogenesis of each form of lung fibrosis remains poorly understood. They each result in a progressive loss of lung function with increasing dyspnea, and most forms ultimately result in mortality. To better understand the pathogenesis of lung fibrotic disorders, multiple animal models have been developed. This review summarizes the common and emerging models of lung fibrosis to highlight their usefulness in understanding the cell–cell and soluble mediator interactions that drive fibrotic responses. Recent advances have allowed for the development of models to study targeted injuries of Type II alveolar epithelial cells, fibroblastic autonomous effects, and targeted genetic defects. Repetitive dosing in some models has more closely mimicked the pathology of human fibrotic lung disease. We also have a much better understanding of the fact that the aged lung has increased susceptibility to fibrosis. Each of the models reviewed in this report offers a powerful tool for studying some aspect of fibrotic lung disease. PMID:23526222
Ribeiro, Alison; Ferraz-de-Paula, Viviane; Pinheiro, Milena L; Vitoretti, Luana B; Mariano-Souza, Domenica P; Quinteiro-Filho, Wanderley M; Akamine, Adriana T; Almeida, Vinícius I; Quevedo, João; Dal-Pizzol, Felipe; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Palermo-Neto, João
2012-03-05
Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor. Copyright © 2012 Elsevier B.V. All rights reserved.
Jain, Sumeet V; Kollisch-Singule, Michaela; Satalin, Joshua; Searles, Quinn; Dombert, Luke; Abdel-Razek, Osama; Yepuri, Natesh; Leonard, Antony; Gruessner, Angelika; Andrews, Penny; Fazal, Fabeha; Meng, Qinghe; Wang, Guirong; Gatto, Louis A; Habashi, Nader M; Nieman, Gary F
2017-12-01
Acute respiratory distress syndrome causes a heterogeneous lung injury with normal and acutely injured lung tissue in the same lung. Improperly adjusted mechanical ventilation can exacerbate ARDS causing a secondary ventilator-induced lung injury (VILI). We hypothesized that a peak airway pressure of 40 cmH 2 O (static strain) alone would not cause additional injury in either the normal or acutely injured lung tissue unless combined with high tidal volume (dynamic strain). Pigs were anesthetized, and heterogeneous acute lung injury (ALI) was created by Tween instillation via a bronchoscope to both diaphragmatic lung lobes. Tissue in all other lobes was normal. Airway pressure release ventilation was used to precisely regulate time and pressure at both inspiration and expiration. Animals were separated into two groups: (1) over-distension + high dynamic strain (OD + H DS , n = 6) and (2) over-distension + low dynamic strain (OD + L DS , n = 6). OD was caused by setting the inspiratory pressure at 40 cmH 2 O and dynamic strain was modified by changing the expiratory duration, which varied the tidal volume. Animals were ventilated for 6 h recording hemodynamics, lung function, and inflammatory mediators followed by an extensive necropsy. In normal tissue (N T ), OD + L DS caused minimal histologic damage and a significant reduction in BALF total protein (p < 0.05) and MMP-9 activity (p < 0.05), as compared with OD + H DS . In acutely injured tissue (ALI T ), OD + L DS resulted in reduced histologic injury and pulmonary edema (p < 0.05), as compared with OD + H DS . Both N T and ALI T are resistant to VILI caused by OD alone, but when combined with a H DS , significant tissue injury develops.
[Pulmonary-renal crosstalk in the critically ill patient].
Donoso F, Alejandro; Arriagada S, Daniela; Cruces R, Pablo
2015-01-01
Despite advances in the development of renal replacement therapy, mortality of acute renal failure remains high, especially when occurring simultaneously with distant organic failure as it is in the case of the acute respiratory distress syndrome. In this update, birideccional deleterious relationship between lung and kidney on the setting of organ dysfunction is reviewed, which presents important clinical aspects of knowing. Specifically, the renal effects of acute respiratory distress syndrome and the use of positive-pressure mechanical ventilation are discussed, being ventilator induced lung injury one of the most common models for studying the lung-kidney crosstalk. The role of renal failure induced by mechanical ventilation (ventilator-induced kidney injury) in the pathogenesis of acute renal failure is emphasized. We also analyze the impact of the acute renal failure in the lung, recognizing an increase in pulmonary vascular permeability, inflammation, and alteration of sodium and water channels in the alveolar epithelial. This conceptual model can be the basis for the development of new therapeutic strategies to use in patients with multiple organ dysfunction syndrome. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.
Long-term outcomes and management of lung transplant recipients.
Costa, Joseph; Benvenuto, Luke J; Sonett, Joshua R
2017-06-01
Lung transplantation is an established treatment for patients with end-stage lung disease. Improvements in immunosuppression and therapeutic management of infections have resulted in improved long-term survival and a decline in allograft rejection. Allograft rejection continues to be a serious complication following lung transplantation, thereby leading to acute graft failure and, subsequently, chronic lung allograft dysfunction (CLAD). Bronchiolitis obliterans syndrome (BOS), the most common phenotype of CLAD, is the leading cause of late mortality and morbidity in lung recipients, with 50% having developed BOS within 5 years of lung transplantation. Infections in lung transplant recipients are also a significant complication and represent the most common cause of death within the first year. The success of lung transplantation depends on careful management of immunosuppressive regimens to reduce the rate of rejection, while monitoring recipients for infections and complications to help identify problems early. The long-term outcomes and management of lung transplant recipients are critically based on modulating natural immune response of the recipient to prevent acute and chronic rejection. Understanding the immune mechanisms and temporal correlation of acute and chronic rejection is thus critical in the long-term management of lung recipients. Copyright © 2017 Elsevier Ltd. All rights reserved.
2017-10-01
gas exchange in the acute respiratory distress syndrome (ARDS) and other forms of combat-related lung injury, while simultaneously preserving mechanical...civilian populations with ARDS. 15. SUBJECT TERMS Acute lung injury, Acute respiratory distress syndrome , Blast lung injury, Combat-related lung injury...REFERENCES 18 10.0 APPENDICES 19 Page 4 1.0 INTRODUCTION Respiratory failure from acute lung injury, now termed the acute respiratory distress syndrome
Acute Lung Injury: Making the Injured Lung Perform Better and Rebuilding Healthy Lungs
2014-04-01
A. Derivation Lung Mesenchymal Lineages from the Fetal Mesothelium Requires Hedgehog Signaling for Mesothelial Cell Entry. Development 140:4398-4405...mesothelial cell entry into the developing lung are largely unknown. The importance of the hedgehog (Hh) signaling pathway in mesenchymal...et al., 1997; Weaver et al., 2003; Polizio et al., 2011; Yoo et al., 2011). Mammals express three Hh ligands: Indian hedgehog (IHH), desert hedgehog
Kapur, Rick; Kim, Michael; Aslam, Rukhsana; McVey, Mark J.; Tabuchi, Arata; Luo, Alice; Liu, Jonathan; Li, Yuan; Shanmugabhavananthan, Shanjeevan; Speck, Edwin R.; Zufferey, Anne; Yousef, George; Zhang, Haibo; Rondina, Matthew T.; Weyrich, Andrew S.; Porcelijn, Leendert; Kuebler, Wolfgang M.; Slutsky, Arthur S.
2017-01-01
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related fatalities and is characterized by acute respiratory distress following blood transfusion. Donor antibodies are frequently involved; however, the pathogenesis and protective mechanisms in the recipient are poorly understood, and specific therapies are lacking. Using newly developed murine TRALI models based on injection of anti–major histocompatibility complex class I antibodies, we found CD4+CD25+FoxP3+ T regulatory cells (Tregs) and CD11c+ dendritic cells (DCs) to be critical effectors that protect against TRALI. Treg or DC depletion in vivo resulted in aggravated antibody-mediated acute lung injury within 90 minutes with 60% mortality upon DC depletion. In addition, resistance to antibody-mediated TRALI was associated with increased interleukin-10 (IL-10) levels, and IL-10 levels were found to be decreased in mice suffering from TRALI. Importantly, IL-10 injection completely prevented and rescued the development of TRALI in mice and may prove to be a promising new therapeutic approach for alleviating lung injury in this serious complication of transfusion. PMID:28202460
Vildagliptin-induced acute lung injury: a case report.
Ohara, Nobumasa; Kaneko, Masanori; Sato, Kazuhiro; Maruyama, Ryoko; Furukawa, Tomoyasu; Tanaka, Junta; Kaneko, Kenzo; Kamoi, Kyuzi
2016-08-12
Dipeptidyl peptidase-4 inhibitors are a class of oral hypoglycemic drugs and are used widely to treat type 2 diabetes mellitus in many countries. Adverse effects include nasopharyngitis, headache, elevated serum pancreatic enzymes, and gastrointestinal symptoms. In addition, a few cases of interstitial pneumonia associated with their use have been reported in the Japanese literature. Here we describe a patient who developed drug-induced acute lung injury shortly after the administration of the dipeptidyl peptidase-4 inhibitor vildagliptin. A 38-year-old Japanese woman with diabetes mellitus developed acute respiratory failure 1 day after administration of vildagliptin. Chest computed tomography revealed nonsegmental ground-glass opacities in her lungs. There was no evidence of bacterial pneumonia or any other cause of her respiratory manifestations. After discontinuation of vildagliptin, she recovered fully from her respiratory disorder. She received insulin therapy for her diabetes mellitus, and her subsequent clinical course has been uneventful. The period of drug exposure in previously reported cases of patients with drug-induced interstitial pneumonia caused by dipeptidyl peptidase-4 inhibitor varied from several days to over 6 months. In the present case, our patient developed interstitial pneumonia only 1 day after the administration of vildagliptin. The precise mechanism of her vildagliptin-induced lung injury remains uncertain, but physicians should consider that dipeptidyl peptidase-4 inhibitor-induced lung injury, although rare, may appear acutely, even within days after administration of this drug.
Mittal, Anubhav; Hickey, Anthony JR; Chai, Chau C; Loveday, Benjamin PT; Thompson, Nichola; Dare, Anna; Delahunt, Brett; Cooper, Garth JS; Windsor, John A; Phillips, Anthony RJ
2011-01-01
Introduction Multiple organ dysfunction is the main cause of death in severe acute pancreatitis. Primary mitochondrial dysfunction plays a central role in the development and progression of organ failure in critical illness. The present study investigated mitochondrial function in seven tissues during early experimental acute pancreatitis. Methods Twenty-eight male Wistar rats (463 ± 2 g; mean ± SEM) were studied. Group 1 (n = 8), saline control; Group 2 (n = 6), caerulein-induced mild acute pancreatitis; Group 3 (n = 7) sham surgical controls; and Group 4 (n = 7), taurocholate-induced severe acute pancreatitis. Animals were euthanased at 6 h from the induction of acute pancreatitis and mitochondrial function was assessed in the heart, lung, liver, kidney, pancreas, duodenum and jejunum by mitochondrial respirometry. Results Significant early mitochondrial dysfunction was present in the pancreas, lung and jejunum in both models of acute pancreatitis, however, the Heart, liver, kidney and duodenal mitochondria were unaffected. Conclusions The present study provides the first description of early organ-selective mitochondrial dysfunction in the lung and jejunum during acute pancreatitis. Research is now needed to identify the underlying pathophysiology behind the organ selective mitochondrial dysfunction, and the potential benefits of early mitochondrial-specific therapies in acute pancreatitis. PMID:21492333
Changes in breath sound power spectra during experimental oleic acid-induced lung injury in pigs.
Räsänen, Jukka; Nemergut, Michael E; Gavriely, Noam
2014-01-01
To evaluate the effect of acute lung injury on the frequency spectra of breath sounds, we made serial acoustic recordings from nondependent, midlung and dependent regions of both lungs in ten 35- to 45-kg anesthetized, intubated, and mechanically ventilated pigs during development of acute lung injury induced with intravenous oleic acid in prone or supine position. Oleic acid injections rapidly produced severe derangements in the gas exchange and mechanical properties of the lung, with an average increase in venous admixture from 16 ± 12 to 62 ± 16% (P < 0.01), and a reduction in dynamic respiratory system compliance from 25 ± 4 to 14 ± 4 ml/cmH2O (P < 0.01). A concomitant increase in sound power was seen in all lung regions (P < 0.05), predominantly in frequencies 150-800 Hz. The deterioration in gas exchange and lung mechanics correlated best with concurrent spectral changes in the nondependent lung regions. Acute lung injury increases the power of breath sounds likely secondary to redistribution of ventilation from collapsed to aerated parts of the lung and improved sound transmission in dependent, consolidated areas.
Diabetes, insulin, and development of acute lung injury
Honiden, Shyoko; Gong, Michelle N.
2009-01-01
Objectives Recently, many studies have investigated the immunomodulatory effects of insulin and glucose control in critical illness. This review examines evidence regarding the relationship between diabetes and the development of acute lung injury/acute respiratory distress syndrome (ALI/ARDS), reviews studies of lung injury related to glycemic and nonglycemic metabolic features of diabetes, and examines the effect of diabetic therapies. Data Sources and Study Selection A MEDLINE/PubMed search from inception to August 1, 2008, was conducted using the search terms acute lung injury, acute respiratory distress syndrome, hyperglycemia, diabetes mellitus, insulin, hydroxymethylglutaryl-CoA reductase inhibitors (statins), angiotensin-converting enzyme inhibitor, and peroxisome proliferator-activated receptors, including combinations of these terms. Bibliographies of retrieved articles were manually reviewed. Data Extraction and Synthesis Available studies were critically reviewed, and data were extracted with special attention to the human and animal studies that explored a) diabetes and ALI; b) hyperglycemia and ALI; c) metabolic nonhyperglycemic features of diabetes and ALI; and d) diabetic therapies and ALI. Conclusions Clinical and experimental data indicate that diabetes is protective against the development of ALI/ARDS. The pathways involved are complex and likely include effects of hyperglycemia on the inflammatory response, metabolic abnormalities in diabetes, and the interactions of therapeutic agents given to diabetic patients. Multidisciplinary, multifaceted studies, involving both animal models and clinical and molecular epidemiology techniques, are essential. PMID:19531947
Treatment for sulfur mustard lung injuries; new therapeutic approaches from acute to chronic phase
2012-01-01
Objective Sulfur mustard (SM) is one of the major potent chemical warfare and attractive weapons for terrorists. It has caused deaths to hundreds of thousands of victims in World War I and more recently during the Iran-Iraq war (1980–1988). It has ability to develop severe acute and chronic damage to the respiratory tract, eyes and skin. Understanding the acute and chronic biologic consequences of SM exposure may be quite essential for developing efficient prophylactic/therapeutic measures. One of the systems majorly affected by SM is the respiratory tract that numerous clinical studies have detailed processes of injury, diagnosis and treatments of lung. The low mortality rate has been contributed to high prevalence of victims and high lifetime morbidity burden. However, there are no curative modalities available in such patients. In this review, we collected and discussed the related articles on the preventive and therapeutic approaches to SM-induced respiratory injury and summarized what is currently known about the management and therapeutic strategies of acute and long-term consequences of SM lung injuries. Method This review was done by reviewing all papers found by searching following key words sulfur mustard; lung; chronic; acute; COPD; treatment. Results Mustard lung has an ongoing pathological process and is active disorder even years after exposure to SM. Different drug classes have been studied, nevertheless there are no curative modalities for mustard lung. Conclusion Complementary studies on one hand regarding pharmacokinetic of drugs and molecular investigations are mandatory to obtain more effective treatments. PMID:23351279
Prescott, Hallie C; Brower, Roy G; Cooke, Colin R; Phillips, Gary; O'Brien, James M
2013-03-01
Lung-protective ventilation with lower tidal volume and lower plateau pressure improves mortality in patients with acute lung injury and acute respiratory distress syndrome. We sought to determine the incidence of elevated plateau pressure in acute lung injury /acute respiratory distress syndrome patients receiving lower tidal volume ventilation and to determine the factors that predict elevated plateau pressure in these patients. We used data from 1398 participants in Acute Respiratory Distress Syndrome Network trials, who received lower tidal volume ventilation (≤ 6.5mL/kg predicted body weight). We considered patients with a plateau pressure greater than 30cm H2O and/or a tidal volume less than 5.5mL/kg predicted body weight on study day 1 to have "elevated plateau pressure." We used logistic regression to identify baseline clinical variables associated with elevated plateau pressure and to develop a model to predict elevated plateau pressure using a subset of 1,188 patients. We validated the model in the 210 patients not used for model development. Medical centers participating in Acute Respiratory Distress Syndrome Network clinical trials. None. Of the 1,398 patients in our study, 288 (20.6%) had elevated plateau pressure on day 1. Severity of illness indices and demographic factors (younger age, greater body mass index, and non-white race) were independently associated with elevated plateau pressure. The multivariable logistic regression model for predicting elevated plateau pressure had an area under the receiving operator characteristic curve of 0.71 for both the developmental and the validation subsets. acute lung injury patients receiving lower tidal volume ventilation often have a plateau pressure that exceeds Acute Respiratory Distress Syndrome Network goals. Race, body mass index, and severity of lung injury are each independently associated with elevated plateau pressure. Selecting a smaller initial tidal volume for non-white patients and patients with higher severity of illness may decrease the incidence of elevated plateau pressure. Prospective studies are needed to evaluate this approach.
Irhimeh, M R; Musk, M; Cooney, J P
2016-11-01
Bone marrow transplantation (BMT) has been performed as a successful life-saving treatment for hematological and neoplastic diseases. Despite the predictable long-term survival rates in BMT, pulmonary complications reduce the survival rates significantly mainly because of chronic graft-versus-host disease (GVHD). This report briefly discusses a successful lung transplantation case for severe lung GVHD after allograft for acute lymphoblastic leukemia. This case report supports the scarce evidence in the literature for the importance of lung transplantation as a therapeutic option for patients who develop respiratory failure secondary to BMT. Copyright © 2016. Published by Elsevier Inc.
Soeiro-Pereira, Paulo V.; Gomes, Eliane; Neto, Antonio Condino; D' Império Lima, Maria R.; Alvarez, José M.; Portugal, Silvia; Epiphanio, Sabrina
2016-01-01
Malaria remains one of the greatest burdens to global health, causing nearly 500,000 deaths in 2014. When manifesting in the lungs, severe malaria causes acute lung injury/acute respiratory distress syndrome (ALI/ARDS). We have previously shown that a proportion of DBA/2 mice infected with Plasmodium berghei ANKA (PbA) develop ALI/ARDS and that these mice recapitulate various aspects of the human syndrome, such as pulmonary edema, hemorrhaging, pleural effusion and hypoxemia. Herein, we investigated the role of neutrophils in the pathogenesis of malaria-associated ALI/ARDS. Mice developing ALI/ARDS showed greater neutrophil accumulation in the lungs compared with mice that did not develop pulmonary complications. In addition, mice with ALI/ARDS produced more neutrophil-attracting chemokines, myeloperoxidase and reactive oxygen species. We also observed that the parasites Plasmodium falciparum and PbA induced the formation of neutrophil extracellular traps (NETs) ex vivo, which were associated with inflammation and tissue injury. The depletion of neutrophils, treatment with AMD3100 (a CXCR4 antagonist), Pulmozyme (human recombinant DNase) or Sivelestat (inhibitor of neutrophil elastase) decreased the development of malaria-associated ALI/ARDS and significantly increased mouse survival. This study implicates neutrophils and NETs in the genesis of experimentally induced malaria-associated ALI/ARDS and proposes a new therapeutic approach to improve the prognosis of severe malaria. PMID:27926944
Diphenyl ditelluride intoxication triggers histological changes in liver, kidney, and lung of mice.
da Luz, Sônia Cristina Almeida; Daubermann, Melissa Falster; Thomé, Gustavo Roberto; Dos Santos, Matheus Mülling; Ramos, Angelica; Torres Salazar, Gerson; da Rocha, João Batista Teixeira; Barbosa, Nilda Vargas
2015-01-01
Tellurium compounds may be cytotoxic to different cells types. Thus, this work evaluated the effect of diphenyl ditelluride ((PhTe)2), an organotellurium commonly used in organic synthesis, on the morphology of liver, kidney, and lung. Adult mice were acutely (a subcutaneous single dose: 250 μmol/kg) or subchronically (one daily subcutaneous dose: 10 or 50 μmol/kg for 7 and 14 days) exposed to (PhTe)2. Afterwards, the histological analyses of liver, kidney, and lungs were performed. Liver histology revealed that the hepatocytes of mice subchronically exposed to (PhTe)2 presented cytoplasmic vacuolization, hydropic degeneration, and hyperchromatic nuclei. Subchronic exposure to 50 μmol/kg (PhTe)2 also caused hepatic necrosis. Microvesicular and macrovesicular steatosis were identified in liver of mice acutely exposed to (PhTe)2. Acute and subchronic intoxication with (PhTe)2 induced changes on epithelial cells of renal tubules, namely, loss of brush border and cytoplasmatic vacuolization. Atrophy and hypertrophy, cast proteinaceous formation, and acute tubular necrosis were also identified in renal tissue. Mice subchronically exposed to 50 μmol/kg (PhTe)2 developed intra-alveolar edema and alveolar wall congestion in some areas of lungs. Acute exposure to (PhTe)2 did not cause histological changes in lungs. Our data show that (PhTe)2 may be considered a histotoxic agent for liver, kidney, and lung.
Shen, Wen-bin; Zhu, Shu-chai; Gao, Hong-mei; Li, You-mei; Liu, Zhi-kun; Li, Juan; Su, Jing-wei; Wan, Jun
2013-01-01
To investigate the predictive value of low dose volume of the lung on acute radiation pneumonitis (RP) in patients with esophageal cancer treated with three-dimensional conformal radiotherapy (3D-CRT) only, and to analyze the relation of comprehensive parameters of the dose-volume V5, V20 and mean lung dose (MLD) with acute RP. Two hundred and twenty-two patients with esophageal cancer treated by 3D-CRT have been followed up. The V5-V30 and MLD were calculated from the dose-volume histogram system. The clinical factors and treatment parameters were collected and analyzed. The acute RP was evaluated according to the RTOG toxicity criteria. The acute RP of grade 1, 2, 3 and 4 were observed in 68 (30.6%), 40 (18.0%), 8 (3.6%) and 1 (0.5%) cases, respectively. The univariate analysis of measurement data:The primary tumor length, radiation fields, MLD and lung V5-V30 had a significant relationship with the acute RP. The magnitude of the number of radiation fields, the volume of GTV, MLD and Lung V5-V30 had a significant difference in whether the ≥ grade 1 and ≥ grade 2 acute RP developed or not. Binary logistic regression analysis showed that MLD, Lung V5, V20 and V25 were independent risk factors of ≥ grade 1 acute RP, and the radiation fields, MLD and Lung V5 were independent risk factors of ≥ grade 2 acute RP. The ≥ grade 1 and ≥ grade 2 acute RP were significantly decreased when MLD less than 14 Gy, V5 and V20 were less than 60% and 28%,respectively. When the V20 ≤ 28%, the acute RP was significantly decreased in V5 ≤ 60% group. When the MLD was ≤ 14 Gy, the ≥ 1 grade acute RP was significantly decreased in the V5 ≤ 60% group. When the MLD was >14 Gy, the ≥ grade 2 acute RP was significantly decreased in the V5 ≤ 60% group. The low dose volume of the lung is effective in predicting radiation pneumonitis in patients with esophageal cancer treated with 3D-CRT only. The comprehensive parameters combined with V5, V20 and MLD may increase the effect in predicting radiation pneumonitis.
Manipulations of core temperatures in ischemia-reperfusion lung injury in rabbits.
Chang, Hung; Huang, Kun-Lun; Li, Min-Hui; Hsu, Ching-Wang; Tsai, Shih-Hung; Chu, Shi-Jye
2008-01-01
The present study was designed to determine the effect of various core temperatures on acute lung injury induced by ischemia-reperfusion (I/R) in our isolated rabbit lung model. Typical acute lung injury was successfully induced by 30 min of ischemia followed by 90 min of reperfusion observation. The I/R elicited a significant increase in pulmonary arterial pressure, microvascular permeability (measured by using the capillary filtration coefficient, Kfc), Delta Kfc ratio, lung weight gain and the protein concentration of the bronchoalveolar lavage fluid. Mild hypothermia significantly attenuated acute lung injury induced by I/R, all parameters having decreased significantly (p<0.05); conversely, mild hyperthermia did not further exacerbate acute lung injury. These experimental data suggest that mild hypothermia significantly ameliorated acute lung injury induced by ischemia-reperfusion in rabbits.
Weill, D; Torres, F; Hodges, T N; Olmos, J J; Zamora, M R
1999-11-01
Single-lung transplantation for emphysema may be complicated by acute native lung hyperinflation (ANLH) with hemodynamic and ventilatory compromise. Some groups advocate the routine use of independent lung ventilation, double-lung transplant, or right-lung transplant with or without contralateral lung volume reduction surgery in high-risk patients. The goal of this study was to determine the incidence of ANLH and identify its potential predictors. We reviewed 51 consecutive single-lung transplants for emphysema. Symptomatic ANLH was defined as mediastinal shift and diaphragmatic flattening on chest x-ray with hemodynamic or respiratory failure requiring cardiopressor agents or independent lung ventilation. Preoperative and postoperative physiologic and hemodynamic data were analyzed from both recipients and donors. Sixteen patients developed radiographic ANLH; 8 were symptomatic, 2 severely so. We could not identify high-risk patients before transplant by pulmonary function tests, predicted donor total lung capacity (TLC)/actual recipient TLC ratio, pulmonary artery pressures, or the side transplanted. There was a trend toward an increased incidence of symptomatic ANLH in patients with bullous emphysema on chest computed tomography, but this was accounted for primarily by patients with alpha1-antitrypsin deficiency (4/13 vs 4/38 with chronic obstructive pulmonary disease, P = 0.10). No patient required cardiopulmonary bypass or inhaled nitric oxide intraoperatively. Patients with acute native lung hyperinflation did not have increased reperfusion edema as measured by chest x-ray score or PaO2/F(I)O2 ratio. Compared to patients without ANLH, symptomatic patients had longer ventilator times (64.9+/-14.6 hours vs 40.4+/-3.9, P = 0.02, ANOVA) and longer lengths of stay (19.3+/-2.1 days vs 13.7+/-1.3, P = 0.07), but 30-day survival was 100%. Two symptomatic patients required independent lung ventilation or inhaled nitric oxide; the others were managed with decreased minute ventilation, early extubation, and cardiopressor agents. No patient required early lung volume reduction surgery or retransplantation. Acute native lung hyperinflation had no effect on FEV1 or 6-minute walk results at 1 year; survival at 1, 2, or 3 years; or the rate of acute rejection, infection, or bronchiolitis obliterans syndrome greater than grade 2. Acute native lung hyperinflation is common radiographically but is rarely clinically severe. Although there was a trend toward an increase in symptomatic ANLH in patients with bullous emphysema, a high-risk group could not be identified preoperatively. Our results do not support the routine use of bilateral lung transplant, the exclusive use of right single-lung transplant, simultaneous lung volume reduction surgery, or independent lung ventilation for patients with emphysema. Management strategies should be employed that limit overdistension of the native lung and lead to early extubation.
Shah, Dilip; Romero, Freddy; Duong, Michelle; Wang, Nadan; Paudyal, Bishnuhari; Suratt, Benjamin T; Kallen, Caleb B; Sun, Jianxin; Zhu, Ying; Walsh, Kenneth; Summer, Ross
2015-06-12
Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans.
Shah, Dilip; Romero, Freddy; Duong, Michelle; Wang, Nadan; Paudyal, Bishnuhari; Suratt, Benjamin T.; Kallen, Caleb B.; Sun, Jianxin; Zhu, Ying; Walsh, Kenneth; Summer, Ross
2015-01-01
Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans. PMID:26068229
Integrating microRNAs into a system biology approach to acute lung injury.
Zhou, Tong; Garcia, Joe G N; Zhang, Wei
2011-04-01
Acute lung injury (ALI), including the ventilator-induced lung injury (VILI) and the more severe acute respiratory distress syndrome (ARDS), are common and complex inflammatory lung diseases potentially affected by various genetic and nongenetic factors. Using the candidate gene approach, genetic variants associated with immune response and inflammatory pathways have been identified and implicated in ALI. Because gene expression is an intermediate phenotype that resides between the DNA sequence variation and the higher level cellular or whole-body phenotypes, the illustration of gene expression regulatory networks potentially could enhance understanding of disease susceptibility and the development of inflammatory lung syndromes. MicroRNAs (miRNAs) have emerged as a novel class of gene regulators that play critical roles in complex diseases including ALI. Comparisons of global miRNA profiles in animal models of ALI and VILI identified several miRNAs (eg, miR-146a and miR-155) previously implicated in immune response and inflammatory pathways. Therefore, via regulation of target genes in these biological processes and pathways, miRNAs potentially contribute to the development of ALI. Although this line of inquiry exists at a nascent stage, miRNAs have the potential to be critical components of a comprehensive model for inflammatory lung disease built by a systems biology approach that integrates genetic, genomic, proteomic, epigenetic as well as environmental stimuli information. Given their particularly recognized role in regulation of immune and inflammatory responses, miRNAs also serve as novel therapeutic targets and biomarkers for ALI/ARDS or VILI, thus facilitating the realization of personalized medicine for individuals with acute inflammatory lung disease. Copyright © 2011 Mosby, Inc. All rights reserved.
Hecker, Louise
2018-04-01
The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic and acute lung diseases. Numerous studies have implicated aging and oxidative stress in the pathogenesis of various pulmonary diseases; however, despite recent advances in these fields, the specific contributions of aging and oxidative stress remain elusive. This review will discuss the consequences of aging on lung morphology and physiology, and how redox imbalance with aging contributes to lung disease susceptibility. Here, we focus on three lung diseases for which aging is a significant risk factor: acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Preclinical and clinical development for redox- and senescence-altering therapeutic strategies are discussed, as well as scientific advancements that may direct current and future therapeutic development. A deeper understanding of how aging impacts normal lung function, redox balance, and injury-repair processes will inspire the development of new therapies to prevent and/or reverse age-associated pulmonary diseases, and ultimately increase health span and longevity. This review is intended to encourage basic, clinical, and translational research that will bridge knowledge gaps at the intersection of aging, oxidative stress, and lung disease to fuel the development of more effective therapeutic strategies for lung diseases that disproportionately afflict the elderly.
Respiratory infections and acute lung injury in systemic illness.
Skerrett, S J; Niederman, M S; Fein, A M
1989-12-01
We have discussed the relationship between systemic illness, infection, and lung disease. As we have seen, patients with a wide variety of disease states, including advanced age, diabetes mellitus, alcoholism, collagen vascular disease, cancer, heart failure, and organ transplantation are potentially at increased risk for pneumonia because of disease-related impairments in host defenses. In addition, two virtually ubiquitous conditions in hospitalized patients, malnutrition and therapeutic interventions (especially with common medications), frequently add to the risk of airway invasion by bacterial pathogens. Systemic illness not only makes lung infection more common, but may adversely affect outcome and resolution, as well as determine the clinical presentation of pneumonia. In one particular population, the intubated and mechanically ventilated patient, the risk of infection is particularly high, and nosocomial pneumonia is a major cause of mortality. To the extent that the host response itself leads to the symptoms and signs of infection, systemically ill individuals may have subtle clinical features when serious bacterial invasion is present. Many components of the host defense system can become abnormal with serious illness, but a common mechanism that ties many systemic diseases to pneumonia is an alteration in airway epithelial cell receptivity for bacteria, namely, bacterial adherence, a process that mediates airway colonization, the first pathogenetic step on the road to pneumonia. The impetus for understanding how serious illness promotes lung infection is that once these mechanisms are identified, potential preventative strategies to minimize infection risk in the individual with systemic disease may be developed. The relationship among systemic illness, the lung, and infection also exists in a different direction: infection of a systemic nature (the septic syndrome) can lead to disease in the lung (ARDS). We have described the features of the septic syndrome and identified how it may lead to lung injury, usually by indirect means, through activation of inflammatory mediators that are carried to the lung via the vasculature. Although it is frequently impossible to predict which specific patient with systemic sepsis will develop acute lung injury, the current state of knowledge does permit us to identify high-risk individuals. Surprisingly, clinical assessment rather than biochemical testing is the best predictor of the development of acute lung injury. Patients with severe injury, profound shock and multiple systemic insults are most prone to acute lung injury in the presence of systemic sepsis.(ABSTRACT TRUNCATED AT 400 WORDS)
Shiroyama, Takayuki; Hayama, Manabu; Satoh, Shingo; Nasu, Shingo; Tanaka, Ayako; Morita, Satomu; Morishita, Naoko; Suzuki, Hidekazu; Okamoto, Norio; Hirashima, Tomonori
2017-01-01
Pulmonary embolism (PE) can be life-threatening, and it is challenging to diagnose because of its nonspecific signs and symptoms. PE is also an important potential risk of osimertinib treatment, however, clinical courses regarding retreatment after osimertinib-induced acute pulmonary embolism remain unclear. We described a 77-year-old woman with postoperative recurrent lung adenocarcinoma who developed osimertinib-induced acute PE. She received apixaban and was later successfully retreated with osimertinib. This case suggests that retreatment with osimertinib after osimertinib-induced acute PE may be a treatment option when alternative therapeutic options are limited.
Speck, Nicole E; Schuurmans, Macé M; Murer, Christian; Benden, Christian; Huber, Lars C
2016-06-21
Diagnosis of acute lung allograft rejection is currently based on transbronchial lung biopsies. Additional methods to detect acute allograft dysfunction derived from plasma and bronchoalveolar lavage samples might facilitate diagnosis and ultimately improve allograft survival. This review article gives an overview of the cell profiles of bronchoalveolar lavage and plasma samples during acute lung allograft rejection. The value of these cells and changes within the pattern of differential cytology to support the diagnosis of acute lung allograft rejection is discussed. Current findings on the topic are highlighted and trends for future research are identified.
Maintenance of airway epithelium in acutely rejected orthotopic vascularized mouse lung transplants.
Okazaki, Mikio; Gelman, Andrew E; Tietjens, Jeremy R; Ibricevic, Aida; Kornfeld, Christopher G; Huang, Howard J; Richardson, Steven B; Lai, Jiaming; Garbow, Joel R; Patterson, G Alexander; Krupnick, Alexander S; Brody, Steven L; Kreisel, Daniel
2007-12-01
Lung transplantation remains the only therapeutic option for many patients suffering from end-stage pulmonary disease. Long-term success after lung transplantation is severely limited by the development of bronchiolitis obliterans. The murine heterotopic tracheal transplantation model has been widely used for studies investigating pathogenesis of obliterative airway disease and immunosuppressive strategies to prevent its development. Despite its utility, this model employs proximal airway that lacks airflow and is not vascularized. We have developed a novel model of orthotopic vascularized lung transplantation in the mouse, which leads to severe vascular rejection in allogeneic strain combinations. Here we characterize differences in the fate of airway epithelial cells in nonimmunosuppressed heterotopic tracheal and vascularized lung allograft models over 28 days. Up-regulation of growth factors that are thought to be critical for the development of airway fibrosis and interstitial collagen deposition were similar in both models. However, while loss of airway epithelial cells occurred in the tracheal model, airway epithelium remained intact and fully differentiated in lung allografts, despite profound vascular rejection. Moreover, we demonstrate expression of the anti-apoptotic protein Bcl-2 in airway epithelial cells of acutely rejected lung allografts. These findings suggest that in addition to alloimmune responses, other stimuli may be required for the destruction of airway epithelial cells. Thus, the model of vascularized mouse lung transplantation may provide a new and more physiologic experimental tool to study the interaction between immune and nonimmune mechanisms affecting airway pathology in lung allografts.
Serikov, Vladimir B; Mikhaylov, Viatcheslav M; Krasnodembskay, Anna D; Matthay, Michael A
2008-01-01
Bone marrow-derived cells (BMDC) have been shown to graft injured tissues, differentiate in specialized cells, and participate in repair. The importance of these processes in acute lung bacterial inflammation and development of fibrosis is unknown. The goal of this study was to investigate the temporal sequence and lineage commitment of BMDC in mouse lungs injured by bacterial pneumonia. We transplanted GFP-tagged BMDC into 5-Gy-irradiated C57BL/6 mice. After 3 months of recovery, mice were subjected to LD(50) intratracheal instillation of live E. coli (controls received saline) which produced pneumonia and subsequent areas of fibrosis. Lungs were investigated by immunohistology for up to 6 months. At the peak of lung inflammation, the predominant influx of BMDC were GFP(+) leukocytes. Postinflammatory foci of lung fibrosis were evident after 1-2 months. The fibrotic foci in lung stroma contained clusters of GFP(+) CD45(+) cells, GFP(+) vimentin-positive cells, and GFP(+) collagen I-positive fibroblasts. GFP(+) endothelial or epithelial cells were not identified. These data suggest that following 5-Gy irradiation and acute bacterial pneumonia, BMDC may temporarily participate in lung postinflammatory repair and stromal remodeling without long-term engraftment as specialized endothelial or epithelial cells.
Acute Lung Injury and Persistent Small Airway Disease in a Rabbit Model of Chlorine Inhalation
Musah, Sadiatu; Schlueter, Connie F.; Humphrey, David M.; Powell, Karen S.; Roberts, Andrew M.; Hoyle, Gary W.
2016-01-01
Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. PMID:27913141
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigenstam, Elisabeth; Elfsmark, Linda; Koch, Bo
We investigated acute and delayed respiratory changes after inhalation exposure to chlorine (Cl{sub 2}) with the aim to understand the pathogenesis of the long-term sequelae of Cl{sub 2}-induced lung-injury. In a rat model of nose-only exposure we analyzed changes in airway hyperresponsiveness (AHR), inflammatory responses in airways, expression of pro-inflammatory markers and development of lung fibrosis during a time-course from 5 h up to 90 days after a single inhalation of Cl{sub 2}. A single dose of dexamethasone (10 mg/kg) was administered 1 h following Cl{sub 2}-exposure. A 15-min inhalation of 200 ppm Cl{sub 2} was non-lethal in Sprague-Dawley rats.more » At 24 h post exposure, Cl{sub 2}-exposed rats displayed elevated numbers of leukocytes with an increase of neutrophils and eosinophils in bronchoalveolar lavage (BAL) and edema was shown both in lung tissue and the heart. At 24 h, the inflammasome-associated cytokines IL-1β and IL-18 were detected in BAL. Concomitant with the acute inflammation a significant AHR was detected. At the later time-points, a delayed inflammatory response was observed together with signs of lung fibrosis as indicated by increased pulmonary macrophages, elevated TGF-β expression in BAL and collagen deposition around airways. Dexamethasone reduced the numbers of neutrophils in BAL at 24 h but did not influence the AHR. Inhalation of Cl{sub 2} in rats leads to acute respiratory and cardiac changes as well as pulmonary inflammation involving induction of TGF-β1. The acute inflammatory response was followed by sustained macrophage response and lack of tissue repair. It was also found that pathways apart from the acute inflammatory response contribute to the Cl{sub 2}-induced respiratory dysfunction. - Highlights: • Inhalation of Cl{sub 2} leads to acute lung inflammation and airway hyperreactivity. • Cl{sub 2} activates an inflammasome pathway of TGF-β induction. • Cl{sub 2} leads to a fibrotic respiratory disease. • Treatment with corticosteroids alone is insufficient to counteract acute lung injury.« less
Targeting Extracellular Histones with Novel RNA Biodrugs for the Treatment of Acute Lung Injury
2017-10-01
inactivate) circulating histones and prevent the morbidity and mortality associated with multiple organ dysfunction/ acute respiratory distress syndrome ...patients. 15. SUBJECT TERMS Acute lung injury (ALI), acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome , extracellular...are acute lung injury (ALI) from smoke/chlorine gas inhalation, burns, radiation , influenza and severe infection. Only recently have investigators
Alveolar Edema Fluid Clearance and Acute Lung Injury
Berthiaume, Yves; Matthay, Michael A.
2009-01-01
Although lung-protective ventilation strategies have substantially reduced mortality of acute lung injury patients there is still a need for new therapies that can further decrease mortality in patients with acute lung injury. Studies of epithelial ion and fluid transport across the distal pulmonary epithelia have provided important new concepts regarding potential new therapies for acute lung injury. Overall, there is convincing evidence that the alveolar epithelium is not only a tight epithelial barrier that resists the movement of edema fluid into the alveoli, but it is also actively involved in the transport of ions and solutes, a process that is essential for edema fluid clearance and the resolution of acute lung injury. The objective of this article is to consider some areas of recent progress in the field of alveolar fluid transport under normal and pathologic conditions. Vectorial ion transport across the alveolar and distal airway epithelia is the primary determinant of alveolar fluid clearance. The general paradigm is that active Na+ and Cl− transport drives net alveolar fluid clearance, as demonstrated in several different species, including the human lung. Although these transport processes can be impaired in severe lung injury, multiple experimental studies suggest that upregulation of Na+ and Cl− transport might be an effective therapy in acute lung injury. We will review mechanisms involved in pharmacological modulation of ion transport in lung injury with a special focus on the use of β-adrenergic agonists which has generated considerable interest and is a promising therapy for clinical acute lung injury. PMID:17604701
2006-09-01
these tissues. There was essentially no change in the tocopherol levels. These results imply that CEES produces systemic oxidative stress at a...of CEES-induced acute lung injury, even though little is currently known about how CEES produces acute and progressive lung injury. Body...Medical School). 3. Pulmonary clearance of Pseudomonas aeruginosa in CEES treated rats. It is not known if exposure to CEES compromises the ability
Kacmarek, Robert M; Villar, Jesús; Sulemanji, Demet; Montiel, Raquel; Ferrando, Carlos; Blanco, Jesús; Koh, Younsuck; Soler, Juan Alfonso; Martínez, Domingo; Hernández, Marianela; Tucci, Mauro; Borges, Joao Batista; Lubillo, Santiago; Santos, Arnoldo; Araujo, Juan B; Amato, Marcelo B P; Suárez-Sipmann, Fernando
2016-01-01
The open lung approach is a mechanical ventilation strategy involving lung recruitment and a decremental positive end-expiratory pressure trial. We compared the Acute Respiratory Distress Syndrome network protocol using low levels of positive end-expiratory pressure with open lung approach resulting in moderate to high levels of positive end-expiratory pressure for the management of established moderate/severe acute respiratory distress syndrome. A prospective, multicenter, pilot, randomized controlled trial. A network of 20 multidisciplinary ICUs. Patients meeting the American-European Consensus Conference definition for acute respiratory distress syndrome were considered for the study. At 12-36 hours after acute respiratory distress syndrome onset, patients were assessed under standardized ventilator settings (FIO2≥0.5, positive end-expiratory pressure ≥10 cm H2O). If Pao2/FIO2 ratio remained less than or equal to 200 mm Hg, patients were randomized to open lung approach or Acute Respiratory Distress Syndrome network protocol. All patients were ventilated with a tidal volume of 4 to 8 ml/kg predicted body weight. From 1,874 screened patients with acute respiratory distress syndrome, 200 were randomized: 99 to open lung approach and 101 to Acute Respiratory Distress Syndrome network protocol. Main outcome measures were 60-day and ICU mortalities, and ventilator-free days. Mortality at day-60 (29% open lung approach vs. 33% Acute Respiratory Distress Syndrome Network protocol, p = 0.18, log rank test), ICU mortality (25% open lung approach vs. 30% Acute Respiratory Distress Syndrome network protocol, p = 0.53 Fisher's exact test), and ventilator-free days (8 [0-20] open lung approach vs. 7 [0-20] d Acute Respiratory Distress Syndrome network protocol, p = 0.53 Wilcoxon rank test) were not significantly different. Airway driving pressure (plateau pressure - positive end-expiratory pressure) and PaO2/FIO2 improved significantly at 24, 48 and 72 hours in patients in open lung approach compared with patients in Acute Respiratory Distress Syndrome network protocol. Barotrauma rate was similar in both groups. In patients with established acute respiratory distress syndrome, open lung approach improved oxygenation and driving pressure, without detrimental effects on mortality, ventilator-free days, or barotrauma. This pilot study supports the need for a large, multicenter trial using recruitment maneuvers and a decremental positive end-expiratory pressure trial in persistent acute respiratory distress syndrome.
Needham, Dale M; Colantuoni, Elizabeth; Mendez-Tellez, Pedro A; Dinglas, Victor D; Sevransky, Jonathan E; Dennison Himmelfarb, Cheryl R; Desai, Sanjay V; Shanholtz, Carl; Brower, Roy G; Pronovost, Peter J
2012-04-05
To evaluate the association of volume limited and pressure limited (lung protective) mechanical ventilation with two year survival in patients with acute lung injury. Prospective cohort study. 13 intensive care units at four hospitals in Baltimore, Maryland, USA. 485 consecutive mechanically ventilated patients with acute lung injury. Two year survival after onset of acute lung injury. 485 patients contributed data for 6240 eligible ventilator settings, as measured twice daily (median of eight eligible ventilator settings per patient; 41% of which adhered to lung protective ventilation). Of these patients, 311 (64%) died within two years. After adjusting for the total duration of ventilation and other relevant covariates, each additional ventilator setting adherent to lung protective ventilation was associated with a 3% decrease in the risk of mortality over two years (hazard ratio 0.97, 95% confidence interval 0.95 to 0.99, P=0.002). Compared with no adherence, the estimated absolute risk reduction in two year mortality for a prototypical patient with 50% adherence to lung protective ventilation was 4.0% (0.8% to 7.2%, P=0.012) and with 100% adherence was 7.8% (1.6% to 14.0%, P=0.011). Lung protective mechanical ventilation was associated with a substantial long term survival benefit for patients with acute lung injury. Greater use of lung protective ventilation in routine clinical practice could reduce long term mortality in patients with acute lung injury. Clinicaltrials.gov NCT00300248.
Kawakami, Takao; Nagasaka, Keiko; Takami, Sachiko; Wada, Kazuya; Tu, Hsiao-Kun; Otsuji, Makiko; Kyono, Yutaka; Dobashi, Tae; Komatsu, Yasuhiko; Kihara, Makoto; Akimoto, Shingo; Peers, Ian S.; South, Marie C.; Higenbottam, Tim; Fukuoka, Masahiro; Nakata, Koichiro; Ohe, Yuichiro; Kudoh, Shoji; Clausen, Ib Groth; Nishimura, Toshihide; Marko-Varga, György; Kato, Harubumi
2011-01-01
Interstitial lung disease (ILD) events have been reported in Japanese non-small-cell lung cancer (NSCLC) patients receiving EGFR tyrosine kinase inhibitors. We investigated proteomic biomarkers for mechanistic insights and improved prediction of ILD. Blood plasma was collected from 43 gefitinib-treated NSCLC patients developing acute ILD (confirmed by blinded diagnostic review) and 123 randomly selected controls in a nested case-control study within a pharmacoepidemiological cohort study in Japan. We generated ∼7 million tandem mass spectrometry (MS/MS) measurements with extensive quality control and validation, producing one of the largest proteomic lung cancer datasets to date, incorporating rigorous study design, phenotype definition, and evaluation of sample processing. After alignment, scaling, and measurement batch adjustment, we identified 41 peptide peaks representing 29 proteins best predicting ILD. Multivariate peptide, protein, and pathway modeling achieved ILD prediction comparable to previously identified clinical variables; combining the two provided some improvement. The acute phase response pathway was strongly represented (17 of 29 proteins, p = 1.0×10−25), suggesting a key role with potential utility as a marker for increased risk of acute ILD events. Validation by Western blotting showed correlation for identified proteins, confirming that robust results can be generated from an MS/MS platform implementing strict quality control. PMID:21799770
Das, Saurabh Kumar; Choupoo, Nang Sujali; Saikia, Priyam; Lahkar, Amitabh
2017-06-01
Reported incidence of acute cor pulmonale (ACP) in patients with acute respiratory distress syndrome (ARDS) varies from 10% to 84%, despite being subjected to lung protective ventilation according to the current guidelines. The objective of this review is to find pooled cumulative incidence of ACP in patients with ARDS undergoing lung protective ventilation. We searched MEDLINE, EMBASE, Cochrane Library, KoreaMed, LILACS, and WHO Clinical Trial Registry. Cross-sectional or cohort studies were included if they reported or provided data that could be used to calculate the incidence proportion of ACP. Inverse variance heterogeneity (IVhet) and random effect model were used for the main outcome and measures. We included 16 studies encompassing 1661 patients. The cumulative incidence of ACP using IVhet analysis was 23% (95% confidence interval [CI] = 18%-28%) over 3 days of lung protective ventilation. Random effect analysis of 7 studies (1250 patients) revealed pooled odd ratio of mortality of 1.16 (95% CI = 0.80-1.67, P = 0.44) due to ACP. Patients with ARDS have a 23% risk of developing ACP with lung protective ventilation. Findings of this review indicate the need of updating existing guidelines for ventilating ARDS patients to incorporate right ventricle protective strategy.
Diffuse Alveolar Damage: A Common Phenomenon in Progressive Interstitial Lung Disorders
Kaarteenaho, Riitta; Kinnula, Vuokko L.
2011-01-01
It has become obvious that several interstitial lung diseases, and even viral lung infections, can progress rapidly, and exhibit similar features in their lung morphology. The final histopathological feature, common in these lung disorders, is diffuse alveolar damage (DAD). The histopathology of DAD is considered to represent end stage phenomenon in acutely behaving interstitial pneumonias, such as acute interstitial pneumonia (AIP) and acute exacerbations of idiopathic pulmonary fibrosis (IPF). Acute worsening and DAD may occur also in patients with nonspecific interstitial pneumonias (NSIPs), and even in severe viral lung infections where there is DAD histopathology in the lung. A better understanding of the mechanisms underlying the DAD reaction is needed to clarify the treatment for these serious lung diseases. There is an urgent need for international efforts for studying DAD-associated lung diseases, since the prognosis of these patients has been and is still dismal. PMID:21637367
Cortjens, Bart; Royakkers, Annick A N M; Determann, Rogier M; van Suijlen, Jeroen D E; Kamphuis, Stephan S; Foppen, Jannetje; de Boer, Anita; Wieland, Cathrien W; Spronk, Peter E; Schultz, Marcus J; Bouman, Catherine S C
2012-06-01
Preclinical and clinical studies suggest that mechanical ventilation contributes to the development of acute kidney injury (AKI), particularly in the setting of lung-injurious ventilator strategies. To determine whether ventilator settings in critically ill patients without acute lung injury (ALI) at onset of mechanical ventilation affect the development of AKI. Secondary analysis of a randomized controlled trial (N = 150), comparing conventional tidal volume (V(T), 10 mL/kg) with low tidal volume (V(T), 6 mL/kg) mechanical ventilation in critically ill patients without ALI at randomization. During the first 5 days of mechanical ventilation, the RIFLE class was determined daily, whereas neutrophil gelatinase-associated lipocalin and cystatin C levels were measured in plasma collected on days 0, 2, and 4. Eighty-six patients had no AKI at inclusion, and 18 patients (21%) subsequently developed AKI, but without significant difference between ventilation strategies. (Cumulative hazard, 0.26 vs 0.23; P = .88.) The courses of neutrophil gelatinase-associated lipocalin and cystatin C plasma levels did not differ significantly between randomization groups. In the present study in critically patients without ALI at onset of mechanical ventilation, lower tidal volume ventilation did not reduce the development or worsening of AKI compared with conventional tidal volume ventilation. Copyright © 2012 Elsevier Inc. All rights reserved.
Calfee, Carolyn S.; Eisner, Mark D.; Ware, Lorraine B.; Thompson, B. Taylor; Parsons, Polly E.; Wheeler, Arthur P.; Korpak, Anna; Matthay, Michael A.
2009-01-01
Objective Patients with trauma-associated acute lung injury have better outcomes than patients with other clinical risks for lung injury, but the mechanisms behind these improved outcomes are unclear. We sought to compare the clinical and biological features of patients with trauma-associated lung injury with those of patients with other risks for lung injury and to determine whether the improved outcomes of trauma patients reflect their baseline health status or less severe lung injury, or both. Design, Setting, and Patients Analysis of clinical and biological data from 1,451 patients enrolled in two large randomized, controlled trials of ventilator management in acute lung injury. Measurements and Main Results Compared with patients with other clinical risks for lung injury, trauma patients were younger and generally less acutely and chronically ill. Even after adjusting for these baseline differences, trauma patients had significantly lower plasma levels of intercellular adhesion molecule-1, von Willebrand factor antigen, surfactant protein-D, and soluble tumor necrosis factor receptor-1, which are biomarkers of lung epithelial and endothelial injury previously found to be prognostic in acute lung injury. In contrast, markers of acute inflammation, except for interleukin-6, and disordered coagulation were similar in trauma and nontrauma patients. Trauma-associated lung injury patients had a significantly lower odds of death at 90 days, even after adjusting for baseline clinical factors including age, gender, ethnicity, comorbidities, and severity of illness (odds ratio, 0.44; 95% confidence interval, 0.24 – 0.82; p = .01). Conclusions Patients with trauma-associated lung injury are less acutely and chronically ill than other lung injury patients; however, these baseline clinical differences do not adequately explain their improved outcomes. Instead, the better outcomes of the trauma population may be explained, in part, by less severe lung epithelial and endothelial injury. PMID:17944012
Mazzeo, A T; Fanelli, V; Mascia, L
2013-03-01
The maintenance of brain homeostasis against multiple internal and external challenges occurring during the acute phase of acute brain injury may be influenced by critical care management, especially in its respiratory, hemodynamic and metabolic components. The occurrence of acute lung injury represents the most frequent extracranial complication after brain injury and deserves special attention in daily practice as optimal ventilatory strategy for patients with acute brain and lung injury are potentially in conflict. Protecting the lung while protecting the brain is thus a new target in the modern neurointensive care. This article discusses the essentials of brain-lung crosstalk and focuses on how mechanical ventilation may exert an active role in the process of maintaining or treatening brain homeostasis after acute brain injury, highlighting the following points: 1) the role of inflammation as common pathomechanism of both acute lung and brain injury; 2) the recognition of ventilatory induced lung injury as determinant of systemic inflammation affecting distal organs, included the brain; 3) the possible implication of protective mechanical ventilation strategy on the patient with an acute brain injury as an undiscovered area of research in both experimental and clinical settings.
Colantuoni, Elizabeth; Mendez-Tellez, Pedro A; Dinglas, Victor D; Sevransky, Jonathan E; Dennison Himmelfarb, Cheryl R; Desai, Sanjay V; Shanholtz, Carl; Brower, Roy G; Pronovost, Peter J
2012-01-01
Objective To evaluate the association of volume limited and pressure limited (lung protective) mechanical ventilation with two year survival in patients with acute lung injury. Design Prospective cohort study. Setting 13 intensive care units at four hospitals in Baltimore, Maryland, USA. Participants 485 consecutive mechanically ventilated patients with acute lung injury. Main outcome measure Two year survival after onset of acute lung injury. Results 485 patients contributed data for 6240 eligible ventilator settings, as measured twice daily (median of eight eligible ventilator settings per patient; 41% of which adhered to lung protective ventilation). Of these patients, 311 (64%) died within two years. After adjusting for the total duration of ventilation and other relevant covariates, each additional ventilator setting adherent to lung protective ventilation was associated with a 3% decrease in the risk of mortality over two years (hazard ratio 0.97, 95% confidence interval 0.95 to 0.99, P=0.002). Compared with no adherence, the estimated absolute risk reduction in two year mortality for a prototypical patient with 50% adherence to lung protective ventilation was 4.0% (0.8% to 7.2%, P=0.012) and with 100% adherence was 7.8% (1.6% to 14.0%, P=0.011). Conclusions Lung protective mechanical ventilation was associated with a substantial long term survival benefit for patients with acute lung injury. Greater use of lung protective ventilation in routine clinical practice could reduce long term mortality in patients with acute lung injury. Trial registration Clinicaltrials.gov NCT00300248. PMID:22491953
Anikina, A G; Shkurupii, V A; Potapova, O V; Kovner, A V; Shestopalov, A M
2014-04-01
Morphological signs of early interstitial fibrosis, developing under conditions of acute viral inflammation (postinfection days 1-14), were observed in C57Bl/6 mice infected with influenza A/H5N1 A/goose/Krasnoozerskoye/627/05 virus. The development of fibrosis was confirmed by an increase in the number of lung cells expressing TNF-α. These changes were recorded in the presence of a many-fold increase in the counts of macrophages and fibroblasts expressing FGF, EGF, and their receptors.
Early treatment of chlorine-induced airway hyperresponsiveness and inflammation with corticosteroids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonasson, Sofia, E-mail: sofia.jonasson@foi.se; Wigenstam, Elisabeth; Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, Umeå
Chlorine (Cl{sub 2}) is an industrial gas that is highly toxic and irritating when inhaled causing tissue damage and an acute inflammatory response in the airways followed by a long-term airway dysfunction. The aim of this study was to evaluate whether early anti-inflammatory treatment can protect against the delayed symptoms in Cl{sub 2}-exposed mice. BALB/c mice were exposed by nose-only inhalation using 200 ppm Cl{sub 2} during 15 min. Assessment of airway hyperresponsiveness (AHR), inflammatory cell counts in bronchoalveolar lavage, occurrence of lung edema and lung fibrosis were analyzed 24 h or 14 days post-exposure. A single dose of themore » corticosteroid dexamethasone (10 or 100 mg/kg) was administered intraperitoneally 1, 3, 6, or 12 h following Cl{sub 2} exposure. High-dose of dexamethasone reduced the acute inflammation if administered within 6 h after exposure but treated animals still displayed a significant lung injury. The effect of dexamethasone administered within 1 h was dose-dependent; high-dose significantly reduced acute airway inflammation (100 mg/kg) but not treatment with the relatively low-dose (10 mg/kg). Both doses reduced AHR 14 days later, while lung fibrosis measured as collagen deposition was not significantly reduced. The results point out that the acute inflammation in the lungs due to Cl{sub 2} exposure only partly is associated with the long-term AHR. We hypothesize that additional pathogenic mechanisms apart from the inflammatory reactions contribute to the development of long-term airway dysfunction. By using this mouse model, we have validated early administration of corticosteroids in terms of efficacy to prevent acute lung injury and delayed symptoms induced by Cl{sub 2} exposure. - Highlights: • Inhalation of Cl{sub 2} may lead to a long-standing airway hyperresponsiveness. • The symptoms in Cl{sub 2}-exposed mice are similar to those described for RADS in humans. • Corticosteroids prevent delayed symptoms such as AHR in Cl{sub 2}-induced lung injury. • Early medical intervention of corticosteroids is of importance. • Treatment with corticosteroids alone is insufficient to counteract acute lung injury.« less
Owen, Dawn; Olivier, Kenneth R; Mayo, Charles S; Miller, Robert C; Nelson, Kathryn; Bauer, Heather; Brown, Paul D; Park, Sean S; Ma, Daniel J; Garces, Yolanda I
2015-02-18
Stereotactic body radiotherapy (SBRT) is evolving into a standard of care for unresectable lung nodules. Local control has been shown to be in excess of 90% at 3 years. However, some patients present with synchronous lung nodules in the ipsilateral or contralateral lobe or metasynchronous disease. In these cases, patients may receive multiple courses of lung SBRT or a single course for synchronous nodules. The toxicity of such treatment is currently unknown. Between 2006 and 2012, 63 subjects with 128 metasynchronous and synchronous lung nodules were treated at the Mayo Clinic with SBRT. Demographic patient data and dosimetric data regarding SBRT treatments were collected. Acute toxicity (defined as toxicity < 90 days) and late toxicity (defined as toxicity > = 90 days) were reported and graded as per standardized CTCAE 4.0 criteria. Local control, progression free survival and overall survival were also described. The median age of patients treated was 73 years. Sixty five percent were primary or recurrent lung cancers with the remainder metastatic lung nodules of varying histologies. Of 63 patients, 18 had prior high dose external beam radiation to the mediastinum or chest. Dose and fractionation varied but the most common prescriptions were 48 Gy/4 fractions, 54 Gy/3 fractions, and 50 Gy/5 fractions. Only 6 patients demonstrated local recurrence. With a median follow up of 12.6 months, median SBRT specific overall survival and progression free survival were 35.7 months and 10.7 months respectively. Fifty one percent (32/63 patients) experienced acute toxicity, predominantly grade 1 and 2 fatigue. One patient developed acute grade 3 radiation pneumonitis at 75 days. Forty six percent (29/63 patients) developed late effects. Most were grade 1 dyspnea. There was one patient with grade 5 pneumonitis. Multiple courses of SBRT and SBRT delivery after external beam radiotherapy appear to be feasible and safe. Most toxicity was grade 1 and 2 but the risk was approximately 50% for both acute and late effects.
Koenig, Helen C; Finkel, Barbara B; Khalsa, Satjeet S; Lanken, Paul N; Prasad, Meeta; Urbani, Richard; Fuchs, Barry D
2011-01-01
Lung protective ventilation reduces mortality in patients with acute lung injury, but underrecognition of acute lung injury has limited its use. We recently validated an automated electronic acute lung injury surveillance system in patients with major trauma in a single intensive care unit. In this study, we assessed the system's performance as a prospective acute lung injury screening tool in a diverse population of intensive care unit patients. Patients were screened prospectively for acute lung injury over 21 wks by the automated system and by an experienced research coordinator who manually screened subjects for enrollment in Acute Respiratory Distress Syndrome Clinical Trials Network (ARDSNet) trials. Performance of the automated system was assessed by comparing its results with the manual screening process. Discordant results were adjudicated blindly by two physician reviewers. In addition, a sensitivity analysis using a range of assumptions was conducted to better estimate the system's performance. The Hospital of the University of Pennsylvania, an academic medical center and ARDSNet center (1994-2006). Intubated patients in medical and surgical intensive care units. None. Of 1270 patients screened, 84 were identified with acute lung injury (incidence of 6.6%). The automated screening system had a sensitivity of 97.6% (95% confidence interval, 96.8-98.4%) and a specificity of 97.6% (95% confidence interval, 96.8-98.4%). The manual screening algorithm had a sensitivity of 57.1% (95% confidence interval, 54.5-59.8%) and a specificity of 99.7% (95% confidence interval, 99.4-100%). Sensitivity analysis demonstrated a range for sensitivity of 75.0-97.6% of the automated system under varying assumptions. Under all assumptions, the automated system demonstrated higher sensitivity than and comparable specificity to the manual screening method. An automated electronic system identified patients with acute lung injury with high sensitivity and specificity in diverse intensive care units of a large academic medical center. Further studies are needed to evaluate the effect of automated prompts that such a system can initiate on the use of lung protective ventilation in patients with acute lung injury.
Panzer, Ariane R; Lynch, Susan V; Langelier, Chaz; Christie, Jason D; McCauley, Kathryn; Nelson, Mary; Cheung, Christopher K; Benowitz, Neal L; Cohen, Mitchell J; Calfee, Carolyn S
2018-03-01
Cigarette smoking is associated with increased risk of acute respiratory distress syndrome (ARDS) in patients after severe trauma; however, the mechanisms underlying this association are unknown. To determine whether cigarette smoking contributes to ARDS development after trauma by altering community composition of the lung microbiota. We studied the lung microbiota of mechanically ventilated patients admitted to the ICU after severe blunt trauma. To do so, we used 16S ribosomal RNA gene amplicon sequencing of endotracheal aspirate samples obtained on ICU admission (n = 74) and at 48 hours after admission (n = 30). Cigarette smoke exposure (quantified using plasma cotinine), ARDS development, and other clinical parameters were correlated with lung microbiota composition. Smoking status was significantly associated with lung bacterial community composition at ICU admission (P = 0.007 by permutational multivariate ANOVA [PERMANOVA]) and at 48 hours (P = 0.03 by PERMANOVA), as well as with significant enrichment of potential pathogens, including Streptococcus, Fusobacterium, Prevotella, Haemophilus, and Treponema. ARDS development was associated with lung community composition at 48 hours (P = 0.04 by PERMANOVA) and was characterized by relative enrichment of Enterobacteriaceae and of specific taxa enriched at baseline in smokers, including Prevotella and Fusobacterium. After severe blunt trauma, a history of smoking is related to lung microbiota composition, both at the time of ICU admission and at 48 hours. ARDS development is also correlated with respiratory microbial community structure at 48 hours and with taxa that are relatively enriched in smokers at ICU admission. The data derived from this pilot study suggest that smoking-related changes in the lung microbiota could be related to ARDS development after severe trauma.
Acute allograft failure in thoracic organ transplantation.
Jahania, M S; Mullett, T W; Sanchez, J A; Narayan, P; Lasley, R D; Mentzer, R M
2000-01-01
Thoracic organ transplantation is an effective form of treatment for end-stage heart and lung disease. Despite major advances in the field, transplant patients remain at risk for acute allograft dysfunction, a major cause of early and late mortality. The most common causes of allograft failure include primary graft failure secondary to inadequate heart and lung preservation during cold storage, cellular rejection, and various donor-recipient-related factors. During cold storage and early reperfusion, heart and lung allografts are vulnerable to intracellular calcium overload, acidosis, cell swelling, injury mediated by reactive oxygen species, and the inflammatory response. Brain death itself is associated with a reduction in myocardial contractility, and recipient-related factors such as preexisting pulmonary hypertension can lead to acute right heart failure and the pulmonary reimplantation response. The development of new methods to prevent or treat these various causes of acute graft failure could lead to a marked improvement in short- and long-term survival of patients undergoing thoracic organ transplantation.
CMV driven CD8(+) T-cell activation is associated with acute rejection in lung transplantation.
Roux, Antoine; Mourin, Gisèle; Fastenackels, Solène; Almeida, Jorge R; Iglesias, Maria Candela; Boyd, Anders; Gostick, Emma; Larsen, Martin; Price, David A; Sacre, Karim; Douek, Daniel C; Autran, Brigitte; Picard, Clément; Miranda, Sandra de; Sauce, Delphine; Stern, Marc; Appay, Victor
2013-07-01
Lung transplantation is the definitive treatment for terminal respiratory disease, but the associated mortality rate is high. Acute rejection of the transplanted lung is a key determinant of adverse prognosis. Furthermore, an epidemiological relationship has been established between the occurrence of acute lung rejection and cytomegalovirus infection. However, the reasons for this association remain unclear. Here, we performed a longitudinal characterization of CMV-specific T-cell responses and immune activation status in the peripheral blood and bronchoalveolar lavage fluid of forty-four lung transplant patients. Acute rejection was associated with high levels of cellular activation in the periphery, reflecting strong CMV-specific CD8(+) T-cell activity post-transplant. Peripheral and lung CMV-specific CD8(+) T-cell responses were very similar, and related to the presence of CMV in the transplanted organ. These findings support that activated CMV-specific CD8(+) T-cells in the lung may play a role in promoting acute rejection. Copyright © 2013 Elsevier Inc. All rights reserved.
Pharmacotherapy of Acute Lung Injury and Acute Respiratory Distress Syndrome
Raghavendran, Krishnan; Pryhuber, Gloria S.; Chess, Patricia R.; Davidson, Bruce A.; Knight, Paul R.; Notter, Robert H.
2009-01-01
Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are characterized by rapid-onset respiratory failure following a variety of direct and indirect insults to the parenchyma or vasculature of the lungs. Mortality from ALI/ARDS is substantial, and current therapy primarily emphasizes mechanical ventilation and judicial fluid management plus standard treatment of the initiating insult and any known underlying disease. Current pharmacotherapy for ALI/ARDS is not optimal, and there is a significant need for more effective medicinal chemical agents for use in these severe and lethal lung injury syndromes. To facilitate future chemical-based drug discovery research on new agent development, this paper reviews present pharmacotherapy for ALI/ARDS in the context of biological and biochemical drug activities. The complex lung injury pathophysiology of ALI/ARDS offers an array of possible targets for drug therapy, including inflammation, cell and tissue injury, vascular dysfunction, surfactant dysfunction, and oxidant injury. Added targets for pharmacotherapy outside the lungs may also be present, since multiorgan or systemic pathology is common in ALI/ARDS. The biological and physiological complexity of ALI/ARDS requires the consideration of combined-agent treatments in addition to single-agent therapies. A number of pharmacologic agents have been studied individually in ALI/ARDS, with limited or minimal success in improving survival. However, many of these agents have complementary biological/biochemical activities with the potential for synergy or additivity in combination therapy as discussed in this article. PMID:18691048
Interventions to prevent respiratory diseases - Nutrition and the developing world.
Karim, Tasneem; Muhit, Mohammad; Khandaker, Gulam
2017-03-01
Malnutrition is a major cause of morbidity and mortality in developing countries and nutrition plays a critical role in both acute and chronic respiratory conditions. Inadequacies in the nutritional requirements of a developing lung in utero and in early life can compromise the respiratory system integrity and result in poor lung function, reduced protection against infections, greater likelihood of acute illnesses in childhood and chronic illness in adulthood. Nutritional interventions harness great potential in reducing respiratory illness related morbidity and mortality in the developing world. In this review we have summarized the findings from published systematic reviews/meta-analysis, experimental and observational studies that looked into different nutritional interventions for preventing respiratory diseases in developing countries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gabe, Atsushi; Nagamine, Naoji
2017-05-01
We herein report the case of a patient demonstrating a lung abscess with acute empyema which improved after performing pnemumonotomy and lung abscess drainage. A 60-year-old male was referred to our hospital to receive treatment for a lung abscess with acute empyema. At surgery, the lung parenchyma was slightly torn with pus leakage. After drainage of lung abscess by enlarging the injured part, curettage in the thoracic cavity and decortication were performed. The postoperative course was uneventful. Direct drainage of an abscess into the thoracic cavity is thought to be a choice for the treatment of lung abscesses.
Pham, Phuong-Thu T; Slavov, Carmen; Pham, Phuong-Chi T
2009-07-01
Recipients of nonrenal organ transplants including the liver, heart, and lung are at risk for developing acute kidney injury (AKI) and chronic kidney disease (CKD). Underlying hepatic or cardiopulmonary failure, prolonged intraoperative hemodynamic instability, and the use of calcineurin inhibitors and nephrotoxic medications have all been suggested to be contributory. The incidence of perioperative AKI has been reported to occur in 17% to 95% in liver transplant recipients, 5% to 30% in heart transplant recipients, and 5% to 60% in recipients of lung transplants. Among those who develop AKI, renal replacement therapy is required in 5% to 35%, 5% to 15%, and 8% to 10% in liver, heart, and lung transplant recipients, respectively. The current article presents an overview of the literature on the choice of dialysis modality and its associated advantages and disadvantages in the management of AKI after liver, heart, and lung transplants. Predictive factors for renal function recovery and the impact of AKI and CKD on survival will also be discussed.
Retroperitoneal abscess shortly after chemotherapy for lung cancer: A case report.
Ohara, Gen; Kondo, Tadashi; Kagohashi, Katsunori; Watanabe, Hiroko; Kawaguchi, Mio; Kurishima, Koichi; Satoh, Hiroaki; Hizawa, Nobuyuki
2014-03-01
To the best of our knowledge, the formation of a retroperitoneal abscess due to acute appendicitis shortly after administration of chemotherapy for lung cancer has not been previously reported. This is the case report of a 59-year-old male who was admitted to the Mito Medical Center (Mito, Japan) and diagnosed with lung adenocarcinoma with pleuritis carcinomatosis. Although no distant metastasis was identified, combination chemotherapy with cisplatin and pemetrexed was administered. Nine days after initiating chemotherapy, the patient developed right lower quadrant abdominal pain and high fever. Computed tomography (CT) of the abdomen and pelvis revealed the collection of gas and fluid in the retroperitoneum adjacent to the cecum. The abscess was locally drained; however, the infection continued to spread, with subsequent development of a scrotal abscess. Consequently, appendectomy was performed. The patient recovered well and the lung adenocarcinoma was treated with additional courses of chemotherapy following the remission of the local inflammation. Retroperitoneal abscess due to acute appendicitis is an unusual finding; however, this rare complication should be considered during or shortly after chemotherapy in patients with lung cancer.
Jonasson, Sofia; Wigenstam, Elisabeth; Koch, Bo; Bucht, Anders
2013-09-01
Chlorine (Cl2) is an industrial gas that is highly toxic and irritating when inhaled causing tissue damage and an acute inflammatory response in the airways followed by a long-term airway dysfunction. The aim of this study was to evaluate whether early anti-inflammatory treatment can protect against the delayed symptoms in Cl2-exposed mice. BALB/c mice were exposed by nose-only inhalation using 200ppm Cl2 during 15min. Assessment of airway hyperresponsiveness (AHR), inflammatory cell counts in bronchoalveolar lavage, occurrence of lung edema and lung fibrosis were analyzed 24h or 14days post-exposure. A single dose of the corticosteroid dexamethasone (10 or 100mg/kg) was administered intraperitoneally 1, 3, 6, or 12h following Cl2 exposure. High-dose of dexamethasone reduced the acute inflammation if administered within 6h after exposure but treated animals still displayed a significant lung injury. The effect of dexamethasone administered within 1h was dose-dependent; high-dose significantly reduced acute airway inflammation (100mg/kg) but not treatment with the relatively low-dose (10mg/kg). Both doses reduced AHR 14days later, while lung fibrosis measured as collagen deposition was not significantly reduced. The results point out that the acute inflammation in the lungs due to Cl2 exposure only partly is associated with the long-term AHR. We hypothesize that additional pathogenic mechanisms apart from the inflammatory reactions contribute to the development of long-term airway dysfunction. By using this mouse model, we have validated early administration of corticosteroids in terms of efficacy to prevent acute lung injury and delayed symptoms induced by Cl2 exposure. Copyright © 2013 Elsevier Inc. All rights reserved.
Caironi, Pietro; Carlesso, Eleonora; Cressoni, Massimo; Chiumello, Davide; Moerer, Onner; Chiurazzi, Chiara; Brioni, Matteo; Bottino, Nicola; Lazzerini, Marco; Bugedo, Guillermo; Quintel, Michael; Ranieri, V Marco; Gattinoni, Luciano
2015-04-01
The Berlin definition of acute respiratory distress syndrome has introduced three classes of severity according to PaO2/FIO2 thresholds. The level of positive end-expiratory pressure applied may greatly affect PaO2/FIO2, thereby masking acute respiratory distress syndrome severity, which should reflect the underlying lung injury (lung edema and recruitability). We hypothesized that the assessment of acute respiratory distress syndrome severity at standardized low positive end-expiratory pressure may improve the association between the underlying lung injury, as detected by CT, and PaO2/FIO2-derived severity. Retrospective analysis. Four university hospitals (Italy, Germany, and Chile). One hundred forty-eight patients with acute lung injury or acute respiratory distress syndrome according to the American-European Consensus Conference criteria. Patients underwent a three-step ventilator protocol (at clinical, 5 cm H2O, or 15 cm H2O positive end-expiratory pressure). Whole-lung CT scans were obtained at 5 and 45 cm H2O airway pressure. Nine patients did not fulfill acute respiratory distress syndrome criteria of the novel Berlin definition. Patients were then classified according to PaO2/FIO2 assessed at clinical, 5 cm H2O, or 15 cm H2O positive end-expiratory pressure. At clinical positive end-expiratory pressure (11±3 cm H2O), patients with severe acute respiratory distress syndrome had a greater lung tissue weight and recruitability than patients with mild or moderate acute respiratory distress syndrome (p<0.001). At 5 cm H2O, 54% of patients with mild acute respiratory distress syndrome at clinical positive end-expiratory pressure were reclassified to either moderate or severe acute respiratory distress syndrome. In these patients, lung recruitability and clinical positive end-expiratory pressure were higher than in patients who remained in the mild subgroup (p<0.05). When patients were classified at 5 cm H2O, but not at clinical or 15 cm H2O, lung recruitability linearly increases with acute respiratory distress syndrome severity (5% [2-12%] vs 12% [7-18%] vs 23% [12-30%], respectively, p<0.001). The potentially recruitable lung was the only CT-derived variable independently associated with ICU mortality (p=0.007). The Berlin definition of acute respiratory distress syndrome assessed at 5 cm H2O allows a better evaluation of lung recruitability and edema than at higher positive end-expiratory pressure clinically set.
Basios, Neofitos; Lampropoulos, Pavlos; Papalois, Apostolos; Lambropoulou, Maria; Pitiakoudis, Michael K; Kotini, Athanasia; Simopoulos, Constantinos; Tsaroucha, Alexandra K
2016-06-01
Acute pancreatitis is associated with acute lung injury. The aim of the present study is to evaluate alterations of lungs in an experimental model of acute pancreatitis (AP) following both bilio-pancreatic duct obstruction close to the duodenum. Acute pancreatitis is a common disease with significant mortality. This situation makes the need of finding protective factors for the lung parenchyma, imperative. In the present study there is an effort to clarify the role of apigenin, a substance which is well known for its antioxidant and anti-inflammatory effects, on lung injury, following acute pancreatitis in rats. In the present study, 126 male Wistar-type rats 3-4 months old and 220-350 g weight were used. At time 0 we randomly assigned the following groups: Group Sham: Rats were subjected to virtual surgery. Group Control: Rats were subjected to surgery for induction of acute pancreatitis. Group Apigenin: Rats were subjected to surgery for induction of acute pancreatitis and enteral feeding with apigenin. Immunochemistry for TNF-α and IL-6 as well as MPO activity were measured at predetermined time intervals 6, 12, 24, 48, and 72 h, in order to evaluate architectural disturbances of the lung tissue. From the pathological reports we realized that comparing the control group with the apigenin group, there is an improvement of lung tissue damage following apigenin administration, with statistical significance. Apigenin reduces most histopathological alterations of the pulmonary tissue, reduces MPO and TNF-α activity at 48 hours and, furthermore, reduces IL-6 activity at 72 hours post-administration. Oral Apigenin administration in rats, following experimental induced acute pancreatitis, seems to be protective on the lung tissue. Apigenin administration to humans could potentially ameliorate acute lung injuries. However, special caution is required for humans' use, as more detailed studies are needed.
Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation.
Musah, Sadiatu; Schlueter, Connie F; Humphrey, David M; Powell, Karen S; Roberts, Andrew M; Hoyle, Gary W
2017-01-15
Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24h after exposure to 800ppm chlorine for 4min to study acute effects or up to 7days after exposure to 400ppm for 8min to study longer term effects. Acute effects observed 6 or 24h after inhalation of 800ppm chlorine for 4min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400ppm chlorine for 8min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. Copyright © 2016 Elsevier Inc. All rights reserved.
Clinical and Biological Heterogeneity in ARDS: Direct versus Indirect Lung Injury
Shaver, Ciara M.; Bastarache, Julie A.
2014-01-01
Synopsis The acute respiratory distress syndrome (ARDS) is a heterogeneous group of illnesses affecting the pulmonary parenchyma with acute onset bilateral inflammatory pulmonary infiltrates with associated hypoxemia. ARDS occurs after two major types of pulmonary injury: direct lung injury affecting the lung epithelium or indirect lung injury disrupting the vascular endothelium. Greater understanding of the differences between direct and indirect lung injury may refine our classification of patients with ARDS and lead to development of new therapeutics targeted at specific subpopulations of patients with ARDS. In this review, we will summarize the differences between direct and indirect causes of ARDS in human patients and then will review current knowledge of the similarities and differences in ARDS pathogenesis based on experimental animal models of direct and indirect lung injury. While the separation between direct and indirect causes of ARDS may be oversimplified, it is a useful approach to advancing our current understanding of the pathogenesis of this complex and often fatal disease. PMID:25453415
Haider, Syed H.; Crowley, George; Lee, Audrey; Ebrahim, Minah; Zhang, Liqun; Chen, Lung-Chi; Gordon, Terry; Liu, Mengling; Prezant, David J.; Schmidt, Ann Marie
2017-01-01
World Trade Center-particulate matter(WTC-PM) exposure and metabolic-risk are associated with WTC-Lung Injury(WTC-LI). The receptor for advanced glycation end-products (RAGE) is most highly expressed in the lung, mediates metabolic risk, and single-nucleotide polymorphisms at the AGER-locus predict forced expiratory volume(FEV). Our objectives were to test the hypotheses that RAGE is a biomarker of WTC-LI in the FDNY-cohort and that loss of RAGE in a murine model would protect against acute PM-induced lung disease. We know from previous work that early intense exposure at the time of the WTC collapse was most predictive of WTC-LI therefore we utilized a murine model of intense acute PM-exposure to determine if loss of RAGE is protective and to identify signaling/cytokine intermediates. This study builds on a continuing effort to identify serum biomarkers that predict the development of WTC-LI. A case-cohort design was used to analyze a focused cohort of male never-smokers with normal pre-9/11 lung function. Odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with soluble RAGE (sRAGE)≥97pg/mL, CRP≥2.4mg/L, and MMP-9≤397ng/mL, respectively, assessed in a multivariate logistic regression model (ROCAUC of 0.72). Wild type(WT) and RAGE-deficient(Ager-/-) mice were exposed to PM or PBS-control by oropharyngeal aspiration. Lung function, airway hyperreactivity, bronchoalveolar lavage, histology, transcription factors and plasma/BAL cytokines were quantified. WT-PM mice had decreased FEV and compliance, and increased airway resistance and methacholine reactivity after 24-hours. Decreased IFN-γ and increased LPA were observed in WT-PM mice; similar findings have been reported for firefighters who eventually develop WTC-LI. In the murine model, lack of RAGE was protective from loss of lung function and airway hyperreactivity and was associated with modulation of MAP kinases. We conclude that in a multivariate adjusted model increased sRAGE is associated with WTC-LI. In our murine model, absence of RAGE mitigated acute deleterious effects of PM and may be a biologically plausible mediator of PM-related lung disease. PMID:28926576
Dyhr, Thomas; Bonde, Jan; Larsson, Anders
2003-01-01
Introduction Lung collapse is a contributory factor in the hypoxaemia that is observed after open endotracheal suctioning (ETS) in patients with acute lung injury and acute respiratory distress syndrome. Lung recruitment (LR) manoeuvres may be effective in rapidly regaining lung volume and improving oxygenation after ETS. Materials and method A prospective, randomized, controlled study was conducted in a 15-bed general intensive care unit at a university hospital. Eight consecutive mechanically ventilated patients with acute lung injury or acute respiratory distress syndrome were included. One of two suctioning procedures was performed in each patient. In the first procedure, ETS was performed followed by LR manoeuvre and reconnection to the ventilator with positive end-expiratory pressure set at 1 cmH2O above the lower inflexion point, and after 60 min another ETS (but without LR manoeuvre) was performed followed by reconnection to the ventilator with similar positive end-expiratory pressure; the second procedure was the same as the first but conducted in reverse order. Before (baseline) and over 25 min following each ETS procedure, partial arterial oxygen tension (PaO2) and end-expiratory lung volume were measured. Results After ETS, PaO2 decreased by 4.3(0.9–9.7)kPa (median and range; P < 0.005). After LR manoeuvre, PaO2 recovered to baseline. Without LR manoeuvre, PaO2 was reduced (P = 0.05) until 7 min after ETS. With LR manoeuvre end-expiratory lung volume was unchanged after ETS, whereas without LR manoeuvre end-expiratory lung volume was still reduced (approximately 10%) at 5 and 15 min after ETS (P = 0.01). Discussion A LR manoeuvre immediately following ETS was, as an adjunct to positive end-expiratory pressure, effective in rapidly counteracting the deterioration in PaO2 and lung volume caused by open ETS in ventilator-treated patients with acute lung injury or acute respiratory distress syndrome. PMID:12617741
Bansal, Shruti; Chhibber, Sanjay
2010-04-01
Acute lung injuries due to acute lung infections remain a major cause of mortality. Thus a combination of an antibiotic and a compound with immunomodulatory and anti-inflammatory activities can help to overcome acute lung infection-induced injuries. Curcumin derived from the rhizome of turmeric has been used for decades and it exhibits anti-inflammatory, anti-carcinogenic, immunomodulatory properties by downregulation of various inflammatory mediators. Keeping these properties in mind, we investigated the anti-inflammatory properties of curcumin in a mouse model of acute inflammation by introducing Klebsiella pneumoniae B5055 into BALB/c mice via the intranasal route. Intranasal instillation of bacteria in this mouse model of acute pneumonia-induced inflammation resulted in a significant increase in neutrophil infiltration in the lungs along with increased production of various inflammatory mediators [i.e. malondialdehyde (MDA), myeloperoxidase (MPO), nitric oxide (NO), tumour necrosis factor (TNF)-alpha] in the lung tissue. The animals that received curcumin alone orally or in combination with augmentin, 15 days prior to bacterial instillation into the lungs via the intranasal route, showed a significant (P <0.05) decrease in neutrophil influx into the lungs and a significant (P <0.05) decrease in the production of MDA, NO, MPO activity and TNF-alpha levels. Augmentin treatment alone did not decrease the MDA, MPO, NO and TNF-alpha levels significantly (P >0.05) as compared to the control group. We therefore conclude that curcumin ameliorates lung inflammation induced by K. pneumoniae B5055 without significantly (P <0.05) decreasing the bacterial load in the lung tissue whereas augmentin takes care of bacterial proliferation. Hence, curcumin can be used as an adjunct therapy along with antibiotics as an anti-inflammatory or an immunomodulatory agent in the case of acute lung infection.
Pulmonary atelectasis: a pathogenic perioperative entity.
Duggan, Michelle; Kavanagh, Brian P
2005-04-01
Atelectasis occurs in the dependent parts of the lungs of most patients who are anesthetized. Development of atelectasis is associated with decreased lung compliance, impairment of oxygenation, increased pulmonary vascular resistance, and development of lung injury. The adverse effects of atelectasis persist into the postoperative period and can impact patient recovery. This review article focuses on the causes, nature, and diagnosis of atelectasis. The authors discuss the effects and implications of atelectasis in the perioperative period and illustrate how preventive measures may impact outcome. In addition, they examine the impact of atelectasis and its prevention in acute lung injury.
Husain, Kareem D; Stromberg, Paul E; Woolsey, Cheryl A; Turnbull, Isaiah R; Dunne, W Michael; Javadi, Pardis; Buchman, Timothy G; Karl, Irene E; Hotchkiss, Richard S; Coopersmith, Craig M
2005-10-01
The aim of this study was to determine the effects of acute lung injury on the gut epithelium and examine mechanisms underlying changes in crypt proliferation and apoptosis. The relationship between severity and timing of lung injury to intestinal pathology was also examined. Randomized, controlled study. University research laboratory. Genetically inbred mice. Following induction of acute lung injury, gut epithelial proliferation and apoptosis were assessed in a) C3H/HeN wild-type and C3H/HeJ mice, which lack functional Toll-like receptor 4 (n = 17); b) C57Bl/6 mice that received monoclonal anti-tumor necrosis factor-alpha or control antibody (n = 22); and c) C57Bl/6 wild-type and transgenic mice that overexpress Bcl-2 in their gut epithelium (n = 21). Intestinal epithelial proliferation and death were also examined in animals with differing degrees of lung inflammation (n = 24) as well as in a time course analysis following a fixed injury (n = 18). Acute lung injury caused decreased proliferation and increased apoptosis in crypt epithelial cells in all animals studied. C3H/HeJ mice had higher levels of proliferation than C3H/HeN animals without additional changes in apoptosis. Anti-tumor necrosis factor-alpha antibody had no effect on gut epithelial proliferation or death. Overexpression of Bcl-2 did not change proliferation despite decreasing gut apoptosis. Proliferation and apoptosis were not correlated to severity of lung injury, as gut alterations were lost in mice with more severe acute lung injury. Changes in both gut epithelial proliferation and death were apparent within 12 hrs, but proliferation was decreased 36 hrs following acute lung injury while apoptosis returned to normal. Acute lung injury causes disparate effects on crypt proliferation and apoptosis, which occur, at least in part, through differing mechanisms involving Toll-like receptor 4 and Bcl-2. Severity of lung injury does not correlate with perturbations in proliferation or death in the gut epithelium, and acute lung injury-induced changes in intestinal epithelial proliferation persist longer than those in apoptosis.
Type XVIII collagen degradation products in acute lung injury
Perkins, Gavin D; Nathani, Nazim; Richter, Alex G; Park, Daniel; Shyamsundar, Murali; Heljasvaara, Ritva; Pihlajaniemi, Taina; Manji, Mav; Tunnicliffe, W; McAuley, Danny; Gao, Fang; Thickett, David R
2009-01-01
Introduction In acute lung injury, repair of the damaged alveolar-capillary barrier is an essential part of recovery. Endostatin is a 20 to 28 kDa proteolytic fragment of the basement membrane collagen XVIII, which has been shown to inhibit angiogenesis via action on endothelial cells. We hypothesised that endostatin may have a role in inhibiting lung repair in patients with lung injury. The aims of the study were to determine if endostatin is elevated in the plasma/bronchoalveolar lavage fluid of patients with acute lung injury and ascertain whether the levels reflect the severity of injury and alveolar inflammation, and to assess if endostatin changes occur early after the injurious lung stimuli of one lung ventilation and lipopolysaccharide (LPS) challenge. Methods Endostatin was measured by ELISA and western blotting. Results Endostatin is elevated within the plasma and bronchoalveolar lavage fluid of patients with acute lung injury. Lavage endostatin reflected the degree of alveolar neutrophilia and the extent of the loss of protein selectivity of the alveolar-capillary barrier. Plasma levels of endostatin correlated with the severity of physiological derangement. Western blotting confirmed elevated type XVIII collagen precursor levels in the plasma and lavage and multiple endostatin-like fragments in the lavage of patients. One lung ventilation and LPS challenge rapidly induce increases in lung endostatin levels. Conclusions Endostatin may adversely affect both alveolar barrier endothelial and epithelial cells, so its presence within both the circulation and the lung may have a pathophysiological role in acute lung injury that warrants further evaluation. PMID:19358707
Targeting Transfusion-Related Acute Lung Injury: The Journey From Basic Science to Novel Therapies.
Semple, John W; McVey, Mark J; Kim, Michael; Rebetz, Johan; Kuebler, Wolfgang M; Kapur, Rick
2018-05-01
Transfusion-related acute lung injury is characterized by the onset of respiratory distress and acute lung injury following blood transfusion, but its pathogenesis remains poorly understood. Generally, a two-hit model is presumed to underlie transfusion-related acute lung injury with the first hit being risk factors present in the transfused patient (such as inflammation), whereas the second hit is conveyed by factors in the transfused donor blood (such as antileukocyte antibodies). At least 80% of transfusion-related acute lung injury cases are related to the presence of donor antibodies such as antihuman leukocyte or antihuman neutrophil antibodies. The remaining cases may be related to nonantibody-mediated factors such as biolipids or components related to storage and ageing of the transfused blood cells. At present, transfusion-related acute lung injury is the leading cause of transfusion-related fatalities and no specific therapy is clinically available. In this article, we critically appraise and discuss recent preclinical (bench) insights related to transfusion-related acute lung injury pathogenesis and their therapeutic potential for future use at the patients' bedside in order to combat this devastating and possibly fatal complication of transfusion. We searched the PubMed database (until August 22, 2017). Using terms: "Transfusion-related acute lung injury," "TRALI," "TRALI and therapy," "TRALI pathogenesis." English-written articles focusing on transfusion-related acute lung injury pathogenesis, with potential therapeutic implications, were extracted. We have identified potential therapeutic approaches based on the literature. We propose that the most promising therapeutic strategies to explore are interleukin-10 therapy, down-modulating C-reactive protein levels, targeting reactive oxygen species, or blocking the interleukin-8 receptors; all focused on the transfused recipient. In the long-run, it may perhaps also be advantageous to explore other strategies aimed at the transfused recipient or aimed toward the blood product, but these will require more validation and confirmation first.
Acute pulmonary allograft rejection. Mechanisms, diagnosis, and management.
King-Biggs, M B
1997-06-01
Rejection is a common complication following lung transplantation, and can lead to considerable short- and long-term morbidity. As numbers and survival rates of lung transplant recipients increase, it is apparent that acute rejection can occur months or years after transplantation, and may be resistant to standard therapies. Mechanisms of acute rejection have been well studied in other solid organ transplant recipients, and are beginning to be addressed in the lung recipient. This article addresses some of the common issues of diagnosis and management of acute rejection which arise frequently during the care of lung transplant recipients.
Fingerprint of Lung Fluid Ultrafine Particles, a Novel Marker of Acute Lung Inflammation.
Bar-Shai, Amir; Alcalay, Yifat; Sagiv, Adi; Rotem, Michal; Feigelson, Sara W; Alon, Ronen; Fireman, Elizabeth
2015-01-01
Acute lung inflammation can be monitored by various biochemical readouts of bronchoalveolar lavage fluid (BALF). To analyze the BALF content of ultrafine particles (UFP; <100 nm) as an inflammatory biomarker in early diagnosis of acute and chronic lung diseases. Mice were exposed to different stress conditions and inflammatory insults (acute lipopolysaccharide inhalation, tobacco smoke and lethal dose of total body irradiation, i.e. 950 rad). After centrifugation, the cellular pellet was assessed while cytokines and ultrafine particles were measured in the soluble fraction of the BALF. A characteristic UFP distribution with a D50 (i.e. the dimension of the 50th UFP percentile) was shared by all tested mouse strains in the BALF of resting lungs. All tested inflammatory insults similarly shifted this size distribution, resulting in a unique UFP fingerprint with an averaged D50 of 58.6 nm, compared with the mean UFP D50 of 23.7 nm for resting BALF (p < 0.0001). This UFP profile was highly reproducible and independent of the intensity or duration of the inflammatory trigger. It returned to baseline after resolution of the inflammation. Neither total body irradiation nor induction of acute cough induced this fingerprint. The UFP fingerprint in the BALF of resting and inflamed lungs can serve as a binary biomarker of healthy and acutely inflamed lungs. This marker can be used as a novel readout for the onset of inflammatory lung diseases and for complete lung recovery from different insults.
Ishikawa, Rie; Kamiya, Hiroyuki; Ikushima, Souichiro; Oristu, Masaru; Takemura, Tamiko
2010-02-01
The patient was a 48-year-old woman and current smoker. In May 2007, she moved to a new residence. In the middle of the following month, she developed acute respiratory distress and a fever (38 degrees C) after running her air conditioner continuously throughout the night. The chest X-ray film showed diffuse infiltrative shadows in the middle and lower lung fields. After hospital admission, her oxygenation improved without treatment and the infiltrates improved over the clinical course. As a consequence, we suspected hypersensitivity pneumonitis. The bronchoalveolar lavage showed predominant lymphocytes of 72.6%, with a low CD 4/8 ratio of 0.2. Transbronchial lung biopsy findings corresponded to acute hypersensitivity pneumonitis. The results of the environmental challenge test were positive only when her air conditioner was on, resulting, in a diagnosis of air-conditioner lung. Several microorganisms were detected in an environmental sample, but 20 kinds of serum precipitating antibodies were negative on a thorough screening, so no responsible antigen could be identified. The patient's symptoms did not recur after her air conditioner was replaced.
Xiao, Siyang; Zhang, Wenxin; Chen, Hongjin; Fang, Bo; Qiu, Yinda; Chen, Xianxin; Chen, Lingfeng; Shu, Sheng; Zhang, Yali; Zhao, Yunjie; Liu, Zhiguo; Liang, Guang
2018-01-01
The purpose of this study was to design and synthesize novel 2-benzylidene-1-indanone derivatives for treatment of acute lung injury. A series of 39 novel 2-benzylidene-indanone structural derivatives were synthesized and evaluated for anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated murine primary macrophages. Most of the obtained compounds effectively inhibited the LPS-induced expression of IL-6 and TNF-α. The most active compound, 8f , was found to significantly reduce LPS-induced pulmonary inflammation, as reflected by reductions in the concentration of total protein, inflammatory cell count, as well as the lung wet/dry ratio in bronchoalveolar lavage (BAL) fluid. Furthermore, 8f effectively inhibited mRNA expression of several inflammatory cytokines after LPS challenge in vitro and in vivo. Administration of 8f also blocked LPS-induced activation of the proinflammatory NF-κB/MAPK signaling pathway. The simple synthetic preparation and biological properties of these derivatives make these 2-benzylidene-indanone scaffolds promising new entities for the development of anti-inflammatory therapeutics for the treatment of acute lung injury.
Albertini, M; Clement, M G; Lafortuna, C L; Caniatti, M; Magder, S; Abdulmalek, K; Hussain, S N
2000-06-01
To assess the contribution of poly (adenosine 5'-diphosphate ribose) synthetase (PARS) to the development of bacterial lipopolysaccharide (LPS)-induced acute lung injury and vascular failure in pigs. Four groups of anesthetized, paralyzed, and mechanically ventilated domestic white pigs. Group 1 served as control, whereas Escherichia coli LPS (20 microg/kg/h) was continuously infused in group 2. Group 3 received 20 mg/kg injection of 3-aminobenzamide (a selective inhibitor of PARS activity) 15 minutes before LPS infusion. Only 3-aminobenzamide and not LPS was injected in group 4. All animals were examined for 180 minutes. Systemic and pulmonary hemodynamics and lung mechanics were measured during the experimental period. Lung wet/dry ratio, bronchoalveolar lavage (BAL) protein levels and cell counts and lung nitrotyrosine (footprint of peroxynitrite) immunostaining were also measured in a few animals. LPS infusion evoked a progressive decline in systemic arterial pressure, a small increase in cardiac output, and biphasic elevation of pulmonary arterial pressure. Lung compliance declined progressively, whereas lung and total respiratory resistance rose significantly after LPS infusion. Prominent nitrotyrosine immunostaining was detected around small airways and pulmonary endothelium of LPS-infused animals. No significant changes in lung wet/dry ratio and BAL protein levels and cell counts were produced by LPS infusion. Pretreatment with 3-aminobenzamide did not alter the systemic and pulmonary hemodynamic responses to LPS infusion but eliminated the rise in pulmonary and total respiratory resistance. We concluded that PARS activation plays an important role in the changes of lung mechanics associated with LPS-induced acute lung injury but had no role in vascular failure.
The Intersection of Aging Biology and the Pathobiology of Lung Diseases: A Joint NHLBI/NIA Workshop
Budinger, GR Scott; Kohanski, Ronald A; Gan, Weiniu; Kobor, Michael S; Amaral, Luis A; Armanios, Mary; Kelsey, Karl T; Pardo, Annie; Tuder, Rubin; Macian, Fernando; Chandel, Navdeep; Vaughan, Douglas; Rojas, Mauricio; Mora, Ana L; Kovacs, Elizabeth; Duncan, Steven R; Finkel, Toren; Choi, Augustine; Eickelberg, Oliver; Chen, Danica; Agusti, Alvar; Selman, Moises; Balch, William E; Busse, Paula; Lin, Anning; Morimoto, Richard; Sznajder, Jacob I; Thannickal, Victor J
2017-01-01
Abstract Death from chronic lung disease is increasing and chronic obstructive pulmonary disease has become the third leading cause of death in the United States in the past decade. Both chronic and acute lung diseases disproportionately affect elderly individuals, making it likely that these diseases will become more frequent and severe as the worldwide population ages. Chronic lung diseases are associated with substantial morbidity, frequently resulting in exercise limiting dyspnea, immobilization, and isolation. Therefore, effective strategies to prevent or treat lung disease are likely to increase healthspan as well as life span. This review summarizes the findings of a joint workshop sponsored by the NIA and NHLBI that brought together investigators focused on aging and lung biology. These investigators encouraged the use of genetic systems and aged animals in the study of lung disease and the development of integrative systems-based platforms that can dynamically incorporate data sets that describe the genomics, transcriptomics, epigenomics, metabolomics, and proteomics of the aging lung in health and disease. Further research was recommended to integrate benchmark biological hallmarks of aging in the lung with the pathobiology of acute and chronic lung diseases with divergent pathologies for which advanced age is the most important risk factor. PMID:28498894
Yamamoto, Yuzo; Okamoto, Isamu; Otsubo, Kohei; Iwama, Eiji; Hamada, Naoki; Harada, Taishi; Takayama, Koichi; Nakanishi, Yoichi
2015-10-01
Alectinib, the second generation anaplastic lymphoma kinase (ALK) inhibitor, has significant potency in patients with ALK rearrangement positive non-small cell lung cancer (NSCLC), and its toxicity is generally well tolerable. We report a patient who developed severe acute interstitial lung disease after alectinib treatment. An 86-year-old woman with stage IV lung adenocarcinoma positive for rearrangement of ALK gene was treated with alectinib. On the 215th day after initiation of alectinib administration, she was admitted to our hospital with the symptom of progressive dyspnea. Computed tomography (CT) revealed diffuse ground glass opacities and consolidations in both lungs, and analysis of bronchoalveolar lavage fluid revealed pronounced lymphocytosis. There was no evidence of infection or other specific causes of her condition, and she was therefore diagnosed with interstitial lung disease induced by alectinib. Her CT findings and respiratory condition improved after steroid pulse therapy. As far as we are aware, this is the first reported case of alectinib-induced severe interstitial lung disease (ILD). We should be aware of the possibility of such a severe adverse event and should therefore carefully monitor patients treated with this drug.
Induced hypernatraemia is protective in acute lung injury.
Bihari, Shailesh; Dixon, Dani-Louise; Lawrence, Mark D; Bersten, Andrew D
2016-06-15
Sucrose induced hyperosmolarity is lung protective but the safety of administering hyperosmolar sucrose in patients is unknown. Hypertonic saline is commonly used to produce hyperosmolarity aimed at reducing intra cranial pressure in patients with intracranial pathology. Therefore we studied the protective effects of 20% saline in a lipopolysaccharide lung injury rat model. 20% saline was also compared with other commonly used fluids. Following lipopolysaccharide-induced acute lung injury, male Sprague Dawley rats received either 20% hypertonic saline, 0.9% saline, 4% albumin, 20% albumin, 5% glucose or 20% albumin with 5% glucose, i.v. During 2h of non-injurious mechanical ventilation parameters of acute lung injury were assessed. Hypertonic saline resulted in hypernatraemia (160 (1) mmol/l, mean (SD)) maintained through 2h of ventilation, and in amelioration of lung oedema, myeloperoxidase, bronchoalveolar cell infiltrate, total soluble protein and inflammatory cytokines, and lung histological injury score, compared with positive control and all other fluids (p ≤ 0.001). Lung physiology was maintained (conserved PaO2, elastance), associated with preservation of alveolar surfactant (p ≤ 0.0001). Independent of fluid or sodium load, induced hypernatraemia is lung protective in lipopolysaccharide-induced acute lung injury. Copyright © 2016 Elsevier B.V. All rights reserved.
Targeting Extracellular Histones with Novel RNA Bio drugs for the Treatment of Acute Lung Injury
2017-10-01
organ involved in MODS is the lung (referred to as acute respiratory distress syndrome or ARDS). Trauma, smoke inhalation, burns, radiation , severe...and mortality associated with multiple organ dysfunction/ acute respiratory distress syndrome (MODS/ARDS) and ALI that can be easily delivered in combat...MODS, the risk of death is 40%. The most common organ involved in MODS is the lungs (referred to as acute respiratory distress syndrome or ARDS
2013-01-09
Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer
Differentiation of Lung Cancer, Empyema, and Abscess Through the Investigation of a Dry Cough.
Urso, Brittany; Michaels, Scott
2016-11-24
An acute dry cough results commonly from bronchitis or pneumonia. When a patient presents with signs of infection, respiratory crackles, and a positive chest radiograph, the diagnosis of pneumonia is more common. Antibiotic failure in a patient being treated for community-acquired pneumonia requires further investigation through chest computed tomography. If a lung mass is found on chest computed tomography, lung empyema, abscess, and cancer need to be included on the differential and managed aggressively. This report describes a 55-year-old Caucasian male, with a history of obesity, recovered alcoholism, hypercholesterolemia, and hypertension, presenting with an acute dry cough in the primary care setting. The patient developed signs of infection and was found to have a lung mass on chest computed tomography. Treatment with piperacillin-tazobactam and chest tube placement did not resolve the mass, so treatment with thoracotomy and lobectomy was required. It was determined through surgical investigation that the patient, despite having no risk factors, developed a lung abscess. Lung abscesses rarely form in healthy middle-aged individuals making it an unlikely cause of the patient's presenting symptom, dry cough. The patient cleared his infection with proper management and only suffered minor complications of mild pneumoperitoneum and pneumothorax during his hospitalization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jing; Mo, Yiqun; Schlueter, Connie F.
Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-inducedmore » neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Corticosteroids may inhibit lung injury through their anti-inflammatory actions. • Corticosteroids inhibited chlorine-induced pneumonitis and pulmonary edema. • Mometasone and budesonide are potential rescue treatments for chlorine lung injury.« less
Gattinoni, Luciano; Pesenti, Antonio
2005-06-01
The "baby lung" concept originated as an offspring of computed tomography examinations which showed in most patients with acute lung injury/acute respiratory distress syndrome that the normally aerated tissue has the dimensions of the lung of a 5- to 6-year-old child (300-500 g aerated tissue). The respiratory system compliance is linearly related to the "baby lung" dimensions, suggesting that the acute respiratory distress syndrome lung is not "stiff" but instead small, with nearly normal intrinsic elasticity. Initially we taught that the "baby lung" is a distinct anatomical structure, in the nondependent lung regions. However, the density redistribution in prone position shows that the "baby lung" is a functional and not an anatomical concept. This provides a rational for "gentle lung treatment" and a background to explain concepts such as baro- and volutrauma. From a physiological perspective the "baby lung" helps to understand ventilator-induced lung injury. In this context, what appears dangerous is not the V(T)/kg ratio but instead the V(T)/"baby lung" ratio. The practical message is straightforward: the smaller the "baby lung," the greater is the potential for unsafe mechanical ventilation.
Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide
Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W.
2013-01-01
Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. PMID:23800689
Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide.
Chen, Jing; Mo, Yiqun; Schlueter, Connie F; Hoyle, Gary W
2013-10-15
Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. © 2013.
Platelets are dispensable for antibody-mediated transfusion-related acute lung injury in the mouse.
Hechler, B; Maître, B; Magnenat, S; Heim, V; El Mdawar, M-B; Gachet, C; de la Salle, H
2016-06-01
Essentials Role of platelets in immunological transfusion-related acute lung injury (TRALI) is debated. Immunological TRALI was tested in mice exhibiting severe thrombocytopenia or platelet dysfunction. Platelets are required to prevent lung hemorrhage but not edema formation and respiratory distress. Platelets are dispensable for the initiation and development of TRALI. Background Transfusion-related acute lung injury (TRALI) is a serious transfusion-related complication. Previous conflicting studies have indicated that platelets are either crucial or dispensable for TRALI. Objectives To evaluate the role of platelets in major histocompatibility complex (MHC) I-induced-TRALI. Methods Antibody-mediated TRALI was experimentally induced in mice by lipopolysaccharide priming followed by the administration of an anti-MHC I mAb. Results TRALI was tested in the context of severe thrombocytopenia provoked by the administration of diphtheria toxin (DT) in transgenic iDTR mice selectively expressing DT receptor in megakaryocytes. The pathologic responses occurring within the first 10 min following the injection of the anti-MHC I mAb, i.e. the severity of lung edema and the drop in aortic blood oxygenation, were similar in severely thrombocytopenic DT-iDTR and control mice. At later times, mortality was nevertheless increased in DT-iDTR mice, owing to lung hemorrhages. When less severe thrombocytopenia was induced with an antiplatelet mAb, TRALI started and developed similarly as in control mice, but hemorrhages were absent. Furthermore, when platelet functions were defective because of administration of aspirin or clopidogrel, or because of glycoprotein (GP)IIbIIIa deficiency, TRALI still developed but no lung hemorrhages were observed. In contrast, when GPVI was immunodepleted, TRALI still occurred, but was occasionally accompanied by hemorrhages. Conclusions Platelets are dispensable for the initiation and development of MHC I-induced TRALI. Although they do not protect against the disruption of the vascular endothelial cell barrier and the subsequent plasma leakage and edema formation, platelets are essential to prevent more serious damage resulting in hemorrhages in alveoli. © 2016 International Society on Thrombosis and Haemostasis.
Marui, Tsutomu; Iwata, Hisashi; Shirahashi, Koyo; Matsumoto, Shinsuke; Mizuno, Yoshimasa; Matsui, Masafumi; Takemura, Hirofumi
2008-06-01
Graft damage due to acute rejection has been reported as one of the risk factors in the chronic stage of cardiac and renal allografts. This study was designed to elucidate the histologic changes of grafts after ongoing acute allograft rejection was discontinued in models of lung re-isotransplantation. WKAH rat lungs were orthotopically transplanted into F344 recipients. Three days (3A group) and 5 days (5A group) after the first allotransplantation, the grafts were re-isotransplanted back into the WKAH rats (3RA and 5RA groups, respectively). Five days (5I group) after the first isotransplantation, the grafts were re-isotransplanted back into the WKAH rats (5RI group). The grafts were removed 30 and 60 days after re-isotransplantation and assessed histologically. Typical acute allograft rejection developed in the 3A and 5A groups, and the changes were reduced after re-isotransplantation, although they remained significantly greater in the 5RA group than in the 3RA and 5RI groups. For intimal hyperplasia, the graft score 60 days after re-isotransplantation in the 5RA group was significantly higher than in the 5RI and 3RA groups. The changes in airway inflammation were significantly greater in the 5RA group than in the 3RA and 5RI groups at 60 days. Peribronchiolar fibrosis was significantly more frequent in the 5RA and 3RA groups than in the 5RI group. Acute rejection and airway inflammation corresponded to the magnitude of rejection before retransplantation. Significant intimal hyperplasia developed in severe acute rejection, and peribronchiolar fibrosis occurred after the first acute rejection.
Physical complications in acute lung injury survivors: a two-year longitudinal prospective study.
Fan, Eddy; Dowdy, David W; Colantuoni, Elizabeth; Mendez-Tellez, Pedro A; Sevransky, Jonathan E; Shanholtz, Carl; Himmelfarb, Cheryl R Dennison; Desai, Sanjay V; Ciesla, Nancy; Herridge, Margaret S; Pronovost, Peter J; Needham, Dale M
2014-04-01
Survivors of severe critical illness frequently develop substantial and persistent physical complications, including muscle weakness, impaired physical function, and decreased health-related quality of life. Our objective was to determine the longitudinal epidemiology of muscle weakness, physical function, and health-related quality of life and their associations with critical illness and ICU exposures. A multisite prospective study with longitudinal follow-up at 3, 6, 12, and 24 months after acute lung injury. Thirteen ICUs from four academic teaching hospitals. Two hundred twenty-two survivors of acute lung injury. None. At each time point, patients underwent standardized clinical evaluations of extremity, hand grip, and respiratory muscle strength; anthropometrics (height, weight, mid-arm circumference, and triceps skin fold thickness); 6-minute walk distance, and the Medical Outcomes Short-Form 36 health-related quality of life survey. During their hospitalization, survivors also had detailed daily evaluation of critical illness and related treatment variables. Over one third of survivors had objective evidence of muscle weakness at hospital discharge, with most improving within 12 months. This weakness was associated with substantial impairments in physical function and health-related quality of life that persisted at 24 months. The duration of bed rest during critical illness was consistently associated with weakness throughout 24-month follow-up. The cumulative dose of systematic corticosteroids and use of neuromuscular blockers in the ICU were not associated with weakness. Muscle weakness is common after acute lung injury, usually recovering within 12 months. This weakness is associated with substantial impairments in physical function and health-related quality of life that continue beyond 24 months. These results provide valuable prognostic information regarding physical recovery after acute lung injury. Evidence-based methods to reduce the duration of bed rest during critical illness may be important for improving these long-term impairments.
Venkataraman, Thiagarajan; Coleman, Christopher M.
2017-01-01
ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) is a highly pathogenic respiratory virus that causes morbidity and mortality in humans. After infection with SARS-CoV, the acute lung injury caused by the virus must be repaired to regain lung function. A dysregulation in this wound healing process leads to fibrosis. Many survivors of SARS-CoV infection develop pulmonary fibrosis (PF), with higher prevalence in older patients. Using mouse models of SARS-CoV pathogenesis, we have identified that the wound repair pathway, controlled by the epidermal growth factor receptor (EGFR), is critical to recovery from SARS-CoV-induced tissue damage. In mice with constitutively active EGFR [EGFR(DSK5) mice], we find that SARS-CoV infection causes enhanced lung disease. Importantly, we show that during infection, the EGFR ligands amphiregulin and heparin-binding EGF-like growth factor (HB-EGF) are upregulated, and exogenous addition of these ligands during infection leads to enhanced lung disease and altered wound healing dynamics. Our data demonstrate a key role of EGFR in the host response to SARS-CoV and how it may be implicated in lung disease induced by other highly pathogenic respiratory viruses. IMPORTANCE PF has many causative triggers, including severe respiratory viruses such as SARS-CoV. Currently there are no treatments to prevent the onset or limit the progression of PF, and the molecular pathways underlying the development of PF are not well understood. In this study, we identified a role for the balanced control of EGFR signaling as a key factor in progression to PF. These data demonstrate that therapeutic treatment modulating EGFR activation could protect against PF development caused by severe respiratory virus infection. PMID:28404843
Venkataraman, Thiagarajan; Coleman, Christopher M; Frieman, Matthew B
2017-06-15
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a highly pathogenic respiratory virus that causes morbidity and mortality in humans. After infection with SARS-CoV, the acute lung injury caused by the virus must be repaired to regain lung function. A dysregulation in this wound healing process leads to fibrosis. Many survivors of SARS-CoV infection develop pulmonary fibrosis (PF), with higher prevalence in older patients. Using mouse models of SARS-CoV pathogenesis, we have identified that the wound repair pathway, controlled by the epidermal growth factor receptor (EGFR), is critical to recovery from SARS-CoV-induced tissue damage. In mice with constitutively active EGFR [EGFR(DSK5) mice], we find that SARS-CoV infection causes enhanced lung disease. Importantly, we show that during infection, the EGFR ligands amphiregulin and heparin-binding EGF-like growth factor (HB-EGF) are upregulated, and exogenous addition of these ligands during infection leads to enhanced lung disease and altered wound healing dynamics. Our data demonstrate a key role of EGFR in the host response to SARS-CoV and how it may be implicated in lung disease induced by other highly pathogenic respiratory viruses. IMPORTANCE PF has many causative triggers, including severe respiratory viruses such as SARS-CoV. Currently there are no treatments to prevent the onset or limit the progression of PF, and the molecular pathways underlying the development of PF are not well understood. In this study, we identified a role for the balanced control of EGFR signaling as a key factor in progression to PF. These data demonstrate that therapeutic treatment modulating EGFR activation could protect against PF development caused by severe respiratory virus infection. Copyright © 2017 American Society for Microbiology.
Lung clearance of /sup 99m/Tc-DTPA in patients with acute lung injury and pulmonary edema
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, G.; O'Brodovich, H.; Dolovich, M.
1988-07-01
Several acute and chronic conditions that alter the integrity of the pulmonary epithelium increased the rate of absorption or clearance into the circulation of small solutes deposited in the alveoli. Technetium 99m diethylenetriamine pentaacetic acid can be deposited in the lungs as a submicronic aerosol and its rate of clearance measured with a gamma camera or simple probe. This clearance technique is currently being used to evaluate patients who have developed pulmonary edema and also to detect those patients from a high risk group who are likely to develop adult respiratory distress syndrome (ARDS). Its role in the evaluation ofmore » patients with pulmonary edema is still under active investigation. It is clear that a single measurement in patients who smoke is not useful, but repeated measurements may provide important information. The lung clearance measurement is very sensitive to changes in epithelial integrity but is not specific for ARDS. It may be most useful in combination with other predictive tests or when the clearance rate is normal. 54 references.« less
Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross
2017-08-01
Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese individuals.
Akkanti, Bindu; Rajagopal, Keshava; Patel, Kirti P; Aravind, Sangeeta; Nunez-Centanu, Emmanuel; Hussain, Rahat; Shabari, Farshad Raissi; Hofstetter, Wayne L; Vaporciyan, Ara A; Banjac, Igor S; Kar, Biswajit; Gregoric, Igor D; Loyalka, Pranav
2017-06-01
Extracorporeal carbon dioxide removal (ECCO 2 R) permits reductions in alveolar ventilation requirements that the lungs would otherwise have to provide. This concept was applied to a case of hypercapnia refractory to high-level invasive mechanical ventilator support. We present a case of an 18-year-old man who developed post-pneumonectomy acute respiratory distress syndrome (ARDS) after resection of a mediastinal germ cell tumor involving the left lung hilum. Hypercapnia and hypoxemia persisted despite ventilator support even at traumatic levels. ECCO 2 R using a miniaturized system was instituted and provided effective carbon dioxide elimination. This facilitated establishment of lung-protective ventilator settings and lung function recovery. Extracorporeal lung support increasingly is being applied to treat ARDS. However, conventional extracorporeal membrane oxygenation (ECMO) generally involves using large cannulae capable of carrying high flow rates. A subset of patients with ARDS has mixed hypercapnia and hypoxemia despite high-level ventilator support. In the absence of profound hypoxemia, ECCO 2 R may be used to reduce ventilator support requirements to lung-protective levels, while avoiding risks associated with conventional ECMO.
Amniotic fluid stem cells from EGFP transgenic mice attenuate hyperoxia-induced acute lung injury.
Wen, Shih-Tao; Chen, Wei; Chen, Hsiao-Ling; Lai, Cheng-Wei; Yen, Chih-Ching; Lee, Kun-Hsiung; Wu, Shinn-Chih; Chen, Chuan-Mu
2013-01-01
High concentrations of oxygen aggravate the severity of lung injury in patients requiring mechanical ventilation. Although mesenchymal stem cells have been shown to effectively attenuate various injured tissues, there is limited information regarding a role for amniotic fluid stem cells (AFSCs) in treating acute lung injury. We hypothesized that intravenous delivery of AFSCs would attenuate lung injury in an experimental model of hyperoxia-induced lung injury. AFSCs were isolated from EGFP transgenic mice. The in vitro differentiation, surface markers, and migration of the AFSCs were assessed by specific staining, flow cytometry, and a co-culture system, respectively. The in vivo therapeutic potential of AFSCs was evaluated in a model of acute hyperoxia-induced lung injury in mice. The administration of AFSCs significantly reduced the hyperoxia-induced pulmonary inflammation, as reflected by significant reductions in lung wet/dry ratio, neutrophil counts, and the level of apoptosis, as well as reducing the levels of inflammatory cytokine (IL-1β, IL-6, and TNF-α) and early-stage fibrosis in lung tissues. Moreover, EGFP-expressing AFSCs were detected and engrafted into a peripheral lung epithelial cell lineage by fluorescence microscopy and DAPI stain. Intravenous administration of AFSCs may offer a new therapeutic strategy for acute lung injury (ALI), for which efficient treatments are currently unavailable.
Pathophysiology of pulmonary hypertension in acute lung injury
Price, Laura C.; McAuley, Danny F.; Marino, Philip S.; Finney, Simon J.; Griffiths, Mark J.
2012-01-01
Acute lung injury (ALI) and acute respiratory distress syndrome are characterized by protein rich alveolar edema, reduced lung compliance, and acute severe hypoxemia. A degree of pulmonary hypertension (PH) is also characteristic, higher levels of which are associated with increased morbidity and mortality. The increase in right ventricular (RV) afterload causes RV dysfunction and failure in some patients, with associated adverse effects on oxygen delivery. Although the introduction of lung protective ventilation strategies has probably reduced the severity of PH in ALI, a recent invasive hemodynamic analysis suggests that even in the modern era, its presence remains clinically important. We therefore sought to summarize current knowledge of the pathophysiology of PH in ALI. PMID:22246001
Mesenchymal stem cells for acute lung injury: Preclinical evidence
Matthay, Michael A.; Goolaerts, Arnaud; Howard, James P.; Lee, Jae Woo
2013-01-01
Several experimental studies have suggested that mesenchymal stem cells may have value for the treatment of clinical disorders, including myocardial infarction, diabetes, acute renal failure, sepsis, and acute lung injury. In preclinical studies, mesenchymal stem cells have been effective in reducing lung injury from endotoxin, live bacteria, bleomycin, and hyperoxia. In some studies, the cultured medium from mesenchymal stem cells has been as effective as the mesenchymal stem cells themselves. Several paracrine mediators that can mediate the effect of mesenchymal stem cells have been identified, including interleukin-10, interleukin-1ra, keratinocyte growth factor, and prostaglandin E2. Further preclinical studies are needed, as is planning for clinical trials for acute lung injury. PMID:21164399
Erranz, M Benjamín; Wilhelm, B Jan; Riquelme, V Raquel; Cruces, R Pablo
2015-01-01
Acute respiratory distress syndrome (ARDS) is the most severe form of respiratory failure. Theoretically, any acute lung condition can lead to ARDS, but only a small percentage of individuals actually develop the disease. On this basis, genetic factors have been implicated in the risk of developing ARDS. Based on the pathophysiology of this disease, many candidate genes have been evaluated as potential modifiers in patient, as well as in animal models, of ARDS. Recent experimental data and clinical studies suggest that variations of genes involved in key processes of tissue, cellular and molecular lung damage may influence susceptibility and prognosis of ARDS. However, the pathogenesis of pediatric ARDS is complex, and therefore, it can be expected that many genes might contribute. Genetic variations such as single nucleotide polymorphisms and copy-number variations are likely associated with susceptibility to ARDS in children with primary lung injury. Genome-wide association (GWA) studies can objectively examine these variations, and help identify important new genes and pathogenetic pathways for future analysis. This approach might also have diagnostic and therapeutic implications, such as predicting patient risk or developing a personalized therapeutic approach to this serious syndrome. Copyright © 2015. Publicado por Elsevier España, S.L.U.
Dransfield, Mark T; Kunisaki, Ken M; Strand, Matthew J; Anzueto, Antonio; Bhatt, Surya P; Bowler, Russell P; Criner, Gerard J; Curtis, Jeffrey L; Hanania, Nicola A; Nath, Hrudaya; Putcha, Nirupama; Roark, Sarah E; Wan, Emily S; Washko, George R; Wells, J Michael; Wendt, Christine H; Make, Barry J
2017-02-01
Acute exacerbations of chronic obstructive pulmonary disease (COPD) increase the risk of death and drive healthcare costs, but whether they accelerate loss of lung function remains controversial. Whether exacerbations in subjects with mild COPD or similar acute respiratory events in smokers without airflow obstruction affect lung function decline is unknown. To determine the association between acute exacerbations of COPD (and acute respiratory events in smokers without COPD) and the change in lung function over 5 years of follow-up. We examined data on the first 2,000 subjects who returned for a second COPDGene visit 5 years after enrollment. Baseline data included demographics, smoking history, and computed tomography emphysema. We defined exacerbations (and acute respiratory events in those without established COPD) as acute respiratory symptoms requiring either antibiotics or systemic steroids, and severe events by the need for hospitalization. Throughout the 5-year follow-up period, we collected self-reported acute respiratory event data at 6-month intervals. We used linear mixed models to fit FEV 1 decline based on reported exacerbations or acute respiratory events. In subjects with COPD, exacerbations were associated with excess FEV 1 decline, with the greatest effect in Global Initiative for Chronic Obstructive Lung Disease stage 1, where each exacerbation was associated with an additional 23 ml/yr decline (95% confidence interval, 2-44; P = 0.03), and each severe exacerbation with an additional 87 ml/yr decline (95% confidence interval, 23-151; P = 0.008); statistically significant but smaller effects were observed in Global Initiative for Chronic Obstructive Lung Disease stage 2 and 3 subjects. In subjects without airflow obstruction, acute respiratory events were not associated with additional FEV 1 decline. Exacerbations are associated with accelerated lung function loss in subjects with established COPD, particularly those with mild disease. Trials are needed to test existing and novel therapies in subjects with early/mild COPD to potentially reduce the risk of progressing to more advanced lung disease. Clinical trial registered with www.clinicaltrials.gov (NCT 00608764).
Colaco, Rovel J; Huh, Soon; Nichols, Romaine C; Morris, Christopher G; D'Agostino, Harry; Flampouri, Stella; Li, Zuofeng; Pham, Dat C; Bajwa, Abubakr A; Hoppe, Bradford S
2013-04-01
Concurrent chemoradiotherapy (CRT) is the standard of care in patients with limited-stage small cell lung cancer (SCLC). Treatment with conventional x-ray therapy (XRT) is associated with high toxicity rates, particularly acute grade 3+ esophagitis and pneumonitis. We present outcomes for the first known series of limited-stage SCLC patients treated with proton therapy and a dosimetric comparison of lung and esophageal doses with intensity-modulated radiation therapy (IMRT). Six patients were treated: five concurrently and one sequentially. Five patients received 60-66 CGE in 30-34 fractions once daily and one patient received 45 CGE in 30 fractions twice daily. All six patients received prophylactic cranial irradiation. Common Terminology Criteria for Adverse Events, v3.0, was used to grade toxicity. IMRT plans were also generated and compared with proton plans. The median follow-up was 12.0 months. The one-year overall and progression-free survival rates were 83% and 66%, respectively. There were no cases of acute grade 3+ esophagitis or acute grade 2+ pneumonitis, and no other acute grade 3+ non-hematological toxicities were seen. One patient with a history of pulmonary fibrosis and atrial fibrillation developed worsening symptoms four months after treatment requiring oxygen. Three patients died: two of progressive disease and one after a fall; the latter patient was disease-free at 36 months after treatment. Another patient recurred and is alive, while two patients remain disease-free at 12 months of follow-up. Proton therapy proved superior to IMRT across all esophageal and lung dose volume points. In this small series of SCLC patients treated with proton therapy with radical intent, treatment was well tolerated with no cases of acute grade 3+ esophagitis or acute grade 2+ pneumonitis. Dosimetric comparison showed better sparing of lung and esophagus with proton therapy. Proton therapy merits further investigation as a method of reducing the toxicity of CRT.
Pleural effusion in patients with acute lung injury: a CT scan study.
Chiumello, Davide; Marino, Antonella; Cressoni, Massimo; Mietto, Cristina; Berto, Virna; Gallazzi, Elisabetta; Chiurazzi, Chiara; Lazzerini, Marco; Cadringher, Paolo; Quintel, Michael; Gattinoni, Luciano
2013-04-01
Pleural effusion is a frequent finding in patients with acute respiratory distress syndrome. To assess the effects of pleural effusion in patients with acute lung injury on lung volume, respiratory mechanics, gas exchange, lung recruitability, and response to positive end-expiratory pressure. A total of 129 acute lung injury or acute respiratory distress syndrome patients, 68 analyzed retrospectively and 61 prospectively, studied at two University Hospitals. Whole-lung CT was performed during two breath-holding pressures (5 and 45 cm H2O). Two levels of positive end-expiratory pressure (5 and 15 cm H2O) were randomly applied. Pleural effusion volume was determined on each CT scan section; respiratory system mechanics, gas exchange, and hemodynamics were measured at 5 and 15 cm H2O positive end-expiratory pressure. In 60 patients, elastances of lung and chest wall were computed, and lung and chest wall displacements were estimated. Patients were divided into higher and lower pleural effusion groups according to the median value (287 mL). Patients with higher pleural effusion were older (62±16 yr vs. 54±17 yr, p<0.01) with a lower minute ventilation (8.8±2.2 L/min vs. 10.1±2.9 L/min, p<0.01) and respiratory rate (16±5 bpm vs. 19±6 bpm, p<0.01) than those with lower pleural effusion. Both at 5 and 15 cm H2O of positive end-expiratory pressure PaO2/FIO2, respiratory system elastance, lung weight, normally aerated tissue, collapsed tissue, and lung and chest wall elastances were similar between the two groups. The thoracic cage expansion (405±172 mL vs. 80±87 mL, p<0.0001, for higher pleural effusion group vs. lower pleural effusion group) was greater than the estimated lung compression (178±124 mL vs. 23±29 mL, p<0.0001 for higher pleural effusion group vs. lower pleural effusion group, respectively). Pleural effusion in acute lung injury or acute respiratory distress syndrome patients is of modest entity and leads to a greater chest wall expansion than lung reduction, without affecting gas exchange or respiratory mechanics.
Mechanisms of Severe Acute Respiratory Syndrome Coronavirus-Induced Acute Lung Injury
Gralinski, Lisa E.; Bankhead, Armand; Jeng, Sophia; Menachery, Vineet D.; Proll, Sean; Belisle, Sarah E.; Matzke, Melissa; Webb-Robertson, Bobbie-Jo M.; Luna, Maria L.; Shukla, Anil K.; Ferris, Martin T.; Bolles, Meagan; Chang, Jean; Aicher, Lauri; Waters, Katrina M.; Smith, Richard D.; Metz, Thomas O.; Law, G. Lynn; Katze, Michael G.; McWeeney, Shannon; Baric, Ralph S.
2013-01-01
ABSTRACT Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes. This unbiased approach produced a high-priority list of 4 genes in one pathway out of over 3,500 genes that were differentially expressed following SARS-CoV infection. With these data, we predicted that the urokinase and other wound repair pathways would regulate lethal versus sublethal disease following SARS-CoV infection in mice. We validated the importance of the urokinase pathway for SARS-CoV disease severity using genetically defined knockout mice, proteomic correlates of pathway activation, and pathological disease severity. The results of these studies demonstrate that a fine balance exists between host coagulation and fibrinolysin pathways regulating pathological disease outcomes, including diffuse alveolar damage and acute lung injury, following infection with highly pathogenic respiratory viruses, such as SARS-CoV. PMID:23919993
Chen, Hongjin; Fang, Bo; Qiu, Yinda; Chen, Xianxin; Chen, Lingfeng; Shu, Sheng; Zhang, Yali; Zhao, Yunjie; Liu, Zhiguo; Liang, Guang
2018-01-01
Purpose The purpose of this study was to design and synthesize novel 2-benzylidene-1-indanone derivatives for treatment of acute lung injury. Methods A series of 39 novel 2-benzylidene-indanone structural derivatives were synthesized and evaluated for anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated murine primary macrophages. Results Most of the obtained compounds effectively inhibited the LPS-induced expression of IL-6 and TNF-α. The most active compound, 8f, was found to significantly reduce LPS-induced pulmonary inflammation, as reflected by reductions in the concentration of total protein, inflammatory cell count, as well as the lung wet/dry ratio in bronchoalveolar lavage (BAL) fluid. Furthermore, 8f effectively inhibited mRNA expression of several inflammatory cytokines after LPS challenge in vitro and in vivo. Administration of 8f also blocked LPS-induced activation of the proinflammatory NF-κB/MAPK signaling pathway. Conclusion The simple synthetic preparation and biological properties of these derivatives make these 2-benzylidene-indanone scaffolds promising new entities for the development of anti-inflammatory therapeutics for the treatment of acute lung injury. PMID:29719375
Cabrera-Benitez, Nuria E.; Laffey, John G.; Parotto, Matteo; Spieth, Peter M.; Villar, Jesús; Zhang, Haibo; Slutsky, Arthur S.
2016-01-01
One of the most challenging problems in critical care medicine is the management of patients with the acute respiratory distress syndrome. Increasing evidence from experimental and clinical studies suggests that mechanical ventilation, which is necessary for life support in patients with acute respiratory distress syndrome, can cause lung fibrosis, which may significantly contribute to morbidity and mortality. The role of mechanical stress as an inciting factor for lung fibrosis versus its role in lung homeostasis and the restoration of normal pulmonary parenchymal architecture is poorly understood. In this review, the authors explore recent advances in the field of pulmonary fibrosis in the context of acute respiratory distress syndrome, concentrating on its relevance to the practice of mechanical ventilation, as commonly applied by anesthetists and intensivists. The authors focus the discussion on the thesis that mechanical ventilation—or more specifically, that ventilator-induced lung injury—may be a major contributor to lung fibrosis. The authors critically appraise possible mechanisms underlying the mechanical stress–induced lung fibrosis and highlight potential therapeutic strategies to mitigate this fibrosis. PMID:24732023
Cabrera-Benitez, Nuria E; Laffey, John G; Parotto, Matteo; Spieth, Peter M; Villar, Jesús; Zhang, Haibo; Slutsky, Arthur S
2014-07-01
One of the most challenging problems in critical care medicine is the management of patients with the acute respiratory distress syndrome. Increasing evidence from experimental and clinical studies suggests that mechanical ventilation, which is necessary for life support in patients with acute respiratory distress syndrome, can cause lung fibrosis, which may significantly contribute to morbidity and mortality. The role of mechanical stress as an inciting factor for lung fibrosis versus its role in lung homeostasis and the restoration of normal pulmonary parenchymal architecture is poorly understood. In this review, the authors explore recent advances in the field of pulmonary fibrosis in the context of acute respiratory distress syndrome, concentrating on its relevance to the practice of mechanical ventilation, as commonly applied by anesthetists and intensivists. The authors focus the discussion on the thesis that mechanical ventilation-or more specifically, that ventilator-induced lung injury-may be a major contributor to lung fibrosis. The authors critically appraise possible mechanisms underlying the mechanical stress-induced lung fibrosis and highlight potential therapeutic strategies to mitigate this fibrosis.
Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M
2018-02-01
Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue. Additionally, mesenchymal stem cells differently modulated the secretion of biomarkers by macrophages depending on their source. Mesenchymal stem cells from different sources led to variable responses in lungs and distal organs. Bone marrow and adipose tissue mesenchymal stem cells yielded greater beneficial effects than lung tissue mesenchymal stem cells. These findings may be regarded as promising in clinical trials.
Treatment of acute lung injury by targeting MG53-mediated cell membrane repair
Lieber, Gissela; Nishi, Miyuki; Yan, Rosalie; Wang, Zhen; Yao, Yonggang; Li, Yu; Whitson, Bryan A.; Duann, Pu; Li, Haichang; Zhou, Xinyu; Zhu, Hua; Takeshima, Hiroshi; Hunter, John C.; McLeod, Robbie L.; Weisleder, Noah; Zeng, Chunyu; Ma, Jianjie
2014-01-01
Injury to lung epithelial cells has a role in multiple lung diseases. We previously identified mitsugumin 53 (MG53) as a component of the cell membrane repair machinery in striated muscle cells. Here we show that MG53 also has a physiological role in the lung and may be used as a treatment in animal models of acute lung injury. Mice lacking MG53 show increased susceptibility to ischemia-reperfusion and over-ventilation induced injury to the lung when compared with wild type mice. Extracellular application of recombinant human MG53 (rhMG53) protein protects cultured lung epithelial cells against anoxia/reoxygenation-induced injuries. Intravenous delivery or inhalation of rhMG53 reduces symptoms in rodent models of acute lung injury and emphysema. Repetitive administration of rhMG53 improves pulmonary structure associated with chronic lung injury in mice. Our data indicate a physiological function for MG53 in the lung and suggest that targeting membrane repair may be an effective means for treatment or prevention of lung diseases. PMID:25034454
Fazal, Fabeha; Bijli, Kaiser M; Murrill, Matthew; Leonard, Antony; Minhajuddin, Mohammad; Anwar, Khandaker N; Finkelstein, Jacob N; Watterson, D Martin; Rahman, Arshad
2013-01-01
The pathogenesis of acute lung injury (ALI) involves bidirectional cooperation and close interaction between inflammatory and coagulation pathways. A key molecule linking coagulation and inflammation is the procoagulant thrombin, a serine protease whose concentration is elevated in plasma and lavage fluids of patients with ALI and acute respiratory distress syndrome (ARDS). However, little is known about the mechanism by which thrombin contributes to lung inflammatory response. In this study, we developed a new mouse model that permits investigation of lung inflammation associated with intravascular coagulation. Using this mouse model and in vitro approaches, we addressed the role of non-muscle myosin light chain kinase (nmMLCK) in thrombin-induced endothelial cell (EC) inflammation and lung neutrophil (PMN) infiltration. Our in vitro experiments revealed a key role of nmMLCK in ICAM-1 expression by its ability to control nuclear translocation and transcriptional capacity of RelA/p65 in EC. When subjected to intraperitoneal thrombin challenge, wild type mice showed a marked increase in lung PMN infiltration via expression of ICAM-1. However, these responses were markedly attenuated in mice deficient in nmMLCK. These results provide mechanistic insight into lung inflammatory response associated with intravascular coagulation and identify nmMLCK as a critical target for modulation of lung inflammation.
Fazal, Fabeha; Bijli, Kaiser M.; Murrill, Matthew; Leonard, Antony; Minhajuddin, Mohammad; Anwar, Khandaker N.; Finkelstein, Jacob N.; Watterson, D. Martin; Rahman, Arshad
2013-01-01
The pathogenesis of acute lung injury (ALI) involves bidirectional cooperation and close interaction between inflammatory and coagulation pathways. A key molecule linking coagulation and inflammation is the procoagulant thrombin, a serine protease whose concentration is elevated in plasma and lavage fluids of patients with ALI and acute respiratory distress syndrome (ARDS). However, little is known about the mechanism by which thrombin contributes to lung inflammatory response. In this study, we developed a new mouse model that permits investigation of lung inflammation associated with intravascular coagulation. Using this mouse model and in vitro approaches, we addressed the role of non-muscle myosin light chain kinase (nmMLCK) in thrombin-induced endothelial cell (EC) inflammation and lung neutrophil (PMN) infiltration. Our in vitro experiments revealed a key role of nmMLCK in ICAM-1 expression by its ability to control nuclear translocation and transcriptional capacity of RelA/p65 in EC. When subjected to intraperitoneal thrombin challenge, wild type mice showed a marked increase in lung PMN infiltration via expression of ICAM-1. However, these responses were markedly attenuated in mice deficient in nmMLCK. These results provide mechanistic insight into lung inflammatory response associated with intravascular coagulation and identify nmMLCK as a critical target for modulation of lung inflammation. PMID:23555849
Acute Exacerbation in Interstitial Lung Disease
Leuschner, Gabriela; Behr, Jürgen
2017-01-01
Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) has been defined as an acute, clinically significant deterioration that develops within less than 1 month without obvious clinical cause like fluid overload, left heart failure, or pulmonary embolism. Pathophysiologically, damage of the alveoli is the predominant feature of AE-IPF which manifests histopathologically as diffuse alveolar damage and radiologically as diffuse, bilateral ground-glass opacification on high-resolution computed tomography. A growing body of literature now focuses on acute exacerbations of interstitial lung disease (AE-ILD) other than idiopathic pulmonary fibrosis. Based on a shared pathophysiology it is generally accepted that AE-ILD can affect all patients with interstitial lung disease (ILD) but apparently occurs more frequently in patients with an underlying usual interstitial pneumonia pattern. The etiology of AE-ILD is not fully understood, but there are distinct risk factors and triggers like infection, mechanical stress, and microaspiration. In general, AE-ILD has a poor prognosis and is associated with a high mortality within 6–12 months. Although there is a lack of evidence based data, in clinical practice, AE-ILD is often treated with a high dose corticosteroid therapy and antibiotics. This article aims to provide a summary of the clinical features, diagnosis, management, and prognosis of AE-ILD as well as an update on the current developments in the field. PMID:29109947
Lv, Peng; Li, Hong-Yun; Ji, Shu-Sheng; Li, Wen; Fan, Li-Juan
2014-09-01
We studied the effect of thalidomide on NFκB-induced TNF-α in acute pancreatitis-associated lung injury in the rat. Rats were intragastrically administered thalidomide (100mg/kg) daily for 8 days and then acute pancreatitis was induced by retrograde infusion of 5% sodium taurocholate into the rat biliopancreatic duct. Serum amylase (AMY), blood oxygen partial pressure (PaO2), ratios of lung wet/dry weight, and cytoplasmic IκBα and TNF-α protein and nuclear NFκBp65 protein were measured. Also, lung NFκBp65 and TNF-α mRNA were measured. Compared with the model group, the pathological score of the pancreas and lung, serum AMY, ratios of lung wet/dry weight, and lung NFκBp65 and TNF-α mRNA and protein of rats given thalidomide were decreased significantly (P<0.01), but PaO2 and IκBα protein was elevated significantly (P<0.01). Thalidomide may inhibit TNF-α expression via down-regulation of the NFκB signaling pathway to alleviate acute pancreatitis-associated lung injury in rats. Copyright © 2014 Elsevier GmbH. All rights reserved.
Xiao, X-G; Zu, H-G; Li, Q-G; Huang, P
2016-01-01
Patients with severe burns often develop acute lung injury (ALI), systemic inflammatory response syndrome (SIRS) often complicates with ALI. Sivelestat sodium hydrate is an effective drug against ALI. However, the mechanisms of this beneficial effect are still poorly understood. In the current study, we evaluate the effects of sivelestat sodium hydrate on systemic and local inflammatory parameters (neutrophil elastase [NE], interleukin [IL]-8, matrix metalloproteinase [MMP] 2 and 9) in a rat model of severe burns and ALI. And to analyze the correlations between expression of NE and IL-8 and acute lung injury. 48 Sprague-Dawley (SD) rats were divided into 3 groups: normal control group, severe burns injury group and severe burns treated with sivelestat sodium hydrate group (SSI). The lung water content and PaO2 were detected in each group. Pathological manifestations in each group were observed for pathology scoring in SD rats with acute lung injury. ELISA was used for detecting expression of NE and IL-8 in serum and BAL specimens of SD rats in each group. RT-PCR was used to detect mRNA expression of NE and IL-8 in lung tissues of each group. Western blotting was used for detecting protein expression of MMP-2 and MMP-9 in lung tissues of each group. SPSS 18.0 was used for statistical analysis. The PaO2 was significantly increased after sivelestat sodium hydrate intravenous injection. Pathological score and water content of lung tissue were significantly decreased in SSI group compared with severe burns injury group, slightly higher than that normal control group. NE and IL-8 levels significantly decreased in serum, BAL and lung tissue specimens after sivelestat sodium hydrate intravenous injection; Expression of MMP-2 and MMP-9 were significantly up-regulated in severe burns group and showed no significantly changed after sivelestat sodium hydrate intravenous injection. In a rat model of severe burns and ALI, administration of sivelestat sodium hydrate improved symptoms of ALI and significantly decreased inflammatory parameters NE and IL-8.
Interstitial pneumonitis and the risk of chronic allograft rejection in lung transplant recipients.
Mihalek, Andrew D; Rosas, Ivan O; Padera, Robert F; Fuhlbrigge, Anne L; Hunninghake, Gary M; DeMeo, Dawn L; Camp, Phillip C; Goldberg, Hilary J
2013-05-01
The presence of interstitial pneumonitis (IP) on surveillance lung biopsy specimens in lung transplant recipients is poorly described, and its impact on posttransplant outcomes is not established. The following study assessed the association of posttransplant IP with the development of bronchiolitis obliterans syndrome (BOS). We examined all recipients of primary cadaveric lung transplants at our institution between January 1, 2000, and December 31, 2007 (N = 145). Patients had bronchoscopies with BAL, and transbronchial biopsies performed for surveillance during posttransplant months 1, 3, 6, and 12 as well as when clinically indicated. Patients were given a diagnosis of IP if, in the absence of active infection and organizing pneumonia, they showed evidence of interstitial inflammation and fibrosis on two or more biopsy specimens. IP was a significant predictor of BOS (OR, 7.84; 95% CI, 2.84-21.67; P < .0001) and was significantly associated with time to development of BOS (hazard ratio, 3.8; 95% CI, 1.93-7.39; P = .0001) within the first 6 years posttransplant. The presence of IP did not correlate with a significantly higher risk of mortality or time to death. There was no association between the presence of IP and the development of or time to acute rejection. The presence of IP on lung transplant biopsy specimens suggests an increased risk for BOS, which is independent of the presence of acute cellular rejection.
Wei, Hongying; Liang, Fan; Cheng, Wei; Zhou, Ren; Wu, Xiaomeng; Feng, Yan; Wang, Yan
2017-11-01
Fine particulate matter (PM 2.5 ) is a major component of air pollutions that are closely associated with increased risk of lung cancer. However, the role of PM 2.5 in the etiology of lung cancer is largely unknown. In this study, we performed acute (24 hours) and chronic (five passages) exposure models to investigate the carcinogenetic mechanisms of PM 2.5 by targeting the induction of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSC) properties in human non-small cell lung cancer cell line A549. We found that both acute and chronic PM 2.5 exposure enhanced cell migration and invasion, decreased mRNA expression of epithelial markers and increased mRNA expression of mesenchymal markers. Chronic PM 2.5 exposure further induced notable EMT morphology and CSC properties, indicating the developing process of cell malignant behaviors from acute to chronic PM 2.5 exposure. CSC properties induced by chronic PM 2.5 exposure characterized with increased cell-surface markers (CD44, ABCG2), self-renewal genes (SOX2 and OCT4), side population cells and neoplastic capacity. Furthermore, the levels of three stemness-associated microRNAs, Let-7a, miR-16 and miR-34a, were found to be significantly downregulated by chronic PM 2.5 exposure, with microarray data analysis from TCGA database showing their lower expression in human lung adenocarcinoma tissues than that in the adjacent normal lung tissues. These data revealed that the induction of EMT and CSC properties were involved in the lung cancer risk of PM 2.5 , and implicated CSC properties and related microRNAs as possible biomarkers for carcinogenicity prediction of PM 2.5 . © 2017 Wiley Periodicals, Inc.
Mo, Yiqun; Chen, Jing; Humphrey, David M.; Fodah, Ramy A.; Warawa, Jonathan M.
2014-01-01
Chlorine is a toxic gas used in a variety of industrial processes and is considered a chemical threat agent. High-level chlorine exposure causes acute lung injury, but the long-term effects of acute chlorine exposure are unclear. Here we characterized chronic pulmonary changes following acute chlorine exposure in mice. A/J mice were exposed to 240 parts per million-hour chlorine or sham-exposed to air. Chlorine inhalation caused sloughing of bronchial epithelium 1 day after chlorine exposure, which was repaired with restoration of a pseudostratified epithelium by day 7. The repaired epithelium contained an abnormal distribution of epithelial cells containing clusters of club or ciliated cells rather than the uniformly interspersed pattern of these cells in unexposed mice. Although the damaged epithelium in A/J mice was repaired rapidly, and minimal airway fibrosis was observed, chlorine-exposed mice developed pneumonitis characterized by infiltration of alveoli with neutrophils and prominent, large, foamy macrophages. Levels of CXCL1/KC, CXCL5/LPS-induced CXC chemokine, granulocyte colony-stimulating factor, and VEGF in bronchoalveolar (BAL) fluid from chlorine-exposed mice showed steadily increasing trends over time. BAL protein levels were increased on day 4 and remained elevated out to day 28. The number of bacteria cultured from lungs of chlorine-exposed mice 4 wk after exposure was not increased compared with sham-exposed mice, indicating that the observed pneumonitis was not driven by bacterial infection of the lung. The results indicate that acute chlorine exposure may cause chronic abnormalities in the lungs despite rapid repair of injured epithelium. PMID:25398987
Mo, Yiqun; Chen, Jing; Humphrey, David M; Fodah, Ramy A; Warawa, Jonathan M; Hoyle, Gary W
2015-01-15
Chlorine is a toxic gas used in a variety of industrial processes and is considered a chemical threat agent. High-level chlorine exposure causes acute lung injury, but the long-term effects of acute chlorine exposure are unclear. Here we characterized chronic pulmonary changes following acute chlorine exposure in mice. A/J mice were exposed to 240 parts per million-hour chlorine or sham-exposed to air. Chlorine inhalation caused sloughing of bronchial epithelium 1 day after chlorine exposure, which was repaired with restoration of a pseudostratified epithelium by day 7. The repaired epithelium contained an abnormal distribution of epithelial cells containing clusters of club or ciliated cells rather than the uniformly interspersed pattern of these cells in unexposed mice. Although the damaged epithelium in A/J mice was repaired rapidly, and minimal airway fibrosis was observed, chlorine-exposed mice developed pneumonitis characterized by infiltration of alveoli with neutrophils and prominent, large, foamy macrophages. Levels of CXCL1/KC, CXCL5/LPS-induced CXC chemokine, granulocyte colony-stimulating factor, and VEGF in bronchoalveolar (BAL) fluid from chlorine-exposed mice showed steadily increasing trends over time. BAL protein levels were increased on day 4 and remained elevated out to day 28. The number of bacteria cultured from lungs of chlorine-exposed mice 4 wk after exposure was not increased compared with sham-exposed mice, indicating that the observed pneumonitis was not driven by bacterial infection of the lung. The results indicate that acute chlorine exposure may cause chronic abnormalities in the lungs despite rapid repair of injured epithelium. Copyright © 2015 the American Physiological Society.
Fenoy, Ignacio M; Sanchez, Vanesa R; Soto, Ariadna S; Picchio, Mariano S; Maglioco, Andrea; Corigliano, Mariana G; Dran, Graciela I; Martin, Valentina; Goldman, Alejandra
2015-05-01
The increased prevalence of allergies in developed countries has been attributed to a reduction of some infections. Supporting epidemiological studies, we previously showed that both acute and chronic Toxoplasma gondii infection can diminish allergic airway inflammation in BALB/c mice. The mechanisms involved when sensitization occurs during acute phase would be related to the strong Th1 response induced by the parasite. Here, we further investigated the mechanisms involved in T. gondii allergy protection in mice sensitized during acute T. gondii infection. Adoptive transference assays and ex vivo co-cultures experiments showed that not only thoracic lymph node cells from infected and sensitized mice but also from non-sensitized infected animals diminished both allergic lung inflammation and the proliferation of effector T cells from allergic mice. This ability was found to be contact-independent and correlated with high levels of CD4(+)FoxP3(+) cells. IL-10 would not be involved in allergy suppression since IL-10-deficient mice behaved similar to wild type mice. Our results extend earlier work and show that, in addition to immune deviation, acute T. gondii infection can suppress allergic airway inflammation through immune suppression. Copyright © 2014 Elsevier GmbH. All rights reserved.
Acute Exacerbation of Chronic Obstructive Pulmonary Disease: Cardiovascular Links
Laratta, Cheryl R.; van Eeden, Stephan
2014-01-01
Chronic obstructive pulmonary disease (COPD) is a chronic, progressive lung disease resulting from exposure to cigarette smoke, noxious gases, particulate matter, and air pollutants. COPD is exacerbated by acute inflammatory insults such as lung infections (viral and bacterial) and air pollutants which further accelerate the steady decline in lung function. The chronic inflammatory process in the lung contributes to the extrapulmonary manifestations of COPD which are predominantly cardiovascular in nature. Here we review the significant burden of cardiovascular disease in COPD and discuss the clinical and pathological links between acute exacerbations of COPD and cardiovascular disease. PMID:24724085
The Role of Alveolar Macrophage Beta-2 Adrenergic Receptors in Acute Lung Injury
2017-10-01
macrophages contributes to Acute Respiratory Distress Syndrome , which is a significant contributor to morbidity and mortality in military and civilian settings...carbonic anhydrase (Ca2). 15. SUBJECT TERMS Acute lung injury, Acute Respiratory Distress Syndrome , ARDS, pulmonary edema, influenza, viral pneumonia...to understand how β2AR signaling in macrophages contributes to Acute Respiratory Distress Syndrome (ARDS). ARDS is a significant contributor to
A NOVEL WEARABLE PUMP-LUNG DEVICE: IN-VITRO AND ACUTE IN-VIVO STUDY
Zhang, Tao; Wei, Xufeng; Bianchi, Giacomo; Wong, Philip M.; Biancucci, Brian; Griffith, Bartley P.; Wu, Zhongjun J.
2011-01-01
Background To provide long-term ambulatory cardiopulmonary and respiratory support for adult patients, a novel wearable artificial pump-lung device has been developed. The design features, in-vitro and acute in-vivo performance of this device are reported in this paper. Methods This device features a uniquely designed hollow fiber membrane bundle integrated with a magnetically levitated impeller together to form one ultra-compact pump-lung device, which can be placed like current paracorporeal ventricular assist devices to allow ambulatory support. The device is 117 mm in length and 89 mm in diameter and has a priming volume of 115 ml. In-vitro hydrodynamic, gas transfer and biocompatibility experiments were carried out in mock flow loops using ovine blood. Acute in-vivo characterization was conducted in ovine by surgically implanting the device between right atrium and pulmonary artery. Results The in-vitro results showed that the device with a membrane surface area of 0.8 m2 was capable of pumping blood from 1 to 4 L/min against a wide range of pressures and transferring oxygen at a rate of up to 180 ml/min at a blood flow of 3.5 L/min. Standard hemolysis tests demonstrated low hemolysis at the targeted operating condition. The acute in-vivo results also confirmed that the device can provide sufficient oxygen transfer with excellent biocompatibility. Conclusions Base on the in-vitro and acute in-vivo study, this highly integrated wearable pump-lung device can provide efficient respiratory support with good biocompatibility and it is ready for long-term evaluation. PMID:22014451
Marini, John J
2011-02-01
To present an updated discussion of those aspects of controlled positive pressure breathing and retained spontaneous regulation of breathing that impact the management of patients whose tissue oxygenation is compromised by acute lung injury. The recent introduction of ventilation techniques geared toward integrating natural breathing rhythms into even the earliest phase of acute respiratory distress syndrome support (e.g., airway pressure release, proportional assist ventilation, and neurally adjusted ventilatory assist), has stimulated a burst of new investigations. Optimizing gas exchange, avoiding lung injury, and preserving respiratory muscle strength and endurance are vital therapeutic objectives for managing acute lung injury. Accordingly, comparing the physiology and consequences of breathing patterns that preserve and eliminate breathing effort has been a theme of persisting investigative interest throughout the several decades over which it has been possible to sustain cardiopulmonary life support outside the operating theater.
Role of Nrf2 and Autophagy in Acute Lung Injury
Rojo de la Vega, Montserrat; Dodson, Matthew; Gross, Christine; Manzour, Heidi; Lantz, R. Clark; Chapman, Eli; Wang, Ting; Black, Stephen M.; Garcia, Joe G.N.; Zhang, Donna D.
2016-01-01
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the clinical manifestations of severe lung damage and respiratory failure. Characterized by severe inflammation and compromised lung function, ALI/ARDS result in very high mortality of affected individuals. Currently, there are no effective treatments for ALI/ARDS, and ironically, therapies intended to aid patients (specifically mechanical ventilation, MV) may aggravate the symptoms. Key events contributing to the development of ALI/ARDS are: increased oxidative and proteotoxic stresses, unresolved inflammation, and compromised alveolar-capillary barrier function. Since the airways and lung tissues are constantly exposed to gaseous oxygen and airborne toxicants, the bronchial and alveolar epithelial cells are under higher oxidative stress than other tissues. Cellular protection against oxidative stress and xenobiotics is mainly conferred by Nrf2, a transcription factor that promotes the expression of genes that regulate oxidative stress, xenobiotic metabolism and excretion, inflammation, apoptosis, autophagy, and cellular bioenergetics. Numerous studies have demonstrated the importance of Nrf2 activation in the protection against ALI/ARDS, as pharmacological activation of Nrf2 prevents the occurrence or mitigates the severity of ALI/ARDS. Another promising new therapeutic strategy in the prevention and treatment of ALI/ARDS is the activation of autophagy, a bulk protein and organelle degradation pathway. In this review, we will discuss the strategy of concerted activation of Nrf2 and autophagy as a preventive and therapeutic intervention to ameliorate ALI/ARDS. PMID:27313980
Needham, Dale M; Dinglas, Victor D; Bienvenu, O Joseph; Colantuoni, Elizabeth; Wozniak, Amy W; Rice, Todd W; Hopkins, Ramona O
2013-03-19
To evaluate the effect of initial low energy permissive underfeeding ("trophic feeding") versus full energy enteral feeding ("full feeding") on physical function and secondary outcomes in patients with acute lung injury. Prospective longitudinal follow-up evaluation of the NHLBI ARDS Clinical Trials Network's EDEN trial 41hospitals in the United States. 525 patients with acute lung injury. Randomised assignment to trophic or full feeding for up to six days; thereafter, all patients still receiving mechanical ventilation received full feeding. Blinded assessment of the age and sex adjusted physical function domain of the SF-36 instrument at 12 months after acute lung injury. Secondary outcome measures included survival; physical, psychological, and cognitive functioning; quality of life; and employment status at six and 12 months. After acute lung injury, patients had substantial physical, psychological, and cognitive impairments, reduced quality of life, and impaired return to work. Initial trophic versus full feeding did not affect mean SF-36 physical function at 12 months (55 (SD 33) v 55 (31), P=0.54), survival to 12 months (65% v 63%, P=0.63), or nearly all of the secondary outcomes. In survivors of acute lung injury, there was no difference in physical function, survival, or multiple secondary outcomes at 6 and 12 month follow-up after initial trophic or full enteral feeding. NCT No 00719446.
Diao, Mengyuan; Zhang, Sheng; Wu, Lifeng; Huan, Le; Huang, Fenglou; Cui, Yunliang; Lin, Zhaofen
2016-12-01
Seawater instillation-induced acute lung injury involves oxidative stress and apoptosis. Although hydrogen gas inhalation is reportedly protective in multiple types of lung injury, the effect of hydrogen gas inhalation on seawater instillation-induced acute lung injury remains unknown. This study investigated the effect of hydrogen gas on seawater instillation-induced acute lung injury and explored the mechanisms involved. Rabbits were randomly assigned to control, hydrogen (2 % hydrogen gas inhalation), seawater (3 mL/kg seawater instillation), and seawater + hydrogen (3 mL/kg seawater instillation + 2 % hydrogen gas inhalation) groups. Arterial partial oxygen pressure and lung wet/dry weight ratio were detected. Protein content in bronchoalveolar lavage fluid (BALF) and serum as well as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were determined. Hematoxylin-eosin staining was used to monitor changes in lung specimens, and malondialdehyde (MDA) content and myeloperoxidase (MPO) activity were assayed. In addition, NF-E2-related factor (Nrf) 2 and heme oxygenase (HO)-1 mRNA and protein expression were measured, and apoptosis was assessed by measuring caspase-3 expression and using terminal deoxy-nucleotidyl transferase dUTP nick end-labeling (TUNEL) staining. Hydrogen gas inhalation markedly improved lung endothelial permeability and decreased both MDA content and MPO activity in lung tissue; these changes were associated with decreases in TNF-α, IL-1β, and IL-6 in BALF. Hydrogen gas also alleviated histopathological changes and cell apoptosis. Moreover, Nrf2 and HO-1 expressions were significantly activated and caspase-3 expression was inhibited. These results demonstrate that hydrogen gas inhalation attenuates seawater instillation-induced acute lung injury in rabbits and that the protective effects observed may be related to the activation of the Nrf2 pathway.
Tominaga, Masaki; Okamoto, Masaki; Kawayama, Tomotaka; Matsuoka, Masanobu; Kaieda, Shinjiro; Sakazaki, Yuki; Kinoshita, Takashi; Mori, Daisuke; Inoue, Akira; Hoshino, Tomoaki
2017-09-01
Interleukin (IL)-38, a member of the IL-1 family, shows high homology to IL-1 receptor antagonist (IL-1Ra) and IL-36 receptor antagonist (IL-36Ra). Its function in interstitial lung disease (ILD) is still unknown. To determine the expression pattern of IL-38 mRNA, a panel of cDNAs derived from various tissues was analyzed by quantitative real-time PCR. Immunohistochemical reactivity with anti-human IL-38 monoclonal antibody (clone H127C) was evaluated semi-quantitatively in lung tissue samples from 12 patients with idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP), 5 with acute exacerbation of IPF, and 10 with anticancer drug-induced ILD (bleomycin in 5 and epidermal growth factor receptor-tyrosine kinase inhibitor in 5). Control lung tissues were obtained from areas of normal lung in 22 lung cancer patients who underwent extirpation surgery. IL-38 transcripts were strongly expressed in the lung, spleen, synoviocytes, and peripheral blood mononuclear cells, and at a lower level in pancreas and muscle. IL-38 protein was not strongly expressed in normal pulmonary alveolar tissues in all 22 control lungs. In contrast, IL-38 was overexpressed in the lungs of 4 of 5 (80%) patients with acute IPF exacerbation and 100% (10/10) of the patients with drug-induced ILD. IL-38 overexpression was limited to hyperplastic type II pneumocytes, which are considered to reflect regenerative change following diffuse alveolar damage in ILD. IL-38 may play an important role in acute and/or chronic inflammation in anticancer drug-induced lung injury and acute exacerbation of IPF. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
Castillo, R.L; Carrasco Loza, R; Romero-Dapueto, C
2015-01-01
Experimental approaches have been implemented to research the lung damage related-mechanism. These models show in animals pathophysiological events for acute respiratory distress syndrome (ARDS), such as neutrophil activation, reactive oxygen species burst, pulmonary vascular hypertension, exudative edema, and other events associated with organ dysfunction. Moreover, these approaches have not reproduced the clinical features of lung damage. Lung inflammation is a relevant event in the develop of ARDS as component of the host immune response to various stimuli, such as cytokines, antigens and endotoxins. In patients surviving at the local inflammatory states, transition from injury to resolution is an active mechanism regulated by the immuno-inflammatory signaling pathways. Indeed, inflammatory process is regulated by the dynamics of cell populations that migrate to the lung, such as neutrophils and on the other hand, the role of the modulation of transcription factors and reactive oxygen species (ROS) sources, such as nuclear factor kappaB and NADPH oxidase. These experimental animal models reproduce key components of the injury and resolution phases of human ALI/ARDS and provide a methodology to explore mechanisms and potential new therapies. PMID:26312099
Obesity: “Priming” the Lung for Injury
Konter, Jason; Baez, Elizabeth; Summer, Ross S
2012-01-01
Acute lung injury (ALI) is a severe inflammatory condition that develops in response to local and systemic lung challenges. To date, specific risk factors for development of ALI remain poorly defined. Recent epidemiological studies have reported obesity as an important predisposing factor in the development of this condition. Although the pathogenic mechanisms linking obesity and ALI have not been well-elucidated, emerging scientific evidence has described factors secreted by adipose tissue that have important biological activities in lung and has suggested that altered secretion of these factors during obesity contributes to increased ALI susceptibility. The objective of this manuscript is to highlight recent clinical evidence supporting the association between obesity and ALI and to discuss the posited role for adipose tissue-derived factors in the pathogenesis of this condition. PMID:22449512
Shi, Yun; Zhang, Bo; Chen, Xiang-Jun; Xu, Dun-Quan; Wang, Yan-Xia; Dong, Hai-Ying; Ma, Shi-Rong; Sun, Ri-He; Hui, Yan-Ping; Li, Zhi-Chao
2013-03-12
The renin-angiotensin-aldosterone system (RAAS) plays an important role in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Angiotensin converting enzyme 2 (ACE2) plays a protective role in acute lung injury. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to have anti-inflammatory effect, but the effect of osthole on the ALI is largely unknown. The aim of this study is to explore whether and by what mechanisms osthole protects lipopolysaccharide(LPS)-induced acute lung injury. Herein, we found that osthole had a beneficial effect on LPS-induced ALI in mice. As revealed by survival study, pretreatment with high doses of osthole reduced the mortality of mice from ALI. Osthole pretreatment significantly improved LPS-induced lung pathological changes, reduced lung wet/dry weight ratios and total protein in BALF. Osthole also inhibited the release of inflammatory mediators TNF-α and IL-6. Meanwhile, osthole markedly prevented the loss of ACE2 and Ang1-7 in lung tissue of ALI mice. ACE2 inhibitor blocked the protective effect of osthole in NR 8383 cell lines. Taken together, our study showed that osthole improved survival rate and attenuated LPS-induced ALI and ACE2 may play a role in it. Copyright © 2013 Elsevier B.V. All rights reserved.
THE 5-LIPOXYGENASE PATHWAY IS REQUIRED FOR ACUTE LUNG INJURY FOLLOWING HEMORRHAGIC SHOCK
Eun, John C.; Moore, Ernest E.; Mauchley, David C.; Johnson, Chris A.; Meng, Xianzhong; Banerjee, Anirban; Wohlauer, Max V.; Zarini, Simona; Gijón, Miguel A.; Murphy, Robert C.
2012-01-01
The cellular and biochemical mechanisms leading to acute lung injury and subsequent multiple organ failure are only partially understood. In order to study the potential role of eicosanoids, particularly leukotrienes, as possible mediators of acute lung injury, we used a murine experimental model of acute lung injury induced by hemorrhagic shock after blood removal via cardiac puncture. Neutrophil sequestration as shown by immunofluorescence, and protein leakage into the alveolar space, were measured as markers of injury. We used liquid chromatography coupled to tandem mass spectrometry to unequivocally identify several eicosanoids in the bronchoalveolar lavage fluid of experimental animals. MK886, a specific inhibitor of the 5-lipoxygenase pathway, as well as transgenic mice deficient in 5-lipoxygenase, were used to determine the role of this enzymatic pathway in this model. Leukotriene B4 and leukotriene C4 were consistently elevated in shock-treated mice compared to sham-treated mice. MK886 attenuated neutrophil infiltration and protein extravasation induced by hemorrhagic shock. 5-lipoxygenase-deficient mice showed reduced neutrophil infiltration and protein extravasation after shock treatment, indicating greatly reduced lung injury. These results support the hypothesis that 5-lipoxygenase, most likely through the generation of leukotrienes, plays an important role in the pathogenesis of acute lung injury induced by hemorrhagic shock in mice. This pathway could represent a new target for pharmacological intervention to reduce lung damage following severe primary injury. PMID:22392149
Zhao, Yaqin; Chen, Lu; Zhang, Shu; Wu, Qiang; Jiang, Xiaoqin; Zhu, Hong; Wang, Jin; Li, Zhiping; Xu, Yong; Zhang, Ying Jie; Bai, Sen; Xu, Feng
2015-01-01
Radiation pneumonitis (RP) is a common side reaction in radiotherapy for esophageal cancer. There are few reports about RP in esophageal cancer patients receiving postoperative intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). This study aims to analyze clinical or dosimetric factors associated with RP, and provides data for radiotherapy planning. We reviewed 68 postoperative esophageal cancer patients who were treated with radiotherapy at the West China Hospital from October 2010 to November 2012 to identify any correlation between the clinical or dosimetric parameters and acute radiation pneumonitis (ARP) or severe acute radiation pneumonitis (SARP) by t-test, chi-square test, and logistic regression analysis. Of the 68 patients, 33 patients (48.5%) developed ARP, 13 of which (19.1%) developed SARP. Of these 33 patients, 8 (11.8%), 12 (17.6%), 11 (16.2%), and 2 (2.9%) patients were grade 1, 2, 3, and 4 ARP, respectively. Univariate analysis showed that lung infection during radiotherapy, use of VMAT, mean lung dose (MLD), and dosimetric parameters (e.g. V20, V30) are significantly correlated with RP. Multivariate analysis found that lung infection during radiotherapy, MLD ≥ 12 Gy, and V30 ≥ 13% are significantly correlated with an increased risk of RP. Lung infection during radiotherapy and low radiation dose volume distribution were predictive factors associated with RP and should be accounted for during radiation planning.
The Intersection of Aging Biology and the Pathobiology of Lung Diseases: A Joint NHLBI/NIA Workshop.
Budinger, G R Scott; Kohanski, Ronald A; Gan, Weiniu; Kobor, Michael S; Amaral, Luis A; Armanios, Mary; Kelsey, Karl T; Pardo, Annie; Tuder, Rubin; Macian, Fernando; Chandel, Navdeep; Vaughan, Douglas; Rojas, Mauricio; Mora, Ana L; Kovacs, Elizabeth; Duncan, Steven R; Finkel, Toren; Choi, Augustine; Eickelberg, Oliver; Chen, Danica; Agusti, Alvar; Selman, Moises; Balch, William E; Busse, Paula; Lin, Anning; Morimoto, Richard; Sznajder, Jacob I; Thannickal, Victor J
2017-10-12
Death from chronic lung disease is increasing and chronic obstructive pulmonary disease has become the third leading cause of death in the United States in the past decade. Both chronic and acute lung diseases disproportionately affect elderly individuals, making it likely that these diseases will become more frequent and severe as the worldwide population ages. Chronic lung diseases are associated with substantial morbidity, frequently resulting in exercise limiting dyspnea, immobilization, and isolation. Therefore, effective strategies to prevent or treat lung disease are likely to increase healthspan as well as life span. This review summarizes the findings of a joint workshop sponsored by the NIA and NHLBI that brought together investigators focused on aging and lung biology. These investigators encouraged the use of genetic systems and aged animals in the study of lung disease and the development of integrative systems-based platforms that can dynamically incorporate data sets that describe the genomics, transcriptomics, epigenomics, metabolomics, and proteomics of the aging lung in health and disease. Further research was recommended to integrate benchmark biological hallmarks of aging in the lung with the pathobiology of acute and chronic lung diseases with divergent pathologies for which advanced age is the most important risk factor. Published by Oxford University Press on behalf of The Gerontological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Clinical challenges in mechanical ventilation.
Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J
2016-04-30
Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Histological evolution of pleuroparenchymal fibroelastosis
Hirota, Takako; Yoshida, Yuji; Kitasato, Yasuhiko; Yoshimi, Michihiro; Koga, Takaomi; Tsuruta, Nobuko; Minami, Masato; Harada, Taishi; Ishii, Hiroshi; Fujita, Masaki; Nabeshima, Kazuki; Nagata, Nobuhiko; Watanabe, Kentaro
2015-01-01
Aims To investigate the histological evolution in the development of pleuroparenchymal fibroelastosis (PPFE). Methods and results We examined four patients who had undergone surgical lung biopsy twice, or who had undergone surgical lung biopsy and had been autopsied, and in whom the histological diagnosis of the first biopsy was not PPFE, but the diagnosis of the second biopsy or of the autopsy was PPFE. The histological patterns of the first biopsy were cellular and fibrotic interstitial pneumonia, cellular interstitial pneumonia (CIP) with organizing pneumonia, CIP with granulomas and acute lung injury in cases 1, 2, 3, and 4, respectively. Septal elastosis was already present in the non-specific interstitial pneumonia-like histology of case 1, but a few additional years were necessary to reach consolidated subpleural fibroelastosis. In case 3, subpleural fibroelastosis was already present in the first biopsy, but only to a small extent. Twelve years later, it was replaced by a long band of fibroelastosis. The septal inflammation and fibrosis and airspace organization observed in the first biopsies were replaced by less cellular subpleural fibroelastosis within 3–12 years. Conclusions Interstitial inflammation or acute lung injury may be an initial step in the development of PPFE. PMID:25234959
Ishibashi, Naoya; Watanabe, Tatsuaki; Kanehira, Masahiko; Watanabe, Yui; Hoshikawa, Yasushi; Notsuda, Hirotsugu; Noda, Masafumi; Sakurada, Akira; Ohkouchi, Shinya; Kondo, Takashi; Okada, Yoshinori
2018-03-15
Using a rat model of allograft lung transplantation, we investigated the effectiveness of mesenchymal stromal cells (MSCs) as prophylactic and therapeutic agents against the acute rejection of lung grafts. Lung grafts were harvested from donor rats and transplanted orthotopically into major histocompatibility complex-mismatched rats. MSCs were administered to the recipients once (on day 0) or twice (on days 0 and 3) after transplantation. The grade of acute rejection was evaluated both macroscopically and microscopically 6 days after transplantation. To elucidate the related mechanism, mRNA levels of inflammatory cytokines and immunomodulatory receptors in the transplanted grafts were measured using quantitative RT-PCR. The lung graft tissue from the rats that received MSCs post-surgically was protected from acute rejection significantly better than that from the untreated controls. Notably, the rats administered MSCs twice after surgery exhibited the least signs of rejection, with a markedly upregulated mRNA level of PD-L1 and a downregulated mRNA level of IL-17A. This study assessed MSC protection of lung allografts from acute rejection by modulating T cell activity via enforced expression of PD-L1 in transplants and downregulation of IL-17A.
Sung, Hye-Jin; Jeon, Seon-Ae; Ahn, Jung-Mo; Seul, Kyung-Jo; Kim, Jin Young; Lee, Ju Yeon; Yoo, Jong Shin; Lee, Soo-Youn; Kim, Hojoong; Cho, Je-Yoel
2012-04-03
Quantification is an essential step in biomarker development. Multiple reaction monitoring (MRM) is a new modified mass spectrometry-based quantification technology that does not require antibody development. Serum amyloid A (SAA) is a positive acute-phase protein identified as a lung cancer biomarker in our previous study. Acute SAA exists in two isoforms with highly similar (92%) amino acid sequences. Until now, studies of SAA have been unable to distinguish between SAA1 and SAA2. To overcome the unavailability of a SAA2-specific antibody, we developed MRM methodology for the verification of SAA1 and SAA2 in clinical crude serum samples from 99 healthy controls and 100 lung adenocarcinoma patients. Differential measurement of SAA1 and SAA2 was made possible for the first time with the developed isotype-specific MRM method. Most healthy control samples had small or no MS/MS peaks of the targeted peptides otherwise, higher peak areas with 10- to 34-fold increase over controls were detected in lung cancer samples. In addition, our SAA1 MRM data demonstrated good agreement with the SAA1 enzyme-linked immunosorbent assay (ELISA) data. Finally, successful quantification of SAA2 in crude serum by MRM, for the first time, shows that SAA2 can be a good biomarker for the detection of lung cancers. Copyright © 2012 Elsevier B.V. All rights reserved.
Molecular pathology of emerging coronavirus infections
Gralinski, Lisa E; Baric, Ralph S
2015-01-01
Respiratory viruses can cause a wide spectrum of pulmonary diseases, ranging from mild, upper respiratory tract infections to severe and life-threatening lower respiratory tract infections, including the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Viral clearance and subsequent recovery from infection require activation of an effective host immune response; however, many immune effector cells may also cause injury to host tissues. Severe acute respiratory syndrome (SARS) coronavirus and Middle East respiratory syndrome (MERS) coronavirus cause severe infection of the lower respiratory tract, with 10% and 35% overall mortality rates, respectively; however, >50% mortality rates are seen in the aged and immunosuppressed populations. While these viruses are susceptible to interferon treatment in vitro, they both encode numerous genes that allow for successful evasion of the host immune system until after high virus titres have been achieved. In this review, we discuss the importance of the innate immune response and the development of lung pathology following human coronavirus infection. PMID:25270030
Peng, Tsui-Chin; Jan, Woan-Ching; Tsai, Pei-Shan; Huang, Chun-Jen
2011-05-15
Lower limb ischemia-reperfusion (I/R) imposes oxidative stress, elicits inflammatory response, and subsequently induces acute lung injury. Ischemic preconditioning (IP), a process of transient I/R, mitigates the acute lung injury induced by I/R. We sought to elucidate whether the protective effects of IP involve heme oxygenase-1 (HO-1). Adult male rats were randomized to receive I/R, I/R plus IP, I/R plus IP plus the HO-1 inhibitor tin protoporphyrin (SnPP) (n = 12 in each group). Control groups were run simultaneously. I/R was induced by applying rubber band tourniquet high around each thigh for 3 h followed by reperfusion for 3 h. To achieve IP, three cycles of bilateral lower limb I/R (i.e., ischemia for 10 min followed by reperfusion for 10 min) were performed. IP was performed immediately before I/R. After sacrifice, degree of lung injury was determined. Histologic findings, together with assays of leukocyte infiltration (polymorphonuclear leukocytes/alveoli ratio and myeloperoxidase activity) and lung water content (wet/dry weight ratio), confirmed that I/R induced acute lung injury. I/R also caused significant inflammatory response (increases in chemokine, cytokine, and prostaglandin E(2) concentrations), imposed significant oxidative stress (increases in nitric oxide and malondialdehyde concentrations), and up-regulated HO-1 expression in lung tissues. IP significantly enhanced HO-1 up-regulation and, in turn, mitigated oxidative stress, inflammatory response, and acute lung injury induced by I/R. In addition, the protective effects of IP were counteracted by SnPP. The protective effects of IP on mitigating acute lung injury induced by lower limb I/R are mediated by HO-1. Copyright © 2011 Elsevier Inc. All rights reserved.
A unified approach for EIT imaging of regional overdistension and atelectasis in acute lung injury.
Gómez-Laberge, Camille; Arnold, John H; Wolf, Gerhard K
2012-03-01
Patients with acute lung injury or acute respiratory distress syndrome (ALI/ARDS) are vulnerable to ventilator-induced lung injury. Although this syndrome affects the lung heterogeneously, mechanical ventilation is not guided by regional indicators of potential lung injury. We used electrical impedance tomography (EIT) to estimate the extent of regional lung overdistension and atelectasis during mechanical ventilation. Techniques for tidal breath detection, lung identification, and regional compliance estimation were combined with the Graz consensus on EIT lung imaging (GREIT) algorithm. Nine ALI/ARDS patients were monitored during stepwise increases and decreases in airway pressure. Our method detected individual breaths with 96.0% sensitivity and 97.6% specificity. The duration and volume of tidal breaths erred on average by 0.2 s and 5%, respectively. Respiratory system compliance from EIT and ventilator measurements had a correlation coefficient of 0.80. Stepwise increases in pressure could reverse atelectasis in 17% of the lung. At the highest pressures, 73% of the lung became overdistended. During stepwise decreases in pressure, previously-atelectatic regions remained open at sub-baseline pressures. We recommend that the proposed approach be used in collaborative research of EIT-guided ventilation strategies for ALI/ARDS.
ASEPTIC INFLAMMATION IN THE LUNGS IN ACUTE RADIATION SICKNESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, A.E.
1963-09-01
Inflammation in the lungs of irradiated rabbits at the site of turpentine injection has much in common with the inflammatory changes arising in other tissues and organs during local irradiation or acute radiation sickness. The fact that the inflammatory changes under different conditions of irradiation are similar in type regardless of the character of the inflammatory agent suggests that the phenomenon has a common mechanism. The absence of polymorphonuclear (eosinophtlic) leukocytes from inflammatory foci in irradiated rabbits is due not only to the developing leukopenia, but also to a disturbance of the leukocyte emigration process into the inflammatory focus. Inmore » irradiated rabbits in cortrast to the controls, the normal arrangement of the fibrous structures is preserved in the necrotic lung tissue at the site of turpentine injection. In animals with severe acute radiation sickness induced by external irradiation in sublethal doses, the ability of the organism to respond to introduction of an inflammatory agent by an increase in the number of leukocytes in the blood and by a rise of the body temperature is to some extent preserved. (auth)« less
Rice, Todd W; Wheeler, Arthur P; Thompson, B Taylor; deBoisblanc, Bennett P; Steingrub, Jay; Rock, Peter
2011-10-12
The omega-3 (n-3) fatty acids docosahexaenoic acid and eicosapentaenoic acid, along with γ-linolenic acid and antioxidants, may modulate systemic inflammatory response and improve oxygenation and outcomes in patients with acute lung injury. To determine if dietary supplementation of these substances to patients with acute lung injury would increase ventilator-free days to study day 28. The OMEGA study, a randomized, double-blind, placebo-controlled, multicenter trial conducted from January 2, 2008, through February 21, 2009. Participants were 272 adults within 48 hours of developing acute lung injury requiring mechanical ventilation whose physicians intended to start enteral nutrition at 44 hospitals in the National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. All participants had complete follow-up. Twice-daily enteral supplementation of n-3 fatty acids, γ-linolenic acid, and antioxidants compared with an isocaloric control. Enteral nutrition, directed by a protocol, was delivered separately from the study supplement. Ventilator-free days to study day 28. The study was stopped early for futility after 143 and 129 patients were enrolled in the n-3 and control groups. Despite an 8-fold increase in plasma eicosapentaenoic acid levels, patients receiving the n-3 supplement had fewer ventilator-free days (14.0 vs 17.2; P = .02) (difference, -3.2 [95% CI, -5.8 to -0.7]) and intensive care unit-free days (14.0 vs 16.7; P = .04). Patients in the n-3 group also had fewer nonpulmonary organ failure-free days (12.3 vs 15.5; P = .02). Sixty-day hospital mortality was 26.6% in the n-3 group vs 16.3% in the control group (P = .054), and adjusted 60-day mortality was 25.1% and 17.6% in the n-3 and control groups, respectively (P = .11). Use of the n-3 supplement resulted in more days with diarrhea (29% vs 21%; P = .001). Twice-daily enteral supplementation of n-3 fatty acids, γ-linolenic acid, and antioxidants did not improve the primary end point of ventilator-free days or other clinical outcomes in patients with acute lung injury and may be harmful. clinicaltrials.gov Identifier: NCT00609180.
Pintado, M C; de Pablo, R
2014-11-01
Current treatment of acute respiratory distress syndrome is based on ventilatory support with a lung protective strategy, avoiding the development of iatrogenic injury, including ventilator-induced lung injury. One of the mechanisms underlying such injury is atelectrauma, and positive end-expiratory pressure (PEEP) is advocated in order to avoid it. The indicated PEEP level has not been defined, and in many cases is based on the patient oxygen requirements for maintaining adequate oxygenation. However, this strategy does not consider the mechanics of the respiratory system, which varies in each patient and depends on many factors-including particularly the duration of acute respiratory distress syndrome. A review is therefore made of the different methods for adjusting PEEP, focusing on the benefits of individualized application. Copyright © 2013 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.
Mukhopadhyay, Sanjay; Parambil, Joseph G
2012-10-01
Acute interstitial pneumonia (AIP) is a term used for an idiopathic form of acute lung injury characterized clinically by acute respiratory failure with bilateral lung infiltrates and histologically by diffuse alveolar damage (DAD), a combination of findings previously known as the Hamman-Rich syndrome. This review aims to clarify the diagnostic criteria of AIP, its relationship with DAD and acute respiratory distress syndrome (ARDS), key etiologies that need to be excluded before making the diagnosis, and the salient clinical features. Cases that meet clinical and pathologic criteria for AIP overlap substantially with those that fulfill clinical criteria for ARDS. The main differences between AIP and ARDS are that AIP requires a histologic diagnosis of DAD and exclusion of known etiologies. AIP should also be distinguished from "acute exacerbation of IPF," a condition in which acute lung injury (usually DAD) supervenes on underlying usual interstitial pneumonia (UIP)/idiopathic pulmonary fibrosis (IPF). Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
The Nitrated Fatty Acid 10-Nitro-oleate Diminishes Severity of LPS-Induced Acute Lung Injury in Mice
Reddy, Aravind T.; Lakshmi, Sowmya P.; Reddy, Raju C.
2012-01-01
Acute lung injury (ALI) is an inflammatory condition culminating in respiratory failure. There is currently no effective pharmacological treatment. Nitrated fatty acids (NFAs) have been shown to exert anti-inflammatory effects. We therefore hypothesized that delivery of NFAs directly to the site of inflammation would reduce the severity of ALI. Pulmonary delivery of 10-nitro-oleate following endotoxin-induced ALI in mice reduced markers of lung inflammation and injury, including capillary leakage, lung edema, infiltration of neutrophils into the lung, and oxidant stress, as well as plasma levels of proinflammatory cytokines. Nitro-oleate delivery likewise downregulated expression of proinflammatory genes by alveolar macrophages, key cells in regulation of lung inflammation. These effects may be accounted for by the observed increases in the activity of PPAR-γ and the PPAR-γ-induced antioxidant transcription factor Nrf2, together with the decreased activity of NF-κB. Our results demonstrate that pulmonary delivery of NFAs reduces severity of acute lung injury and suggest potential utility of these molecules in other inflammatory lung diseases. PMID:22919366
Stem cells in sepsis and acute lung injury.
Cribbs, Sushma K; Matthay, Michael A; Martin, Greg S
2010-12-01
Sepsis and acute lung injury continue to be major causes of morbidity and mortality worldwide despite advances in our understanding of pathophysiology and the discovery of new management strategies. Recent investigations show that stem cells may be beneficial as prognostic biomarkers and novel therapeutic strategies in these syndromes. This article reviews the potential use of endogenous adult tissue-derived stem cells in sepsis and acute lung injury as prognostic markers and also as exogenous cell-based therapy. A directed systematic search of the medical literature using PubMed and OVID, with particular emphasis on the time period after 2002, was done to evaluate topics related to 1) the epidemiology and pathophysiology of sepsis and acute lung injury; and 2) the definition, characterization, and potential use of stem cells in these diseases. DATA SYNTHESIS AND FINDINGS: When available, preferential consideration was given to prospective nonrandomized clinical and preclinical studies. Stem cells have shown significant promise in the field of critical care both for 1) prognostic value and 2) treatment strategies. Although several recent studies have identified the potential benefit of stem cells in sepsis and acute lung injury, further investigations are needed to more completely understand stem cells and their potential prognostic and therapeutic value.
Fatal Canid Herpesvirus 1 Respiratory Infections in 4 Clinically Healthy Adult Dogs.
Kumar, S; Driskell, E A; Cooley, A J; Jia, K; Blackmon, S; Wan, X-F; Uhl, E W; Saliki, J T; Sanchez, S; Krimer, P M; Hogan, R J
2015-07-01
Four healthy adult dogs (Golden Retrievers aged 6 years and 9 years, Dalmatian aged 13 years, and Mastiff aged 5 years) developed clinical signs of acute respiratory disease and died within 2 to 7 days of onset of clinical signs. The lungs of the 3 dogs submitted for necropsy were diffusely and severely reddened due to hyperemia and hemorrhage. Microscopic lesions in all dogs were suggestive of acute viral or toxic respiratory damage and varied from acute severe fibrinonecrotic or hemorrhagic bronchopneumonia to fibrinous or necrotizing bronchointerstitial pneumonia. Necropsied dogs also had hemorrhagic rhinitis and tracheitis with necrosis. Virus isolation, transmission electron microscopy, and polymerase chain reaction were used to confirm the presence of canid herpesvirus 1 (CaHV-1) in the lung samples of these dogs. Lung tissues were negative for influenza A virus, canine distemper virus, canine parainfluenza virus, canine respiratory coronavirus, and canine adenovirus 2. Canid herpesvirus 1 has been isolated from cases of acute infectious respiratory disease in dogs but has only rarely been associated with fatal primary viral pneumonia in adult dogs. The cases in the current report document lesions observed in association with CaHV-1 in 4 cases of fatal canine herpesvirus pneumonia in adult dogs. © The Author(s) 2014.
Clinical review: Lung imaging in acute respiratory distress syndrome patients - an update
2013-01-01
Over the past 30 years lung imaging has greatly contributed to the current understanding of the pathophysiology and the management of acute respiratory distress syndrome (ARDS). In the past few years, in addition to chest X-ray and lung computed tomography, newer functional lung imaging techniques, such as lung ultrasound, positron emission tomography, electrical impedance tomography and magnetic resonance, have been gaining a role as diagnostic tools to optimize lung assessment and ventilator management in ARDS patients. Here we provide an updated clinical review of lung imaging in ARDS over the past few years to offer an overview of the literature on the available imaging techniques from a clinical perspective. PMID:24238477
Weigt, S. Samuel; Elashoff, Robert M.; Huang, Cathy; Ardehali, Abbas; Gregson, Aric L.; Kubak, Bernard; Fishbein, Michael C.; Saggar, Rajeev; Keane, Michael P.; Saggar, Rajan; Lynch, Joseph P.; Zisman, David A.; Ross, David J.; Belperio, John A.
2014-01-01
Multiple infections have been linked with the development of bronchiolitis obliterans syndrome (BOS) post-lung transplantation. Lung allograft airway colonization by Aspergillus species is common among lung transplant recipients. We hypothesized that Aspergillus colonization may promote the development of BOS and may decrease survival post-lung transplantation. We reviewed all lung transplant recipients transplanted in our center between 1/2000 and 6/2006. Bronchoscopy was performed according to a surveillance protocol and when clinically indicated. Aspergillus colonization was defined as a positive culture from bronchoalveolar lavage or two sputum cultures positive for the same Aspergillus species, in the absence of invasive pulmonary Aspergillosis. We found that Aspergillus colonization was strongly associated with BOS and BOS related mortality in Cox regression analyses. Aspergillus colonization typically preceded the development of BOS by a median of 261 days (95% CI 87 to 520). Furthermore, in a multivariate Cox regression model, Aspergillus colonization was a distinct risk factor for BOS, independent of acute rejection. These data suggest a potential causative role for Aspergillus colonization in the development of BOS post-lung transplantation and raise the possibility that strategies aimed to prevent Aspergillus colonization may help delay or reduce the incidence of BOS. PMID:19459819
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Ruyck, Kim, E-mail: kim.deruyck@UGent.be; Sabbe, Nick; Oberije, Cary
2011-10-01
Purpose: To construct a model for the prediction of acute esophagitis in lung cancer patients receiving chemoradiotherapy by combining clinical data, treatment parameters, and genotyping profile. Patients and Methods: Data were available for 273 lung cancer patients treated with curative chemoradiotherapy. Clinical data included gender, age, World Health Organization performance score, nicotine use, diabetes, chronic disease, tumor type, tumor stage, lymph node stage, tumor location, and medical center. Treatment parameters included chemotherapy, surgery, radiotherapy technique, tumor dose, mean fractionation size, mean and maximal esophageal dose, and overall treatment time. A total of 332 genetic polymorphisms were considered in 112 candidatemore » genes. The predicting model was achieved by lasso logistic regression for predictor selection, followed by classic logistic regression for unbiased estimation of the coefficients. Performance of the model was expressed as the area under the curve of the receiver operating characteristic and as the false-negative rate in the optimal point on the receiver operating characteristic curve. Results: A total of 110 patients (40%) developed acute esophagitis Grade {>=}2 (Common Terminology Criteria for Adverse Events v3.0). The final model contained chemotherapy treatment, lymph node stage, mean esophageal dose, gender, overall treatment time, radiotherapy technique, rs2302535 (EGFR), rs16930129 (ENG), rs1131877 (TRAF3), and rs2230528 (ITGB2). The area under the curve was 0.87, and the false-negative rate was 16%. Conclusion: Prediction of acute esophagitis can be improved by combining clinical, treatment, and genetic factors. A multicomponent prediction model for acute esophagitis with a sensitivity of 84% was constructed with two clinical parameters, four treatment parameters, and four genetic polymorphisms.« less
Pembrolizumab-induced acute thrombosis: A case report.
Kunimasa, Kei; Nishino, Kazumi; Kimura, Madoka; Inoue, Takako; Tamiya, Motohiro; Kumagai, Toru; Imamura, Fumio
2018-05-01
Acute thrombosis has not been reported in the literature so far in lung cancer patients as an immune-related adverse event (irAE) associated with PD-1 pathway inhibitors. Here, we for the first time present two NSCLC (non-small cell lung cancer) patients suffering from acute thrombosis as a pembrolizumab-induced irAE. Immediate treatment with continuous heparin infusion improved their symptoms and enabled them to continue pembrolizumab administration. Ethical approval was given by the ethics committee of Osaka International Cancer Institute and the informed consents were given by the patients. Serum D-dimer level testing, venous ultrasonography, enhanced computed tomography (CT). Continuous heparin infusion, direct oral anticoagulants (DOAC). Immediate continuous heparin infusion improved their symptoms and continuing pembrolizumab with direct oral anticoagulant successfully induced tumor shrinkage. Reinvigoration of exhausted T cells by pembrolizumab induced systemic inflammation possibly resulting in development of thrombosis. Although acute thrombosis is a rare irAE, it may lead to cessation of treatment and can be lethal.
Shilov, V V; Vasil'ev, S A; Batotsyrenov, B V; Loladze, A T; Kuznetsov, O A
2012-03-01
The article deals with the materials, which have been received in the process of the examination and treatment of 44 patients with acute severe methadone poisonings. It has been revealed, that gravity of these patient's condition depends on intensity of hypoxia due to breath deficiency because of the methadone. The development of hypoxia, in its turn, cause violations of antiradical protection system and intensification of processes of peroxide lipid oxidation. It has been registered that the including of reamberin into the complex program of the intensive therapy of acute severe methadone poisonings lead to a more rapid restoration of antiradical protection system and to a decrease of activity of processes of peroxide lipid oxidation. The correction of hypoxia and free-radical violations led to improvement of the acute poisonings clinic, what had been characterized by a decrease of coma-period duration, duration of treatment with artificial lung ventilation, a decrease of secondary lung complications and a decrease of lethality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundie, T.G.
This study was designed the effects of exercise performed on animals already injured with E. coli endotoxin. This would tell us whether exercise makes the lung injury worse. It would also tell us how much exercise performance is impaired. These studies were designed to give further insights into the underlying causes of acute lung injury. Premature termination of the study prevented completion of the research project. It appeared from the limited experimentation conducted that maximal exercise was impaired by endotoxin-induced lung injury. Conclusions regarding exacerbation of endotoxin-induced lung injury cannot be made.... Acute lung injury, Maximal exercise, Endotoxin.
Therapeutic lymphangiogenesis ameliorates established acute lung allograft rejection
Cui, Ye; Liu, Kaifeng; Monzon-Medina, Maria E.; Padera, Robert F.; Wang, Hao; George, Gautam; Toprak, Demet; Abdelnour, Elie; D’Agostino, Emmanuel; Goldberg, Hilary J.; Perrella, Mark A.; Forteza, Rosanna Malbran; Rosas, Ivan O.; Visner, Gary; El-Chemaly, Souheil
2015-01-01
Lung transplantation is the only viable option for patients suffering from otherwise incurable end-stage pulmonary diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Despite aggressive immunosuppression, acute rejection of the lung allograft occurs in over half of transplant recipients, and the factors that promote lung acceptance are poorly understood. The contribution of lymphatic vessels to transplant pathophysiology remains controversial, and data that directly address the exact roles of lymphatic vessels in lung allograft function and survival are limited. Here, we have shown that there is a marked decline in the density of lymphatic vessels, accompanied by accumulation of low-MW hyaluronan (HA) in mouse orthotopic allografts undergoing rejection. We found that stimulation of lymphangiogenesis with VEGF-C156S, a mutant form of VEGF-C with selective VEGFR-3 binding, alleviates an established rejection response and improves clearance of HA from the lung allograft. Longitudinal analysis of transbronchial biopsies from human lung transplant recipients demonstrated an association between resolution of acute lung rejection and decreased HA in the graft tissue. Taken together, these results indicate that lymphatic vessel formation after lung transplantation mediates HA drainage and suggest that treatments to stimulate lymphangiogenesis have promise for improving graft outcomes. PMID:26485284
Guthrie, T H; Mahizhnan, P
1983-01-01
A patient with acute nonlymphocytic leukemia developed progressive lung infiltrates and unremitting fevers during a profound neutropenic state. Legionnaire's disease was diagnosed by simple immunologic studies and successfully treated with erythromycin. This index case alerts physicians toward a treatable infection which would not normally be susceptible to the empiric antibiotic regimens given neutropenic patients with fevers.
[Lung-brain interaction in the mechanically ventilated patient].
López-Aguilar, J; Fernández-Gonzalo, M S; Turon, M; Quílez, M E; Gómez-Simón, V; Jódar, M M; Blanch, L
2013-10-01
Patients with acute lung injury or acute respiratory distress syndrome (ARDS) admitted to the ICU present neuropsychological alterations, which in most cases extend beyond the acute phase and have an important adverse effect upon quality of life. The aim of this review is to deepen in the analysis of the complex interaction between lung and brain in critically ill patients subjected to mechanical ventilation. This update first describes the neuropsychological alterations occurring both during the acute phase of ICU stay and at discharge, followed by an analysis of lung-brain interactions during mechanical ventilation, and finally explores the etiology and mechanisms leading to the neurological disorders observed in these patients. The management of critical patients requires an integral approach focused on minimizing the deleterious effects over the short, middle or long term. Copyright © 2012 Elsevier España, S.L. y SEMICYUC. All rights reserved.
Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype.
Erickson, John J; Lu, Pengcheng; Wen, Sherry; Hastings, Andrew K; Gilchuk, Pavlo; Joyce, Sebastian; Shyr, Yu; Williams, John V
2015-11-01
Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors. Copyright © 2015 by The American Association of Immunologists, Inc.
Guzel, Ahmet; Kanter, Mehmet; Guzel, Aygul; Pergel, Ahmet; Erboga, Mustafa
2012-06-01
The purpose of this study was to investigate the role of infliximab on acute lung injury induced by intestinal ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ infliximab; each group contain 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the infliximab group, 3 days before I/R, infliximab (3 mg/kg) was administered by intravenously. All animals were sacrificed at the end of reperfusion and lung tissues samples were obtained for biochemical and histopathological investigation in all groups. To date, no more biochemical and histopathological changes on intestinal I/R injury in rats by infliximab treatment have been reported. Infliximab treatment significantly decreased the elevated tissue malondialdehyde levels and increased of reduced superoxide dismutase, and glutathione peroxidase enzyme activities in lung tissues samples. Intestinal I/R caused severe histopathological injury including edema, hemorrhage, increased thickness of the alveolar wall and a great number of inflammatory cells that infiltrated the interstitium and alveoli. Infliximab treatment significantly attenuated the severity of intestinal I/R injury. Furthermore, there is a significant reduction in the activity of inducible nitric oxide synthase and arise in the expression of surfactant protein D in lung tissue of acute lung injury induced by intestinal I/R with infliximab therapy. It was concluded that infliximab treatment might be beneficial in acute lung injury, therefore, shows potential for clinical use. Because of its anti-inflammatory and antioxidant effects, infliximab pretreatment may have protective effects in acute lung injury induced by intestinal I/R.
Karki, Pratap; Birukova, Anna A.
2018-01-01
The maintenance of endothelial barrier integrity is absolutely essential to prevent the vascular leak associated with pneumonia, pulmonary edema resulting from inhalation of toxins, acute elevation to high altitude, traumatic and septic lung injury, acute lung injury (ALI), and its life-threatening complication, acute respiratory distress syndrome (ARDS). In addition to the long-known edemagenic and inflammatory agonists, emerging evidences suggest that factors of endothelial cell (EC) mechanical microenvironment such as blood flow, mechanical strain of the vessel, or extracellular matrix stiffness also play an essential role in the control of endothelial permeability and inflammation. Recent studies from our group and others have demonstrated that substrate stiffening causes endothelial barrier disruption and renders EC more susceptible to agonist-induced cytoskeletal rearrangement and inflammation. Further in vivo studies have provided direct evidence that proinflammatory stimuli increase lung microvascular stiffness which in turn exacerbates endothelial permeability and inflammation and perpetuates a vicious circle of lung inflammation. Accumulating evidence suggests a key role for RhoA GTPases signaling in stiffness-dependent mechanotransduction mechanisms defining EC permeability and inflammatory responses. Vascular stiffening is also known to be a key contributor to other cardiovascular diseases such as arterial pulmonary hypertension (PH), although the precise role of stiffness in the development and progression of PH remains to be elucidated. This review summarizes the current understanding of stiffness-dependent regulation of pulmonary EC permeability and inflammation, and discusses potential implication of pulmonary vascular stiffness alterations at macro- and microscale in development and modulation of ALI and PH. PMID:29714090
Rocket propellant inhalation in the Apollo-Soyuz astronauts.
DeJournette, R L
1977-10-01
Acute exposure to monomethylhydrazine and dinitrogen tetroxide, the principal toxic irritants in rocket fuels, is described with particular attention to the development of pulmonary edema as a herbinger of more severe central nervous system toxicity. An acute respiratory embarrassment is documented and possible means of therapy based on animal experimental models is suggested. Early clinical and radiographic examination as a baseline for further evaluation is essential, with follow-up radiographs recommended for assessment of possible developing chronic lung disease.
Bench-to-bedside review: Inhaled nitric oxide therapy in adults
Creagh-Brown, Benedict C; Griffiths, Mark JD; Evans, Timothy W
2009-01-01
Nitric oxide (NO) is an endogenous mediator of vascular tone and host defence. Inhaled nitric oxide (iNO) results in preferential pulmonary vasodilatation and lowers pulmonary vascular resistance. The route of administration delivers NO selectively to ventilated lung units so that its effect augments that of hypoxic pulmonary vasoconstriction and improves oxygenation. This 'Bench-to-bedside' review focuses on the mechanisms of action of iNO and its clinical applications, with emphasis on acute lung injury and the acute respiratory distress syndrome. Developments in our understanding of the cellular and molecular actions of NO may help to explain the hitherto disappointing results of randomised controlled trials of iNO. PMID:19519946
Herasevich, V; Yilmaz, M; Khan, H; Chute, C G; Gajic, O
2007-10-11
Early detection of specific critical care syndromes, such as sepsis or acute lung injury (ALI)is essential for timely implementation of evidence based therapies. Using a near-real time copy of the electronic medical records ("ICU data mart") we developed and validated custom electronic alert (ALI"sniffer") in a cohort of 485 critically ill medical patients. Compared with the gold standard of prospective screening, ALI "sniffer" demonstrated good sensitivity, 93% (95% CI 90 to 95) and specificity, 90% (95% CI 87 to 92). It is not known if the bedside implementation of ALI "sniffer" will improve the adherence to evidence-based therapies and outcome of patients with ALI.
2015-01-01
The 57th annual Thomas L. Petty Aspen Lung Conference, entitled “Rebuilding the Injured Lung,” was held from June 4 to 7, 2014 at the Gant Conference Center in Aspen, Colorado. Investigators from a wide range of disciplines and perspectives convened to discuss the biology of lung injury, how the lung repairs itself, how and why repair fails, and how the repair process can be enhanced. Among the challenges identified in the course of the conference was how to develop more predictive experimental models that capture the multidimensional complexity of lung injury and repair in a tractable manner. From such approaches that successfully fuse the biological and physical sciences, the group envisioned that new therapies for acute and chronic lung injury would emerge. The discussion of experimental therapeutics ranged from pharmaceuticals and cells that interdict fibrosis and enhance repair to a de novo lung derived from stem cells repopulating a decellularized matrix. PMID:25830839
Hart, Samantha K; Waddell, Lori
2016-11-01
To describe a case of suspected drug-induced infiltrative lung disease (ILD) and acute respiratory failure associated with the administration of cytarabine and prednisone in a dog requiring mechanical ventilation. A 4.5-year-old, female spayed Yorkshire Terrier presented to the ICU with acute onset of respiratory distress following a 24-hour cytarabine infusion. The patient was previously diagnosed with meningoencephalitis of unknown etiology (MUO), caudal occipital malformation, and syringohydromyelia, and was being treated with oral prednisone and levetiracetam, and cytarabine infusions. The patient developed tachypnea and dyspnea, and had diffuse crackles on auscultation of all lung fields, and hypoxemia 6 hours following completion of the fourth cytarabine infusion (300 mg/m 2 ). Thoracic radiographs revealed diffuse, bilateral infiltrates consistent with noncardiogenic pulmonary edema or acute respiratory distress syndrome. Respiratory distress and hypoxemia persisted despite oxygen supplementation and furosemide therapy and led to initiation of mechanical ventilation. Approximately 12 hours later, the dog became progressively hypoxemic with worsening pulmonary edema. The owners elected euthanasia. Postmortem examination revealed pulmonary edema and diffuse interstitial pneumonia. Histopathologic evaluation revealed pulmonary edema, severe acute neutrophilic and histiocytic pneumonia, and multifocal interstitial fibrosis. Bacterial culture yielded no growth. Drug-induced ILD is rarely reported in the veterinary literature, and has not previously been reported in dogs receiving cytarabine. As with administration of any medication, adverse events may occur. While ILD is unlikely to be commonly recognized, it may be considered in veterinary patients receiving chemotherapy that acutely become dyspneic. © Veterinary Emergency and Critical Care Society 2016.
Nitrite therapy prevents chlorine gas toxicity in rabbits
Honavar, Jaideep; Doran, Stephen; Ricart, Karina; Matalon, Sadis; Patel, Rakesh P.
2017-01-01
Chlorine (Cl2) gas exposure and toxicity remains a concern in military and industrial sectors. While post-Cl2 exposure damage to the lungs and other tissues has been documented and major underlying mechanisms elucidated, no targeted therapeutics that are effective when administered post-exposure, and which are amenable to mass-casualty scenarios have been developed. Our recent studies show nitrite administered by intramuscular (IM) injection post-Cl2 exposure is effective in preventing acute lung injury and improving survival in rodent models. Our goal in this study was to develop a rabbit model of Cl2 toxicity and test whether nitrite affords protection in a non-rodent model. Exposure of New Zealand White rabbits to Cl2 gas (600ppm, 45min) caused significant increases in protein and neutrophil accumulation in the airways and ~35% mortality over 18h. Nitrite administered 30min post Cl2 exposure by a single IM injection, at 1mg/Kg or 10mg/Kg, prevented indices of acute lung injury at 6h by up to 50%. Moreover, all rabbits that received nitrite survived over the study period. These data provide further rationale for developing nitrite as post-exposure therapeutic to mitigate against Cl2 gas exposure injury. PMID:28237808
Persistent effects of chlorine inhalation on respiratory health
Hoyle, Gary W.; Svendsen, Erik R.
2016-01-01
Chlorine gas is a toxic respiratory irritant that is considered a chemical threat agent because of the potential for release in industrial accidents or terrorist attacks. Chlorine inhalation damages the respiratory tract, including the airways and distal lung, and can result in acute lung injury. Some individuals exposed to chlorine experience a full recovery from acute injury, whereas others develop persistent adverse effects, such as respiratory symptoms, inflammation, and lung-function decrements. In animal models, chlorine can produce persistent inflammation, remodeling, and obstruction in large or small airways, depending on species. Airways with pseudostratified epithelium are repaired efficiently, with surviving basal epithelial cells serving as progenitor cells that repopulate the complement of differentiated cell types. Distal airways lacking basal cells are repaired less efficiently, leading to chronic inflammation and fibrosis at these sites. Persistent chlorine-induced airway disease in humans is treated with asthma medication to relieve symptoms. However, such treatment does not ameliorate the underlying disease pathogenesis, so treatments that are more effective at preventing initial development of airway disease after irritant gas exposure and at reversing established disease are needed. PMID:27385061
Surfactant for Pediatric Acute Lung Injury
Willson, Douglas F.; Chess, Patricia R.; Notter, Robert H.
2008-01-01
Synopsis This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is on reviewing clinical studies of surfactant therapy in pediatric and adult patients with ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS, including the multifaceted pathology of inflammatory lung injury, the effectiveness of surfactant delivery in injured lungs, and composition-based activity differences among clinical exogenous surfactant preparations. PMID:18501754
[The use of Timalin in the treatment of the acute lung abscess].
Tsybikov, M N; Likhanov, I D; Borshchevskiĭ, V S; Kuznik, B I; Tsepelev, V L; Maslo, E Iu; Tsybikov, N N
2012-01-01
The study was aimed to research levels of main acute inflammation phase peptides, coagulative and fibrinolitic plasma activity on the background of traditional treatment and with addition of Timalin in patients with acute lung abscess. The study demonstrated that induction of bioregulative therapy leads to faster normalization of main indicators of SIRS and plasma fibrinolitic activity and eliminates hypercoagulation.
Fioretto, José Roberto; Klefens, Susiane Oliveira; Pires, Rafaelle Fernandes; Kurokawa, Cilmery Suemi; Carpi, Mario Ferreira; Bonatto, Rossano César; Moraes, Marcos Aurélio; Ronchi, Carlos Fernando
2017-01-01
To compare the effects of high-frequency oscillatory ventilation and conventional protective mechanical ventilation associated with the prone position on oxygenation, histology and pulmonary oxidative damage in an experimental model of acute lung injury. Forty-five rabbits with tracheostomy and vascular access were underwent mechanical ventilation. Acute lung injury was induced by tracheal infusion of warm saline. Three experimental groups were formed: healthy animals + conventional protective mechanical ventilation, supine position (Control Group; n = 15); animals with acute lung injury + conventional protective mechanical ventilation, prone position (CMVG; n = 15); and animals with acute lung injury + high-frequency oscillatory ventilation, prone position (HFOG; n = 15). Ten minutes after the beginning of the specific ventilation of each group, arterial gasometry was collected, with this timepoint being called time zero, after which the animal was placed in prone position and remained in this position for 4 hours. Oxidative stress was evaluated by the total antioxidant performance assay. Pulmonary tissue injury was determined by histopathological score. The level of significance was 5%. Both groups with acute lung injury showed worsening of oxygenation after induction of injury compared with the Control Group. After 4 hours, there was a significant improvement in oxygenation in the HFOG group compared with CMVG. Analysis of total antioxidant performance in plasma showed greater protection in HFOG. HFOG had a lower histopathological lesion score in lung tissue than CMVG. High-frequency oscillatory ventilation, associated with prone position, improves oxygenation and attenuates oxidative damage and histopathological lung injury compared with conventional protective mechanical ventilation.
Fioretto, José Roberto; Klefens, Susiane Oliveira; Pires, Rafaelle Fernandes; Kurokawa, Cilmery Suemi; Carpi, Mario Ferreira; Bonatto, Rossano César; Moraes, Marcos Aurélio; Ronchi, Carlos Fernando
2017-01-01
Objective To compare the effects of high-frequency oscillatory ventilation and conventional protective mechanical ventilation associated with the prone position on oxygenation, histology and pulmonary oxidative damage in an experimental model of acute lung injury. Methods Forty-five rabbits with tracheostomy and vascular access were underwent mechanical ventilation. Acute lung injury was induced by tracheal infusion of warm saline. Three experimental groups were formed: healthy animals + conventional protective mechanical ventilation, supine position (Control Group; n = 15); animals with acute lung injury + conventional protective mechanical ventilation, prone position (CMVG; n = 15); and animals with acute lung injury + high-frequency oscillatory ventilation, prone position (HFOG; n = 15). Ten minutes after the beginning of the specific ventilation of each group, arterial gasometry was collected, with this timepoint being called time zero, after which the animal was placed in prone position and remained in this position for 4 hours. Oxidative stress was evaluated by the total antioxidant performance assay. Pulmonary tissue injury was determined by histopathological score. The level of significance was 5%. Results Both groups with acute lung injury showed worsening of oxygenation after induction of injury compared with the Control Group. After 4 hours, there was a significant improvement in oxygenation in the HFOG group compared with CMVG. Analysis of total antioxidant performance in plasma showed greater protection in HFOG. HFOG had a lower histopathological lesion score in lung tissue than CMVG. Conclusion High-frequency oscillatory ventilation, associated with prone position, improves oxygenation and attenuates oxidative damage and histopathological lung injury compared with conventional protective mechanical ventilation. PMID:29236845
Fan, Kang; Nagle, William A
2002-01-01
Background The heterogeneity of conditions underlying respiratory distress, whether classified clinically as acute lung injury (ALI) or the more severe acute respiratory distress syndrome (ARDS), has hampered efforts to identify and more successfully treat these patients. Examination of postmortem lungs among cases clinically diagnosed as ARDS identified a cohort that showed a consistent morphology at the light and electron microscope levels, and featured pathognomonic structures which we termed elastin-staining laminar structures (ELS). Methods Postmortem tissues were stained using the Verhoeff-Van Gieson procedure for elastic fibers, and with Congo red for examination under a polarizing microscope. Similar samples were examined by transmission EM. Results The pathognomonic ELS presented as ordered molecular aggregates when stained using the Verhoeff-van Gieson technique for elastic fibers. In several postmortem lungs, the ELS also displayed apple-green birefringence after staining with Congo red, suggesting the presence of amyloid. Remarkably, most of the postmortem lungs with ELS exhibited no significant acute inflammatory cellular response such as neutrophilic reaction, and little evidence of widespread edema except for focal intra-alveolar hemorrhage. Conclusions Postmortem lungs that exhibit the ELS constitute a morphologically-identifiable subgroup of ARDS cases. The ordered nature of the ELS, as indicated by both elastin and amyloid stains, together with little morphological evidence of inflammation or edema, suggests that this cohort of ARDS may represent another form of conformational disease. If this hypothesis is confirmed, it will require a new approach in the diagnosis and treatment of patients who exhibit this form of acute lung injury. PMID:12377106
Wang, Zhengguan; Li, Ruibing; Liu, Yifan; Liu, Xiaoting; Chen, Wenyan; Xu, Shumin; Guo, Yuni; Duan, Jinyang; Chen, Yihong; Wang, Chengbin
2015-05-01
The present study aimed to investigate the combined effects of puerarin with edaravone on inhalation lung injury induced by black gunpowder smog. Male Wistar rats were divided into five groups (control group, edaravone group, puerarin group, edaravone combined with puerarin group and inhalation group). The severity of pulmonary injuries was evaluated after inducing acute lung injury. Arterial blood gas, inflammatory cytokines, biochemical, parameters, cell counting, W/D weight ratio and histopathology were analyzed. Results in lung tissues, either edaravone or puerarin treatment alone showed significant protective effects against neutrophil infiltration and tissue injury, as demonstrated by myeloperoxidase activity and histopathological analysis (all p<0.05). In addition, combined treatment with both edaravone and puerarin demonstrated additive protective effects on smog-induced lung injury, compared with single treatment. Combination of edaravone and puerarin shows promise as a new treatment option for acute lung injury/acute respiratory distress syndrome patients. Copyright © 2015 Elsevier B.V. All rights reserved.
Li-Mei, Wan; Jie, Tan; Shan-He, Wan; Dong-Mei, Meng; Peng-Jiu, Yu
2016-10-01
The aim of this study is to investigate the effects of dexpanthenol in a model of acute lung injury (ALI) induced by lipopolysaccharides (LPS). Lung injury was induced by exposure to atomized LPS. Mice were randomly divided into four groups: control group; Dxp (500 mg/kg) group; LPS group; LPS + Dxp (500 mg/kg) group. The effects of dexpanthenol on LPS-induced neutrophil recruitment, cytokine levels, total protein concentration, myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) contents were examined. Additionally, lung tissue was examined by histology to investigate the changes in pathology in the presence and absence of dexpanthenol. In LPS-challenged mice, dexpanthenol significantly improved lung edema. Dexpanthenol also markedly inhibited the LPS-induced neutrophiles influx, protein leakage, and release of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Furthermore, dexpanthenol attenuated MPO activity and MDA contents and increased SOD and GSH activity in the LPS-challenged lung tissue. These data suggest that dexpanthenol protects mice from LPS-induced acute lung injury by its anti-inflammatory and anti-oxidative activities.
Bajrami, Besnik; Zhu, Haiyan; Zhang, Yu C.
2016-01-01
Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation. PMID:27551153
Huang, Xiaojia; Sun, Kai; Zhao, Yidan D.; Vogel, Stephen M.; Song, Yuanling; Mahmud, Nadim; Zhao, You-Yang
2014-01-01
Adult stem cell-based therapy is a promising novel approach for treatment of acute lung injury. Here we investigated the therapeutic potential of freshly isolated human umbilical cord blood CD34+ progenitor cells (fCB-CD34+ cells) in a mouse model of acute lung injury. At 3 h post-lipopolysaccharide (LPS) challenge, fCB-CD34+ cells were transplanted i.v. to mice while CD34− cells or PBS were administered as controls in separate cohorts of mice. We observed that fCB-CD34+ cell treatment inhibited lung vascular injury evident by decreased lung vascular permeability. In contrast, CD34− cells had no effects on lung vascular injury. Lung inflammation determined by myeloperoxidase activity, neutrophil sequestration and expression of pro-inflammatory mediators was attenuated in fCB-CD34+ cell-treated mice at 26 h post-LPS challenge compared to PBS or CD34− cell-treated controls. Importantly, lung inflammation in fCB-CD34+ cell-treated mice was returned to normal levels as seen in basal mice at 52 h post-LPS challenge whereas PBS or CD34− cell-treated control mice exhibited persistent lung inflammation. Accordingly, fCB-CD34+ cell-treated mice exhibited a marked increase of survival rate. Employing in vivo 5-bromo-2′-deoxyuridine incorporation assay, we found a drastic induction of lung endothelial proliferation in fCB-CD34+ cell-treated mice at 52 h post-LPS compared to PBS or CD34− cell-treated controls, which contributed to restoration of vascular integrity and thereby inhibition of lung inflammation. Taken together, these data have demonstrated the protective effects of fCB-CD34+ cell on acute lung injury induced by LPS challenge, suggesting fCB-CD34+ cells are an important source of stem cells for the treatment of acute lung injury. PMID:24558433
Proposed revised nomenclature for transfusion-related acute lung injury.
Toy, Pearl; Kleinman, Steven H; Looney, Mark R
2017-03-01
A decade ago, definitions of "transfusionߚrelated acute lung injury (TRALI)" and "possible TRALI" were standardized for research and clinical diagnosis. Since then, evidence has confirmed that TRALI is often due to transfusion of white blood cell antibodies to at-risk patients, and the term "TRALI, antibody mediated" is appropriate for such cases. Other TRALI cases are non-antibody mediated. Because specific, nonantibody transfusion factors have not yet been confirmed to cause TRALI in humans, the general term "TRALI, non-antibody mediated" is appropriate for such cases. In contrast, evidence is against possible TRALI being due to transfusion with the more likely cause of the acute respiratory distress syndrome (ARDS) being the alternative ARDS risk factor present in these patients. We propose to drop the misleading term "possible TRALI" and to rename this category of cases as "transfused ARDS." These nomenclature updates will more accurately categorize ARDS cases that develop after transfusion. © 2016 AABB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cartier, Lysian; Auberdiac, Pierre; Khodri, Mustapha
The purpose of this study was to analyze and revisit toxicity related to chest chemoradiotherapy and to correlate these side effects with dosimetric parameters obtained using analytical anisotropic algorithm (AAA) in locally unresectable advanced lung cancer. We retrospectively analyzed data from 47 lung cancer patients between 2005 and 2008. All received conformal 3D radiotherapy using high-energy linear accelerator plus concomitant chemotherapy. All treatment planning data were transferred into Eclipse 8.05 (Varian Medical Systems, Palo Alto, CA) and dosimetric calculations were performed using AAA. Thirty-three patients (70.2%) developed acute pneumopathy after radiotherapy (grades 1 and 2). One patient (2.1%) presented withmore » grade 3 pneumopathy. Thirty-one (66%) presented with grades 1-2 lung fibrosis, and 1 patient presented with grade 3 lung fibrosis. Thirty-four patients (72.3%) developed grade 1-2 acute oesophagic toxicity. Four patients (8.5%) presented with grades 3 and 4 dysphagia, necessitating prolonged parenteral nutrition. Median prescribed dose was 64 Gy (range 50-74) with conventional fractionation (2 Gy per fraction). Dose-volume constraints were respected with a median V20 of 23.5% (maximum 34%) and a median V30 of 17% (maximum 25%). The median dose delivered to healthy contralateral lung was 13.1 Gy (maximum 18.1 Gy). At univariate analysis, larger planning target volume and V20 were significantly associated with the probability of grade {>=}2 radiation-induced pneumopathy (p = 0.022 and p = 0.017, respectively). No relation between oesophagic toxicity and clinical/dosimetric parameters could be established. Using AAA, the present results confirm the predictive value of the V20 for lung toxicity as already demonstrated with the conventional pencil beam convolution approach.« less
Tidal volume in acute respiratory distress syndrome: how best to select it.
Umbrello, Michele; Marino, Antonella; Chiumello, Davide
2017-07-01
Mechanical ventilation is the type of organ support most widely provided in the intensive care unit. However, this form of support does not constitute a cure for acute respiratory distress syndrome (ARDS), as it mainly works by buying time for the lungs to heal while contributing to the maintenance of vital gas exchange. Moreover, it can further damage the lung, leading to the development of a particular form of lung injury named ventilator-induced lung injury (VILI). Experimental evidence accumulated over the last 30 years highlighted the factors associated with an injurious form of mechanical ventilation. The present paper illustrates the physiological effects of delivering a tidal volume to the lungs of patients with ARDS, and suggests an approach to tidal volume selection. The relationship between tidal volume and the development of VILI, the so called volotrauma, will be reviewed. The still actual suggestion of a lung-protective ventilatory strategy based on the use of low tidal volumes scaled to the predicted body weight (PBW) will be presented, together with newer strategies such as the use of airway driving pressure as a surrogate for the amount of ventilatable lung tissue or the concept of strain, i.e., the ratio between the tidal volume delivered relative to the resting condition, that is the functional residual capacity (FRC). An ultra-low tidal volume strategy with the use of extracorporeal carbon dioxide removal (ECCO 2 R) will be presented and discussed. Eventually, the role of other ventilator-related parameters in the generation of VILI will be considered (namely, plateau pressure, airway driving pressure, respiratory rate (RR), inspiratory flow), and the promising unifying framework of mechanical power will be presented.
Tidal volume in acute respiratory distress syndrome: how best to select it
Umbrello, Michele; Marino, Antonella
2017-01-01
Mechanical ventilation is the type of organ support most widely provided in the intensive care unit. However, this form of support does not constitute a cure for acute respiratory distress syndrome (ARDS), as it mainly works by buying time for the lungs to heal while contributing to the maintenance of vital gas exchange. Moreover, it can further damage the lung, leading to the development of a particular form of lung injury named ventilator-induced lung injury (VILI). Experimental evidence accumulated over the last 30 years highlighted the factors associated with an injurious form of mechanical ventilation. The present paper illustrates the physiological effects of delivering a tidal volume to the lungs of patients with ARDS, and suggests an approach to tidal volume selection. The relationship between tidal volume and the development of VILI, the so called volotrauma, will be reviewed. The still actual suggestion of a lung-protective ventilatory strategy based on the use of low tidal volumes scaled to the predicted body weight (PBW) will be presented, together with newer strategies such as the use of airway driving pressure as a surrogate for the amount of ventilatable lung tissue or the concept of strain, i.e., the ratio between the tidal volume delivered relative to the resting condition, that is the functional residual capacity (FRC). An ultra-low tidal volume strategy with the use of extracorporeal carbon dioxide removal (ECCO2R) will be presented and discussed. Eventually, the role of other ventilator-related parameters in the generation of VILI will be considered (namely, plateau pressure, airway driving pressure, respiratory rate (RR), inspiratory flow), and the promising unifying framework of mechanical power will be presented. PMID:28828362
Xu, Junfeng; Huang, Bo; Wang, Yu; Tong, Caiyu; Xie, Peng; Fan, Rong; Gao, Zhenming
2016-11-01
The present study investigates the ameliorating effects of emodin on acute lung injury (ALI) induced by severe acute pancreatitis (SAP). An ALI rat model was constructed by sodium ursodeoxycholate and they were divided into four groups: SHAM, ALI, emodin and dexamethasone (DEX) (n=24 per group). Blood samples and lung tissues were collected 6, 12 and 24 hours after the induction of SAP-associated ALI. Lung wet/dry ratio, blood gases, serum amylase and tumor necrosis factor-α (TNF-α) were measured at each time point. The expressions of AQP1 and AQP5 in lung tissue were detected by immunohistochemical staining, western blotting and real-time PCR. As the results show, there were no statistical differences in the levels of serum amylase, lung wet/dry ratio, blood gases indexes, serum TNF-α and pathological changes between emodin and DEX groups. However, significant differences were observed when compared with the ALI group. AQP1 and AQP5 expressions were significantly increased and lung oedemas were alleviated with the treatment of emodin and DEX. The expressions of AQP1 and AQP5 were significantly decreased in SAP-associated ALI rats. Emodin up-regulated the expression of AQP1 and AQP5, it could reduce pulmonary oedema and ameliorate SAP-induced ALI. Regulations on AQP1 and AQP5 expression had a great value in clinical application. © 2016 John Wiley & Sons Australia, Ltd.
Comparison of Acute Health Effects From Exposures to Diesel and Biodiesel Fuel Emissions
Mehus, Aaron A.; Reed, Rustin J.; Lee, Vivien S. T.; Littau, Sally R.; Hu, Chengcheng; Lutz, Eric A.
2015-01-01
Objective: To investigate the comparative acute health effects associated with exposures to diesel and 75% biodiesel/25% diesel (B75) blend fuel emissions. Methods: We analyzed multiple health endpoints in 48 healthy adults before and after exposures to diesel and B75 emissions in an underground mine setting—lung function, lung and systemic inflammation, novel biomarkers of exposure, and oxidative stress were assessed. Results: B75 reduced respirable diesel particulate matter by 20%. Lung function declined significantly more after exposure to diesel emissions. Lung inflammatory cells along with sputum and plasma inflammatory mediators increased significantly to similar levels with both exposures. Urinary 8-hydroxydeoxyguanosine, a marker of oxidative stress, was not significantly changed after either exposure. Conclusions: Use of B75 lowered respirable diesel particulate matter exposure and some associated acute health effects, although lung and systemic inflammation were not reduced compared with diesel use. PMID:26147538
Comparison of Acute Health Effects From Exposures to Diesel and Biodiesel Fuel Emissions.
Mehus, Aaron A; Reed, Rustin J; Lee, Vivien S T; Littau, Sally R; Hu, Chengcheng; Lutz, Eric A; Burgess, Jefferey L
2015-07-01
To investigate the comparative acute health effects associated with exposures to diesel and 75% biodiesel/25% diesel (B75) blend fuel emissions. We analyzed multiple health endpoints in 48 healthy adults before and after exposures to diesel and B75 emissions in an underground mine setting-lung function, lung and systemic inflammation, novel biomarkers of exposure, and oxidative stress were assessed. B75 reduced respirable diesel particulate matter by 20%. Lung function declined significantly more after exposure to diesel emissions. Lung inflammatory cells along with sputum and plasma inflammatory mediators increased significantly to similar levels with both exposures. Urinary 8-hydroxydeoxyguanosine, a marker of oxidative stress, was not significantly changed after either exposure. Use of B75 lowered respirable diesel particulate matter exposure and some associated acute health effects, although lung and systemic inflammation were not reduced compared with diesel use.
Contribution of neutrophils to acute lung injury.
Grommes, Jochen; Soehnlein, Oliver
2011-01-01
Treatment of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain unsolved problems of intensive care medicine. ALI/ARDS are characterized by lung edema due to increased permeability of the alveolar-capillary barrier and subsequent impairment of arterial oxygenation. Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils into the interstitium and broncheoalveolar space. Hence, activation and recruitment of neutrophils are regarded to play a key role in progression of ALI/ARDS. Neutrophils are the first cells to be recruited to the site of inflammation and have a potent antimicrobial armour that includes oxidants, proteinases and cationic peptides. Under pathological circumstances, however, unregulated release of these microbicidal compounds into the extracellular space paradoxically can damage host tissues. This review focuses on the mechanisms of neutrophil recruitment into the lung and on the contribution of neutrophils to tissue damage in ALI.
Electroporation-mediated Delivery of Genes in Rodent Models of Lung Contusion
Machado-Aranda, David; Raghavendran, Krishnan
2015-01-01
Several of the biological processes involved in the pathogenesis of acute lung injury and acute respiratory distress syndrome after lung contusion are regulated at a genetic and epigenetic level. Thus, strategies to manipulate gene expression in this context are highly desirable not only to elucidate the mechanisms involved but also to look for potential therapies. In the present chapter, we describe mouse and rat models of inducing blunt thoracic injury followed by electroporation-mediated gene delivery to the lung. Electroporation is a highly efficient and easily reproducible technique that allows circumvention of several of lung gene delivery challenges and safety issues present with other forms of lung gene therapy. PMID:24510825
Li, Yan; Xu, Jun; Shi, Weiqing; Chen, Cheng; Shao, Yan; Zhu, Limei; Lu, Wei; Han, XiaoDong
2016-10-28
The avian influenza virus (AIV) can cross species barriers and expand its host range from birds to mammals, even humans. Avian influenza is characterized by pronounced activation of the proinflammatory cytokine cascade, which perpetuates the inflammatory response, leading to persistent systemic inflammatory response syndrome and pulmonary infection in animals and humans. There are currently no specific treatment strategies for avian influenza. We hypothesized that mesenchymal stromal cells (MSCs) would have beneficial effects in the treatment of H9N2 AIV-induced acute lung injury in mice. Six- to 8-week-old C57BL/6 mice were infected intranasally with 1 × 10 4 MID 50 of A/HONG KONG/2108/2003 [H9N2 (HK)] H9N2 virus to induce acute lung injury. After 30 min, syngeneic MSCs were delivered through the caudal vein. Three days after infection, we measured the survival rate, lung weight, arterial blood gas, and cytokines in both bronchoalveolar lavage fluid (BALF) and serum, and assessed pathological changes to the lungs. MSC administration significantly palliated H9N2 AIV-induced pulmonary inflammation by reducing chemokines and proinflammatory cytokines levels, as well as reducing inflammatory cell recruit into the lungs. Thus, H9N2 AIV-induced lung injury was markedly alleviated in mice treated with MSCs. Lung histopathology and arterial blood gas analysis were improved in mice with H9N2 AIV-induced lung injury following MSC treatment. MSC treatment significantly reduces H9N2 AIV-induced acute lung injury in mice and is associated with reduced pulmonary inflammation. These results indicate a potential role for MSC therapy in the treatment of clinical avian influenza.
Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury
Pinheiro, Aruanã Joaquim Matheus Costa Rodrigues; Gonçalves, Jaciara Sá; Dourado, Ádylla Wilenna Alves; de Sousa, Eduardo Martins; Brito, Natilene Mesquita; Silva, Lanna Karinny; Batista, Marisa Cristina Aranha; de Sá, Joicy Cortez; Monteiro, Cinara Regina Aragão Vieira; Fernandes, Elizabeth Soares; Campbell, Lee Ann; Zago, Patrícia Maria Wiziack
2018-01-01
The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100–300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF-α and IL-1β expression in comparison with vehicle controls (p < 0.05). Additionally, incubation with either EAFPg or kaempferol (100 μg/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI. PMID:29675437
Suga, Kazuyoshi; Yasuhiko, Kawakami; Iwanaga, Hideyuki; Tokuda, Osamu; Matsunaga, Naofumi
2008-09-01
The relation between lung perfusion defects and intravascular clots in acute pulmonary thromboembolism (PTE) was comprehensively assessed on deep-inspiratory breath-hold (DIBrH) perfusion SPECT-computed tomographic pulmonary angiography (CTPA) fusion images. Subjects were 34 acute PTE patients, who had successfully performed DIBrH perfusion SPECT using a dual-headed SPECT and a respiratory tracking system. Automated DIBrH SPECT-CTPA fusion images were used to assess the relation between lung perfusion defects and intravascular clots detected by CTPA. DIBrH SPECT visualized 175 lobar/segmental or subsegmental defects in 34 patients, and CTPA visualized 61 intravascular clots at variable locations in 30 (88%) patients, but no clots in four (12%) patients. In 30 patients with clots, the fusion images confirmed that 69 (41%) perfusion defects (20 segmental, 45 subsegmental and 4 lobar defects) of total 166 defects were located in lung territories without clots, although the remaining 97 (58%) defects were located in lung territories with clots. Perfusion defect was absent in lung territories with clots (one lobar branch and three segmental branches) in four (12%) of these patients. In four patients without clots, nine perfusion defects including four segmental ones were present. Because of unexpected dissociation between intravascular clots and lung perfusion defects, the present fusion images will be a useful adjunct to CTPA in the diagnosis of acute PTE.
Serelaxin as a novel therapeutic opposing fibrosis and contraction in lung diseases.
Lam, Maggie; Royce, Simon G; Samuel, Chrishan S; Bourke, Jane E
2018-07-01
The most common therapies for asthma and other chronic lung diseases are anti-inflammatory agents and bronchodilators. While these drugs oppose disease symptoms, they do not reverse established structural changes in the airways and their therapeutic efficacy is reduced with increasing disease severity. The peptide hormone, relaxin, is a Relaxin Family Peptide Receptor 1 (RXFP1) receptor agonist with unique combined effects in the lung that differentiates it from these existing therapies. Relaxin has previously been reported to have cardioprotective effects in acute heart failure as well anti-fibrotic actions in several organs. This review focuses on recent experimental evidence of the beneficial effects of chronic relaxin treatment in animal models of airways disease demonstrating inhibition of airway hyperresponsiveness and reversal of established fibrosis, consistent with potential therapeutic benefit. Of particular interest, accumulating evidence demonstrates that relaxin can also acutely oppose contraction by reducing the release of mast cell-derived bronchoconstrictors and by directly eliciting bronchodilation. When used in combination, chronic and acute treatment with relaxin has been shown to enhance responsiveness to both glucocorticoids and β 2 -adrenoceptor agonists respectively. While the mechanisms underlying these beneficial actions remain to be fully elucidated, translation of these promising combined preclinical findings is critical in the development of relaxin as a novel alternative or adjunct therapeutic opposing multiple aspects of airway pathology in lung diseases. Copyright © 2018 Elsevier Inc. All rights reserved.
Anti-Inflammatory Effects of Adrenomedullin on Acute Lung Injury Induced by Carrageenan in Mice
Elena, Talero; Rosanna, Di Paola; Emanuela, Mazzon; Esposito, Emanuela; Virginia, Motilva; Salvatore, Cuzzocrea
2012-01-01
Adrenomedullin (AM) is a 52 amino acid peptide that has shown predominant anti-inflammatory activities. In the present study, we evaluated the possible therapeutic effect of this peptide in an experimental model of acute inflammation, the carrageenan- (CAR-) induced pleurisy. Pleurisy was induced by injection of CAR into the pleural cavity of mice. AM (200 ng/kg) was administered by intraperitoneal route 1 h after CAR, and the animals were sacrificed 4 h after that. AM treatment attenuated the recruitment of leucocytes in the lung tissue and the generation and/or the expression of the proinflammatory cytokines as well as the expression of the intercellular cell adhesion molecules. Moreover, AM inhibited the induction of inducible nitric oxide synthase (iNOS), thereby abating the generation of nitric oxide (NO) and prevented the oxidative and nitroxidative lung tissue injury, as shown by the reduction of nitrotyrosine, malondialdehyde (MDA), and poly (ADP-ribose) polymerase (PARP) levels. Finally, we demonstrated that these anti-inflammatory effects of AM were associated with the inhibition of nuclear factor-κB (NF-κB) activation. All these parameters were markedly increased by intrapleural CAR in the absence of any treatment. We report that treatment with AM significantly reduces the development of acute lung injury by downregulating a broad spectrum of inflammatory factors. PMID:22685374
Li, Xuanfei; Liu, Zheng; Jin, He; Fan, Xia; Yang, Xue; Tang, Wanqi; Yan, Jun; Liang, Huaping
2014-01-01
Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson's disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM) challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF)-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.
Metachronous and Synchronous Presentation of Acute Myeloid Leukemia and Lung Cancer
Varadarajan, Ramya; Ford, LaurieAnn; Sait, Sheila NJ; Block, AnneMarie W.; Barcos, Maurice; Wallace, Paul K.; Ramnath, Nithya; Wang, Eunice S.; Wetzler, Meir
2009-01-01
Smoking is associated with both acute myeloid leukemia (AML) and lung cancer. We therefore searched our database for concomitant presentation of AML and lung cancer. Among 775 AML cases and 5225 lung cancer cases presenting to Roswell Park Cancer Institute between the years January 1992 and May 2008 we found 12 (1.5% of AML cases; 0.23% of lung cancer cases) cases (seven metachronous and five synchronous) with AML and lung cancer. All but one patient were smokers. There were no unique characteristic of either AML or lung cancer in these patients. Nine patients succumbed to AML, one died from an unrelated cause while undergoing treatment for AML, one died of lung cancer and one patient is alive after allogeneic transplantation for AML. In summary, this study supports the need for effective smoking cessation programs. PMID:19181380
Lung vaso-occlusion in sickle cell disease mediated by arteriolar neutrophil-platelet microemboli.
Bennewitz, Margaret F; Jimenez, Maritza A; Vats, Ravi; Tutuncuoglu, Egemen; Jonassaint, Jude; Kato, Gregory J; Gladwin, Mark T; Sundd, Prithu
2017-01-12
In patients with sickle cell disease (SCD), the polymerization of intraerythrocytic hemoglobin S promotes downstream vaso-occlusive events in the microvasculature. While vaso-occlusion is known to occur in the lung, often in the context of systemic vaso-occlusive crisis and the acute chest syndrome, the pathophysiological mechanisms that incite lung injury are unknown. We used intravital microscopy of the lung in transgenic humanized SCD mice to monitor acute vaso-occlusive events following an acute dose of systemic lipopolysaccharide sufficient to trigger events in SCD but not control mice. We observed cellular microembolism of precapillary pulmonary arteriolar bottlenecks by neutrophil-platelet aggregates. Blood from SCD patients was next studied under flow in an in vitro microfluidic system. Similar to the pulmonary circulation, circulating platelets nucleated around arrested neutrophils, translating to a greater number and duration of neutrophil-platelet interactions compared with normal human blood. Inhibition of platelet P-selectin with function-blocking antibody attenuated the neutrophil-platelet interactions in SCD patient blood in vitro and resolved pulmonary arteriole microembolism in SCD mice in vivo. These results establish the relevance of neutrophil-platelet aggregate formation in lung arterioles in promoting lung vaso-occlusion in SCD and highlight the therapeutic potential of targeting platelet adhesion molecules to prevent acute chest syndrome.
Quintero, Pablo A.; Knolle, Martin D.; Cala, Luisa F.; Zhuang, Yuehong; Owen, Caroline A.
2010-01-01
To determine the role of matrix metalloproteinase-8 (MMP-8) in acute lung injury (ALI), we delivered LPS or bleomycin by the intratracheal route to MMP-8−/− mice versus WT mice or subjected the mice to hyperoxia (95% O2) and measured lung inflammation and injury at intervals. MMP-8−/− mice with ALI had greater increases in lung PMN and macrophage counts, measures of alveolar capillary barrier injury, lung elastance, and mortality than WT mice with ALI. Bronchoalveolar lavage fluid (BALF) from LPS-treated MMP-8−/− mice had more macrophage inflammatory protein-1α (MIP-1α) than BALF from LPS-treated WT mice, but similar levels of other pro- and anti-inflammatory mediators. MIP-1α−/− mice with ALI had less acute lung inflammation and injury than WT mice with ALI, confirming that MIP-1α promotes acute lung inflammation and injury in mice. Genetically deleting MIP-1α in MMP-8−/− mice abrogated the increased lung inflammation and injury and mortality in MMP-8−/− mice with ALI. Soluble MMP-8 cleaved and inactivated MIP-1α in vitro, but membrane-bound MMP-8 on activated PMNs had greater MIP-1α-degrading activity than soluble MMP-8. High levels of membrane-bound MMP-8 were detected on lung PMNs from LPS-treated WT mice, but soluble, active MMP-8 was not detected in BALF samples. Thus, MMP-8 has novel roles in restraining lung inflammation and in limiting alveolar capillary barrier injury during ALI in mice by inactivating MIP-1α. In addition, membrane-bound MMP-8 on activated lung PMNs is likely to be the key bioactive form of the enzyme that limits lung inflammation and alveolar capillary barrier injury during ALI. PMID:20042585
Lung Cancer in Patients with Severe Idiopathic Pulmonary Fibrosis: Critical Aspects.
Bargagli, Elena; Bonti, Viola; Ferrari, Katia; Rosi, Elisabetta; Bindi, Alessandra; Bartolucci, Maurizio; Chiara, Moroni; Voltolini, Luca
2017-01-01
Idiopathic pulmonary fibrosis (IPF) is a rare interstitial lung disease limited to the lung with an undefined etiopathogenesis and a very short life expectancy (less than 5 years). IPF susceptibility has been associated with several genetic and environmental risk factors and the prognosis is conditioned by comorbidities such as gastro-esophageal reflux, depression, venous thromboembolism, pulmonary hypertension and lung cancer. At 5 years follow-up, 15% of IPF patients develop lung cancer, which can significantly reduce their survival. Because diagnostic or therapeutic procedures such as surgical, radiation or pharmacological treatments may induce acute exacerbations and increase mortality, the management of lung cancer in IPF patients is a very difficult task. This study discusses advantages and disadvantages of lung cancer treatments in patients with severe IPF, highlighting several controversial aspects on this topic, including potential nintedanib treatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Wan, Mei-Hua; Li, Juan; Tang, Wen-Fu; Gong, Han-Lin; Chen, Guang-Yuan; Xue, Ping; Zhao, Xian-Lin; Xia, Qing
2011-09-01
To test the hypothesis "lung and large intestine are interior exteriorly related" through investgating into the effect of Dacheng qi tang (DCQT) on intra abdominal hypertension (IAH) and acute lung injury (ALI) in rats with acute pancreatitis. Male SD rats were randomly divided into three groups with ten rats for each group: rats with sham-operations (SO); rats with acute necrosis pancreatitis (ANP); rats with ANP plus DCQT treatment. ANP was induced by retrograde infusion of 5% taurocholic acid into pancreatic duct. Two hours after operations, 10 mL/kg of normal saline was orally adminstered to the rats in both SO and ANP groups, whereas 10 mL/kg DCQT was adminstered to the rats in the treatment group. Aterial blood, pancreas and lung tissues were collected for biomarkers and histopathology 24 hours after operations. Intra-abdominal pressure and intestinal propulsion rate were also measured. RESULTS; DCQT treatment reduced intra-abdominal pressure and improved intestinal propulsion rate compared with those treated with saline (P < 0.05). The ANP rats treated with DCQT had lower wet to dry weight ratio, and milder myeloperoxidase activity and histopathology changes in pancreas and lung than those treated with saline (P < 0.05). Higher pressure of oxygen (PO2) was found in the rats treated with DCQT, while no difference in PCO2 was found between the DCQT and ANP groups (P > 0.05). Only two rats in the ANP group died. DCQT can effectively relieve IAH and cure ALI at the same time in rats with acute pancreatitis. The result provides evidence to support the hypothesis "lung and large intestine are interior exteriorly related".
Use of chest sonography in acute-care radiology☆
De Luca, C.; Valentino, M.; Rimondi, M.R.; Branchini, M.; Baleni, M. Casadio; Barozzi, L.
2008-01-01
Diagnosis of acute lung disease is a daily challenge for radiologists working in acute-care areas. It is generally based on the results of chest radiography performed under technically unfavorable conditions. Computed tomography (CT) is undoubtedly more accurate in these cases, but it cannot always be performed on critically ill patients who need continuous care. The use of thoracic ultrasonography (US) has recently been proposed for the study of acute lung disease. It can be carried out rapidly at the bedside and does not require any particularly sophisticated equipment. This report analyzes our experience with chest sonography as a supplement to chest radiography in an Emergency Radiology Unit. We performed chest sonography – as an adjunct to chest radiography – on 168 patients with acute chest pathology. Static and dynamic US signs were analyzed in light of radiographic findings and, when possible, CT. The use of chest US improved the authors' ability to provide confident diagnoses of acute disease of the chest and lungs. PMID:23397048
Sergio, Luiz Philippe S; Lucinda, Leda M F; Reboredo, Maycon M; de Paoli, Flavia; Fonseca, Lídia M C; Pinheiro, Bruno V; Mencalha, Andre L; Fonseca, Adenilson S
2018-03-01
Purpose/Aim of the study: Patients suffering from chronic obstructive pulmonary disease (COPD) in association with acute respiratory distress syndrome (ARDS) present oxidative stress in lung cells, with production of free radicals and DNA lesions in pulmonary and adjacent cells. Once the DNA molecule is damaged, a set of enzymatic mechanisms are trigged to preserve genetic code integrity and cellular homeostasis. These enzymatic mechanisms include the base and the nucleotide excision repair pathways, as well as telomere regulation. Thus, the aim of this work was to evaluate the mRNA levels from APEX1, ERCC2, TP53, and TRF2 genes in lung tissue from Wistar rats affected by acute lung injury in response to sepsis and emphysema. Adult male Wistar rats were randomized into 4 groups (n = 6, for each group): control, emphysema, sepsis, and emphysema with sepsis. Pulmonary emphysema was induced by intratracheal instillation of elastase (12 IU/animal) and sepsis induced by intraperitoneal Escherichia coli lipopolysaccharide (LPS) injection (10 mg/kg). Lungs were removed, and samples were withdrawn for histological analysis and total RNA extraction, cDNA synthesis, and mRNA level evaluation by real time quantitative polymerase chain reaction. Data show acute lung injury by LPS and emphysema by elastase and that APEX1, ERCC2, TP53, and TRF2 mRNA levels are increased significantly (p < 0.01) in emphysema with sepsis group. Our results suggest that alteration in mRNA levels from DNA repair and genomic stability could be part of cell response to acute lung injury in response to emphysema and sepsis.
Mokra, D; Kosutova, P; Balentova, S; Adamkov, M; Mikolka, P; Mokry, J; Antosova, M; Calkovska, A
2016-12-01
Diffuse alveolar injury, edema, and inflammation are fundamental signs of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Whereas the systemic administration of corticosteroids previously led to controversial results, this study evaluated if corticosteroids given intratracheally may improve lung functions and reduce edema formation, migration of cells into the lung and their activation in experimentally-induced ALI. In oxygen-ventilated rabbits, ALI was induced by repetitive saline lung lavage, until PaO2 decreased to < 26.7 kPa in FiO 2 1.0. Then, one group of animals was treated with corticosteroid budesonide (Pulmicort susp inh, AstraZeneca; 0.25 mg/kg) given intratracheally by means of inpulsion regime of high-frequency jet ventilation, while another group was non-treated, and both groups were oxygen-ventilated for following 5 hours. Another group of animals served as healthy controls. After sacrifice of animals, left lung was saline-lavaged and protein content was measured and cells in the lavage fluid were determined microscopically. Right lung tissue was used for estimation of edema formation (expressed as wet/dry weight ratio), for histomorphological investigation, immunohistochemical determination of apoptosis of lung cells, and for determination of markers of inflammation and lung injury (IL-1β, IL-6, IL-8, TNF-α, IFNγ, esRAGE, caspase-3) by ELISA methods. Levels of several cytokines were estimated also in plasma. Repetitive lung lavage worsened gas exchange, induced lung injury, inflammation and lung edema and increased apoptosis of lung epithelial cells. Budesonide reduced lung edema, cell infiltration into the lung and apoptosis of epithelial cells and decreased concentrations of proinflammatory markers in the lung and blood. These changes resulted in improved ventilation. Concluding, curative intratracheal treatment with budesonide alleviated lung injury, inflammation, apoptosis of lung epithelial cells and lung edema and improved lung functions in a lavage model of ALI. These findings suggest a potential of therapy with inhaled budesonide also for patients with ARDS.
Inhibition of neuronal nitric oxide synthase in ovine model of acute lung injury*
Enkhbaatar, Perenlei; Connelly, Rhykka; Wang, Jianpu; Nakano, Yoshimitsu; Lange, Matthias; Hamahata, Atsumori; Horvath, Eszter; Szabo, Csaba; Jaroch, Stefan; Hölscher, Peter; Hillmann, Margrit; Traber, Lillian D.; Schmalstieg, Frank C.; Herndon, David N.; Traber, Daniel L.
2013-01-01
Objective Acute respiratory distress syndrome/acute lung injury is a serious complication of burn patients with concomitant smoke inhalation injury. Nitric oxide has been shown to play a major role in pulmonary dysfunction from thermal damage. In this study, we have tested the hypothesis that inhibition of neuronal nitric oxide synthase could ameliorate the severity of acute lung injury using our well-established ovine model of cutaneous burn and smoke inhalation. Design Prospective, randomized, controlled, experimental animals study. Setting Investigational intensive care unit at university hospital. Subjects Adult female sheep Interventions Female sheep (n = 16) were surgically prepared for the study. Seven days after surgery, all sheep were randomly allocated into three study groups: sham (noninjured, nontreated, n = 6); control (injured, treated with saline, n = 6); and neuronal nitric oxide synthase (injured, treated with specific neuronal nitric oxide synthase inhibitor, ZK 234238 (n = 4). Control and neuronal nitric oxide synthase groups were given a cutaneous burn (40% of total body surface, third degree) and insufflated with cotton smoke (48 breaths, <40°C) under halothane anesthesia. Animals in sham group received fake injury also under halothane anesthesia. After injury or fake injury procedure, all sheep were placed on ventilators and resuscitated with lactated Ringer's solution. Neuronal nitric oxide synthase group was administered with continuous infusion of ZK 234238 started 1 hr postinjury with a dose of 100 μg/kg/hr. Sham and control groups received same amount of saline. Measurements and Main Results Cardiopulmonary hemodynamics monitored during the 24-hr experimental time period was stable in the sham group. Control sheep developed multiple signs of acute lung injury. This pathophysiology included decreased pulmonary gas exchange and lung compliance, increased pulmonary edema, and inflammatory indices, such as interleukin-8. Treatment of injured sheep with neuronal nitric oxide synthase inhibitor attenuated all the observed pulmonary pathophysiology. Conclusions The results provide definitive evidence that inhibition of neuronal nitric oxide synthase-derived excessive nitric oxide may be a novel and beneficial treatment strategy for pulmonary pathology in burn victims with smoke inhalation injury. PMID:19050603
Marijuana Smoking in Patients With Leukemia.
Khwaja, Sara; Yacoub, Abraham; Cheema, Asima; Rihana, Nancy; Russo, Robin; Velez, Ana Paula; Nanjappa, Sowmya; Sandin, Ramon L; Bohra, Chandrashekar; Gajanan, Ganesh; Greene, John N
2016-07-01
Worldwide, marijuana (cannabis) is a widely used drug. The incidence of marijuana smoking is increasing and is second only to tobacco as the most widely smoked substance in the general population. It is also the second most commonly used recreational drug after alcohol. Some adverse effects of marijuana smoking have been documented; however, the number of studies on the pulmonary effects of marijuana in individuals with leukemia is limited. In our case series, we report on 2 men with acute myeloid leukemia with miliary nodular lung patterns on computed tomography of the chest due to heavy marijuana use. We also report on 2 patients with acute lymphocytic leukemia who had a history of smoking marijuana and then developed lung opacities consistent with mold infection.
Feng, Xiaomei; Maze, Mervyn; Koch, Lauren G.; Britton, Steven L.; Hellman, Judith
2015-01-01
Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses. PMID:25978669
Place of Death in Patients with Lung Cancer: A Retrospective Cohort Study from 2004-2013.
O'Dowd, Emma L; McKeever, Tricia M; Baldwin, David R; Hubbard, Richard B
2016-01-01
Many patients with cancer die in an acute hospital bed, which has been frequently identified as the least preferred location, with psychological and financial implications. This study looks at place and cause of death in patients with lung cancer and identifies which factors are associated with dying in an acute hospital bed versus at home. We used the National Lung Cancer Audit linked to Hospital Episode Statistics and Office for National Statistics data to determine cause and place of death in those with lung cancer; both overall and by cancer Network. We used multivariate logistic regression to compare features of those who died in an acute hospital versus those who died at home. Of 143627 patients identified 40% (57678) died in an acute hospital, 29% (41957) died at home and 17% (24108) died in a hospice. Individual factors associated with death in an acute hospital bed compared to home were male sex, increasing age, poor performance status, social deprivation and diagnosis via an emergency route. There was marked variation between cancer Networks in place of death. The proportion of patients dying in an acute hospital ranged from 28% to 48%, with variation most notable in provision of hospice care (9% versus 33%). Cause of death in the majority was lung cancer (86%), with other malignancies, chronic obstructive pulmonary disease (COPD) and ischaemic heart disease (IHD) comprising 9% collectively. A substantial proportion of patients with lung cancer die in acute hospital beds and this is more likely with increasing age, male sex, social deprivation and in those with poor performance status. There is marked variation between Networks, suggesting a need to improve end-of-life planning in those at greatest risk, and to review the allocation of resources to provide more hospice beds, enhanced community support and ensure equal access.
NASA Astrophysics Data System (ADS)
Sergio, L. P. S.; Trajano, L. A. S. N.; Thomé, A. M. C.; Mencalha, A. L.; Paoli, F.; Fonseca, A. S.
2018-06-01
Acute lung injury (ALI) is a potentially fatal disease characterized by uncontrolled hyperinflammatory responses in the lungs as a consequence of sepsis. ALI is divided into two sequential and time-dependent phases, exudative and fibroproliferative phases, with increased permeability of the alveolar barrier, causing edema and inflammation. However, there are no specific treatments for ALI. Low-power lasers have been successfully used in the resolution of acute inflammatory processes. The aim of this study was to evaluate the effects of low-power infrared laser exposure on alveolus and interalveolar septa of Wistar rats affected by ALI-induced by sepsis. Laser fluences, power, and the emission mode were those used in clinical protocols for the treatment of acute inflammation. Adult male Wistar rats were randomized into six groups: control, 10 J cm‑2, 20 J cm‑2, ALI, ALI + 10 J cm‑2, and ALI + 20 J cm‑2. ALI was induced by intraperitoneal Escherichia coli lipopolysaccharide (LPS). Lungs were removed and processed for hematoxylin–eosin staining. Morphological alterations induced by LPS in lung tissue were quantified by morphometry with a 32-point cyclic arcs test system in Stepanizer. Data showed that exposure to low-power infrared laser in both fluences reduced the thickening of interalveolar septa in lungs affected by ALI, increasing the alveolar space; however, inflammatory infiltrate was still observed. Our research showed that exposure to low-power infrared laser improves the lung parenchyma in Wistar rats affected by ALI, which could be an alternative approach for treatment of inflammatory lung injuries.
Kumar, Vijay; Chhibber, Sanjay
2008-09-11
Thalidomide (alpha-naphtylimidoglutarimide), a psychoactive drug that readily crosses blood-brain barrier, has been shown to exhibit anti-inflammatory, anti-angiogenic, immunomodulatory properties through a mechanism that is not fully established. Keeping these properties in mind, we tried to find out the anti-inflammatory properties of thalidomide in mouse model of acute inflammation by introducing K. pneumoniae B5055 in BALB/c mice via intranasal route. The intranasal instillation of bacteria in this mouse model of acute pneumonia induced inflammation accompanied with significant increase in neutrophil infiltration in the lungs and also increased production of mediators of inflammation (i.e. malondialdehyde, myeloperoxidase and nitric oxide) in the lung tissue. The animals, which received thalidomide alone orally or in combination with augmentin, 30 min prior to bacterial instillation into the lungs via intranasal route, showed significant (P<0.05) decrease in neutrophil influx into the lungs and there was significant (P<0.05) decrease in the production of malondialdehyde, nitric oxide and myeloperoxidase activity. But the augmentin treatment alone did not decrease the malondialdehyde, myeloperoxidase and nitric oxide significantly (P>0.05) as compared to the control group. We therefore conclude that thalidomide ameliorates lung inflammation induced by K. pneumoniae B5055 without significantly (P<0.05) decreasing the bacterial load in the lung tissue whereas augmentin takes care of bacterial proliferation. Hence, it can be used as an adjunct therapy along with antibiotics as an anti-inflammatory or an immunomodulatory agent in case of acute lung infection.
Faricy, Lauren Elizabeth; Church, Gwynne
2017-01-01
Outcomes for invasive mechanical ventilation and extracorporeal membrane oxygenation (ECMO) to treat acute respiratory failure in patients with mild cystic fibrosis (CF) lung disease are not known. We present a case of the successful use of ECMO to treat acute respiratory failure secondary to staphylococcal sepsis in an adolescent CF patient with previously normal lung function. Her post-ECMO course was notable for severe airflow obstruction, hypoxemia, deconditioning, and growth failure. She had significantly improved at six months follow-up, though she continued to have moderate airflow obstruction on pulmonary function testing. This case illustrates that ECMO and prolonged intubation can prolong life in CF patients with mild lung disease who present with potentially reversible acute respiratory failure, though they are associated with significant morbidity.
Development of novel force-limiting grasping forceps with a simple mechanism.
Sakaguchi, Yasuto; Sato, Toshihiko; Yutaka, Yojiro; Muranishi, Yusuke; Komatsu, Teruya; Yoshizawa, Akihiko; Nakajima, Naoki; Nakamura, Tatsuo; Date, Hiroshi
2018-06-06
In endoscopic surgery, fragile tissues may be damaged by the application of excessive force. Thus, we developed novel endoscopic forceps with a simple force-limiting mechanism. The novel forceps were constructed with a leaf spring, and the spring thickness determines grasping pressure. We established an evaluation system (maximum score is 11 points) for lung tissue damage leading to complications. We tested the conventional forceps (186.8 kPa) and 3 novel spring forceps with the following thicknesses: 1.3 mm (53.0 kPa), 2.2 mm (187.7 kPa) and 2.8 mm (369.2 kPa). After grasping, peripheral canine lung tissues were microscopically examined for acute- and late-phase damages. In the acute phase (20 sites), the novel forceps caused capillary congestion and haemorrhage in the subpleural tissue, whereas the conventional forceps caused deep tissue and pleural damages. In the late phase (30 sites), both forceps caused fibroblast formation and interstitial thickening, which progressed to the deeper tissues as grasping pressure increased. In the acute phase, the median scores were 2.0 and 6.0 for the novel and conventional forceps, respectively (P = 0.003). In the late phase, the median scores were 2.0, 2.5 and 5.0 for 1.3-, 2.2- and 2.8-mm thick forceps, respectively, and 5.0 for the conventional forceps (P < 0.001). In both phases, the novel forceps with grasping pressure set below 187.7 kPa (2.2 mm) caused significantly less lung tissue damage than the conventional forceps. The novel endoscopic forceps are able to regulate the tissue-grasping pressure and induce less damage in lung tissues than conventional forceps.
Monsel, Antoine; Zhu, Ying-gang; Gudapati, Varun; Lim, Hyungsun; Lee, Jae W.
2017-01-01
Introduction Acute respiratory distress syndrome is a major cause of respiratory failure in critically ill patients. Despite extensive research into its pathophysiology, mortality remains high. No effective pharmacotherapy exists. Based largely on numerous preclinical studies, administration of mesenchymal stem or stromal cell (MSC) as a therapeutic for acute lung injury holds great promise, and clinical trials are currently underway. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that novel cell-free therapies including MSC-derived conditioned medium and extracellular vesicles released from MSCs might constitute compelling alternatives. Areas covered The current review summarizes the preclinical studies testing MSC conditioned medium and/or MSC extracellular vesicles as treatment for acute lung injury and other inflammatory lung diseases. Expert opinion While certain logistical obstacles limit the clinical applications of MSC conditioned medium such as the volume required for treatment, the therapeutic application of MSC extracellular vesicles remains promising, primarily due to ability of extracellular vesicles to maintain the functional phenotype of the parent cell. However, utilization of MSC extracellular vesicles will require large-scale production and standardization concerning identification, characterization and quantification. PMID:27011289
Altered Exosomal RNA Profiles in Bronchoalveolar Lavage from Lung Transplants with Acute Rejection.
Gregson, Aric L; Hoji, Aki; Injean, Patil; Poynter, Steven T; Briones, Claudia; Palchevskiy, Vyacheslav; Weigt, S Sam; Shino, Michael Y; Derhovanessian, Ariss; Sayah, David; Saggar, Rajan; Ross, David; Ardehali, Abbas; Lynch, Joseph P; Belperio, John A
2015-12-15
The mechanism by which acute allograft rejection leads to chronic rejection remains poorly understood despite its common occurrence. Exosomes, membrane vesicles released from cells within the lung allograft, contain a diverse array of biomolecules that closely reflect the biologic state of the cell and tissue from which they are released. Exosome transcriptomes may provide a better understanding of the rejection process. Furthermore, biomarkers originating from this transcriptome could provide timely and sensitive detection of acute cellular rejection (AR), reducing the incidence of severe AR and chronic lung allograft dysfunction and improving outcomes. To provide an in-depth analysis of the bronchoalveolar lavage fluid exosomal shuttle RNA population after lung transplantation and evaluate for differential expression between acute AR and quiescence. Serial bronchoalveolar lavage specimens were ultracentrifuged to obtain the exosomal pellet for RNA extraction, on which RNA-Seq was performed. AR demonstrates an intense inflammatory environment, skewed toward both innate and adaptive immune responses. Novel, potential upstream regulators identified offer potential therapeutic targets. Our findings validate bronchoalveolar lavage fluid exosomal shuttle RNA as a source for understanding the pathophysiology of AR and for biomarker discovery in lung transplantation.
Altered Exosomal RNA Profiles in Bronchoalveolar Lavage from Lung Transplants with Acute Rejection
Hoji, Aki; Injean, Patil; Poynter, Steven T.; Briones, Claudia; Palchevskiy, Vyacheslav; Sam Weigt, S.; Shino, Michael Y.; Derhovanessian, Ariss; Saggar, Rajan; Ross, David; Ardehali, Abbas; Lynch, Joseph P.; Belperio, John A.
2015-01-01
Rationale: The mechanism by which acute allograft rejection leads to chronic rejection remains poorly understood despite its common occurrence. Exosomes, membrane vesicles released from cells within the lung allograft, contain a diverse array of biomolecules that closely reflect the biologic state of the cell and tissue from which they are released. Exosome transcriptomes may provide a better understanding of the rejection process. Furthermore, biomarkers originating from this transcriptome could provide timely and sensitive detection of acute cellular rejection (AR), reducing the incidence of severe AR and chronic lung allograft dysfunction and improving outcomes. Objectives: To provide an in-depth analysis of the bronchoalveolar lavage fluid exosomal shuttle RNA population after lung transplantation and evaluate for differential expression between acute AR and quiescence. Methods: Serial bronchoalveolar lavage specimens were ultracentrifuged to obtain the exosomal pellet for RNA extraction, on which RNA-Seq was performed. Measurements and Main Results: AR demonstrates an intense inflammatory environment, skewed toward both innate and adaptive immune responses. Novel, potential upstream regulators identified offer potential therapeutic targets. Conclusions: Our findings validate bronchoalveolar lavage fluid exosomal shuttle RNA as a source for understanding the pathophysiology of AR and for biomarker discovery in lung transplantation. PMID:26308930
Iwata, Takekazu; Yoshida, Shigetoshi; Nagato, Kaoru; Nakajima, Takahiro; Suzuki, Hidemi; Tagawa, Tetsuzo; Mizobuchi, Teruaki; Ota, Satoshi; Nakatani, Yukio; Yoshino, Ichiro
2015-10-01
Idiopathic pulmonary fibrosis (IPF) is a progressive diffuse lung disease associated with an increased risk of lung cancer. Patients with IPF sometimes develop a life-threatening acute exacerbation of IPF (AE-IPF) after lung cancer surgery. In this retrospective study, pirfenidone, an antifibrotic agent, was perioperatively administered to IPF patients with lung cancer with the aim of preventing postoperative AE-IPF, and the feasibility and clinical outcomes were investigated. Twelve IPF patients with concomitant lung cancer who received perioperative pirfenidone treatment (PPT) for lung cancer surgery were retrospectively investigated. Sixteen IPF patients undergoing lung cancer surgery without PPT were analyzed as historical controls. Compared to the controls, the PPT patients had a more severely impaired preoperative pulmonary function and a larger number of limited pulmonary resections. There was a significant preoperative decrease in the serum KL-6 levels of the PPT patients. No severe pirfenidone-related complications or IPF-related events occurred in the PPT patients, while six control patients developed AE-IPF (P = 0.0167). A quantitative histopathological evaluation of resected lung specimens found that tissue changes associated with IPF were significantly fewer in the PPT patients (P = 0.021). PPT is a feasible perioperative treatment for IPF patients with lung cancer. Its effectiveness in preventing postoperative AE-IPF thus warrants prospective verification.
Goodwin, Jodi; Tinckam, Kathryn; denHollander, Neal; Haroon, Ayesha; Keshavjee, Shaf; Cserti-Gazdewich, Christine M
2010-09-01
It is unknown the extent to which transfusion-related acute lung injury (TRALI) contributes to primary graft dysfunction (PGD), the leading cause of death after lung transplantation. In this case of suspected transfusion-associated acute bilateral graft injury in a 61-year-old idiopathic pulmonary fibrosis patient, recipient sera from before and after transplantation/transfusion, as well as the sera of 22 of the 24 implicated blood donors, were individually screened by Luminex bead assay for the presence of human leukocyte antigen (HLA) antibodies, with recipient and lung donor HLA typing to explore for cognate relationships. A red-cell-unit donor-source anti-Cw6 antibody, cognate with the HLA type of the recipient, was identified. This is the second reported case of TRALI in the setting of lung transplantation, and the first to show an associated interaction between donor antibodies (in a low-plasma volume product) with recipient leukocytes (rather than graft antigens); therefore, it should be considered in the differential diagnosis of PGD. Copyright 2010 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Marini, John J; Gattinoni, Luciano
2008-12-01
To describe the clinical implications of an often neglected mechanism through which localized acute lung injury may be propagated and intensified. Experimental and clinical evidence from the medical literature relevant to the airway propagation hypothesis and its consequences. The diffuse injury that characterizes acute respiratory distress syndrome is often considered a process that begins synchronously throughout the lung, mediated by inhaled or blood-borne noxious agents. Relatively little attention has been paid to possibility that inflammatory lung injury may also begin focally and propagate sequentially via the airway network, proceeding mouth-ward from distal to proximal. Were this true, modifications of ventilatory pattern and position aimed at geographic containment of the injury process could help prevent its generalization and limit disease severity. The purposes of this communication are to call attention to this seldom considered mechanism for extending lung injury that might further justify implementation of low tidal volume/high positive end-expiratory pressure ventilatory strategies for lung protection and to suggest additional therapeutic measures implied by this broadened conceptual paradigm.
Protective effect of U74500A on phorbol myristate acetate-induced acute lung injury.
Chu, Shi-Jye; Chang, Deh-Ming; Wang, David; Lin, Hen-I; Lin, Shih-Hua; Hsu, Kang
2004-08-01
1. The present study was designed to determine whether U74500A could ameliorate acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in our rat isolated lung model compared with any amelioration induced by dimethylthiourea (DMTU), superoxide dismutase (SOD) and catalase. 2. Acute lung injury was induced successfully by PMA during 60 min of observation. At 2 microg/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, the lung weight/bodyweight ratio, pulmonary arterial pressure and protein concentration of the bronchoalveolar lavage fluid. 3. Pretreatment with 1.5 mg/kg U74500A significantly attenuated ALI; there was no significant increase in any parameters measured, except for pulmonary arterial pressure. The protective effect of U74500A was approximately the same as that of 600 mg/kg DMTU. However, 6000 U/kg SOD, 50,000 U/kg catalase and 6000 U/kg SOD + 50,000 U/kg catalase had no protective effect. 4. These experimental data suggest that U74500A significantly ameliorates ALI induced by PMA in rats.
Lee, Yann-Leei; Obiako, Boniface; Gorodnya, Olena M; Ruchko, Mykhaylo V; Kuck, Jamie L; Pastukh, Viktor M; Wilson, Glenn L; Simmons, Jon D; Gillespie, Mark N
2017-07-01
Although studies in rat cultured pulmonary artery endothelial cells, perfused lungs, and intact mice support the concept that oxidative mitochondrial (mt) DNA damage triggers acute lung injury (ALI), it has not yet been determined whether enhanced mtDNA repair forestalls development of ALI and its progression to multiple organ system failure (MOSF). Accordingly, here we examined the effect of a fusion protein construct targeting the DNA glycosylase, Ogg1, to mitochondria in a rat model intra-tracheal Pseudomonas aeruginosa (strain 103; PA103)-induced ALI and MOSF. Relative to controls, animals given PA103 displayed increases in lung vascular filtration coefficient accompanied by transient lung tissue oxidative mtDNA damage and variable changes in mtDNA copy number without evidence of nuclear DNA damage. The approximate 40% of animals surviving 24 h after bacterial administration exhibited multiple organ dysfunction, manifest as increased serum and tissue-specific indices of kidney and liver failure, along with depressed heart rate and blood pressure. While administration of mt-targeted Ogg1 to control animals was innocuous, the active fusion protein, but not a DNA repair-deficient mutant, prevented bacteria-induced increases in lung tissue oxidative mtDNA damage, failed to alter mtDNA copy number, and attenuated lung endothelial barrier degradation. These changes were associated with suppression of liver, kidney, and cardiovascular dysfunction and with decreased 24 h mortality. Collectively, the present findings indicate that oxidative mtDNA damage to lung tissue initiates PA103-induced ALI and MOSF in rats.
Huang, Jiequn; Liu, Changzhi; Zhu, Ruiqiu; Su, Yongpeng; Lin, Jingcheng; Lu, Jianhai; Wen, Shuchao; Zuo, Liuer
2018-06-01
We report a man with amyopathic dermatomyositis (ADM) complicated by severe interstitial lung disease (ILD) received extracorporeal membrane oxygenation (ECMO) in combination with double filtration plasmapheresis (DFPP). This is the first report of the utility of ECMO in combination with DFPP in ADM related ILD in adults. A 48-year-old man who was previously healthy had a 2-month history of cough and shortness of breath, which aggravated in 5 days. Amyopathic dermatomyositis and complicated by severe interstitial lung disease. ECMO was giving when the patient suffered acute respiratory failure. Though corticosteroids was giving, primary disease was still developing with relapses of spontaneous pneumomediastinum and pneumothorax. Then, DFPP treatment was initiated. After the treatments above, the patient's clinical condition improved with the reduction of bilateral interstitial infiltrates and improvement of lung compliance. Unfortunately, he discontinued the treatment because of the financial problem. When get a rapid progressive interstitial lung disease for no apparent reason, amyopathic dermatomyositis should be considered, especially with suspected skin lesions. ECMO, in combination with DFPP, should be considered as a supportive therapy and initiated early in patients in acute respiratory failure secondary to ADM-ILD. Prompt initiation of DFPP in dermatomyositis patients with ILD might help reduce the occurrence of spontaneous pneumomediastinum or pneumothorax.
Association of Heme Oxygenase 1 with Lung Protection in Malaria-Associated ALI/ARDS.
Pereira, Marcelo L M; Ortolan, Luana S; Sercundes, Michelle K; Debone, Daniela; Murillo, Oscar; Lima, Flávia A; Marinho, Claudio R F; Epiphanio, Sabrina
2016-01-01
Malaria is a serious disease, caused by the parasite of the genus Plasmodium , which was responsible for 440,000 deaths in 2015. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the main clinical complications in severe malaria. The murine model DBA/2 reproduces the clinical signs of ALI/ARDS in humans, when infected with Plasmodium berghei ANKA. High levels of HO-1 were reported in cases of severe malaria. Our data indicated that the HO-1 mRNA and protein expression are increased in mice that develop malaria-associated ALI/ARDS (MA-ALI/ARDS). Additionally, the hemin, a HO-1 inducing drug, prevented mice from developing MA-ALI/ARDS when administered prior to the development of MA-ALI/ARDS in this model. Also, hemin treatment showed an amelioration of respiratory parameters in mice, high VEGF levels in the sera, and a decrease in vascular permeability in the lung, which are signs of ALI/ARDS. Therefore, the induction of HO-1 before the development of MA-ALI/ARDS could be protective. However, the increased expression of HO-1 on the onset of MA-ALI/ARDS development may represent an effort to revert the phenotype of this syndrome by the host. We therefore confirm that HO-1 inducing drugs could be used for prevention of MA-ALI/ARDS in humans.
Gamma-Terpinene Modulates Acute Inflammatory Response in Mice.
Ramalho, Theresa Raquel de Oliveira; Oliveira, Maria Talita Pacheco de; Lima, Ana Luisa de Araujo; Bezerra-Santos, Claudio Roberto; Piuvezam, Marcia Regina
2015-09-01
The monoterpene gamma-terpinene is a natural compound present in essential oils of a wide variety of plants, including the Eucalyptus genus, which has been reported to possess anti-inflammatory activity. The goal of this study was to evaluate the effect of gamma-terpinene on several in vivo experimental models of acute inflammation. Swiss mice were pretreated with gamma-terpinene and subjected to protocols of paw edema with different phlogistic agents such as carrageenan, prostaglandin-E2, histamine, or bradykinin. The microvascular permeability was measured by intraperitoneal injection of acetic acid and measuring the amount of protein extravasation. Carrageenan-induced peritonitis was used to analyze the effect of gamma-terpinene on inflammatory cell migration and cytokine production. We also developed an acute lung injury protocol to define the anti-inflammatory effect of gamma-terpinene. Mice pretreated with gamma-terpinene displayed reduced paw edema induced by carrageenan from 1-24 h after challenge. A similar reduction was observed when gamma-terpinene was administered after stimulation with PGE2, bradykinin, and histamine. Treatment with gamma-terpinene also inhibited fluid extravasation in the acetic acid model of microvascular permeability. In a carrageenan-induced peritonitis model, gamma-terpinene treatment reduced neutrophil migration as well as the production of interleukin-1β and tumor necrosis factor-α when compared to nontreated animals, and in the acute lung injury protocol, gamma-terpinene diminished the neutrophil migration into lung tissue independently of the total protein extravasation in the lung. These data demonstrate that, in different models of inflammation, treatment with gamma-terpinene alleviated inflammatory parameters such as edema and pro-inflammatory cytokine production, as well as cell migration into the inflamed site, and that this monoterpene has anti-inflammatory properties. Georg Thieme Verlag KG Stuttgart · New York.
Life-threatening Cerebral Edema Caused by Acute Occlusion of a Superior Vena Cava Stent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sofue, Keitaro, E-mail: keitarosofue@yahoo.co.jp; Takeuchi, Yoshito, E-mail: yotake62@qg8.so-net.ne.jp; Arai, Yasuaki, E-mail: arai-y3111@mvh.biglobe.ne.jp
A71-year-old man with advanced lung cancer developed a life-threatening cerebral edema caused by the acute occlusion of a superior vena cava (SVC) stent and was successfully treated by an additional stent placement. Although stent occlusion is a common early complication, no life-threatening situations have been reported until now. Our experience highlights the fact that acute stent occlusion can potentially lead to the complete venous shutdown of the SVC, resulting in life-threatening cerebral edema, after SVC stent placement. Immediate diagnosis and countermeasures are required.
van Erp, Nicole; Little, Paul; Stuart, Beth; Moore, Michael; Thomas, Mike; Butler, Chris C; Hood, Kerenza; Coenen, Samuel; Goossens, Herman; Leven, Margareta; Verheij, Theo J M
2014-09-25
In acute cough patients, impaired lung function as present in chronic lung conditions like asthma and chronic obstructive pulmonary disease (COPD) are often thought to negatively influence course of disease, but clear evidence is lacking. To investigate the influence of lung function abnormalities on course of disease and response to antibiotic therapy in primary care patients with acute cough. A total of 3,104 patients with acute cough (⩽28 days) were included in a prospective observational study with a within-nested trial, of which 2,427 underwent spirometry 28-35 days after inclusion. Influence of the lung function abnormalities fixed obstruction (forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio <0.7) and bronchodilator responsiveness (FEV1 increase of ⩾12% or 200 ml after 400 μg salbutamol) on symptom severity, duration and worsening were evaluated using uni- and multivariable regression models. Antibiotic use was defined as the reported use of antibiotics ⩾5 days in the first week. Interaction terms were calculated to investigate modifying effects of lung function on antibiotic effect. The only significant association was the effect of severe airway obstruction on symptom severity on days 2-4 (difference=0.31, 95% confidence interval (CI)=0.03-0.60, P=0.03). No evidence of a differential effect of lung function on the effect of antibiotics was found. Prior use of inhaled steroids was associated with a 30% slower resolution of symptoms rated 'moderately bad' or worse (hazard ratio=0.75, 95% CI=0.63-0.90, P=0.00). In adult patients with acute cough, lung function abnormalities were neither significantly associated with course of disease nor did they modify the effect of antibiotics.
Gajic, Ognjen; Dabbagh, Ousama; Park, Pauline K; Adesanya, Adebola; Chang, Steven Y; Hou, Peter; Anderson, Harry; Hoth, J Jason; Mikkelsen, Mark E; Gentile, Nina T; Gong, Michelle N; Talmor, Daniel; Bajwa, Ednan; Watkins, Timothy R; Festic, Emir; Yilmaz, Murat; Iscimen, Remzi; Kaufman, David A; Esper, Annette M; Sadikot, Ruxana; Douglas, Ivor; Sevransky, Jonathan; Malinchoc, Michael
2011-02-15
Accurate, early identification of patients at risk for developing acute lung injury (ALI) provides the opportunity to test and implement secondary prevention strategies. To determine the frequency and outcome of ALI development in patients at risk and validate a lung injury prediction score (LIPS). In this prospective multicenter observational cohort study, predisposing conditions and risk modifiers predictive of ALI development were identified from routine clinical data available during initial evaluation. The discrimination of the model was assessed with area under receiver operating curve (AUC). The risk of death from ALI was determined after adjustment for severity of illness and predisposing conditions. Twenty-two hospitals enrolled 5,584 patients at risk. ALI developed a median of 2 (interquartile range 1-4) days after initial evaluation in 377 (6.8%; 148 ALI-only, 229 adult respiratory distress syndrome) patients. The frequency of ALI varied according to predisposing conditions (from 3% in pancreatitis to 26% after smoke inhalation). LIPS discriminated patients who developed ALI from those who did not with an AUC of 0.80 (95% confidence interval, 0.78-0.82). When adjusted for severity of illness and predisposing conditions, development of ALI increased the risk of in-hospital death (odds ratio, 4.1; 95% confidence interval, 2.9-5.7). ALI occurrence varies according to predisposing conditions and carries an independently poor prognosis. Using routinely available clinical data, LIPS identifies patients at high risk for ALI early in the course of their illness. This model will alert clinicians about the risk of ALI and facilitate testing and implementation of ALI prevention strategies. Clinical trial registered with www.clinicaltrials.gov (NCT00889772).
McNamee, J J; Gillies, M A; Barrett, N A; Agus, A M; Beale, R; Bentley, A; Bodenham, A; Brett, S J; Brodie, D; Finney, S J; Gordon, A J; Griffiths, M; Harrison, D; Jackson, C; McDowell, C; McNally, C; Perkins, G D; Tunnicliffe, W; Vuylsteke, A; Walsh, T S; Wise, M P; Young, D; McAuley, D F
2017-05-01
One of the few interventions to demonstrate improved outcomes for acute hypoxaemic respiratory failure is reducing tidal volumes when using mechanical ventilation, often termed lung protective ventilation. Veno-venous extracorporeal carbon dioxide removal (vv-ECCO 2 R) can facilitate reducing tidal volumes. pRotective vEntilation with veno-venouS lung assisT (REST) is a randomised, allocation concealed, controlled, open, multicentre pragmatic trial to determine the clinical and cost-effectiveness of lower tidal volume mechanical ventilation facilitated by vv-ECCO 2 R in patients with acute hypoxaemic respiratory failure. Patients requiring intubation and mechanical ventilation for acute hypoxaemic respiratory failure will be randomly allocated to receive either vv-ECCO 2 R and lower tidal volume mechanical ventilation or standard care with stratification by recruitment centre. There is a need for a large randomised controlled trial to establish whether vv-ECCO 2 R in acute hypoxaemic respiratory failure can allow the use of a more protective lung ventilation strategy and is associated with improved patient outcomes.
Lung lavage with oxygenated perfluorochemical liquid in acute lung injury.
Richman, P S; Wolfson, M R; Shaffer, T H
1993-05-01
To investigate the effects of lung lavage with oxygenated liquid perfluorochemical on gas exchange, lung mechanics, and cardiac function in animals with acute lung injury. Prospective, randomized, controlled trial. Animal laboratory. Eight adult cats (2 to 4 kg, random sex). Two insults were combined to cause lung injury: oleic acid infusion and saline whole-lung wash. Animals were assigned to either the control or treatment group which consisted of a perfluorochemical liquid (Rimar 101) lavage. Perfluorochemical liquid lavage was performed three times at hourly intervals after lung injury. Three other cats with identical injury but no perfluorochemical liquid lavage served as control animals. All cats were ventilated with an FIO2 of 0.95 and positive end-expiratory pressure of 2 cm H2O continuously. Arterial blood gas tensions and pH, dynamic pulmonary compliance were measured at 15-min intervals. Cardiac index was assessed hourly, and lung fluid was collected after each of the three perfluorochemical liquid lavages. Arterial oxygen tension and pulmonary compliance deteriorated abruptly after lung injury in all cats, and improved significantly (p < .001, two-way analysis of variance) 15 mins after perfluorochemical liquid lavage. These parameters gradually returned to their baseline over 60 mins. Arterial blood pressure and cardiac index decreased after injury in all cats, and were not significantly changed after perfluorochemical liquid lavage. Hemorrhagic fluid was recovered from distal airways by perfluorochemical liquid lavage, despite prior suctioning of the airway. Perfluorochemical liquid lavage removes pulmonary edema fluid and improves gas exchange and the mechanical properties of the lung, after acute severe lung injury.
Santos, Arnoldo; Gomez-Peñalver, Eva; Monge-Garcia, M Ignacio; Retamal, Jaime; Borges, João Batista; Tusman, Gerardo; Hedenstierna, Goran; Larsson, Anders; Suarez-Sipmann, Fernando
2017-11-01
To compare the effects of two lung-protective ventilation strategies on pulmonary vascular mechanics in early acute respiratory distress syndrome. Experimental study. University animal research laboratory. Twelve pigs (30.8 ± 2.5 kg). Acute respiratory distress syndrome was induced by repeated lung lavages and injurious mechanical ventilation. Thereafter, animals were randomized to 4 hours ventilation according to the Acute Respiratory Distress Syndrome Network protocol or to an open lung approach strategy. Pressure and flow sensors placed at the pulmonary artery trunk allowed continuous assessment of pulmonary artery resistance, effective elastance, compliance, and reflected pressure waves. Respiratory mechanics and gas exchange data were collected. Acute respiratory distress syndrome led to pulmonary vascular mechanics deterioration. Four hours after randomization, pulmonary vascular mechanics was similar in Acute Respiratory Distress Syndrome Network and open lung approach: resistance (578 ± 252 vs 626 ± 153 dyn.s/cm; p = 0.714), effective elastance, (0.63 ± 0.22 vs 0.58 ± 0.17 mm Hg/mL; p = 0.710), compliance (1.19 ± 0.8 vs 1.50 ± 0.27 mL/mm Hg; p = 0.437), and reflection index (0.36 ± 0.04 vs 0.34 ± 0.09; p = 0.680). Open lung approach as compared to Acute Respiratory Distress Syndrome Network was associated with improved dynamic respiratory compliance (17.3 ± 2.6 vs 10.5 ± 1.3 mL/cm H2O; p < 0.001), driving pressure (9.6 ± 1.3 vs 19.3 ± 2.7 cm H2O; p < 0.001), and venous admixture (0.05 ± 0.01 vs 0.22 ± 0.03, p < 0.001) and lower mean pulmonary artery pressure (26 ± 3 vs 34 ± 7 mm Hg; p = 0.045) despite of using a higher positive end-expiratory pressure (17.4 ± 0.7 vs 9.5 ± 2.4 cm H2O; p < 0.001). Cardiac index, however, was lower in open lung approach (1.42 ± 0.16 vs 2.27 ± 0.48 L/min; p = 0.005). In this experimental model, Acute Respiratory Distress Syndrome Network and open lung approach affected pulmonary vascular mechanics similarly. The use of higher positive end-expiratory pressures in the open lung approach strategy did not worsen pulmonary vascular mechanics, improved lung mechanics, and gas exchange but at the expense of a lower cardiac index.
Liu, Zheng; Jin, He; Fan, Xia; Yang, Xue; Tang, Wanqi; Liang, Huaping
2014-01-01
Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson's disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM) challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF)-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI. PMID:25243152
Lv, Q
2016-09-01
In order to seek an effective strategy for clinical treatment of acute lung injury (ALI), we are committed to explore the effect of combination therapy of glucocorticoid and hyaluronic acid on acute lung injury caused by an endotoxin (LPS) and its mechanism. Adult male Sprague-Dawley (SD) rats were divided randomly into 5 groups: normal group (n=8); LPS group (n=8); dexamethasone +LPS group (DXMS group, n=8); hyaluronic acid+ LPS group (HA group, n=8); dexamethasone +hyaluronic acid +LPS group (DXMS+HA group, n=8). Firstly, SD rat model with acute lung injury induced by LPS was established, and injected corresponding drugs according to the plan. Then, the expression of TNF-a, IL-8, IL-10, ICAM-1 and total protein were measured by ELISA, and the HE staining was used for detected the pathological change in lung tissue. Subsequently, the water content, dry and wet ratio and permeability in lung tissues of SD rats was assayed. Finally, the expression level of the glucocorticoid receptor (GR) was detected by RT-PCR, and activation of p-p38MAPK was determined by Western blotting. The results showed that concentration of IL-8, IL-10 and ICAM-1 was significantly increased in BALF after LPS injection, and the results from HE staining showed it had widespread inflammation. However, lung structures in SD rats with inhalation lung injury were improved significantly after the injection of dexamethasone and hyaluronic acid, and the Pa02/Fi02, blood pressure and Cdyn were also increased. Moreover, lung water content, the ratio of wet and dry lung, and lung permeability index (LPI) was decreased after having treated the SD rats with a combination of dexamethasone and hyaluronic acid, and the apoptosis index was also decreased in the rats with LPS-induced ALI. Our data also suggested that TNF-α, IL-8, IL-10, intercellular cell adhesion molecule-1 (ICAM-1) and total protein was significantly declined in bronchoalveolar lavage fluid (BALF) of rats with LPS-induced acute lung injury after treated the SD rats with a combination of dexamethasone and hyaluronic acid. In addition, the data also implied that anti-inflammatory effect by inhibiting the activation of p38MAPK signal pathway induced by LPS through enhancement of the activity of GR, to further analyze the mechanism of the effect of combination therapy with dexamethasone and hyaluronic acid on acute lung injury in SD rats. LPS-induced ALI in SD rats is relieved after treatment with a combination of dexamethasone and hyaluronic acid. In the process of its function, activated GR can represent anti-inflammatory effect and protect the lung tissue by inhibiting the activation/phosphorylation of p38MAPK, while hyaluronic acid can enhance micro-environment of alveolar tissue.
Tsai, Tsuimin; Kao, Chen-Yu; Chou, Chun-Liang; Liu, Lu-Chun; Chou, Tz-Chong
2016-08-01
Magnolol has shown inhibitory effects on NO production and TNF-alpha production in lipopolysaccharide (LPS)-activated macrophages and LPS-induced acute lung injury; however, the poor solubility of magnolol has hindered its clinical success. In this study, magnolol-loaded microparticles were prepared via single emulsion method from a polyketal polymer, termed PK3. The particle sizes of magnolol-loaded PK3 microparticle is 3.73 ± 0.41 μm, and was suitable for phagocytosis by macrophages and pulmonary drug delivery. PK3 microparticles exhibited excellent biocompatibility both in vitro and in vivo. More importantly, intratracheal delivery of these magnolol-loaded microparticles significantly reduced the lung inflammatory responses at low dosage of magnolol (0.5 mg/kg), and have great clinical potential in treating acute lung injury.
Diethylcarbamazine Attenuates the Development of Carrageenan-Induced Lung Injury in Mice
Ribeiro, Edlene Lima; Barbosa, Karla Patricia de Souza; Fragoso, Ingrid Tavares; Donato, Mariana Aragão Matos; Oliveira dos Santos Gomes, Fabiana; da Silva, Bruna Santos; Silva, Amanda Karolina Soares e; Rocha, Sura Wanessa Santos; Amaro da Silva Junior, Valdemiro; Peixoto, Christina Alves
2014-01-01
Diethylcarbamazine (DEC) is an antifilarial drug with potent anti-inflammatory properties as a result of its interference with the metabolism of arachidonic acid. The aim of the present study was to evaluate the anti-inflammatory activity of DEC in a mouse model of acute inflammation (carrageenan-induced pleurisy). The injection of carrageenan into the pleural cavity induced the accumulation of fluid containing a large number of polymorphonuclear cells (PMNs) as well as infiltration of PMNs in lung tissues and increased production of nitrite and tumor necrosis factor-α and increased expression of interleukin-1β, cyclooxygenase (COX-2), and inducible nitric oxide synthase. Carrageenan also induced the expression of nuclear factor-κB. The oral administration of DEC (50 mg/Kg) three days prior to the carrageenan challenge led to a significant reduction in all inflammation markers. The present findings demonstrate that DEC is a potential drug for the treatment of acute lung inflammation. PMID:24550603
The Role of Transient Receptor Potential Channel 6 Channels in the Pulmonary Vasculature
Malczyk, Monika; Erb, Alexandra; Veith, Christine; Ghofrani, Hossein Ardeschir; Schermuly, Ralph T.; Gudermann, Thomas; Dietrich, Alexander; Weissmann, Norbert; Sydykov, Akylbek
2017-01-01
Canonical or classical transient receptor potential channel 6 (TRPC6) is a Ca2+-permeable non-selective cation channel that is widely expressed in the heart, lung, and vascular tissues. The use of TRPC6-deficient (“knockout”) mice has provided important insights into the role of TRPC6 in normal physiology and disease states of the pulmonary vasculature. Evidence indicates that TRPC6 is a key regulator of acute hypoxic pulmonary vasoconstriction. Moreover, several studies implicated TRPC6 in the pathogenesis of pulmonary hypertension. Furthermore, a unique genetic variation in the TRPC6 gene promoter has been identified, which might link the inflammatory response to the upregulation of TRPC6 expression and ultimate development of pulmonary vascular abnormalities in idiopathic pulmonary arterial hypertension. Additionally, TRPC6 is critically involved in the regulation of pulmonary vascular permeability and lung edema formation during endotoxin or ischemia/reperfusion-induced acute lung injury. In this review, we will summarize latest findings on the role of TRPC6 in the pulmonary vasculature. PMID:28670316
Clinical Outcomes of Lung Transplantation in Patients with Telomerase Mutations
Tokman, Sofya; Singer, Jonathan P.; Devine, Megan S.; Westall, Glen P.; Aubert, John-David; Tamm, Michael; Snell, Gregory I.; Lee, Joyce S.; Goldberg, Hilary J.; Kukreja, Jasleen; Golden, Jeffrey A.; Leard, Lorriana E.; Garcia, Christine K.; Hays, Steven R.
2017-01-01
Background Successful lung transplantation (LT) for patients with pulmonary fibrosis from telomerase mutations is limited by systemic complications of telomerase dysfunction including myelosuppression, cirrhosis, and malignancy. We describe clinical outcomes among 14 LT recipients with telomerase mutations. Methods Subjects underwent LT between February 2005 and April 2014 at 5 LT centers. We abstracted data from medical records, focusing on outcomes reflecting post-LT treatment effects likely to be complicated by telomerase mutations. Results The median age of subjects was 60.5 years (IQR 52.0–62.0), 64.3% were male, and the mean post-LT observation time was 3.2 years (SD ±2.9). Eleven subjects had a mutation in telomerase reverse transcriptase, 2 in telomerase RNA component, and 1 had an uncharacterized mutation. Ten subjects were leukopenic post-LT; leukopenia prompted cessation of mycophenolate mofetil in 5 and treatment with filgrastim in 4. Six subjects had recurrent lower respiratory tract infections (LRTI), 7 had acute cellular rejection (ACR) (A1), and 4 developed chronic lung allograft dysfunction (CLAD). Ten LT recipients developed chronic renal insufficiency and 8 experienced acute, reversible renal failure. Three developed cancer, none had cirrhosis. Thirteen subjects were alive at data censorship. Conclusions The clinical course for LT recipients with telomerase mutations is complicated by renal disease, leukopenia prompting a change in the immunosuppressive regimen, and recurrent LTRI. In contrast, cirrhosis was absent, ACR was mild, and development of CLAD was comparable to other LT populations. While posing challenges, lung transplantation may be feasible for patients with pulmonary fibrosis due to telomerase mutations. PMID:26169663
Critical role for CCAAT/Enhancer-binding protein beta in immune complex-induced acute lung injury
USDA-ARS?s Scientific Manuscript database
Although inflammation plays a central role in the pathogenesis of acute lung injury (ALI), the molecular mechanisms underlying inflammatory responses in ALI are poorly understood, and therapeutic options remain limited. The CCAAT/enhancer-binding protein (C/EBP) gamma and -gamma have been implicated...
ROLE OF CELL SIGNALING IN PROTECTION FROM DIESEL AND LPS INDUCED ACUTE LUNG INJURY
We have previously demonstrated in CD-1 mice that pre-administration of N-acetyl cysteine (NAC) or the p38 MAP kinase inhibitor (SB203580) reduces acute lung injury and inflammation following pulmonary exposures to diesel exhaust particles (DEP) or lipopolysaccharide (LPS). Here ...
Li, Nan; Weng, Dong; Wang, Shan-Mei; Zhang, Yuan; Chen, Shan-Shan; Yin, Zhao-Fang; Zhai, Jiali; Scoble, Judy; Williams, Charlotte C; Chen, Tao; Qiu, Hui; Wu, Qin; Zhao, Meng-Meng; Lu, Li-Qin; Mulet, Xavier; Li, Hui-Ping
2017-11-01
The advent of nanomedicine requires novel delivery vehicles to actively target their site of action. Here, we demonstrate the development of lung-targeting drug-loaded liposomes and their efficacy, specificity and safety. Our study focuses on glucocorticoids methylprednisolone (MPS), a commonly used drug to treat lung injuries. The steroidal molecule was loaded into functionalized nano-sterically stabilized unilamellar liposomes (NSSLs). Targeting functionality was performed through conjugation of surfactant protein A (SPANb) nanobodies to form MPS-NSSLs-SPANb. MPS-NSSLs-SPANb exhibited good size distribution, morphology, and encapsulation efficiency. Animal experiments demonstrated the high specificity of MPS-NSSLs-SPANb to the lung. Treatment with MPS-NSSLs-SPANb reduced the levels of TNF-α, IL-8, and TGF-β1 in rat bronchoalveolar lavage fluid and the expression of NK-κB in the lung tissues, thereby alleviating lung injuries and increasing rat survival. The nanobody functionalized nanoparticles demonstrate superior performance to treat lung injury when compared to that of antibody functionalized systems.
Hsieh, S Jean; Zhuo, Hanjing; Benowitz, Neal L; Thompson, B Taylor; Liu, Kathleen D; Matthay, Michael A; Calfee, Carolyn S
2014-09-01
Cigarette smoke exposure has recently been found to be associated with increased susceptibility to trauma- and transfusion-associated acute respiratory distress syndrome. We sought to determine 1) the incidence of cigarette smoke exposure in a diverse multicenter sample of acute respiratory distress syndrome patients and 2) whether cigarette smoke exposure is associated with severity of lung injury and mortality in acute respiratory distress syndrome. Analysis of the Albuterol for the Treatment of Acute Lung Injury and Omega Acute Respiratory Distress Syndrome Network studies. Acute Respiratory Distress Syndrome Network hospitals. Three hundred eighty-one patients with acute respiratory distress syndrome. None. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol, a validated tobacco-specific marker, was measured in urine samples from subjects enrolled in two National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network randomized controlled trials. Urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol levels were consistent with active smoking in 36% of acute respiratory distress syndrome patients and with passive smoking in 41% of nonsmokers (vs 20% and 40% in general population, respectively). Patients with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol levels in the active smoking range were younger and had a higher incidence of alcohol misuse, fewer comorbidities, lower severity of illness, and less septic shock at enrollment compared with patients with undetectable 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol levels. Despite this lower severity of illness, the severity of lung injury did not significantly differ based on biomarker-determined smoking status. Cigarette smoke exposure was not significantly associated with death after adjusting for differences in age, alcohol use, comorbidities, and severity of illness. In this first multicenter study of biomarker-determined cigarette smoke exposure in acute respiratory distress syndrome patients, we found that active cigarette smoke exposure was significantly more prevalent among acute respiratory distress syndrome patients compared to population averages. Despite their younger age, better overall health, and lower severity of illness, smokers by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol had similar severity of lung injury as patients with undetectable 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol. These findings suggest that active cigarette smoking may increase susceptibility to acute respiratory distress syndrome in younger, healthier patients.
Limited inflammatory response in rats after acute exposure to a silicon carbide nanoaerosol
NASA Astrophysics Data System (ADS)
Laloy, J.; Lozano, O.; Alpan, L.; Masereel, B.; Toussaint, O.; Dogné, J. M.; Lucas, S.
2015-08-01
Inhalation represents the major route of human exposure to manufactured nanomaterials (NMs). Assessments are needed about the potential risks of NMs from inhalation on different tissues and organs, especially the respiratory tract. The aim of this limited study is to determine the potential acute pulmonary toxicity in rats exposed to a dry nanoaerosol of silicon carbide (SiC) nanoparticles (NPs) in a whole-body exposure (WBE) model. The SiC nanoaerosol is composed of a bimodal size distribution of 92.8 and 480 nm. The exposure concentration was 4.91 mg/L, close to the highest recommended concentration of 5 mg/L by the Organisation for Economic Co-operation and Development. Rats were exposed for 6 h to a stable and reproducible SiC nanoaerosol under real-time measurement conditions. A control group was exposed to the filtered air used to create the nanoaerosol. Animals were sacrificed immediately, 24 or 72 h after exposure. The bronchoalveolar lavage fluid from rat lungs was recovered. Macrophages filled with SiC NPs were observed in the rat lungs. The greatest load of SiC and macrophages filled with SiC were observed on the rat lungs sacrificed 24 h after acute exposure. A limited acute inflammatory response was found up to 24 h after exposure characterized by a lactate dehydrogenase and total protein increase or presence of inflammatory cells in pulmonary lavage. For this study a WBE model has been developed, it allows the simultaneous exposure of six rats to a nanoaerosol and six rats to clean-filtered air. The nanoaerosol was generated using a rotating brush system (RBG-1000) and analyzed with an electrical low pressure impactor in real time.
Preventing Facial Pressure Ulcers in Acute Respiratory Distress Syndrome (ARDS).
Kim, Ruth S; Mullins, Kimberly
2016-01-01
In patients with acute lung injury and/or severe acute respiratory distress syndrome (ARDS), prone positioning is a therapeutic intervention to improve oxygenation. Positioning a patient in a prone position increases the risk of medical device-related pressure ulcers in the facial area. This article summarizes experience with 4 patients with ARDS. Two did not receive pressure ulcer preventive measures and subsequently developed multiple necrotic facial pressure ulcers related to prone positioning for treatment of ARDS. The other 2 patients were managed on a thin silicone foam dressing; neither of these patients developed facial pressure ulcers during pronation therapy. The use of thin soft silicone foam dressings may prevent the development of facial deep tissue injuries in patients receiving prolonged pronation therapy.
Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang
2012-01-01
Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis. Copyright © 2011 Elsevier B.V. All rights reserved.
Armstrong, Susan M.; Wang, Changsen; Tigdi, Jayesh; Si, Xiaoe; Dumpit, Carlo; Charles, Steffany; Gamage, Asela; Moraes, Theo J.; Lee, Warren L.
2012-01-01
Severe influenza infections are complicated by acute lung injury, a syndrome of pulmonary microvascular leak. The pathogenesis of this complication is unclear. We hypothesized that human influenza could directly infect the lung microvascular endothelium, leading to loss of endothelial barrier function. We infected human lung microvascular endothelium with both clinical and laboratory strains of human influenza. Permeability of endothelial monolayers was assessed by spectrofluorimetry and by measurement of the transendothelial electrical resistance. We determined the molecular mechanisms of flu-induced endothelial permeability and developed a mouse model of severe influenza. We found that both clinical and laboratory strains of human influenza can infect and replicate in human pulmonary microvascular endothelium, leading to a marked increase in permeability. This was caused by apoptosis of the lung endothelium, since inhibition of caspases greatly attenuated influenza-induced endothelial leak. Remarkably, replication-deficient virus also caused a significant degree of endothelial permeability, despite displaying no cytotoxic effects to the endothelium. Instead, replication-deficient virus induced degradation of the tight junction protein claudin-5; the adherens junction protein VE-cadherin and the actin cytoskeleton were unaffected. Over-expression of claudin-5 was sufficient to prevent replication-deficient virus-induced permeability. The barrier-protective agent formoterol was able to markedly attenuate flu-induced leak in association with dose-dependent induction of claudin-5. Finally, mice infected with human influenza developed pulmonary edema that was abrogated by parenteral treatment with formoterol. Thus, we describe two distinct mechanisms by which human influenza can induce pulmonary microvascular leak. Our findings have implications for the pathogenesis and treatment of acute lung injury from severe influenza. PMID:23115643
Nitrite therapy prevents chlorine gas toxicity in rabbits.
Honavar, Jaideep; Doran, Stephen; Ricart, Karina; Matalon, Sadis; Patel, Rakesh P
2017-04-05
Chlorine (Cl 2 ) gas exposure and toxicity remains a concern in military and industrial sectors. While post-Cl 2 exposure damage to the lungs and other tissues has been documented and major underlying mechanisms elucidated, no targeted therapeutics that are effective when administered post-exposure, and which are amenable to mass-casualty scenarios have been developed. Our recent studies show nitrite administered by intramuscular (IM) injection post-Cl 2 exposure is effective in preventing acute lung injury and improving survival in rodent models. Our goal in this study was to develop a rabbit model of Cl 2 toxicity and test whether nitrite affords protection in a non-rodent model. Exposure of New Zealand White rabbits to Cl 2 gas (600ppm, 45min) caused significant increases in protein and neutrophil accumulation in the airways and ∼35% mortality over 18h. Nitrite administered 30min post Cl 2 exposure by a single IM injection, at 1mg/kg or 10mg/kg, prevented indices of acute lung injury at 6h by up to 50%. Moreover, all rabbits that received nitrite survived over the study period. These data provide further rationale for developing nitrite as post-exposure therapeutic to mitigate against Cl 2 gas exposure injury. Copyright © 2017 Elsevier B.V. All rights reserved.
Rajavel, Tamilselvam; Mohankumar, Ramar; Archunan, Govindaraju; Ruckmani, Kandasamy; Devi, Kasi Pandima
2017-06-13
Lung cancer is the leading cause of cancer related deaths both in developed and developing countries. Since majority of the existing therapeutic methods harms both normal and malignant cells, a viable alternative is to switch into safe and beneficial traditional medicinal plants. Hence the present study was framed to identify selective anti-lung cancer agents from the medicinal plant Grewia tiliaefolia (GT). Cell viability experiments showed that benzene extract of GT (BGT) leaf effectively inhibited the growth of A549 cells, while being non-toxic to normal human lung L132 and PBMC cells. Ames and comet assays demonstrated that BGT is of non-mutagenic and non-genotoxic nature in untransformed cells. The hematological and histopathological profiles of the in vivo acute and sub-acute toxicity studies demonstrated that BGT is safe and tolerable. Importantly, western blot analysis and Annexin V-FITC staining confirmed that BGT promotes mitochondrial dependent apoptotic cell death in A549 cells by arresting cell cycle at G2/M phase. Bio-assay guided fractionation revealed the presence of phytosteols (β-sitosterol and daucosterol) which significantly inhibited the growth of A549 cells both alone and in combination. This study warrants that these phytosterols in alone or in combination can be considered as safe and potential drug candidates for lung cancer treatment.
Chen, Siyao; Zheng, Saijun; Liu, Zhiwei; Tang, Chaoshu; Zhao, Bin; Du, Junbao; Jin, Hongfang
2015-02-01
The role of endogenous sulfur dioxide (SO2), an efficient gasotransmitter maintaining homeostasis, in the development of acute lung injury (ALI) remains unidentified. We aimed to investigate the role of endogenous SO2 in the pathogenesis of ALI. An oleic acid (OA)-induced ALI rat model was established. Endogenous SO2 levels, lung injury, oxidative stress markers and apoptosis were examined. OA-induced ALI rats showed a markedly downregulated endogenous SO2/aspartate aminotransferase 1 (AAT1)/AAT2 pathway and severe lung injury. Chemical colorimetry assays demonstrated upregulated reactive oxygen species generation and downregulated antioxidant capacity in OA-induced ALI rats. However, SO2 increased endogenous SO2 levels, protected against oxidative stress and alleviated ALI. Moreover, compared with OA-treated cells, in human alveolar epithelial cells SO2 downregulated O2(-) and OH(-) generation. In contrast, L-aspartic acid-β-hydroxamate (HDX, Sigma-Aldrich Corporation), an inhibitor of endogenous SO2 generating enzyme, promoted free radical generation, upregulated poly (ADP-ribose) polymerase expression, activated caspase-3, as well as promoted cell apoptosis. Importantly, apoptosis could be inhibited by the free radical scavengers glutathione (GSH) and N-acetyl-L-cysteine (NAC). The results suggest that SO2/AAT1/AAT2 pathway might protect against the development of OA-induced ALI by inhibiting oxidative stress.
Nguyen, Albert P; Gabriel, Rodney A; Golts, Eugene; Kistler, Erik B; Schmidt, Ulrich
2017-08-01
Perioperative risk factors and the clinical impact of acute kidney injury (AKI) and failure after lung transplantation are not well described. The incidences of AKI and acute renal failure (ARF), potential perioperative contributors to their development, and postdischarge healthcare needs were evaluated. Retrospective. University hospital. Patients undergoing lung transplantation between January 1, 2011 and December 31, 2015. The incidences of AKI and ARF, as defined using the Risk, Injury, Failure, Loss, End-Stage Renal Disease criteria, were measured. Perioperative events were analyzed to identify risk factors for renal compromise. A comparison of ventilator days, intensive care unit (ICU) and hospital lengths of stay (LOS), 1-year readmissions, and emergency department visits was performed among AKI, ARF, and uninjured patients. Ninety-seven patients underwent lung transplantation; 22 patients developed AKI and 35 patients developed ARF. Patients with ARF had significantly longer ICU LOS (12 days v 4 days, p < 0.001); ventilator days (4.5 days v 1 day, p < 0.001); and hospital LOS (22.5 days v 14 days, p < 0.001) compared with uninjured patients. Patients with AKI also had significantly longer ICU and hospital LOS. Patients with ARF had significantly more emergency department visits and hospital readmissions (2 v 1 readmissions, p = 0.002) compared with uninjured patients. A univariable analysis suggested that prolonged surgical time, intraoperative vasopressor use, and cardiopulmonary bypass use were associated with the highest increased risk for AKI. Intraoperative vasopressor use and cardiopulmonary bypass mean arterial pressure <60 mmHg were identified as independent risk factors by multivariable analysis for AKI. The severity of AKI was associated with an increase in the use of healthcare resources after surgery and discharge. Certain risk factors appeared modifiable and may reduce the incidence of AKI and ARF. Copyright © 2017. Published by Elsevier Inc.
Fish, Brian L; Gao, Feng; Narayanan, Jayashree; Bergom, Carmen; Jacobs, Elizabeth R; Cohen, Eric P; Moulder, John E; Orschell, Christie M; Medhora, Meetha
2016-11-01
The NIAID Radiation and Nuclear Countermeasures Program is developing medical agents to mitigate the acute and delayed effects of radiation that may occur from a radionuclear attack or accident. To date, most such medical countermeasures have been developed for single organ injuries. Angiotensin converting enzyme (ACE) inhibitors have been used to mitigate radiation-induced lung, skin, brain, and renal injuries in rats. ACE inhibitors have also been reported to decrease normal tissue complication in radiation oncology patients. In the current study, the authors have developed a rat partial-body irradiation (leg-out PBI) model with minimal bone marrow sparing (one leg shielded) that results in acute and late injuries to multiple organs. In this model, the ACE inhibitor lisinopril (at ~24 mg m d started orally in the drinking water at 7 d after irradiation and continued to ≥150 d) mitigated late effects in the lungs and kidneys after 12.5-Gy leg-out PBI. Also in this model, a short course of saline hydration and antibiotics mitigated acute radiation syndrome following doses as high as 13 Gy. Combining this supportive care with the lisinopril regimen mitigated overall morbidity for up to 150 d after 13-Gy leg-out PBI. Furthermore, lisinopril was an effective mitigator in the presence of the growth factor G-CSF (100 μg kg d from days 1-14), which is FDA-approved for use in a radionuclear event. In summary, by combining lisinopril (FDA-approved for other indications) with hydration and antibiotics, acute and delayed radiation injuries in multiple organs were mitigated.
Matsumura, Y; Marchevsky, A; Zuo, X J; Kass, R M; Matloff, J M; Jordan, S C
1995-06-15
Lung transplantation is now routinely performed for a wide range of end-stage cardiopulmonary disorders. Despite overcoming the problems associated with early acute rejection, chronic rejection (CR) in the form of obliterative bronchiolitis has emerged as the primary cause of late graft loss. The mechanisms involved in the development of CR of lung allografts are poorly understood, and no effective therapy is currently available. To better understand the pathological events associated with CR and tolerance, we examined two models of lung allograft rejection established in our laboratory. First, we exchanged left lung allografts between moderately histoincompatible inbred rat strains (WKY-->F344: n = 42 and F344-->WKY: n = 40). The WKY-->F344 model was previously shown to develop spontaneous tolerance, while the converse model (F344-->WKY) showed persistent acute rejection. The purpose of this investigation was to assess histopathological changes associated with long-term grafts left in place up to 140 days after transplant. To confirm that tolerance had developed, skin-grafting experiments were performed. Five skin grafts from each strain were placed on lung allograft recipients on day 35 after transplant and skin allograft survival was assessed and compared with controls. Acute rejection (AR) was graded histologically (stage O-IV) and the pathologic intensity of inflammation and CR were graded (0-4: 0 = 0%, 1 = 1-25%, 2 = 26-50%, 3 = 51-75%, and 4 = 76-100%) on percentage of involvement with the following categories being examined: (a) lymphocytic infiltration (perivascular, peribronchial, and peribronchiolar) and (b) vasculitis, edema, hemorrhage, and necrosis. Finally, chronic rejection was diagnosed by the presence of intimal hyperplasia, interstitial fibrosis, peribronchiolar fibrosis, bronchiolitis obliterans, and bronchiectasis. The WKY-->F344 animals showed progressive AR (stage III, day 21). Thereafter, the AR subsided spontaneously and was stage 0 on day 140. There were no signs of CR in these animals. In the F344-->WKY model, the AR progressed up to stage III-IV (day 21) and maintained for several weeks at stage III. Thereafter, pictures of the lungs showed CR on days 49, 70, and 98. There were significant differences between the two models during the chronic phase, such as interstitial fibrosis (0 +/- 0 vs. 1.8 +/- 1.3, P < 0.005), peribronchiolar fibrosis (0 +/- 0 vs. 3.6 +/- 0.55, P < 0.01), vasculitis (0.2 +/- 0.45 vs. 2.0 +/- 0, P < 0.008), and intimal hyperplasia (0.2 +/- 0.45 vs. 2.6 +/- 0.9, P < 0.008).(ABSTRACT TRUNCATED AT 250 WORDS)
Clinical review: Bedside lung ultrasound in critical care practice
Bouhemad, Bélaïd; Zhang, Mao; Lu, Qin; Rouby, Jean-Jacques
2007-01-01
Lung ultrasound can be routinely performed at the bedside by intensive care unit physicians and may provide accurate information on lung status with diagnostic and therapeutic relevance. This article reviews the performance of bedside lung ultrasound for diagnosing pleural effusion, pneumothorax, alveolar-interstitial syndrome, lung consolidation, pulmonary abscess and lung recruitment/derecruitment in critically ill patients with acute lung injury. PMID:17316468
Chinardet, B; Brisson, H; Arbelot, C; Langeron, O; Rouby, J J; Lu, Q
2016-01-01
The aim of the pilot study was to assess by ultrasound changes in dimensions of lung consolidation and reaeration after drainage of large pleural effusion in patients with acute respiratory distress syndrome (ARDS). Lung ultrasound and blood gas were performed before, 2 hours (H2) and 24 hours (H24) after drainage of pleural effusion. Lung ultrasound aeration score was calculated. Cephalocaudal dimension and diaphragmatic transversal area of lung consolidation were measured. Ten patients were studied. Median volume of drained effusion was 675 ml at H2 and 895 at H24. Two hours after drainage, dimension of cephalocaudal consolidation and diaphragmatic transversal area decreased significantly. Lung reaeration after drainage occurred mainly in latero-inferior and postero-superior regions. PaO2/FiO2 increased significantly at H24. Ultrasound is a useful method to assess lung consolidation after pleural effusion drainage. Drainage of pleural effusion may lead to a decrease of lung consolidation and improvement of lung reaeration.
Guanylyl cyclase activation reverses resistive breathing-induced lung injury and inflammation.
Glynos, Constantinos; Toumpanakis, Dimitris; Loverdos, Konstantinos; Karavana, Vassiliki; Zhou, Zongmin; Magkou, Christina; Dettoraki, Maria; Perlikos, Fotis; Pavlidou, Athanasia; Kotsikoris, Vasilis; Topouzis, Stavros; Theocharis, Stamatios E; Brouckaert, Peter; Giannis, Athanassios; Papapetropoulos, Andreas; Vassilakopoulos, Theodoros
2015-06-01
Inspiratory resistive breathing (RB), encountered in obstructive lung diseases, induces lung injury. The soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway is down-regulated in chronic and acute animal models of RB, such as asthma, chronic obstructive pulmonary disease, and in endotoxin-induced acute lung injury. Our objectives were to: (1) characterize the effects of increased concurrent inspiratory and expiratory resistance in mice via tracheal banding; and (2) investigate the contribution of the sGC/cGMP pathway in RB-induced lung injury. Anesthetized C57BL/6 mice underwent RB achieved by restricting tracheal surface area to 50% (tracheal banding). RB for 24 hours resulted in increased bronchoalveolar lavage fluid cellularity and protein content, marked leukocyte infiltration in the lungs, and perturbed respiratory mechanics (increased tissue resistance and elasticity, shifted static pressure-volume curve right and downwards, decreased static compliance), consistent with the presence of acute lung injury. RB down-regulated sGC expression in the lung. All manifestations of lung injury caused by RB were exacerbated by the administration of the sGC inhibitor, 1H-[1,2,4]oxodiazolo[4,3-]quinoxalin-l-one, or when RB was performed using sGCα1 knockout mice. Conversely, restoration of sGC signaling by prior administration of the sGC activator BAY 58-2667 (Bayer, Leverkusen, Germany) prevented RB-induced lung injury. Strikingly, direct pharmacological activation of sGC with BAY 58-2667 24 hours after RB reversed, within 6 hours, the established lung injury. These findings raise the possibility that pharmacological targeting of the sGC-cGMP axis could be used to ameliorate lung dysfunction in obstructive lung diseases.
Ionescu, Lavinia; Byrne, Roisin N; van Haaften, Tim; Vadivel, Arul; Alphonse, Rajesh S; Rey-Parra, Gloria J; Weissmann, Gaia; Hall, Adam; Eaton, Farah; Thébaud, Bernard
2012-12-01
Mortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 "healer" phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I.
Ionescu, Lavinia; Byrne, Roisin N.; van Haaften, Tim; Vadivel, Arul; Alphonse, Rajesh S.; Rey-Parra, Gloria J.; Weissmann, Gaia; Hall, Adam; Eaton, Farah
2012-01-01
Mortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 “healer” phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I. PMID:23023971
de Lima, F Mafra; Villaverde, A B; Albertini, R; Corrêa, J C; Carvalho, R L P; Munin, E; Araújo, T; Silva, J A; Aimbire, F
2011-07-01
It is unknown if pro- and anti-inflammatory mediators in acute lung inflammation induced by intestinal ischemia and reperfusion (i-I/R) can be modulated by low-level laser therapy (LLLT). A controlled ex vivo study was developed in which rats were irradiated (660 nm, 30 mW, 0.08 cm² of spot size) on the skin over the right upper bronchus 1 hour post-mesenteric artery occlusion and euthanized 4 hours later. For pretreatment with anti-tumor necrosis factor (TNF) or IL-10 antibodies, the rats received either one of the agents 15 minutes before the beginning of reperfusion. Lung edema was measured by the Evans blue extravasation and pulmonary neutrophils influx was determined by myeloperoxidase (MPO) activity. Both TNF and IL-10 expression and protein in lung were evaluated by RT-PCR and ELISA, respectively. LLLT reduced the edema (80.1 ± 41.8 µg g⁻¹ dry weight), neutrophils influx (0.83 ± 0.02 × 10⁶ cells ml⁻¹), MPO activity (2.91 ± 0.60), and TNF (153.0 ± 21.0 pg mg⁻¹ tissue) in lung when compared with respective control groups. Surprisingly, the LLLT increased the IL-10 (0.65 ± 0.13) in lung from animals subjected to i-I/R. Moreover, LLLT (0.32 ± 0.07 pg ml⁻¹) reduced the TNF-α level in RPAECs when compared with i-I/R group. The presence of anti-TNF or IL-10 antibodies did not alter the LLLT effect on IL-10 (465.1 ± 21.0 pg mg⁻¹ tissue) or TNF (223.5 ± 21.0 pg mg⁻¹ tissue) in lung from animals submitted to i-I/R. The results indicate that the LLLT attenuates the i-I/R-induced acute lung inflammation which favor the IL-10 production and reduce TNF generation. Copyright © 2011 Wiley-Liss, Inc.
Wu, Chaomin; Evans, Colin E; Dai, Zhiyu; Huang, Xiaojia; Zhang, Xianming; Jin, Hua; Hu, Guochang; Song, Yuanlin; Zhao, You-Yang
2017-01-01
Acute respiratory distress syndrome (ARDS) is characterized by acute hypoxemia respiratory failure, bilateral pulmonary infiltrates, and pulmonary edema of non-cardiac origin. Effective treatments for ARDS patients may arise from experimental studies with translational mouse models of this disease that aim to delineate the mechanisms underlying the disease pathogenesis. Mouse models of ARDS, however, can be limited by their rapid progression from injured to recovery state, which is in contrast to the course of ARDS in humans. Furthermore, current mouse models of ARDS do not recapitulate certain prominent aspects of the pathogenesis of ARDS in humans. In this study, we developed an improved endotoxemic mouse model of ARDS resembling many features of clinical ARDS including extended courses of injury and recovery as well as development of fibrosis following i.p. injection of lipopolysaccharide (LPS) to corn oil-preloaded mice. Compared with mice receiving LPS alone, those receiving corn oil and LPS exhibited extended course of lung injury and repair that occurred over a period of >2 weeks instead of 3-5days. Importantly, LPS challenge of corn oil-preloaded mice resulted in pulmonary fibrosis during the repair phase as often seen in ARDS patients. In summary, this simple novel mouse model of ARDS could represent a valuable experimental tool to elucidate mechanisms that regulate lung injury and repair in ARDS patients.
Kao, Johnny; Pettit, Jeffrey; Zahid, Soombal; Gold, Kenneth D; Palatt, Terry
2015-01-01
The optimal technique for performing lung IMRT remains poorly defined. We hypothesize that improved dose distributions associated with normal tissue-sparing IMRT can allow safe dose escalation resulting in decreased acute and late toxicity. We performed a retrospective analysis of 82 consecutive lung cancer patients treated with curative intent from 1/10 to 9/14. From 1/10 to 4/12, 44 patients were treated with the community standard of three-dimensional conformal radiotherapy or IMRT without specific esophagus or contralateral lung constraints (standard RT). From 5/12 to 9/14, 38 patients were treated with normal tissue-sparing IMRT with selective sparing of contralateral lung and esophagus. The study endpoints were dosimetry, toxicity, and overall survival. Despite higher mean prescribed radiation doses in the normal tissue-sparing IMRT cohort (64.5 vs. 60.8 Gy, p = 0.04), patients treated with normal tissue-sparing IMRT had significantly lower lung V20, V10, V5, mean lung, esophageal V60, and mean esophagus doses compared to patients treated with standard RT (p ≤ 0.001). Patients in the normal tissue-sparing IMRT group had reduced acute grade ≥3 esophagitis (0 vs. 11%, p < 0.001), acute grade ≥2 weight loss (2 vs. 16%, p = 0.04), and late grade ≥2 pneumonitis (7 vs. 21%, p = 0.02). The 2-year overall survival was 52% with normal tissue-sparing IMRT arm compared to 28% for standard RT (p = 0.015). These data provide proof of principle that suboptimal radiation dose distributions are associated with significant acute and late lung and esophageal toxicity that may result in hospitalization or even premature mortality. Strict attention to contralateral lung and esophageal dose-volume constraints are feasible in the community hospital setting without sacrificing disease control.
A microengineered model of RBC transfusion-induced pulmonary vascular injury.
Seo, Jeongyun; Conegliano, David; Farrell, Megan; Cho, Minseon; Ding, Xueting; Seykora, Thomas; Qing, Danielle; Mangalmurti, Nilam S; Huh, Dongeun
2017-06-13
Red blood cell (RBC) transfusion poses significant risks to critically ill patients by increasing their susceptibility to acute respiratory distress syndrome. While the underlying mechanisms of this life-threatening syndrome remain elusive, studies suggest that RBC-induced microvascular injury in the distal lung plays a central role in the development of lung injury following blood transfusion. Here we present a novel microengineering strategy to model and investigate this key disease process. Specifically, we created a microdevice for culturing primary human lung endothelial cells under physiological flow conditions to recapitulate the morphology and hemodynamic environment of the pulmonary microvascular endothelium in vivo. Perfusion of the microengineered vessel with human RBCs resulted in abnormal cytoskeletal rearrangement and release of intracellular molecules associated with regulated necrotic cell death, replicating the characteristics of acute endothelial injury in transfused lungs in vivo. Our data also revealed the significant effect of hemodynamic shear stress on RBC-induced microvascular injury. Furthermore, we integrated the microfluidic endothelium with a computer-controlled mechanical stretching system to show that breathing-induced physiological deformation of the pulmonary microvasculature may exacerbate vascular injury during RBC transfusion. Our biomimetic microsystem provides an enabling platform to mechanistically study transfusion-associated pulmonary vascular complications in susceptible patient populations.
Acute and Chronic Toxicity of Inhaled Plutonium in Dogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J. F.; Willard, D. H.; Marks, S.
1962-01-01
Beagle dogs were given single exposures to Pu 239O 2 aerosols. Deposition of 0.9 to 0.1 mu c/g of lung caused death in 31 dogs in 55 to 412 days after exposure. Average radiation dose to lungs was 4000-14,000 rads. Lymphopenia, polypnea, weight loss and bradycardia developed prior to death. Gross and histopathlogic tissue changes were limited to the lungs and associated lymph nodes, which contained 99 per cent of the plutonium content of the dog. One dog died 862 days following deposition of approximately 0.05 mu c/g of lung. Dogs exposed to lesser quantities of plutonium appear normal 2more » to 21/2 years after exposure except for lymphopenia.« less
[Ventilatory strategy for ARDS].
Yoshida, Takeshi; Takegawa, Ryousuke; Ogura, Hiroshi
2016-02-01
Fifteen years have passed since lung protective strategy to the patients with acute respiratory distress syndrome (ARDS) established. Recently, the new Berlin Definition of ARDS has been developed and this classified ARDS into three stages (mild, moderate, and severe ARDS), depending on the PaO2/FiO2. After this new definition of ARDS, each treatment to the patients with ARDS should be considered, depending on the severity of lung injury, such as prone position to the patients with severe ARDS, muscle paralysis to the patients with severe ARDS. In this review article, we review the history of lung protective strategy and ARDS definition, discuss the novel physiological approaches to minimizing ventilator-induced lung injury, and highlight a numbers of experimental/clinical studies to support these concepts.
Chen, Hsing I
2009-11-30
Acute respiratory distress syndrome (ARDS) is the most devastating form of acute lung injury (ALI) or pulmonary edema (PE). We presented the experimental studies and clinical investigations of two serious forms of ALI. Drastic and severe PE could be induced by intracranial hypertension or cerebral compression (CC). The CC-induced PE was attributed to overactivation of the medullary sympathetic mechanism. Sympathetic vasoconstriction of the systemic and pulmonary resistance and capacitance vessels caused shift of blood volume from the splanchnic vascular beds to the lung. The hemodynamic changes led to systemic and pulmonary hypertension. Consequently, left ventricular failure as evidenced by dramatic decline in aortic flow with a slow decrease in pulmonary flow resulted in pressure and volume loading in the pulmonary circulation. These changes finally produced severe alveolar flooding and sudden death. Vasodilators such as sodium nitroprusside or nitroglycerin were capable of reducing the CC-induced pulmonary pathology and hemodynamic alterations. Fat embolism syndrome (FES) is a serious clinical problem in patients suffering from long bone fractures. ARDS may develop and cause mortality. Our laboratory reported a total of 14 subjects associated with FES and died of ARDS. We also developed a simple technique to produce FES. Corn oil was mixed with distilled water to form fatty micelles. Intravenous administration of or introduction of fatty micelles in anesthetized rats or isolated perfused lungs caused severe alveolar damage. Our clinical observation and animal experimentation revealed that infusion of fatty acids caused physical phase, resulting in microvascular obstruction accompanied by pulmonary hypertension and increased capillary permeability. Thereafter, the lipases in the lung hydrolyzed the neutral fat and released free fatty acids and biochemical mediators which were toxic to the lung. Our data have suggested that nitric oxide (NO), inducible NO synthase (iNOS), phospholipase A2, free radical and inflammatory cytokines (tumor necrosis factor alpha, interleukin-1beta and interleukin-6) are involved in the biochemical phase of FES with ARDS. The alveolar macrophages are the major source of iNOS. Later study also found that neutrophil elastase and myeloperoxidase were elevated following fat embolism. N-acetylcysteine (an antioxidant), and NOS inhibitors such as Nomega nitro-L-arginine methyl ester (L-NAME), S-methylisothiourea (SMT) or L-N6 (1-iminoethyl)-lysine (L-Nil) were able to abrogate the FES or the fat embolism-induced changes.
The Superiority of IFN-λ as a Therapeutic Candidate to Control Acute Influenza Viral Lung Infection.
Kim, Sujin; Kim, Min-Ji; Kim, Chang-Hoon; Kang, Ju Wan; Shin, Ha Kyung; Kim, Dong-Young; Won, Tae-Bin; Han, Doo Hee; Rhee, Chae Seo; Yoon, Joo-Heon; Kim, Hyun Jik
2017-02-01
Here, we studied the IFN-regulated innate immune response against influenza A virus (IAV) infection in the mouse lung and the therapeutic effect of IFN-λ2/3 in acute IAV lung infection. For viral infections, IAV (WS/33, H1N1, PR8 H1N1, H5N1) were inoculated into wild-type mice by intranasal delivery, and IAV mRNA level and viral titer were measured. To compare the antiviral effect of IFNs in vivo in the lung, neutralizing antibodies and recombinant IFNs were used. After intranasal inoculation of IAV into mice, viral infection peaked at 7 days postinfection, and the IAV titer also reached its peak at this time. We found that IFN-β and IFN-λ2/3 were preferentially induced after IAV infection and the IFN-λ2/3-mediated innate immune response was specifically required for the induction of IFN-stimulated genes (ISGs) transcription in the mouse respiratory tract. Neutralization of secreted IFN-λ2/3 aggravated acute IAV lung infection in mice with intact IFN-β induction; consistent with this finding, the transcription of ISGs was significantly reduced. Intranasal administration of IFN-λ2/3 significantly suppressed various strains of IAV infection, including WS/33 (H1N1), PR (H1N1), and H5N1 in the mouse lung, and was accompanied by greater up-regulation of ISGs. Taken together, our data indicate that the IFN-λ2/3-mediated innate immune response is necessary to protect the lungs from IAV infection, and intranasally delivered IFN-λ2/3 has the potential to be a useful therapeutic strategy for treating acute IAV lung infection.
Spieth, P M; Güldner, A; Carvalho, A R; Kasper, M; Pelosi, P; Uhlig, S; Koch, T; Gama de Abreu, M
2011-09-01
Setting and strategies of mechanical ventilation with positive end-expiratory pressure (PEEP) in acute lung injury (ALI) remains controversial. This study compares the effects between lung-protective mechanical ventilation according to the Acute Respiratory Distress Syndrome Network recommendations (ARDSnet) and the open lung approach (OLA) on pulmonary function and inflammatory response. Eighteen juvenile pigs were anaesthetized, mechanically ventilated, and instrumented. ALI was induced by surfactant washout. Animals were randomly assigned to mechanical ventilation according to the ARDSnet protocol or the OLA (n=9 per group). Gas exchange, haemodynamics, pulmonary blood flow (PBF) distribution, and respiratory mechanics were measured at intervals and the lungs were removed after 6 h of mechanical ventilation for further analysis. PEEP and mean airway pressure were higher in the OLA than in the ARDSnet group [15 cmH(2)O, range 14-18 cmH(2)O, compared with 12 cmH(2)O; 20.5 (sd 2.3) compared with 18 (1.4) cmH(2)O by the end of the experiment, respectively], and OLA was associated with improved oxygenation compared with the ARDSnet group after 6 h. OLA showed more alveolar overdistension, especially in gravitationally non-dependent regions, while the ARDSnet group was associated with more intra-alveolar haemorrhage. Inflammatory mediators and markers of lung parenchymal stress did not differ significantly between groups. The PBF shifted from ventral to dorsal during OLA compared with ARDSnet protocol [-0.02 (-0.09 to -0.01) compared with -0.08 (-0.12 to -0.06), dorsal-ventral gradients after 6 h, respectively]. According to the OLA, mechanical ventilation improved oxygenation and redistributed pulmonary perfusion when compared with the ARDSnet protocol, without differences in lung inflammatory response.
Wakayama, Hirotaka; Hashimoto, Naozumi; Matsushita, Yoshihiro; Matsubara, Kohki; Yamamoto, Noriyuki; Hasegawa, Yoshinori; Ueda, Minoru; Yamamoto, Akihito
2015-08-01
Acute respiratory distress syndrome (ARDS) is a severe inflammatory disorder characterized by acute respiratory failure, resulting from severe, destructive lung inflammation and irreversible lung fibrosis. We evaluated the use of stem cells derived from human exfoliated deciduous teeth (SHEDs) or SHED-derived serum-free conditioned medium (SHED-CM) as treatments for bleomycin (BLM)-induced mice acute lung injury (ALI), exhibiting several pathogenic features associated with the human disease ARDS. Mice with BLM-induced ALI with or without SHED or SHED-CM treatment were examined for weight loss and survival. The lung tissue was characterized by histological and real-time quantitative polymerase chain reaction analysis. The effects of SHED-CM on macrophage differentiation in vitro were also assessed. A single intravenous administration of either SHEDs or SHED-CM attenuated the lung injury and weight loss in BLM-treated mice and improved their survival rate. Similar recovery levels were seen in the SHEDs and SHED-CM treatment groups, suggesting that SHED improves ALI by paracrine mechanisms. SHED-CM contained multiple therapeutic factors involved in lung-regenerative mechanisms. Importantly, SHED-CM attenuated the BLM-induced pro-inflammatory response and generated an anti-inflammatory/tissue-regenerating environment, accompanied by the induction of anti-inflammatory M2-like lung macrophages. Furthermore, SHED-CM promoted the in vitro differentiation of bone marrow-derived macrophages into M2-like cells, which expressed high levels of Arginase1, CD206 and Ym-1. Our results suggest that SHED-secreted factors provide multifaceted therapeutic effects, including a strong M2-inducing activity, for treating BLM-induced ALI. This work may open new avenues for research on stem cell-based ARDS therapies. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Wigenstam, Elisabeth; Koch, Bo; Bucht, Anders; Jonasson, Sofia
2015-02-03
Chlorine (Cl2) causes tissue damage and a neutrophilic inflammatory response in the airways manifested by pronounced airway hyperreactivity (AHR). The importance of early anti-inflammatory treatment has previously been addressed. In the previous study, both high-dose and low-dose of dexamethasone (DEX) decreased the risk of developing delayed effects, such as persistent lung injuries, while only high-dose treatment could significantly counteract acute-phase effects. One aim of this study was to evaluate whether a low-dose of DEX in combination with the antioxidant N-acetyl cysteine (NAC) and if different treatments (Triptolide, Reparixin and Rolipram) administered 1h after Cl2-exposure could improve protection against acute lung injury in Cl2-exposed mice. BALB/c mice were exposed to 300 ppm Cl2 during 15 min. Assessment of AHR and inflammatory cells in bronchoalveolar lavage was analyzed 24h post exposure. Neither of DEX nor NAC reduced the AHR and displayed only minor effects on inflammatory cell influx when given as separate treatments. When given in combination, a protective effect on AHR and a significant reduction in inflammatory cells (neutrophils) was observed. Neither of triptolide, Reparixin nor Rolipram had an effect on AHR but Triptolide had major effect on the inflammatory cell influx. Treatments did not reduce the concentration of either fibrinogen or plasminogen activator inhibitor-1 in serum, thereby supporting the theory that the inflammatory response is not solely limited to the lung. These results provide a foundation for future studies aimed at identifying new concepts for treatment of chemical-induced lung injury. Studies addressing combination of anti-inflammatory and antioxidant treatment are highly motivated. Copyright © 2014. Published by Elsevier Ireland Ltd.
Haitsma, Jack J.; Furmli, Suleiman; Masoom, Hussain; Liu, Mingyao; Imai, Yumiko; Slutsky, Arthur S.; Beyene, Joseph; Greenwood, Celia M. T.; dos Santos, Claudia
2012-01-01
Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients. Results Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis. Conclusion Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of “injury" gene predictors that can classify lung injury samples and identify patients at risk for clinically relevant lung injury complications. PMID:23071521
Song, Jee In; Kim, Yang-Ki; Hwang, Jung Hwa; Yang, Hyeon-Jong
2016-01-01
Acute eosinophilic pneumonia (AEP) is a rapid onset and severe respiratory illness characterized by acute febrile respiratory insufficiency, eosinophilic infiltration in the lungs and unique findings on chest imaging. Difficulty in differentiating from other respiratory distress caused by community-acquired pneumonia may result in a delayed diagnosis or treatment with empirical antibiotics. Sixteen-year-old boy who developed AEP with marked eosinophilia in bronchoalveolar lavage fluid (BALF, 36.6%), decreased diffusion capacity of the lung for carbon monoxide (62%) and unique radiological findings. Although he initially denied tobacco use, on repeated thorough clinical history questioning, he eventually admitted beginning smoking 19 days before the onset of symptoms with gradually increasing frequency. His symptoms resolved quickly without use of antibiotics after cessation of tobacco and treatment with corticosteroids. Careful clinical history taking regarding tobacco use combined with early examination of BALF and recognition of unique radiological findings are critical for proper management of AEP.
Acute pleurisy in sarcoidosis.
Gardiner, I T; Uff, J S
1978-01-01
A 47-year-old white man with sarcoidosis presented with a six-week history of acute painful pleurisy. On auscultation a loud pleural rub was heard at the left base together with bilateral basal crepitations. The chest radiograph showed hilar enlargement as well as diffuse lung shadowing. A lung biopsy showed the presence of numerous epithelioid and giant-cell granulomata, particularly subpleurally. A patchy interstitial pneumonia was also present. He was given a six-month course of prednisolone, and lung function returned to normal. Images PMID:644534
Dai, Heling; Xu, Li; Tang, Yu; Liu, Zhi; Sun, Tiansheng
2015-08-01
It has been well recognised that a deficit of numbers and function of CD4(+)CD25(+)Foxp3(+) cells (Treg) is attributed to the development of autoimmune diseases and inflammatory diseases; additionally, IL-17-producing cells (Th17) have a pro-inflammatory role. The balance between Th17 and Treg may be essential for maintaining immune homeostasis and has long been thought as one of the important factors in the development/prevention of autoimmune diseases and inflammatory diseases. In our previous research, we explored that cytokines (IL-17) and the balance of Treg/Th17 had a significant relevance with tissue (lung) inflammation and injury in acute-phase after multiple-trauma. To more verify whether an imbalance of Treg/Th17 is characteristic of rats suffering from multiple trauma. Using IL-17 monoclonal antibody (IL-17mAb)-treated multiple-trauma rat, we tested the pathogenic role of IL-17 in the development of multiple-trauma. Rat models were treated respectively with IL-17mAb or rat IgG 2A isotype control or phosphate-buffered solution after model was established. Normal rats only received anaesthesia and cannulation were taken as sham. Rats in each group were killed respectively at the end of 1h, 4h, 8h after injection. Collected serum and lung samples for assessment dynamically of MPO, IL-17, IL-6, and TGF-β-mRNA, and cytokine (IL-17, IL-6, TGF-β) and lung tissue for pulmonary histological analysis. Neutralisation of IL-17 with anti-IL-17 can decrease serum IL-17 level and the IL-17-mRNA transcript level in lung, and ameliorate tissue inflammatory, defer disease course. Our data suggest that IL-17 is crucially involved in the pathogenesis of multiple-trauma in rat, IL-17 inhibition might ameliorate the lung inflammation in acute-phase after multiple-trauma. Copyright © 2015 Elsevier Ltd. All rights reserved.
MATRILYSIN PARTICIPATES IN THE ACUTE LUNG INJURY INDUCED BY OIL COMBUSTION PRODUCTS
ROLE OF MATRILYSIN IN THE ACUTE LUNG INJURY INDUCED BY OIL COMBUSTION PARTICLES.
K L Dreher1, WY Su2 and C L Wilson3. 1US Environmental Protection Agency, Research Triangle Park, NC; 2Duke University, Durham, NC;3Washington University, St. Louis, MO.
Mechanisms by ...
Vandermosten, Leen; Pham, Thao-Thy; Possemiers, Hendrik; Knoops, Sofie; Van Herck, Evelien; Deckers, Julie; Franke-Fayard, Blandine; Lamb, Tracey J; Janse, Chris J; Opdenakker, Ghislain; Van den Steen, Philippe E
2018-03-05
Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a complication of malaria with a lethality rate of up to 80% despite anti-malarial treatment. It is characterized by a vast infiltration of leukocytes, microhaemorrhages and vasogenic oedema in the lungs. Previously, a mouse model for MA-ARDS was developed by infection of C57BL/6 mice with the Edinburgh line NK65-E of Plasmodium berghei. Here, both host and parasite factors were demonstrated to play crucial roles in the development and severity of lung pathology. In particular, the genetic constitution of the host was an important determinant in the development of MA-ARDS. Both male and female C57BL/6, but not BALB/c, mice developed MA-ARDS when infected with P. berghei NK65-E. However, the New York line of P. berghei NK65 (NK65-NY) did not induce demonstrable MA-ARDS, despite its accumulation in the lungs and fat tissue to a similar or even higher extent as P. berghei NK65-E. These two commonly used lines of P. berghei differ in their red blood cell preference. P. berghei NK65-NY showed a stronger predilection for reticulocytes than P. berghei NK65-E and this appeared to be associated with a lower pathogenicity in the lungs. The pulmonary pathology in the C57BL/6/P. berghei NK65-E model was more pronounced than in the model with infection of DBA/2 mice with P. berghei strain ANKA. The transient lung pathology in DBA/2 mice infected with P. berghei ANKA coincided with the infection phase in which parasites mainly infected normocytes. This phase was followed by a less pathogenic phase in which P. berghei ANKA mainly infected reticulocytes. The propensity of mice to develop MA-ARDS during P. berghei infection depends on both host and parasite factors and appears to correlate with RBC preference. These data provide insights in induction of MA-ARDS and may guide the choice of different mouse-parasite combinations to study lung pathology.
Li, Jianbo; Zhang, Jinjie; Fu, Yao; Sun, Xun; Gong, Tao; Jiang, Jinghui; Zhang, Zhirong
2015-08-28
To inhibit both the local and systemic complications with acute pancreatitis, an effective therapy requires a drug delivery system that can efficiently overcome the blood-pancreas barrier while achieving lung-specific accumulation. Here, we report the first dual pancreas- and lung-targeting therapeutic strategy mediated by a phenolic propanediamine moiety for the treatment of acute pancreatitis. Using the proposed dual-targeting ligand, an anti-inflammatory compound Rhein has been tailored to preferentially accumulate in the pancreas and lungs with rapid distribution kinetics, excellent tissue-penetrating properties and minimum toxicity. Accordingly, the drug-ligand conjugate remarkably downregulated the proinflammatory cytokines in the target organs thus effectively inhibiting local pancreatic and systemic inflammation in rats. The dual-specific targeting therapeutic strategy may help pave the way for targeted drug delivery to treat complicated inflammatory diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Hongfu; Sun, Rongqing; Ma, Ning; Liu, Qilong; Sun, Xiaoge; Zi, Panpan; Wang, Junsheng; Chao, Ke; Yu, Lei
2017-01-01
This study mainly studied the effect of inhibition of nuclear factor-κB (NF-κB) signal by pyrrolidine dithiocarbamate (PDTC) on lipopolysaccharide (LPS)-induced inflammatory response, oxidative stress, and mitochondrial dysfunction in a murine acute lung injury model. The results showed that LPS exposure activated NF-κB and its upstream proteins and caused lung inflammation, oxidative stress, and mitochondrial dysfunction in mice. While inhibition of NF-κB by PDTC adminstration alleviated LPS-induced generation of lymphocytes, IL-1β, and TNF-α. Malondialdehyde, a common oxidative product, was markedly reduced after PDTC treatment in LPS-challenged mice. Furthermore, PDTC alleviated LPS-induced mitochondrial dysfunction via improving ATP synthesis and uncoupling protein 2 expression. In conclusion, inhibition of NF-κB by PDTC alleviated LPS-induced acute lung injury via maintaining inflammatory status, oxidative balance, and mitochondrial function in mice. PMID:28521300
Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury.
Rotta, A T; Gunnarsson, B; Fuhrman, B P; Hernan, L J; Steinhorn, D M
2001-11-01
To determine the impact of different protective and nonprotective mechanical ventilation strategies on the degree of pulmonary inflammation, oxidative damage, and hemodynamic stability in a saline lavage model of acute lung injury. A prospective, randomized, controlled, in vivo animal laboratory study. Animal research facility of a health sciences university. Forty-six New Zealand White rabbits. Mature rabbits were instrumented with a tracheostomy and vascular catheters. Lavage-injured rabbits were randomized to receive conventional ventilation with either a) low peak end-expiratory pressure (PEEP; tidal volume of 10 mL/kg, PEEP of 2 cm H2O); b) high PEEP (tidal volume of 10 mL/kg, PEEP of 10 cm H2O); c) low tidal volume with PEEP above Pflex (open lung strategy, tidal volume of 6 mL/kg, PEEP set 2 cm H2O > Pflex); or d) high-frequency oscillatory ventilation. Animals were ventilated for 4 hrs. Lung lavage fluid and tissue samples were obtained immediately after animals were killed. Lung lavage fluid was assayed for measurements of total protein, elastase activity, tumor necrosis factor-alpha, and malondialdehyde. Lung tissue homogenates were assayed for measurements of myeloperoxidase activity and malondialdehyde. The need for inotropic support was recorded. Animals that received a lung protective strategy (open lung or high-frequency oscillatory ventilation) exhibited more favorable oxygenation and lung mechanics compared with the low PEEP and high PEEP groups. Animals ventilated by a lung protective strategy also showed attenuation of inflammation (reduced tracheal fluid protein, tracheal fluid elastase, tracheal fluid tumor necrosis factor-alpha, and pulmonary leukostasis). Animals treated with high-frequency oscillatory ventilation had attenuated oxidative injury to the lung and greater hemodynamic stability compared with the other experimental groups. Both lung protective strategies were associated with improved oxygenation, attenuated inflammation, and decreased lung damage. However, in this small-animal model of acute lung injury, an open lung strategy with deliberate hypercapnia was associated with significant hemodynamic instability.
Bhargava, Rhea; Janssen, William; Altmann, Christopher; Andrés-Hernando, Ana; Okamura, Kayo; Vandivier, R William; Ahuja, Nilesh; Faubel, Sarah
2013-01-01
Serum and bronchoalveolar fluid IL-6 are increased in patients with acute respiratory distress syndrome (ARDS) and predict prolonged mechanical ventilation and poor outcomes, although the role of intra-alveolar IL-6 in indirect lung injury is unknown. We investigated the role of endogenous and exogenous intra-alveolar IL-6 in AKI-mediated lung injury (indirect lung injury), intraperitoneal (IP) endotoxin administration (indirect lung injury) and, for comparison, intratracheal (IT) endotoxin administration (direct lung injury) with the hypothesis that IL-6 would exert a pro-inflammatory effect in these causes of acute lung inflammation. Bronchoalveolar cytokines (IL-6, CXCL1, TNF-α, IL-1β, and IL-10), BAL fluid neutrophils, lung inflammation (lung cytokines, MPO activity [a biochemical marker of neutrophil infiltration]), and serum cytokines were determined in adult male C57Bl/6 mice with no intervention or 4 hours after ischemic AKI (22 minutes of renal pedicle clamping), IP endotoxin (10 µg), or IT endotoxin (80 µg) with and without intratracheal (IT) IL-6 (25 ng or 200 ng) treatment. Lung inflammation was similar after AKI, IP endotoxin, and IT endotoxin. BAL fluid IL-6 was markedly increased after IT endotoxin, and not increased after AKI or IP endotoxin. Unexpectedly, IT IL-6 exerted an anti-inflammatory effect in healthy mice characterized by reduced BAL fluid cytokines. IT IL-6 also exerted an anti-inflammatory effect in IT endotoxin characterized by reduced BAL fluid cytokines and lung inflammation; IT IL-6 had no effect on lung inflammation in AKI or IP endotoxin. IL-6 exerts an anti-inflammatory effect in direct lung injury from IT endotoxin, yet has no role in the pathogenesis or treatment of indirect lung injury from AKI or IP endotoxin. Since intra-alveolar inflammation is important in the pathogenesis of direct, but not indirect, causes of lung inflammation, IT anti-inflammatory treatments may have a role in direct, but not indirect, causes of ARDS.
Sato, Takashi; Soejima, Kenzo; Nakayama, Sohei; Satomi, Ryosuke; Sayama, Koichi; Asano, Koichiro
2010-10-01
A 76-year-old woman with multiple bone metastases from lung adenocarcinoma was admitted due to a pathological femoral fracture. On the night after admission, her consciousness deteriorated rapidly and she developed progressive respiratory failure. Computed tomography of the chest revealed diffuse ground glass opacities in both lungs, and magnetic resonance imaging of the brain showed multiple acute infarctions. Her condition improved after several days of supportive treatment with oxygen, corticosteroids and diuretics. Fat embolism syndrome should be considered as a differential diagnosis if consciousness disturbance and respiratory failure occur in patients with metastatic bone carcinoma and pathological long bone fractures.
Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Seong Ho, E-mail: yoosh@snu.ac.kr; Abdelmegeed, Mohamed A.; Song, Byoung-Joon, E-mail: bj.song@nih.gov
Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigatedmore » in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.« less
Low level laser therapy reduces acute lung inflammation without impairing lung function.
Cury, Vivian; de Lima, Thais Martins; Prado, Carla Maximo; Pinheiro, Nathalia; Ariga, Suely K K; Barbeiro, Denise F; Moretti, Ana I; Souza, Heraldo P
2016-12-01
Acute lung injury is a condition characterized by exacerbate inflammatory reaction in distal airways and lung dysfunction. Here we investigate the treatment of acute lung injury (ALI) by low level laser therapy (LLLT), an effective therapy used for the treatment of patients with inflammatory disorders or traumatic injuries, due to its ability to reduce inflammation and promote tissue regeneration. However, studies in internal viscera remains unclear. C57BL/6 mice were treated with intratracheal lipopolysaccharide (LPS) (5 mg/kg) or phosphate buffer saline (PBS). Six hours after instillation, two groups were irradiated with laser at 660 nm and radiant exposure of 10 J/cm 2 . Intratracheal LPS inoculation induced a marked increase in the number of inflammatory cells in perivascular and alveolar spaces. There was also an increase in the expression and secretion of cytokines (TNF-α, IL-1β, IL-6,) and chemokine (MCP-1). The LLLT application induced a significant decrease in both inflammatory cells influx and inflammatory mediators secretion. These effects did not affect lung mechanical properties, since no change was observed in tissue resistance or elastance. In conclusion LLLT is able to reduce inflammatory reaction in lungs exposed to LPS without affecting the pulmonary function and recovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Banff study of pathologic changes in lung allograft biopsy specimens with donor-specific antibodies.
Wallace, William Dean; Li, Ning; Andersen, Claus B; Arrossi, A Valeria; Askar, Medhat; Berry, Gerry J; DeNicola, Matthew M; Neil, Desley A; Pavlisko, Elizabeth N; Reed, Elaine F; Remmelink, Myriam; Weigt, S Sam; Weynand, Birgit; Zhang, Jennifer Q; Budev, Marie M; Farver, Carol F
2016-01-01
The diagnosis of antibody-mediated rejection (AMR) in the lung transplant is still an area under investigation. We performed a blinded multicenter study to determine if any statistically significant histologic findings in transbronchial biopsy specimens from lung transplant patients correlate with the presence of donor-specific antibodies (DSAs). We asked 9 pathologists with experience in lung transplantation to evaluate 161 lung transplant biopsy specimens for various histologic parameters. The findings were correlated with antibody status positive for DSAs, positive for non-DSAs, and no antibodies (NABs) present. The significance of each histologic variable was reviewed. We found no statistically significant association with acute cellular rejection, airway inflammation, or bronchiolitis obliterans and the presence or absence of antibodies. However, biopsy specimens with DSAs had a statistically significant difference vs NABs in the setting of acute lung injury, with or without diffuse alveolar damage (p = 0.0008), in the presence of capillary neutrophilic inflammation (p = 0.0014), and in samples with endotheliitis (p = 0.0155). In samples with complement 4d staining, there was a trend but no statistically significant difference between specimens associated with DSAs and specimens with NABs. Capillary inflammation, acute lung injury, and endotheliitis significantly correlated with DSAs. The infrequently observed diffuse staining for complement 4d limits the usefulness of this stain. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Alda-1 Protects Against Acrolein-Induced Acute Lung Injury and Endothelial Barrier Dysfunction.
Lu, Qing; Mundy, Miles; Chambers, Eboni; Lange, Thilo; Newton, Julie; Borgas, Diana; Yao, Hongwei; Choudhary, Gaurav; Basak, Rajshekhar; Oldham, Mahogany; Rounds, Sharon
2017-12-01
Inhalation of acrolein, a highly reactive aldehyde, causes lung edema. The underlying mechanism is poorly understood and there is no effective treatment. In this study, we demonstrated that acrolein not only dose-dependently induced lung edema but also promoted LPS-induced acute lung injury. Importantly, acrolein-induced lung injury was prevented and rescued by Alda-1, an activator of mitochondrial aldehyde dehydrogenase 2. Acrolein also dose-dependently increased monolayer permeability, disrupted adherens junctions and focal adhesion complexes, and caused intercellular gap formation in primary cultured lung microvascular endothelial cells (LMVECs). These effects were attenuated by Alda-1 and the antioxidant N-acetylcysteine, but not by the NADPH inhibitor apocynin. Furthermore, acrolein inhibited AMP-activated protein kinase (AMPK) and increased mitochondrial reactive oxygen species levels in LMVECs-effects that were associated with impaired mitochondrial respiration. AMPK total protein levels were also reduced in lung tissue of mice and LMVECs exposed to acrolein. Activation of AMPK with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside blunted an acrolein-induced increase in endothelial monolayer permeability, but not mitochondrial oxidative stress or inhibition of mitochondrial respiration. Our results suggest that acrolein-induced mitochondrial dysfunction may not contribute to endothelial barrier dysfunction. We speculate that detoxification of acrolein by Alda-1 and activation of AMPK may be novel approaches to prevent and treat acrolein-associated acute lung injury, which may occur after smoke inhalation.
Pirat, Arash; Zeyneloglu, Pinar; Aldemir, Derya; Yücel, Muammer; Ozen, Ozlem; Candan, Selim; Arslan, Gülnaz
2006-01-01
In this rat model study we evaluated whether pretreatment with simvastatin affects the severity of acute lung injury caused by intestinal ischemia-reperfusion (I/R). Twenty-four animals were randomly allocated to three equal groups (sham, control, simvastatin). The simvastatin group was pretreated with simvastatin 10 mg x kg(-1) x day(-1) for 3 days, whereas the other groups received placebo. The simvastatin and control groups underwent 60 min of superior mesenteric artery occlusion and 90 min of reperfusion. Compared with the simvastatin group, the control group exhibited significantly more severe intestinal I/R-induced acute lung injury, as indicated by lower Pao2 and oxygen saturation (P = 0.01 and P = 0.005, respectively) and higher mean values for neutrophil infiltration of the lungs (P = 0.003), total lung histopathologic injury score (P = 0.003), lung wet-to-dry weight ratio (P = 0.009), and lung-tissue malondialdehyde levels (P = 0.016). The control and simvastatin groups had similar serum levels and similar bronchoalveolar lavage fluid levels of cytokines (interleukin-1, interleukin-6, and tumor necrosis factor-alpha) and P-selectin at all measurements, except for a significantly higher level of bronchoalveolar lavage fluid P-selectin in the control group (P = 0.006). Pretreatment with simvastatin reduces the severity of acute lung injury induced by intestinal I/R in rats.
Wellman, Tyler J.; de Prost, Nicolas; Tucci, Mauro; Winkler, Tilo; Baron, Rebecca M.; Filipczak, Piotr; Raby, Benjamin; Chu, Jen-hwa; Harris, R. Scott; Musch, Guido; dos Reis Falcao, Luiz F.; Capelozzi, Vera; Venegas, Jose; Melo, Marcos F. Vidal
2016-01-01
Background The acute respiratory distress syndrome (ARDS) is an inflammatory condition comprising diffuse lung edema and alveolar damage. ARDS frequently results from regional injury mechanisms. However, it is unknown whether detectable inflammation precedes lung edema and opacification, and whether topographically differential gene expression consistent with heterogeneous injury occurs in early ARDS. We aimed to determine the temporal relationship between pulmonary metabolic activation and density in a large animal model of early ARDS, and to assess gene expression in differentially activated regions. Methods We produced ARDS in sheep with intravenous LPS (10ng/kg/h) and mechanical ventilation for 20h. Using positron emission tomography, we assessed regional cellular metabolic activation with 2-deoxy-2-[(18)F]fluoro-D-glucose, perfusion and ventilation with 13NN-saline, and aeration using transmission scans. Species-specific micro-array technology was used to assess regional gene expression. Results Metabolic activation preceded detectable increases in lung density (as required for clinical diagnosis) and correlated with subsequent histological injury, suggesting its predictive value for severity of disease progression. Local time-courses of metabolic activation varied, with highly perfused and less aerated dependent lung regions activated earlier than non-dependent regions. These regions of distinct metabolic trajectories demonstrated differential gene expression for known and potential novel candidates for ARDS pathogenesis. Conclusions Heterogeneous lung metabolic activation precedes increases in lung density in the development of ARDS due to endotoxemia and mechanical ventilation. Local differential gene expression occurs in these early stages and reveals molecular pathways relevant to ARDS biology and of potential use as treatment targets. PMID:27611185
Indoor fuel exposure and the lung in both developing and developed countries: An update
2012-01-01
Synopsis Almost 3 billion people worldwide burn solid fuels indoors. These fuels include biomass and coal. Although indoor solid fuel smoke is likely a greater problem in developing countries, wood burning populations in developed countries may also be at risk from these exposures. Despite the large population at risk worldwide, the effect of exposure to indoor solid fuel smoke has not been adequately studied. Indoor air pollution from solid fuel use is strongly associated with COPD (both emphysema and chronic bronchitis), acute respiratory tract infections, and lung cancer (primarily coal use) and weakly associated with asthma, tuberculosis, and interstitial lung disease. Tobacco use further potentiates the development of respiratory disease among subjects exposed to solid fuel smoke. There is a need to perform additional interventional studies in this field. It is also important to increase awareness about the health effects of solid fuel smoke inhalation among physicians and patients as well as trigger preventive actions through education, research, and policy change in both developing and developed countries. PMID:23153607
Benson, J M; Holmes, A M; Barr, E B; Nikula, K J; March, T H
2000-08-01
Beryllium/copper (BeCu) alloys are commonly used in the electronics, automotive, consumer, defense, and aerospace industries. Some individuals exposed occupationally to BeCu alloys have developed chronic beryllium disease. However, little is known of the toxicity and fate of BeCu alloys in the respiratory tract. To begin to address this question, we investigated the pulmonary toxicity and clearance of BeCu alloy (2% Be; 98% Cu) in mice. Groups of 40 female C3H/HeJ mice were administered 12.5, 25, and 100 microg BeCu alloy or 2 and 8 microg Be metal by intratracheal instillation. Mice were sacrificed at 1 h and 1, 7, 14, and 28 days postinstillation. Left lungs were evaluated for histopathological change. Right lungs were analyzed for Be and Cu content. Twenty-five percent of the high-dose BeCu mice and 7.5% of the mid-dose BeCu mice died within 24 h of dosing. Acute pulmonary lesions included acute alveolitis and interstitial inflammation. Type II epithelial cell hyperplasia and centriacinar fibrosis were present by 7 days after dosing. Lesions persisted through 28 days after instillation. No lesions attributable to alloy exposure were present in liver or kidney. Be metal instillation caused no deaths and minimal pulmonary changes over the time studied, indicating that the pulmonary lesions were due to Cu rather than Be. Cu cleared the lung with a half-time of 0. 5-2 days. Be cleared with a half-time of several weeks or longer. Results of this study suggest that exposure to BeCu alloy is more acutely toxic to lung than Be metal. The results of tissue analyses also indicate that, while the Cu component of the alloy clears the lung rapidly, Be is retained and may accumulate upon repeated exposure.
OBJECTIVE: Acute lung injury induced by lung overstretch is associated with neutrophil influx, but the pathogenic role of neutrophils in overstretch-induced lung injury remains unclear. DESIGN: To assess the contribution of neutrophils, we compared the effects of noninjurious lar...
Xu, Dandan; Zhang, Yi; Zhou, Lian; Li, Tiantian
2018-03-17
The association between exposure to ambient particulate matter (PM) and reduced lung function parameters has been reported in many works. However, few studies have been conducted in developing countries with high levels of air pollution like China, and little attention has been paid to the acute effects of short-term exposure to air pollution on lung function. The study design consisted of a panel comprising 86 children from the same school in Nanjing, China. Four measurements of lung function were performed. A mixed-effects regression model with study participant as a random effect was used to investigate the relationship between PM 2.5 and lung function. An increase in the current day, 1-day and 2-day moving average PM 2.5 concentration was associated with decreases in lung function indicators. The greatest effect of PM 2.5 on lung function was detected at 1-day moving average PM 2.5 exposure. An increase of 10 μg/m 3 in the 1-day moving average PM 2.5 concentration was associated with a 23.22 mL decrease (95% CI: 13.19, 33.25) in Forced Vital Capacity (FVC), a 18.93 mL decrease (95% CI: 9.34, 28.52) in 1-s Forced Expiratory Volume (FEV 1 ), a 29.38 mL/s decrease (95% CI: -0.40, 59.15) in Peak Expiratory Flow (PEF), and a 27.21 mL/s decrease (95% CI: 8.38, 46.04) in forced expiratory flow 25-75% (FEF 25-75% ). The effects of PM 2.5 on lung function had significant lag effects. After an air pollution event, the health effects last for several days and we still need to pay attention to health protection.
Safety and Tolerability of SBRT after High-Dose External Beam Radiation to the Lung
Owen, Dawn; Olivier, Kenneth R.; Song, Limin; Mayo, Charles S.; Miller, Robert C.; Nelson, Kathryn; Bauer, Heather; Brown, Paul D.; Park, Sean S.; Ma, Daniel J.; Garces, Yolanda I.
2015-01-01
Purpose: Stereotactic body radiotherapy (SBRT) is commonly used to treat unresectable lung nodules. Given its relative safety and effective local control, SBRT has also been used to treat recurrent lung nodules after high-dose external beam radiation (EBRT) to the lung. The toxicity of such treatment is unknown. Methods and Materials: Between 2006 and 2012, 18 subjects at the Mayo Clinic with 27 recurrent lung nodules were treated with SBRT after receiving EBRT to the lung. Median local control, overall survival, and progression-free survival (PFS) were described. Acute toxicity and late toxicity (defined as toxicity ≥ and >90 days, respectively) were reported and graded as per standardized CTCAE 4.0 criteria. Results: The median age of patients treated was 68 years. Fifteen patients had recurrent lung cancer as their primary histology. Twelve patients received ≥60 Gy of conventional EBRT prior to SBRT. SBRT dose and fractionation varied; the most common prescriptions were 48 Gy/4, 54 Gy/3, and 50 Gy/5 fractions. Only four patients had SBRT planning target volumes (PTVs) that overlapped more than 50% of their prior EBRT PTV. Two patients developed local recurrence following SBRT. With a median follow up of 21.2 months, median SBRT-specific overall survival and PFS were 21.7 and 12.3 months, respectively. No grade ≥3 acute or late toxicities were noted. Conclusion: Stereotactic body radiotherapy may be a good salvage option for select patients with recurrent lung nodules following definitive EBRT to the chest. Toxicity is minimal and local control is excellent. PMID:25642416
Pietrofesa, Ralph A; Solomides, Charalambos C; Christofidou-Solomidou, Melpo
Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O 2 (O 2 ); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O 2 and IR (O 2 +IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early tissue oxidative damage associated with space exploration.
Pietrofesa, Ralph A.; Solomides, Charalambos C.; Christofidou-Solomidou, Melpo
2015-01-01
Background Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. Methods We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. Results At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Conclusion Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early tissue oxidative damage associated with space exploration. PMID:25705570
Pinkston, P; Vijayan, V K; Nutman, T B; Rom, W N; O'Donnell, K M; Cornelius, M J; Kumaraswami, V; Ferrans, V J; Takemura, T; Yenokida, G
1987-01-01
Although acute tropical pulmonary eosinophilia (TPE) is well recognized as a manifestation of filarial infection, the processes that mediate the abnormalities of the lung in TPE are unknown. To evaluate the hypothesis that the derangements of the lower respiratory tract in this disorder are mediated by inflammatory cells in the local milieu, we utilized bronchoalveolar lavage to evaluate affected individuals before and after therapy. Inflammatory cells recovered from the lower respiratory tract of individuals with acute, untreated TPE (n = 8) revealed a striking eosinophilic alveolitis, with marked elevations in both the proportion of eosinophils (TPE 54 +/- 5%; normal 2 +/- 5%; P less than 0.001) and the concentration of eosinophils in the recovered epithelial lining fluid (ELF) (TPE 63 +/- 20 X 10(3)/microliter; normal 0.3 +/- 0.1 X 10(3)/microliter; P less than 0.01). Importantly, when individuals (n = 5) with acute TPE were treated with diethylcarbamazine (DEC), there was a marked decrease of the lung eosinophils and concomitant increase in lung function. These observations are consistent with the concept that at least some of the abnormalities found in the lung in acute TPE are mediated by an eosinophil-dominated inflammatory process in the lower respiratory tract. Images PMID:3298321
Asymptomatic Pulmonary Allograft Kaposi Sarcoma: A Case Report.
Nannini, Nazarena; Rebusso, Alessandro; Lunardi, Francesca; Loy, Monica; Calabrese, Francesca; Battistella, Lucia; Schiavon, Marco; Rea, Federico; Calabrese, Fiorella
2017-08-01
Solid-organ transplant recipients are at high risk of developing malignancies. A greater risk of Kaposi sarcoma has been reported in lung recipients in our country, particularly in those from Southern Italy, probably due to the high prevalence of Human herpes virus 8 infection. Kaposi sarcoma affecting only the lung allograft is extremely rare. We describe a case of a lung recipient who developed Kaposi sarcoma only in the graft, 22 months after transplant. The patient, a 65-year-old man from Southern Italy, underwent bilateral lung transplant for idiopathic pulmonary fibrosis in January 2009. He developed mild/moderate acute cellular rejection (≥A2) in 4 of 6 scheduled transbronchial biopsies thus was treated with increased immunosuppressive therapy, shifting from cyclosporine to tacrolimus and mycophenolate mofetil. In July 2010, a high-resolution computed tomography scan showed small bilateral lung nodules, despite a generally good condition. After 2 months, his condition worsened with a severe weight loss. A positron emission tomography scan showed mild metabolic activity in the lesions with no other localizations. In October 2010, a lung biopsy was performed, with results showing typical histologic and immunohistochemical features of Kaposi sarcoma. Molecular tissue evaluations and serologic analyses were positive for Human herpes virus 8. The patient's immunosuppressive therapy was suspended, and he started liposomal doxorubicin treatment; however, after the first cycle, he developed severe respiratory dysfunction. The patient died 27 months after lung transplant for neoplasm. Our report highlights the importance of considering Kaposi sarcoma in the differential diagnosis for lung nodules in lung transplant recipients, even in the absence of any initial specific symptom or cutaneous lesion.
Langer, Thomas; Vecchi, Vittoria; Belenkiy, Slava M; Cannon, Jeremy W; Chung, Kevin K; Cancio, Leopoldo C; Gattinoni, Luciano; Batchinsky, Andriy I
2014-03-01
Venovenous extracorporeal gas exchange is increasingly used in awake, spontaneously breathing patients as a bridge to lung transplantation. Limited data are available on a similar use of extracorporeal gas exchange in patients with acute respiratory distress syndrome. The aim of this study was to investigate the use of extracorporeal gas exchange in awake, spontaneously breathing sheep with healthy lungs and with acute respiratory distress syndrome and describe the interactions between the native lung (healthy and diseased) and the artificial lung (extracorporeal gas exchange) in this setting. Laboratory investigation. Animal ICU of a governmental laboratory. Eleven awake, spontaneously breathing sheep on extracorporeal gas exchange. Sheep were studied before (healthy lungs) and after the induction of acute respiratory distress syndrome via IV injection of oleic acid. Six gas flow settings (1-10 L/min), resulting in different amounts of extracorporeal CO2 removal (20-100% of total CO2 production), were tested in each animal before and after the injury. Respiratory variables and gas exchange were measured for every gas flow setting. Both healthy and injured sheep reduced minute ventilation according to the amount of extracorporeal CO2 removal, up to complete apnea. However, compared with healthy sheep, sheep with acute respiratory distress syndrome presented significantly increased esophageal pressure variations (25 ± 9 vs 6 ± 3 cm H2O; p < 0.001), which could be reduced only with very high amounts of CO2 removal (> 80% of total CO2 production). Spontaneous ventilation of both healthy sheep and sheep with acute respiratory distress syndrome can be controlled via extracorporeal gas exchange. If this holds true in humans, extracorporeal gas exchange could be used in awake, spontaneously breathing patients with acute respiratory distress syndrome to support gas exchange. A deeper understanding of the pathophysiology of spontaneous breathing during acute respiratory distress syndrome is however warranted in order to be able to propose extracorporeal gas exchange as a safe and valuable alternative to mechanical ventilation for the treatment of patients with acute respiratory distress syndrome.
Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses
Waters, Christopher M.; Roan, Esra; Navajas, Daniel
2015-01-01
Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis. PMID:23728969
[Protective effect of curcumin on oleic-induced acute lung injury in rats].
Zhu, Rui-fang; Zhou, Min; He, Jian-lin; Ding, Fu-yun; Yu, Shu-qin; Xu, Guang-lin
2008-09-01
To investigate the effect of curcumine on acute lung injury induced by oleic acid in rat and the possible mechanism of action. The rats were divided into 6 groups randomly: normal group, control group, curcumine groups (5, 10, 20 mg x kg(-1)) and dexamethasone group (1 mg x kg(-1)). During the experiment, acute lung injury was induced by oleic acid in rat. The changes of dynamic lung compliance were recorded by anrise 2005 pulmonary function test apparatus, light microscope was used to examine histological changes and lung index as well as wet to dry weight ratio was calculated by weighting method. Lung vascular permeability and protein level in BALF were detected by ultraviolet spectrophotometry, and the concentrations of TNF-alpha, IL-6 and IL-10 in BALF were measured by enzyme linked immunosorbent assay (ELISA). The result showed that the changes of pulmonary compliance were inhibited and pulmonary function was improved by curcumine. The OA-induced elevation of lung index was restrained, as well as wet to dry weight ratio, lung vascular permeability, protein level, TNF-alpha (250.4 +/- 21.6 vs. 172.53 +/- 14.88, 122.2 +/- 10.98, 108.69 +/- 3.39) ng x L(-1), IL-6 (763.6 +/- 88.33 vs. 207.41 +/- 15.55, 172.13 +/- 21.91, 142.92 +/- 4.32) ng x L(-1) in BALF in curcumine groups, IL-10 (98.90 +/- 2.99 vs. 208.44 +/- 16.30, 218.43 +/- 6.23, 252.70 +/- 20.58) ng x L(-1) in BALF was increased, respectively significantly. Light microscope findings shown that the impairment in curcumine groups was far less severe than that in model groups. Pretreatment of curcumine showed beneficial effect on acute lung injury induced by oleic acid in rats. The mediation of both proinflammatory factor and anti-inflammatory factor by curcumine may be involved in mechanism of action of curcumine effects.
2013-01-01
Introduction Polytrauma often results in significant hypoxemia secondary to direct lung contusion or indirectly through atelectasis, systemic inflammatory response, large volume fluid resuscitation and blood product transfusion. In addition to causing hypoxemia, atelectasis and acute lung injury can lead to right ventricular failure through an acute increase in pulmonary vascular resistance. Mechanical ventilation is often applied, accompanied with recruitment maneuvers and positive end-expiratory pressure in order to recruit alveoli and reverse atelectasis, while preventing excessive alveolar damage. This strategy should lead to the reversal of the hypoxemic condition and the detrimental heart–lung interaction that may occur. However, as described in this case report, hemodynamic instability and intractable alveolar atelectasis sometimes do not respond to conventional ventilation strategies. Case presentation We describe the case of a 21-year-old Caucasian man with severe chest trauma requiring surgical interventions, who developed refractory hypoxemia and overt right ventricular failure. After multiple failed attempts of recruitment using conventional ventilation, the patient was ventilated with high-frequency oscillatory ventilation. This mode of ventilation allowed the reversal of the hemodynamic effects of severe hypoxemia and of the acute cor pulmonale. We use this case report to describe the physiological advantages of high-frequency oscillatory ventilation in patients with chest trauma, and formulate the arguments to explain the positive effect observed in our patient. Conclusions High-frequency oscillatory ventilation can be used in the context of a blunt chest trauma accompanied by severe hypoxemia due to atelectasis. The positive effect is due to its capacity to recruit the collapsed alveoli and, as a result, the relief of increased pulmonary vascular resistance and subsequently the reversal of acute cor pulmonale. This approach may represent an alternative in case of failure of the conventional ventilation strategy. PMID:23855954
The effect of latent adenovirus 5 infection on cigarette smoke-induced lung inflammation.
Vitalis, T Z; Kern, I; Croome, A; Behzad, H; Hayashi, S; Hogg, J C
1998-03-01
The aim of this study was to test the hypothesis that latent adenovirus (Ad) 5 infection increases the lung inflammation that follows a single acute exposure to cigarette smoke. A recently developed model of latent adenoviral infection in guinea-pigs was used. Twelve animals were infected with Ad5 (10(8) plaque-forming units) and 12 animals were sham-infected. Thirty five days later six Ad5-infected and six sham-infected animals were exposed to the smoke from five cigarettes. The remaining animals were used as controls for both infection and smoking. As markers of inflammation, the volume fraction of macrophages, T-lymphocytes, neutrophils and eosinophils were measured by quantitative histology. We found that latent Ad5-infection alone, doubled the number of macrophages in the lung parenchyma and that smoking alone, doubled the volume fraction of neutrophils in the airway wall and the volume fraction of macrophages in the lung parenchyma. Neither viral infection nor smoking, alone, had an effect on T-lymphocytes or eosinophils. However, the combination of viral infection and smoking doubled the T-lymphocyte helper cells and quadrupled the volume fraction of macrophages in the lung parenchyma. We conclude that in guinea-pigs, latent adenovirus 5 infection increases the inflammation that follows a single acute exposure to cigarette smoke, by increasing the volume fraction of macrophages and T-lymphocyte helper cells.
Mechanisms of alveolar fibrosis after acute lung injury.
Marinelli, W A; Henke, C A; Harmon, K R; Hertz, M I; Bitterman, P B
1990-12-01
In patients who die after severe acute lung injury, a dramatic fibroproliferative response occurs within the alveolar air space, interstitium, and microvessels. Profound shunt physiology, dead space ventilation, and pulmonary hypertension are the physiologic consequences of this fibroproliferative response. The anatomic pattern of the response is unique within each alveolar compartment. For example, the air space is obliterated by granulation tissue, with replicating mesenchymal cells, their connective tissue products, and an expanding network of intra-alveolar capillaries. In contrast, the vascular fibroproliferative response is dominated by mesenchymal cell replication and connective tissue deposition within the walls of microvessels. Despite the unique anatomic features of these fibroproliferative processes, the regulatory signals involved are likely to be similar. Although our current understanding of the signals regulating the fibroproliferative response to acute lung injury is limited, inferences can be made from in vitro studies of mesenchymal cell behavior and several better understood fibroproliferative processes, including wound healing and chronic fibrotic lung diseases. As clinicians, our future ability to enhance effective lung repair will likely utilize therapeutic strategies specifically targeted to the signals that regulate the fibroproliferative process within the alveolar microenvironment.
Attenuation of acute lung inflammation induced by cigarette smoke in CXCR3 knockout mice.
Nie, Li; Xiang, Ruolan; Zhou, Weixun; Lu, Bao; Cheng, Deyun; Gao, Jinming
2008-12-16
CD8+ T cells may participate in cigarette smoke (CS) induced-lung inflammation in mice. CXCL10/IP-10 (IFNgamma-inducible protein 10) and CXCL9/Mig (monokine induced by IFN-gamma) are up-regulated in CS-induced lung injury and may attract T-cell recruitment to the lung. These chemokines together with CXCL11/ITAC (IFN-inducible T-cell alpha chemoattractant) are ligands for the chemokine receptor CXCR3 which is preferentially expressed chiefly in activated CD8+ T cells. The purpose of this investigation was to study the contribution of CXCR3 to acute lung inflammation induced by CS using CXCR3 knockout (KO) mice. Mice (n = 8 per group) were placed in a closed plastic box connected to a smoke generator and were exposed whole body to the tobacco smoke of five cigarettes four times a day for three days. Lung pathological changes, expression of inflammatory mediators in bronchoalveolar lavage (BAL) fluid and lungs at mRNA and protein levels, and lung infiltration of CD8+ T cells were compared between CXCR3-/- mice and wild type (WT) mice. Compared with the WT littermates, CXCR3 KO mice showed less CS-induced lung inflammation as evidenced by less infiltration of inflammatory cells in airways and lung tissue, particularly fewer CD8+ T cells, lower levels of IFNgamma and CXCR3 ligands (particularly CXCL10). Our findings show that CXCR3 is important in promoting CD8+ T cell recruitment and in initiating IFNgamma and CXCL10 release following CS exposure. CXCR3 may represent a promising therapeutic target for acute lung inflammation induced by CS.
Attenuation of acute lung inflammation induced by cigarette smoke in CXCR3 knockout mice
Nie, Li; Xiang, Ruolan; Zhou, Weixun; Lu, Bao; Cheng, Deyun; Gao, Jinming
2008-01-01
Background CD8+ T cells may participate in cigarette smoke (CS) induced-lung inflammation in mice. CXCL10/IP-10 (IFNγ-inducible protein 10) and CXCL9/Mig (monokine induced by IFN-γ) are up-regulated in CS-induced lung injury and may attract T-cell recruitment to the lung. These chemokines together with CXCL11/ITAC (IFN-inducible T-cell alpha chemoattractant) are ligands for the chemokine receptor CXCR3 which is preferentially expressed chiefly in activated CD8+ T cells. The purpose of this investigation was to study the contribution of CXCR3 to acute lung inflammation induced by CS using CXCR3 knockout (KO) mice. Methods Mice (n = 8 per group) were placed in a closed plastic box connected to a smoke generator and were exposed whole body to the tobacco smoke of five cigarettes four times a day for three days. Lung pathological changes, expression of inflammatory mediators in bronchoalveolar lavage (BAL) fluid and lungs at mRNA and protein levels, and lung infiltration of CD8+ T cells were compared between CXCR3-/- mice and wild type (WT) mice. Results Compared with the WT littermates, CXCR3 KO mice showed less CS-induced lung inflammation as evidenced by less infiltration of inflammatory cells in airways and lung tissue, particularly fewer CD8+ T cells, lower levels of IFNγ and CXCR3 ligands (particularly CXCL10). Conclusion Our findings show that CXCR3 is important in promoting CD8+ T cell recruitment and in initiating IFNγ and CXCL10 release following CS exposure. CXCR3 may represent a promising therapeutic target for acute lung inflammation induced by CS. PMID:19087279
Sodium Butyrate Protects against Severe Burn-Induced Remote Acute Lung Injury in Rats
Liu, Sheng; Guo, Feng; Sun, Li; Wang, Yong-Jie; Sun, Ye-Xiang; Chen, Xu-Lin
2013-01-01
High-mobility group box 1 protein (HMGB1), a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI). Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague–Dawley rats were divided into three groups: 1) sham group, sham burn treatment; 2) burn group, third-degree burns over 30% total body surface area (TBSA) with lactated Ringer’s solution for resuscitation; 3) burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer’s solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D) ratio. Tumor necrosis factor (TNF)-α and interleukin (IL)-8 protein concentrations in bronchoalveolar lavage fluid (BALF) and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO) activity and malondialdehyde (MDA) concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1 expression. PMID:23874764
2012-01-01
Background Rapid and accurate diagnosis and management can be lifesaving for patients with acute dyspnea. However, making a differential diagnosis and selecting early treatment for patients with acute dyspnea in the emergency setting is a clinical challenge that requires complex decision-making in order to achieve hemodynamic balance, improve functional capacity, and decrease mortality. In the present study, we examined the screening potential of rapid evaluation by lung-cardiac-inferior vena cava (LCI) integrated ultrasound for differentiating acute heart failure syndromes (AHFS) from primary pulmonary disease in patients with acute dyspnea in the emergency setting. Methods Between March 2011 and March 2012, 90 consecutive patients (45 women, 78.1 ± 9.9 years) admitted to the emergency room of our hospital for acute dyspnea were enrolled. Within 30 minutes of admission, all patients underwent conventional physical examination, rapid ultrasound (lung-cardiac-inferior vena cava [LCI] integrated ultrasound) examination with a hand-held device, routine laboratory tests, measurement of brain natriuretic peptide, and chest X-ray in the emergency room. Results The final diagnosis was acute dyspnea due to AHFS in 53 patients, acute dyspnea due to pulmonary disease despite a history of heart failure in 18 patients, and acute dyspnea due to pulmonary disease in 19 patients. Lung ultrasound alone showed a sensitivity, specificity, negative predictive value, and positive predictive value of 96.2, 54.0, 90.9, and 75.0%, respectively, for differentiating AHFS from pulmonary disease. On the other hand, LCI integrated ultrasound had a sensitivity, specificity, negative predictive value, and positive predictive value of 94.3, 91.9, 91.9, and 94.3%, respectively. Conclusions Our study demonstrated that rapid evaluation by LCI integrated ultrasound is extremely accurate for differentiating acute dyspnea due to AHFS from that caused by primary pulmonary disease in the emergency setting. PMID:23210515
Shahjehan, Khurram; Li, Guangxi; Dhokarh, Rajanigandha; Kashyap, Rahul; Janish, Christopher; Alsara, Anas; Jaffe, Allan S.; Hubmayr, Rolf D.; Gajic, Ognjen
2012-01-01
Background: At the onset of acute hypoxic respiratory failure, critically ill patients with acute lung injury (ALI) may be difficult to distinguish from those with cardiogenic pulmonary edema (CPE). No single clinical parameter provides satisfying prediction. We hypothesized that a combination of those will facilitate early differential diagnosis. Methods: In a population-based retrospective development cohort, validated electronic surveillance identified critically ill adult patients with acute pulmonary edema. Recursive partitioning and logistic regression were used to develop a decision support tool based on routine clinical information to differentiate ALI from CPE. Performance of the score was validated in an independent cohort of referral patients. Blinded post hoc expert review served as gold standard. Results: Of 332 patients in a development cohort, expert reviewers (κ, 0.86) classified 156 as having ALI and 176 as having CPE. The validation cohort had 161 patients (ALI = 113, CPE = 48). The score was based on risk factors for ALI and CPE, age, alcohol abuse, chemotherapy, and peripheral oxygen saturation/Fio2 ratio. It demonstrated good discrimination (area under curve [AUC] = 0.81; 95% CI, 0.77-0.86) and calibration (Hosmer-Lemeshow [HL] P = .16). Similar performance was obtained in the validation cohort (AUC = 0.80; 95% CI, 0.72-0.88; HL P = .13). Conclusions: A simple decision support tool accurately classifies acute pulmonary edema, reserving advanced testing for a subset of patients in whom satisfying prediction cannot be made. This novel tool may facilitate early inclusion of patients with ALI and CPE into research studies as well as improve and rationalize clinical management and resource use. PMID:22030803
Bel, E. H.; Zwinderman, A. H.; Timmers, M. C.; Dijkman, J. H.; Sterk, P. J.
1991-01-01
Beta 2 agonists reduce airway hypersensitivity to bronchoconstrictor stimuli acutely in patients with asthma and chronic obstructive lung disease. To determine whether these drugs also protect against excessive airway narrowing, the effect of inhaled salbutamol on the position and shape of the dose-response curves for histamine or methacholine was investigated in 12 patients with asthma and 11 with chronic obstructive lung disease. After pretreatment with salbutamol (200 or 400 micrograms) or placebo in a double blind manner dose-response curves for inhaled histamine and methacholine were obtained by a standard method on six days in random order. Airway sensitivity was defined as the concentration of histamine or methacholine causing a 20% fall in FEV1 (PC20). A maximal response plateau on the log dose-response curve was considered to be present if two or more data points for FEV1 fell within a 5% response range. In the absence of a plateau, the test was continued until a predetermined level of severe bronchoconstriction was reached. Salbutamol caused an acute increase in FEV1 (mean increase 11.5% predicted in asthma, 7.2% in chronic obstructive lung disease), and increase in PC20 (mean 15 fold in asthma, fivefold in chronic obstructive lung disease), and an increase in the slope of the dose-response curves in both groups. In subjects in whom a plateau of FEV1 response could be measured salbutamol did not change the level of the plateau. In subjects without a plateau salbutamol did not lead to the development of a plateau, despite achieving a median FEV1 of 44% predicted in asthma and 39% in chronic obstructive lung disease. These results show that, although beta 2 agonists acutely reduce the airway response to a given strength of bronchoconstrictor stimulus, they do not protect against excessive airflow obstruction if there is exposure to relatively strong stimuli. This, together with the steepening of the dose-response curve, could be a disadvantage of beta 2 agonists in the treatment of moderate and severe asthma or chronic obstructive lung disease. PMID:1871705
Zagorul'ko, A K; Fat, L F; Safronova, L G; Kobozev, G V; Gorelik, N I
1989-06-01
The lungs of 19 guinea pigs, born from 8 females in which acute and chronic pneumonia had been modelled by transtracheal introduction of sterile fishing-line were investigated. It was established, that in guinea pigs, born in females with acute and chronic pneumonia, the functional immaturity of pneumocytes of the 2-nd type took place. The functional immaturity of pneumocytes of the 2-nd type results in suppression of the surface active characteristics of surfactant.
Inflammasome Activity in Non-Microbial Lung Inflammation
Ather, Jennifer L.; Martin, Rebecca A.; Ckless, Karina; Poynter, Matthew E.
2015-01-01
The understanding of interleukin-1 (IL-1) family cytokines in inflammatory disease has rapidly developed, due in part to the discovery and characterization of inflammasomes, which are multi-subunit intracellular protein scaffolds principally enabling recognition of a myriad of cellular stimuli, leading to the activation of caspase-1 and the processing of IL-1β and IL-18. Studies continue to elucidate the role of inflammasomes in immune responses induced by both microbes and environmental factors. This review focuses on the current understanding of inflammasome activity in the lung, with particular focus on the non-microbial instigators of inflammasome activation, including inhaled antigens, oxidants, cigarette smoke, diesel exhaust particles, mineral fibers, and engineered nanomaterials, as well as exposure to trauma and pre-existing inflammatory conditions such as metabolic syndrome. Inflammasome activity in these sterile inflammatory states contribute to diseases including asthma, chronic obstructive disease, acute lung injury, ventilator-induced lung injury, pulmonary fibrosis, and lung cancer. PMID:25642415
Walker, Ann L; Ancellin, Nicolas; Beaufils, Benjamin; Bergeal, Marylise; Binnie, Margaret; Bouillot, Anne; Clapham, David; Denis, Alexis; Haslam, Carl P; Holmes, Duncan S; Hutchinson, Jonathan P; Liddle, John; McBride, Andrew; Mirguet, Olivier; Mowat, Christopher G; Rowland, Paul; Tiberghien, Nathalie; Trottet, Lionel; Uings, Iain; Webster, Scott P; Zheng, Xiaozhong; Mole, Damian J
2017-04-27
Recently, we reported a novel role for KMO in the pathogenesis of acute pancreatitis (AP). A number of inhibitors of kynurenine 3-monooxygenase (KMO) have previously been described as potential treatments for neurodegenerative conditions and particularly for Huntington's disease. However, the inhibitors reported to date have insufficient aqueous solubility relative to their cellular potency to be compatible with the intravenous (iv) dosing route required in AP. We have identified and optimized a novel series of high affinity KMO inhibitors with favorable physicochemical properties. The leading example is exquisitely selective, has low clearance in two species, prevents lung and kidney damage in a rat model of acute pancreatitis, and is progressing into preclinical development.
Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice.
Zhang, Zhengping; Luo, Zhaowen; Bi, Aijing; Yang, Weidong; An, Wenji; Dong, Xiaoliang; Chen, Rong; Yang, Shibao; Tang, Huifang; Han, Xiaodong; Luo, Lan
2017-09-15
Acute lung injury (ALI) represents an unmet medical need with an urgency to develop effective pharmacotherapies. Compound edaravone, a combination of edaravone and borneol, has been developed for treatment of ischemia stroke in clinical phase III study. The purpose of the present study is to investigate the anti-inflammatory effect of compound edaravone on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and the therapeutic efficacy on LPS-induced ALI in mice. Edaravone and compound edaravone concentration-dependently decreased LPS-induced interleukin-6 (IL-6) production and cyclooxygenase-2 (COX-2) expression in RAW264.7 cells. The efficiency of compound edaravone was stronger than edaravone alone. In the animal study, compound edaravone was injected intravenously to mice after intratracheal instillation of LPS. It remarkably alleviated LPS-induced lung injury including pulmonary histological abnormalities, polymorphonuclear leukocyte (PMN) infiltration and extravasation. Further study demonstrated that compound edaravone suppressed LPS-induced TNF-α and IL-6 increase in mouse serum and bronchoalveolar lavage (BAL) fluid, and inhibited LPS-induced nuclear factor-κB (NF-κB) activation and COX-2 expression in mice lung tissues. Importantly, our findings demonstrated that the compound edaravone showed a stronger protective effect against mouse ALI than edaravone alone, which suggested the synergies between edaravone and borneol. In conclusion, compound edaravone could be a potential novel therapeutic drug for ALI treatment and borneol might produce a synergism with edaravone. Copyright © 2017 Elsevier B.V. All rights reserved.
Acute respiratory distress syndrome
... page: //medlineplus.gov/ency/article/000103.htm Acute respiratory distress syndrome To use the sharing features on this page, please enable JavaScript. Acute respiratory distress syndrome (ARDS) is a life-threatening lung ...
Wilson, Jennifer G.; Matthay, Michael A.
2014-01-01
BACKGROUND The goal of mechanical ventilation in acute hypoxemic respiratory failure is to support adequate gas exchange without harming the lungs. How patients are mechanically ventilated can significantly impact their ultimate outcomes. METHODS This review focuses on emerging evidence regarding strategies for mechanical ventilation in patients with acute hypoxemic respiratory failure including: low tidal volume ventilation in the acute respiratory distress syndrome (ARDS), novel ventilator modes as alternatives to low tidal volume ventilation, adjunctive strategies that may enhance recovery in ARDS, the use of lung-protective strategies in patients without ARDS, rescue therapies in refractory hypoxemia, and an evidence-based approach to weaning from mechanical ventilation. RESULTS Once a patient is intubated and mechanically ventilated, low tidal volume ventilation remains the best strategy in ARDS. Adjunctive therapies in ARDS include a conservative fluid management strategy, as well as neuromuscular blockade and prone positioning in moderate-to-severe disease. There is also emerging evidence that a lung-protective strategy may benefit non-ARDS patients. For patients with refractory hypoxemia, extracorporeal membrane oxygenation should be considered. Once the patient demonstrates signs of recovery, the best approach to liberation from mechanical ventilation involves daily spontaneous breathing trials and protocolized assessment of readiness for extubation. CONCLUSIONS Prompt recognition of ARDS and use of lung-protective ventilation, as well as evidence-based adjunctive therapies, remain the cornerstones of caring for patients with acute hypoxemic respiratory failure. In the absence of contraindications, it is reasonable to consider lung-protective ventilation in non-ARDS patients as well, though the evidence supporting this practice is less conclusive. PMID:24733692
Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M
2010-01-01
Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-α-evoked translocation of nuclear factor (NF)-κB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-κB and production of TNF-α in mouse macrophage RAW264·7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-α level and inhibited the LPS-evoked nuclear translocation of NF-κB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS. PMID:20030669
Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M
2010-05-01
Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-alpha-evoked translocation of nuclear factor (NF)-kappaB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-kappaB and production of TNF-alpha in mouse macrophage RAW264.7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-alpha level and inhibited the LPS-evoked nuclear translocation of NF-kappaB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS.
Disruption of iron homeostasis and lung disease.
Ghio, Andrew J
2009-07-01
As a result of a direct exchange with the external environment, the lungs are exposed to both iron and agents with a capacity to disrupt the homeostasis of this metal (e.g. particles). An increased availability of catalytically reactive iron can result from these exposures and, by generating an oxidative stress, this metal can contribute to tissue injury. By importing this Fe(3+) into cells for storage in a chemically less reactive form, the lower respiratory tract demonstrates an ability to mitigate both the oxidative stress presented by iron and its potential for tissue injury. This means that detoxification is accomplished by chemical reduction to Fe(2+) (e.g. by duodenal cytochrome b and other ferrireductases), iron import (e.g. by divalent metal transporter 1 and other transporters), and storage in ferritin. The metal can subsequently be exported from the cell (e.g. by ferroportin 1) in a less reactive state relative to that initially imported. Iron is then transported out of the lung via the mucociliary pathway or blood and lymphatic pathways to the reticuloendothelial system for long term storage. This coordinated handling of iron in the lung appears to be disrupted in several acute diseases on the lung including infections, acute respiratory distress syndrome, transfusion-related acute lung injury, and ischemia-reperfusion. Exposures to bleomycin, dusts and fibers, and paraquat similarly alter iron homeostasis in the lung to affect an oxidative stress. Finally, iron homeostasis is disrupted in numerous chronic lung diseases including pulmonary alveolar proteinosis, transplantation, cigarette smoking, and cystic fibrosis.
Iman, Maryam; Rezaei, Ramazan; Azimzadeh Jamalkandi, Sadegh; Shariati, Parvin; Kheradmand, Farrah; Salimian, Jafar
2017-12-01
Sulfur mustard (SM) is an extremely toxic gas used in chemical warfare to cause massive lung injury and death. Victims exposed to SM gas acutely present with inhalational lung injury, but among those who survive, some develop obstructive airway diseases referred to as SM-lung syndrome. Pathophysiologically, SM-lung shares many characteristics with smoking-induced chronic obstructive pulmonary disease (COPD), including airway remodeling, goblet cell metaplasia, and obstructive ventilation defect. Some of the hallmarks of COPD pathogenesis, which include dysregulated lung inflammation, neutrophilia, recruitment of interleukin 17A (IL -17A) expressing CD4 + T cells (Th17), and the paucity of lung regulatory T cells (Tregs), have also been described in SM-lung. Areas covered: A literature search was performed using the MEDLINE, EMBASE, and Web of Science databases inclusive of all literature prior to and including May 2017. Expert commentary: Here we review some of the recent findings that suggest a role for Th17 cell-mediated inflammatory changes associated with pulmonary complications in SM-lung and suggest new therapeutic approaches that could potentially alter disease progression with immune modulating biologics that can restore the lung Th17/Treg balance.
Rizzo, Alicia N; Sammani, Saad; Esquinca, Adilene E; Jacobson, Jeffrey R; Garcia, Joe G N; Letsiou, Eleftheria; Dudek, Steven M
2015-12-01
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), an illness characterized by life-threatening vascular leak, is a significant cause of morbidity and mortality in critically ill patients. Recent preclinical studies and clinical observations have suggested a potential role for the chemotherapeutic agent imatinib in restoring vascular integrity. Our prior work demonstrates differential effects of imatinib in mouse models of ALI, namely attenuation of LPS-induced lung injury but exacerbation of ventilator-induced lung injury (VILI). Because of the critical role of mechanical ventilation in the care of patients with ARDS, in the present study we pursued an assessment of the effectiveness of imatinib in a "two-hit" model of ALI caused by combined LPS and VILI. Imatinib significantly decreased bronchoalveolar lavage protein, total cells, neutrophils, and TNF-α levels in mice exposed to LPS plus VILI, indicating that it attenuates ALI in this clinically relevant model. In subsequent experiments focusing on its protective role in LPS-induced lung injury, imatinib attenuated ALI when given 4 h after LPS, suggesting potential therapeutic effectiveness when given after the onset of injury. Mechanistic studies in mouse lung tissue and human lung endothelial cells revealed that imatinib inhibits LPS-induced NF-κB expression and activation. Overall, these results further characterize the therapeutic potential of imatinib against inflammatory vascular leak. Copyright © 2015 the American Physiological Society.
Redwan, Bassam; Ziegeler, Stephan; Semik, Michael; Fichter, Joachim; Dickgreber, Nicolas; Vieth, Volker; Ernst, Erik Christian; Fischer, Stefan
Lung volume reduction surgery (LVRS) is an important treatment option for end-stage lung emphysema in carefully selected patients. Here, we first describe the application of low-flow venovenous extracorporeal CO2 removal (LFVV-ECCO2R) as bridge to LVRS in patients with end-stage lung emphysema experiencing severe hypercapnia caused by acute failure of the breathing pump. Between March and October 2015, n = 4 patients received single-site LFVV-ECCO2R as bridge to LVRS. Indication for extracorporeal lung support was severe hypercapnia with respiratory acidosis and acute breathing pump failure. Two patients required continuous mechanical ventilation over a temporary tracheostomy and were bed ridden. The other two patients were nearly immobile because of severe dyspnea at rest. Length of preoperative ECCO2R was 14 (1-42) days. All patients underwent unilateral LVRS. Anatomical resection of the right (n = 3) or left (n = 1) upper lobe was performed. Postoperatively, both patients with previous mechanical ventilatory support were successfully weaned. ECCO2R in patients with end-stage lung emphysema experiencing severe hypercapnia caused by acute breathing pump failure is a safe and effective bridging tool to LVRS. In such patients, radical surgery leads to a significant improvement of the performance status and furthermore facilitates respiratory weaning from mechanical ventilation.
Cruces, Pablo; Erranz, Benjamín; Donoso, Alejandro; Carvajal, Cristóbal; Salomón, Tatiana; Torres, María Fernanda; Díaz, Franco
2013-11-01
The effects of mild hypothermia (HT) on acute lung injury (ALI) are unknown in species with metabolic rate similar to that of humans, receiving protective mechanical ventilation (MV). We hypothesized that mild hypothermia would attenuate pulmonary and systemic inflammatory responses in piglets with ALI managed with a protective MV. Acute lung injury (ALI) was induced with surfactant deactivation in 38 piglets. The animals were then ventilated with low tidal volume, moderate positive end-expiratory pressure (PEEP), and permissive hypercapnia throughout the experiment. Subjects were randomized to HT (33.5°C) or normothermia (37°C) groups over 4 h. Plasma and tissue cytokines, tissue apoptosis, lung mechanics, pulmonary vascular permeability, hemodynamic, and coagulation were evaluated. Lung interleukin-10 concentrations were higher in subjects that underwent HT after ALI induction than in those that maintained normothermia. No difference was found in other systemic and tissue cytokines. HT did not induce lung or kidney tissue apoptosis or influence lung mechanics or markers of pulmonary vascular permeability. Heart rate, cardiac output, oxygen uptake, and delivery were significantly lower in subjects that underwent HT, but no difference in arterial lactate, central venous oxygen saturation, and coagulation test was observed. Mild hypothermia induced a local anti-inflammatory response in the lungs, without affecting lung function or coagulation, in this piglet model of ALI. The HT group had lower cardiac output without signs of global dysoxia, suggesting an adaptation to the decrease in oxygen uptake and delivery. Studies are needed to determine the therapeutic role of HT in ALI. © 2013 John Wiley & Sons Ltd.
Parissopoulos, Stelios; Mpouzika, Meropi DA; Timmins, Fiona
2017-01-01
Adult respiratory distress syndrome (ARDS) is a type of acute diffuse lung injury characterized by severe inflammation, increased pulmonary vascular permeability and a loss of aerated lung tissue. The effects of high fraction of inspired oxygen (FiO 2 ) include oxygen toxicity manifested by damage to the lung parenchyma in the acute phase of lung injury. There is still a high mortality rate among this group of patients, so clinically sensitive evidence-based interventions are paramount to maximize survival chances during critical care. The aim of this article is to explore the current opinion concerning optimal mechanical ventilation support techniques for patients with acute respiratory distress syndrome. A literature search of clinical trials and observation studies, reviews, discussion papers, meta-analyses and clinical guidelines written in English up to 2015, derived from the databases of Scopus, CINAHL, Cochrane Library databases and PubMed was conducted. Low tidal volume, pressure limitation and prone positioning in severe ARDS patients appear to be of some benefit. More research is required and further development and use of standardized protocols is an important strategy for reducing practice variations across disciplines, as well as giving clear guidelines to nurses practising in critical care. There is also evidence that this syndrome is under-diagnosed and the utilization of lung protective ventilation is still variable. It is important that nurses have underlying knowledge of both aetiology of ARDS and ventilation management, and that they monitor patients very closely. The adoption of a low tidal ventilation protocol, which is based on quality evidence guidelines, the value of rescue therapies and patient observation practices in the overall patient management, and the need to place emphasis on long-term patient outcomes, all these emerge as key factors for consideration and future research. However, there is also a need for more research that would explore the unique contribution of nurses in the management of this patient group, as it is difficult to discern this in the current literature. © 2015 British Association of Critical Care Nurses.
2017-04-01
concentration was adjusted so that each rat received 100 µl per 100 gram of its weight. Saline was injected at the same times and at the same proportional...left lung was fixed following inflation and stained with H&E for histological study. A. Vehicle only control; B. Vehicle-treated and 2CLP-operated
OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM). E S Roberts1, R Jaskot2, J Richards2, and K L Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC a...
ASSESSMENT OF ACUTE LUNG INJURY INDUCED BY PM 2.5 SAMPLES FROM TWO CITIES IN GERMANY WITH DIFFERING INCIDENCE OF ALLERGIES AND ASTHMA.
LR Bishop, J Heinrich*, MK Selgrade & MI Gilmour.
Experimental Toxicology Division, ORD/ NHEERL, U.S. EPA, RTP, NC. *GSF, Neuherberg,...
Lan, Mei-juan; He, Xiao-di
2009-08-01
Patients who are diagnosed with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) usually have ventilation-perfusion mismatch, severe decrease in lung capacity, and gas exchange abnormalities. Health care workers have implemented various strategies in an attempt to compensate for these pathological alterations. By rotating patients with ALI/ARDS between the supine and prone position, it is possible to achieve a significant improvement in PaO2/FiO2, decrease shunting and therefore improve oxygenation without use of expensive, invasive and experimental procedures. Prone positioning is a safe and effective way to improve ventilation when conventional strategies fail to initiate a patient response. Because a specific cure for ARDS is not available, the goal is to support the patients with therapies that cause the least amount of injury while the lungs have an opportunity to heal. Based on current data, a trial of prone positioning ventilation should be offered to the patients who have ALI/ARDS in the early course of the disease. Published studies exhibit substantial heterogeneity in clinical results, suggesting that an adequately sized study optimizing the duration of proning ventilation strategy is warranted to enable definitive conclusions to be drawn.
Indoor air pollution and the lung in low- and medium-income countries.
Kurmi, Om P; Lam, Kin Bong Hubert; Ayres, Jon G
2012-07-01
Over half the world's population, mostly from developing countries, use solid fuel for domestic purposes and are exposed to very high concentrations of harmful air pollutants with potential health effects such as respiratory problems, cardiovascular problems, infant mortality and ocular problems. The evidence also suggests that, although the total percentage of people using solid fuel is decreasing, the absolute number is currently increasing. Exposure to smoke from solid fuel burning increases the risk of chronic obstructive pulmonary disease (COPD) and lung cancer in adults, and acute lower respiratory tract infection/pneumonia in children. Despite the heterogeneity among studies, the association between COPD and exposure to smoke produced by burning different types of solid fuel is consistent. However, there is strong evidence that while coal burning is a risk factor for lung cancer, exposure to other biomass fuel smoke is less so. There is some evidence that reduction of smoke exposure using improved cooking stoves reduces the risk of COPD and, possibly, acute lower respiratory infection in children, so approaches to reduce biomass smoke exposure are likely to result in reductions in the global burden of respiratory disease.
Wang, Jiajia; Nie, Yan; Li, Yunjuan; Hou, Yuanyuan; Zhao, Wei; Deng, Jiagang; Wang, Peng George; Bai, Gang
2015-11-18
Prevention of the occurrence and development of inflammation is a vital therapeutic strategy for treating acute lung injury (ALI). Increasing evidence has shown that a wealth of ingredients from natural foods and plants have potential anti-inflammatory activity. In the present study, mangiferin, a natural C-glucosyl xanthone that is primarily obtained from the peels and kernels of mango fruits and the bark of the Mangifera indica L. tree, alleviated the inflammatory responses in lipopolysaccharide (LPS)-induced ALI mice. Mangiferin-modified magnetic microspheres (MMs) were developed on the basis of click chemistry to capture the target proteins of mangiferin. Mass spectrometry and molecular docking identified 70 kDa heat-shock protein 5 (Hspa5) and tyrosine 3-monooxygenase (Ywhae) as mangiferin-binding proteins. Furthermore, an enzyme-linked immunosorbent assay (ELISA) indicated that mangiferin exerted its anti-inflammatory effect by binding Hspa5 and Ywhae to suppress downstream mitogen-activated protein kinase (MAPK) signaling pathways. Thoroughly revealing the mechanism and function of mangiferin will contribute to the development and utilization of agricultural resources from M. indica L.
Role of Airway Recruitment and Derecruitment in Lung Injury
Ghadiali, S. N.; Huang, Y.
2011-01-01
The mechanical forces generated during the ventilation of patients with acute lung injury causes significant lung damage and inflammation. Low-volume ventilation protocols are commonly used to prevent stretch-related injury that occurs at high lung volumes. However, the cyclic closure and reopening of pulmonary airways at low lung volumes, i.e., derecruitment and recruitment, also causes significant lung damage and inflammation. In this review, we provide an overview of how biomedical engineering techniques are being used to elucidate the complex physiological and biomechanical mechanisms responsible for cellular injury during recruitment/derecruitment. We focus on the development of multiscale, multiphysics computational models of cell deformation and injury during airway reopening. These models, and the corresponding in vitro experiments, have been used to both elucidate the basic mechanisms responsible for recruitment/derecruitment injury and to develop alternative therapies that make the epithelium more resistant to injury. For example, models and experiments indicate that fluidization of the cytoskeleton is cytoprotective and that changes in cytoskeletal structure and cell mechanics can be used to mitigate the mechanotransduction of oscillatory pressure into inflammatory signaling. The continued application of biomedical engineering techniques to the problem of recruitment/derecruitment injury may therefore lead to novel and more effective therapies. PMID:22011235
SEPEHR, REYHANEH; AUDI, SAID H.; MALEKI, SEPIDEH; STANISZEWSKI, KEVIN; EIS, ANNIE L.; KONDURI, GIRIJA G.; RANJI, MAHSA
2014-01-01
Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure. PMID:24672581
Oczypok, Elizabeth A.; Perkins, Timothy N.; Oury, Tim D.
2017-01-01
SUMMARY The receptor for advanced glycation endproducts (RAGE) is a pro-inflammatory pattern recognition receptor (PRR) that has been implicated in the pathogenesis of numerous inflammatory diseases. It was discovered in 1992 on endothelial cells and was named for its ability to bind advanced glycation endproducts and promote vascular inflammation in the vessels of patients with diabetes. Further studies revealed that RAGE is most highly expressed in lung tissue and spurred numerous explorations into RAGE’s role in the lung. These studies have found that RAGE is an important mediator in allergic airway inflammation (AAI) and asthma, pulmonary fibrosis, lung cancer, chronic obstructive pulmonary disease (COPD), acute lung injury, pneumonia, cystic fibrosis, and bronchopulmonary dysplasia. RAGE has not yet been targeted in the lungs of paediatric or adult clinical populations, but the development of new ways to inhibit RAGE is setting the stage for the emergence of novel therapeutic agents for patients suffering from these pulmonary conditions. PMID:28416135
Curcumin protects the developing lung against long-term hyperoxic injury
Sakurai, R.; Villarreal, P.; Husain, S.; Liu, Jie; Sakurai, T.; Tou, E.; Torday, J. S.
2013-01-01
Curcumin, a potent anti-inflammatory and antioxidant agent, modulates peroxisome proliferator-activated receptor-γ signaling, a key molecule in the etiology of bronchopulmonary dysplasia (BPD). We have previously shown curcumin's acute protection against neonatal hyperoxia-induced lung injury. However, its longer-term protection against BPD is not known. Hypothesizing that concurrent treatment with curcumin protects the developing lung against hyperoxia-induced lung injury long-term, we determined if curcumin protects against hyperoxic neonatal rat lung injury for the first 5 days of life, as determined at postnatal day (PND) 21. One-day-old rat pups were exposed to either 21 or 95% O2 for 5 days with or without curcumin treatment (5 mg/kg) administered intraperitoneally one time daily, following which the pups grew up to PND21 in room air. At PND21 lung development was determined, including gross and cellular structural and functional effects, and molecular mediators of inflammatory injury. To gain mechanistic insights, embryonic day 19 fetal rat lung fibroblasts were examined for markers of apoptosis and MAP kinase activation following in vitro exposure to hyperoxia for 24 h in the presence or absence of curcumin (5 μM). Curcumin effectively blocked hyperoxia-induced lung injury based on systematic analysis of markers for lung injury (apoptosis, Bcl-2/Bax, collagen III, fibronectin, vimentin, calponin, and elastin-related genes) and lung morphology (radial alveolar count and alveolar septal thickness). Mechanistically, curcumin prevented the hyperoxia-induced increases in cleaved caspase-3 and the phosphorylation of Erk1/2. Molecular effects of curcumin, both structural and cytoprotective, suggest that its actions against hyperoxia-induced lung injury are mediated via Erk1/2 activation and that it is a potential intervention against BPD. PMID:23812632
Feng, Guang; Jiang, Ze-Yu; Sun, Bo; Fu, Jie; Li, Tian-Zuo
2016-02-01
Acute lung injury (ALI), a common component of systemic inflammatory disease, is a life-threatening condition without many effective treatments. Fisetin, a natural flavonoid from fruits and vegetables, was reported to have wide pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was to detect the effects of fisetin on lipopolysaccharide (LPS)-induced acute lung injury and investigate the potential mechanism. Fisetin was injected (1, 2, and 4 mg/kg, i.v.) 30 min before LPS administration (5 mg/kg, i.v.). Our results showed that fisetin effectively reduced the inflammatory cytokine release and total protein in bronchoalveolar lavage fluids (BALF), decreased the lung wet/dry ratios, and obviously improved the pulmonary histology in LPS-induced ALI. Furthermore, fisetin inhibited LPS-induced increases of neutrophils and macrophage infiltration and attenuated MPO activity in lung tissues. Additionally, fisetin could significantly inhibit the Toll-like receptor 4 (TLR4) expression and the activation of NF-κB in lung tissues. Our data indicates that fisetin has a protective effect against LPS-induced ALI via suppression of TLR4-mediated NF-κB signaling pathways, and fisetin may be a promising candidate for LPS-induced ALI treatment.
Gonçalves-Venade, Gabriela; Lacerda-Príncipe, Nuno; Roncon-Albuquerque, Roberto; Paiva, José Artur
2018-05-01
Acute interstitial pneumonia (AIP) is a rare idiopathic interstitial lung disease with rapid progressive respiratory failure and high mortality. In the present report, three cases of AIP complicated by refractory respiratory failure supported with extracorporeal membrane oxygenation (ECMO) are presented. One male and two female patients (ages 27-59) were included. Venovenous ECMO support was provided using miniaturized systems, with two-site femoro-jugular circuit configuration. Despite lung protective ventilation, prone position and neuromuscular blockade, refractory respiratory failure of unknown etiology supervened (ratio of arterial oxygen partial pressure to fractional inspired oxygen 46-130) and ECMO was initiated after 3-7 days of mechanical ventilation. AIP diagnosis was established after exclusion of infectious and noninfectious acute respiratory distress syndrome on the basis of clinical and analytical data, bronchoalveolar lavage analysis and lung imaging, with a confirmatory surgical lung biopsy revealing diffuse alveolar damage of unknown etiology. Immunosuppressive treatment consisted in high-dose corticosteroids and cyclophosphamide in one case. Two patients survived to hospital discharge. ECMO allowed AIP diagnosis and treatment in the presence of refractory respiratory failure, therefore reducing ventilator-induced lung injury and bridging lung recovery in two patients. ECMO referral should be considered in refractory respiratory failure if AIP is suspected. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben
2015-08-01
Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.
Costa, Silvia Goes; Barioni, Éric Diego; Ignácio, Aline; Albuquerque, Juliana; Câmara, Niels Olsen Saraiva; Pavani, Christiane; Vitoretti, Luana Beatriz; Damazo, Amílcar Sabino; Farsky, Sandra Helena Poliselli; Lino-Dos-Santos-Franco, Adriana
2017-10-04
Sepsis is a severe disease with a high mortality index and it is responsible for the development of acute lung injury (ALI). We evaluated the effects of light-emitting diode (LED) on ALI induced by sepsis. Balb-c mice were injected with lipopolysaccharide or saline and then irradiated or not with red LED on their tracheas and lungs for 150 s, 2 and 6 h after LPS injections. The parameters were investigated 24 h after the LPS injections. Red LED treatment reduced neutrophil influx and the levels of interleukins 1β, 17 A and, tumor necrosis factor-α; in addition to enhanced levels of interferon γ in the bronchoalveolar fluid. Moreover, red LED treatment enhanced the RNAm levels of IL-10 and IFN-γ. It also partially reduced the elevated oxidative burst and enhanced apoptosis, but it did not alter the translocation of nuclear factor κB, the expression of toll-like receptor 4 (TLR4), as well as, oedema or mucus production in their lung tissues. Together, our data has shown the beneficial effects of short treatment with LED on ALI that are caused by gram negative bacterial infections. It is suggested that LED applications are an inexpensive and non-invasive additional treatment for sepsis.
Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois
2012-01-01
Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges. PMID:22536499
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imbriano, L.J.; Mandel, P.R.; Cordaro, A.F.
The value of Ga-67 scanning to detect acute infectious lung disease has been described. We present a patient who apparently improved both clinically and radiographically after acute Legionnaires' pneumonia. Five months later a relapse developed. During his relapse the pulmonary uptake of Ga-67 and the appearance of chest x-rays were disparate. We suggest that pulmonary Ga-67 uptake may be a more sensitive indicator of the resolution of pneumonia than is chest radiography. Therapeutic success may be assumed when pulmonary Ga-67 uptake is absent.
Guliamov, D S; Amanov, A A; Andres, Iu P; Bazhenova, T F
1983-07-01
Investigations performed in 172 patients have shown that the state of the myocardium (such parameters as the heart volume, degree of lung hypertension, end-diastolic pressure in the right and left ventricles) is of great importance in pathogenesis of the development of acute heart failure in the early postoperative period in patients with mitral stenosis of the IIIrd and IVth stage of the blood circulation insufficiency.
Enomoto, Yasunori; Inui, Naoki; Kato, Terufumi; Baba, Tomohisa; Karayama, Masato; Nakamura, Yutaro; Ogura, Takashi; Suda, Takafumi
2016-06-01
Although acute exacerbation of pre-existing interstitial lung disease (AE-ILD) associated with cytotoxic chemotherapy has been recognized as a severe complication in lung cancer treatment, its risk factors have not been fully studied. Among lung cancer patients receiving cytotoxic chemotherapy, patients with pre-existing ILD were identified based on the pretreatment high-resolution computed tomography (HRCT) findings. Chemotherapy-associated AE-ILD was defined as deterioration or development of dyspnea and HRCT findings of new bilateral ground-glass attenuations with/without non-segmental consolidation superimposed on pre-existing interstitial shadows, without evidence of pulmonary infection, congestion, or pulmonary embolism, within four weeks after the last administration of chemotherapy. Baseline characteristics were reviewed and the risk factors for chemotherapy-associated AE-ILD were evaluated by logistic regression analyses. Among 85 patients identified as having pre-existing ILD, chemotherapy-associated AE-ILD occurred in 26 patients (30.6%); 8 patients died and 11 patients had a severely deteriorated general condition despite intensive treatment. Compared with those without AE-ILD, patients with AE-ILD had significantly lower forced vital capacity (FVC) (median: 91.1% versus 76.6%, P=0.01). Univariate and multivariate logistic regression analyses identified baseline lower FVC and non-small cell lung cancer (NSCLC) as the risk factors for this severe event (odds ratio of FVC: 0.97, 95% confidence interval: 0.94-0.99; odds ratio of NSCLC: 4.65, 95% confidence interval: 1.10-19.76). Chemotherapy-associated AE-ILD was a frequent and lethal complication in lung cancer treatment for patients with pre-existing ILD. Spirometric assessment of pulmonary function may be useful to predict the event. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Tascilar, Oge; Cakmak, Güldeniz Karadeniz; Tekin, Ishak Ozel; Emre, Ali Ugur; Ucan, Bulent Hamdi; Bahadir, Burak; Acikgoz, Serefden; Irkorucu, Oktay; Karakaya, Kemal; Balbaloglu, Hakan; Kertis, Gürkan; Ankarali, Handan; Comert, Mustafa
2007-01-01
AIM: To investigate the effect of exogenous erythro-poietin (EPO) administration on acute lung injury (ALI) in an experimental model of sodium taurodeoxycholate-induced acute necrotizing pancreatitis (ANP). METHODS: Forty-seven male Wistar albino rats were randomly divided into 7 groups: sham group (n = 5), 3 ANP groups (n = 7 each) and 3 EPO groups (n = 7 each). ANP was induced by retrograde infusion of 5% sodium taurodeoxycholate into the common bile duct. Rats in EPO groups received 1000 U/kg intramuscular EPO immediately after induction of ANP. Rats in ANP groups were given 1 mL normal saline instead. All animals were sacrificed at postoperative 24 h, 48 h and 72 h. Serum amilase, IL-2, IL-6 and lung tissue malondialdehyde (MDA) were measured. Pleural effusion volume and lung/body weight (LW/BW) ratios were calculated. Tissue levels of TNF-α, IL-2 and IL-6 were screened immunohistochemically. Additionally, ox-LDL accumulation was assessed with immune-fluorescent staining. Histopathological alterations in the lungs were also scored. RESULTS: The mean pleural effusion volume, calculated LW/BW ratio, serum IL-6 and lung tissue MDA levels were significantly lower in EPO groups than in ANP groups. No statistically significant difference was observed in either serum or tissue values of IL-2 among the groups. The level of tumor necrosis factor-α (TNF-α) and IL-6 and accumulation of ox-LDL were evident in the lung tissues of ANP groups when compared to EPO groups, particularly at 72 h. Histopathological evaluation confirmed the improvement in lung injury parameters after exogenous EPO administration, particularly at 48 h and 72 h. CONCLUSION: EPO administration leads to a significant decrease in ALI parameters by inhibiting polymorphonuclear leukocyte (PMNL) accumulation, decreasing the levels of proinflammatory cytokines in circulation, preserving microvascular endothelial cell integrity and reducing oxidative stress-associated lipid peroxidation and therefore, can be regarded as a cytoprotective agent in ANP-induced ALI. PMID:18069756
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tennenberg, S.D.; Jacobs, M.P.; Solomkin, J.S.
Complement-mediated neutrophil activation (CMNA) has been proposed as an important pathogenic mechanism causing acute microvascular lung injury in the adult respiratory distress syndrome (ARDS). To clarify the relationship between CMNA and evolving lung injury, we studied 26 patients with multiple trauma and sepsis within 24 hours of risk establishment for ARDS. Pulmonary alveolar-capillary permeability (PACP) was quantified as the clearance rate of a particulate radioaerosol. Seventeen patients (65%) had increased PACP (six developed ARDS) while nine (35%) had normal PACP (none developed ARDS; clearance rates of 3.4%/min and 1.5%/min, respectively). These patients, regardless of evidence of early lung injury, hadmore » elevated plasma C3adesArg levels and neutrophil chemotactic desensitization to C5a/C5adesArg. Plasma C3adesArg levels correlated weakly, but significantly, with PACP. Thus, CMNA may be a necessary, but not a sufficient, pathogenic mechanism in the evolution of ARDS.« less
[Unilateral lung transplant in a case of terminal pulmonary fibrosis].
Santillán-Doherty, P
1990-01-01
Up to 1980, less than 40 lung transplants had been reported worldwide without any success. The factors influencing these poor results were related to complications at the bronchial anastomosis and ineffective immunosuppressive regimens. The development of new immunosuppressive drugs has permitted the reevaluation of lung transplantation as a therapeutic option. The success with heart-lung transplantation stimulated the development of clinical human single-lung and double-lung transplantation. However the world experience is still scarce. In our institution we have developed experimental work leading to the establishment of a lung transplant program. This paper describes our first single lung transplant patient. The patient, a 33 year old man with end-stage pulmonary fibrosis, was totally oxygen dependant, maintaining arterial blood oxygen levels below 40 mmHg without oxygen supplementation and confined to a wheelchair. A single left lung transplant was performed from a young brain-dead donor. The bronchial anastomosis was protected with an omental flap. The immunosuppressive regimen was based on cyclosporin A and azathioprine from the beginning, adding prednisone on the third postoperative week. There has been only one episode suggestive of acute rejection which was managed with methylprednisolone. On the 9th postoperative week the patient developed a bronchial stenoses at the anastomotic site which required dilation and stenting with an endobronchial silastic stent. His clinical course has been uneventful since then. His ventilatory parameters showed an increase of vital capacity from 900 to 2100 mL and his FEV1 from 700 to 1500 mL. His gas exchange has been normal with arterial blood gas oxygen above 60 mmHg and oxygen saturation above 94%.(ABSTRACT TRUNCATED AT 250 WORDS)
Sukhikh, G T; Kayukova, S I; Bocharova, I V; Donnikov, A E; Lepekha, L N; Demikhova, O V; Uvarova, E V; Berezovskii, Yu S; Smirnova, T G
2016-04-01
Intravenous infection of C57Bl/6 female mice with M. tuberculosis H37Rv led to involvement of the lungs and dissemination of the tuberculous infection to the abdominal and pelvic organs. M. tuberculosis were detected in the lungs and spleen in 14, 35, and 90 days and in the uterine horns in 90 days after infection. Morphological analysis of organs showed successive development of exudative necrotic tuberculosis of the lungs, acute and chronic nonspecific inflammation in the reproductive organs (vagina, uterus, and uterine horns). The inflammatory process in the reproductive organs was associated with the development of anaerobic dysbiosis, that was most pronounced in 35 days after infection. Antituberculous therapy was followed by reduction of M. tuberculosis count in the lungs and spleen in 60 and 90 days after infection, eliminatation of M. tuberculosis in the uterine horns, arrest of nonspecific inflammation in female reproductive organs, recovery of the balance between aerobic and anaerobic microflora, and development of candidiasis of the urogenital mucosa.
[PREVENTION AND CORRECTION OF PULMONARY COMPLICATIONS FOR SEVERE ACUTE PANCREATITIS].
Fedorkiv, M B
2015-06-01
Increased of proinflammatory cytokines levels, including interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-alpha) on severe acute pancreatitis causes vasodilatation, increased permeability of the wall, accumulation of fluid in lung tissue and pleural sinuses. Transudate from acute parapancreatyc clusters of hot liquid and abdomen falls into the chest cavity through microscopic defects in the diaphragm due to the formation of pathological pleural-peritoneal connections or the relevant pressure gradient between the abdominal and pleural cavities. Remediation and removal of acute parapancreatyc clusters combined with the use of a multicomponent drug infusion therapy Cytoflavin provide a reduction in the frequency of pulmonary complications of acute pancreatitis from 48.3 to 31.0%. Use of the drug Cytoflavin reduces the severity of endogenous intoxication and mortality from acute lung injury from 12.9 to 6.1%.
Preemptive mechanical ventilation can block progressive acute lung injury.
Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary
2016-02-04
Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS.
Preemptive mechanical ventilation can block progressive acute lung injury
Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary
2016-01-01
Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS. PMID:26855896
Lechtzin, N; West, N; Allgood, S; Wilhelm, E; Khan, U; Mayer-Hamblett, N; Aitken, M L; Ramsey, B W; Boyle, M P; Mogayzel, P J; Goss, C H
2013-11-01
Acute pulmonary exacerbations are central events in the lives of individuals with cystic fibrosis (CF). Pulmonary exacerbations lead to impaired lung function, worse quality of life, and shorter survival. We hypothesized that aggressive early treatment of acute pulmonary exacerbation may improve clinical outcomes. Describe the rationale of an ongoing trial designed to determine the efficacy of home monitoring of both lung function measurements and symptoms for early detection and subsequent early treatment of acute CF pulmonary exacerbations. A randomized, non-blinded, multi-center trial in 320 individuals with CF aged 14 years and older. The study compares usual care to a twice a week assessment of home spirometry and CF respiratory symptoms using an electronic device with data transmission to the research personnel to identify and trigger early treatment of CF pulmonary exacerbation. Participants will be enrolled in the study for 12 months. The primary endpoint is change in FEV1 (L) from baseline to 12 months determined by a linear mixed effects model incorporating all quarterly FEV1 measurements. Secondary endpoints include time to first acute protocol-defined pulmonary exacerbation, number of acute pulmonary exacerbations, number of hospitalization days for acute pulmonary exacerbation, time from the end of acute pulmonary exacerbation to onset of subsequent pulmonary exacerbation, change in health related quality of life, change in treatment burden, change in CF respiratory symptoms, and adherence to the study protocol. This study is a first step in establishing alternative approaches to the care of CF pulmonary exacerbations. We hypothesize that early treatment of pulmonary exacerbations has the potential to slow lung function decline, reduce respiratory symptoms and improve the quality of life for individuals with CF. © 2013.
Zhou, Wen-Qin; Wang, Peng; Shao, Qiu-Ping; Wang, Jian
2016-08-01
Acute respiratory distress syndrome (ARDS) is a common clinical disorder characterized by pulmonary edema leading to acute lung damage and arterial hypoxemia. Pulmonary fibrosis is a progressive, fibrotic lung disorder, whose pathogenesis in ARDS remains speculative. LincRNA-p21 was a novel regulator of cell proliferation, apoptosis and DNA damage response. This study aims to investigate the effects and mechanism of lincRNA-p21 on pulmonary fibrosis in ARDS. Purified 10 mg/kg LPS was dropped into airways of C57BL/6 mice. Expression levels of lincRNA-p21 and Thy-1 were measured by real-time PCR or western blotting. Proliferation of lung fibroblasts was analyzed by BrdU incorporation assay. Lung and BAL collagen contents were estimated using colorimetric Sircol assay. LincRNA-p21 expression was time-dependently increased and Thy-1 expression was time-dependently reduced in a mouse model of ARDS and in LPS-treated lung fibroblasts. Meanwhile, lung fibroblast proliferation was also time-dependently elevated in LPS-treated lung fibroblasts. In addition, lung fibroblast proliferation could be promoted by lincRNA-p21 overexpression and LPS treatment, however, the elevated lung fibroblast proliferation was further abrogated by Thy-1 overexpression or lincRNA-p21 interference. And Thy-1 interference could elevate cell viability of lung fibroblasts and rescue the reduction of lung fibroblast proliferation induced by lincRNA-p21 interference. Moreover, lincRNA-p21 overexpression dramatically inhibited acetylation of H3 and H4 at the Thy-1 promoter and Thy-1 expression levels in HLF1 cells. Finally, lincRNA-p21 interference rescued LPS-induced increase of lung and BAL collagen contents. LincRNA-p21 could lead to pulmonary fibrosis in ARDS by inhibition of the expression of Thy-1.
... croup; Laryngotracheobronchitis - acute; Spasmodic croup; Barking cough - croup Images Lungs Throat anatomy Voice box References Bower J, McBride JT. Croup in children (acute laryngotracheobronchitis). In: ...
Lee, Allison J; Koyyalamudi, Pushpa L; Martinez-Ruiz, Ricardo
2008-11-01
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related mortality in the United States. Management is usually supportive, including supplemental oxygen, intravenous fluids, and mechanical ventilation if necessary. Most patients recover within 72 hours. We present a nearly fatal case of TRALI in an obstetric patient, which was successfully managed with extracorporeal membrane oxygenation (ECMO).
Title: DO ACUTE PHASE PROTEINS REFLECT THE SEVERITY OF INFLAMMATION IN RAT MODELS OF POLLUTANT-INDUCED LUNG INJURY?
M. C. Schladweiler, BS 1, P. S. Gilmour, PhD 2, D. L. Andrews, BS 1, D. L. Costa, ScD 1, A. D. Ledbetter, BS 1, K. E. Pinkerton, PhD 3 and U. P. Kodavanti, ...
Kaewamatawong, Theerayuth; Banlunara, Wijit; Maneewattanapinyo, Pattwat; Thammachareon, Chuchaat; Ekgasit, Sanong
2014-01-01
To study the acute and subacute pulmonary toxicity of colloidal silver nanoparticles (Ag-NPs), 0 or 100 ppm of Ag-NPs were instilled intratracheally in mice. Cellular and biochemical parameters in bronchoalveolar lavage fluid (BALF) and histological alterations were determined 1, 3, 7, 15, and 30 days after instillation. Ag-NPs induced moderate pulmonary inflammation and injury on BALF indices during the acute period; however, these changes gradually regressed in a time-dependent manner. Concomitant histopathological and laminin immunohistochemical findings generally correlated to BALF data. Superoxide dismutase and metallothionein expression occurred in particle-laden macrophages and alveolar epithelial cells, which correlated to lung lesions in mice treated with Ag-NPs. These findings suggest that instillation of Ag-NPs causes transient moderate acute lung inflammation and tissue damage. Oxidative stress may underlie the induction of injury to lung tissue. Moreover, the expression of metallothionein in tissues indicated the protective response to exposure to Ag-NPs.
Recent insight into potential acute respiratory distress syndrome.
Amin, Zulkifli; Rahmawati, Fitriana N
2017-04-01
Acute respiratory distress syndrome (ARDS) is an acute inflammatory lung injury, characterized by increased pulmonary capillary endothelial cells and alveolar epithelial cells permeability leading to respiratory failure in the absence of cardiac failure. Despite recent advances in treatments, the overall mortality because of ARDS remains high. Biomarkers may help to diagnose, predict the severity, development, and outcome of ARDS in order to improve patient care and decrease morbidity and mortality. This review will focus on soluble receptor for advanced glycation end-products, soluble tumor necrosis factor-receptor 1, Interluken-6 (IL-6), IL-8, and plasminogen activator inhibitor-1, which have a greater potential based on recent studies.
Recent insight into potential acute respiratory distress syndrome
Amin, Zulkifli; Rahmawati, Fitriana N.
2017-01-01
Acute respiratory distress syndrome (ARDS) is an acute inflammatory lung injury, characterized by increased pulmonary capillary endothelial cells and alveolar epithelial cells permeability leading to respiratory failure in the absence of cardiac failure. Despite recent advances in treatments, the overall mortality because of ARDS remains high. Biomarkers may help to diagnose, predict the severity, development, and outcome of ARDS in order to improve patient care and decrease morbidity and mortality. This review will focus on soluble receptor for advanced glycation end-products, soluble tumor necrosis factor-receptor 1, Interluken-6 (IL-6), IL-8, and plasminogen activator inhibitor-1, which have a greater potential based on recent studies. PMID:28397939
Ma, Zhanqiang; Ji, Weiwei; Fu, Qiang; Ma, Shiping
2013-12-01
Formononetin has shown a variety of pharmacologic properties including anti-inflammatory effect. In the present study, we analyzed the role of formononetin in acute lung injury induced by lipopolysaccharide (LPS) in mice. The cell counting in the bronchoalveolar lavage fluid (BALF) was measured. The animal lung edema degree was evaluated by wet/dry weight ratio. The superoxidase dismutase (SOD) activity and myeloperoxidase (MPO) activity was assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators, tumor necrosis factor-α (TNF-α) and IL-6,were assayed by enzyme-linked immunosorbent assay method. Pathological changes of hung tissues were observed by HE staining. Peroxisome proliferator-activated receptor (PPAR)-γ gene expression was measured by real-time PCR. The data showed that treatment with the formononetin group markedly attenuated inflammatory cell numbers in the BALF, increased PPAR-γ gene expression and improved SOD activity and inhibited MPO activity. The histological changes of the lungs were also significantly improved by formononetin compared to LPS group. The results indicated that formononetin has a protective effect on LPS-induced acute lung injury in mice.
Flow-controlled expiration: a novel ventilation mode to attenuate experimental porcine lung injury.
Goebel, U; Haberstroh, J; Foerster, K; Dassow, C; Priebe, H-J; Guttmann, J; Schumann, S
2014-09-01
Whereas the effects of various inspiratory ventilatory modifications in lung injury have extensively been studied, those of expiratory ventilatory modifications are less well known. We hypothesized that the newly developed flow-controlled expiration (FLEX) mode provides a means of attenuating experimental lung injury. Experimental acute respiratory distress syndrome was induced by i.v. injection of oleic acid in 15 anaesthetized and mechanically ventilated pigs. After established lung injury ([Formula: see text]ratio <27 kPa), animals were randomized to either a control group receiving volume-controlled ventilation (VCV) or a treatment group receiving VCV with additional FLEX (VCV+FLEX). At predefined times, lung mechanics and oxygenation were assessed. At the end of the experiment, the pigs were killed, and bronchoalveolar fluid and lung biopsies were taken. Expression of inflammatory cytokines was analysed in lung tissue and bronchoalveolar fluid. Lung injury score was determined on the basis of stained tissue samples. Compared with the control group (VCV; n=8), the VCV+FLEX group (n=7) demonstrated greater dynamic lung compliance and required less PEEP at comparable [Formula: see text] (both P<0.05), had lower regional lung wet-to-dry ratios and lung injury scores (both P<0.001), and showed less thickening of alveolar walls (an indicator of interstitial oedema) and de novo migration of macrophages into lung tissue (both P<0.001). The newly developed FLEX mode is able to attenuate experimental lung injury. FLEX could provide a novel means of lung-protective ventilation. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Aboelnazar, Nader S; Himmat, Sayed; Hatami, Sanaz; White, Christopher W; Burhani, Mohamad S; Dromparis, Peter; Matsumura, Nobutoshi; Tian, Ganghong; Dyck, Jason R B; Mengel, Michael; Freed, Darren H; Nagendran, Jayan
2018-04-01
Normothermic ex-vivo lung perfusion (EVLP) using positive pressure ventilation (PPV) and both acellular and red blood cell (RBC)-based perfusate solutions have increased the rate of donor organ utilization. We sought to determine whether a negative pressure ventilation (NPV) strategy would improve donor lung assessment during EVLP. Thirty-two pig lungs were perfused ex vivo for 12 hours in a normothermic state, and were allocated equally to 4 groups according to the mode of ventilation (positive pressure ventilation [PPV] vs NPV) and perfusate composition (acellular vs RBC). The impact of ventilation strategy on the preservation of 6 unutilized human donor lungs was also evaluated. Physiologic parameters, cytokine profiles, lung injury, bullae and edema formation were compared between treatment groups. Perfused lungs demonstrated acceptable oxygenation (partial pressure of arterial oxygen/fraction of inspired oxygen ratio >350 mm Hg) and physiologic parameters. However, there was less generation of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interleukin-8) in human and pig lungs perfused, irrespective of perfusate solution used, when comparing NPV with PPV (p < 0.05), and a reduction in bullae formation with an NPV modality (p = 0.02). Pig lungs developed less edema with NPV (p < 0.01), and EVLP using an acellular perfusate solution had greater edema formation, irrespective of ventilation strategy (p = 0.01). Interestingly, human lungs perfused with NPV developed negative edema, or "drying" (p < 0.01), and lower composite acute lung injury (p < 0.01). Utilization of an NPV strategy during extended EVLP is associated with significantly less inflammation, and lung injury, irrespective of perfusate solution composition. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Güldner, Andreas; Braune, Anja; Ball, Lorenzo; Silva, Pedro L.; Samary, Cynthia; Insorsi, Angelo; Huhle, Robert; Rentzsch, Ines; Becker, Claudia; Oehme, Liane; Andreeff, Michael; Vidal Melo, Marcos F.; Winkler, Tilo; Pelosi, Paolo; Rocco, Patricia R. M.; Kotzerke, Jörg; de Abreu, Marcelo Gama
2016-01-01
Objective Volutrauma and atelectrauma promote ventilator-induced lung injury, but their relative contribution to inflammation in ventilator-induced lung injury is not well established. The aim of this study was to determine the impact of volutrauma and atelectrauma on the distribution of lung inflammation in experimental acute respiratory distress syndrome. Design Laboratory investigation. Setting University-hospital research facility. Subjects Ten pigs (five per group; 34.7–49.9 kg) Interventions Animals were anesthetized and intubated, and saline lung lavage was performed. Lungs were separated with a double-lumen tube. Following lung recruitment and decremental positive end-expiratory pressure trial, animals were randomly assigned to 4 hours of ventilation of the left (ventilator-induced lung injury) lung with tidal volume of approximately 3 mL/kg and 1) high positive end-expiratory pressure set above the level where dynamic compliance increased more than 5% during positive end-expiratory pressure trial (volutrauma); or 2) low positive end-expiratory pressure to achieve driving pressure comparable with volutrauma (atelectrauma). The right (control) lung was kept on continuous positive airway pressure of 20 cm H2O, and Co2 was partially removed extracorporeally. Measurements and Main Results Regional lung aeration, specific [18F]fluorodeoxyglucose uptake rate, and perfusion were assessed using computed and positron emission tomography. Volutrauma yielded higher [18F]fluorodeoxyglucose uptake rate in the ventilated lung compared with atelectrauma (median [interquartile range], 0.017 [0.014–0.025] vs 0.013 min−1 [0.010–0.014min−1]; p < 0.01), mainly in central lung regions. Volutrauma yielded higher [18F]fluorodeoxyglucose uptake rate in ventilator-induced lung injury versus control lung (0.017 [0.014–0.025] vs 0.011 min−1 [0.010–0.016min−1]; p < 0.05), whereas atelectrauma did not. Volutrauma decreased blood fraction at similar perfusion and increased normally as well as hyper-aerated lung compartments and tidal hyperaeration. Atelectrauma yielded higher poorly and nonaerated lung compartments, and tidal recruitment. Driving pressure increased in atelectrauma. Conclusions In this model of acute respiratory distress syndrome, volutrauma promoted higher lung inflammation than atelectrauma at comparable low tidal volume and lower driving pressure, suggesting that static stress and strain are major determinants of ventilator-induced lung injury. PMID:27035236
Retamal, Jaime; Hurtado, Daniel; Villarroel, Nicolás; Bruhn, Alejandro; Bugedo, Guillermo; Amato, Marcelo Britto Passos; Costa, Eduardo Leite Vieira; Hedenstierna, Göran; Larsson, Anders; Borges, João Batista
2018-06-01
It is known that ventilator-induced lung injury causes increased pulmonary inflammation. It has been suggested that one of the underlying mechanisms may be strain. The aim of this study was to investigate whether lung regional strain correlates with regional inflammation in a porcine model of acute respiratory distress syndrome. Retrospective analysis of CT images and positron emission tomography images using [F]fluoro-2-deoxy-D-glucose. University animal research laboratory. Seven piglets subjected to experimental acute respiratory distress syndrome and five ventilated controls. Acute respiratory distress syndrome was induced by repeated lung lavages, followed by 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressures (mean, 4 cm H2O) and high inspiratory pressures (mean plateau pressure, 45 cm H2O). All animals were subsequently studied with CT scans acquired at end-expiration and end-inspiration, to obtain maps of volumetric strain (inspiratory volume - expiratory volume)/expiratory volume, and dynamic positron emission tomography imaging. Strain maps and positron emission tomography images were divided into 10 isogravitational horizontal regions-of-interest, from which spatial correlation was calculated for each animal. The acute respiratory distress syndrome model resulted in a decrease in respiratory system compliance (20.3 ± 3.4 to 14.0 ± 4.9 mL/cm H2O; p < 0.05) and oxygenation (PaO2/FIO2, 489 ± 80 to 92 ± 59; p < 0.05), whereas the control animals did not exhibit changes. In the acute respiratory distress syndrome group, strain maps showed a heterogeneous distribution with a greater concentration in the intermediate gravitational regions, which was similar to the distribution of [F]fluoro-2-deoxy-D-glucose uptake observed in the positron emission tomography images, resulting in a positive spatial correlation between both variables (median R = 0.71 [0.02-0.84]; p < 0.05 in five of seven animals), which was not observed in the control animals. In this porcine acute respiratory distress syndrome model, regional lung strain was spatially correlated with regional inflammation, supporting that strain is a relevant and prominent determinant of ventilator-induced lung injury.
Modern history of surgical management of lung abscess: from Harold Neuhof to current concepts.
Schweigert, Michael; Dubecz, Attila; Stadlhuber, Rudolf J; Stein, Hubert J
2011-12-01
Harold Neuhof was one of the pioneers of thoracic surgery in the early decades of the last century. Inspired by his preceptor Howard Lilienthal he proposed an entirely new concept for surgery on acute lung abscess. The aim of his one-stage procedure was adequate drainage of the abscess cavity. His approach proved to be the first major breakthrough in the treatment of acute lung abscess. Therapy of pulmonary abscess was again radically changed by the advent of antibiotics in the late 1940s. However, the basic principles of Neuhof's concept still influence modern-day management of putrid lung abscess. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J
2015-02-01
We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.
Dosimetric and clinical predictors for radiation-induced esophageal injury.
Ahn, Sung-Ja; Kahn, Daniel; Zhou, Sumin; Yu, Xiaoli; Hollis, Donna; Shafman, Timothy D; Marks, Lawrence B
2005-02-01
To evaluate the clinical and three-dimensional dosimetric parameters associated with esophageal injury after radiotherapy (RT) for non-small-cell lung cancer. The records of 254 patients treated for non-small-cell lung cancer between 1992 and 2001 were reviewed. A variety of metrics describing the esophageal dose were extracted. The Radiation Therapy Oncology Group toxicity criteria for grading of esophageal injury were used. The median follow-up time for all patients was 43 months (range, 0.5-120 months). Logistic regression analysis, contingency table analyses, and Fisher's exact tests were used for statistical analysis. Acute toxicity occurred in 199 (78%) of 254 patients. For acute toxicity of Grade 2 or worse, twice-daily RT, age, nodal stage of N2 or worse, and most dosimetric parameters were predictive. Late toxicity occurred in 17 (7%) of 238 patients. The median and maximal time to the onset of late toxicity was 5 and 40 months after RT, respectively. Late toxicity occurred in 2%, 3%, 17%, 26%, and 100% of patients with acute Grade 0, 1, 2, 3, and 4 toxicity, respectively. For late toxicity, the severity of acute toxicity was most predictive. A variety of dosimetric parameters are predictive of acute and late esophageal injury. A strong correlation between the dosimetric parameters prevented a comparison between the predictive abilities of these metrics. The presence of acute injury was the most predictive factor for the development of late injury. Additional studies to define better the predictors of RT-induced esophageal injury are needed.
[Fat embolism syndrome following injuries and limb fractures].
Volpin, Gershon; Gorski, Albert; Shtarker, Haim; Makhoul, Nicola
2010-05-01
Fat embolism syndrome is a clinical entity characterized by varying degrees of cerebral dysfunction, pulmonary changes and petechial rash that usually develop within 24-48 hours in a small percentage of victims after trauma and Long bone fractures. Deterioration can occur within a few hours Leading to unconsciousness or acute respiratory insufficiency, similar to adult respiratory distress syndrome (ARDS). The pathophysiology is still not clearly understood and there are two theories--the mechanical and biochemical cascade of events. It seems that the most significant diagnostic sign is hypoxemia with relatively normaL values of PaCO2 leading to development of radiographic "snow-like appearance" of the Lungs, resulting from the typical interstitial lung edema. Treatment consists of early fracture fixation, volume replacement, respiratory support and analgesia carefully managed since some of the patients may develop acute respiratory distress. The role of steroids and other drugs is still under debate. The vast majority of patients may heal without any complications, while 5%-10% of the patients may develop some neurological complications manifesting as behavior disturbances. The aim of this review is to update the clinical and pathophysiological aspects of fat embolism syndrome and to describe the various aspects of prevention and treatment.
Moré, Jayaji M; Eclov, Neville C W; Chung, Melody P; Wynne, Jacob F; Shorter, Joanne H; Nelson, David D; Hanlon, Alexandra L; Burmeister, Robert; Banos, Peter; Maxim, Peter G; Loo, Billy W; Diehn, Maximilian
2014-07-01
In this prospective pilot study, we evaluated the feasibility and potential utility of measuring multiple exhaled gases as biomarkers of radiation pneumonitis (RP) in patients receiving stereotactic ablative radiotherapy (SABR) for lung tumors. Breath analysis was performed for 26 patients receiving SABR for lung tumors. Concentrations of exhaled nitric oxide (eNO), carbon monoxide (eCO), nitrous oxide (eN2O), and carbon dioxide (eCO2) were measured before and immediately after each fraction using real-time, infrared laser spectroscopy. RP development (CTCAE grade ≥2) was correlated with baseline gas concentrations, acute changes in gas concentrations after each SABR fraction, and dosimetric parameters. Exhaled breath analysis was successfully completed in 77% of patients. Five of 20 evaluable patients developed RP at a mean of 5.4 months after SABR. Acute changes in eNO and eCO concentrations, defined as percent changes between each pre-fraction and post-fraction measurement, were significantly smaller in RP versus non-RP cases (p = 0.022 and 0.015, respectively). In an exploratory analysis, a combined predictor of baseline eNO greater than 24 parts per billion and acute decrease in eCO less than 5.5% strongly correlated with RP incidence (p =0.0099). Neither eN2O nor eCO2 concentrations were significantly associated with RP development. Although generally higher in patients destined to develop RP, dosimetric parameters were not significantly associated with RP development. The majority of SABR patients in this pilot study were able to complete exhaled breath analysis. Baseline concentrations and acute changes in concentrations of exhaled breath components were associated with RP development after SABR. If our findings are validated, exhaled breath analysis may become a useful approach for noninvasive identification of patients at highest risk for developing RP after SABR.
Lee, Kyung-Yil; Rhim, Jung-Woo; Kang, Jin-Han
2011-01-01
It has been believed that acute lung injury in influenza virus infections is caused by a virus-induced cytopathy; viruses that have multiplied in the upper respiratory tract spread to lung tissues along the lower respiratory tract. However, some experimental and clinical studies have suggested that the pathogenesis of acute lung injury in influenza virus infections is associated with excessive host response including a cell-mediated immune reaction. During the pandemic H1N1 2009 influenza A virus infections in Korea, we experienced a dramatic effect of immune-modulators (corticosteroids) on the patients with severe pneumonia who had significant respiratory distress at presentation and those who showed rapidly progressive pneumonia during oseltamivir treatment. We also found that the pneumonia patients treated with corticosteroids showed the lowest lymphocyte differential and that the severity of pneumonia was associated with the lymphocyte count at presentation. From our findings and previous experimental and clinical studies, we postulated that hyperactive immune cells (T cells) may be involved in the acute lung injury of influenza virus infections, using a hypothesis of 'protein homeostasis system'; the inducers of the cell-mediated immune response are initially produced at the primary immune sites by the innate immune system. These substances reach the lung cells, the main target organ, via the systemic circulation, and possibly the cells of other organs, including myocytes or central nerve system cells, leading to extrapulmonary symptoms (e.g., myalgia and rhabdomyolysis, and encephalopathy). To control these substances that may be possibly toxic to host cells, the adaptive immune reaction may be operated by immune cells, mainly lymphocytes. Hyperimmune reaction of immune cells produces higher levels of cytokines which may be associated with acute lung injury, and may be controlled by early use of immune-modulators. Early initiation and proper dosage of immune-modulators with antiviral agents for severe pneumonia patients may reduce morbidity and prevent progressive fatal pneumonia. Copyright © 2010 Elsevier Ltd. All rights reserved.
Wigenstam, Elisabeth; Jonasson, Sofia; Koch, Bo; Bucht, Anders
2012-11-15
Exposure to toxic alkylating mustard agents causes both acute and long-term effects to the lungs as indicated by increased number of inflammatory cells in airways, lung edema and lung tissue fibrosis. We have previously demonstrated that treatment with the corticosteroid dexamethasone 1 h after lung exposure to the nitrogen mustard analog melphalan protects mice from acute and sub-acute inflammatory responses, as well as from lung tissue fibrosis. In order to address the importance of early anti-inflammatory treatment, we investigated the therapeutic effect of dexamethasone administered 1, 2 or 6 h following exposure to melphalan. C57BL/6 mice were exposed to melphalan and treated with dexamethasone 1, 2 or 6 h after exposure. Twenty hours or 14 days post exposure mice were subjected to analysis of respiratory mechanics where the effects of incremental doses of methacholine on central and peripheral lung components were measured. We also determined the amount of inflammatory cells in the bronchoalveolar lavage fluid and measured the amount of collagen content in the lungs. Melphalan exposure increased airway hyperresponsiveness in both central and peripheral airways and induced an airway inflammation dominated by infiltration of macrophages and neutrophils. Dexamethasone given 1 h after exposure to melphalan provided better protection against airway inflammation than administration 2 or 6 h after exposure. Collagen deposition 14 days after exposure was decreased due to dexamethasone treatment. Early treatment with dexamethasone is important in order to reduce the airway hyperresponsiveness and inflammation caused by toxic alkylating mustards such as melphalan. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Downs, Charles A.; Kreiner, Lisa H.; Eaton, Amity F.; Johnson, Nicholle M.; Brown, Lou Ann
2013-01-01
Chronic alcohol consumption is associated with increased incidence of ICU-related morbidity and mortality, primarily from acute respiratory distress syndrome (ARDS). However, the mechanisms involved are unknown. One explanation is that alcohol regulates epithelial sodium channels (ENaC) via oxidant signaling to promote a pro- injury environment. We used small rodent models to mimic acute and chronic alcohol consumption and tested the hypothesis that ethanol (EtOH) would affect lung fluid clearance by up-regulating ENaC activity in the lung. Fluorescence labeling of rat lung slices and in vivo mouse lung revealed an increase in ROS production in response to acute EtOH exposure. Using western blots and fluorescein-5-maleimide labeling, we conclude that EtOH exposure modifies cysteines of α-ENaC while data from single channel patch clamp analysis confirm that 0.16% EtOH increased ENaC activity in rat alveolar cells. In vivo lung fluid clearance demonstrated a latent increase in fluid clearance in mice receiving EtOH diet. Ethanol mice given a tracheal instillation of LPS demonstrated early lung fluid clearance compared to caloric control mice and C57Bl/6 mice. Standard biochemical techniques reveal that chronic EtOH consumption resulted in greater protein expression of the catalytic gp91phox subunit and the obligate Rac1 protein. Collectively these data suggest that chronic EtOH consumption may lead to altered regulation of ENaC, contributing to a ‘pro-injury’ environment in the alcohol lung. PMID:23382956
Song, Zhi; Cui, Yan; Ding, Mu-Zi; Jin, Hong-Xu; Gao, Yan
2013-11-01
Acute lung injury (ALI) is a common component of systemic inflammatory disease without more effective treatments. However, recent studies have demonstrated that the recombinant human brain natriuretic peptide (rhBNP) has anti-inflammatory effects. Therefore, we found that rhBNP could prevent lipopolysaccharide (LPS)-induced acute lung injury in a dog model. Dogs were injected with LPS and subjected to continuous intravenous infusion (CIV) of saline solution or rhBNP. We detected the protective effects of rhBNP by histological examination and determination of serum cytokine levels and lung myeloperoxidase (MPO) activity and malondialdehyde (MDA) activity. Histological examination indicated marked inflammation, edema and hemorrhage in lung tissue taken 12h after rhBNP treatment compared with tissue from dogs which received saline treatment after LPS injection. LPS injection induced cytokine (IL-6 and TNF-α) secretion and lung MPO and MDA activities, which were also attenuated by rhBNP treatment. Inductions of IL-6 and TNF-α were significantly attenuated in the L-rhBNP and the H-rhBNP groups. The ratios of the L-rhBNP group and H-rhBNP group were lower than that in the lung injury group. Furthermore, MPO and MDA activities were significantly lower in the H-rhBNP group compared to those in the LI group. Our data indicate that rhBNP treatment may exert protective effects and may be associated with adjusting endogenous antioxidant enzymes. Thus, rhBNP may be considered as a therapeutic agent for various clinical conditions involving lung injury by sepsis. Copyright © 2013 Elsevier B.V. All rights reserved.
Wu, Xiaowu; Dubick, Michael A; Schwacha, Martin G; Cap, Andrew P; Darlington, Daniel N
2017-04-01
Severe trauma, hemorrhage, and resuscitation can lead to a trauma-related acute lung injury that involves rapid infiltration of immune cells and platelets. This infiltration involves exymatic degradation of matrix proteins, including plasmin, and causes loss of barrier function. Since tranexamic acid (TXA) inhibits plasminogen/ plasmin binding to target substrates, it may attenuate loss of barrier function after severe trauma, hemorrhage, and resuscitation. Sprague-Dawley rats were subjected to polytrauma (laparotomy, and trauma to intestines, liver, right leg skeletal muscle, and right femur fracture), then bled 40% of their blood volume. One hour after completion of polytrauma and hemorrhage, resuscitation was begun with fresh whole blood (FWB) or FWB with prior bolus administration of TXA (10 mg/kg in 0.2 mL). Polytrauma, hemorrhage, and resuscitation with FWB led to an elevation in lung water content that was significantly reduced with TXA administration. Polytrauma and hemorrhage led to rise in the number of neutrophils/monocytes and platelets in the lungs, and a rise in myeloperoxidase (MPO), neutrophil elastase and complement C5a content. While resuscitation with FWB significantly reduced the cellular infiltrate and MPO, FWB/TXA further reduced the levels of neutrophil/monocytes, neutrophil elastase, and complement C5a. Polytrauma and hemorrhage led to rise in lung plasmin activity that was significantly reduced with either FWB or FWB/TXA resuscitation. Severe trauma and hemorrhage leads to increases in lung water content, and immune cell, platelets, MPO, elastase, and C5a content in lung tissue, all markers of inflammation and acute lung injury. The addition of TXA to FWB resuscitation markedly attenuated the rise in these parameters suggesting its utility in treating acute lung injury.
The pattern of early lung parenchymal and air space injury following acute blood loss.
Younger, J G; Taqi, A S; Jost, P F; Till, G O; Johnson, K J; Stern, S A; Hirschl, R B
1998-07-01
Acute lung injury is a frequent clinical occurrence following blood loss and trauma. The nature of this injury remains poorly understood. To examine the relative parenchymal and intra-alveolar distribution of inflammation in a rat model of hemorrhage and resuscitation. Rats were anesthetized and subjected to hemorrhage followed by resuscitation with shed blood and saline. Myeloperoxidase activity of lung homogenates and cytology of bronchoalveolar lavage fluid were used to measure total lung and intra-alveolar neutrophil invasion. Extravasation of i.v.-administered [125I]-albumin was used to determine total lung and alveolar permeability. Permeability results were analyzed using their base-10 logarithmic transformations. 86 animals were studied. Whole-lung myeloperoxidase activity was increased (control = 0.34 +/- 0.16 units, injured = 0.84 +/- 0.43 units, p < 0.01), while there was no difference in intra-alveolar leukocyte counts (injured = 1.85 +/- 1.30 x 10(5)/mL, control = 2.44 +/- 1.75 x 10(5)/mL, p = 0.40), suggesting that the cellular component of the injury was more severe in the intravascular and interstitial spaces. There was a strong trend toward increased permeability in the interstitial compartment, and a significant increase in permeability in the intra-alveolar compartment (whole-lung permeability: control = -0.27 +/- 0.19 units, injured = 0.10 +/- 0.55 units, p = 0.06; alveolar permeability: control = -2.00 +/- 0.47 units, injured = -1.32 +/- 0.49 units, p < 0.01), suggesting that the loss of integrity to macromolecules was not limited to the interstitium. Hemorrhage and resuscitation resulted in an acute lung injury characterized by extravasation of intravascular protein into both the interstitium and the intra-alveolar space. Neutrophil invasion of the lung was demonstrable only in the interstitial compartment.
2013-01-01
Background Crew members on space missions inevitably are exposed to low background radiation and can receive much higher doses during solar particle events (SPE) that consist primarily of protons. Ionizing radiation could cause lung pathologies. Cell adhesion molecules (CAM) are believed to participate in fibrogenesis. Interactions between CAM and extracellular matrix (ECM) affect epithelial repair mechanisms in the lung. However, there are very limited data on biological effects of protons on normal lung tissue. Numerous reports have shown that exposure to low-dose/low-dose-rate (LDR) radiation can result in radioadaptation that renders cells more resistant to subsequent acute radiation. The goal of this study was to compare expression of genes associated with ECM and CAM, as well as critical profibrotic mediators, in mouse lungs after acute irradiation with photons and protons, and also determine whether pre-exposure to LDR γ-rays induces an adaptive effect. Results Overall, a marked difference was present in the proton vs. photon groups in gene expression. When compared to 0 Gy, more genes were affected by protons than by photons at both time points (11 vs. 6 on day 21 and 14 vs. 8 on day 56), and all genes affected by protons were upregulated. Many genes were modulated by LDR γ-rays when combined with photons or protons. Col1a1, mmp14, and mmp15 were significantly upregulated by all radiation regimens on day 21. Similarly, the change in expression of profibrotic proteins was also detected after acute and combination irradiation. Conclusion These data show that marked differences were present between acutely delivered protons and photons in modulating genes, and the effect of protons was more profound than that of photons. Pre-exposure to LDR γ-rays ‘normalized’ some genes that were modified by acute irradiation. PMID:23374750
Environment and Health: Not Only Cancer.
Colao, Annamaria; Muscogiuri, Giovanna; Piscitelli, Prisco
2016-07-19
The Hippocratic tradition emphasized environmental causes of diseases and the need for harmony between the individual and the natural environment as the right philosophy to maintain a good health status. Public awareness and scientific attention concerning environmental pollution is usually focused on the consequent increased risk of developing cancer. Air pollution has been recognized by the World Health Organization (WHO) to cause cardiovascular and respiratroy diseases, as well as lung cancer, after acute/chronic exposure to fine particulates (PM2.5 and PM10) even at concentrations which are 50% lower than those accepted as legal limits in many developed countries. An increase of 10 µg/m³ of PM2.5 produces a +4%-6% of overall mortality, a +10% of cardiovascular disease prevalence (arithmyas, acute myocardial infarctions, and heart failure) and a +22% of lung cancer prevalence. In addition to these chronic effects, acute hospitalizations are also affected, especially among susceptible populations such as children and diabetic patients. Water and soil contamination also have an additional detrimental effect on people's health. Other issues concerning environment contamination and human health include male/female fertility, metabolic and thyroid conditions, but also professional exposures resulting in occupational diseases. Moreover, in the perspective of "gender medicine", different acute or chronic effects of environmental pollution should be specifically assessed both in men and in women. This special issue on "Environmental Diseases" is aimed at providing a global overview about different threats to human health possibily originating from environmental contamination.
Khemani, Robinder G; Smith, Lincoln S; Zimmerman, Jerry J; Erickson, Simon
2015-06-01
Although there are similarities in the pathophysiology of acute respiratory distress syndrome in adults and children, pediatric-specific practice patterns, comorbidities, and differences in outcome necessitate a pediatric-specific definition. We sought to create such a definition. A subgroup of pediatric acute respiratory distress syndrome investigators who drafted a pediatric-specific definition of acute respiratory distress syndrome based on consensus opinion and supported by detailed literature review tested elements of the definition with patient data from previously published investigations. International PICUs. Children enrolled in published investigations of pediatric acute respiratory distress syndrome. None. Several aspects of the proposed pediatric acute respiratory distress syndrome definition align with the Berlin Definition of acute respiratory distress syndrome in adults: timing of acute respiratory distress syndrome after a known risk factor, the potential for acute respiratory distress syndrome to coexist with left ventricular dysfunction, and the importance of identifying a group of patients at risk to develop acute respiratory distress syndrome. There are insufficient data to support any specific age for "adult" acute respiratory distress syndrome compared with "pediatric" acute respiratory distress syndrome. However, children with perinatal-related respiratory failure should be excluded from the definition of pediatric acute respiratory distress syndrome. Larger departures from the Berlin Definition surround 1) simplification of chest imaging criteria to eliminate bilateral infiltrates; 2) use of pulse oximetry-based criteria when PaO2 is unavailable; 3) inclusion of oxygenation index and oxygen saturation index instead of PaO2/FIO2 ratio with a minimum positive end-expiratory pressure level for invasively ventilated patients; 4) and specific inclusion of children with preexisting chronic lung disease or cyanotic congenital heart disease. This pediatric-specific definition for acute respiratory distress syndrome builds on the adult-based Berlin Definition, but has been modified to account for differences between adults and children with acute respiratory distress syndrome. We propose using this definition for future investigations and clinical care of children with pediatric acute respiratory distress syndrome and encourage external validation with the hope for continued iterative refinement of the definition.
Chlorine-induced cardiopulmonary injury
Carlisle, Matthew; Lam, Adam; Svendsen, Erik R.; Aggarwal, Saurabh; Matalon, Sadis
2016-01-01
Chlorine (Cl2) is utilized worldwide for a diverse range of industrial applications, including pulp bleaching, sanitation, and pharmaceutical development. Though Cl2 has widespread use, little is known regarding the mechanisms of toxicity associated with Cl2 exposure, which occurs during industrial accidents or acts of terrorism. Previous instances of Cl2 exposure have led to reported episodes of respiratory distress that result in high morbidity and mortality. Furthermore, studies suggest that acute Cl2 exposure also results in systemic vascular injury and subsequent myocardial contractile dysfunction. Here we review both lung and cardiac pathology associated with acute Cl2 inhalation and discuss recently published data that suggests that mitochondrial dysfunction underlies the pathogenesis of Cl2-induced toxicity. Lastly, we discuss our findings that suggest that upregulation of autophagy protects against Cl2-induced lung inflammation and can be a potential therapeutic target for ameliorating the toxic effects of Cl2 exposure. PMID:27303906
Toyokura, Minoru; Fujii, Chieko; Urano, Tetsuya; Nishiya, Kenzo; Ishida, Akira
2003-10-01
We reported a patient who developed acute quadriplegic myopathy (AQM) following treatment with a combination of high-dose steroid and nondepolarizing blocking agent for idiopathic interstitial pneumonia (IIP). Few cases of AQM with IIP have been reported in the literature. The HP progressed rapidly in our patient, but the high-dose steroid therapy was effective. The rehabilitative intervention comprised of passive range-of-motion exercise, functional training, and muscle strengthening. After the initial presentation with severe weakness, the AQM gradually improved and the patient regained full physical function in 8 months. The clinical course was almost identical to that of AQM patients with other lung diseases. Though unlikely to influence the improvement of muscle weakness in AQM patients, the lung diseases associated with AQM may require specific consideration in determining suitable rehabilitation programs and observing patients before and after full recovery from dysmobility.
Chlorine-induced cardiopulmonary injury.
Carlisle, Matthew; Lam, Adam; Svendsen, Erik R; Aggarwal, Saurabh; Matalon, Sadis
2016-06-01
Chlorine (Cl2 ) is utilized worldwide for a diverse range of industrial applications, including pulp bleaching, sanitation, and pharmaceutical development. Though Cl2 has widespread use, little is known regarding the mechanisms of toxicity associated with Cl2 exposure, which occurs during industrial accidents or acts of terrorism. Previous instances of Cl2 exposure have led to reported episodes of respiratory distress that result in high morbidity and mortality. Furthermore, studies suggest that acute Cl2 exposure also results in systemic vascular injury and subsequent myocardial contractile dysfunction. Here, we review both lung and cardiac pathology associated with acute Cl2 inhalation and discuss recently published data that suggest that mitochondrial dysfunction underlies the pathogenesis of Cl2 -induced toxicity. Last, we discuss our findings that suggest that upregulation of autophagy protects against Cl2 -induced lung inflammation and can be a potential therapeutic target for ameliorating the toxic effects of Cl2 exposure. © 2016 New York Academy of Sciences.
Acute respiratory distress syndrome and acute lung injury.
Dushianthan, A; Grocott, M P W; Postle, A D; Cusack, R
2011-09-01
Acute respiratory distress syndrome (ARDS) is a life threatening respiratory failure due to lung injury from a variety of precipitants. Pathologically ARDS is characterised by diffuse alveolar damage, alveolar capillary leakage, and protein rich pulmonary oedema leading to the clinical manifestation of poor lung compliance, severe hypoxaemia, and bilateral infiltrates on chest radiograph. Several aetiological factors associated with the development of ARDS are identified with sepsis, pneumonia, and trauma with multiple transfusions accounting for most cases. Despite the absence of a robust diagnostic definition, extensive epidemiological investigations suggest ARDS remains a significant health burden with substantial morbidity and mortality. Improvements in outcome following ARDS over the past decade are in part due to improved strategies of mechanical ventilation and advanced support of other failing organs. Optimal treatment involves judicious fluid management, protective lung ventilation with low tidal volumes and moderate positive end expiratory pressure, multi-organ support, and treatment where possible of the underlying cause. Moreover, advances in general supportive measures such as appropriate antimicrobial therapy, early enteral nutrition, prophylaxis against venous thromboembolism and gastrointestinal ulceration are likely contributory reasons for the improved outcomes. Although therapies such as corticosteroids, nitric oxide, prostacyclins, exogenous surfactants, ketoconazole and antioxidants have shown promising clinical effects in animal models, these have failed to translate positively in human studies. Most recently, clinical trials with β2 agonists aiding alveolar fluid clearance and immunonutrition with omega-3 fatty acids have also provided disappointing results. Despite these negative studies, mortality seems to be in decline due to advances in overall patient care. Future directions of research are likely to concentrate on identifying potential biomarkers or genetic markers to facilitate diagnosis, with phenotyping of patients to predict outcome and treatment response. Pharmacotherapies remain experimental and recent advances in the modulation of inflammation and novel cellular based therapies, such as mesenchymal stem cells, may reduce lung injury and facilitate repair.
Tianzhu, Zhang; Shumin, Wang
2015-08-01
In this study, we investigated anti-inflammatory effects of esculin (ESC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). ALI was induced in mice by intratracheal instillation of LPS, and ESC (20 and 40 mg/kg) was given orally 1 h prior to LPS administration. After 6 h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. ESC pretreatment decreased LPS-induced evident lung histopathological changes, lung wet-to-dry weight ratio, and lung myeloperoxidase activity. In addition, pretreatment with ESC inhibited inflammatory cells and proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β, and interleukin-6 in BALF. Furthermore, we demonstrated that ESC inhibited the Toll-like receptor-2 (TLR2), Toll-like receptor-4 (TLR4), myeloid differentiation primary response gene-88 (MyD88), and nuclear factor-κB (NF-κB) p65 in LPS-induced ALI. The results indicated that the ESC had a protective effect on LPS-induced ALI in mice.
[New toxicity of fotemustine: diffuse interstitial lung disease].
Bertrand, M; Wémeau-Stervinou, L; Gauthier, S; Auffret, M; Mortier, L
2012-04-01
Fotemustine is an alkylating cytostatic drug belonging to the nitrosourea family and is used in particular in the treatment of disseminated malignant melanoma. Herein, we report a case of interstitial lung disease associated with fotemustine. An 81-year-old man treated with fotemustine for metastatic melanoma presented acute interstitial lung disease 20 days after a fourth course of fotemustine monotherapy. The condition regressed spontaneously, with the patient returning to the clinical, radiological and blood gas status that had preceded fotemustine treatment. After other potential aetiologies had been ruled out, acute fotemustine-induced lung toxicity was considered and this treatment was definitively withdrawn. Other cytostatic agents belonging to the nitrosourea family can cause similar pictures, with a number of cases of interstitial lung disease thus being ascribed to fotemustine and dacarbazine. To our knowledge, this is the first case of interstitial lung disease induced by fotemustine monotherapy. This diagnosis should be considered where respiratory signs appear in melanoma patients undergoing fotemustine treatment. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Villar, Jesús; Martínez, Domingo; Mosteiro, Fernando; Ambrós, Alfonso; Añón, José M; Ferrando, Carlos; Soler, Juan A; Montiel, Raquel; Vidal, Anxela; Conesa-Cayuela, Luís A; Blanco, Jesús; Arrojo, Regina; Solano, Rosario; Capilla, Lucía; Del Campo, Rafael; Civantos, Belén; Fernández, María Mar; Aldecoa, César; Parra, Laura; Gutiérrez, Andrea; Martínez-Jiménez, Chanel; González-Martín, Jesús M; Fernández, Rosa L; Kacmarek, Robert M
2018-06-01
Overall mortality in patients with acute respiratory distress syndrome is a composite endpoint because it includes death from multiple causes. In most acute respiratory distress syndrome trials, it is unknown whether reported deaths are due to acute respiratory distress syndrome or the underlying disease, unrelated to the specific intervention tested. We investigated the causes of death after contracting acute respiratory distress syndrome in a large cohort. A secondary analysis from three prospective, multicenter, observational studies. A network of multidisciplinary ICUs. We studied 778 patients with moderate-to-severe acute respiratory distress syndrome treated with lung-protective ventilation. None. We examined death in the ICU from individual causes. Overall ICU mortality was 38.8% (95% CI, 35.4-42.3). Causes of acute respiratory distress syndrome modified the risk of death. Twenty-three percent of deaths occurred from refractory hypoxemia due to nonresolving acute respiratory distress syndrome. Most patients died from causes unrelated to acute respiratory distress syndrome: 48.7% of nonsurvivors died from multisystem organ failure, and cancer or brain injury was involved in 37.1% of deaths. When quantifying the true burden of acute respiratory distress syndrome outcome, we identified 506 patients (65.0%) with one or more exclusion criteria for enrollment into current interventional trials. Overall ICU mortality of the "trial cohort" (21.3%) was markedly lower than the parent cohort (relative risk, 0.55; 95% CI, 0.43-0.70; p < 0.000001). Most deaths in acute respiratory distress syndrome patients are not directly related to lung damage but to extrapulmonary multisystem organ failure. It would be challenging to prove that specific lung-directed therapies have an effect on overall survival.
Ambrosio, Aline M; Luo, Rubin; Fantoni, Denise T; Gutierres, Claudia; Lu, Qin; Gu, Wen-Jie; Otsuki, Denise A; Malbouisson, Luiz M S; Auler, Jose O C; Rouby, Jean-Jacques
2012-12-01
In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.
Acute and subchronic inhalation exposures of hamsters to nickel-enriched fly ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, A.P.; Moss, O.R.; Milliman, E.M.
1979-08-01
One 6-h inhalation exposure of hamsters to Ni-enriched fly ash (NEFA) aerosol (respirable aerosol concentration approx. 200 ..mu..g/liter) deposited about 80 ..mu..g in the deep lung, of which 75 ..mu..g was still present 30 days postexposure. The animals tolerated the exposure well during the 30-day postexposure observation period. Two-month exposures of hamsters to NEFA or fly ash (FA) aerosols (approx. 185 ..mu..g/liter) resuled in a deep lung burden of about 5.7 mg, dark discoloration of lungs, heavily dust-laden macrophages, and significantly higher lung weights than in controls, but only minimal inflammatory reaction and no deaths. There was no difference betweenmore » NEFA and FA effects. The NEFA contained 9% Ni; FA contained 0.03% Ni. The results of this study indicate low acute and subchronic toxicity and slow lung clearance of NEFA and FA.« less
Kang, Shih-Chao; Lin, Ming-Hwai; Hwang, I-Hsuan; Lin, Ming-Hsien; Chang, Hsiao-Ting; Hwang, Shinn-Jang
2012-05-01
This study investigated the impact of hospice care on end-of-life elderly patients with lung cancer in Taiwan. Data were collected from deceased inpatients with lung cancer who were at least 65 years old, using the National Health Insurance Research Database of 2004. A total of 1282 patients were enrolled, of whom 277 (21.6%) received hospice care (hospice-care group) and the other 1005 (78.4%) received general acute ward care (control group). The patients' age, gender, and institution of hospitalization did not differ significantly between the two groups, and most of the patients had chosen medical centers and their affiliated hospices for terminal care. The hospice-care group had a significantly shorter hospital stay and lower costs of hospitalization than the control group, with patients cared for primarily by family physicians and radiation oncologists (all p<0.05). The hospice-care group had an elevated incidence of co-morbid diabetes mellitus, higher scores on the Charlson Comorbidity Index, fewer acute lower respiratory conditions, and fewer invasive procedures than the control group (all p<0.05). Natural opium alkaloids were the most commonly prescribed drugs in the hospice-care group, whereas parenteral solutions were most frequently requested in the control group. Hospice care has provided a humane and cost-efficient pathway for end-of-life elderly patients with lung cancer. Parenteral nutrition/hydration should be limited for terminal care patients. Opioids should be promoted for the relief of pain and dyspnea in acute ward care. Family physicians and radiation oncologists play important roles in hospice care. Compared with the prevalence of hospice care in the United Kingdom and other developed countries, hospice care in Taiwan is in the position to be expanded. Copyright © 2012. Published by Elsevier B.V.
Dieks, J-K; von Bueren, A O; Schaefer, I-M; Menke, J; Lex, C; Krause, U; Zenker, D; Kühnle, I; Kramm, C M
2013-11-01
We report on a case of Pseudomonas aeruginosa sepsis and consecutive lung abscess in a 13-year-old patient with acute B-cell leukemia. At first, radiographic findings strongly suggested presence of pulmonary aspergilloma and only microbiological testing of the surgically enucleated mass revealed the correct underlying pathogen and confirmed final diagnosis. © Georg Thieme Verlag KG Stuttgart · New York.
Sen, Ayan; Callisen, Hannelisa E; Alwardt, Cory M; Larson, Joel S; Lowell, Amelia A; Libricz, Stacy L; Tarwade, Pritee; Patel, Bhavesh M; Ramakrishna, Harish
2016-01-01
Extracorporeal membrane oxygenation (ECMO) for severe acute respiratory failure was proposed more than 40 years ago. Despite the publication of the ARDSNet study and adoption of lung protective ventilation, the mortality for acute respiratory failure due to acute respiratory distress syndrome has continued to remain high. This technology has evolved over the past couple of decades and has been noted to be safe and successful, especially during the worldwide H1N1 influenza pandemic with good survival rates. The primary indications for ECMO in acute respiratory failure include severe refractory hypoxemic and hypercarbic respiratory failure in spite of maximum lung protective ventilatory support. Various triage criteria have been described and published. Contraindications exist when application of ECMO may be futile or technically impossible. Knowledge and appreciation of the circuit, cannulae, and the physiology of gas exchange with ECMO are necessary to ensure lung rest, efficiency of oxygenation, and ventilation as well as troubleshooting problems. Anticoagulation is a major concern with ECMO, and the evidence is evolving with respect to diagnostic testing and use of anticoagulants. Clinical management of the patient includes comprehensive critical care addressing sedation and neurologic issues, ensuring lung recruitment, diuresis, early enteral nutrition, treatment and surveillance of infections, and multisystem organ support. Newer technology that delinks oxygenation and ventilation by extracorporeal carbon dioxide removal may lead to ultra-lung protective ventilation, avoidance of endotracheal intubation in some situations, and ambulatory therapies as a bridge to lung transplantation. Risks, complications, and long-term outcomes and resources need to be considered and weighed in before widespread application. Ethical challenges are a reality and a multidisciplinary approach that should be adopted for every case in consideration.
Kallet, Richard H; Campbell, Andre R; Dicker, Rochelle A; Katz, Jeffrey A; Mackersie, Robert C
2006-01-01
To assess the effects of step-changes in tidal volume on work of breathing during lung-protective ventilation in patients with acute lung injury (ALI) or the acute respiratory distress syndrome (ARDS). Prospective, nonconsecutive patients with ALI/ARDS. Adult surgical, trauma, and medical intensive care units at a major inner-city, university-affiliated hospital. Ten patients with ALI/ARDS managed clinically with lung-protective ventilation. Five patients were ventilated at a progressively smaller tidal volume in 1 mL/kg steps between 8 and 5 mL/kg; five other patients were ventilated at a progressively larger tidal volume from 5 to 8 mL/kg. The volume mode was used with a flow rate of 75 L/min. Minute ventilation was maintained constant at each tidal volume setting. Afterward, patients were placed on continuous positive airway pressure for 1-2 mins to measure their spontaneous tidal volume. Work of breathing and other variables were measured with a pulmonary mechanics monitor (Bicore CP-100). Work of breathing progressively increased (0.86 +/- 0.32, 1.05 +/- 0.40, 1.22 +/- 0.36, and 1.57 +/- 0.43 J/L) at a tidal volume of 8, 7, 6, and 5 mL/kg, respectively. In nine of ten patients there was a strong negative correlation between work of breathing and the ventilator-to-patient tidal volume difference (R = -.75 to -.998). : The ventilator-delivered tidal volume exerts an independent influence on work of breathing during lung-protective ventilation in patients with ALI/ARDS. Patient work of breathing is inversely related to the difference between the ventilator-delivered tidal volume and patient-generated tidal volume during a brief trial of unassisted breathing.
Kallet, Richard H; Campbell, Andre R; Dicker, Rochelle A; Katz, Jeffrey A; Mackersie, Robert C
2005-12-01
Pressure-control ventilation (PCV) and pressure-regulated volume-control (PRVC) ventilation are used during lung-protective ventilation because the high, variable, peak inspiratory flow rate (V (I)) may reduce patient work of breathing (WOB) more than the fixed V (I) of volume-control ventilation (VCV). Patient-triggered breaths during PCV and PRVC may result in excessive tidal volume (V(T)) delivery unless the inspiratory pressure is reduced, which in turn may decrease the peak V (I). We tested whether PCV and PRVC reduce WOB better than VCV with a high, fixed peak V (I) (75 L/min) while also maintaining a low V(T) target. Fourteen nonconsecutive patients with acute lung injury or acute respiratory distress syndrome were studied prospectively, using a random presentation of ventilator modes in a crossover, repeated-measures design. A target V(T) of 6.4 + 0.5 mL/kg was set during VCV and PRVC. During PCV the inspiratory pressure was set to achieve the same V(T). WOB and other variables were measured with a pulmonary mechanics monitor (Bicore CP-100). There was a nonsignificant trend toward higher WOB (in J/L) during PCV (1.27 + 0.58 J/L) and PRVC (1.35 + 0.60 J/L), compared to VCV (1.09 + 0.59 J/L). While mean V(T) was not statistically different between modes, in 40% of patients, V(T) markedly exceeded the lung-protective ventilation target during PRVC and PCV. During lung-protective ventilation, PCV and PRVC offer no advantage in reducing WOB, compared to VCV with a high flow rate, and in some patients did not allow control of V(T) to be as precise.
Citral inhibits lipopolysaccharide-induced acute lung injury by activating PPAR-γ.
Shen, Yongbin; Sun, Zhanfeng; Guo, Xiaotong
2015-01-15
Citral, a component of lemongrass oil, has been reported to have many pharmacological activities such as anti-bacterial and anti-inflammatory effects. However, the effects of citral on acute lung injury (ALI) and the molecular mechanisms have not been reported. The aim of this study was to detect the effects of citral on lipopolysaccharide (LPS)-induced acute lung injury and investigate the molecular mechanisms. LPS-induced acute lung injury model was used to detect the anti-inflammatory effect of citral in vivo. The alveolar macrophages were used to investigate the molecular mechanism of citral in vitro. The results showed that pretreatment with citral remarkably attenuated pulmonary edema, histological severities, TNF-α, IL-6 and IL-1β production in LPS-induced ALI in vivo. In vitro, citral inhibited LPS-induced TNF-α, IL-6 and IL-1β production in alveolar macrophages. LPS-induced NF-κB activation was also inhibited by citral. Furthermore, we found that citral activated PPAR-γ and the anti-inflammatory effects of citral can be reversed by PPAR-γ antagonist GW9662. In conclusion, this is the first to demonstrate that citral protects LPS-induced ALI in mice. The anti-inflammatory mechanism of citral is associated with activating PPAR-γ, thereby inhibiting LPS-induced inflammatory response. Copyright © 2014 Elsevier B.V. All rights reserved.
Kollisch-Singule, Michaela; Emr, Bryanna; Smith, Bradford; Roy, Shreyas; Jain, Sumeet; Satalin, Joshua; Snyder, Kathy; Andrews, Penny; Habashi, Nader; Bates, Jason; Marx, William; Nieman, Gary; Gatto, Louis A
2014-11-01
Improper mechanical ventilation settings can exacerbate acute lung injury by causing a secondary ventilator-induced lung injury. It is therefore important to establish the mechanism by which the ventilator induces lung injury to develop protective ventilation strategies. It has been postulated that the mechanism of ventilator-induced lung injury is the result of heterogeneous, elevated strain on the pulmonary parenchyma. Acute lung injury has been associated with increases in whole-lung macrostrain, which is correlated with increased pathology. However, the effect of mechanical ventilation on alveolar microstrain remains unknown. To examine whether the mechanical breath profile of airway pressure release ventilation (APRV), consisting of a prolonged pressure-time profile and brief expiratory release phase, reduces microstrain. In a randomized, nonblinded laboratory animal study, rats were randomized into a controlled mandatory ventilation group (n = 3) and an APRV group (n = 3). Lung injury was induced by polysorbate lavage. A thoracotomy was performed and an in vivo microscope was placed on the lungs to measure alveolar mechanics. In the controlled mandatory ventilation group, multiple levels of positive end-expiratory pressure (PEEP; 5, 10, 16, 20, and 24 cm H2O) were tested. In the APRV group, decreasing durations of expiratory release (time at low pressure [T(low)]) were tested. The T(low) was set to achieve ratios of termination of peak expiratory flow rate (T-PEFR) to peak expiratory flow rate (PEFR) of 10%, 25%, 50%, and 75% (the smaller this ratio is [ie, 10%], the more time the lung is exposed to low pressure during the release phase, which decreases end-expiratory lung volume and potentiates derecruitment). Alveolar perimeters were measured at peak inspiration and end expiration using digital image analysis, and strain was calculated by normalizing the change in alveolar perimeter length to the original length. Macrostrain was measured by volume displacement. Higher PEEP (16-24 cm H2O) and a brief T(low) (APRV T-PEFR to PEFR ratio of 75%) reduced microstrain. Microstrain was minimized with an APRV T-PEFR to PEFR ratio of 75% (mean [SEM], 0.05 [0.03]) and PEEP of 16 cm H2O (mean [SEM], 0.09 [0.08]), but an APRV T-PEFR to PEFR ratio of 75% also promoted alveolar recruitment compared with PEEP of 16 cm H2O (mean [SEM] total inspiratory area, 52.0% [2.9%] vs 29.4% [4.3%], respectively; P < .05). Whole-lung strain was correlated with alveolar microstrain in tested settings (P < .05) except PEEP of 16 cm H2O (P > .05). Increased positive-end expiratory pressure and reduced time at low pressure (decreased T(low)) reduced alveolar microstrain. Reduced microstrain and improved alveolar recruitment using an APRV T-PEFR to PEFR ratio of 75% may be the mechanism of lung protection seen in previous clinical and animal studies.
Quantification of Dynamic [18F]FDG Pet Studies in Acute Lung Injury.
Grecchi, Elisabetta; Veronese, Mattia; Moresco, Rosa Maria; Bellani, Giacomo; Pesenti, Antonio; Messa, Cristina; Bertoldo, Alessandra
2016-02-01
This work aims to investigate lung glucose metabolism using 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) positron emission tomography (PET) imaging in acute lung injury (ALI) patients. Eleven ALI patients and five healthy controls underwent a dynamic [(18)F]FDG PET/X-ray computed tomography (CT) scan. The standardized uptake values (SUV) and three different methods for the quantification of glucose metabolism (i.e., ratio, Patlak, and spectral analysis iterative filter, SAIF) were applied both at the region and the voxel levels. SUV reported a lower correlation than the ratio with the net tracer uptake. Patlak and SAIF analyses did not show any significant spatial or quantitative (R(2) > 0.80) difference. The additional information provided by SAIF showed that in lung inflammation, elevated tracer uptake is coupled with abnormal tracer exchanges within and between lung tissue compartments. Full kinetic modeling provides a multi-parametric description of glucose metabolism in the lungs. This allows characterizing the spatial distribution of lung inflammation as well as returning the functional state of the tissues.
Hypersensitivity pneumonitis usually occurs in people who work in places where there are high levels of organic dusts, fungus, or molds. Long-term exposure can lead to lung inflammation and acute lung disease . ...
Moĭbenko, O O; Kubyshkin, A V; Kharchenko, V Z; Horokhova, N Iu; Semenets', P F
2003-01-01
The results of a combined study of the proteolysis on a model of post-ischemic toxemia in rats showed a decrease in antiproteinase potential and an activation of proteolysis. The activation of proteolysis and inhibition of antiproteinases was observed not only in the blood, but also in the bronchoalveolar secretion. Those changes were accompanied with the changes in the morphological structure of the lungs. The data obtained have shown a high effectiveness of proteinase inhibitor (contrical) and an antioxidant of flavonoid group (corvetine). Those drugs decreased the morphological changes in the lungs and prevented the development of imbalance in proteinase-inhibitor system. The prophylactic effect was more considerable when both drugs were used in a combined way.
NASA Astrophysics Data System (ADS)
Bhargava, Maneesh
Rationale: In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized, and are similar to changes in human acute respiratory distress syndrome (ARDS). In the injured lung, alveolar type two (AT2) epithelial cells play a critical role restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury. Methods: We applied an unbiased systems level proteomics approach to elucidate molecular mechanisms contributing to lung repair in a rat hyperoxic lung injury model. AT2 cells were isolated from rat lungs at predetermined intervals during hyperoxic injury and recovery. Protein expression profiles were determined by using iTRAQRTM with tandem mass spectrometry. Results: Of 959 distinct proteins identified, 183 significantly changed in abundance during the injury-recovery cycle. Gene Ontology enrichment analysis identified cell cycle, cell differentiation, cell metabolism, ion homeostasis, programmed cell death, ubiquitination, and cell migration to be significantly enriched by these proteins. Gene Set Enrichment Analysis of data acquired during lung repair revealed differential expression of gene sets that control multicellular organismal development, systems development, organ development, and chemical homeostasis. More detailed analysis identified activity in two regulatory pathways, JNK and miR 374. A Short Time-series Expression Miner (STEM) algorithm identified protein clusters with coherent changes during injury and repair. Conclusion: Coherent changes occur in the AT2 cell proteome in response to hyperoxic stress. These findings offer guidance regarding the specific molecular mechanisms governing repair of the injured lung.
Potteti, Haranatha R.; Reddy, Narsa M.; Hei, Tom K.; Kalvakolanu, Dhananjaya V.; Reddy, Sekhar P.
2013-01-01
Lung epithelial and endothelial cell death caused by pro-oxidant insults is a cardinal feature of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) patients. The NF-E2-related factor 2 (NRF2) activation in response to oxidant exposure is crucial to the induction of several antioxidative and cytoprotective enzymes that mitigate cellular stress. Since prolonged exposure to hyperoxia causes cell death, we hypothesized that chronic hyperoxia impairs NRF2 activation, resulting in cell death. To test this hypothesis, we exposed nonmalignant small airway epithelial cells (AECs) to acute (1–12 h) and chronic (36–48 h) hyperoxia and evaluated cell death, NRF2 nuclear accumulation and target gene expression, and NRF2 recruitment to the endogenous HMOX1 and NQO1 promoters. As expected, hyperoxia gradually induced death in AECs, noticeably and significantly by 36 h; ~60% of cells were dead by 48 h. However, we unexpectedly found increased expression levels of NRF2-regulated antioxidative genes and nuclear NRF2 in AECs exposed to chronic hyperoxia as compared to acute hyperoxia. Chromatin Immunoprecipitation (ChIP) assays revealed an increased recruitment of NRF2 to the endogenous HMOX1 and NQO1 promoters in AECs exposed to acute or chronic hyperoxia. Thus, our findings demonstrate that NRF2 activation and antioxidant gene expression are functional during hyperoxia-induced lung epithelial cell death and that chronic hyperoxia does not impair NRF2 signaling overall. PMID:23738042
[Imaging origins and characteristics analysis of acute and chronic aspiration pneumonia].
Wang, Kang; Li, Ming; Wang, Xiongbiao; Qin, Jianmin; Wang, Zhi; Zhao, Zehua; Qin, Le; Hua, Yanqing
2014-11-11
To discuss about the pathologic and imaging origins and characteristics of CT scaning and X-ray radiography for acute and chronic aspiration pneumonia. Imaging data from 30 patients with aspiration pneumonia were retrospectively analyzed, CT scaning was performed in 27 patients, which PMVR reconstruction was performed in 21 cases;3 exammed by X-ray with 2 used by esophagography. Opaque bodies were detected in trachea by CT scaning in 12 patients.7 patients in acute phase rapidly developed into acute respiratory distress syndrome(ARDS). CT signs of 30 patients with acute and chronic aspiration pneumonia included: centrilobular nodules were detected in 2 cases with acute phase, 4 cases with subacute phase and 4 cases with chronic phase; the imaging of ground glass opacity were detected in 9 cases with acute phase, 2 cases with subacute phase and 3 cases with chronic phase; the imaging of bronchiectasis was detected in 8 cases with chronic phase, which mucilage embolism was detected in 3 of 8 cases; the imaging of atelectasis was detected in 6 cases with chronic phase; the imaging of sheeted consolidation was detected in 5 cases with chronic phase, 8 case with acute phase; the imaging of interstitial fibrosis was detected in 3 cases with chronic phase. Lesions of inferior lobe of right lung were detected in 9 cases with chronic phase, 4 cases with subacute phase, 11 case with acute phase;lesions of inferior lobe of left lung were detected in 6 cases with chronic phase and 3 cases with subacute group, 11 case with acute phase. The imaging features of acute and chronic aspiration pneumonia overlap with GGO and centrilobular nodules in every group. While the imaging features of atelectasis, bronchiectasis or mucilage embolism are found in chronic phase. The chest CT scaning may accurately evaluate the dynamic change of aspiration pneumonia.
Mitochondrial biogenesis in the pulmonary vasculature during inhalation lung injury and fibrosis
Cell survival and injury repair is facilitated by mitochondrial biogenesis; however, the role of this process in lung repair is unknown. We evaluated mitochondrial biogenesis in the mouse lung in two injuries that cause acute inflammation and in two that cause chronic inflammatio...
Validation of an electronic surveillance system for acute lung injury.
Herasevich, Vitaly; Yilmaz, Murat; Khan, Hasrat; Hubmayr, Rolf D; Gajic, Ognjen
2009-06-01
Early detection of acute lung injury (ALI) is essential for timely implementation of evidence-based therapies and enrollment into clinical trials. We aimed to determine the accuracy of computerized syndrome surveillance for detection of ALI in hospitalized patients and compare it with routine clinical assessment. Using a near-real time copy of the electronic medical records, we developed and validated a custom ALI electronic alert (ALI "sniffer") based on the European-American Consensus Conference Definition and compared its performance against provider-derived documentation. A total of 3,795 consecutive critically ill patients admitted to nine multidisciplinary intensive care units (ICUs) of a tertiary care teaching institution were included. ALI developed in 325 patients and was recognized by bedside clinicians in only 86 (26.5%). Under-recognition of ALI was associated with not implementing protective mechanical ventilation (median tidal volumes of 9.2 vs. 8.0 ml/kg predicted body weight, P < 0.001). ALI "sniffer" demonstrated excellent sensitivity of 96% (95% CI 94-98) and moderate specificity of 89% (95% CI 88-90) with a positive predictive value ranging from 24% (95% CI 13-40) in the heart-lung transplant ICU to 64% (95% CI 55-71) in the medical ICU. The computerized surveillance system accurately identifies critically ill patients who develop ALI syndrome. Since the lack of ALI recognition is a barrier to the timely implementation of best practices and enrollment into research studies, computerized syndrome surveillance could be a useful tool to enhance patient safety and clinical research.
The role of transbronchial cryobiopsy in lung transplantation.
Montero, M Angeles; de Gracia, Javier; Culebras, Mario; Mugnier, Jacqueline; Álvarez, Antonio; Berastegui, Cristina; Ortiz-Villalón, Cristian
2018-05-19
Lung transplant monitoring is usually assessed by forceps transbronchial biopsies. These types of biopsies show limited reliability and high degree of variability due to insufficient material and compression artefact, which lead to misinterpretation and eventually mistreatment of the transplanted patients. The following study was undertaken to assess the diagnostic yield, histological quality and safety of cryobiopsy in comparison with conventional forceps biopsy for sampling lung tissue in transplant recipients. From January to December 2011, 81 consecutive transbronchial biopsies (41 forceps and 40 cryoprobe) were indicated in single or bilateral lung transplantation recipients with clinical acute or chronic lung injury. Lung samples obtained by cryoprobe were larger (8.5±6.5mm FB group vs 22.1±12.5 CB group; P < 0.0001) and had no crush artefacts (P = 0.002), allowed us to increase the diagnosis of acute (P = 0,0657) and chronic cellular rejection P = 0,0053). Transbronchial cryoprobe bronchoscopy allows harvesting of larger and more expanded lung tissue samples by increasing the diagnostic yield in the monitoring of the lung allograft by means of a safe procedure. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Semple, John W.; Kim, Michael; Hou, Jing; McVey, Mark; Lee, Young Jin; Tabuchi, Arata; Kuebler, Wolfgang M.; Chai, Zhong-Wei; Lazarus, Alan H.
2012-01-01
Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg) may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature) and respiratory distress (dyspnea) were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios) and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage. PMID:22363629
... Contact Us Corporate Ethics Reporting OUR INITIATIVES LUNG FORCE Saved By The Scan Research Healthy Air Tobacco ... Sponsors & Supporters Careers Contact Us OUR INITIATIVES LUNG FORCE Saved By The Scan Research Healthy Air Tobacco ...
Das, Gautom K; Anderson, Donald S; Wallis, Chris D; Carratt, Sarah A; Kennedy, Ian M; Van Winkle, Laura S
2016-06-02
Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m(-3) of ∼30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu(3+)) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution.
Di Paola, Rosanna; Mazzon, Emanuela; Muià, Carmelo; Genovese, Tiziana; Menegazzi, Marta; Zaffini, Raffaela; Suzuki, Hisanory; Cuzzocrea, Salvatore
2005-01-01
Here we investigate the effects of the green tea extract in an animal model of acute inflammation, carrageenan-induced pleurisy. We report here that green tea extract (given at 25 mg/kg i.p. bolus 1 h prior to carrageenan), exerts potent anti-inflammatory effects in an animal model of acute inflammation in vivo. Injection of carrageenan (2%) into the pleural cavity of mice elicited an acute inflammatory response characterized by fluid accumulation in the pleural cavity that contained many neutrophils (PMNs), an infiltration of PMNs in lung tissues and increased production of nitrite/nitrate, tumour necrosis factor alpha. All parameters of inflammation were attenuated by green tea extract treatment. Furthermore, carrageenan induced an up-regulation of the adhesion molecule ICAM-1, as well as nitrotyrosine and poly (ADP-ribose) synthetase (PARS) formation, as determined by immunohistochemical analysis of lung tissues. Staining for the ICAM-1, nitrotyrosine, and PARS was reduced by green tea extract. Our results clearly demonstrate that treatment with green tea extract exerts a protective effect and offers a novel therapeutic approach for the management of lung injury. PMID:15987519
Pang, Qingfeng; Dou, Lidong; Pan, Xiuhua; Zeng, Si; He, Jun; Xu, Wenli; Zeng, Yinming
2010-08-01
Recent studies suggest that exogenously administered CO is beneficial for the resolution of acute pulmonary inflammation. In this study, we assessed the role of CO donor, methylene chloride (MC), on modulation of lung inflammation during sepsis. Acute lung injury in Sprague-Dawley rats was induced by cecal ligation and perforation (CLP). MC (100mg/kg) was intragastrically administered 2h before CLP induction. Lung tissues and lavage samples were isolated for biochemical determinations and histological measurements 10h after CLP operation. In addition, we investigated survival rate with the other 40 rats. Intragastric administration with MC significantly decreased morbidity and mortality of CLP-induced ALI as confirmed by blinded histological changes, myeloperoxidase activity, mortality, and the content of TNF-alpha and IL-10. This protective effect could be abolished by an MC inhibitor, disulfiram. These results suggested that MC has obvious protective effects against CLP-induced ALI in rats. The mechanism of the protective effects partly involves modulating inflammatory mediators. (c) 2010 Elsevier B.V. All rights reserved.
Unthank, Joseph L; Miller, Steven J; Quickery, Ariel K; Ferguson, Ethan L; Wang, Meijing; Sampson, Carol H; Chua, Hui Lin; DiStasi, Matthew R; Feng, Hailin; Fisher, Alexa; Katz, Barry P; Plett, P Artur; Sandusky, George E; Sellamuthu, Rajendran; Vemula, Sasidhar; Cohen, Eric P; MacVittie, Thomas J; Orschell, Christie M
2015-11-01
The threat of radiation exposure from warfare or radiation accidents raises the need for appropriate animal models to study the acute and chronic effects of high dose rate radiation exposure. The goal of this study was to assess the late development of fibrosis in multiple organs (kidney, heart, and lung) in survivors of the C57BL/6 mouse model of the hematopoietic-acute radiation syndrome (H-ARS). Separate groups of mice for histological and functional studies were exposed to a single uniform total body dose between 8.53 and 8.72 Gy of gamma radiation from a Cs radiation source and studied 1-21 mo later. Blood urea nitrogen levels were elevated significantly in the irradiated mice at 9 and 21 mo (from ∼22 to 34 ± 3.8 and 69 ± 6.0 mg dL, p < 0.01 vs. non-irradiated controls) and correlated with glomerosclerosis (29 ± 1.8% vs. 64 ± 9.7% of total glomeruli, p < 0.01 vs. non-irradiated controls). Glomerular tubularization and hypertrophy and tubular atrophy were also observed at 21 mo post-total body irradiation (TBI). An increase in interstitial, perivascular, pericardial and peribronchial fibrosis/collagen deposition was observed from ∼9-21 mo post-TBI in kidney, heart, and lung of irradiated mice relative to age-matched controls. Echocardiography suggested decreased ventricular volumes with a compensatory increase in the left ventricular ejection fraction. The results indicate that significant delayed effects of acute radiation exposure occur in kidney, heart, and lung in survivors of the murine H-ARS TBI model, which mirrors pathology detected in larger species and humans at higher radiation doses focused on specific organs.
[Lung and kidney failure. Pathogenesis, interactions, and therapy].
John, S; Willam, C
2015-09-01
The lungs and kidneys represent the most often affected organs (acute respiratory distress syndrome, ARDS or kidney failure) in multiple organ failure (MOF) due to shock, trauma, or sepsis with a still unacceptable high mortality for both organ failures. Although the exact pathophysiological mechanisms of MOF are not completely elucidated, it appears that the lungs and kidneys share several pathophysiologic pathways and have the potential to further harm each other (kidney-lung crosstalk). Inflammatory signals in both directions and volume overload with consecutive edema formation in both organs may play a key role in this crosstalk. The organ replacement therapies used in both organ failures have the potential to further injure the other organ (ventilator trauma, dialyte trauma). On the other hand, renal replacement therapy can have positive effects on lung injury by restoring volume and acid-base homeostasis. The new development of "low-flow" extracorporeal CO2 removal on renal replacement therapy platforms may further help to decrease ventilator trauma in the future.
Early Identification of Patients at Risk of Acute Lung Injury
Gajic, Ognjen; Dabbagh, Ousama; Park, Pauline K.; Adesanya, Adebola; Chang, Steven Y.; Hou, Peter; Anderson, Harry; Hoth, J. Jason; Mikkelsen, Mark E.; Gentile, Nina T.; Gong, Michelle N.; Talmor, Daniel; Bajwa, Ednan; Watkins, Timothy R.; Festic, Emir; Yilmaz, Murat; Iscimen, Remzi; Kaufman, David A.; Esper, Annette M.; Sadikot, Ruxana; Douglas, Ivor; Sevransky, Jonathan
2011-01-01
Rationale: Accurate, early identification of patients at risk for developing acute lung injury (ALI) provides the opportunity to test and implement secondary prevention strategies. Objectives: To determine the frequency and outcome of ALI development in patients at risk and validate a lung injury prediction score (LIPS). Methods: In this prospective multicenter observational cohort study, predisposing conditions and risk modifiers predictive of ALI development were identified from routine clinical data available during initial evaluation. The discrimination of the model was assessed with area under receiver operating curve (AUC). The risk of death from ALI was determined after adjustment for severity of illness and predisposing conditions. Measurements and Main Results: Twenty-two hospitals enrolled 5,584 patients at risk. ALI developed a median of 2 (interquartile range 1–4) days after initial evaluation in 377 (6.8%; 148 ALI-only, 229 adult respiratory distress syndrome) patients. The frequency of ALI varied according to predisposing conditions (from 3% in pancreatitis to 26% after smoke inhalation). LIPS discriminated patients who developed ALI from those who did not with an AUC of 0.80 (95% confidence interval, 0.78–0.82). When adjusted for severity of illness and predisposing conditions, development of ALI increased the risk of in-hospital death (odds ratio, 4.1; 95% confidence interval, 2.9–5.7). Conclusions: ALI occurrence varies according to predisposing conditions and carries an independently poor prognosis. Using routinely available clinical data, LIPS identifies patients at high risk for ALI early in the course of their illness. This model will alert clinicians about the risk of ALI and facilitate testing and implementation of ALI prevention strategies. Clinical trial registered with www.clinicaltrials.gov (NCT00889772). PMID:20802164
Shino, Michael Y; Weigt, S Samuel; Li, Ning; Palchevskiy, Vyacheslav; Derhovanessian, Ariss; Saggar, Rajan; Sayah, David M; Gregson, Aric L; Fishbein, Michael C; Ardehali, Abbas; Ross, David J; Lynch, Joseph P; Elashoff, Robert M; Belperio, John A
2013-11-01
After lung transplantation, insults to the allograft generally result in one of four histopathologic patterns of injury: (1) acute rejection, (2) lymphocytic bronchiolitis, (3) organizing pneumonia, and (4) diffuse alveolar damage (DAD). We hypothesized that DAD, the most severe form of acute lung injury, would lead to the highest risk of chronic lung allograft dysfunction (CLAD) and that a type I immune response would mediate this process. Determine whether DAD is associated with CLAD and explore the potential role of CXCR3/ligand biology. Transbronchial biopsies from all lung transplant recipients were reviewed. The association between the four injury patterns and subsequent outcomes were evaluated using proportional hazards models with time-dependent covariates. Bronchoalveolar lavage (BAL) concentrations of the CXCR3 ligands (CXCL9/MIG, CXCL10/IP10, and CXCL11/ITAC) were compared between allograft injury patterns and "healthy" biopsies using linear mixed-effects models. The effect of these chemokine alterations on CLAD risk was assessed using Cox models with serial BAL measurements as time-dependent covariates. There were 1,585 biopsies from 441 recipients with 62 episodes of DAD. An episode of DAD was associated with increased risk of CLAD (hazard ratio, 3.0; 95% confidence interval, 1.9-4.7) and death (hazard ratio, 2.3; 95% confidence interval, 1.7-3.0). There were marked elevations in BAL CXCR3 ligand concentrations during DAD. Furthermore, prolonged elevation of these chemokines in serial BAL fluid measurements predicted the development of CLAD. DAD is associated with marked increases in the risk of CLAD and death after lung transplantation. This association may be mediated in part by an aberrant type I immune response involving CXCR3/ligands.
NASA Astrophysics Data System (ADS)
Das, Gautom K.; Anderson, Donald S.; Wallis, Chris D.; Carratt, Sarah A.; Kennedy, Ian M.; van Winkle, Laura S.
2016-06-01
Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m-3 of ~30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu3+) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution.Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m-3 of ~30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu3+) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00897f
Shipp, M A; Tarr, G E; Chen, C Y; Switzer, S N; Hersh, L B; Stein, H; Sunday, M E; Reinherz, E L
1991-01-01
Bombesin-like peptides are essential autocrine growth factors for many small cell carcinomas (SCCas) of the lung. Herein, we demonstrate that these malignant pulmonary neuroendocrine cells express low levels of the cell surface metalloendopeptidase CD10/neutral endopeptidase 24.11 (CD10/NEP, common acute lymphoblastic leukemia antigen) and that this enzyme hydrolyzes bombesin-like peptides. The growth of bombesin-like peptide-dependent SCC as is inhibited by CD10/NEP and potentiated by CD10/NEP inhibition. The results provide evidence that CD10/NEP is involved in the regulation of tumor cell proliferation. Since SCCa of the lung occurs almost exclusively in cigarette smokers and cigarette smoke inactivates CD10/NEP, decreased cell surface CD10/NEP enzymatic activity may be causally related to the development of SCCa of the lung. Images PMID:1660144
Shipp, M A; Tarr, G E; Chen, C Y; Switzer, S N; Hersh, L B; Stein, H; Sunday, M E; Reinherz, E L
1991-12-01
Bombesin-like peptides are essential autocrine growth factors for many small cell carcinomas (SCCas) of the lung. Herein, we demonstrate that these malignant pulmonary neuroendocrine cells express low levels of the cell surface metalloendopeptidase CD10/neutral endopeptidase 24.11 (CD10/NEP, common acute lymphoblastic leukemia antigen) and that this enzyme hydrolyzes bombesin-like peptides. The growth of bombesin-like peptide-dependent SCC as is inhibited by CD10/NEP and potentiated by CD10/NEP inhibition. The results provide evidence that CD10/NEP is involved in the regulation of tumor cell proliferation. Since SCCa of the lung occurs almost exclusively in cigarette smokers and cigarette smoke inactivates CD10/NEP, decreased cell surface CD10/NEP enzymatic activity may be causally related to the development of SCCa of the lung.
IRON INCREASES EXPRESSION OF IRON-EXPORT PROTEIN MTP1 IN LUNG CELLS
Accumulation of reactive iron in acute and chronic lung disease suggests that iron-driven free radical formation could contribute to tissue injury. Safe transport and sequestration of this metal is likely to be of importance in lung defense. We provide evidence for the expression...
We previously demonstrated that, on a mass basis, lung toxicity associated with particulate matter (PM) from flaming smoke aspirated into mouse lungs is greater than smoldering PM. This finding however has to be validated in inhalation studies to better predict real-world exposu...
Effects of peroxisome proliferator-activated receptor-β/δ on sepsis induced acute lung injury.
Wang, Cairui; Zhou, Guopeng; Zeng, Zeng
2014-01-01
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the first steps in the development of multiple organ failure induced by sepsis. A systemic excessive inflammatory reaction is currently the accepted mechanism of the pathogenesis of sepsis. Several studies have suggested a protective role of the peroxisome proliferator activated receptor-β/δ (PPAR-β/δ) in related inflammatory diseases. But the role of PPARβ/δ in ALI remains uncertain. The aim of this study was to investigate the role and possible mechanism of PPARβ/δ in ALI induced by sepsis. Cecal ligation and puncture (CLP) was used as a sepsis model. Rats were randomly divided into four groups, the control group (CON, n = 6), sham-operation group (SHAM, n = 12), cecal ligation and puncture group (CLP, n = 30), GW501516 group (CLP+GW, n = 25), which underwent CLP and were subcutaneously injected with the PPAR-β/δ agonist GW501516 (0.05 mg/100 g body weight). Survival was monitored to 24 hours after operation. Blood pressure, serum creatinine, blood urea nitrogen, aspartate aminotrasferase and alanine aminotrasferase were measured after CLP. Concentrations of tumor necrosis factor α (TNF-α) and interleukin (IL)-1β in serum were detected by enzyme linked immunosorbent assay (ELISA) kits. Lung tissue samples were stained with H&E and scored according to the degree of inflammation. Bacterial colonies were counted in the peritoneal fluid. Alveolar macrophages were cultured and incubated with GW501516 (0.15 µmol/L) and PPARβ/δ adenovirus and then treated with Lipopolysaccharide (2 µg/ml) for 2 hours. The TNF-α, IL-1β and IL-6 RNA in lung and alveolar macrophages were determined by real-time PCR. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) in lung and alveolar macrophages was detected by Western blotting. GW501516 significantly increased the survival of septic rats, decreased histological damage of the lungs, reduced inflammatory cytokines in serum and lung tissues of septic rats and did not increase counts of peritoneal bacteria. In vitro, GW501516 and over-expression of PPARβ/δ attenuated gene expression of TNF-α, IL-1β and IL-6 in alveolar macrophages. Both in vivo and in vitro, PPARβ/δ inhibited the phosphorylation of STAT3. PPARβ/δ plays a protective role in sepsis induced ALI via suppressing excessive inflammation.
Identifying Risk for Acute Kidney Injury in Infants and Children Following Cardiac Arrest.
Neumayr, Tara M; Gill, Jeff; Fitzgerald, Julie C; Gazit, Avihu Z; Pineda, Jose A; Berg, Robert A; Dean, J Michael; Moler, Frank W; Doctor, Allan
2017-10-01
Our goal was to identify risk factors for acute kidney injury in children surviving cardiac arrest. Retrospective analysis of a public access dataset. Fifteen children's hospitals associated with the Pediatric Emergency Care Applied Research Network. Two hundred ninety-six subjects between 1 day and 18 years old who experienced in-hospital or out-of-hospital cardiac arrest between July 1, 2003, and December 31, 2004. None. Our primary outcome was development of acute kidney injury as defined by the Acute Kidney Injury Network criteria. An ordinal probit model was developed. We found six critical explanatory variables, including total number of epinephrine doses, postcardiac arrest blood pressure, arrest location, presence of a chronic lung condition, pH, and presence of an abnormal baseline creatinine. Total number of epinephrine doses received as well as rate of epinephrine dosing impacted acute kidney injury risk and severity of acute kidney injury. This study is the first to identify risk factors for acute kidney injury in children after cardiac arrest. Our findings regarding the impact of epinephrine dosing are of particular interest and suggest potential for epinephrine toxicity with regard to acute kidney injury. The ability to identify and potentially modify risk factors for acute kidney injury after cardiac arrest may lead to improved morbidity and mortality in this population.
Cai, Da-Sheng; Zhou, Heng; Liu, Wei-Wei; Pei, Ling
2013-01-01
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a serious health problem, and an effective treatment is needed for use in the clinical setting. In this study, we first constructed ALI models in Adult Sprague-Dawley rats. We then used an herbal medicine, Houttuynia cordata (HC), to enhance the effect of endothelial progenitor cells (EPCs) on ALI. (1) HC improved the therapeutic effects of EPCs on lipopolysachharide-induced ALI in the rat model; (2) HC down-regulated the anti-inflammatory response by suppressing inflammatory cytokines; (3) the combination of EPC and HC reduced expression of iNOS and ET-1 and subsequently prevented lung injury. Combined EPC and HC therapy was more effective than either therapy alone. EPC and HC could be used in the clinical treatment of ALI. © 2013 S. Karger AG, Basel.
Kalinina, E Iu; Iagmurov, O D
2014-01-01
The methods of light microscopy, immunohistochemistry, and electron microscopy were employed to study the morphofunctional changes in epithelium of bronchial and respiratory segments of the rat lungs used as models of acute fatal poisoning with household gas. It was shown that this toxic effect induces the pathological process involving all the elements of the epithelial layer in the bronchial and respiratory segments of the lungs of experimental animals. At the ultrastructural level, mitochondria and endoplasmic reticulum structures are affected, with the death of epithelial cells leading to the damage of the aerohematic barrier. The toxic effect of the gaseous mixture on the membranes causes the destruction of various elements of the epithelial layer. The results of this study help to understand the mechanisms of death in the case of acute fatal poisoning with household gas.
BACKGROUND: Increased susceptibility of smokers to ambient PM may potentially promote development of COPD and accelerate already present disease. OBJECTIVES: To characterize the acute and subacute lung function response and inflammatory effects of controlled chamber exposure t...
Noninvasive assessment of peroxidative lung damage by HIPDM lung scanning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miniati, M.; Borrelli, E.; Monti, S.
1991-03-15
The basic compound iodobenzyl-propanediamine (HIPDM), when given intravenously, is extracted by the lungs whence it is effluxed at a slow exponential rate. In humans (normal non smokers), the mean residence time ({bar t}) of 123I-HIPDM, assessed by external detection, averages 7.2 {plus minus} 1.1 hrs. Persistence of HIPDM in lungs is significantly increased in asymptomatic smokers and, to a greater extent, in patients with ARDS. Since production of free oxygen radicals reportedly occurs as a consequence of smoke exposure and in the course of acute lung injury, the authors hypothesized that the prolonged persistence of HIPDM in the lungs ofmore » smokers and of patients with ARDS might reflect a peroxidative damage of lung tissue. They tested this hypothesis in rabbits since their baseline HIPDM lung clearance is similar to that of nonsmoking humans. In rabbits, acute lung injury was induced by phorbol myristate acetate. Three hrs after PMA administration, the animals received an i.v. bolus of {sup 131}I-HIPDM. Radioactivity over the chest was recorded for 2 hrs by gamma camera and HIPDM mean residence time in the lungs was computed. Thereafter, the animals were sacrificed and their lungs were removed to measure wet/dry weight ratio as index of lung edema and malondialdehyde (MDA) content as index of lipid peroxidation. HIPDM mean residence time was positively correlated with MDA level in lung tissue, but not with wet/dry weight ratio. Noninvasive assessment of HIPDM lung kinetics may then serve as specific in vivo marker of peroxidative lung injury.« less
Predictive Criteria to Study the Pathogenesis of Malaria-Associated ALI/ARDS in Mice
Ortolan, Luana S.; Sercundes, Michelle K.; Debone, Daniela; Hagen, Stefano C. F.; D' Império Lima, Maria Regina; Alvarez, José M.; Marinho, Claudio R. F.; Epiphanio, Sabrina
2014-01-01
Malaria-associated acute lung injury/acute respiratory distress syndrome (ALI/ARDS) often results in morbidity and mortality. Murine models to study malaria-associated ALI/ARDS have been described; we still lack a method of distinguishing which mice will develop ALI/ARDS before death. This work aimed to characterize malaria-associated ALI/ARDS in a murine model and to demonstrate the first method to predict whether mice are suffering from ALI/ARDS before death. DBA/2 mice infected with Plasmodium berghei ANKA developing ALI/ARDS or hyperparasitemia (HP) were compared using histopathology, PaO2 measurement, pulmonary X-ray, breathing capacity, lung permeability, and serum vascular endothelial growth factor (VEGF) levels according to either the day of death or the suggested predictive criteria. We proposed a model to predict malaria-associated ALI/ARDS using breathing patterns (enhanced pause and frequency respiration) and parasitemia as predictive criteria from mice whose cause of death was known to retrospectively diagnose the sacrificed mice as likely to die of ALI/ARDS as early as 7 days after infection. Using this method, we showed increased VEGF levels and increased lung permeability in mice predicted to die of ALI/ARDS. This proposed method for accurately identifying mice suffering from ALI/ARDS before death will enable the use of this model to study the pathogenesis of this disease. PMID:25276057
Wang, Hao; Anthony, Desiree; Yatmaz, Selcuk; Wijburg, Odilia; Satzke, Catherine; Levy, Bruce; Vlahos, Ross; Bozinovski, Steven
2017-09-15
Formyl peptide receptor 2/lipoxin A 4 (LXA 4 ) receptor (Fpr2/ALX) co-ordinates the transition from inflammation to resolution during acute infection by binding to distinct ligands including serum amyloid A (SAA) and Resolvin D1 (RvD1). Here, we evaluated the proresolving actions of aspirin-triggered RvD1 (AT-RvD1) in an acute coinfection pneumonia model. Coinfection with Streptococcus pneumoniae and influenza A virus (IAV) markedly increased pneumococcal lung load and neutrophilic inflammation during the resolution phase. Fpr2/ALX transcript levels were increased in the lungs of coinfected mice, and immunohistochemistry identified prominent Fpr2/ALX immunoreactivity in bronchial epithelial cells and macrophages. Levels of circulating and lung SAA were also highly increased in coinfected mice. Therapeutic treatment with exogenous AT-RvD1 during the acute phase of infection (day 4-6 post-pneumococcal inoculation) significantly reduced the pneumococcal load. AT-RvD1 also significantly reduced neutrophil elastase (NE) activity and restored total antimicrobial activity in bronchoalveolar lavage (BAL) fluid (BALF) of coinfected mice. Pneumonia severity, as measured by quantitating parenchymal inflammation or alveolitis was significantly reduced with AT-RvD1 treatment, which also reduced the number of infiltrating lung neutrophils and monocytes/macrophages as assessed by flow cytometry. The reduction in distal lung inflammation in AT-RvD1-treated mice was not associated with a significant reduction in inflammatory and chemokine mediators. In summary, we demonstrate that in the coinfection setting, SAA levels were persistently increased and exogenous AT-RvD1 facilitated more rapid clearance of pneumococci in the lungs, while concurrently reducing the severity of pneumonia by limiting excessive leukocyte chemotaxis from the infected bronchioles to distal areas of the lungs. © 2017 The Author(s).
Lowe, Kevin; Alvarez, Diego; King, Judy; Stevens, Troy
2007-11-01
In acute respiratory distress syndrome, pulmonary vascular permeability increases, causing intravascular fluid and protein to move into the lung's interstitium. The classic model describing the formation of pulmonary edema suggests that fluid crossing the capillary endothelium is drawn by negative interstitial pressure into the potential space surrounding extra-alveolar vessels and, as interstitial pressure builds, is forced into the alveolar air space. However, the validity of this model is challenged by animal models of acute lung injury in which extra-alveolar vessels are more permeable than capillaries under a variety of conditions. In the current study, we sought to determine whether extravascular fluid accumulation can be produced because of increased permeability of either the capillary or extra-alveolar endothelium, and whether different pathophysiology results from such site-specific increases in permeability. We perfused isolated lungs with either the plant alkaloid thapsigargin, which increases extra-alveolar endothelial permeability, or with 4alpha-phorbol 12, 13-didecanoate, which increases capillary endothelial permeability. Both treatments produced equal increases in whole lung vascular permeability, but caused fluid accumulations in separate anatomical compartments. Light microscopy of isolated lungs showed that thapsigargin caused fluid cuffing of large vessels, while 4alpha-phorbol 12, 13-didecanoate caused alveolar flooding. Dynamic compliance was reduced in lungs with cuffing of large vessels, but not in lungs with alveolar flooding. Phenotypic differences between vascular segments resulted in site-specific increases in permeability, which have different pathophysiological outcomes. Our findings suggest that insults leading to acute respiratory distress syndrome may increase permeability in extra-alveolar or capillary vascular segments, resulting in different pathophysiological sequela.
Hartog, A; Vazquez de Anda, G F; Gommers, D; Kaisers, U; Verbrugge, S J; Schnabel, R; Lachmann, B
1999-01-01
We have compared three treatment strategies, that aim to prevent repetitive alveolar collapse, for their effect on gas exchange, lung mechanics, lung injury, protein transfer into the alveoli and surfactant system, in a model of acute lung injury. In adult rats, the lungs were ventilated mechanically with 100% oxygen and a PEEP of 6 cm H2O, and acute lung injury was induced by repeated lung lavage to obtain a PaO2 value < 13 kPa. Animals were then allocated randomly (n = 12 in each group) to receive exogenous surfactant therapy, ventilation with high PEEP (18 cm H2O), partial liquid ventilation or ventilation with low PEEP (8 cm H2O) (ventilated controls). Blood-gas values were measured hourly. At the end of the 4-h study, in six animals per group, pressure-volume curves were constructed and bronchoalveolar lavage (BAL) was performed, whereas in the remaining animals lung injury was assessed. In the ventilated control group, arterial oxygenation did not improve and protein concentration of BAL and conversion of active to non-active surfactant components increased significantly. In the three treatment groups, PaO2 increased rapidly to > 50 kPa and remained stable over the next 4 h. The protein concentration of BAL fluid increased significantly only in the partial liquid ventilation group. Conversion of active to non-active surfactant components increased significantly in the partial liquid ventilation group and in the group ventilated with high PEEP. In the surfactant group and partial liquid ventilation groups, less lung injury was found compared with the ventilated control group and the group ventilated with high PEEP. We conclude that although all three strategies improved PaO2 to > 50 kPa, the impact on protein transfer into the alveoli, surfactant system and lung injury differed markedly.
Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury
NASA Astrophysics Data System (ADS)
Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae
2016-08-01
Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.
Li, Jinlong; Zhao, Lu; Zhang, Yang; Li, Wei; Duan, Xiaoxu; Chen, Jinli; Guo, Yuanyuan; Yang, Shan; Sun, Guifan; Li, Bing
2017-11-01
Inorganic arsenic has been claimed to increase the risk of pulmonary diseases through ingestion, as opposed to inhalation, which makes it a unique and intriguing environmental toxicant. However, the immunotoxic effects of lung, one of the targets of arsenic exposure, have not been extensively investigated in vivo. In the present study, we first confirmed that 2.5, 5 and 10mg/kg NaAsO 2 orally for 24h dose-dependently triggered the infiltration of neutrophils, lymphocytes and macrophages in BALF. Not only the transcription activity, but also the secretion of proinflammatory cytokines IL-1β, IL-6 and TNF-α were consistently raised in the lung and BALF of acute arsenic-exposed mice. Acute oral administration of NaAsO 2 also raised pulmonary MPO activity and mRNA levels of chemokine Mip-2 and Mcp-1. Meanwhile, obvious histopathological damages with inflammatory cells infiltration and erythrocyte aggregation around the capillaries were verified in the lung of mice drank arsenic-rich water freely for 3 months. Furthermore, we affirmed notable disturbance of CD4 + T-cell differentiation in the lung of acute arsenic-exposed mice, as demonstrated by up-regulated mRNA levels of regulator Gata3 and cytokine Il-4 of Th2, enhanced Foxp3 and Il-10 of Treg, down-regulated T-bet and Ifn-γ of Th1, as well as lessened Ror-γt and Il-23 of Th17. However, impressive elevation of cytokine Ifn-γ and Il-23, as well as moderate enhancement of Il-4 and Il-10 were found in the lung by subchronic arsenic administration. Finally, our present study demonstrated that both a single and sustained arsenic exposure prominently increased the expression of immune-related p38, JNK, ERK1/2 and NF-κB proteins in the lung tissue. While disrupting the pulmonary redox homeostasis by increasing MDA levels, exhausting GSH and impaired enzyme activities of CAT and GSH-Px, antioxidant regulator NRF2 and its downstream targets HO-1 and GSTO1/2 were also up-regulated by both acute and subchronic arsenic treatment. Conclusively, our present study demonstrated both acute and subchronic oral administration of arsenic triggers multiple pulmonary immune responses involving inflammatory molecules and T-cell differentiation, which might be closely associated with the imbalanced redox status and activation of immune-related MAPKs, NF-κB and anti-inflammatory NRF2 pathways. Copyright © 2017 Elsevier Inc. All rights reserved.
Pulmonary physiology during pulmonary embolism.
Elliott, C G
1992-04-01
Acute pulmonary thromboembolism produces a number of pathophysiologic derangements of pulmonary function. Foremost among these alterations is increased pulmonary vascular resistance. For patients without preexistent cardiopulmonary disease, increased pulmonary vascular resistance is directly related to the degree of vascular obstruction demonstrated on the pulmonary arteriogram. Vasoconstriction, either reflexly or biochemically mediated, may contribute to increased pulmonary vascular resistance. Acute pulmonary thromboembolism also disturbs matching of ventilation and blood flow. Consequently, some lung units are overventilated relative to perfusion (increased dead space), while other lung units are underventilated relative to perfusion (venous admixture). True right-to-left shunting of mixed venous blood can occur through the lungs (intrapulmonary shunt) or across the atrial septum (intracardiac shunt). In addition, abnormalities of pulmonary gas exchange (carbon monoxide transfer), pulmonary compliance and airway resistance, and ventilatory control may accompany pulmonary embolism. Thrombolytic therapy can reverse the hemodynamic derangements of acute pulmonary thromboembolism more rapidly than anticoagulant therapy. Limited data suggest a sustained benefit of thrombolytic treatment on the pathophysiologic alterations of pulmonary vascular resistance and pulmonary gas exchange produced by acute pulmonary emboli.
Procházková, Jiřina; Strapáčová, Simona; Svržková, Lucie; Andrysík, Zdeněk; Hýžďalová, Martina; Hrubá, Eva; Pěnčíková, Kateřina; Líbalová, Helena; Topinka, Jan; Kléma, Jiří; Espinosa, Joaquín M; Vondráček, Jan; Machala, Miroslav
2018-08-01
Exposure to persistent ligands of aryl hydrocarbon receptor (AhR) has been found to cause lung cancer in experimental animals, and lung adenocarcinomas are often associated with enhanced AhR expression and aberrant AhR activation. In order to better understand the action of toxic AhR ligands in lung epithelial cells, we performed global gene expression profiling and analyze TCDD-induced changes in A549 transcriptome, both sensitive and non-sensitive to CH223191 co-treatment. Comparison of our data with results from previously reported microarray and ChIP-seq experiments enabled us to identify candidate genes, which expression status reflects exposure of lung cancer cells to TCDD, and to predict processes, pathways (e.g. ER stress, Wnt/β-cat, IFNɣ, EGFR/Erbb1), putative TFs (e.g. STAT, AP1, E2F1, TCF4), which may be implicated in adaptive response of lung cells to TCDD-induced AhR activation. Importantly, TCDD-like expression fingerprint of selected genes was observed also in A549 cells exposed acutely to both toxic (benzo[a]pyrene, benzo[k]fluoranthene) and endogenous AhR ligands (2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester and 6-formylindolo[3,2-b]carbazole). Overall, our results suggest novel cellular candidates, which could help to improve monitoring of AhR-dependent transcriptional activity during acute exposure of lung cells to distinct types of environmental pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.
/sup 99m/Tc-fibrinogen scanning in adult respiratory distress syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, D.A.; Carvalho, A.C.; Geller, E.
1987-01-01
Fibrin is often seen occluding the lung vessels of patients dying from ARDS and is surrounded by regions of lung necrosis. To learn if we could observe increased or focal fibrin deposition and assess the kinetics of plasma fibrinogen turnover during severe acute respiratory failure, we injected technetium 99m-labeled human purified fibrinogen (Tc-HF) and used gamma camera scanning for as long as 12 h in 13 sequential patients as soon as possible after ICU admission. The fibrinogen uptake rates were determined by calculating the lung:heart radioactivity ratios at each time point. Slopes of the lung:heart ratio versus time were comparedmore » between ARDS and mild acute respiratory failure (ARF). The slope of the lung:heart Tc-HF ratio of the 9 patients with ARDS (2.9 +/- 0.4 units) was markedly higher (p less than 0.02) than the slope of the 4 patients with mild ARF (1.1 +/- 0.4) and the 3 patients studied 5 to 9 months after recovery from respiratory failure (0.7 +/- 0.07). In the 1 patient with ARDS and the 2 patients with mild ARF studied both during acute lung injury and after recovery, the lung:heart Tc-HF ratio had decreased at recovery. To compare the pulmonary uptake of Tc-HF to /sup 99m/Tc-labeled human serum albumin (Tc-HSA), 5 patients were injected with 10 mCi of Tc-HSA, and scanning of the thorax was performed with a similar sequential imaging protocol 24 h after conclusion of the Tc-HF study.« less
Danielsbacka, Jenny S; Olsén, Monika Fagevik; Hansson, Per-Olof; Mannerkorpi, Kaisa
2018-03-01
Acute pulmonary embolism (PE) is a cardiovascular disease with symptoms including respiratory associated chest pain (RACP) and dyspnea. No previous studies exist focusing on lung function, functional capacity, and respiratory symptoms at discharge after PE. The aim was to examine and describe lung function, functional capacity, and respiratory symptoms at discharge in patients with PE and compare to reference values. Fifty consecutive patients with PE admitted to the Acute Medical Unit, Sahlgrenska University Hospital, were included. Size of PE was calculated by Qanadli score (QS) percentage (mean QS 33.4% (17.6)). FVC and FEV 1 were registered and 6-minute walk test (6MWT) performed at the day of discharge. RACP was rated before and after spirometry/6MWT with the Visual Analogue Scale. Perceived exertion was rated with Borg CR-10 scale. Spirometry and 6MWT results were compared with reference values. This study shows that patients with PE have significantly reduced lung function (p < 0.05) and functional capacity (p < 0.001) at discharge compared with reference values. Patients with higher QS percentage were more dyspneic after 6MWT, no other significant differences in lung function or functional capacity were found between the groups. The patients still suffer from RACP (30%) and dyspnea (60%) at discharge. This study indicates that patients with PE have a reduced lung function, reduced functional capacity, and experience respiratory symptoms as pain and dyspnea at discharge. Further studies are needed concerning long-term follow-up of lung function, functional capacity, and symptoms after PE.
Maddali, Madan Mohan; Kandachar, Pranav Subbaraya; Al-Hanshi, Said; Al Ghafri, Mohammed; Valliattu, John
2017-01-01
Respiratory complications due to mechanical obstruction of the airways can occur following pediatric cardiac surgery. Clinically significant intrathoracic vascular compression of the airway can occur when extensive dissection and mobilization of arch and neck vessels is involved as in repair of interrupted aortic arch. This case report describes a neonate who underwent interrupted aortic arch repair along with an arterial switch operation and developed a left lung collapse immediately after tracheal extubation. Fiber-optic bronchoscopy revealed vascular compression as the real culprit. The child was successfully managed conservatively.
Bauman, Zachary M.; Gassner, Marika Y.; Coughlin, Megan A.; Mahan, Meredith; Watras, Jill
2015-01-01
Background. Lung injury prediction score (LIPS) is valuable for early recognition of ventilated patients at high risk for developing acute respiratory distress syndrome (ARDS). This study analyzes the value of LIPS in predicting ARDS and mortality among ventilated surgical patients. Methods. IRB approved, prospective observational study including all ventilated patients admitted to the surgical intensive care unit at a single tertiary center over 6 months. ARDS was defined using the Berlin criteria. LIPS were calculated for all patients and analyzed. Logistic regression models evaluated the ability of LIPS to predict development of ARDS and mortality. A receiver operator characteristic (ROC) curve demonstrated the optimal LIPS value to statistically predict development of ARDS. Results. 268 ventilated patients were observed; 141 developed ARDS and 127 did not. The average LIPS for patients who developed ARDS was 8.8 ± 2.8 versus 5.4 ± 2.8 for those who did not (p < 0.001). An ROC area under the curve of 0.79 demonstrates LIPS is statistically powerful for predicting ARDS development. Furthermore, for every 1-unit increase in LIPS, the odds of developing ARDS increase by 1.50 (p < 0.001) and odds of ICU mortality increase by 1.22 (p < 0.001). Conclusion. LIPS is reliable for predicting development of ARDS and predicting mortality in critically ill surgical patients. PMID:26301105
Stereotactic hypofractionated radiation therapy for stage I non-small cell lung cancer.
Zimmermann, Frank B; Geinitz, Hans; Schill, Sabine; Grosu, Anca; Schratzenstaller, Ulrich; Molls, Michael; Jeremic, Branislav
2005-04-01
We reviewed our initial institutional experience with the use of stereotactic hypofractionated radiation therapy (SFRT) in patients with stage I non-small cell lung cancer (NSCLC). Thirty patients with inoperable stage I non-small cell lung cancer due to a severe chronic obstructive pulmonary disease (COPD) and/or chronic heart disease (Eastern Cooperative Oncology Group (ECOG) performance status of 0-2) were treated between December 2000 and October 2003 with SFRT in curative intent. Infiltration of locoregional lymph nodes and distant metastases were ruled out by computerized tomography (CT) scan of the brain, thorax, and abdomen, and by whole body FDG-positron emission tomography scan in all patients. Total RT doses ranged from 24.0 to 37.5 Gy, given in 3-5 fractions to the 60% isodose encompassing the planning target volume. Immobilization was carried out by a vacuum couch and a low-pressure foil. The clinical target volume was the tumor as it appeared in lung windowing on lung CT scan. Organ movements (caused by breathing; range, 6-22 mm) and reproducibility of patient positioning in the couch (range, 3-12 mm) were calculated by sequential CT and orthogonal films. The individual values were taken into account as a safety margin for the definition of the planning target volume (PTV). The median follow-up of living patients is 18 months (range, 6-38 months). As maximum response, there were 10 (33%) complete responses (CRs) and 14 (47%) partial responses (PRs), resulting in a total response rate of 80%. Stable disease was observed in 6 (20%) patients, while no patient experienced progressive disease. During follow-up, 2 (7%) local recurrences were observed (after 17 and 18 months, respectively). Of 5 (17%) patients who developed distant metastasis, 1 patient developed it in liver (3 months), another one in brain (6 months), and another one in the lung (36 months), while 2 patients developed it in mediastinal lymph nodes (after 8, and 11 months, respectively) only. Of 9 (30%) patients who have died, only 3 (10%) died of cancer, while 6 (20%) died of cancer-unrelated or unknown causes. Acute side effects were mild and affected 9 (33%) patients during the RT course (fatigue being the most frequent one in 6 patients). There were 22 acute events occurring in 19 (63%) patients during the first 3 months post-SFRT, the most frequent one being pneumonitis observed in 14 (46%) patients. However, there was only one (3%) grade 3 acute toxicity and no patient experienced greater than grade 3 toxicity during this study. One (3%) patient experienced rib fracture as the late event. SFRT is a feasible and safe treatment method in inoperable patients with stage I NSCLC having reduced lung capacity. Longer follow-up is necessary to get robust data on late toxicity as well as survival.
Pedrazza, Leonardo; Cunha, Aline Andrea; Luft, Carolina; Nunes, Nailê Karine; Schimitz, Felipe; Gassen, Rodrigo Benedetti; Breda, Ricardo Vaz; Donadio, Marcio Vinícius Fagundes; de Souza Wyse, Angela Terezinha; Pitrez, Paulo Marcio Condessa; Rosa, Jose Luis; de Oliveira, Jarbas Rodrigues
2017-12-01
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are syndromes of acute hypoxemic respiratory failure resulting from a variety of direct and indirect injuries to the gas exchange parenchyma of the lungs. During the ALI, we have an increase release of proinflammatory cytokines and high reactive oxygen species (ROS) formation. These factors are responsible for the release and activation of neutrophil-derived proteases and the formation of neutrophil extracellular traps (NETs). The excessive increase in the release of NETs cause damage to lung tissue. Recent studies have studies involving the administration of mesenchymal stem cells (MSCs) for the treatment of experimental ALI has shown promising results. In this way, the objective of our study is to evaluate the ability of MSCs, in a lipopolysaccharide (LPS)-induced ALI model, to reduce inflammation, oxidative damage, and consequently decrease the release of NETs. Mice were submitted lung injury induced by intratracheal instillation of LPS and subsequently treated or not with MSCs. Treatment with MSCs was able to modulate pulmonary inflammation, decrease oxidative damage, and reduce the release of NETs. These benefits from treatment are evident when we observe a significant increase in the survival curve in the treated animals. Our results demonstrate that MSCs treatment is effective for the treatment of ALI. For the first time, it is described that MSCs can reduce the formation of NETs and an experimental model of ALI. This finding is directly related to these cells modulate the inflammatory response and oxidative damage in the course of the pathology. © 2017 Wiley Periodicals, Inc.
The Effect of Positive End-Expiratory Pressure on Intracranial Pressure and Cerebral Hemodynamics.
Boone, Myles D; Jinadasa, Sayuri P; Mueller, Ariel; Shaefi, Shahzad; Kasper, Ekkehard M; Hanafy, Khalid A; O'Gara, Brian P; Talmor, Daniel S
2017-04-01
Lung protective ventilation has not been evaluated in patients with brain injury. It is unclear whether applying positive end-expiratory pressure (PEEP) adversely affects intracranial pressure (ICP) and cerebral perfusion pressure (CPP). We aimed to evaluate the effect of PEEP on ICP and CPP in a large population of patients with acute brain injury and varying categories of acute lung injury, defined by PaO 2 /FiO 2 . Retrospective data were collected from 341 patients with severe acute brain injury admitted to the ICU between 2008 and 2015. These patients experienced a total of 28,644 paired PEEP and ICP observations. Demographic, hemodynamic, physiologic, and ventilator data at the time of the paired PEEP and ICP observations were recorded. In the adjusted analysis, a statistically significant relationship between PEEP and ICP and PEEP and CPP was found only among observations occurring during periods of severe lung injury. For every centimeter H 2 O increase in PEEP, there was a 0.31 mmHg increase in ICP (p = 0.04; 95 % CI [0.07, 0.54]) and a 0.85 mmHg decrease in CPP (p = 0.02; 95 % CI [-1.48, -0.22]). Our results suggest that PEEP can be applied safely in patients with acute brain injury as it does not have a clinically significant effect on ICP or CPP. Further prospective studies are required to assess the safety of applying a lung protective ventilation strategy in brain-injured patients with lung injury.
Chen, Da; Ma, Tao; Liu, Xiao-Wei; Yang, Chen; Liu, Zhi
2015-01-01
Objective: To evaluate the role of rapamycin (RAPA) in paraquat (PQ)-induced acute lung injury. Methods: Lung tissues were stained with HE and lung histology was observed. Mortality rate, and neutrophil and leukocyte count in blood and bronchoalveolar lavage fluid (BALF) were recorded. Protein content in BALF was determined by Coomassie blue staining. Malondialdehyde (MDA) content, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activity in blood were determined by thiobarbituric acid (TBA) assay, pyrogallol autoxidation method, and modified Haefman method, respectively. The NF-κB activity was measured by gel electrophoretic mobility shift assay (EMSA). Carbon dioxide partial pressure (PaCO2), partial pressure of oxygen (PaO2) and pH values were measured by automated blood gas analyzer. Results: HE staining results demonstrated RAPA alleviated pathological changes of acute alveolitis in SD rats. Trend of protein content in BALF was PQ group > RAPA treatment group > control group (P < 0.05). Neutrophil and leukocyte count in RAPA treatment group was significantly lower than PQ group at 3, 5, and 7 days after injection (P < 0.05). Trend of MDA content was RAPA treatment group > PQ group > control group (P < 0.05). Trend of GSH-Px and SOD activity was control group > RAPA treatment group > PQ group (P < 0.05). Compared with PQ group, PaO2 in RAPA treatment group was markedly higher and PaCO2 was lower (P < 0.05). Conclusion: PQ-induced acute lung injury was effectively reversed with RAPA, through inhibition of NF-κB activation. PMID:26191153
ω-3 fatty acids, γ-linolenic acid, and antioxidants: immunomodulators or inert dietary supplements?
Schott, Christopher K; Huang, David T
2012-11-23
The omega-3 (n-3) fatty acids docosahexaenoic acid and eicosapentaenoic acid, along with γ-linolenic acid and antioxidants, may modulate systemic inflammatory response and improve oxygenation and outcomes in patients with acute lung injury. Objective: To determine if dietary supplementation of these substances to patients with acute lung injury would increase ventilator-free days to study day 28. Design: The OMEGA study, a randomized, double-blind, placebo-controlled, multicenter trial conducted from January 2, 2008, through February 21, 2009. All participants had complete follow-up. Setting: This trial occurred at 44 hospitals in the National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Subjects: Participants were 272 adults within 48 hours of developing acute lung injury requiring mechanical ventilation whose physicians intended to start enteral nutrition. Intervention: Twice-daily enteral supplementation of n-3 fatty acids, γ -linolenic acid, and antioxidants compared with an isocaloric control. Enteral nutrition, directed by a protocol, was delivered separately from the study supplement. Outcomes: Ventilator-free days to study day 28. The study was stopped early for futility after 143 and 129 patients were enrolled in the n-3 and control groups. Despite an 8-fold increase in plasma eicosapentaenoic acid levels, patients receiving the n-3 supplement had fewer ventilator-free days (14.0 vs 17.2; P=.02) (difference, −3.2 [95% CI, −5.8 to −0.7]) and intensive care unit-free days (14.0 vs 16.7; P=.04). Patients in the n-3 group also had fewer nonpulmonary organ failure-free days (12.3 vs 15.5; P=.02). Sixty-day hospital mortality was 26.6% in the n 3 group vs 16.3% in the control group (P=.054), and adjusted 60-day mortality was 25.1% and 17.6% in the n-3 and control groups, respectively (P=.11). Use of the n-3 supplement resulted in more days with diarrhea (29% vs 21%; P=.001). Twice-daily enteral supplementation of n-3 fatty acids, γ-linolenic acid, and antioxidants did not improve the primary end point of ventilator-free days or other clinical outcomes in patients with acute lung injury and may be harmful.
2013-01-01
Background Cytomegalovirus (CMV) is the most common opportunistic infection following lung transplantation. CMV replication in the lung allograft is described as accelerating the development of bronchiolitis obliterans syndrome (BOS). Finding a strategy to prevent CMV infection is an important issue. Methods We performed a retrospective, single-centre study of 114 lung transplant recipients (LTRs) who underwent lung transplantation from January 2001 to December 2006. In a smaller cohort of 88 CMV seropositive (R+) LTRs, three months of valganciclovir prophylaxis (2004-2006) was compared to three months of oral ganciclovir (2001-2003) with respect to the incidence of CMV infection/disease, the severity of CMV disease, acute rejection, BOS-free 4 year survival and 4 year survival. In the whole group of 114 LTRs the impact of CMV infection on long-term survival (BOS free 4 year survival and 6 year survival) was assessed. Results For the cohort of 88 CMV seropositive LTRs, the incidence of CMV infection/disease at one year was lower in the valganciclovir group compared to the ganciclovir group (24% vs. 54%, p = 0.003). There was a tendency towards reduced CMV disease, from 33% to 20% and a significant lower incidence of asymptomatic CMV infection (22% vs. 4%, p = 0.005). A lower incidence of acute rejection was observed in the valganciclovir group. However, there was no significant difference between the two groups in BOS free 4 year survival and 4 year survival. For the entire group of 114 LTRs, BOS-free 4 year survival for recipients with CMV disease was (32%, p = 0.005) and among those with asymptomatic CMV infection (36%, p = 0.061) as compared with patients without CMV infection (69%). Six year survival was lower among patients with CMV disease, (64%, p = 0.042) and asymptomatic CMV infection (55%, p = 0.018) than patients without CMV infection (84%). Conclusions A lower incidence of CMV infection/disease and acute rejections was observed with valganciclovir (3 months) when compared to oral ganciclovir (3 months). The long-term impact of CMV infection/disease was significant for BOS-free survival and survival. PMID:24325216
Rice, Todd W; Wheeler, Arthur P; Thompson, B Taylor; Steingrub, Jay; Hite, R Duncan; Moss, Marc; Morris, Alan; Dong, Ning; Rock, Peter
2012-02-22
The amount of enteral nutrition patients with acute lung injury need is unknown. To determine if initial lower-volume trophic enteral feeding would increase ventilator-free days and decrease gastrointestinal intolerances compared with initial full enteral feeding. The EDEN study, a randomized, open-label, multicenter trial conducted from January 2, 2008, through April 12, 2011. Participants were 1000 adults within 48 hours of developing acute lung injury requiring mechanical ventilation whose physicians intended to start enteral nutrition at 44 hospitals in the National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Participants were randomized to receive either trophic or full enteral feeding for the first 6 days. After day 6, the care of all patients who were still receiving mechanical ventilation was managed according to the full feeding protocol. Ventilator-free days to study day 28. Baseline characteristics were similar between the trophic-feeding (n = 508) and full-feeding (n = 492) groups. The full-feeding group received more enteral calories for the first 6 days, about 1300 kcal/d compared with 400 kcal/d (P < .001). Initial trophic feeding did not increase the number of ventilator-free days (14.9 [95% CI, 13.9 to 15.8] vs 15.0 [95% CI, 14.1 to 15.9]; difference, -0.1 [95% CI, -1.4 to 1.2]; P = .89) or reduce 60-day mortality (23.2% [95% CI, 19.6% to 26.9%] vs 22.2% [95% CI, 18.5% to 25.8%]; difference, 1.0% [95% CI, -4.1% to 6.3%]; P = .77) compared with full feeding. There were no differences in infectious complications between the groups. Despite receiving more prokinetic agents, the full-feeding group experienced more vomiting (2.2% vs 1.7% of patient feeding days; P = .05), elevated gastric residual volumes (4.9% vs 2.2% of feeding days; P < .001), and constipation (3.1% vs 2.1% of feeding days; P = .003). Mean plasma glucose values and average hourly insulin administration were both higher in the full-feeding group over the first 6 days. In patients with acute lung injury, compared with full enteral feeding, a strategy of initial trophic enteral feeding for up to 6 days did not improve ventilator-free days, 60-day mortality, or infectious complications but was associated with less gastrointestinal intolerance. clinicaltrials.gov Identifiers: NCT00609180 and NCT00883948.
Acute Respiratory Distress Syndrome (ARDS)
... Contact Us Corporate Ethics Reporting OUR INITIATIVES LUNG FORCE Saved By The Scan Research Healthy Air Tobacco ... Sponsors & Supporters Careers Contact Us OUR INITIATIVES LUNG FORCE Saved By The Scan Research Healthy Air Tobacco ...
Intravascular laser therapy in different forms of lung diseases
NASA Astrophysics Data System (ADS)
Kirillov, M. N.; Reshetnikov, V. A.; Kazhekin, O. A.; Shepelenko, A. F.
1993-06-01
The potentions of laser intravascular therapy in elimination of pyogenic and inflammatory intoxication in cases of acute pneumonia, pyo-destructive diseases (including posttraumatic diseases) of the lungs are studied clinically.
Weidner, W Jeffrey; Waddell, David S; Furlow, J David
2006-08-01
The filtration coefficient (Kfc) is a sensitive measure of microvascular hydraulic conductivity and has been reported for the alveolar lungs of many mammalian species, but not for the parabronchial avian lung. This study reports the Kfc in the isolated lungs of normal chickens and in the lungs of chickens given the edemogenic agents oleic acid (OA) or dimethyl amiloride (DMA). The control Kfc =0.04+/-0.01 ml min(-1) kPa(-1) g(-1). This parameter increased significantly following the administration of both OA (0.12+/-0.02 ml min(-1) kPa(-1) g(-1)) and DMA (0.07+/-0.01 ml min kPa(-1) g(-1)). As endothelial cadherins are thought to play a role in the dynamic response to acute lung injury, we utilized Western blot analysis to assess lung cadherin content and Northern blot analysis to assess pulmonary vascular endothelial (VE) cadherin expression following drug administration. Lung cadherin content decreases markedly following DMA, but not OA administration. VE cadherin expression increases as a result of DMA treatment, but is unchanged following OA. Our results suggest that the permeability characteristics of the avian lung are more closely consistent with those of the mammalian rather than the reptilian lung, and, that cadherins may play a significant role in the response to acute increases in avian pulmonary microvascular permeability.
Li, Nan; Hu, Yang; Zhang, Yuan; Xu, Jin-Fu; Li, Xia; Ren, Jie; Su, Bo; Yuan, Wei-Zhong; Teng, Xin-Rong; Zhang, Rong-Xuan; Jiang, Dian-hua; Mulet, Xavier; Li, Hui-Ping
2013-01-01
Objective Acute lung injury (ALI), is a major cause of morbidity and mortality, which is routinely treated with the administration of systemic glucocorticoids. The current study investigated the distribution and therapeutic effect of a dexamethasone(DXM)-loaded immunoliposome (NLP) functionalized with pulmonary surfactant protein A (SP-A) antibody (SPA-DXM-NLP) in an animal model. Methods DXM-NLP was prepared using film dispersion combined with extrusion techniques. SP-A antibody was used as the lung targeting agent. Tissue distribution of SPA-DXM-NLP was investigated in liver, spleen, kidney and lung tissue. The efficacy of SPA-DXM-NLP against lung injury was assessed in a rat model of bleomycin-induced acute lung injury. Results The SPA-DXM-NLP complex was successfully synthesized and the particles were stable at 4°C. Pulmonary dexamethasone levels were 40 times higher with SPA-DXM-NLP than conventional dexamethasone injection. Administration of SPA-DXM-NLP significantly attenuated lung injury and inflammation, decreased incidence of infection, and increased survival in animal models. Conclusions The administration of SPA-DXM-NLP to animal models resulted in increased levels of DXM in the lungs, indicating active targeting. The efficacy against ALI of the immunoliposomes was shown to be superior to conventional dexamethasone administration. These results demonstrate the potential of actively targeted glucocorticoid therapy in the treatment of lung disease in clinical practice. PMID:23516459
Krypton-81m ventilation scanning: acute respiratory disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavender, J.P.; Irving, H.; Armstrong, J.D. II
1981-02-01
From experience with 700 patients undergoing ventilation and perfusion lung scanning with krypton-81m/technetium-99m technique, 34 patients suffering from nonembolic acute respiratory disease were selected for review. In 16 patients with pneumonia, all had defects of ventilation corresponding to, or larger than, the radiologic consolidation. In 13 patients there was some preservation of perfusion in the consolidated region. In two of the three patients with matched defects, the pneumonia was of long standing. In seven patients with collapse or atelectasis and in 11 patients with acute reversible bronchial obstruction and normal volume lungs, a similar pattern or ventillation and perfusion wasmore » observed.« less
Mechanisms of cellular therapy in respiratory diseases.
Abreu, Soraia C; Antunes, Mariana A; Pelosi, Paolo; Morales, Marcelo M; Rocco, Patricia R M
2011-09-01
Stem cells present a variety of clinical implications in the lungs. According to their origin, these cells can be divided into embryonic and adult stem cells; however, due to the important ethical and safety limitations that are involved in the embryonic stem cell use, most studies have chosen to focus on adult stem cell therapy. This article aims to present and clarify the recent advances in the field of stem cell biology, as well as to highlight the effects of mesenchymal stem cell (MSC) therapy in the context of acute lung injury/acute respiratory distress syndrome and chronic disorders such as lung fibrosis and chronic obstructive pulmonary disease. For this purpose, we performed a critical review of adult stem cell therapies, covering the main clinical and experimental studies published in Pubmed databases in the past 11 years. Different characteristics were extracted from these articles, such as: the experimental model, strain, cellular type and administration route used as well as the positive or negative effects obtained. There is evidence for beneficial effects of MSC on lung development, repair, and remodeling. The engraftment in the injured lung does not occur easily, but several studies report that paracrine factors can be effective in reducing inflammation and promoting tissue repair. MSC releases several growth factors and anti-inflammatory cytokines that regulate endothelial and epithelial permeability and reduce the severity of inflammation. A better understanding of the mechanisms that control cell division and differentiation, as well as of their paracrine effects, is required to enable the optimal use of bone marrow-derived stem cell therapy to treat human respiratory diseases.
Complement Inhibition Alleviates Paraquat-Induced Acute Lung Injury
Sun, Shihui; Wang, Hanbin; Zhao, Guangyu; An, Yingbo; Guo, Yan; Du, Lanying; Song, Hongbin; Qiao, Fei; Yu, Hong; Wu, Xiaohong; Atkinson, Carl; Jiang, Shibo; Tomlinson, Stephen
2011-01-01
The widely used herbicide, paraquat (PQ), is highly toxic and claims thousands of lives from both accidental and voluntary ingestion. The pathological mechanisms of PQ poisoning–induced acute lung injury (ALI) are not well understood, and the role of complement in PQ-induced ALI has not been elucidated. We developed and characterized a mouse model of PQ-induced ALI and studied the role of complement in the pathogenesis of PQ poisoning. Intraperitoneal administration of PQ caused dose- and time-dependent lung damage and mortality, with associated inflammatory response. Within 24 hours of PQ-induced ALI, there was significantly increased expression of the complement proteins, C1q and C3, in the lung. Expression of the anaphylatoxin receptors, C3aR and C5aR, was also increased. Compared with wild-type mice, C3-deficient mice survived significantly longer and displayed significantly reduced lung inflammation and pathology after PQ treatment. Similar reductions in PQ-induced inflammation, pathology, and mortality were recorded in mice treated with the C3 inhibitors, CR2-Crry, and alternative pathway specific CR2-fH. A similar therapeutic effect was also observed by treatment with either C3a receptor antagonist or a blocking C5a receptor monoclonal antibody. Together, these studies indicate that PQ-induced ALI is mediated through receptor signaling by the C3a and C5a complement activation products that are generated via the alternative complement pathway, and that complement inhibition may be an effective clinical intervention for postexposure treatment of PQ-induced ALI. PMID:21421909
Pulmonary Th17 anti-fungal immunity is regulated by the gut microbiome12
McAleer, Jeremy P.; Nguyen, Nikki L.H.; Chen, Kong; Kumar, Pawan; Ricks, David M.; Binnie, Matthew; Armentrout, Rachel A.; Pociask, Derek A.; Hein, Aaron; Yu, Amy; Vikram, Amit; Bibby, Kyle; Umesaki, Yoshinori; Rivera, Amariliz; Sheppard, Dean; Ouyang, Wenjun; Hooper, Lora V.; Kolls, Jay K.
2016-01-01
Commensal microbiota are critical for the development of local immune responses. Here, we show that gut microbiota can regulate CD4 T cell polarization during pulmonary fungal infections. Vancomycin drinking water significantly decreased lung Th17 cell numbers during acute infection, demonstrating that Gram-positive commensals contribute to systemic inflammation. We next tested a role for RegIIIγ, an IL-22 inducible anti-microbial protein with specificity for Gram-positive bacteria. Following infection, increased accumulation of Th17 cells in the lungs of RegIIIγ−/− and Il22−/− mice was associated with intestinal segmented filamentous bacteria (SFB) colonization. Although gastrointestinal delivery of recombinant RegIIIγ decreased lung inflammatory gene expression and protected Il22−/− mice from weight-loss during infection, RegIIIγ had no direct effect on SFB colonization, fungal clearance or lung Th17 immunity. We further show that vancomycin only decreased lung IL-17 production in mice colonized with SFB. To determine the link between gut microbiota and lung immunity, serum transfer experiments revealed that IL-1 receptor ligands increase the accumulation of lung Th17 cells. These data suggest that intestinal microbiota including SFB can regulate pulmonary adaptive immune responses. PMID:27217583
Benzing, A; Loop, T; Mols, G; Geiger, K
1999-10-01
Compressed air from a hospital's central gas supply may contain nitric oxide as a result of air pollution. Inhaled nitric oxide may increase arterial oxygen tension and decrease pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. Therefore, the authors wanted to determine whether unintentional nitric oxide inhalation by contamination of compressed air influences arterial oxygen tension and pulmonary vascular resistance and interferes with the therapeutic use of nitric oxide. Nitric oxide concentrations in the compressed air of a university hospital were measured continuously by chemiluminescence during two periods (4 and 2 weeks). The effects of unintended nitric oxide inhalation on arterial oxygen tension (n = 15) and on pulmonary vascular resistance (n = 9) were measured in patients with acute lung injury and acute respiratory distress syndrome by changing the source of compressed air of the ventilator from the hospital's central gas supply to a nitric oxide-free gas tank containing compressed air. In five of these patients, the effects of an additional inhalation of 5 ppm nitric oxide were evaluated. During working days, compressed air of the hospital's central gas supply contained clinically effective nitric oxide concentrations (> 80 parts per billion) during 40% of the time. Change to gas tank-supplied nitric oxide-free compressed air decreased the arterial oxygen tension by 10% and increased pulmonary vascular resistance by 13%. The addition of 5 ppm nitric oxide had a minimal effect on arterial oxygen tension and pulmonary vascular resistance when added to hospital-supplied compressed air but improved both when added to tank-supplied compressed air. Unintended inhalation of nitric oxide increases arterial oxygen tension and decreases pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. The unintended nitric oxide inhalation interferes with the therapeutic use of nitric oxide.
Modification of acute and late-phase allergic responses to ovalbumin with lipopolysaccharide.
Tulic, Mark K; Holt, Patrick G; Sly, Peter D
2002-10-01
We have previously shown that lipopolysaccharide (LPS) exposure in sensitised animals 18 h after ovalbumin (OVA) challenge inhibits OVA-induced airway hyper-responsiveness (AHR). In the present study, we investigated the effect of LPS on OVA-induced acute and late-phase allergic responses in sensitised rats when challenged with OVA. Rats were sensitised with OVA and 11 days later challenged with 1% OVA in the presence or absence of LPS (0.5-50 microg/ml) given in the same nebulizer. Acute responses to OVA were measured each minute for 30 min after challenge. In a separate group of animals, late-phase responses to OVA were determined at 24 h. At the end of each study, Evans blue dye was injected and animals sacrificed 30 min later. Bronchoalveolar lavage was obtained to monitor inflammatory cell migration and microvascular leakage. OVA challenge in sensitised animals produced an acute response with changes in lung mechanics peaking 10.0 +/- 0.9 min after OVA and returning to baseline within 30 min. This was followed 24 h later by increased responses to methacholine chloride (MCh), inflammatory cell influx and increased Evans blue leakage into the lungs. Presence of 5 or 50 microg/ml LPS in the nebulizer during OVA challenge altered the kinetics of the acute-phase response, with an immediate decrease in lung function (time to peak decreased from 10.3 +/- 1.2 to 1.8 +/- 0.2 and 2.2 +/- 0.3 min, respectively: p < 0.001, n = 6) and a dose-dependent attenuation of late-phase AHR, cellular influx (n = 5, p < 0.001) and Evans blue leakage (n = 5, p < 0.001) at 24 h. In summary, co-administration of OVA with LPS modifies both the acute and late-phase responses to the allergen, inducing an earlier acute change in lung function and a dose-dependent inhibition of late-phase responses to the allergen. Copyright 2002 S. Karger AG, Basel
Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition.
Cabrera-Benítez, Nuria E; Parotto, Matteo; Post, Martin; Han, Bing; Spieth, Peter M; Cheng, Wei-Erh; Valladares, Francisco; Villar, Jesús; Liu, Mingayo; Sato, Masaaki; Zhang, Haibo; Slutsky, Arthur S
2012-02-01
Many mechanically ventilated patients with acute respiratory distress syndrome develop pulmonary fibrosis. Stresses induced by mechanical ventilation may explain the development of fibrosis by a number of mechanisms (e.g., damage the alveolar epithelium, biotrauma). The objective of this study was t test the hypothesis that mechanical ventilation plays an important role in the pathogenesis of lung fibrosis. C57BL/6 mice were randomized into four groups: healthy controls; hydrochloric acid aspiration alone; vehicle control solution followed 24 hrs later by mechanical ventilation (peak inspiratory pressure 22 cm H(2)O and positive end-expiratory pressure 2 cm H(2)O for 2 hrs); and acid aspiration followed 24 hrs later by mechanical ventilation. The animals were monitored for up to 15 days after acid aspiration. To explore the direct effects of mechanical stress on lung fibrotic formation, human lung epithelial cells (BEAS-2B) were exposed to mechanical stretch for up to 48 hrs. Impaired lung mechanics after mechanical ventilation was associated with increased lung hydroxyproline content, and increased expression of transforming growth factor-β, β-catenin, and mesenchymal markers (α-smooth muscle actin and vimentin) at both the gene and protein levels. Expression of epithelial markers including cytokeratin-8, E-cadherin, and prosurfactant protein B decreased. Lung histology demonstrated fibrosis formation and potential epithelia-mesenchymal transition. In vitro direct mechanical stretch of BEAS-2B cells resulted in similar fibrotic and epithelia-mesenchymal transition formation. Mechanical stress induces lung fibrosis, and epithelia-mesenchymal transition may play an important role in mediating the ventilator-induced lung fibrosis.
Utilizing lung sounds analysis for the evaluation of acute asthma in small children.
Tinkelman, D G; Lutz, C; Conner, B
1991-09-01
One of the most difficult aspects of management of acute asthma in the small child is the clinician's inability to quantitate the response or lack of response to bronchodilator agents because of the inability of a child this age to perform objective lung measurements in the acute state. The present study was designed to evaluate bronchodilator responsiveness in children between 2 and 6 years of age with wheezing by means of a computerized lung sound analysis, computer digitized airway phonopneumonography. Children between ages 2 and 6 who were experiencing acute exacerbations of asthma were included in this study population. The 43 children were evaluated by physical examination, pulmonary function testing, if possible, by use of (spirometry or peak flow meter) and transmission of lung sounds to a computer using an electronic stethoscope to obtain a phonopneumograph with sound intensity level determinations during tidal breathing. A control group of 20 known asthmatic patients between the ages of 8 and 52 years who also presented to the office with acute asthma were evaluated similarly. In each of these individuals, a physical examination was followed by complete spirometry as well as computer digitized airway phonopneumonography recordings. Following initial measurements, all patients were treated with nebulized albuterol (0.25 mL in 2 mL of saline). Five minutes after completion of the nebulization all patients were reexamined and repeat pulmonary function tests were performed followed by CDAP recordings. In the study group of children, the mean pretreatment sound intensity level was 1,694 (range 557 to 4,950 SD +/- 745).(ABSTRACT TRUNCATED AT 250 WORDS)
Zhang, Zhuo; Zhou, Jie; Liao, Changli; Li, Xiaobing; Liu, Minghua; Song, Daqiang; Jiang, Xian
2017-04-01
Lidocaine (Lido) is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of cecal ligation and puncture (CLP)-induced acute lung injury (ALI). The receptor for advanced glycation end product (RAGE) exerts pro-inflammatory effects by enhancing pro-inflammatory cytokine production. However, the precise mechanism by which Lido confers protection against ALI is not clear. ALI was induced in RAGE WT and RAGE knockout (KO) rats using cecal ligation and puncture (CLP) operations for 24 h. The results showed that Lido significantly inhibited CLP-induced lung inflammation and histopathological lung injury. Furthermore, Lido significantly reduced CLP-induced upregulation of HMGB1 and RAGE expression and activation of the NF-κB and MAPK signaling pathways. With the use of RAGE KO rats, we demonstrate here that RAGE deficiency attenuates the protective effect of Lido against CLP-induced lung inflammatory cell infiltration and histopathological lung injury. These results suggest that RAGE deficiency attenuates the protective effect of Lido against CLP-induced ALI by attenuating the pro-inflammatory cytokines production.
Santos, Raquel S; Silva, Pedro L; Oliveira, Gisele P; Cruz, Fernanda F; Ornellas, Débora S; Morales, Marcelo M; Fernandes, Janaina; Lanzetti, Manuella; Valença, Samuel S; Pelosi, Paolo; Gattass, Cerli R; Rocco, Patricia R M
2011-12-15
We analysed the effects of oleanolic acid (OA) on lung mechanics and histology and its possible mechanisms of action in experimental acute lung injury (ALI). BALB/c mice were randomly divided into Control (saline, ip) and ALI (paraquat, 25 mg/kg, ip) groups. At 1 h, both groups were treated with saline (SAL, 50 μl ip), OA (10 mg/kg ip), or dexamethasone (DEXA, 1 mg/kg ip). At 24 h, lung static elastance, viscoelastic pressure, and alveolar collapse reduced more after OA compared to DEXA administration. Tumour necrosis factor-α, macrophage migration inhibitory factor, interleukin-6, interferon-γ, and transforming growth factor-β mRNA expressions in lung tissue diminished similarly after OA or DEXA. Conversely, only OA avoided reactive oxygen species generation and yielded a significant decrease in nitrite concentration. OA and DEXA restored the reduced glutathione/oxidized glutathione ratio and catalase activity while increasing glutathione peroxidase induced by paraquat. In conclusion, OA improved lung morphofunction by modulating the release of inflammatory mediators and oxidative stress. Copyright © 2011 Elsevier B.V. All rights reserved.
IRF5 regulates lung macrophages M2 polarization during severe acute pancreatitis in vitro.
Sun, Kang; He, Song-Bing; Qu, Jian-Guo; Dang, Sheng-Chun; Chen, Ji-Xiang; Gong, Ai-Hua; Xie, Rong; Zhang, Jian-Xin
2016-11-14
To investigate the role of interferon regulatory factor 5 (IRF5) in reversing polarization of lung macrophages during severe acute pancreatitis (SAP) in vitro . A mouse SAP model was established by intraperitoneal (ip) injections of 20 μg/kg body weight caerulein. Pathological changes in the lung were observed by hematoxylin and eosin staining. Lung macrophages were isolated from bronchoalveolar lavage fluid. The quantity and purity of lung macrophages were detected by fluorescence-activated cell sorting and evaluated by real-time polymerase chain reaction (RT-PCR). They were treated with IL-4/IRF5 specific siRNA (IRF5 siRNA) to reverse their polarization and were evaluated by detecting markers expression of M1/M2 using RT-PCR. SAP associated acute lung injury (ALI) was induced successfully by ip injections of caerulein, which was confirmed by histopathology. Lung macrophages expressed high levels of IRF5 as M1 phenotype during the early acute pancreatitis stages. Reduction of IRF5 expression by IRF5 siRNA reversed the action of macrophages from M1 to M2 phenotype in vitro . The expressions of M1 markers, including IRF5 (S + IRF5 siRNA vs S + PBS, 0.013 ± 0.01 vs 0.054 ± 0.047, P < 0.01), TNF-α (S + IRF5 siRNA vs S + PBS, 0.0003 ± 0.0002 vs 0.019 ± 0.018, P < 0.001), iNOS (S + IRF5 siRNA vs S + PBS, 0.0003 ± 0.0002 vs 0.026 ± 0.018, P < 0.001) and IL-12 (S + IRF5 siRNA vs S + PBS, 0.000005 ± 0.00004 vs 0.024 ± 0.016, P < 0.001), were decreased. In contrast, the expressions of M2 markers, including IL-10 (S + IRF5 siRNA vs S + PBS, 0.060 ± 0.055 vs 0.0230 ± 0.018, P < 0.01) and Arg-1 (S + IRF5 siRNA vs S + PBS, 0.910 ± 0.788 vs 0.0036 ± 0.0025, P < 0.001), were increased. IRF5 siRNA could reverse the lung macrophage polarization more effectively than IL-4. Treatment with IRF5 siRNA can reverse the pancreatitis-induced activation of lung macrophages from M1 phenotype to M2 phenotype in SAP associated with ALI.
Protective effect of magnolol on lipopolysaccharide-induced acute lung injury in mice.
Ni, Yun Feng; Jiang, Tao; Cheng, Qing Shu; Gu, Zhong Ping; Zhu, Yi Fang; Zhang, Zhi Pei; Wang, Jian; Yan, Xiao Long; Wang, Wu Ping; Ke, Chang Kang; Han, Yong; Li, Xiao Fei
2012-12-01
Magnolol, a tradition Chinese herb, displays an array of activities including antifungal, antibacterial, and antioxidant effects. To investigate the protective effect of magnolol on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. ALI was induced in mice by intratracheal instillation of LPS (1 mg/kg). The mice received intratracheal instillation of magnolol (5 μg/kg) 30 min before LPS administration. Pulmonary histological changes were evaluated by hematoxylin-eosin stain and lung wet/dry weight ratios were observed. Concentrations of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and myeloperoxidase (MPO) activity were measured by enzyme-linked immunosorbent assay. Expression of cyclooxygenase (COX)-2 in lung tissues was determined by Western blot analysis. Magnolol pretreatment significantly attenuated the severity of lung injury and inhibited the production of TNF-α and IL-1β in mice with ALI. After LPS administration, the lung wet/dry weight ratios, as an index of lung edema, and MPO activity were also markedly reduced by magnolol pretreatment. The expression of COX-2 was significantly suppressed by magnolol pretreatment. Magnolol potently protected against LPS-induced ALI and the protective effects of magnolol may attribute partly to the suppression of COX-2 expression.
Zhang, Hong-Bo; Sun, Li-Chao; Zhi, Li-da; Wen, Qian-Kuan; Qi, Zhi-Wei; Yan, Sheng-Tao; Li, Wen; Zhang, Guo-Qiang
2017-10-01
Sepsis is a systemic inflammatory response syndrome caused by severe infections. Astilbin is a dihydroflavonol derivative found in many medicinal and food plants with multiple pharmacological functions. To investigate the effects of astilbin on sepsis-induced acute lung injury (ALI), cecal ligation and puncture was performed on rats to establish a sepsis-induced ALI model; these rats were then treated with astilbin at different concentrations. Lung injury scores, including lung wet/dry ratio, protein leakage, myeloperoxidase activity, and inflammatory cell infiltration were determined to evaluate the effects of astilbin on sepsis-induced ALI. We found that astilbin treatment significantly attenuates sepsis-induced lung injury and improves survival rate, lung injury scores, lung wet/dry ratio, protein leakage, myeloperoxidase activity, and inflammatory cell infiltration. Astilbin treatment also dramatically decreased the production of inflammatory cytokines and chemokines in bronchoalveolar lavage fluid. Further, astilbin treatment inhibited the expression and production of macrophage inhibitory factor (MIF), which inhibits the inflammatory response. Collectively, these data suggest that astilbin has a protective effect against sepsis-induced ALI by inhibiting MIF-mediated inflammatory responses. This study provides a molecular basis for astilbin as a new medical treatment for sepsis-induced ALI.
Ma, Deshun; Zhang, Miao; Yang, Xuelian; Tan, Dehong
2015-01-01
The effect of betanin on a rat paraquat-induced acute lung injury (ALI) model was investigated. Paraquat was injected intraperitoneally at a single dose of 20 mg/kg body weight, and betanin (25 and 100 mg/kg/d) was orally administered 3 days before and 2 days after paraquat administration. Rats were sacrificed 24 hours after the last betanin dosage, and lung tissue and bronchoalveolar lavage fluid (BALF) were collected. In rats treated only with paraquat, extensive lung injury characteristic of ALI was observed, including histological changes, elevation of lung : body weight ratio, increased lung permeability, increased lung neutrophilia infiltration, increased malondialdehyde (MDA) and myeloperoxidase (MPO) activity, reduced superoxide dismutase (SOD) activity, reduced claudin-4 and zonula occluden-1 protein levels, increased BALF interleukin (IL-1) and tumor necrosis factor (TNF)-α levels, reduced BALF IL-10 levels, and increased lung nuclear factor kappa (NF-κB) activity. In rats treated with betanin, paraquat-induced ALI was attenuated in a dose-dependent manner. In conclusion, our results indicate that betanin attenuates paraquat-induced ALI possibly via antioxidant and anti-inflammatory mechanisms. Thus, the potential for using betanin as an auxilliary therapy for ALI should be explored further. PMID:25861636
da Fonseca, Lídia Maria Carneiro; Reboredo, Maycon Moura; Lucinda, Leda Marília Fonseca; Fazza, Thaís Fernanda; Rabelo, Maria Aparecida Esteves; Fonseca, Adenilson Souza; de Paoli, Flavia; Pinheiro, Bruno Valle
2016-12-01
Abnormalities in lungs caused by emphysema might alter their response to sepsis and the occurrence of acute lung injury (ALI). This study compared the extension of ALI in response to intraperitoneal lipopolysaccharide (LPS) injection in Wistar rats with and without emphysema induced by elastase. Adult male Wistar rats were randomized into four groups: control, emphysema without sepsis, normal lung with sepsis and emphysema with sepsis. Sepsis was induced, and 24 h later the rats were euthanised. The following analysis was performed: blood gas measurements, bronchoalveolar lavage (BAL), lung permeability and histology. Animals that received LPS showed significant increase in a lung injury scoring system, inflammatory cells in bronchoalveolar lavage (BAL) and IL-6, TNF-α and CXCL2 mRNA expression in lung tissue. Animals with emphysema and sepsis showed increased alveolocapillary membrane permeability, demonstrated by higher BAL/serum albumin ratio. In conclusion, the presence of emphysema induced by elastase increases the inflammatory response in the lungs to a systemic stimulus, represented in this model by the intraperitoneal injection of LPS. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.
Sports-related lung injury during breath-hold diving.
Mijacika, Tanja; Dujic, Zeljko
2016-12-01
The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise.In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition.According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage. Copyright ©ERS 2016.
Dickson, Robert P; Singer, Benjamin H; Newstead, Michael W; Falkowski, Nicole R; Erb-Downward, John R; Standiford, Theodore J; Huffnagle, Gary B
2016-07-18
Sepsis and the acute respiratory distress syndrome (ARDS) are major causes of mortality without targeted therapies. Although many experimental and clinical observations have implicated gut microbiota in the pathogenesis of these diseases, culture-based studies have failed to demonstrate translocation of bacteria to the lungs in critically ill patients. Here, we report culture-independent evidence that the lung microbiome is enriched with gut bacteria both in a murine model of sepsis and in humans with established ARDS. Following experimental sepsis, lung communities were dominated by viable gut-associated bacteria. Ecological analysis identified the lower gastrointestinal tract, rather than the upper respiratory tract, as the likely source community of post-sepsis lung bacteria. In bronchoalveolar lavage fluid from humans with ARDS, gut-specific bacteria (Bacteroides spp.) were common and abundant, undetected by culture and correlated with the intensity of systemic inflammation. Alveolar TNF-α, a key mediator of alveolar inflammation in ARDS, was significantly correlated with altered lung microbiota. Our results demonstrate that the lung microbiome is enriched with gut-associated bacteria in sepsis and ARDS, potentially representing a shared mechanism of pathogenesis in these common and lethal diseases.
Dodd-o, Jeffrey M.; Coon, Tiffany A.; Miller, Hannah L.; Ganguly, Sudipto; Popescu, Iulia; O'Donnell, Christopher P.; Cardenes, Nayra; Levine, Melanie; Rojas, Mauricio; Weathington, Nathaniel M.; Zhao, Jing; Zhao, Yutong; McDyer, John F.
2015-01-01
Acute cellular rejection is a known risk factor for the development of obliterative bronchiolitis, which limits the long-term survival of lung transplant recipients. However, the T cell effector mechanisms in both of these processes remain incompletely understood. Using the mouse orthotopic lung transplant model, we investigated whether C57BL/6 T-bet−/− recipients of major histocompatibility complex (MHC)-mismatched BALB/c lung grafts develop rejection pathology and allospecific cytokine responses that differ from wild-type mice. T-bet−/− recipients demonstrated vigorous allograft rejection at 10 days, characterized by neutrophilic inflammation and predominantly CD8+ T cells producing allospecific IL-17 and/or IFN-γ, in contrast to IFN-γ–dominant responses in WT mice. CD4+ T cells produced IL-17 but not IFN-γ responses in T-bet−/− recipients, in contrast to WT controls. Costimulation blockade using anti-CD154 Ab significantly reduced allospecific CD8+IFN-γ+ responses in both T-bet−/− and WT mice but had no attenuating effect on lung rejection pathology in T-bet−/− recipients or on the development of obliterative airway inflammation that occurred only in T-bet−/− recipients. However, neutralization of IL-17A significantly attenuated costimulation blockade–resistant rejection pathology and airway inflammation in T-bet−/− recipients. In addition, CXCL1 (neutrophil chemokine) was increased in T-bet−/− allografts, and IL-17 induced CXCL1 from mouse lung epithelial cells in vitro. Taken together, our data show that T-bet–deficient recipients of complete MHC-mismatched lung allografts develop costimulation blockade–resistant rejection characterized by neutrophilia and obliterative airway inflammation that is predominantly mediated by CD8+IL-17+ T cells. Our data support T-bet–deficient mouse recipients of lung allografts as a viable animal model to study the immunopathogenesis of small airway injury in lung transplantation. PMID:25286244
Simion, Viorel; Constantinescu, Cristina Ana; Stan, Daniela; Deleanu, Mariana; Tucureanu, Monica Madalina; Butoi, Elena; Manduteanu, Ileana; Simionescu, Maya
2016-01-01
Inflammation is a common process associated with numerous vascular pathologies. We hypothesized that targeting the inflamed endothelium by coupling a peptide with high affinity for P-selectin to the surface of dexamethasone-loaded lipid nanoemulsions will highly increase their specific binding to activated endothelial cells (EC) and reduce the cell activation. We developed and characterized dexamethasone-loaded lipid nanoemulsions directed towards P-selectin (PLN-Dex) and monitored their anti-inflammatory effects in vitro using cultured EC (EA.hy926 cells) and in vivo using a mouse model of acute inflammation [lipopolysaccharides (LPS) intravenously administered in C57BL/6 mice]. We found that PLN-Dex bound specifically to the surface of activated EC are efficiently internalized by EC and reduced the expression of proinflammatory genes, thus preventing the monocyte adhesion and transmigration to/through activated EC. Given intravenously in mice with acute inflammation, PLN-Dex accumulated at a significant high level in the lungs (compared to nontargeted nanoemulsions) and significantly reduced mRNA expression level of key proinflammatory cytokines such as IL-1β, IL-6, and MCP-1. In conclusion, the newly developed nanoformulation, PLN-Dex, is functional in vitro and in vivo, reducing selectively the endothelium activation and the consequent monocyte infiltration and diminishing significantly the lungs' inflammation, in a mouse model of acute inflammation. PMID:27703301
[Infection in lung transplantation].
Gavaldà, Joan; Román, Antonio
2007-12-01
Lung transplantation is now considered an established therapeutic option for patients with severe respiratory failure. Nevertheless, complications are frequent and can lead to intermediate- or long-term graft dysfunction and decreased survival. According to the registry of the International Society for Heart and Lung Transplantation, survival rates in these patients at one, two, and five years are 74%, 65%, and 47%, respectively. The main obstacle to long-term success of lung transplantation, however, is chronic rejection, which is characterized histologically as bronchiolitis obliterans and occurs in up to two-thirds of patients. One of the most important risk factors for the development of bronchiolitis obliterans, in addition to the number of previous acute rejection episodes and the incidence of persistent rejection, is cytomegalovirus infection and disease. Moreover, recent evidence has indicated a role for respiratory viruses as risk factors for the development of chronic rejection in lung transplant recipients. Infectious complications are a frequent cause of morbidity and mortality in these patients and are the cause of death in nearly half of them. Bacterial infection is the most frequent infectious complication in lung transplant patients. Among the total of infections, 35%-66% are bacterial and 50%-85% of patients present at least one episode. CMV is the second most frequent cause of infectious complications following lung transplantation. Despite the use of various preventive strategies, the risk of developing CMV disease in lung transplant recipients is over 5% during the first year. This is the only type of solid organ transplant in which the etiology of fungal infection is characteristically Aspergillus spp., in contrast to others in which infection by Candida spp. is most common. The incidence of invasive aspergillosis is about 4%.
Acute Chest Syndrome in Children with Sickle Cell Disease
Bakshi, Nitya; Krishnamurti, Lakshmanan
2017-01-01
Acute chest syndrome (ACS) is a frequent cause of acute lung disease in children with sickle cell disease (SCD). Patients may present with ACS or may develop this complication during the course of a hospitalization for acute vaso-occlusive crises (VOC). ACS is associated with prolonged hospitalization, increased risk of respiratory failure, and the potential for developing chronic lung disease. ACS in SCD is defined as the presence of fever and/or new respiratory symptoms accompanied by the presence of a new pulmonary infiltrate on chest X-ray. The spectrum of clinical manifestations can range from mild respiratory illness to acute respiratory distress syndrome. The presence of severe hypoxemia is a useful predictor of severity and outcome. The etiology of ACS is often multifactorial. One of the proposed mechanisms involves increased adhesion of sickle red cells to pulmonary microvasculature in the presence of hypoxia. Other commonly associated etiologies include infection, pulmonary fat embolism, and infarction. Infection is a common cause in children, whereas adults usually present with pain crises. Several risk factors have been identified in children to be associated with increased incidence of ACS. These include younger age, severe SCD genotypes (SS or Sβ0 thalassemia), lower fetal hemoglobin concentrations, higher steady-state hemoglobin levels, higher steady-state white blood cell counts, history of asthma, and tobacco smoke exposure. Opiate overdose and resulting hypoventilation can also trigger ACS. Prompt diagnosis and management with intravenous fluids, analgesics, aggressive incentive spirometry, supplemental oxygen or respiratory support, antibiotics, and transfusion therapy, are key to the prevention of clinical deterioration. Bronchodilators should be considered if there is history of asthma or in the presence of acute bronchospasm. Treatment with hydroxyurea should be considered for prevention of recurrent episodes. This review evaluates the etiology, pathophysiology, risk factors, clinical presentation of ACS, and preventive and treatment strategies for effective management of ACS. PMID:29279787
Acute Chest Syndrome in Children with Sickle Cell Disease.
Jain, Shilpa; Bakshi, Nitya; Krishnamurti, Lakshmanan
2017-12-01
Acute chest syndrome (ACS) is a frequent cause of acute lung disease in children with sickle cell disease (SCD). Patients may present with ACS or may develop this complication during the course of a hospitalization for acute vaso-occlusive crises (VOC). ACS is associated with prolonged hospitalization, increased risk of respiratory failure, and the potential for developing chronic lung disease. ACS in SCD is defined as the presence of fever and/or new respiratory symptoms accompanied by the presence of a new pulmonary infiltrate on chest X-ray. The spectrum of clinical manifestations can range from mild respiratory illness to acute respiratory distress syndrome. The presence of severe hypoxemia is a useful predictor of severity and outcome. The etiology of ACS is often multifactorial. One of the proposed mechanisms involves increased adhesion of sickle red cells to pulmonary microvasculature in the presence of hypoxia. Other commonly associated etiologies include infection, pulmonary fat embolism, and infarction. Infection is a common cause in children, whereas adults usually present with pain crises. Several risk factors have been identified in children to be associated with increased incidence of ACS. These include younger age, severe SCD genotypes (SS or Sβ 0 thalassemia), lower fetal hemoglobin concentrations, higher steady-state hemoglobin levels, higher steady-state white blood cell counts, history of asthma, and tobacco smoke exposure. Opiate overdose and resulting hypoventilation can also trigger ACS. Prompt diagnosis and management with intravenous fluids, analgesics, aggressive incentive spirometry, supplemental oxygen or respiratory support, antibiotics, and transfusion therapy, are key to the prevention of clinical deterioration. Bronchodilators should be considered if there is history of asthma or in the presence of acute bronchospasm. Treatment with hydroxyurea should be considered for prevention of recurrent episodes. This review evaluates the etiology, pathophysiology, risk factors, clinical presentation of ACS, and preventive and treatment strategies for effective management of ACS.
Jaramillo, Andrés; Fernández, Félix G; Kuo, Elbert Y; Trulock, Elbert P; Patterson, G A; Mohanakumar, T
2005-02-01
Lung transplantation is recognized as the only viable treatment option in a variety of end-stage pulmonary diseases. However, the long-term survival after lung transplantation is limited by the development of obliterative bronchiolitis, and its clinical correlate bronchiolitis obliterans syndrome (BOS), which is considered to represent chronic lung allograft rejection. Histopathologically, BOS is an inflammatory process that leads to fibrous scarring of the terminal and respiratory bronchioles and subsequent total occlusion of the airways. The specific etiology and pathogenesis of BOS are not well understood. The current premise is that BOS represents a common lesion in which different inflammatory insults such as ischemia-reperfusion, rejection, and infection can lead to a similar histological and clinical outcome. However, the low incidence of BOS in non-transplanted individuals and the observation that early development of BOS is predicted by the frequency and severity of acute rejection episodes indicate that alloimmune-dependent mechanisms play a crucial role in the pathogenesis of BOS. The evidence presented in this review indicates that BOS is the result of humoral and cellular immune responses developed against major histocompatibility complex molecules expressed by airway epithelial cells of the lung allograft. This process is aggravated by alloimmune-independent mechanisms such as ischemia-reperfusion and infection. Currently, treatment of BOS is frequently unsuccessful. Therefore, a better understanding of the immunopathogenesis of BOS is of paramount importance toward improving long-term patient and graft survival after lung transplantation.
Efficacy of bacteriophage therapy in a model of Burkholderia cenocepacia pulmonary infection
Carmody, Lisa A.; Gill, Jason J.; Summer, Elizabeth J.; Sajjan, Uma S.; Gonzalez, Carlos F.; Young, Ryland F.; LiPuma, John J.
2009-01-01
The therapeutic potential of bacteriophage (phage) in a mouse model of acute B. cenocepacia pulmonary infection was assessed. Phage were administered by either intranasal (i.n.) inhalation or intraperitoneal (i.p.) injection. Bacterial density, macrophage inflammatory protein-2 (MIP-2), and tumor necrosis factor-α (TNFα) levels were significantly reduced in lungs of mice treated with i.p. phage. No significant differences in lung bacterial density or MIP-2 levels were found between untreated mice and mice treated with i.n. phage, i.p. UV-inactivated phage, or i.p. λ phage controls. Mock-infected mice treated with phage showed no significant increase in lung MIP-2 or TNFα levels compared to mock-infected / mock-treated mice. We have demonstrated the efficacy of phage therapy in an acute B. cenocepacia lung infection model. Systemic administration of phage was more effective than inhalational administration, suggesting that circulating phage have better access to bacteria in lung compared to topical phage. PMID:20001604
Amphiregulin suppresses epithelial cell apoptosis in lipopolysaccharide-induced lung injury in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogata-Suetsugu, Saiko; Yanagihara, Toyoshi; Hamada, Naoki
Background and objective: As a member of the epidermal growth factor family, amphiregulin contributes to the regulation of cell proliferation. Amphiregulin was reported to be upregulated in damaged lung tissues in patients with chronic obstructive pulmonary disease and asthma and in lung epithelial cells in a ventilator-associated lung injury model. In this study, we investigated the effect of amphiregulin on lipopolysaccharide (LPS)-induced acute lung injury in mice. Methods: Acute lung injury was induced by intranasal instillation of LPS in female C57BL/6 mice, and the mice were given intraperitoneal injections of recombinant amphiregulin or phosphate-buffered saline 6 and 0.5 h before andmore » 3 h after LPS instillation. The effect of amphiregulin on apoptosis and apoptotic pathways in a murine lung alveolar type II epithelial cell line (LA-4 cells) were examined using flow cytometry and western blotting, respectively. Results: Recombinant amphiregulin suppressed epithelial cell apoptosis in LPS-induced lung injury in mice. Western blotting revealed that amphiregulin suppressed epithelial cell apoptosis by inhibiting caspase-8 activity. Conclusion: Amphiregulin signaling may be a therapeutic target for LPS-induced lung injury treatment through its prevention of epithelial cell apoptosis. - Highlights: • Amphiregulin suppresses epithelial cell apoptosis in LPS-induced lung injury in mice. • The mechanism relies on inhibiting caspase-8 activity. • Amphiregulin signaling may be a therapeutic target for LPS-induced lung injury.« less
Easley, R. Blaine; Mulreany, Daniel G.; Lancaster, Christopher T.; Custer, Jason W.; Fernandez-Bustamante, Ana; Colantuoni, Elizabeth; Simon, Brett A.
2009-01-01
Background Studies using transthoracic thermodilution have demonstrated increased extravascular lung water (EVLW) measurements attributed to progression of edema and flooding during sepsis and acute lung injury. We hypothesize that redistribution of pulmonary blood flow can cause increased apparent EVLW secondary to increased perfusion of thermally silent tissue, not increased lung edema. Methods Anesthetized, mechanically ventilated canines were instrumented with PiCCO® (Pulsion Medical, Munich, Germany) catheters and underwent lung injury by repetitive saline lavage. Hemodynamic and respiratory physiologic data were recorded. After stabilized lung injury, endotoxin was administered to inactivate hypoxic pulmonary vasoconstriction. Computerized tomographic imaging was performed to quantify in vivo lung volume, total tissue (fluid) and air content, and regional distribution of blood flow. Results Lavage injury caused an increase in airway pressures and decreased arterial oxygen content with minimal hemodynamic effects. EVLW and shunt fraction increased after injury and then markedly following endotoxin administration. Computerized tomographic measurements quantified an endotoxin-induced increase in pulmonary blood flow to poorly aerated regions with no change in total lung tissue volume. Conclusions The abrupt increase in EVLW and shunt fraction after endotoxin administration is consistent with inactivation of hypoxic pulmonary vasoconstriction and increased perfusion to already flooded lung regions that were previously thermally silent. Computerized tomographic studies further demonstrate in vivo alterations in regional blood flow (but not lung water) and account for these alterations in shunt fraction and EVLW. PMID:19809280
Lung transplantation in infants and toddlers from 1990 to 2004 at St. Louis Children's Hospital.
Elizur, A; Faro, A; Huddleston, C B; Gandhi, S K; White, D; Kuklinski, C A; Sweet, S C
2009-04-01
In a retrospective, single-center cohort study, outcomes of infants and toddlers undergoing lung transplant at St. Louis Children's Hospital between 1990 and 2004 were compared to older children. Patients with cystic fibrosis (exclusively older children) and those who underwent heart-lung, liver-lung, single lung or a second transplantation were excluded from comparisons. One hundred nine lung transplants were compared. Thirty-six were in infants <1 year old, 26 in toddlers 1-3 years old and 47 in children >3 years old. Graft survival was similar for infants and toddlers (p = 0.35 and p = 0.3, respectively) compared to children over 3 years old at 1 and 3 years after transplant. Significantly more infants (p < 0.0001 and p = 0.003) and toddlers (p = 0.002 and p = 0.03) were free from acute rejection and bronchiolitis obliterans compared to older patients. While most infants and toddlers had only minimal lung function impairment, and achieved normal to mildly delayed developmental scores, somatic growth remained depressed 5 years after transplant. Lung transplantation in infants and young children carries similar survival rates to older children and adults. Further insights into the unique immunologic aspects of this group of patients may elucidate strategies to prevent acute and chronic rejection in all age groups.
Copetti, Roberto; Soldati, Gino; Copetti, Paolo
2008-01-01
Background Differential diagnosis between acute cardiogenic pulmonary edema (APE) and acute lung injury/acute respiratory distress syndrome (ALI/ARDS) may often be difficult. We evaluated the ability of chest sonography in the identification of characteristic pleuropulmonary signs useful in the diagnosis of ALI/ARDS and APE. Methods Chest sonography was performed on admission to the intensive care unit in 58 consecutive patients affected by ALI/ARDS or by acute pulmonary edema (APE). Results Ultrasound examination was focalised on finding in the two groups the presence of: 1) alveolar-interstitial syndrome (AIS) 2) pleural lines abnormalities 3) absence or reduction of "gliding" sign 4) "spared areas" 5) consolidations 6) pleural effusion 7) "lung pulse". AIS was found in 100% of patients with ALI/ARDS and in 100% of patients with APE (p = ns). Pleural line abnormalities were observed in 100% of patients with ALI/ARDS and in 25% of patients with APE (p < 0.0001). Absence or reduction of the 'gliding sign' was observed in 100% of patients with ALI/ARDS and in 0% of patients with APE. 'Spared areas' were observed in 100% of patients with ALI/ARDS and in 0% of patients with APE (p < 0.0001). Consolidations were present in 83.3% of patients with ALI/ARDS in 0% of patients with APE (p < 0.0001). A pleural effusion was present in 66.6% of patients with ALI/ARDS and in 95% of patients with APE (p < 0.004). 'Lung pulse' was observed in 50% of patients with ALI/ARDS and in 0% of patients with APE (p < 0.0001). All signs, except the presence of AIS, presented a statistically significant difference in presentation between the two syndromes resulting specific for the ultrasonographic characterization of ALI/ARDS. Conclusion Pleuroparenchimal patterns in ALI/ARDS do find a characterization through ultrasonographic lung scan. In the critically ill the ultrasound demonstration of a dyshomogeneous AIS with spared areas, pleural line modifications and lung consolidations is strongly predictive, in an early phase, of non-cardiogenic pulmonary edema. PMID:18442425
2011-08-01
admitted to US burn centers, and greatly increases postburn morbidity and mortality (1). The pathogenesis of smoke inhalationYinduced acute lung...have been successfully used to ameliorate lung dysfunction in SIALI in animal models (3Y5). Disordered fibrin turnover in the lung in patients with...of the pathogenesis of SIALI. In vivo and in vitro approaches were applied to address this gap. We used a porcine model of wood bark smoke (WBS)Y
... allergic or chemical reactions and certain infections. Eosinophilic Pneumonia Eosinophilic pneumonia describes a category of pneumonias that ... low oxygen in the bloodstream. Acute Idiopathic Eosinophilic Pneumonia Acute idiopathic eosinophilic pneumonia is a more sudden ...
Loer, S A; Tarnow, J
2001-06-01
Hydrochloric acid aspiration increases pulmonary microvascular permeability. The authors tested the hypothesis that partial liquid ventilation has a beneficial effect on filtration coefficients in acute acid-induced lung injury. Isolated blood-perfused rabbit lungs were assigned randomly to one of four groups. Group 1 (n = 6) served as a control group without edema. In group 2 (n = 6), group 3 (n = 6), and group 4 (n = 6), pulmonary edema was induced by intratracheal instillation of hydrochloric acid (0.1 N, 2 ml/kg body weight). Filtration coefficients were determined 30 min after this injury (by measuring loss of perfusate after increase of left atrial pressure). Group 2 lungs were gas ventilated, and group 3 lungs received partial liquid ventilation (15 ml perfluorocarbon/kg body weight). In group 4 lungs, the authors studied the immediate effects of bronchial perfluorocarbon instillation on ongoing filtration. Intratracheal instillation of hydrochloric acid markedly increased filtration coefficients when compared with non-injured control lungs (2.3 +/- 0.7 vs. 0.31 +/- 0.08 ml.min(-1). mmHg(-1).100 g(-1) wet lung weight, P < 0.01). Partial liquid ventilation reduced filtration coefficients of the injured lungs (to 0.9 +/- 0.3 ml.min(-1).mmHg(-1).100 g(-1) wet lung weight, P = 0.022). Neither pulmonary artery nor capillary pressures (determined by simultaneous occlusion of inflow and outflow of the pulmonary circulation) were changed by hydrochloric acid instillation or by partial liquid ventilation. During ongoing filtration, bronchial perfluorocarbon instillation (5 ml/kg body weight) immediately reduced the amount of filtered fluid by approximately 50% (P = 0.027). In the acute phase after acid injury, partial liquid ventilation reduced pathologic fluid filtration. This effect started immediately after bronchial perfluorocarbon instillation and was not associated with changes in mean pulmonary artery, capillary, or airway pressures. The authors suggest that in the early phase of acid injury, reduction of fluid filtration contributes to the beneficial effects of partial liquid ventilation on gas exchange and lung mechanics.
Barreno, Ramon X.; Richards, Jeremy B.; Schneider, Daniel J.; Cromar, Kevin R.; Nadas, Arthur J.; Hernandez, Christopher B.; Hallberg, Lance M.; Price, Roger E.; Hashmi, Syed S.; Blackburn, Michael R.; Haque, Ikram U.
2013-01-01
Inhalation of ozone (O3), a common environmental pollutant, causes pulmonary injury, pulmonary inflammation, and airway hyperresponsiveness (AHR) in healthy individuals and exacerbates many of these same sequelae in individuals with preexisting lung disease. However, the mechanisms underlying these phenomena are poorly understood. Consequently, we sought to determine the contribution of osteopontin (OPN), a hormone and a pleiotropic cytokine, to the development of O3-induced pulmonary injury, pulmonary inflammation, and AHR. To that end, we examined indices of these aforementioned sequelae in mice genetically deficient in OPN and in wild-type, C57BL/6 mice 24 h following the cessation of an acute (3 h) exposure to filtered room air (air) or O3 (2 parts/million). In wild-type mice, O3 exposure increased bronchoalveolar lavage fluid (BALF) OPN, whereas immunohistochemical analysis demonstrated that there were no differences in the number of OPN-positive alveolar macrophages between air- and O3-exposed wild-type mice. O3 exposure also increased BALF epithelial cells, protein, and neutrophils in wild-type and OPN-deficient mice compared with genotype-matched, air-exposed controls. However, following O3 exposure, BALF neutrophils were significantly reduced in OPN-deficient compared with wild-type mice. When airway responsiveness to inhaled acetyl-β-methylcholine chloride (methacholine) was assessed using the forced oscillation technique, O3 exposure caused hyperresponsiveness to methacholine in the airways and lung parenchyma of wild-type mice, but not OPN-deficient mice. These results demonstrate that OPN is increased in the air spaces following acute exposure to O3 and functionally contributes to the development of O3-induced pulmonary inflammation and airway and lung parenchymal hyperresponsiveness to methacholine. PMID:23666750
Hagawane, T N; Gaikwad, R V; Kshirsagar, N A
2016-05-01
Despite advances in therapy and overall medical care, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) management remains a problem. Hence the objective of this study was to develop a rat model that mimics human ALI/ARDS. Four groups of Wistar rats, 48 per group were treated with (i) intratracheal (IT) lipopolysaccharide (LPS) (5 mg/kg) dissolved in normal saline (NS), (ii) intravenous (iv) oleic acid (OA) (250 μl/kg) suspension in bovine serum albumin (BSA), (iii) dual hit: IT LPS (2 mg/kg) dissolved in NS and iv OA (100 μl/kg) and (iv) control group: IT NS and iv BSA. From each group at set periods of time various investigations like chest x-rays, respiratory rate (RR), tidal volume (TV), total cell count, differential cell count, total protein count and cytokine levels in bronchoalveolar lavage fluid (BALF), lung wet/dry weight ratio and histopathological examination were done. It was noted that the respiratory rate, and tumour necrosis factor-α (TNF-α) levels were significantly higher at 4 h in the dual hit group as compared to LPS, OA and control groups. Interleukin-6 (IL-6) levels were significantly higher in the dual hit group as compared to LPS at 8 and 24 h, OA at 8 h and control (at all time intervals) group. IL-1β levels were significantly higher in LPS and dual hit groups at all time intervals, but not in OA and control groups. The injury induced in dual hit group was earlier and more sustained as compared to LPS and OA alone. The lung pathology and changes in respiration functions produced by the dual hit model were closer to the diagnostic criteria of ALI/ARDS in terms of clinical manifestations and pulmonary injury and the injury persisted longer as compared to LPS and OA single hit model. Therefore, the ARDS model produced by the dual hit method was closer to the diagnostic criteria of ARDS in terms of clinical manifestations and pulmonary injury.
Dosimetric correlations of acute esophagitis in lung cancer patients treated with radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, Ken; Nemoto, Kenji; Saito, Haruo
2005-07-01
Purpose: To evaluate the factors associated with acute esophagitis in lung cancer patients treated with thoracic radiotherapy. Methods and Materials: We examined 35 patients with non-small-cell lung cancer (n = 27, 77%) and small-cell lung cancer (n = 8, 23%) treated with thoracic radiotherapy between February 2003 and November 2004. The median patient age was 70 years (range, 50-83 years). The disease stage was Stage I in 2 patients (6%), Stage II in 1 (3%), Stage IIIa in 10 (28%), Stage IIIb in 9 (26%), and Stage IV in 9 (26%); 4 patients (11%) had recurrent disease after surgery. Amore » median dose of 60 Gy (range, 50-67 Gy) was given to the isocenter and delivered in single daily fractions of 1.8 or 2 Gy. With heterogeneity corrections, the median given dose to the isocenter was 60.3 Gy (range, 49.9-67.2 Gy). Of the 35 patients, 30 (86%) received concurrent chemotherapy consisting of a platinum agent, cisplatin or carboplatin, combined with paclitaxel in 18 patients (52%), irinotecan hydrochloride in 7 (20%), vincristine sulfate and etoposide in 2 (5%), vinorelbine ditartrate in 1 (3%), etoposide in 1 (3%), and docetaxel in 1 patient (3%). Three of these patients underwent induction therapy with cisplatin and irinotecan hydrochloride, administered before thoracic radiotherapy, and concurrent chemotherapy. Esophageal toxicity was graded according to the Radiation Therapy Oncology Group criteria. The following factors were analyzed with respect to their association with Grade 1 or worse esophagitis by univariate and multivariate analyses: age, gender, concurrent chemotherapy, chemotherapeutic agents, maximal esophageal dose, mean esophageal dose, and percentage of esophageal volume receiving >10 to >65 Gy in 5-Gy increments. Results: Of the 35 patients, 25 (71%) developed acute esophagitis, with Grade 1 in 20 (57%) and Grade 2 in 5 (14%). None of the patients had Grade 3 or worse toxicity. The most significant correlation was between esophagitis and percentage of esophageal volume receiving >35 Gy on univariate (p = 0.002) and multivariate (p = 0.018) analyses. Conclusion: The percentage of esophageal volume receiving >35 Gy was the most statistically significant factor associated with mild acute esophagitis.« less
Pulmonary immunity and extracellular matrix interactions.
O'Dwyer, David N; Gurczynski, Stephen J; Moore, Bethany B
2018-04-09
The lung harbors a complex immune system composed of both innate and adaptive immune cells. Recognition of infection and injury by receptors on lung innate immune cells is crucial for generation of antigen-specific responses by adaptive immune cells. The extracellular matrix of the lung, comprising the interstitium and basement membrane, plays a key role in the regulation of these immune systems. The matrix consists of several hundred assembled proteins that interact to form a bioactive scaffold. This template, modified by enzymes, acts to facilitate cell function and differentiation and changes dynamically with age and lung disease. Herein, we explore relationships between innate and adaptive immunity and the lung extracellular matrix. We discuss the interactions between extracellular matrix proteins, including glycosaminoglycans, with prominent effects on innate immune signaling effectors such as toll-like receptors. We describe the relationship of extracellular matrix proteins with adaptive immunity and leukocyte migration to sites of injury within the lung. Further study of these interactions will lead to greater knowledge of the role of matrix biology in lung immunity. The development of novel therapies for acute and chronic lung disease is dependent on a comprehensive understanding of these complex matrix-immunity interactions. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Overview of Clinical Lung Transplantation
Yeung, Jonathan C.; Keshavjee, Shaf
2014-01-01
Since the first successful lung transplant 30 years ago, lung transplantation has rapidly become an established standard of care to treat end-stage lung disease in selected patients. Advances in lung preservation, surgical technique, and immunosuppression regimens have resulted in the routine performance of lung transplantation around the world for an increasing number of patients, with wider indications. Despite this, donor shortages and chronic lung allograft dysfunction continue to prevent lung transplantation from reaching its full potential. With research into the underlying mechanisms of acute and chronic lung graft dysfunction and advances in personalized diagnostic and therapeutic approaches to both the donor lung and the lung transplant recipient, there is increasing confidence that we will improve short- and long-term outcomes in the near future. PMID:24384816
Chen, K H; Chao, D; Liu, C F; Chen, C F; Wang, D
2010-04-01
This study sought to determine whether oxygen radical scavengers of dimethylthiourea (DMTU), superoxide dismutase (SOD), or catalase (CAT) pretreatment attenuated ischemia-reperfusion (I/R)-induced lung injury. After isolation from a Sprague-Dawley rat, the lungs were perfused through the pulmonary artery cannula with rat whole blood diluted 1:1 with a physiological salt solution. An acute lung injury was induced by 10 minutes of hypoxia with 5% CO2-95% N2 followed by 65 minutes of ischemia and then 65 minutes of reperfusion. I/R significantly increased microvascular permeability as measured by the capillary filtration coefficient (Kfc), lung weight-to-body weight ratio (LW/BW), and protein concentration in bronchoalveolar lavage fluid (PCBAL). DMTU pretreatment significantly attenuated the acute lung injury. The capillary filtration coefficient (P<.01), LW/BW (P<.01) and PCBAL (P<.05) were significantly lower among the DMTU-treated rats than hosts pretreated with SOD or CAT. The possible mechanisms of the protective effect of DMTU in I/R-induced lung injury may relate to the permeability of the agent allowing it to scavenge intracellular hydroxyl radicals. However, whether superoxide dismutase or catalase antioxidants showed protective effects possibly due to their impermeability of the cell membrane not allowing scavenging of intracellular oxygen radicals. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Suh, G Y; Chung, M P; Park, S J; Park, J W; Kim, H C; Kim, H; Han, J; Rhee, C H; Kwon, O J
1999-12-01
The aim of this study was to determine the effect of partial liquid ventilation (PLV) using a perfluorocarbon (PFC) on gas exchange and lung inflammatory response in a canine acute lung injury model. After inducing severe lung injury by oleic acid infusion, beagle dogs were randomized to receive either gas ventilation only (control group, n = 6) or PLV (PLV group, n = 7) by sequential instillation of 10 mL/kg of perfluorodecalin (PFC) at 30 min intervals till functional residual capacity was attained. Measurements were made every 30 min till 210 min. Then the lungs were removed and bronchoalveolar lavage (BAL) (35 mL/kg) was performed on the right lung and the left lung was submitted for histologic analysis. There was significant improvement in PaO2 and PaCO2 in the PLV group compared to the control group (p < 0.05) which was associated with a significant decrease in shunt (p < 0.05). There was no significant difference in parameters of lung mechanics and hemodynamics. There was a significant decrease in cell count and neutrophil percentage in BAL fluid and significantly less inflammation and exudate scores in histology in the PLV group (p < 0.05). We conclude that PLV with perfluorodecalin improves gas exchange and decreases inflammatory response in the acutely-injured lung.
Thammanomai, Apiradee; Hamakawa, Hiroshi; Bartolák-Suki, Erzsébet; Suki, Béla
2013-01-01
The accepted protocol to ventilate patients with acute lung injury is to use low tidal volume (VT) in combination with recruitment maneuvers or positive end-expiratory pressure (PEEP). However, an important aspect of mechanical ventilation has not been considered: the combined effects of PEEP and ventilation modes on the integrity of the epithelium. Additionally, it is implicitly assumed that the best PEEP-VT combination also protects the epithelium. We aimed to investigate the effects of ventilation mode and PEEP on respiratory mechanics, peak airway pressures and gas exchange as well as on lung surfactant and epithelial cell integrity in mice with acute lung injury. HCl-injured mice were ventilated at PEEPs of 3 and 6 cmH2O with conventional ventilation (CV), CV with intermittent large breaths (CVLB) to promote recruitment, and a new mode, variable ventilation, optimized for mice (VVN). Mechanics and gas exchange were measured during ventilation and surfactant protein (SP)-B, proSP-B and E-cadherin levels were determined from lavage and lung homogenate. PEEP had a significant effect on mechanics, gas exchange and the epithelium. The higher PEEP reduced lung collapse and improved mechanics and gas exchange but it also down regulated surfactant release and production and increased epithelial cell injury. While CVLB was better than CV, VVN outperformed CVLB in recruitment, reduced epithelial injury and, via a dynamic mechanotransduction, it also triggered increased release and production of surfactant. For long-term outcome, selection of optimal PEEP and ventilation mode may be based on balancing lung physiology with epithelial injury. PMID:23326543
Role of Complement C5 in Experimental Blunt Chest Trauma-Induced Septic Acute Lung Injury (ALI)
Karbach, Michael; Braumueller, Sonja; Kellermann, Philipp; Gebhard, Florian; Huber-Lang, Markus; Perl, Mario
2016-01-01
Background Severe blunt chest trauma is associated with high mortality. Sepsis represents a serious risk factor for mortality in acute respiratory distress syndrome (ARDS). In septic patients with ARDS complement activation products were found to be elevated in the plasma. In single models like LPS or trauma complement has been studied to some degree, however in clinically highly relevant double hit models such as the one used here little data is available. Here, we hypothesized that absence of C5 is correlated with a decreased inflammatory response in trauma induced septic acute lung injury. Methods 12 hrs after DH in mice the local and systemic cytokines and chemokines were quantified by multiplex bead array or ELISA, activated caspase-3 by western blot. Data were analyzed using one-way ANOVA followed by post-hoc Sidak’s multiple comparison test (significance, p≤ 0.05). Results In lung tissue interleukin (IL)-6, monocyte chemo attractant protein-1 (MCP-1) and granulocyte-colony stimulating factor (G-CSF) was elevated in both C5-/- mice and wildtype littermates (wt), whereas caspase-3 was reduced in lungs after DH in C5-/- mice. Systemically, reduced keratinocyte-derived chemokine (KC) levels were observed after DH in C5-/- compared to wt mice. Locally, lung myeloperoxidase (MPO), protein, IL-6, MCP-1 and G-CSF in brochoalveolar lavage fluid (BALF) were elevated after DH in C5-/- compared to wt. Conclusions In the complex but clinically relevant DH model the local and systemic inflammatory immune response features both, C5-dependent and C5-independent characteristics. Activation of caspase-3 in lung tissue after DH was C5-dependent whereas local inflammation in lung tissue was C5-independent. PMID:27437704
Integrative Assessment of Chlorine-Induced Acute Lung Injury in Mice
Pope-Varsalona, Hannah; Concel, Vincent J.; Liu, Pengyuan; Bein, Kiflai; Berndt, Annerose; Martin, Timothy M.; Ganguly, Koustav; Jang, An Soo; Brant, Kelly A.; Dopico, Richard A.; Upadhyay, Swapna; Di, Y. P. Peter; Hu, Zhen; Vuga, Louis J.; Medvedovic, Mario; Kaminski, Naftali; You, Ming; Alexander, Danny C.; McDunn, Jonathan E.; Prows, Daniel R.; Knoell, Daren L.
2012-01-01
The genetic basis for the underlying individual susceptibility to chlorine-induced acute lung injury is unknown. To uncover the genetic basis and pathophysiological processes that could provide additional homeostatic capacities during lung injury, 40 inbred murine strains were exposed to chlorine, and haplotype association mapping was performed. The identified single-nucleotide polymorphism (SNP) associations were evaluated through transcriptomic and metabolomic profiling. Using ≥ 10% allelic frequency and ≥ 10% phenotype explained as threshold criteria, promoter SNPs that could eliminate putative transcriptional factor recognition sites in candidate genes were assessed by determining transcript levels through microarray and reverse real-time PCR during chlorine exposure. The mean survival time varied by approximately 5-fold among strains, and SNP associations were identified for 13 candidate genes on chromosomes 1, 4, 5, 9, and 15. Microarrays revealed several differentially enriched pathways, including protein transport (decreased more in the sensitive C57BLKS/J lung) and protein catabolic process (increased more in the resistant C57BL/10J lung). Lung metabolomic profiling revealed 95 of the 280 metabolites measured were altered by chlorine exposure, and included alanine, which decreased more in the C57BLKS/J than in the C57BL/10J strain, and glutamine, which increased more in the C57BL/10J than in the C57BLKS/J strain. Genetic associations from haplotype mapping were strengthened by an integrated assessment using transcriptomic and metabolomic profiling. The leading candidate genes associated with increased susceptibility to acute lung injury in mice included Klf4, Sema7a, Tns1, Aacs, and a gene that encodes an amino acid carrier, Slc38a4. PMID:22447970
Schreur, H J; Vanderschoot, J; Zwinderman, A H; Dijkman, J H; Sterk, P J
1995-02-01
The association between lung sound alterations and airways obstruction has long been recognized in clinical practice, but the precise pathophysiological mechanisms of this relationship have not been determined. Therefore, we examined the changes in lung sounds at well-defined levels of methacholine-induced airway narrowing in eight normal and nine asthmatic subjects with normal baseline lung function. All subjects underwent phonopneumography at baseline condition and at > or = 20% fall in forced expiratory volume in one second (FEV1), and in asthmatic subjects also at > or = 40% fall in FEV1. Lung sounds were recorded at three locations on the chest wall during standardized quiet breathing, and during maximal forced breathing. Airflow-dependent power spectra were computed using fast Fourier transform. For each spectrum, we determined the intensity and frequency content of lung sounds, together with the extent of wheezing. The results were analysed using analysis of variance (ANOVA). During acute airway narrowing, the intensity and frequency content of the recorded sounds, as well as the extent of wheezing, were higher than at baseline in both groups of subjects. At similar levels of obstruction, both the pitch and the change in sound intensity with airflow were higher in asthmatics than in normal subjects. Wheezing, being nondiscriminative between the subject groups at baseline, was more prominent in asthmatics than in normal subjects at 20% fall in FEV1. We conclude that, at given levels of acute airway narrowing, lung sounds differ between asthmatics and normal subjects. This suggests that airflow-standardized phonopneumography is a sensitive method for detecting abnormalities in airway dynamics in asthma.(ABSTRACT TRUNCATED AT 250 WORDS)
Role of Complement C5 in Experimental Blunt Chest Trauma-Induced Septic Acute Lung Injury (ALI).
Kalbitz, Miriam; Karbach, Michael; Braumueller, Sonja; Kellermann, Philipp; Gebhard, Florian; Huber-Lang, Markus; Perl, Mario
2016-01-01
Severe blunt chest trauma is associated with high mortality. Sepsis represents a serious risk factor for mortality in acute respiratory distress syndrome (ARDS). In septic patients with ARDS complement activation products were found to be elevated in the plasma. In single models like LPS or trauma complement has been studied to some degree, however in clinically highly relevant double hit models such as the one used here little data is available. Here, we hypothesized that absence of C5 is correlated with a decreased inflammatory response in trauma induced septic acute lung injury. 12 hrs after DH in mice the local and systemic cytokines and chemokines were quantified by multiplex bead array or ELISA, activated caspase-3 by western blot. Data were analyzed using one-way ANOVA followed by post-hoc Sidak's multiple comparison test (significance, p≤ 0.05). In lung tissue interleukin (IL)-6, monocyte chemo attractant protein-1 (MCP-1) and granulocyte-colony stimulating factor (G-CSF) was elevated in both C5-/- mice and wildtype littermates (wt), whereas caspase-3 was reduced in lungs after DH in C5-/- mice. Systemically, reduced keratinocyte-derived chemokine (KC) levels were observed after DH in C5-/- compared to wt mice. Locally, lung myeloperoxidase (MPO), protein, IL-6, MCP-1 and G-CSF in brochoalveolar lavage fluid (BALF) were elevated after DH in C5-/- compared to wt. In the complex but clinically relevant DH model the local and systemic inflammatory immune response features both, C5-dependent and C5-independent characteristics. Activation of caspase-3 in lung tissue after DH was C5-dependent whereas local inflammation in lung tissue was C5-independent.
Xu, Ming-Ju; Liu, Bao-Jian; Wang, Cun-Lian; Wang, Guo-Hua; Tian, Yong; Wang, Shao-Hua; Li, Jun; Li, Pei-Yao; Zhang, Rui-Hua; Wei, Dong; Tian, Shu-Fei; Xu, Tong
2017-11-01
Epigallocatechin-3-gallate (EGCG) was found to inhibit the Toll-like receptor 4 (TLR4) pathway involved in influenza virus pathogenesis. Here, the effect of EGCG on TLR4 in an H9N2 virus-induced acute lung injury mouse model was investigated. BALB/c mice were inoculated intranasally with A/Swine/Hebei/108/2002 (H9N2) virus or noninfectious allantoic fluid, and treated with EGCG and E5564 or normal saline orally for 5 consecutive days. PMVECs were treated with EGCG or anti-67kDa laminin receptor (LR). Lung physiopathology, inflammation, oxidative stress, viral replication, and TLR4/NF-κB/Toll-interacting protein (Tollip) pathway in lung tissue and/or PMVECs were investigated. EGCG attenuated lung histological lesions, decreased lung W/D ratio, cytokines levels, and inhibited MPO activity and prolonged mouse survival. EGCG treatment also markedly downregulated TLR4 and NF-κB protein levels but Tollip expression was upregulated compared with that in untreated H9N2-infected mice (P<0.05). In PMVECs, anti-67LR antibody treatment significantly downregulated Tollip levels; however, the TLR4 and NF-κB protein levels dramatically increased compared with that in the EGCG-treated group (P<0.05). EGCG remarkably downregulated TLR4 protein levels through 67LR/Tollip, decreased MPO activity and inflammatory cytokine levels, supporting EGCG as a potential therapeutic agent for managing acute lung injury induced by H9N2 SIV. Copyright © 2017 Elsevier B.V. All rights reserved.
Eckle, Tobias; Hughes, Kelly; Ehrentraut, Heidi; Brodsky, Kelley S.; Rosenberger, Peter; Choi, Doo-Sup; Ravid, Katya; Weng, Tingting; Xia, Yang; Blackburn, Michael R.; Eltzschig, Holger K.
2013-01-01
The signaling molecule adenosine has been implicated in attenuating acute lung injury (ALI). Adenosine signaling is terminated by its uptake through equilibrative nucleoside transporters (ENTs). We hypothesized that ENT-dependent adenosine uptake could be targeted to enhance adenosine-mediated lung protection. To address this hypothesis, we exposed mice to high-pressure mechanical ventilation to induce ALI. Initial studies demonstrated time-dependent repression of ENT1 and ENT2 transcript and protein levels during ALI. To examine the contention that ENT repression represents an endogenous adaptive response, we performed functional studies with the ENT inhibitor dipyridamole. Dipyridamole treatment (1 mg/kg; EC50=10 μM) was associated with significant increases in ALI survival time (277 vs. 395 min; P<0.05). Subsequent studies in gene-targeted mice for Ent1 or Ent2 revealed a selective phenotype in Ent2−/− mice, including attenuated pulmonary edema and improved gas exchange during ALI in conjunction with elevated adenosine levels in the bronchoalveolar fluid. Furthermore, studies in genetic models for adenosine receptors implicated the A2B adenosine receptor (Adora2b) in mediating ENT-dependent lung protection. Notably, dipyridamole-dependent attenuation of lung inflammation was abolished in mice with alveolar epithelial Adora2b gene deletion. Our newly identified crosstalk pathway between ENT2 and alveolar epithelial Adora2b in lung protection during ALI opens possibilities for combined therapies targeted to this protein set.—Eckle, T., Hughes, K., Ehrentraut, H., Brodsky, K. S., Rosenberger, P., Choi, D.-S., Ravid, K., Weng, T., Xia, Y., Blackburn, M. R., Eltzschig, H. K. Crosstalk between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury. PMID:23603835
Larcombe, Alexander N.; Foong, Rachel E.; Boylen, Catherine E.; Zosky, Graeme R.
2012-01-01
Please cite this paper as: Larcombe et al. (2012) Acute diesel exhaust particle exposure increases viral titre and inflammation associated with existing influenza infection, but does not exacerbate deficits in lung function. Influenza and Other Respiratory Viruses DOI:10.1111/irv.12012. Background Exposure to diesel exhaust particles (DEP) is thought to exacerbate many pre‐existing respiratory diseases, including asthma, bronchitis and chronic obstructive pulmonary disease, however, there is a paucity of data on whether DEP exacerbates illness due to respiratory viral infection. Objectives To assess the physiological consequences of an acute DEP exposure during the peak of influenza‐induced illness. Methods We exposed adult female BALB/c mice to 100 μg DEP (or control) 3·75 days after infection with 104·5 plaque forming units of influenza A/Mem71 (or control). Six hours, 24 hours and 7 days after DEP exposure we measured thoracic gas volume and lung function at functional residual capacity. Bronchoalveolar lavage fluid was taken for analyses of cellular inflammation and cytokines, and whole lungs were taken for measurement of viral titre. Results Influenza infection resulted in significantly increased inflammation, cytokine influx and impairment to lung function. DEP exposure alone resulted in less inflammation and cytokine influx, and no impairment to lung function. Mice infected with influenza and exposed to DEP had higher viral titres and neutrophilia compared with infected mice, yet they did not have more impaired lung mechanics than mice infected with influenza alone. Conclusions A single dose of DEP is not sufficient to physiologically exacerbate pre‐existing respiratory disease caused by influenza infection in mice. PMID:22994877
Peters, Dorothea M; Vadász, István; Wujak, Lukasz; Wygrecka, Malgorzata; Olschewski, Andrea; Becker, Christin; Herold, Susanne; Papp, Rita; Mayer, Konstantin; Rummel, Sebastian; Brandes, Ralph P; Günther, Andreas; Waldegger, Siegfried; Eickelberg, Oliver; Seeger, Werner; Morty, Rory E
2014-01-21
TGF-β is a pathogenic factor in patients with acute respiratory distress syndrome (ARDS), a condition characterized by alveolar edema. A unique TGF-β pathway is described, which rapidly promoted internalization of the αβγ epithelial sodium channel (ENaC) complex from the alveolar epithelial cell surface, leading to persistence of pulmonary edema. TGF-β applied to the alveolar airspaces of live rabbits or isolated rabbit lungs blocked sodium transport and caused fluid retention, which--together with patch-clamp and flow cytometry studies--identified ENaC as the target of TGF-β. TGF-β rapidly and sequentially activated phospholipase D1, phosphatidylinositol-4-phosphate 5-kinase 1α, and NADPH oxidase 4 (NOX4) to produce reactive oxygen species, driving internalization of βENaC, the subunit responsible for cell-surface stability of the αβγENaC complex. ENaC internalization was dependent on oxidation of βENaC Cys(43). Treatment of alveolar epithelial cells with bronchoalveolar lavage fluids from ARDS patients drove βENaC internalization, which was inhibited by a TGF-β neutralizing antibody and a Tgfbr1 inhibitor. Pharmacological inhibition of TGF-β signaling in vivo in mice, and genetic ablation of the nox4 gene in mice, protected against perturbed lung fluid balance in a bleomycin model of lung injury, highlighting a role for both proximal and distal components of this unique ENaC regulatory pathway in lung fluid balance. These data describe a unique TGF-β-dependent mechanism that regulates ion and fluid transport in the lung, which is not only relevant to the pathological mechanisms of ARDS, but might also represent a physiological means of acutely regulating ENaC activity in the lung and other organs.
Whitehead, Gregory S; Grasman, Keith A; Kimmel, Edgar C
2003-02-01
Pulmonary function and inflammation in the lungs of rodents exposed by inhalation to carbon/graphite/epoxy advanced composite material (ACM) combustion products were compared to that of a rodent model of acute lung injury (ALI) produced by pneumotoxic paraquat dichloride. This investigation was undertaken to determine if short-term exposure to ACM smoke induces ALI; and to determine if smoke-related responses were similar to the pathogenic mechanisms of a model of lung vascular injury. We examined the time-course for mechanical lung function, infiltration of inflammatory cells into the lung, and the expression of three inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Male Fischer-344 rats were either exposed to 26.8-29.8 g/m(3) nominal concentrations of smoke or were given i.p. injections of paraquat dichloride. Measurements were determined at 1, 2, 3, and 7 days post exposure. In the smoke-challenged rats, there were no changes in lung function indicative of ALI throughout the 7-day observation period, despite the acute lethality of the smoke atmosphere. However, the animals showed signs of pulmonary inflammation. The expression of TNF-alpha was significantly increased in the lavage fluid 1 day following exposure, which preceded the maximum leukocyte infiltration. MIP-2 levels were significantly increased in lavage fluid at days 2, 3, and 7. This followed the leukocyte infiltration. IFN-gamma was significantly increased in the lung tissue at day 7, which occurred during the resolution of the inflammatory response. The paraquat, which was also lethal to a small percentage of the animals, caused several physiologic changes characteristic of ALI, including significant decreases in lung compliance, lung volumes/capacities, distribution of ventilation, and gas exchange capacity. The expression of TNF-alpha and MIP-2 increased significantly in the lung tissue as well as in the lavage fluid. Increased MIP-2 levels also preceded the maximum neutrophil infiltration. The differences in the time-course and primary site of TNF-alpha, MIP-2, and IFN-gamma expression; and the differences in the temporal relationship between their expression and infiltration of inflammatory cells may have accounted for the differences in lung function between paraquat treated and ACM smoke exposed animals.
[Dermatomyositis associated with anti-MDA5 antibodies and pneumocystis pneumonia: Two lethal cases].
Aymonier, M; Abed, S; Boyé, T; Barazzutti, H; Fournier, B; Morand, J-J
2017-04-01
Dermatomyositis associated with anti-MDA-5 autoantibodies is a recently-described clinical entity. Herein we report two lethal cases involving pneumocystis pneumonia. Case n o 1. A 56-year-old male patient developed cutaneous symptoms consistent with dermatomyositis without muscular involvement. Antinuclear antibodies were present and anti-MDA5 auto-antibodies were identified. The scan showed interstitial lung disease without infection. Significant improvement was obtained with corticosteroids. One month later, the patient presented acute respiratory illness (hypoxemia: PaO 2 60mmHg, exacerbation of lung disease evidenced by a scan, and diagnosis of pneumocystis pneumonia on bronchoalveolar lavage). He died despite appropriate antibiotic therapy and immunosuppressant therapy. Case n o 2. The second case concerned a 52-year-old Vietnamese man who developed more atypical cutaneous symptoms of dermatomyositis without muscular involvement. ANAb responses were positive (1/400) and MDA5 was present. The patient was treated with corticosteroids (40mg/d), hydroxychloroquine, and intravenous immunoglobulin. After significant improvement, the patient developed an acute respiratory illness due to superinfection with pneumocystis and he died despite specific treatment and cyclophosphamide bolus. In dermatomyositis, anti-MDA5 antibody screening is essential for the prognosis since the disease carries a risk of complication with severe lung disease. Bronchial fibroscopy with bronchoalveolar lavage should be considered at the time of diagnosis. Our two cases suggest the need for early screening for pneumocystis pneumonia in the event of respiratory distress and possibly for prophylactic treatment at the start of immunosuppressant therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Validation of an electronic surveillance system for acute lung injury
Herasevich, Vitaly; Yilmaz, Murat; Khan, Hasrat; Hubmayr, Rolf D.; Gajic, Ognjen
2009-01-01
Objective Early detection of acute lung injury (ALI) is essential for timely implementation of evidence-based therapies and enrollment into clinical trials. We aimed to determine the accuracy of computerized syndrome surveillance for detection of ALI in hospitalized patients and compare it with routine clinical assessment. Design Using a near-real time copy of the electronic medical records we developed and validated a custom ALI electronic alert (ALI “sniffer”) based on the European-American Consensus Conference Definition and compared its performance against provider derived documentation. Patients and setting Consecutive 3795 critically ill patients admitted to 9 multidisciplinary intensive care units (ICUs) of a tertiary care teaching institution. Measurements and main results ALI developed in 325 patients and was recognized by bedside clinicians in only 86 (26.5%). Under-recognition of ALI was associated with not implementing protective mechanical ventilation (median tidal volumes of 9.2 vs 8.0 mL/kg predicted body weight, p<0.001). ALI “sniffer” demonstrated excellent sensitivity, 96% (95% CI 94 to 98) and moderate specificity, 89% (95% CI 88 to 90) with a positive predictive value ranging from 24% (95% CI 13 to 40) in the heart-lung transplant ICU to 64% (95% CI 55 to 71) in the medical ICU. Conclusions Computerized surveillance system accurately identifies critically ill patients who develop ALI syndrome. Since the lack of ALI recognition is a barrier to the timely implementation of best practices and enrollment into research studies, computerized syndrome surveillance could be a useful tool to enhance patient safety and clinical research. PMID:19280175
Lung Ultrasound in the Critically Ill Neonate
Lichtenstein, Daniel A; Mauriat, Philippe
2012-01-01
Critical ultrasound is a new tool for first-line physicians, including neonate intensivists. The consideration of the lung as one major target allows to redefine the priorities. Simple machines work better than up-to-date ones. We use a microconvex probe. Ten standardized signs allow a majority of uses: the bat sign (pleural line), lung sliding and the A-line (normal lung surface), the quad sign and sinusoid sign indicating pleural effusion regardless its echogenicity, the tissue-like sign and fractal sign indicating lung consolidation, the B-line artifact and lung rockets (indicating interstitial syndrome), abolished lung sliding with the stratosphere sign, suggesting pneumothorax, and the lung point, indicating pneumothorax. Other signs are used for more sophisticated applications (distinguishing atelectasis from pneumonia for instance...). All these disorders were assessed in the adult using CT as gold standard with sensitivity and specificity ranging from 90 to 100%, allowing to consider ultrasound as a reasonable bedside gold standard in the critically ill. The same signs are found, with no difference in the critically ill neonate. Fast protocols such as the BLUE-protocol are available, allowing immediate diagnosis of acute respiratory failure using seven standardized profiles. Pulmonary edema e.g. yields anterior lung rockets associated with lung sliding, making the B-profile. The FALLS-protocol, inserted in a Limited Investigation including a simple model of heart and vessels, assesses acute circulatory failure using lung artifacts. Interventional ultrasound (mainly, thoracocenthesis) provides maximal safety. Referrals to CT can be postponed. CEURF proposes personnalized bedside trainings since 1990. Lung ultrasound opens physicians to a visual medicine. PMID:23255876
Lung Ultrasound in the Critically Ill Neonate.
Lichtenstein, Daniel A; Mauriat, Philippe
2012-08-01
Critical ultrasound is a new tool for first-line physicians, including neonate intensivists. The consideration of the lung as one major target allows to redefine the priorities. Simple machines work better than up-to-date ones. We use a microconvex probe. Ten standardized signs allow a majority of uses: the bat sign (pleural line), lung sliding and the A-line (normal lung surface), the quad sign and sinusoid sign indicating pleural effusion regardless its echogenicity, the tissue-like sign and fractal sign indicating lung consolidation, the B-line artifact and lung rockets (indicating interstitial syndrome), abolished lung sliding with the stratosphere sign, suggesting pneumothorax, and the lung point, indicating pneumothorax. Other signs are used for more sophisticated applications (distinguishing atelectasis from pneumonia for instance...). All these disorders were assessed in the adult using CT as gold standard with sensitivity and specificity ranging from 90 to 100%, allowing to consider ultrasound as a reasonable bedside gold standard in the critically ill. The same signs are found, with no difference in the critically ill neonate. Fast protocols such as the BLUE-protocol are available, allowing immediate diagnosis of acute respiratory failure using seven standardized profiles. Pulmonary edema e.g. yields anterior lung rockets associated with lung sliding, making the B-profile. The FALLS-protocol, inserted in a Limited Investigation including a simple model of heart and vessels, assesses acute circulatory failure using lung artifacts. Interventional ultrasound (mainly, thoracocenthesis) provides maximal safety. Referrals to CT can be postponed. CEURF proposes personnalized bedside trainings since 1990. Lung ultrasound opens physicians to a visual medicine.
Chang, Dong W; Hayashi, Shinichi; Gharib, Sina A; Vaisar, Tomas; King, S Trevor; Tsuchiya, Mitsuhiro; Ruzinski, John T; Park, David R; Matute-Bello, Gustavo; Wurfel, Mark M; Bumgarner, Roger; Heinecke, Jay W; Martin, Thomas R
2008-10-01
Acute lung injury causes complex changes in protein expression in the lungs. Whereas most prior studies focused on single proteins, newer methods allowing the simultaneous study of many proteins could lead to a better understanding of pathogenesis and new targets for treatment. The purpose of this study was to examine the changes in protein expression in the bronchoalveolar lavage fluid (BALF) of patients during the course of the acute respiratory distress syndrome (ARDS). Using two-dimensional difference gel electrophoresis (DIGE), the expression of proteins in the BALF from patients on Days 1 (n = 7), 3 (n = 8), and 7 (n = 5) of ARDS were compared with findings in normal volunteers (n = 9). The patterns of protein expression were analyzed using principal component analysis (PCA). Biological processes that were enriched in the BALF proteins of patients with ARDS were identified using Gene Ontology (GO) analysis. Protein networks that model the protein interactions in the BALF were generated using Ingenuity Pathway Analysis. An average of 991 protein spots were detected using DIGE. Of these, 80 protein spots, representing 37 unique proteins in all of the fluids, were identified using mass spectrometry. PCA confirmed important differences between the proteins in the ARDS and normal samples. GO analysis showed that these differences are due to the enrichment of proteins involved in inflammation, infection, and injury. The protein network analysis showed that the protein interactions in ARDS are complex and redundant, and revealed unexpected central components in the protein networks. Proteomics and protein network analysis reveals the complex nature of lung protein interactions in ARDS. The results provide new insights about protein networks in injured lungs, and identify novel mediators that are likely to be involved in the pathogenesis and progression of acute lung injury.
2012-01-01
Acute lung injury and acute respiratory distress syndrome (ARDS) are characterised by severe hypoxemic respiratory failure and poor lung compliance. Despite advances in clinical management, morbidity and mortality remains high. Supportive measures including protective lung ventilation confer a survival advantage in patients with ARDS, but management is otherwise limited by the lack of effective pharmacological therapies. Surfactant dysfunction with quantitative and qualitative abnormalities of both phospholipids and proteins are characteristic of patients with ARDS. Exogenous surfactant replacement in animal models of ARDS and neonatal respiratory distress syndrome shows consistent improvements in gas exchange and survival. However, whilst some adult studies have shown improved oxygenation, no survival benefit has been demonstrated to date. This lack of clinical efficacy may be related to disease heterogeneity (where treatment responders may be obscured by nonresponders), limited understanding of surfactant biology in patients or an absence of therapeutic effect in this population. Crucially, the mechanism of lung injury in neonates is different from that in ARDS: surfactant inhibition by plasma constituents is a typical feature of ARDS, whereas the primary pathology in neonates is the deficiency of surfactant material due to reduced synthesis. Absence of phenotypic characterisation of patients, the lack of an ideal natural surfactant material with adequate surfactant proteins, coupled with uncertainty about optimal timing, dosing and delivery method are some of the limitations of published surfactant replacement clinical trials. Recent advances in stable isotope labelling of surfactant phospholipids coupled with analytical methods using electrospray ionisation mass spectrometry enable highly specific molecular assessment of phospholipid subclasses and synthetic rates that can be utilised for phenotypic characterisation and individualisation of exogenous surfactant replacement therapy. Exploring the clinical benefit of such an approach should be a priority for future ARDS research. PMID:23171712
Chan, Michael C. W.; Kuok, Denise I. T.; Leung, Connie Y. H.; Hui, Kenrie P. Y.; Valkenburg, Sophie A.; Lau, Eric H. Y.; Nicholls, John M.; Fang, Xiaohui; Guan, Yi; Lee, Jae W.; Chan, Renee W. Y.; Webster, Robert G.; Matthay, Michael A.; Peiris, J. S. Malik
2016-01-01
Influenza can cause acute lung injury. Because immune responses often play a role, antivirals may not ensure a successful outcome. To identify pathogenic mechanisms and potential adjunctive therapeutic options, we compared the extent to which avian influenza A/H5N1 virus and seasonal influenza A/H1N1 virus impair alveolar fluid clearance and protein permeability in an in vitro model of acute lung injury, defined the role of virus-induced soluble mediators in these injury effects, and demonstrated that the effects are prevented or reduced by bone marrow-derived multipotent mesenchymal stromal cells. We verified the in vivo relevance of these findings in mice experimentally infected with influenza A/H5N1. We found that, in vitro, the alveolar epithelium’s protein permeability and fluid clearance were dysregulated by soluble immune mediators released upon infection with avian (A/Hong Kong/483/97, H5N1) but not seasonal (A/Hong Kong/54/98, H1N1) influenza virus. The reduced alveolar fluid transport associated with down-regulation of sodium and chloride transporters was prevented or reduced by coculture with mesenchymal stromal cells. In vivo, treatment of aged H5N1-infected mice with mesenchymal stromal cells increased their likelihood of survival. We conclude that mesenchymal stromal cells significantly reduce the impairment of alveolar fluid clearance induced by A/H5N1 infection in vitro and prevent or reduce A/H5N1-associated acute lung injury in vivo. This potential adjunctive therapy for severe influenza-induced lung disease warrants rapid clinical investigation. PMID:26976597
Chan, Michael C W; Kuok, Denise I T; Leung, Connie Y H; Hui, Kenrie P Y; Valkenburg, Sophie A; Lau, Eric H Y; Nicholls, John M; Fang, Xiaohui; Guan, Yi; Lee, Jae W; Chan, Renee W Y; Webster, Robert G; Matthay, Michael A; Peiris, J S Malik
2016-03-29
Influenza can cause acute lung injury. Because immune responses often play a role, antivirals may not ensure a successful outcome. To identify pathogenic mechanisms and potential adjunctive therapeutic options, we compared the extent to which avian influenza A/H5N1 virus and seasonal influenza A/H1N1 virus impair alveolar fluid clearance and protein permeability in an in vitro model of acute lung injury, defined the role of virus-induced soluble mediators in these injury effects, and demonstrated that the effects are prevented or reduced by bone marrow-derived multipotent mesenchymal stromal cells. We verified the in vivo relevance of these findings in mice experimentally infected with influenza A/H5N1. We found that, in vitro, the alveolar epithelium's protein permeability and fluid clearance were dysregulated by soluble immune mediators released upon infection with avian (A/Hong Kong/483/97, H5N1) but not seasonal (A/Hong Kong/54/98, H1N1) influenza virus. The reduced alveolar fluid transport associated with down-regulation of sodium and chloride transporters was prevented or reduced by coculture with mesenchymal stromal cells. In vivo, treatment of aged H5N1-infected mice with mesenchymal stromal cells increased their likelihood of survival. We conclude that mesenchymal stromal cells significantly reduce the impairment of alveolar fluid clearance induced by A/H5N1 infection in vitro and prevent or reduce A/H5N1-associated acute lung injury in vivo. This potential adjunctive therapy for severe influenza-induced lung disease warrants rapid clinical investigation.
Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure
Razvi, Shehla S.; Richards, Jeremy B.; Malik, Farhan; Cromar, Kevin R.; Price, Roger E.; Bell, Cynthia S.; Weng, Tingting; Atkins, Constance L.; Spencer, Chantal Y.; Cockerill, Katherine J.; Alexander, Amy L.; Blackburn, Michael R.; Alcorn, Joseph L.; Haque, Ikram U.
2015-01-01
Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines—including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)—promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120
2010-01-01
Introduction Endotracheal intubation in critically ill patients is associated with severe life-threatening complications in about 20%, mainly due to hypoxemia. We hypothesized that apneic oxygenation via a pharyngeal catheter during the endotracheal intubation procedure would prevent or increase the time to life-threatening hypoxemia and tested this hypothesis in an acute lung injury animal model. Methods Eight anesthetized piglets with collapse-prone lungs induced by lung lavage were ventilated with a fraction of inspired oxygen of 1.0 and a positive end-expiratory pressure of 5 cmH2O. The shunt fraction was calculated after obtaining arterial and mixed venous blood gases. The trachea was extubated, and in randomized order each animal received either 10 L oxygen per minute or no oxygen via a pharyngeal catheter, and the time to desaturation to pulse oximeter saturation (SpO2) 60% was measured. If SpO2 was maintained at over 60%, the experiment ended when 10 minutes had elapsed. Results Without pharyngeal oxygen, the animals desaturated after 103 (88-111) seconds (median and interquartile range), whereas with pharyngeal oxygen five animals had a SpO2 > 60% for the 10-minute experimental period, one animal desaturated after 7 minutes, and two animals desaturated within 90 seconds (P < 0.016, Wilcoxon signed rank test). The time to desaturation was related to shunt fraction (R2 = 0.81, P = 0.002, linear regression); the animals that desaturated within 90 seconds had shunt fractions >40%, whereas the others had shunt fractions <25%. Conclusions In this experimental acute lung injury model, pharyngeal oxygen administration markedly prolonged the time to severe desaturation during apnea, suggesting that this technique might be useful when intubating critically ill patients with acute respiratory failure. PMID:20497538
Villar, Jesús; Belda, Javier; Blanco, Jesús; Suarez-Sipmann, Fernando; Añón, José Manuel; Pérez-Méndez, Lina; Ferrando, Carlos; Parrilla, Dácil; Montiel, Raquel; Corpas, Ruth; González-Higueras, Elena; Pestaña, David; Martínez, Domingo; Fernández, Lorena; Soro, Marina; García-Bello, Miguel Angel; Fernández, Rosa Lidia; Kacmarek, Robert M
2016-10-13
Patient-ventilator asynchrony is a common problem in mechanically ventilated patients with acute respiratory failure. It is assumed that asynchronies worsen lung function and prolong the duration of mechanical ventilation (MV). Neurally Adjusted Ventilatory Assist (NAVA) is a novel approach to MV based on neural respiratory center output that is able to trigger, cycle, and regulate the ventilatory cycle. We hypothesized that the use of NAVA compared to conventional lung-protective MV will result in a reduction of the duration of MV. It is further hypothesized that NAVA compared to conventional lung-protective MV will result in a decrease in the length of ICU and hospital stay, and mortality. This is a prospective, multicenter, randomized controlled trial in 306 mechanically ventilated patients with acute respiratory failure from several etiologies. Only patients ventilated for less than 5 days, and who are expected to require prolonged MV for an additional 72 h or more and are able to breathe spontaneously, will be considered for enrollment. Eligible patients will be randomly allocated to two ventilatory arms: (1) conventional lung-protective MV (n = 153) and conventional lung-protective MV with NAVA (n = 153). Primary outcome is the number of ventilator-free days, defined as days alive and free from MV at day 28 after endotracheal intubation. Secondary outcomes are total length of MV, and ICU and hospital mortality. This is the first randomized clinical trial examining, on a multicenter scale, the beneficial effects of NAVA in reducing the dependency on MV of patients with acute respiratory failure. ClinicalTrials.gov website ( NCT01730794 ). Registered on 15 November 2012.
Bradley, Jeffrey; Graham, Mary V; Winter, Kathryn; Purdy, James A; Komaki, Ritsuko; Roa, Wilson H; Ryu, Janice K; Bosch, Walter; Emami, Bahman
2005-02-01
To evaluate prospectively the acute and late morbidities from a multiinstitutional three-dimensional radiotherapy dose-escalation study for inoperable non-small-cell lung cancer. A total of 179 patients were enrolled in a Phase I-II three-dimensional radiotherapy dose-escalation trial. Of the 179 patients, 177 were eligible. The use of concurrent chemotherapy was not allowed. Twenty-five patients received neoadjuvant chemotherapy. Patients were stratified at escalating radiation dose levels depending on the percentage of the total lung volume that received >20 Gy with the treatment plan (V(20)). Patients with a V(20) <25% (Group 1) received 70.9 Gy in 33 fractions, 77.4 Gy in 36 fractions, 83.8 Gy in 39 fractions, and 90.3 Gy in 42 fractions, successively. Patients with a V(20) of 25-36% (Group 2) received doses of 70.9 Gy and 77.4 Gy, successively. The treatment arm for patients with a V(20) > or =37% (Group 3) closed early secondary to poor accrual (2 patients) and the perception of excessive risk for the development of pneumonitis. Toxicities occurring or persisting beyond 90 days after the start of radiotherapy were scored as late toxicities. The estimated toxicity rates were calculated on the basis of the cumulative incidence method. The following acute Grade 3 or worse toxicities were observed for Group 1: 70.9 Gy (1 case of weight loss), 77.4 Gy (nausea and hematologic toxicity in 1 case each), 83.8 Gy (1 case of hematologic toxicity), and 90.3 Gy (3 cases of lung toxicity). The following acute Grade 3 or worse toxicities were observed for Group 2: none at 70.9 Gy and 2 cases of lung toxicity at 77.4 Gy. No patients developed acute Grade 3 or worse esophageal toxicity. The estimated rate of Grade 3 or worse late lung toxicity at 18 months was 7%, 16%, 0%, and 13% for Group 1 patients receiving 70.9, 77.4, 83.8, or 90.3 Gy, respectively. Group 2 patients had an estimated late lung toxicity rate of 15% at 18 months for both 70.9 and 77.4 Gy. The prognostic factors for late pneumonitis in multivariate analysis were the mean lung dose and V(20). The estimated rate of late Grade 3 or worse esophageal toxicity at 18 months was 8%, 0%, 4%, and 6%, for Group 1 patients receiving 70.9, 77.4, 83.8, 90.3 Gy, respectively, and 0% and 5%, respectively, for Group 2 patients receiving 70.9 and 77.4 Gy. The dyspnea index scoring at baseline and after therapy for functional impairment, magnitude of task, and magnitude of effort revealed no change in 63%, functional pulmonary loss in 23%, and pulmonary improvement in 14% of patients. The observed locoregional control and overall survival rates were each similar among the study arms within each dose level of Groups 1 and 2. Locoregional control was achieved in 50-78% of patients. Thirty-one patients developed regional nodal failure. The location of nodal failure in relationship to the RT volume was documented in 28 of these 31 patients. Twelve patients had isolated elective nodal failures. Fourteen patients had regional failure in irradiated nodal volumes. Two patients had both elective nodal and irradiated nodal failure. The radiation dose was safely escalated using three-dimensional conformal techniques to 83.8 Gy for patients with V(20) values of <25% (Group 1) and to 77.4 Gy for patients with V(20) values between 25% and 36% (Group 2), using fraction sizes of 2.15 Gy. The 90.3-Gy dose level was too toxic, resulting in dose-related deaths in 2 patients. Elective nodal failure occurred in <10% of patients.