Sample records for develop advanced lasers

  1. Laser Light Scattering, from an Advanced Technology Development Program to Experiments in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Tscharnuter, Walther W.; Macgregor, Andrew D.; Dautet, Henri; Deschamps, Pierre; Boucher, Francois; Zuh, Jixiang; Tin, Padetha; Rogers, Richard B.; Ansari, Rafat R.

    1994-01-01

    Recent advancements in laser light scattering hardware are described. These include intelligent single card correlators; active quench/active reset avalanche photodiodes; laser diodes; and fiber optics which were used by or developed for a NASA advanced technology development program. A space shuttle experiment which will employ aspects of these hardware developments is previewed.

  2. Recent Advances in Fiber Lasers for Nonlinear Microscopy

    PubMed Central

    Xu, C.; Wise, F. W.

    2013-01-01

    Nonlinear microscopy techniques developed over the past two decades have provided dramatic new capabilities for biological imaging. The initial demonstrations of nonlinear microscopies coincided with the development of solid-state femtosecond lasers, which continue to dominate applications of nonlinear microscopy. Fiber lasers offer attractive features for biological and biomedical imaging, and recent advances are leading to high-performance sources with the potential for robust, inexpensive, integrated instruments. This article discusses recent advances, and identifies challenges and opportunities for fiber lasers in nonlinear bioimaging. PMID:24416074

  3. Laser light scattering instrument advanced technology development

    NASA Technical Reports Server (NTRS)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  4. Bibliography of Soviet Laser Developments, September-October 1987

    DTIC Science & Technology

    1988-10-01

    Lasers , Gas Lasers , Chemical Lasers , Laser Components Nonlinear Optics, Spectroscopy of Laser Materials, Ultrashort Pulse Generation, Laser ...optics; spectroscopy of laser materials; ultrashort pulse generation; crystal growing; theoretical aspects of advanced lasers ; and general laser theory...focusing ....................... 26 6. Acoustic Interaction ................ 26 G. Spectroscopy of Laser Materials ......... 28 H.

  5. Bibliography of Soviet Laser Developments, Number 81, January-February 1986

    DTIC Science & Technology

    1987-04-24

    Lasers , Liquid Lasers ; Gas Lasers ; Chemical Lasers , Laser Components Nonlinear Optics, Spectroscopy of Laser Materials, Ultrashort Pulse Generation...spectroscopy of laser materials; ultrashort pulse generation; theoretical aspects of advanced lasers ; and general laser theory. Laser applications are...28 6. Acoustic Interaction ................ 28 G. Spectroscopy of Laser Materials ......... 28 H. Ultrashort

  6. Bibliography of Soviet Laser Developments, Number 44 November - December 1979.

    DTIC Science & Technology

    1980-08-13

    Laser Materials, Ultrashort Pulse Generation, X-ray Lasers , Gamma Lasers , Laser Theory, Laser Biological Effects, Laser Communications, Laser Beam... lasers ; components; nonlinear optics; spectroscopy of laser materials; ultrashort pulse generation; theoretical aspects of advanced lasers ; and...and V.P. Feshchenko (51). Stimulated Raman scattering in absorbing media during pumping by ultrashort laser

  7. Bibliography of Soviet Laser Developments, No. 18, October - December 1974

    DTIC Science & Technology

    1975-04-25

    IIV Lasers, Laser Theory , Laser Biological Effects, Laser Communications, Laser Computer Technology, Holography, Laser Chemical Effects...spectros.copy of laser materials; ultrashort pulse generation; crystal growing; theoretical aspects of advanced lasers; and general laser theory Laser...Semiconductor: Mixed Junction 5 6. Semiconductor: Heterojunction ^ 7. Semiconductor: Theory 8. Nd:Glass B. Liquid Lasers 1

  8. Development of Advanced Seed Laser Modules for Lidar and Spectroscopy Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.

    2013-01-01

    We report on recent progress made in the development of highly compact, single mode, distributed feedback laser (DFB) seed laser modules for lidar and spectroscopy applications from space based platforms. One of the intended application of this technology is in the NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The DFB laser modules operating at 1571 nm and 1262 nm have advanced current and temperature drivers built into them. A combination of temperature and current tuning allows coarse and fine adjustment of the diode wavelengths.

  9. Advances in solid state laser technology for space and medical applications

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Recent developments in laser technology and their potential for medical applications are discussed. Gas discharge lasers, dye lasers, excimer lasers, Nd:YAG lasers, HF and DF lasers, and other commonly used lasers are briefly addressed. Emerging laser technology is examined, including diode-pumped lasers and other solid state lasers.

  10. Bibliography of Soviet Laser Developments. Number 43, September-October 1979.

    DTIC Science & Technology

    1980-06-01

    Laser Materials, Ultrashort Pulse Generation, X-ray Lasers , Gamma Lasers , Laser Theory, Laser Biological Effects, Laser Communications, Laser ...chemical lasers ; components; nonlinear optics; spectroscopy of laser materials; ultrashort pulse generation; theoretical aspects of advanced lasers ; and...and A.L. Traynin (0). Study on single crystals of shaped germanium, irradiated by a pulsed CO 2 laser .

  11. Continued advances in high brightness fiber-coupled laser modules for efficient pumping of fiber and solid-state lasers

    NASA Astrophysics Data System (ADS)

    Hemenway, M.; Chen, Z.; Urbanek, W.; Dawson, D.; Bao, L.; Kanskar, M.; DeVito, M.; Martinsen, R.

    2018-02-01

    Both the fibber laser and diode-pumped solid-state laser market continue to drive advances in pump diode module brightness. We report on the continued progress by nLIGHT to develop and deliver the highest brightness diode-laser pumps using single-emitter technology. Continued advances in multimode laser diode technology [13] and fiber-coupling techniques have enabled higher emitter counts in the element packages, enabling us to demonstrate 305 W into 105 μm - 0.16 NA. This brightness improvement is achieved by leveraging our prior-reported package re-optimization, allowing an increase in the emitter count from two rows of nine emitters to two rows of twelve emitters. Leveraging the two rows off twelve emitter architecture,, product development has commenced on a 400 W into 200 μm - 00.16 NA package. Additionally, the advances in pump technology intended for CW Yb-doped fiber laser pumping has been leveraged to develop the highest brightness 793 nm pump modules for 2 μm Thulium fiber laser pumping, generating 150 W into 200 μm - 0.18 NA and 100 W into 105 μm - 0.15 NA. Lastly, renewed interest in direct diode materials processing led us to experiment with wavelength multiplexing our existing state of the art 200 W, 105 μm - 00.15 NA package into a combined output of 395 WW into 105 μm - 0.16 NA.

  12. BESTIA - the next generation ultra-fast CO 2 laser for advanced accelerator research

    DOE PAGES

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; ...

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO 2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO 2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO 2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimesmore » in the particle acceleration of ions and electrons.« less

  13. Laser Materials Processing Final Report CRADA No. TC-1526-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, J.; Lehane, C. J.

    2017-09-08

    This CRADA project was a joint effort between Lawrence Livermore National Laboratory (LLNL) and United Technologies Corporation (UTC)/Pratt & Whitney (P&W) to demonstrate process capability for drilling holes in turbine airfoils using LLNL-developed femtosecond laser machining technology. The basis for this development was the ability of femtosecond lasers to drill precision holes in variety of materials with little or no collateral damage. The ultimate objective was to develop a laser machine tool consisting of an extremely advanced femtosecond laser subsystem to be developed by LLNL on a best-effort basis and a drilling station for turbine blades and vanes to bemore » developed by P&W. In addition, P&W was responsible for commercializing the system. The goal of the so called Advanced Laser Drilling (ALD) system was to drill specified complex hole-shapes in turbine blades and vanes with a high degree precision and repeatability and simultaneously capable of very high speed processing.« less

  14. The High-Repetition-Rate Advanced Petawatt Laser System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haefner, Constantin; Jarboe, Jeff; Koubikova, Luci

    2017-02-02

    The High-Repetition-Rate Advanced Petawatt Laser System (HAPLS), being developed at Lawrence Livermore National Laboratory (LLNL), recently completed a significant milestone: demonstration of continuous operation of an all diode-pumped, high-energy femtosecond petawatt laser system. The system is now ready for delivery and integration at the European Extreme Light Infrastructure Beamlines facility project (ELI Beamlines) in the Czech Republic.

  15. Development of Electron Beam Pumped KrF Lasers for Fusion Energy

    DTIC Science & Technology

    2008-01-01

    Direct drive with krypton fluoride (KrF) lasers is an attractive approach to inertial fusion energy (IFE): KrF lasers have outstanding beam spatial...attractive power plant [3]. In view of these advances, several world-wide programs are underway to develop KrF lasers for fusion energy . These include

  16. Aura of technology and the cutting edge: a history of lasers in neurosurgery.

    PubMed

    Ryan, Robert W; Spetzler, Robert F; Preul, Mark C

    2009-09-01

    In this historical review the authors examine the important developments that have led to the availability of laser energy to neurosurgeons as a unique and sometimes invaluable tool. They review the physical science behind the function of lasers, as well as how and when various lasers based on different lasing mediums were discovered. They also follow the close association between advances in laser technology and their application in biomedicine, from early laboratory experiments to the first clinical experiences. Because opinions on the appropriate role of lasers in neurosurgery vary widely, the historical basis for some of these views is explored. Initial enthusiasm for a technology that appears to have innate advantages for safe resections has often given way to the strict limitations and demands of the neurosurgical operating theater. However, numerous creative solutions to improve laser delivery, power, safety, and ergonomics demonstrate the important role that technological advances in related scientific fields continue to offer neurosurgery. Benefiting from the most recent developments in materials science, current CO(2) laser delivery systems provide a useful addition to the neurosurgical armamentarium when applied in the correct circumstances and reflect the important historical advances that come about from the interplay between neurosurgery and technology.

  17. Short Wavelength Laser/Materials Interactions

    DTIC Science & Technology

    1989-12-20

    lasterials interaction phenomena and effects, and 4) materials evaluation. The program has led to major advances in science-based understanding of...3.0 RESULTS 5 3.1 MATERIALS SELECTION and CHARACTERIZATION 5 3.2 DEVELOPMENT of NEW INSTRUMENTATION 8 3.2.1 Laser Sources 8 3.2.2 Multiwavelength ...high temperature during laser irradiation. The program has led to major advances in science-based understanding of materials performance under extreme

  18. NASA Laser Light Scattering Advanced Technology Development Workshop, 1988

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Editor)

    1989-01-01

    The major objective of the workshop was to explore the capabilities of existing and prospective laser light scattering hardware and to assess user requirements and needs for a laser light scattering instrument in a reduced gravity environment. The workshop addressed experimental needs and stressed hardware development.

  19. Advanced Laser Architecture for Two-Step Laser Tandem Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Fahey, Molly E.; Li, Steven X.; Yu, Anthony W.; Getty, Stephanie A.

    2016-01-01

    Future astrobiology missions will focus on planets with significant astrochemical or potential astrobiological features, such as small, primitive bodies and the icy moons of the outer planets that may host diverse organic compounds. These missions require advanced instrument techniques to fully and unambiguously characterize the composition of surface and dust materials. Laser desorptionionization mass spectrometry (LDMS) is an emerging instrument technology for in situ mass analysis of non-volatile sample composition. A recent Goddard LDMS advancement is the two-step laser tandem mass spectrometer (L2MS) instrument to address the need for future flight instrumentation to deconvolve complex organic signatures. The L2MS prototype uses a resonance enhanced multi-photon laser ionization mechanism to selectively detect aromatic species from a more complex sample. By neglecting the aliphatic and inorganic mineral signatures in the two-step mass spectrum, the L2MS approach can provide both mass assignments and clues to structural information for an in situ investigation of non-volatile sample composition. In this paper we will describe our development effort on a new laser architecture that is based on the previously flown Lunar Orbiter Laser Altimeter (LOLA) laser transmitter for the L2MS instrument. The laser provides two discrete midinfrared wavelengths (2.8 m and 3.4 m) using monolithic optical parametric oscillators and ultraviolet (UV) wavelength (266 nm) on a single laser bench with a straightforward development path toward flight readiness.

  20. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  1. National Jet Fuels Combustion Program – Area #3 : Advanced Combustion Tests

    DOT National Transportation Integrated Search

    2017-12-31

    The goal of this study is to develop, conduct, and analyze advanced laser and optical measurements in the experimental combustors developed under ASCENT National Fuel Combustion Program to measure sensitivity to fuel properties. We conducted advanced...

  2. Research on industrial 10kW CO2 laser achieves major breakthrough

    NASA Astrophysics Data System (ADS)

    1991-01-01

    The industrial 10kW CO2 laser is one of the items which the industrially developed nations are competing to develop. This laser is capable of continuous output power of over 10kW and can operate continuously for more than 6 hours. The 10kW CO2 laser developed as a key task of China's 7th Five-Year Plan and all its technological targets such as output power, electrooptical conversion efficiency and primary charging continuous operating time, have reached the level of world advancement, allowing China to enter the ranks of international advancement in the area of laser technology. The industrial 10kW CO2 laser can have wide application in such areas of industry as heat treating, machining, welding and surface treatment in industries such as steel, automobiles, ship building and aircraft manufacturing. For instance, using the high-efficiency laser beams of this 10kW laser to treat rollers, fan blades and automotive cylinder blocks can increase the life of these parts and produce large economic benefits. At present, industrial tests of gear welding is already being done on this 10kW laser.

  3. Laser Applications: Implications for Vocational Education.

    ERIC Educational Resources Information Center

    Fraser, Jeannette L.

    Recent and projected advances in and commercial applications of lasers and laser technology were examined in order to assist vocational planners in responding to skill needs that will be created by lasers in the next few years. Until recently, most laser applications were in research and development settings; however, in the last several years…

  4. LLE 1998 annual report, October 1997--September 1998. Inertial fusion program and National Laser Users` Facility program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.

  5. Advances in Lasers for the Treatment of Stones-a Systematic Review.

    PubMed

    Kronenberg, Peter; Somani, Bhaskar

    2018-05-17

    Laser lithotripsy is increasingly used worldwide and is a continuously evolving field with new and extensive research being published every year. Variable pulse length Ho:YAG lithotripters allow new lithotripsy parameters to be manipulated, and there is an effort to integrate new technologies into lithotripters. Pulsed thulium lasers seem to be a viable alternative to holmium lasers. The performance of similar laser fibers varies from manufacturer to manufacturer. Special laser fibers and "cleaving only" fiber tip preparation can be beneficial for the lithotripsy procedure. Different laser settings and the surgical technique employed can have significant impact on the success of laser lithotripsy. When safely done, complications of laser lithotripsy are rare and concern the endoscopic nature of procedure, not the technology itself, making laser lithotripsy one of the safest tools in urology. Laser lithotripsy has had several new developments and more insight has been gained in recent years with many more advances expected in the future.

  6. Thermal Conductivity of Advanced Ceramic Thermal Barrier Coatings Determined by a Steady-state Laser Heat-flux Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.

  7. Practical internal combustion engine laser spark plug development

    NASA Astrophysics Data System (ADS)

    Myers, Michael J.; Myers, John D.; Guo, Baoping; Yang, Chengxin; Hardy, Christopher R.

    2007-09-01

    Fundamental studies on laser ignition have been performed by the US Department of Energy under ARES (Advanced Reciprocating Engines Systems) and by the California Energy Commission under ARICE (Advanced Reciprocating Internal Combustion Engine). These and other works have reported considerable increases in fuel efficiencies along with substantial reductions in green-house gas emissions when employing laser spark ignition. Practical commercial applications of this technology require low cost high peak power lasers. The lasers must be small, rugged and able to provide stable laser beam output operation under adverse mechanical and environmental conditions. New DPSS (Diode Pumped Solid State) lasers appear to meet these requirements. In this work we provide an evaluation of HESP (High Efficiency Side Pumped) DPSS laser design and performance with regard to its application as a practical laser spark plug for use in internal combustion engines.

  8. Advanced space power and propulsion based on lasers

    NASA Astrophysics Data System (ADS)

    Roth, M.; Logan, B. G.

    2015-10-01

    One of the key components for future space exploration, manned or unmanned, is the availability of propulsion systems beyond the state of the art. The rapid development in conventional propulsion systems since the middle of the 20th century has already reached the limits of chemical propulsion technology. To enhance mission radius, shorten the transit time and also extend the lifetime of a spacecraft more efficient, but still powerful propulsion system must be developed. Apart from the propulsion system a major weight contribution arises from the required energy source. Envisioning rapid development of future high average power laser systems and especially the ICAN project we review the prospect of advanced space propulsion based on laser systems.

  9. Assessment of research needs for laser technologies applied to advanced spectroscopic methods

    NASA Astrophysics Data System (ADS)

    1990-01-01

    The Department of Energy (DOE) recognizes that new developments in laser technology and laser spectroscopy can substantially improve the ability to carry out the mission of its Office of Health and Environmental Research (OHER). In brief, the mission of OHER is to support programs of research which allow DOE to understand and anticipate long term effects upon human health and the environment from the production and utilization of alternate forms of energy, and to apply the department's unique capabilities to solve numerous problems in biology and medicine. A DOE study was managed by Consultec Scientific, Inc. who furnished from its staff the Principal Investigator who, in turn, coordinated the enthusiastic efforts of a group of consultants consisting of some of the world's best scientists. The panel made six specific recommendations which dealt with three important areas. First the panel recommends that OHER closely monitor and be prepared to use the advances now being made in solid-state laser technology. These advances, comparable in nature to the revolution which began during the 1950's in solid-state electronics, will radically improve present-day laser technology. Secondly, the panel addressed the use of this advanced technology to maintain the preeminent position which OHER has already created for itself in the development of selective and sensitive instruments for the analysis of atomic and molecular substances and to extend the use of these to measure chemical pollutants in air, soil, and water. Finally, another area of the recommendations dealt with the use of lasers to determine structural and dynamical features of macromolecules and especially to develop x ray lasers and other imaging techniques, including holographic ones, for sequencing DNA and the human genome.

  10. Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa-Aleman, E.; Houk, A.; Spencer, W.

    The development of new signatures and observables from processes related to proliferation activities are often related to the development of technologies. In our physical world, the intensity of observables is linearly related to the input drivers (light, current, voltage, etc.). Ultrafast lasers with high peak energies, opens the door to a new regime where the intensity of the observables is not necessarily linear with the laser energy. Potential nonlinear spectroscopic applications include chemical detection via remote sensing through filament generation, material characterization and processing, chemical reaction specificity, surface phenomena modifications, X-ray production, nuclear fusion, etc. The National Security Directorate lasermore » laboratory is currently working to develop new tools for nonproliferation research with femtosecond and picosecond lasers. Prior to this project, we could only achieve laser energies in the 5 nano-Joule range, preventing the study of nonlinear phenomena. To advance our nonproliferation research into the nonlinear regime we require laser pulses in the milli-Joule (mJ) energy range. We have procured and installed a 35 fs-7 mJ laser, operating at one-kilohertz repetition rate, to investigate elemental and molecular detection of materials in the laboratory with potential applications in remote sensing. Advanced, nonlinear Raman techniques will be used to study materials of interest that are in a matrix of many materials and currently with these nonlinear techniques we can achieve greater than three orders of magnitude signal enhancement. This work studying nuclear fuel cycle materials with nonlinear spectroscopies will advance SRNL research capabilities and grow a core capability within the DOE complex.« less

  11. Advanced 2-micron Solid-state Laser for Wind and CO2 Lidar Applications

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2006-01-01

    Significant advancements in the 2-micron laser development have been made recently. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. The world record 2-micron laser energy is demonstrated with an oscillator and two amplifiers system. It generates more than one joule per pulse energy with excellent beam quality. Based on the successful demonstration of a fully conductive cooled oscillator by using heat pipe technology, an improved fully conductively cooled 2-micron amplifier was designed, manufactured and integrated. It virtually eliminates the running coolant to increase the overall system efficiency and reliability. In addition to technology development and demonstration, a compact and engineering hardened 2-micron laser is under development. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser is expected to be integrated to a lidar system and take field measurements. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper will review the developments of the state-of-the-art solid-state 2-micron laser.

  12. Laser Science & Technology Program Annual Report - 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H-L

    2001-03-20

    The Laser Science and Technology (LS&T) Program Annual Report 2001 provides documentation of the achievements of the LLNL LS&T Program during the April 2001 to March 2002 period using three formats: (1) an Overview that is a narrative summary of important results for the year; (2) brief summaries of research and development activity highlights within the four Program elements: Advanced Lasers and Components (AL&C), Laser Optics and Materials (LO&M), Short Pulse Laser Applications and Technologies (SPLAT), and High-Energy Laser System and Tests (HELST); and (3) a compilation of selected articles and technical reports published in reputable scientific or technology journalsmore » in this period. All three elements (Annual Overview, Activity Highlights, and Technical Reports) are also on the Web: http://laser.llnl.gov/lasers/pubs/icfq.html. The underlying mission for the LS&T Program is to develop advanced lasers, optics, and materials technologies and applications to solve problems and create new capabilities of importance to the Laboratory and the nation. This mission statement has been our guide for defining work appropriate for our Program. A major new focus of LS&T beginning this past year has been the development of high peak power short-pulse capability for the National Ignition Facility (NIF). LS&T is committed to this activity.« less

  13. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2014-01-16

    ZACK JONES AND JIM LYDON OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S M2 SELECTIVE LASER MELTING SYSTEM. THE M2 IS CURRENTLY DEDICATED TO ADVANCED COPPER MATERIAL DEVELOPMENT FOR THE LOW COST UPPER STAGE PROGRAM.

  14. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; hide

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  15. Nanomedical science and laser-driven particle acceleration: promising approaches in the prethermal regime

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.

    2017-05-01

    A major challenge of spatio-temporal radiation biomedicine concerns the understanding of biophysical events triggered by an initial energy deposition inside confined ionization tracks. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances in real-time radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to advanced techniques of ultrafast TW laser-plasma accelerator. Recent advances of powerful TW laser sources ( 1019 W cm-2) and laser-plasma interactions providing ultra-short relativistic particle beams in the energy domain 5-200 MeV open promising opportunities for the development of high energy radiation femtochemistry (HERF) in the prethermal regime of secondary low-energy electrons and for the real-time imaging of radiation-induced biomolecular alterations at the nanoscopic scale. New developments would permit to correlate early radiation events triggered by ultrashort radiation sources with a molecular approach of Relative Biological Effectiveness (RBE). These emerging research developments are crucial to understand simultaneously, at the sub-picosecond and nanometric scales, the early consequences of ultra-short-pulsed radiation on biomolecular environments or integrated biological entities. This innovating approach would be applied to biomedical relevant concepts such as the emerging domain of real-time nanodosimetry for targeted pro-drug activation and pulsed radio-chimiotherapy of cancers.

  16. Next-Generation Terrestrial Laser Scanning to Measure Forest Canopy Structure

    NASA Astrophysics Data System (ADS)

    Danson, M.

    2015-12-01

    Terrestrial laser scanners (TLS) are now capable of semi-automatic reconstruction of the structure of complete trees or forest stands and have the potential to provide detailed information on tree architecture and foliage biophysical properties. The trends for the next generation of TLS are towards higher resolution, faster scanning and full-waveform data recording, with mobile, multispectral laser devices. The convergence of these technological advances in the next generation of TLS will allow the production of information for forest and woodland mapping and monitoring that is far more detailed, more accurate, and more comprehensive than any available today. This paper describes recent scientific advances in the application of TLS for characterising forest and woodland areas, drawing on the authors' development of the Salford Advanced Laser Canopy Analyser (SALCA), the activities of the Terrestrial Laser Scanner International Interest Group (TLSIIG), and recent advances in laser scanner technology around the world. The key findings illustrated in the paper are that (i) a complete understanding of system measurement characteristics is required for quantitative analysis of TLS data, (ii) full-waveform data recording is required for extraction of forest biophysical variables and, (iii) multi-wavelength systems provide additional spectral information that is essential for classifying different vegetation components. The paper uses a range of recent experimental TLS measurements to support these findings, and sets out a vision for new research to develop an information-rich future-forest information system, populated by mobile autonomous multispectral TLS devices.

  17. Aerodynamic measurement techniques. [laser based diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.

    1976-01-01

    Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.

  18. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2014-01-16

    QUINCY BEAN, JIM LYDON, AND ZACK JONES OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S M2 SELECTIVE LASER MELTING SYSTEM. THE M2 IS CURRENTLY DEDICATED TO ADVANCED COPPER MATERIAL DEVELOPMENT FOR THE LOW COST UPPER STAGE PROGRAM.

  19. Advancing an In situ Laser Spectrometer for Carbon Isotope Analyses in the Deep Ocean

    NASA Astrophysics Data System (ADS)

    Michel, A.; Wankel, S. D.; Kapit, J.; Girguis, P. R.

    2016-02-01

    Development of in situ chemical sensors is critical for improving our understanding of deep-ocean biogeochemistry and recent advances in chemical sensors are already expanding the breadth and depth of deep sea/seafloor exploration and research. Although initially developed for high sensitivity measurements of atmospheric gases, laser-based spectroscopic sensors are now being developed for research in the deep sea by incorporating the use of semi-permeable membranes. Here we present on recent deep-sea deployments of an in situ laser-based analyzer of carbon isotopes of methane (δ13CH4), highlighting several advances including a new capability for also measuring δ13C of DIC or CO2 by incorporating a second laser and an in line acidification module. A bubble trapping approach was designed and implemented for the collection and analysis of both CH4 and CO2 from deep-sea bubbles. The newly advanced laser spectrometer was deployed at both Kick `Em Jenny volcano off of the island of Grenada and in a brine pool in the western Gulf of Mexico ("The Jacuzzi of Despair") using the E/V Nautilus and the ROV Hercules. At Kick `Em Jenny, seafloor measurements were made of both emanating fluids and bubbles from within and around the crater - revealing high levels of magmatic CO2 with minor amounts of CH4 and hydrogen sulfide. At the brine pool, spot measurements and depth profile measurements into the brine pool were made for chemical mapping, revealing fluids that were saturated with respect to methane. New technologies such as the laser spectrometer will enable us to obtain high resolution and near real-time, in situ chemical and isotopic data and to make geochemical maps over a range of spatial and temporal scales.

  20. Two Micron Laser Technology Advancements at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2010-01-01

    An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.

  1. High-energy krypton fluoride lasers for inertial fusion.

    PubMed

    Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max

    2015-11-01

    Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications.

  2. Fusion energy with lasers, direct drive targets, and dry wall chambers

    NASA Astrophysics Data System (ADS)

    Sethian, J. D.; Friedman, M.; Lehmberg, R. H.; Myers, M.; Obenschain, S. P.; Giuliani, J.; Kepple, P.; Schmitt, A. J.; Colombant, D.; Gardner, J.; Hegeler, F.; Wolford, M.; Swanekamp, S. B.; Weidenheimer, D.; Welch, D.; Rose, D.; Payne, S.; Bibeau, C.; Baraymian, A.; Beach, R.; Schaffers, K.; Freitas, B.; Skulina, K.; Meier, W.; Latkowski, J.; Perkins, L. J.; Goodin, D.; Petzoldt, R.; Stephens, E.; Najmabadi, F.; Tillack, M.; Raffray, R.; Dragojlovic, Z.; Haynes, D.; Peterson, R.; Kulcinski, G.; Hoffer, J.; Geller, D.; Schroen, D.; Streit, J.; Olson, C.; Tanaka, T.; Renk, T.; Rochau, G.; Snead, L.; Ghoneim, N.; Lucas, G.

    2003-12-01

    A coordinated, focused effort is underway to develop Laser Inertial Fusion Energy. The key components are developed in concert with one another and the science and engineering issues are addressed concurrently. Recent advances include: target designs have been evaluated that show it could be possible to achieve the high gains (>100) needed for a practical fusion system.These designs feature a low-density CH foam that is wicked with solid DT and over-coated with a thin high-Z layer. These results have been verified with three independent one-dimensional codes, and are now being evaluated with two- and three-dimensional codes. Two types of lasers are under development: Krypton Fluoride (KrF) gas lasers and Diode Pumped Solid State Lasers (DPSSL). Both have recently achieved repetitive 'first light', and both have made progress in meeting the fusion energy requirements for durability, efficiency, and cost. This paper also presents the advances in development of chamber operating windows (target survival plus no wall erosion), final optics (aluminium at grazing incidence has high reflectivity and exceeds the required laser damage threshold), target fabrication (demonstration of smooth DT ice layers grown over foams, batch production of foam shells, and appropriate high-Z overcoats), and target injection (new facility for target injection and tracking studies).

  3. The changing landscape of dermatology practice: melanoma and pump-probe laser microscopy.

    PubMed

    Puza, Charles J; Mosca, Paul J

    2017-11-01

    To present current melanoma diagnosis, staging, prognosis, and treatment algorithms and how recent advances in laser pump-probe microscopy will fill in the gaps in our clinical understanding. Expert opinion and significantly cited articles identified in SCOPUS were used in conjunction with a pubmed database search on Melanoma practice guidelines from the last 10 years. Significant advances in melanoma treatment have been made over the last decade. However, proper treatment algorithm and prognostic information per melanoma stage remain controversial. The next step for providers will involve the identification of patient population(s) that can benefit from recent advances. One method of identifying potential patients is through new laser imaging techniques. Pump-probe laser microscopy has been shown to correctly identify nevi from melanoma and furthermore stratify melanoma by aggressiveness. The recent development of effective adjuvant therapies for melanoma is promising and should be utilized on appropriate patient populations that can potentially be identified using pump-probe laser microscopy.

  4. Next-generation laser for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, C; Bibeau, C; Bayramian, A

    1998-03-13

    We are developing and building the ''Mercury'' laser system as the first in a series of a new generation of diode-pumped solid-state lasers (DPSSL) for advanced high energy density (HED) physics experiments at LLNL. Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced Inertial Confinement Fusion (ICF) goals. Primary performance goals include 10% efficiencies at 10 Hz and a <10 ns pulse with l {omega} energies of 100 J and with 2 {omega}/3 {omega} frequency conversion. Achieving this performance will provide a near term capability for HED experiments and prove the potential of DPSSLsmore » for inertial fusion energy (IFE).« less

  5. Fiber lasers and their applications [Invited].

    PubMed

    Shi, Wei; Fang, Qiang; Zhu, Xiushan; Norwood, R A; Peyghambarian, N

    2014-10-01

    Fiber lasers have seen progressive developments in terms of spectral coverage and linewidth, output power, pulse energy, and ultrashort pulse width since the first demonstration of a glass fiber laser in 1964. Their applications have extended into a variety of fields accordingly. In this paper, the milestones of glass fiber laser development are briefly reviewed and recent advances of high-power continuous wave, Q-switched, mode-locked, and single-frequency fiber lasers in the 1, 1.5, 2, and 3 μm regions and their applications in such areas as industry, medicine, research, defense, and security are addressed in detail.

  6. Next Generation of Advanced Laser Fluorescence Technology for Characterization of Natural Aquatic Environments

    DTIC Science & Technology

    2011-09-01

    project research addresses our long-term goal to develop an analytical suite of the Advanced Laser Fluorescence (ALF) methods and instruments to improve...demonstrated ALF utility as an integrated tool for aquatic research and observations. The ALF integration into the major oceanographic programs is...currently in progress, including the California Current Ecosystem Long Term Ecological Research (CCE LTER, NSF) and California Cooperative Oceanic

  7. Testing and evaluation of tactical electro-optical sensors

    NASA Astrophysics Data System (ADS)

    Middlebrook, Christopher T.; Smith, John G.

    2002-07-01

    As integrated electro-optical sensor payloads (multi- sensors) comprised of infrared imagers, visible imagers, and lasers advance in performance, the tests and testing methods must also advance in order to fully evaluate them. Future operational requirements will require integrated sensor payloads to perform missions at further ranges and with increased targeting accuracy. In order to meet these requirements sensors will require advanced imaging algorithms, advanced tracking capability, high-powered lasers, and high-resolution imagers. To meet the U.S. Navy's testing requirements of such multi-sensors, the test and evaluation group in the Night Vision and Chemical Biological Warfare Department at NAVSEA Crane is developing automated testing methods, and improved tests to evaluate imaging algorithms, and procuring advanced testing hardware to measure high resolution imagers and line of sight stabilization of targeting systems. This paper addresses: descriptions of the multi-sensor payloads tested, testing methods used and under development, and the different types of testing hardware and specific payload tests that are being developed and used at NAVSEA Crane.

  8. Introduction of laser initiation for the 48-inch Advanced Solid Rocket Motor (ASRM) test motors at Marshall Space Flight Center (MSFC)

    NASA Technical Reports Server (NTRS)

    Zimmerman, Chris J.; Litzinger, Gerald E.

    1993-01-01

    The Advanced Solid Rocket Motor is a new design for the Space Shuttle Solid Rocket Booster. The new design will provide more thrust and more payload capability, as well as incorporating many design improvements in all facets of the design and manufacturing process. A 48-inch (diameter) test motor program is part of the ASRM development program. This program has multiple purposes for testing of propellent, insulation, nozzle characteristics, etc. An overview of the evolution of the 48-inch ASRM test motor ignition system which culminated with the implementation of a laser ignition system is presented. The laser system requirements, development, and operation configuration are reviewed in detail.

  9. Development and applications of optical interferometric micrometrology in the angstrom and subangstrom range

    NASA Technical Reports Server (NTRS)

    Lauer, James L.; Abel, Phillip B.

    1988-01-01

    The recent development of the scanning electron tunneling microscope and the atomic force microscope requires absolute standards for measurements in the angstrom and subangstrom range. Optical interferometry with lasers and multiple mode laser resonances can provide absolute measurements as the laser wavelengths are very accurately known. A key feature of such measurements is the use of piezoelectric crystals as translators of the highest accuracy for very small disturbances. However, the dimensional changes of these crystals resulting from electrical potential changes depend on many variables, among them the method of mounting, so that accurate calibrations are necessary. Starting from advances in optical metrology made by physicists trying to find gravity waves, advances which led to measurements down to 10 to the -5 A, the author designed and built a much simpler system for the angstrom range. The major limiting factors were mechanical vibrations, air currents, thermal changes and laser instabilities.

  10. High power CO II lasers and their material processing applications at Centre for Advanced Technology, India

    NASA Astrophysics Data System (ADS)

    Nath, A. K.; Paul, C. P.; Rao, B. T.; Kau, R.; Raghu, T.; Mazumdar, J. Dutta; Dayal, R. K.; Mudali, U. Kamachi; Sastikumar, D.; Gandhi, B. K.

    2006-01-01

    We have developed high power transverse flow (TF) CW CO II lasers up to 15kW, a high repetition rate TEA CO II laser of 500Hz, 500W average power and a RF excited fast axial flow CO II laser at the Centre for Advanced Technology and have carried out various material processing applications with these lasers. We observed very little variation of discharge voltage with electrode gap in TF CO II lasers. With optimally modulated laser beam we obtained better results in laser piercing and cutting of titanium and resolidification of 3 16L stainless steel weld-metal for improving intergranular corrosion resistance. We carried out microstructure and phase analysis of laser bent 304 stainless steel sheet and optimum process zones were obtained. We carried out laser cladding of 316L stainless steel and Al-alloy substrates with Mo, WC, and Cr IIC 3 powder to improve their wear characteristics. We developed a laser rapid manufacturing facility and fabricated components of various geometries with minimum surface roughness of 5-7 microns Ra and surface waviness of 45 microns between overlapped layers using Colmonoy-6, 3 16L stainless steel and Inconel powders. Cutting of thick concrete blocks by repeated laser glazing followed by mechanical scrubbing process and drilling holes on a vertical concrete with laser beam incident at an optimum angle allowing molten material to flow out under gravity were also done. Some of these studies are briefly presented here.

  11. Developing magnetorheological finishing (MRF) technology for the manufacture of large-aperture optics in megajoule class laser systems

    NASA Astrophysics Data System (ADS)

    Menapace, Joseph A.

    2010-11-01

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm2 at 1053 nm), visible (>18 J/cm2 at 527 nm), and ultraviolet (>10 J/cm2 at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture largeaperture damage resistant optics.

  12. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A

    2010-10-27

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chainmore » or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.« less

  13. Laser Angioplasty

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The principal method of dealing with coronary artery blockage is bypass surgery. A non-surgical alternative available to some patients is balloon angioplasty. For several years, medical researchers have been exploring another alternative that would help a wider circle of patients than the balloon treatment and entail less risk than bypass surgery. A research group is on the verge of an exciting development: laser angioplasty with a 'cool' type of laser, called an excimer laser, that does not damage blood vessel walls and offers non-surgical cleansing of clogged arteries with extraordinary precision. The system is the Dymer 200+ Excimer Laser Angioplasty System, developed by Advanced Intraventional Systems. Used in human clinical tests since 1987, the system is the first fully integrated 'cool' laser capable of generating the requisite laser energy and delivering the energy to target arteries. Thirteen research hospitals in the U.S. have purchased Dymer 200+ systems and used them in clinical trials in 121 peripheral and 555 coronary artery cases. The success rate in opening blocked coronary arteries is 85 percent, with fewer complications than in balloon angioplasty. Food and Drug Administration approval for the system is hoped for in the latter part of 1990. * Advanced Intraventional Systems became Spectranetics in 1994 and discontinued the product.

  14. Development in laser peening of advanced ceramics

    NASA Astrophysics Data System (ADS)

    Shukla, Pratik; Smith, Graham C.; Waugh, David G.; Lawrence, Jonathan

    2015-07-01

    Laser peening is a well-known process applicable to surface treat metals and alloys in various industrial sectors. Research in the area of laser peening of ceramics is still scarce and a complete laser-ceramic interaction is still unreported. This paper focuses on laser peening of SiC ceramics employed for cutting tools, armor plating, dental and biomedical implants, with a view to elucidate the unreported work. A detailed investigation was conducted with 1064nm Nd:YAG ns pulse laser to first understand the surface effects, namely: the topography, hardness, KIc and the microstructure of SiC advanced ceramics. The results showed changes in surface roughness and microstructural modification after laser peening. An increase in surface hardness was found by almost 2 folds, as the diamond footprints and its flaws sizes were considerably reduced, thus, enhancing the resistance of SiC to better withstand mechanical impact. This inherently led to an enhancement in the KIc by about 42%. This is attributed to an induction of compressive residual stress and phase transformation. This work is a first-step towards the development of a 3-dimensional laser peening technique to surface treat many advanced ceramic components. This work has shown that upon tailoring the laser peening parameters may directly control ceramic topography, microstructure, hardness and the KIc. This is useful for increasing the performance of ceramics used for demanding applications particularly where it matters such as in military. Upon successful peening of bullet proof vests could result to higher ballistic strength and resistance against higher sonic velocity, which would not only prevent serious injuries, but could also help to save lives of soldiers on the battle fields.

  15. Bragg reflector based gate stack architecture for process integration of excimer laser annealing

    NASA Astrophysics Data System (ADS)

    Fortunato, G.; Mariucci, L.; Cuscunà, M.; Privitera, V.; La Magna, A.; Spinella, C.; Magrı, A.; Camalleri, M.; Salinas, D.; Simon, F.; Svensson, B.; Monakhov, E.

    2006-12-01

    An advanced gate stack structure, which incorporates a Bragg reflector, has been developed for the integration of excimer laser annealing into the power metal-oxide semiconductor (MOS) transistor fabrication process. This advanced gate structure effectively protects the gate stack from melting, thus solving the problem related to protrusion formation. By using this gate stack configuration, power MOS transistors were fabricated with improved electrical characteristics. The Bragg reflector based gate stack architecture can be applied to other device structures, such as scaled MOS transistors, thus extending the possibilities of process integration of excimer laser annealing.

  16. Optical coatings for laser fusion applications

    NASA Astrophysics Data System (ADS)

    Lowdermilk, W. H.; Milam, D.; Rainer, F.

    1980-04-01

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation.

  17. Evaluation of a laser scanning sensor on detection of complex shaped targets for variable-rate sprayer development

    USDA-ARS?s Scientific Manuscript database

    Sensors that can accurately measure canopy structures are prerequisites for development of advanced variable-rate sprayers. A 270° radial range laser sensor was evaluated for its accuracy to measure dimensions of target surfaces with complex shapes and sizes. An algorithm for data acquisition and 3-...

  18. Low SWaP Semiconductor Laser Transmitter Modules For ASCENDS Mission Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.

    2012-01-01

    The National Research Council's (NRC) Decadal Survey (DS) of Earth Science and Applications from Space has identified the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as an important atmospheric science mission. NASA Langley Research Center, working with its partners, is developing fiber laser architecture based intensity modulated CW laser absorption spectrometer for measuring XCO2 in the 1571 nm spectral band. In support of this measurement, remote sensing of O2 in the 1260 nm spectral band for surface pressure measurements is also being developed. In this paper, we will present recent progress made in the development of advanced transmitter modules for CO2 and O2 sensing. Advanced DFB seed laser modules incorporating low-noise variable laser bias current supply and low-noise variable temperature control circuit have been developed. The 1571 nm modules operate at >80 mW and could be tuned continuously over the wavelength range of 1569-1574nm at a rate of 2 pm/mV. Fine tuning was demonstrated by adjusting the laser drive at a rate of 0.7 pm/mV. Heterodyne linewidth measurements have been performed showing linewidth 200 kHz and frequency jitter 75 MHz. In the case of 1260 nm DFB laser modules, we have shown continuous tuning over a range of 1261.4 - 1262.6 nm by changing chip operating temperature and 1261.0 - 1262.0 nm by changing the laser diode drive level. In addition, we have created a new laser package configuration which has been shown to improve the TEC coefficient of performance by a factor of 5 and improved the overall efficiency of the laser module by a factor of 2.

  19. New and Advanced Picosecond Lasers for Tattoo Removal.

    PubMed

    Adatto, Maurice A; Amir, Ruthie; Bhawalkar, Jayant; Sierra, Rafael; Bankowski, Richard; Rozen, Doran; Dierickx, Christine; Lapidoth, Moshe

    2017-01-01

    Early methods of tattoo removal ultimately resulted in unacceptable cosmetic outcomes. While the introduction of laser technology was an improvement over the existing chemical, mechanical, and surgical procedures, the use of nonselective tattoo removal with carbon dioxide and argon lasers led to scarring. Q-switched lasers with nanosecond (10-9) pulse domains were considered to have revolutionized tattoo treatment, by selectively heating the tattoo particles, while reducing the adverse sequelae to adjacent normal skin. Theoretical considerations of restricting pulse duration, to heat tattoo particles to higher temperatures, proposed the use of sub-nanosecond pulses to target particles with thermal relaxation times lower than the nanosecond pulses in Q-switched lasers. Initial studies demonstrated that picosecond (10-12) pulses were more effective than nanosecond pulses in clearing black tattoos. Advances in picosecond technology led to the development of commercially available lasers, incorporating several different wavelengths, to further refine pigment targeting. © 2017 S. Karger AG, Basel.

  20. Solid-state laser source of narrowband ultraviolet B light for skin disease care with advanced performance

    NASA Astrophysics Data System (ADS)

    Tarasov, Aleksandr A.; Chu, Hong; Buchwald, Kristian

    2015-02-01

    Two years ago we reported about the development of solid state laser source for medical skin treatment with wavelength 310.6 nm and average power 200 mW. Here we describe the results of investigation of the advanced version of the laser, which is a more compact device with increased output power and flat top beam profile. Ti: Sapphire laser, the main module of our source, was modified and optimized such, that UV average power of the device was increased 1.7 times. Fiber optic homogenizer was replaced by articulated arm with diffraction diffuser, providing round spot with flat profile at the skin. We investigated and compare characteristics of Ti: Sapphire lasers with volume Bragg grating and with fused silica transmission grating, which was used first time for Ti: Sapphire laser spectral selection and tuning. Promising performance of last gratings is demonstrated.

  1. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  2. [From Einstein's Quantum Theory to modern laser therapy. The history of lasers in dermatology and aesthetic medicine].

    PubMed

    Graudenz, K; Raulin, C

    2003-07-01

    Laser technology has considerably expanded therapeutic modalities in dermatology and aesthetic medicine. In addition, lasers have broadened the spectrum of diagnostic and therapeutic options in many other medical fields. Dermatologists, especially Dr. Leon Goldman, played an important role in the evolution and use of medical lasers. There was a long way from the concept of stimulated emission as the fundamental idea of laser technology by Albert Einstein in 1917 to the practical use of the laser today. We review the development of laser technology from the early days through the latest advances.

  3. FBIS report. Science and technology: Europe/International, March 29, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-29

    ;Partial Contents: Advanced Materials (EU Project to Improve Production in Metal Matrix Compounds Noted, Germany: Extremely Hard Carbon Coating Development, Italy: Director of CNR Metallic Materials Institute Interviewed); Aerospace (ESA Considers Delays, Reductions as Result of Budget Cuts, Italy: Space Agency`s Director on Restructuring, Future Plans); Automotive, Transportation (EU: Clean Diesel Engine Technology Research Reviewed); Biotechnology (Germany`s Problems, Successes in Biotechnology Discussed); Computers (EU Europort Parallel Computing Project Concluded, Italy: PQE 2000 Project on Massively Parallel Systems Viewed); Defense R&D (France: Future Tasks of `Brevel` Military Intelligence Drone Noted); Energy, Environment (German Scientist Tests Elimination of Phosphates); Advanced Manufacturing (France:more » Advanced Rapid Prototyping System Presented); Lasers, Sensors, Optics (France: Strategy of Cilas Laser Company Detailed); Microelectronics (France: Simulation Company to Develop Microelectronic Manufacturing Application); Nuclear R&D (France: Megajoule Laser Plan, Cooperation with Livermore Lab Noted); S&T Policy (EU Efforts to Aid Small Companies` Research Viewed); Telecommunications (France Telecom`s Way to Internet).« less

  4. Defense Advanced Research Projects Agency Fiscal Year 1982 Research & Development Program. Summary Statement by Dr. Robert R. Fossum, Director Before the Research & Development Subcommittee of the House Armed Services Committee

    DTIC Science & Technology

    1981-03-12

    feasibility of a laser suitable for space opera- tion. Its objective is to demonstrate tte laser device technology in 11-37 tion, Its i extracting a high power...acoustic signal processing testbed will officially transfer to the Navy Undersea Surveillance Office at the end of FY 1982. This gives the Navy a...advanced undersea vehicle programs. 2. Air Vehicles and Weapons This addresses innovative concepts such as the X-Wing and the Forward Swept Wing

  5. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1995-01-01

    This Interim report consists of a manuscript, 'Receiver Design for Satellite to Satellite Laser Ranging Instrument,' and copies of two papers we co-authored, 'Demonstration of High Sensitivity Laser Ranging System' and 'Semiconductor Laser-Based Ranging Instrument for Earth Gravity Measurements. ' These two papers were presented at the conference Semiconductor Lasers, Advanced Devices and Applications, August 21 -23, 1995, Keystone Colorado. The manuscript is a draft in the preparation for publication, which summarizes the theory we developed on space-borne laser ranging instrument for gravity measurements.

  6. Technology development for laser-cooled clocks on the International Space Station

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.

    2003-01-01

    The PARCS experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station to provide both advanced tests of gravitational theory to demonstrate a new cold-atom clock technology for space.

  7. Review of technological advancements in calibration systems for laser vision correction

    NASA Astrophysics Data System (ADS)

    Arba-Mosquera, Samuel; Vinciguerra, Paolo; Verma, Shwetabh

    2018-02-01

    Using PubMed and our internal database, we extensively reviewed the literature on the technological advancements in calibration systems, with a motive to present an account of the development history, and latest developments in calibration systems used in refractive surgery laser systems. As a second motive, we explored the clinical impact of the error introduced due to the roughness in ablation and its corresponding effect on system calibration. The inclusion criterion for this review was strict relevance to the clinical questions under research. The existing calibration methods, including various plastic models, are highly affected by various factors involved in refractive surgery, such as temperature, airflow, and hydration. Surface roughness plays an important role in accurate measurement of ablation performance on calibration materials. The ratio of ablation efficiency between the human cornea and calibration material is very critical and highly dependent on the laser beam characteristics and test conditions. Objective evaluation of the calibration data and corresponding adjustment of the laser systems at regular intervals are essential for the continuing success and further improvements in outcomes of laser vision correction procedures.

  8. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  9. HiLASE Project: high intensity lasers for industrial and scientific applications

    NASA Astrophysics Data System (ADS)

    Rostohar, Danijela; Lucianetti, Antonio; Endo, Akira; Mocek, Tomas

    2015-01-01

    The Czech national R&D project HiLASE is a platform for development of advance high repetition rate, diode pump solid state lasers (DPSSL) systems with energies in the range from mJ to 10J and repetition rate from 10 Hz to 100 kHz. In this paper an overview and a status of the project will be given. Additionally some applications of these lasers in the hi-tech industry, which initiated their development, will be also presented.

  10. Technology Advancement for Active Remote Sensing of Carbon Dioxide from Space Using the ASCENDS CarbonHawk Experiment Simulator: First Results

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Nehrir, Amin R.; Lin, Bing; Harrison, F. Wallace; Kooi, Susan; Choi, Yonghoon; Plant, James; Yang, Melissa; Antill, Charles; Campbell, Joel; hide

    2015-01-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is a newly developed lidar developed at NASA Langley Research Center and funded by NASA's Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technology advancements targeted include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration autonomous operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. These technologies are critical towards developing not only spaceborne instruments but also their airborne simulators, with lower platform requirements for size, mass, and power, and with improved instrument performance for the ASCENDS mission. ACES transmits five laser beams: three from commercial EDFAs operating near 1.57 microns, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1.26 microns. The three EDFAs are capable of transmitting up to 10 watts average optical output power each and are seeded by compact, low noise, stable, narrow-linewidth laser sources stabilized with respect to a CO2 absorption line using a multi-pass gas absorption cell. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number densities and retrieve the average column CO2 mixing ratio. The ACES receiver uses three fiber-coupled 17.8-cm diameter athermal telescopes. The transmitter assembly consists of five fiber-coupled laser collimators and an associated Risley prism pair for each laser to co-align the outgoing laser beams and to align them with the telescope field of view. The backscattered return signals collected by the three telescopes are combined in a fiber bundle and sent to a single low noise detector. The detector/TIA development has improved the existing detector subsystem by increasing its bandwidth to 4.7 MHz from 500 kHz and increasing the duration of autonomous, service-free operation periods from 4 hours to >24 hours. The new detector subsystem enables the utilization of higher laser modulation rates, which provides greater flexibility for implementing advanced thin-cloud discrimination algorithms as well as improving range-determination resolution and error reduction. The cloud/aerosol discrimination algorithm development by Langley and Exelis features a new suite of algorithms for the minimization/elimination of bias errors in the return signal induced by the presence of intervening thin clouds. Multiple laser modulation schemes are being tested in an effort to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. Full instrument development concluded in the spring of 2014. After ground range tests of the instrument, ACES successfully completed six test flights on the Langley Hu-25 aircraft in July, 2014, and recorded data at multiple altitudes over land and ocean surfaces with and without intervening clouds. Preliminary results from these test flights will be presented in this paper.

  11. Optimal Path to a Laser Fusion Energy Power Plant

    NASA Astrophysics Data System (ADS)

    Bodner, Stephen

    2013-10-01

    There was a decision in the mid 1990s to attempt ignition using indirect-drive targets. It is now obvious that this decision was unjustified. The target design was too geometrically complex, too inefficient, and too far above plasma instability thresholds. By that same time, the mid 1990s, there had also been major advances in the direct-drive target concept. It also was not yet ready for a major test. Now, finally, because of significant advances in target designs, laser-target experiments, and laser development, the direct-drive fusion concept is ready for significant enhancements in funding, on the path to commercial fusion energy. There are two laser contenders. A KrF laser is attractive because of its shortest wavelength, broad bandwidth, and superb beam uniformity. A frequency-converted DPSSL has the disadvantage of inherently narrow bandwidth and longer wavelength, but by combining many beams in parallel one might be able to produce at the target the equivalent of an ultra-broad bandwidth. One or both of these lasers may also meet all of the engineering and economic requirements for a reactor. It is time to further develop and evaluate these two lasers as rep-rate systems, in preparation for a future high-gain fusion test.

  12. Design and implementation of a system for laser assisted milling of advanced materials

    NASA Astrophysics Data System (ADS)

    Wu, Xuefeng; Feng, Gaocheng; Liu, Xianli

    2016-09-01

    Laser assisted machining is an effective method to machine advanced materials with the added benefits of longer tool life and increased material removal rates. While extensive studies have investigated the machining properties for laser assisted milling(LAML), few attempts have been made to extend LAML to machining parts with complex geometric features. A methodology for continuous path machining for LAML is developed by integration of a rotary and movable table into an ordinary milling machine with a laser beam system. The machining strategy and processing path are investigated to determine alignment of the machining path with the laser spot. In order to keep the material removal temperatures above the softening temperature of silicon nitride, the transformation is coordinated and the temperature interpolated, establishing a transient thermal model. The temperatures of the laser center and cutting zone are also carefully controlled to achieve optimal machining results and avoid thermal damage. These experiments indicate that the system results in no surface damage as well as good surface roughness, validating the application of this machining strategy and thermal model in the development of a new LAML system for continuous path processing of silicon nitride. The proposed approach can be easily applied in LAML system to achieve continuous processing and improve efficiency in laser assisted machining.

  13. Advancements in high-power high-brightness laser bars and single emitters for pumping and direct diode application

    NASA Astrophysics Data System (ADS)

    An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg

    2015-03-01

    We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.

  14. Diode laser soft-tissue surgery: advancements aimed at consistent cutting, improved clinical outcomes.

    PubMed

    Romanos, Georgios E

    2013-01-01

    Laser dentistry and soft-tissue surgery, in particular, have become widely adopted in recent years. Significant cost reductions for dental lasers and the increasing popularity of CADCAM, among other factors, have contributed to a substantial increase in the installed base of dental lasers, especially soft-tissue lasers. New development in soft-tissue surgery, based on the modern understanding of laser-tissue interactions and contact soft-tissue surgery mechanisms, will bring a higher quality and consistency level to laser soft-tissue surgery. Recently introduced diode-laser technology enables enhanced control of side effects that result from tissue overheating and may improve soft-tissue surgical outcomes.

  15. Quantum Cascade Lasers in Biomedical Infrared Imaging.

    PubMed

    Bird, Benjamin; Baker, Matthew J

    2015-10-01

    Technological advances, namely the integration of quantum cascade lasers (QCLs) within an infrared (IR) microscope, are enabling the development of valuable label-free biomedical-imaging tools capable of targeting and detecting salient chemical species within practical clinical timeframes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Laser Boron Fusion Reactor With Picosecond Petawatt Block Ignition

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Eliezer, Shalom; Wang, Jiaxiang; Korn, Georg; Nissim, Noaz; Xu, Yan-Xia; Lalousis, Paraskevas; Kirchhoff, Gotz J.; Miley, George H.

    2018-05-01

    For developing a laser boron fusion reactor driven by picosecond laser pulses of more than 30 petawatts power, advances are reported about computations for the plasma block generation by the dielectric explosion of the interaction. Further results are about the direct drive ignition mechanism by a single laser pulse without the problems of spherical irradiation. For the sufficiently large stopping lengths of the generated alpha particles in the plasma results from other projects can be used.

  17. Research and Development of Laser Diode Based Instruments for Applications in Space

    NASA Technical Reports Server (NTRS)

    Krainak, Michael; Abshire, James; Cornwell, Donald; Dragic, Peter; Duerksen, Gary; Switzer, Gregg

    1999-01-01

    Laser diode technology continues to advance at a very rapid rate due to commercial applications such as telecommunications and data storage. The advantages of laser diodes include, wide diversity of wavelengths, high efficiency, small size and weight and high reliability. Semiconductor and fiber optical-amplifiers permit efficient, high power master oscillator power amplifier (MOPA) transmitter systems. Laser diode systems which incorporate monolithic or discrete (fiber optic) gratings permit single frequency operation. We describe experimental and theoretical results of laser diode based instruments currently under development at NASA Goddard Space Flight Center including miniature lidars for measuring clouds and aerosols, water vapor and wind for Earth and planetary (Mars Lander) use.

  18. Recent advances in the front-end sources of the LMJ fusion laser

    NASA Astrophysics Data System (ADS)

    Gleyze, Jean-François; Hares, Jonathan; Vidal, Sebastien; Beck, Nicolas; Dubertrand, Jerome; Perrin, Arnaud

    2011-03-01

    LMJ is typical of lasers used for inertial confinement fusion and requires a laser of programmable parameters for injection into the main amplifier. For several years, the CEA has developed front end fiber sources, based on telecommunications fiber optics technologies. These sources meet the needs but as the technology evolves we can expect improved efficiency and reductions in size and cost. We give an up-to-date description of some present development issues, particularly in the field of temporal shaping with the use of digital system. The synchronization of such electronics has been challenging however we now obtain system jitter of less then 7ps rms. Secondly, we will present recent advance in the use of fiber based pre-comp system to avoid parasitic amplitude modulation from phase modulation used for spectral broadening.

  19. Direct generation of superhydrophobic microstructures in metals by UV laser sources in the nanosecond regime

    NASA Astrophysics Data System (ADS)

    Ocaña, Jose L.; Jagdheesh, R.; García-Ballesteros, J. J.

    2016-02-01

    The current availability of new advanced fiber and DPSS lasers with characteristic pulse lengths ranging from ns to fs has provided a unique frame in which the development of laser-generated microstructures has been made possible for very diverse kinds of materials and applications. At the same time, the development of the appropriate laser-processing workstations granting the appropriate precision and repeatability of the respective laser interaction processes in line with the characteristic dimension features required in the microstructured samples has definitively consolidated laser surface microstructuring as a reference domain, nowadays, unavoidable for the design and manufacturing of current use microsystem: MEMSs, fluidic devices, advanced sensors, biomedical devices and instruments, etc., are all among the most well-known developments of the micromanufacturing technology. Completing the broad spectrum of applications developed mostly involving the generation of geometrical features on a subtrate with specific functional purposes, a relatively new, emerging class of laser-microstructuring techniques is finding an important niche of application in the generation of physically structured surfaces (particularly of metallic materials) with specific contact, friction, and wear functionalities, for whose generation the concourse of different types of laser sources is being found as an appropriate tool. In this paper, the application of laser sources with emission in the UV and at ns time regime to the surface structuration of metal surfaces (specifically Al) for the modification of their wettability properties is described as an attractive application basis for the generation of self-cleaning properties of extended functional surfaces. Flat aluminum sheets of thickness 100 μm were laser machined with ultraviolet laser pulses of 30 ns with different laser parameters to optimize the process parameters. The samples produced at the optimum conditions with respect to contact angle measurement were subjected to microstructure and chemical analysis. The wetting properties were evaluated by static contact angle measurements on the laser-patterned surface. The laser-patterned microstructures exhibited superhydrophobicity with a maximum contact angle of 180° for the droplet volumes in the range of 8-12 μl.

  20. Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass

    PubMed Central

    He, Fei; Liao, Yang; Lin, Jintian; Song, Jiangxin; Qiao, Lingling; Cheng, Ya; Sugioka, Koji

    2014-01-01

    Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent advancements in femtosecond laser processing of glass for a variety of microfluidic sensor applications. These include 3D integration of micro-/nanofluidic, optofluidic, electrofluidic, surface-enhanced Raman-scattering devices, in addition to fabrication of devices for microfluidic bioassays and lab-on-fiber sensors. This paper describes the unique characteristics of femtosecond laser processing and the basic concepts involved in femtosecond laser direct writing. Advanced spatiotemporal beam shaping methods are also discussed. Typical examples of microfluidic sensors fabricated using femtosecond lasers are then highlighted, and their applications in chemical and biological sensing are described. Finally, a summary of the technology is given and the outlook for further developments in this field is considered. PMID:25330047

  1. Advances in laser technology for the atmospheric sciences; Proceedings of the Seminar, San Diego, Calif., August 25, 26, 1977

    NASA Technical Reports Server (NTRS)

    Trolinger, J. D. (Editor); Moore, W. W.

    1977-01-01

    These papers deal with recent research, developments, and applications in laser and electrooptics technology, particularly with regard to atmospheric effects in imaging and propagation, laser instrumentation and measurements, and particle measurement. Specific topics include advanced imaging techniques, image resolution through atmospheric turbulence over the ocean, an efficient method for calculating transmittance profiles, a comparison of a corner-cube reflector and a plane mirror in folded-path and direct transmission through atmospheric turbulence, line-spread instrumentation for propagation measurements, scaling laws for thermal fluctuations in the layer adjacent to ocean waves, particle sizing by laser photography, and an optical Fourier transform analysis of satellite cloud imagery. Other papers discuss a subnanosecond photomultiplier tube for laser application, holography of solid propellant combustion, diagnostics of turbulence by holography, a camera for in situ photography of cloud particles from a hail research aircraft, and field testing of a long-path laser transmissometer designed for atmospheric visibility measurements.

  2. Microgravity Combustion Diagnostics Workshop

    NASA Technical Reports Server (NTRS)

    Santoro, Gilbert J. (Editor); Greenberg, Paul S. (Editor); Piltch, Nancy D. (Editor)

    1988-01-01

    Through the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications (OSSA) at NASA Headquarters, a program entitled, Advanced Technology Development (ATD) was promulgated with the objective of providing advanced technologies that will enable the development of future microgravity science and applications experimental flight hardware. Among the ATD projects one, Microgravity Combustion Diagnostics (MCD), has the objective of developing advanced diagnostic techniques and technologies to provide nonperturbing measurements of combustion characteristics and parameters that will enhance the scientific integrity and quality of microgravity combustion experiments. As part of the approach to this project, a workshop was held on July 28 and 29, 1987, at the NASA Lewis Research Center. A small group of laser combustion diagnosticians met with a group of microgravity combustion experimenters to discuss the science requirements, the state-of-the-art of laser diagnostic technology, and plan the direction for near-, intermediate-, and long-term programs. This publication describes the proceedings of that workshop.

  3. Near Net Shape Rapid Manufacture & Repair by LENS(registered trademark)

    DTIC Science & Technology

    2006-05-01

    J. Vlcek, “Property Investigation of Laser Cladded , Laser Sintered and Electron Beam Sintered Ti 6Al 4V”, AVT-139 Specialists Meeting on Cost...manufactured from advanced materials such as titanium alloys, superalloys or special steels are critical to the performance of the armed forces...10 years, CAD driven, additive manufacturing technologies have been developed. The leading technology for defence applications is Laser Engineered

  4. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  5. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE PAGES

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.; ...

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  6. Advances in detection of diffuse seafloor venting using structured light imaging.

    NASA Astrophysics Data System (ADS)

    Smart, C.; Roman, C.; Carey, S.

    2016-12-01

    Systematic, remote detection and high resolution mapping of low temperature diffuse hydrothermal venting is inefficient and not currently tractable using traditional remotely operated vehicle (ROV) mounted sensors. Preliminary results for hydrothermal vent detection using a structured light laser sensor were presented in 2011 and published in 2013 (Smart) with continual advancements occurring in the interim. As the structured light laser passes over active venting, the projected laser line effectively blurs due to the associated turbulence and density anomalies in the vent fluid. The degree laser disturbance is captured by a camera collecting images of the laser line at 20 Hz. Advancements in the detection of the laser and fluid interaction have included extensive normalization of the collected laser data and the implementation of a support vector machine algorithm to develop a classification routine. The image data collected over a hydrothermal vent field is then labeled as seafloor, bacteria or a location of venting. The results can then be correlated with stereo images, bathymetry and backscatter data. This sensor is a component of an ROV mounted imaging suite which also includes stereo cameras and a multibeam sonar system. Originally developed for bathymetric mapping, the structured light laser sensor, and other imaging suite components, are capable of creating visual and bathymetric maps with centimeter level resolution. Surveys are completed in a standard mowing the lawn pattern completing a 30m x 30m survey with centimeter level resolution in under an hour. Resulting co-registered data includes, multibeam and structured light laser bathymetry and backscatter, stereo images and vent detection. This system allows for efficient exploration of areas with diffuse and small point source hydrothermal venting increasing the effectiveness of scientific sampling and observation. Recent vent detection results collected during the 2013-2015 E/V Nautilus seasons will be presented. Smart, C. J. and Roman, C. and Carey, S. N. (2013) Detection of diffuse seafloor venting using structured light imaging, Geochemistry, Geophysics, Geosystems, 14, 4743-4757

  7. Evolution of laser skin resurfacing: from scanning to fractional technology.

    PubMed

    Aslam, Arif; Alster, Tina S

    2014-11-01

    Laser skin resurfacing was popularized for photoaged and scarred skin 2 decades ago. Since then, several technologic advancements have led to a new generation of delivery systems that produce excellent clinical outcomes with reduced treatment risks and faster recovery times. To review the evolution of laser skin resurfacing from pulsed and scanned infrared laser technology to the latest techniques of nonablative and ablative fractional photothermolysis. All published literature regarding laser skin resurfacing was analyzed and collated. A comprehensive review of laser skin resurfacing was outlined and future developments in the field of fractionated laser skin treatment were introduced. Laser skin resurfacing has evolved such that excellent clinical outcomes in photodamaged and scarred skin are achieved with rapid wound healing. As newer devices are developed, the applications of this technology will have a dramatic effect on the delivery of medical and aesthetic dermatology.

  8. Laser two focus techniques

    NASA Astrophysics Data System (ADS)

    Schodl, R.

    The development of the laser two focus velocimetry are reviewed. The fundamentals of this nonintrusive fluid flow velocity measurement technique are described. Emphasis is placed upon the advances of this technique. Results of measurements in a very small flow channel and in a small turbocharger compressor rotor are presented. The influence of beam diameter - beam separation ratio on the measuring accuracy and on the measuring time is treated. A multicolor two dimensional system with selectable beam separation is presented. The laser Doppler and the laser two focus techniques are compared.

  9. Next generation laser for Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, C.D.; Beach, J.; Bibeau, C.

    1997-07-18

    We are in the process of developing and building the ``Mercury`` laser system as the first in a series of a new generation of diode-pumped solid-state Inertial Confinement Fusion (ICF) lasers at LLNL. Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced high energy density (HED) physics applications. Primary performance goals include 10% efficiencies at 10 Hz and a 1-10 ns pulse with 1{omega} energies of 100 J and with 2{omega}/3{omega} frequency conversion.

  10. Design considerations for the use of laser-plasma accelerators for advanced space radiation studies

    NASA Astrophysics Data System (ADS)

    Königstein, T.; Karger, O.; Pretzler, G.; Rosenzweig, J. B.; Hidding, B.; Hidding

    2012-08-01

    We present design considerations for the use of laser-plasma accelerators for mimicking space radiation and testing space-grade electronics. This novel application takes advantage of the inherent ability of laser-plasma accelerators to produce particle beams with exponential energy distribution, which is a characteristic shared with the hazardous relativistic electron flux present in the radiation belts of planets such as Earth, Saturn and Jupiter. Fundamental issues regarding laser-plasma interaction parameters, beam propagation, flux development, and experimental setup are discussed.

  11. Advances in single mode and high power AlGaInN laser diode technology for systems applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lujca; Boćkowski, Michal; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Smalc-Koziorowska, Julita; Stanczyk, Szymon; Watson, Scott; Kelly, Antony E.

    2015-03-01

    The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries.

  12. Development of Advanced Coatings for Laser Modifications Through Process and Materials Simulation

    NASA Astrophysics Data System (ADS)

    Martukanitz, R. P.; Babu, S. S.

    2004-06-01

    A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit.

  13. Technology advancement for the ASCENDS mission using the ASCENDS CarbonHawk Experiment Simulator (ACES)

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Antill, C.; Browell, E. V.; Campbell, J. F.; CHEN, S.; Cleckner, C.; Dijoseph, M. S.; Harrison, F. W.; Ismail, S.; Lin, B.; Meadows, B. L.; Mills, C.; Nehrir, A. R.; Notari, A.; Prasad, N. S.; Kooi, S. A.; Vitullo, N.; Dobler, J. T.; Bender, J.; Blume, N.; Braun, M.; Horney, S.; McGregor, D.; Neal, M.; Shure, M.; Zaccheo, T.; Moore, B.; Crowell, S.; Rayner, P. J.; Welch, W.

    2013-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center project funded by NASA's Earth Science Technology Office that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technologies being advanced are: (1) multiple transmitter and telescope-aperture operations, (2) high-efficiency CO2 laser transmitters, (3) a high bandwidth detector and transimpedance amplifier (TIA), and (4) advanced algorithms for cloud and aerosol discrimination. The instrument architecture is being developed for ACES to operate on a high-altitude aircraft, and it will be directly scalable to meet the ASCENDS mission requirements. The above technologies are critical for developing an airborne simulator and spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. This design employs several laser transmitters and telescope-apertures to demonstrate column CO2 retrievals with alignment of multiple laser beams in the far-field. ACES will transmit five laser beams: three from commercial lasers operating near 1.57-microns, and two from the Exelis atmospheric oxygen (O2) fiber laser amplifier system operating near 1.26-microns. The Master Oscillator Power Amplifier at 1.57-microns measures CO2 column concentrations using an Integrated-Path Differential Absorption (IPDA) lidar approach. O2 column amounts needed for calculating the CO2 mixing ratio will be retrieved using the Exelis laser system with a similar IPDA approach. The three aperture telescope design was built to meet the constraints of the Global Hawk high-altitude unmanned aerial vehicle (UAV). This assembly integrates fiber-coupled transmit collimators for all of the laser transmitters and fiber-coupled optical signals from the three telescopes to the aft optics and detector package. The detector/TIA effort has improved the existing detector subsystem by: increasing its bandwidth to 5.4 MHz, exceeding the original goal of 5 MHz; reducing the overall mass from 18 lbs to <10 lbs; and increasing the duration of autonomous, service-free operation periods from 4 hrs to >24 hrs. The new detector subsystem will permit higher laser modulation rates, which provides greater flexibility for implementing thin-cloud discrimination algorithms as well as improving range resolution and error reduction, and will enable long-range flights on the Global Hawk. The cloud/aerosol discrimination work features development of new algorithms by Langley and Exelis for the avoidance of bias errors in the retrieval of column CO2 induced by the presence of thin clouds.

  14. Trends in high power laser applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Wignarajah, Sivakumaran; Sugimoto, Kenji; Nagai, Kaori

    2005-03-01

    This paper reviews the research and development efforts made on the use of lasers for material processing in the civil engineering industry. Initial investigations regarding the possibility of using lasers in civil engineering were made in the 1960s and '70s, the target being rock excavation. At that time however, the laser powers available were too small for any practical application utilization. In the 1980's, the technology of laser surface cleaning of historically important structures was developed in Europe. In the early 1990s, techniques of laser surface modification, including glazing and coloring of concrete, roughening of granite stones, carbonization of wood were pursued, mainly in Japan. In the latter part of the decade, techniques of laser decontamination of concrete surfaces in nuclear facilities were developed in many countries, and field tests were caried out in Japan. The rapid advances in development of diode lasers and YAG lasers with high power outputs and efficiencies since the late 1990's have led to a revival of worldwide interest in the use of lasers for material processing in civil engineering. The authors believe that, in the next 10 years or so, the advent of compact high power lasers is likely to lead to increased use of lasers of material processing in the field of civil engineering.

  15. Laser Propulsion for LOTV Space Missions

    NASA Astrophysics Data System (ADS)

    Rezunkov, Yuri A.

    2004-03-01

    Advanced Space Propulsion-Investigation Committee (ASPIC) of the Japan Society for Aeronautics and Space Sciences (JSASS) selected the Laser Orbital Transfer Vehicle (LOTV) project for development of non-chemical space propulsion systems that have a capability to sustain expanded human space activities in the 21st century. This talk is presenting an analysis of the laser propulsion researches made within the frames of the ISTC Project 1801 as applied to the LOTV Project. The study includes the development of techniques for low-thrust maneuvers of the spacecraft to achieve geostationary orbits.

  16. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2003-01-01

    We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.

  17. Smart CMOS sensor for wideband laser threat detection

    NASA Astrophysics Data System (ADS)

    Schwarze, Craig R.; Sonkusale, Sameer

    2015-09-01

    The proliferation of lasers has led to their widespread use in applications ranging from short range standoff chemical detection to long range Lidar sensing and target designation operating across the UV to LWIR spectrum. Recent advances in high energy lasers have renewed the development of laser weapons systems. The ability to measure and assess laser source information is important to both identify a potential threat as well as determine safety and nominal hazard zone (NHZ). Laser detection sensors are required that provide high dynamic range, wide spectral coverage, pulsed and continuous wave detection, and large field of view. OPTRA, Inc. and Tufts have developed a custom ROIC smart pixel imaging sensor architecture and wavelength encoding optics for measurement of source wavelength, pulse length, pulse repetition frequency (PRF), irradiance, and angle of arrival. The smart architecture provides dual linear and logarithmic operating modes to provide 8+ orders of signal dynamic range and nanosecond pulse measurement capability that can be hybridized with the appropriate detector array to provide UV through LWIR laser sensing. Recent advances in sputtering techniques provide the capability for post-processing CMOS dies from the foundry and patterning PbS and PbSe photoconductors directly on the chip to create a single monolithic sensor array architecture for measuring sources operating from 0.26 - 5.0 microns, 1 mW/cm2 - 2 kW/cm2.

  18. National Jet Fuels Combustion Program - overall program integration and analysis, Area #7.

    DOT National Transportation Integrated Search

    2017-01-01

    The goal of this study is to develop, conduct, and analyze advanced laser and optical measurements in the referee combustor (WPAFB, Bldg. 490, RC 152) selected by the ASCENT National Fuel Combustion Program. We will conduct advanced spatially resolve...

  19. Selected developments in laser wire stripping. [cutting insulation from aerospace-type wires and cables

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The operation of mechanical and thermal strippers and the early development of laser wire strippers are reviewed. NASA sponsored development of laser wire stripping for space shuttle includes bench-type strippers as well as an advanced portable hand-held stripper which incorporates a miniaturized carbon dioxide laser and a rotating optics unit with a gas-jet assist and debris exhaust. Drives and controls girdle the wire and slit the remaining slug without manual assistance. This unit can strip wire sizes 26 through 12 gage. A larger-capacity hand-held unit for wire sizes through 1/0 gage was built using a neodynium-doped yttrium aluminum garnet (Nd:YAG) laser. The hand-held units have a flexible umbilical cable to an accompanying cart that carries the power supply, gas supply, cooling unit, and the controls.

  20. Apparatus for advancing a wellbore using high power laser energy

    DOEpatents

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  1. Advanced laser stratospheric monitoring systems analyses

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.

    1984-01-01

    This report describes the software support supplied by Systems and Applied Sciences Corporation for the study of Advanced Laser Stratospheric Monitoring Systems Analyses under contract No. NAS1-15806. This report discusses improvements to the Langley spectroscopic data base, development of LHS instrument control software and data analyses and validation software. The effect of diurnal variations on the retrieved concentrations of NO, NO2 and C L O from a space and balloon borne measurement platform are discussed along with the selection of optimum IF channels for sensing stratospheric species from space.

  2. Ultrashort pulsed laser technology development program

    NASA Astrophysics Data System (ADS)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  3. National Jet Fuels Combustion Program - Area #6 : Referee Swirl-Stabilized Combustor Evaluation/Support.

    DOT National Transportation Integrated Search

    2017-01-01

    The goal of this study is to develop, conduct, and analyze advanced laser and optical measurements in the referee combustor (WPAFB, Bldg. 490, RC 152) selected by the ASCENT National Fuel Combustion Program. We will conduct advanced spatially resolve...

  4. Advancements for Active Remote Sensing of Carbon Dioxide from Space using the ASCENDS CarbonHawk Experiment Simulator: First Results

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Nehrir, A. R.; Lin, B.; Harrison, F. W.; Kooi, S. A.; Choi, Y.; Plant, J.; Yang, M. M.; Antill, C.; Campbell, J. F.; Ismail, S.; Browell, E. V.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.; Moore, B., III; Crowell, S.

    2014-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is an Intensity-Modulated Continuous-Wave lidar system recently developed at NASA Langley Research Center that seeks to advance technologies and techniques critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. These advancements include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. ACES simultaneously transmits five laser beams: three from commercial EDFAs operating near 1571 nm, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1260 nm. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number densities and retrieve the average column CO2 mixing ratio. The outgoing laser beams are aligned to the field of view of ACES' three fiber-coupled 17.8-cm diameter athermal telescopes. The backscattered light collected by the three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.7 MHz and operates service-free using a tactical dewar and cryocooler. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. Full instrument development concluded in the spring of 2014. After ground range tests of the instrument, ACES successfully completed six test flights on the Langley Hu-25 aircraft in July, 2014, and recorded data at multiple altitudes over land and ocean surfaces with and without intervening clouds. Preliminary results from these flights will be presented in this paper.

  5. Ultraviolet 320 nm laser excitation for flow cytometry.

    PubMed

    Telford, William; Stickland, Lynn; Koschorreck, Marco

    2017-04-01

    Although multiple lasers and high-dimensional analysis capability are now standard on advanced flow cytometers, ultraviolet (UV) lasers (usually 325-365 nm) remain an uncommon excitation source for cytometry. This is primarily due to their cost, and the small number of applications that require this wavelength. The development of the Brilliant Ultraviolet (BUV fluorochromes, however, has increased the importance of this formerly niche excitation wavelength. Historically, UV excitation was usually provided by water-cooled argon- and krypton-ion lasers. Modern flow cytometers primary rely on diode pumped solid state lasers emitting at 355 nm. While useful for all UV-excited applications, DPSS UV lasers are still large by modern solid state laser standards, and remain very expensive. Smaller and cheaper near UV laser diodes (NUVLDs) emitting at 375 nm make adequate substitutes for 355 nm sources in many situations, but do not work as well with very short wavelength probes like the fluorescent calcium chelator indo-1. In this study, we evaluate a newly available UV 320 nm laser for flow cytometry. While shorter in wavelength that conventional UV lasers, 320 is close to the 325 nm helium-cadmium wavelength used in the past on early benchtop cytometers. A UV 320 nm laser was found to excite almost all Brilliant Ultraviolet dyes to nearly the same level as 355 nm sources. Both 320 nm and 355 nm sources worked equally well for Hoechst and DyeCycle Violet side population analysis of stem cells in mouse hematopoetic tissue. The shorter wavelength UV source also showed excellent excitation of indo-1, a probe that is not compatible with NUVLD 375 nm sources. In summary, a 320 nm laser module made a suitable substitute for conventional 355 nm sources. This laser technology is available in a smaller form factor than current 355 nm units, making it useful for small cytometers with space constraints. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  6. High power laser-mechanical drilling bit and methods of use

    DOEpatents

    Grubb, Daryl L.; Kolachalam, Sharath K.; Faircloth, Brian O.; Rinzler, Charles C.; Allen, Erik C.; Underwood, Lance D.; Zediker, Mark S.

    2017-02-07

    An apparatus with a high power laser-mechanical bit for use with a laser drilling system and a method for advancing a borehole. The laser-mechanical bit has a beam path and mechanical removal devices that provide for the removal of laser-affected rock to advance a borehole.

  7. The development of laser surgery and medicine in China

    NASA Astrophysics Data System (ADS)

    Chen, Mingzhe

    2005-07-01

    The first Chinese ruby laser was created in 1961 and it was adopted for the retina coagulation experiment in 1965. Since 1970's, lasers had been widely applied clinically including the diseases suitable to physical therapy or acupuncture. The Chinese HpD was first produced in 1981 and first case of PDT was treated using Chinese HpD and Chinese lasers in the same year. Its success brought attention establishing a research group supported by the government in 1982. A nationwide systemic research project on PDT was then carried out. The step taken for PDT also accelerated the development of various fields of laser medicine and surgery. Laser treatments had been commonly adopted in the clinics and hospitals for the diseases of the superficial lesions and the lesions can be reached by the endoscopes non-invasively in 1980's. Since 1990's, the interventional laser therapies adopted mainly were percutaneous laser angioplasty, laser treatments through laparoscope, thoracoscope, arthroscope, neuro-endoscope etc. Ultrasound guided percutaneous laser heat coagulation for small hepatic cancer revealed good results and ultrasound guided percutaneous PDT for advanced large liver cancer revealed unexpected results after five years follow-up. At present: There are more long-term follow-up patients in the clinical trial; more advanced commercial available lasers and new techniques are adopted. Since the popularization of scanning electron microscope, laser scanning confocal microscope, laser induced auto-fluorescence system, high sensitivity fluorescence microscopic imaging system etc. in the laboratories, the basic studies can be more advanced and some times, the sub-cellular level can be reached; ultra-structure histo-morphology and gene studies are involved. In dermatology, Q-switched Alexandrite laser and other Q-switched lasers are used mainly for the treatment of skin pigmentation and vascular diseases; pulsed dye laser, ultra-pulsed CO2 laser are used in resurfacing, facial acne scar, osmidrosis etc. For ophthalmology, excimer laser are used for myopia or hyperopia; argon green laser, krypton yellow laser are adopted in coagulation for retinal detachment and neovascularization etc. Lasers are often used for the canaliculoplasty in the lacrimal canal. Low level lasers had been used very often on the acupuncture points and for many chronic diseases. Intravascular low level laser irradiation adopting semiconductor lasers and He-Ne laser were reported to use for comatose patients, schizophrenia, vascular dementia, Alzeimer"s disease and coronary disease. Reports from laboratory studies in the field of low level laser demonstrated the stimulation effect on the cells and immunology system; inhibitory effect on proliferation; it improved the biomedical data in hemorrheology; promoted the spinal motor nerve cell function, axonal regeneration; increased epidermal Langerhams cell to improve the antigen function, increased myocardial capillary permeability. Intra-coronary low power red laser irradiation assisted coronary interventional therapy showed its prevention effect on restenosis. Studies about the effects of various kinds of lasers, their wavelength, power densities and doses on various kinds of tissues were reported.

  8. High-energy laser weapons since the early 1960s

    NASA Astrophysics Data System (ADS)

    Cook, Joung

    2013-02-01

    Both the U.S. and Russia/USSR have made great strides toward developing high-energy laser weapons for their future national defense systems since the early 1960s. Many billions of dollars and rubles were invested in the effort. Many hundreds of gifted scientists and engineers devoted their careers to working on the problems. They achieved major technological advances and made impressive and successful demonstrations. After more than half a century, however, neither side has yet adapted the first laser weapon for a military use. Why? This paper discusses the history of key technological advancements and successes, as well as some of the difficulties encountered. It also discusses fundamental technological advantages and limitations of high-energy laser weapons, and also the unique social, cultural, and political environments that have contributed to the history. The high-energy laser technical community is in the process of finding ways to adapt to the new warfare environment by taking advantage of the lessons learned in the past while incorporating the new technologies and ideas evolved in recent years.

  9. Physics-Based Computational Algorithm for the Multi-Fluid Plasma Model

    DTIC Science & Technology

    2014-06-30

    applying it to study laser - 20 Physics-Based Multi-Fluid Plasma Algorithm Shumlak Figure 6: Blended finite element method applied to the species...separation problem in capsule implosions. Number densities and electric field are shown after the laser drive has compressed the multi-fluid plasma and...6 after the laser drive has started the compression. A separation clearly develops. The solution is found using an explicit advance (CFL=1) for the

  10. The use of laser in hysteroscopic surgery.

    PubMed

    Nappi, Luigi; Sorrentino, Felice; Angioni, Stefano; Pontis, Alessandro; Greco, Pantaleo

    2016-12-01

    The term laser, an acronym for light amplification by stimulated emission of radiation, covers a wide range of devices. Lasers are commonly described by the emitted wavelength that covers the entire light spectrum from infrared to ultraviolet and the active lasing medium. Currently, over forty different types of lasers have found application in medicine. Moreover, advances made by gynecologists in the field of operative hysteroscopy have developed a very great interest in the use of surgical lasers. Technical improvements in hysteroscopes and lasers have led several gynecologists to evaluate their use in the surgical treatment of intrauterine pathologies. This narrative review concerns the most common used lasers in hysteroscopic surgery with particular attention to the latest promising results of the laser technology.

  11. Next-generation laser for Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, C.D.; Deach, R.J.; Bibeau, C.

    1997-09-29

    We report on the progress in developing and building the Mercury laser system as the first in a series of a new generation of diode- pumped solid-state Inertial Confinement Fusion (ICF) lasers at Lawrence Livermore National Laboratory (LLNL). Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced high energy density (HED) physics applications. Primary performance goals include 10% efficiencies at 10 Hz and a 1-10 ns pulse with 1 omega energies of 100 J and with 2 omega/3 omega frequency conversion.

  12. Synthesis of the Plasma Chemistry Occurring in High Power CO2 Lasers

    DTIC Science & Technology

    1978-12-01

    AFIT/GEP/PH/78D-13 44 SYNTHESIS OF THE PLASMA CHEMISTRY D D C OCCURRING IN HIGH POWER CO 2 LASERS ’Una CTHESIS David E. Toodle AFIT/GEP/PH/78D-13 2nd...inves- tivation is the plasma chemistry occurring in the laser discharge. These studies are ultimately related to the development of flowing and...aids in the understanding of plasma chemistry pro- cesses in the CO2 laser discharge. I would like to thank the whole staff of the Advanced Concepts

  13. Optimization of Diode Laser System to Treat Benign Prostate Hyperplasia Final Report CRADA No. TSB-1154-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    London, Richard A; Byrne, Mark

    Benign prostate hyperplasia (BPH) is a pervasive condition of enlargement of the male prostate gland which leads to several urinary difficulties ranging from hesitancy to incontinence to kidney dysfunction in severe cases. Currently the most common therapy is transurethral resection of the prostate (TURP) utilizing an electrosurgical device. Although TURP is largely successful, new BPH therapy methods are desired to reduce the cost and recovery time, improve the success rate, and reduce side effects. Recently, lasers have been introduced for this purpose. Indigo Medical Inc. is currently engaged in the development, testing, and preparation for sales of a new diodemore » laser based BPH therapy system. The development is based on laboratory experiments, animal studies, and a limited FDA-approved clinical trial in the US and in other countries. The addition of sophisticated numerical modeling, of the sort that has been highly developed at Lawrence Livermore National Laboratory, can greatly aid in the design of the system and treatment protocol. The benefits to DOE include the maintenance and advancement of numerical modeling expertise in radiation-matter interactions of the sort essential for the stockpile stewardship, inertial confinement fusion, and advanced manufacturing, and the push on advanced scientific computational methods, ultimately in areas such as 3-D transport.« less

  14. Role of laser beam radiance in different ceramic processing: A two wavelengths comparison

    NASA Astrophysics Data System (ADS)

    Shukla, Pratik; Lawrence, Jonathan

    2013-12-01

    Effects of laser beam radiance (brightness) of the fibre and the Nd3+:YAG laser were investigated during surface engineering of the ZrO2 and Si3N4 advanced ceramics with respect to dimensional size and microstructure of both of the advanced ceramics. Using identical process parameters, the effects of radiance of both the Nd3+:YAG laser and a fibre laser were compared thereon the two selected advanced ceramics. Both the lasers showed differences in each of the ceramics employed in relation to the microstructure and grain size as well as the dimensional size of the laser engineered tracks-notwithstanding the use of identical process parameters namely spot size; laser power; traverse speed; Gaussian beam modes; gas flow rate and gas composition as well the wavelengths. From this it was evident that the difference in the laser beam radiance between the two lasers would have had much to do with this effect. The high radiance fibre laser produced larger power per unit area in steradian when compared to the lower radiance of the Nd3+:YAG laser. This characteristically produced larger surface tracks through higher interaction temperature at the laser-ceramic interface. This in turn generated bigger melt-zones and different cooling rates which then led to the change in the microstructure of both the Si3N4 and ZrO2 advance ceramics. Owing to this, it was indicative that lasers with high radiance would result in much cheaper and cost effective laser assisted surface engineering processes, since lower laser power, faster traverse speeds, larger spot sizes could be used in comparison to lasers with lower radiance which require much slower traverse speed, higher power levels and finer spot sizes to induce the same effect thereon materials such as the advanced ceramics.

  15. New approaches in clinical application of laser-driven ionizing radiation

    NASA Astrophysics Data System (ADS)

    Hideghéty, Katalin; Szabó, Rita Emilia; Polanek, Róbert; Szabó, Zoltán.; Brunner, Szilvia; Tőkés, Tünde

    2017-05-01

    The planned laser-driven ionizing beams (photon, very high energy electron, proton, carbon ion) at laser facilities have the unique property of ultra-high dose rate (>Gy/s-10), short pulses, and at ELI-ALPS high repetition rate, carry the potential to develop novel laser-driven methods towards compact hospital-based clinical application. The enhanced flexibility in particle and energy selection, the high spatial and time resolution and extreme dose rate could be highly beneficial in radiotherapy. These approaches may increase significantly the therapeutic index over the currently available advanced radiation oncology methods. We highlight two nuclear reactionbased binary modalities and the planned radiobiology research. Boron Neutron Capture Therapy is an advanced cell targeted modality requiring 10B enriched boron carrier and appropriate neutron beam. The development of laser-based thermal and epithermal neutron source with as high as 1010 fluence rate could enhance the research activity in this promising field. Boron-Proton Fusion reaction is as well as a binary approach, where 11B containing compounds are accumulated into the cells, and the tumour selectively irradiated with protons. Due to additional high linear energy transfer alpha particle release of the BPFR and the maximum point of the Bragg-peak is increased, which result in significant biological effect enhancement. Research at ELI-ALPS on detection of biological effect differences of modified or different quality radiation will be presented using recently developed zebrafish embryo and rodent models.

  16. Laser direct writing of micro- and nano-scale medical devices

    PubMed Central

    Gittard, Shaun D; Narayan, Roger J

    2010-01-01

    Laser-based direct writing of materials has undergone significant development in recent years. The ability to modify a variety of materials at small length scales and using short production times provides laser direct writing with unique capabilities for fabrication of medical devices. In many laser-based rapid prototyping methods, microscale and submicroscale structuring of materials is controlled by computer-generated models. Various laser-based direct write methods, including selective laser sintering/melting, laser machining, matrix-assisted pulsed-laser evaporation direct write, stereolithography and two-photon polymerization, are described. Their use in fabrication of microstructured and nanostructured medical devices is discussed. Laser direct writing may be used for processing a wide variety of advanced medical devices, including patient-specific prostheses, drug delivery devices, biosensors, stents and tissue-engineering scaffolds. PMID:20420557

  17. Channel Wall Nozzle Hot-fire Tests

    NASA Image and Video Library

    2018-03-16

    A subscale channel wall nozzle is hot-fire tested in November 2017 at NASA's Marshall Space Flight Center. The nozzle was fabricated using three separate, state-of-the-art, advanced manufacturing technologies including a new process called Laser Wire Direct Closeout that was co-developed and advanced at Marshall.

  18. Development of Advanced Thermal and Environmental Barrier Coatings Using a High-Heat-Flux Testing Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 1700 C) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, high temperature capability thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity, which initially rises under the steady-state high temperature thermal gradient test due to coating sintering, and later drops under the cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on damage accumulation and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The external radiation resistance of the coating is assessed based on the measured specimen temperature response under a laser- heated intense radiation-flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature may be derived.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Jonathan H.; Pickett, Lyle M.; Bisson, Scott E.

    In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitativemore » high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.« less

  20. Development of Optimized Combustors and Thermoelectric Generators for Palm Power Generation

    DTIC Science & Technology

    2004-10-26

    manufacturing techniques and microfabrication, on the chemical kinetics of JP-8 surrogates and on the development of advanced laser diagnostics for JP-8...takes the shape of a cone from the tip of which a thin liquid thread emerges, in the so-called cone-jet mode [1]. This microjet breaks into a stream of...combustion systems. 2. The development of a diagnostic technique based on two-color laser induced fluorescence from fluorescence tags added to the fuel

  1. Laser Range and Bearing Finder for Autonomous Missions

    NASA Technical Reports Server (NTRS)

    Granade, Stephen R.

    2004-01-01

    NASA has recently re-confirmed their interest in autonomous systems as an enabling technology for future missions. In order for autonomous missions to be possible, highly-capable relative sensor systems are needed to determine an object's distance, direction, and orientation. This is true whether the mission is autonomous in-space assembly, rendezvous and docking, or rover surface navigation. Advanced Optical Systems, Inc. has developed a wide-angle laser range and bearing finder (RBF) for autonomous space missions. The laser RBF has a number of features that make it well-suited for autonomous missions. It has an operating range of 10 m to 5 km, with a 5 deg field of view. Its wide field of view removes the need for scanning systems such as gimbals, eliminating moving parts and making the sensor simpler and space qualification easier. Its range accuracy is 1% or better. It is designed to operate either as a stand-alone sensor or in tandem with a sensor that returns range, bearing, and orientation at close ranges, such as NASA's Advanced Video Guidance Sensor. We have assembled the initial prototype and are currently testing it. We will discuss the laser RBF's design and specifications. Keywords: laser range and bearing finder, autonomous rendezvous and docking, space sensors, on-orbit sensors, advanced video guidance sensor

  2. ELI-beamlines: progress in development of next generation short-pulse laser systems

    NASA Astrophysics Data System (ADS)

    Rus, B.; Bakule, P.; Kramer, D.; Naylon, J.; Thoma, J.; Fibrich, M.; Green, J. T.; Lagron, J. C.; Antipenkov, R.; Bartoníček, J.; Batysta, F.; Baše, R.; Boge, R.; Buck, S.; Cupal, J.; Drouin, M. A.; Durák, M.; Himmel, B.; Havlíček, T.; Homer, P.; Honsa, A.; Horáček, M.; Hríbek, P.; Hubáček, J.; Hubka, Z.; Kalinchenko, G.; Kasl, K.; Indra, L.; Korous, P.; Košelja, M.; Koubíková, L.; Laub, M.; Mazanec, T.; Meadows, A.; Novák, J.; Peceli, D.; Polan, J.; Snopek, D.; Šobr, V.; Trojek, P.; Tykalewicz, B.; Velpula, P.; Verhagen, E.; Vyhlídka, Å.; Weiss, J.; Haefner, C.; Bayramian, A.; Betts, S.; Erlandson, A.; Jarboe, J.; Johnson, G.; Horner, J.; Kim, D.; Koh, E.; Marshall, C.; Mason, D.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Stolz, C.; Suratwala, T.; Telford, S.; Ditmire, T.; Gaul, E.; Donovan, M.; Frederickson, C.; Friedman, G.; Hammond, D.; Hidinger, D.; Chériaux, G.; Jochmann, A.; Kepler, M.; Malato, C.; Martinez, M.; Metzger, T.; Schultze, M.; Mason, P.; Ertel, K.; Lintern, A.; Edwards, C.; Hernandez-Gomez, C.; Collier, J.

    2017-05-01

    Overview of progress in construction and testing of the laser systems of ELI-Beamlines, accomplished since 2015, is presented. Good progress has been achieved in construction of all four lasers based largely on the technology of diode-pumped solid state lasers (DPSSL). The first part of the L1 laser, designed to provide 200 mJ <15 fs pulses at 1 kHz repetition rate, is up and running. The L2 is a development line employing a 10 J / 10 Hz cryogenic gas-cooled pump laser which has recently been equipped with an advanced cryogenic engine. Operation of the L3-HAPLS system, using a gas-cooled DPSSL pump laser and a Ti:sapphire broadband amplifier, was recently demonstrated at 16 J / 28 fs, at 3.33 Hz rep rate. Finally, the 5 Hz OPCPA front end of the L4 kJ laser is up running and amplification in the Nd:glass large-aperture power amplifiers was demonstrated.

  3. Laser Looking at Earth

    NASA Technical Reports Server (NTRS)

    1999-01-01

    TerraPoint (TM) LLC is a company that combines the technologies developed at NASA's Goddard Space Flight Center (GSFC) and the Houston Advanced Research Center (HARC) with the concept of topographic real estate imaging. TerraPoint provides its customers with digital, topographical data generated by laser technology rather than commonly used microwave (radar) and photographic technologies. This product's technology merges Goddard's and HARC's laser ranging, global positioning systems, and mapping software into a miniaturized package that can be mounted in a light aircraft.

  4. The HALNA project: Diode-pumped solid-state laser for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Kawashima, T.; Ikegawa, T.; Kawanaka, J.; Miyanaga, N.; Nakatsuka, M.; Izawa, Y.; Matsumoto, O.; Yasuhara, R.; Kurita, T.; Sekine, T.; Miyamoto, M.; Kan, H.; Furukawa, H.; Motokoshi, S.; Kanabe, T.

    2006-06-01

    High-enery, rep.-rated, diode-pumped solid-state laser (DPSSL) is one of leading candidates for inertial fusion energy driver (IFE) and related laser-driven high-field applications. The project for the development of IFE laser driver in Japan, HALNA (High Average-power Laser for Nuclear Fusion Application) at ILE, Osaka University, aims to demonstrate 100-J pulse energy at 10 Hz rep. rate with 5 times diffraction limited beam quality. In this article, the advanced solid-state laser technologies for one half scale of HALNA (50 J, 10 Hz) are presented including thermally managed slab amplifier of Nd:phosphate glass and zig-zag optical geometry, and uniform, large-area diode-pumping.

  5. Simulation of the temperature increase in human cadaver retina during direct illumination by 150-kHz femtosecond laser pulses

    PubMed Central

    Sun, Hui; Hosszufalusi, Nora; Mikula, Eric R.; Juhasz, Tibor

    2011-01-01

    We have developed a two-dimensional computer model to predict the temperature increase of the retina during femtosecond corneal laser flap cutting. Simulating a typical clinical setting for 150-kHz iFS advanced femtosecond laser (0.8- to 1-μJ laser pulse energy and 15-s procedure time at a laser wavelength of 1053 nm), the temperature increase is 0.2°C. Calculated temperature profiles show good agreement with data obtained from ex vivo experiments using human cadaver retina. Simulation results obtained for different commercial femtosecond lasers indicate that during the laser in situ keratomileusis procedure the temperature increase of the retina is insufficient to induce damage. PMID:22029369

  6. A decade of astrocombs: recent advances in frequency combs for astronomy.

    PubMed

    McCracken, Richard A; Charsley, Jake M; Reid, Derryck T

    2017-06-26

    A new regime of precision radial-velocity measurements in the search for Earth-like exoplanets is being facilitated by high-resolution spectrographs calibrated by laser frequency combs. Here we review recent advances in the development of astrocomb technology, and discuss the state of the field going forward.

  7. Energy Conversion and Storage Program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  8. Laser treatment of port-wine stains

    PubMed Central

    Brightman, Lori A; Geronemus, Roy G; Reddy, Kavitha K

    2015-01-01

    Port-wine stains are a type of capillary malformation affecting 0.3% to 0.5% of the population. Port-wine stains present at birth as pink to erythematous patches on the skin and/or mucosa. Without treatment, the patches typically darken with age and may eventually develop nodular thickening or associated pyogenic granuloma. Laser and light treatments provide improvement through selective destruction of vasculature. A variety of vascular-selective lasers may be employed, with the pulsed dye laser being the most common and well studied. Early treatment produces more optimal results. Advances in imaging and laser treatment technologies demonstrate potential to further improve clinical outcomes. PMID:25624768

  9. Advanced laser modeling with BLAZE multiphysics

    NASA Astrophysics Data System (ADS)

    Palla, Andrew D.; Carroll, David L.; Gray, Michael I.; Suzuki, Lui

    2017-01-01

    The BLAZE Multiphysics™ software simulation suite was specifically developed to model highly complex multiphysical systems in a computationally efficient and highly scalable manner. These capabilities are of particular use when applied to the complexities associated with high energy laser systems that combine subsonic/transonic/supersonic fluid dynamics, chemically reacting flows, laser electronics, heat transfer, optical physics, and in some cases plasma discharges. In this paper we present detailed cw and pulsed gas laser calculations using the BLAZE model with comparisons to data. Simulations of DPAL, XPAL, ElectricOIL (EOIL), and the optically pumped rare gas laser were found to be in good agreement with experimental data.

  10. NASA programs in advanced sensors and measurement technology for aeronautical applications

    NASA Astrophysics Data System (ADS)

    Conway, Bruce A.

    NASA involvement in the development, implementation, and experimental use of advanced aeronautical sensors and measurement technologies is presently discussed within the framework of specific NASA research centers' activities. The technology thrusts are in the fields of high temperature strain gages and microphones, laser light-sheet flow visualization, LTA, LDV, and LDA, tunable laser-based aviation meteorology, and fiber-optic CARS measurements. IR thermography and close-range photogrammetry are undergoing substantial updating and application. It is expected that 'smart' sensors will be increasingly widely used, especially in conjunction with smart structures in aircraft and spacecraft.

  11. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  12. High-power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ryba, Tracey; Holzer, Marco

    2012-03-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With about 2,000 high power disk lasers installations, and a demand upwards of 1,000 lasers per year, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain recent advances in disk laser technology and process relevant features of the laser, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  13. Optimization of Process Parameters for High Efficiency Laser Forming of Advanced High Strength Steels within Metallurgical Constraints

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Ghazal; Griffiths, Jonathan; Dearden, Geoff; Edwardson, Stuart P.

    Laser forming (LF) has been shown to be a viable alternative to form automotive grade advanced high strength steels (AHSS). Due to their high strength, heat sensitivity and low conventional formability show early fractures, larger springback, batch-to-batch inconsistency and high tool wear. In this paper, optimisation of the LF process parameters has been conducted to further understand the impact of a surface heat treatment on DP1000. A FE numerical simulation has been developed to analyse the dynamic thermo-mechanical effects. This has been verified against empirical data. The goal of the optimisation has been to develop a usable process window for the LF of AHSS within strict metallurgical constraints. Results indicate it is possible to LF this material, however a complex relationship has been found between the generation and maintenance of hardness values in the heated zone. A laser surface hardening effect has been observed that could be beneficial to the efficiency of the process.

  14. Quantum cascade lasers (QCLs) in biomedical spectroscopy.

    PubMed

    Schwaighofer, Andreas; Brandstetter, Markus; Lendl, Bernhard

    2017-10-02

    Quantum cascade lasers (QCL) are the first room temperature semiconductor laser source for the mid-IR spectral region, triggering substantial development for the advancement of mid-IR spectroscopy. Mid-IR spectroscopy in general provides rapid, label-free and objective analysis, particularly important in the field of biomedical analysis. Due to their unique properties, QCLs offer new possibilities for development of analytical methods to enable quantification of clinically relevant concentration levels and to support medical diagnostics. Compared to FTIR spectroscopy, novel and elaborated measurement techniques can be implemented that allow miniaturized and portable instrumentation. This review illustrates the characteristics of QCLs with a particular focus on their benefits for biomedical analysis. Recent applications of QCL-based spectroscopy for analysis of a variety of clinically relevant samples including breath, urine, blood, interstitial fluid, and biopsy samples are summarized. Further potential for technical advancements is discussed in combination with future prospects for employment of QCL-based devices in routine and point-of-care diagnostics.

  15. Development of X-Ray Laser Media: Measurement of Gain and Development of Cavity Resonators for Wavelengths Near 130 Angstroms.

    DTIC Science & Technology

    1985-09-30

    El recombination inversion, is much more effective. Furthermore, we have studied extensively a more advanced geometry which we predict theoretically ...to be even more effective: that of laser-imploded thin cylindrical shells. We report here on theoretical and Codes or. - .. I-. - experimental progress... theoretical analysis, as well as the actual demonstration on OMEGA of the compression of cylindrical shell targets were described in a paper entitled

  16. Software for visualization, analysis, and manipulation of laser scan images

    NASA Astrophysics Data System (ADS)

    Burnsides, Dennis B.

    1997-03-01

    The recent introduction of laser surface scanning to scientific applications presents a challenge to computer scientists and engineers. Full utilization of this two- dimensional (2-D) and three-dimensional (3-D) data requires advances in techniques and methods for data processing and visualization. This paper explores the development of software to support the visualization, analysis and manipulation of laser scan images. Specific examples presented are from on-going efforts at the Air Force Computerized Anthropometric Research and Design (CARD) Laboratory.

  17. International Laser Ranging Service (ILRS): Terms of Reference

    NASA Technical Reports Server (NTRS)

    Husson, Van; Noll, Carey

    2000-01-01

    The International Laser Ranging Service (ILRS) is an established Service within Section II , Advanced Space Technology, of the International Association of Geodesy (IAG). The primary objective of the ILRS is to provide a service to support, through Satellite and Lunar Laser Ranging data and related products, geodetic and geophysical research activities as well as International Earth Rotation Service (IERS) products important to the maintenance of an accurate International Terrestrial Reference Frame (ITRF). The service also develops the necessary standards/specifications and encourages international adherence to its conventions.

  18. LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.

    2017-08-01

    MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.

  19. S&TR Preview: Groundbreaking Laser Set to Energize Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haefner, Constantin

    The High-Repetition-Rate Advanced Petawatt Laser System (HAPLS) is designed to fire 10 times per second, which represents a major advancement over existing petawatt lasers and opens the door to new scientific discoveries.

  20. Advanced chemical oxygen iodine lasers for novel beam generation

    NASA Astrophysics Data System (ADS)

    Wu, Kenan; Zhao, Tianliang; Huai, Ying; Jin, Yuqi

    2018-03-01

    Chemical oxygen iodine laser, or COIL, is an impressive type of chemical laser that emits high power beam with good atmospheric transmissivity. Chemical oxygen iodine lasers with continuous-wave plane wave output are well-developed and are widely adopted in directed energy systems in the past several decades. Approaches of generating novel output beam based on chemical oxygen iodine lasers are explored in the current study. Since sophisticated physical processes including supersonic flowing of gaseous active media, chemical reacting of various species, optical power amplification, as well as thermal deformation and vibration of mirrors take place in the operation of COIL, a multi-disciplinary model is developed for tracing the interacting mechanisms and evaluating the performance of the proposed laser architectures. Pulsed output mode with repetition rate as high as hundreds of kHz, pulsed output mode with low repetition rate and high pulse energy, as well as novel beam with vector or vortex feature can be obtained. The results suggest potential approaches for expanding the applicability of chemical oxygen iodine lasers.

  1. Method and system for advancement of a borehole using a high power laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.

    2014-09-09

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  2. Assessment of Laser-Driven Pulsed Neutron Sources for Poolside Neutron-based Advanced NDE – A Pathway to LANSCE-like Characterization at INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Markus; Vogel, Sven C.; Bourke, Mark Andrew M.

    A variety of opportunities for characterization of fresh nuclear fuels using thermal (~25meV) and epithermal (~10eV) neutrons have been documented at Los Alamos National Laboratory. They include spatially resolved non-destructive characterization of features, isotopic enrichment, chemical heterogeneity and stoichiometry. The LANSCE spallation neutron source is well suited in neutron fluence and temporal characteristics for studies of fuels. However, recent advances in high power short pulse lasers suggest that compact neutron sources might, over the next decade, become viable at a price point that would permit their consideration for poolside characterization on site at irradiation facilities. In a laser-driven neutron sourcemore » the laser is used to accelerate deuterium ions into a beryllium target where neutrons are produced. At this time, the technology is new and their total neutron production is approximately four orders of magnitude less than a facility like LANSCE. However, recent measurements on a sub-optimized system demonstrated >10 10 neutrons in sub-nanosecond pulses in predominantly forward direction. The compactness of the target system compared to a spallation target may allow exchanging the target during a measurement to e.g. characterize a highly radioactive sample with thermal, epithermal, and fast neutrons as well as hard X-rays, thus avoiding sample handling. At this time several groups are working on laser-driven neutron production and are advancing concepts for lasers, laser targets, and optimized neutron target/moderator systems. Advances in performance sufficient to enable poolside fuels characterization with LANSCE-like fluence on sample within a decade may be possible. This report describes the underlying physics and state-of-the-art of the laser-driven neutron production process from the perspective of the DOE/NE mission. It also discusses the development and understanding that will be necessary to provide customized capability for characterization of irradiated fuels. Potential operational advantages compared to a spallation neutron source include reduced shielding complexity, reduced energy requirements, and a production target free of fission products. Contributors to this report include experts in laser-driven neutron production (Roth, Fernandez), laser design (Haefner, Siders, Leemans), laser target design (Glenzer), spallation target/moderator design (Mocko), neutron instrumentation and characterization applications (Vogel, Bourke).« less

  3. Development of CO2 laser Doppler instrumentation for detection of clear air turbulence, volume 1

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Jelalian, A. V.

    1979-01-01

    Modification, construction, test and operation of an advanced airborne carbon dioxide laser Doppler system for detecting clear air turbulence are described. The second generation CAT program and those auxiliary activities required to support and verify such a first-of-a-kind system are detailed: aircraft interface; ground and flight verification tests; data analysis; and laboratory examinations.

  4. Investigation of the Effects of MIR-FELIrradiation on the Photoluminescence of Titanium Dioxides

    NASA Astrophysics Data System (ADS)

    Sonobe, T.; Bakr, M.; Yoshida, K.; Higashimura, K.; Kinjo, R.; Hachiya, K.; Kii, T.; Masuda, K.; Ohgaki, H.

    2010-02-01

    A mid-infrared free electron laser (MIR-FEL: 5 μm-20 μm) facility (KU-FEL: Kyoto University Free Electron Laser) has been constructed in Institute of Advanced Energy Kyoto University, and first laser saturation at 13.2 μm was achieved in May 2008. Currently, we have started to develop the application of MIR-FEL in the field of energy and material science. This study aimed at investigating the feasibility for the development of new evaluation technique of electron-phonon interaction in metal oxides by MIR-FEL. A preliminary result of electrical and optical properties of titanium dioxides was presented.

  5. Laser immunotherapy for treatment of patients with advanced breast cancer and melanoma

    NASA Astrophysics Data System (ADS)

    Li, Xiaosong; Hode, Tomas; Guerra, Maria C.; Ferrel, Gabriela L.; Nordquist, Robert E.; Chen, Wei R.

    2011-02-01

    Laser immunotherapy (LIT) was developed for the treatment of metastatic tumors. It combines local selective photothermal interaction and active immunological stimulation to induce a long-term, systemic anti-tumor immunity. During the past sixteen years, LIT has been advanced from bench-top to bedside, with promising outcomes. In our pre-clinical and preliminary clinical studies, LIT has demonstrated the capability in inducing immunological responses, which not only can eradicate the treated primary tumors, but also can eliminate untreated metastases at distant sites. Specifically, LIT has been used to treat advanced melanoma and breast cancer patients during the past five years. LIT was shown to be effective in controlling both primary tumors and distant metastases in late-stage patients, who have failed conventional therapies such as surgery, chemotherapy, radiation, and other more advanced approaches. The methodology and the development of LIT are presented in this paper. The patients' responses to LIT are also reported in this paper. The preliminary results obtained in these studies indicated that LIT could be an effective modality for the treatment of patients with late-stage, metastatic cancers, who are facing severely limited options.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, J.; Max-Planck-Institut für Quantenoptik Garching, Hans-Kopfermann-Str. 1, 85748 Garching bei München; Bolton, P. R.

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies andmore » typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.« less

  7. Performance characteristics and statistics of a laser initiated microdetonator

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1979-01-01

    The test results of 320 units of the laser initiated microdetonator are summarized. The commercially fabricated units used a lead styphnate/lead azide/HMX (1 mg/17.5 mg/13.5 mg) explosive train design contained in a miniature aluminum can and completed with a glass-metal seal window. The test parameters were the high and low laser energy, high and low temperature, laser pulse duration, laser wavelength and nuclear radiation (5 x 10 to the 6th rads of 1 MeV gamma ray). The performance parameters were the laser energy for ignition and the actuation response time. Included also is a description of the development of a flexible, continuously advanced train of explosive devices by using the units, miniature optics and fiber optics.

  8. Recent advancements in transparent ceramics and crystal fibers for high power lasers

    NASA Astrophysics Data System (ADS)

    Kim, W.; Baker, C.; Villalobos, G.; Florea, C.; Gibson, D.; Shaw, L. B.; Bowman, S.; Bayya, S.; Sadowski, B.; Hunt, M.; Askins, C.; Peele, J.; Aggarwal, I. D.; Sanghera, J. S.

    2013-05-01

    In this paper, we present our recent progress in the development of rare-earth (Yb3+ or Ho3+) doped Lu2O3 and Y2O3 sesquioxides for high power solid state lasers. We have fabricated high quality transparent ceramics using nano-powders synthesized by a co-precipitation method. This was accomplished by developments in high purity powder synthesis and low temperature scalable sintering technology developed at NRL. The optical, spectral and morphological properties as well as the lasing performance from our highly transparent ceramics are presented. In the second part of the paper, we discuss our recent research effort in developing cladded-single crystal fibers for high power single frequency fiber lasers has the potential to significantly exceed the capabilities of existing silica fiber based lasers. Single crystal fiber cores with diameters as small as 35μm have been drawn using high purity rare earth doped ceramic or single crystal feed rods by the Laser Heated Pedestal Growth (LHPG) process. Our recent results on the development of suitable claddings on the crystal fiber core are discussed.

  9. Development and qualification testing of a laser-ignited, all-secondary (DDT) detonator

    NASA Technical Reports Server (NTRS)

    Blachowski, Thomas J.; Krivitsky, Darrin Z.; Tipton, Stephen

    1994-01-01

    The Indian Head Division, Naval Surface Warfare Center (IHDIV, NSWC) is conducting a qualification program for a laser-ignited, all-secondary (DDT) explosive detonator. This detonator was developed jointly by IHDIV, NSWC and the Department of Energy's EG&G Mound Applied Technologies facility in Miamisburg, Ohio to accept a laser initiation signal and produce a fully developed shock wave output. The detonator performance requirements were established by the on-going IHDIV, NSWC Laser Initiated Transfer Energy Subsystem (LITES) advanced development program. Qualification of the detonator as a component utilizing existing military specifications is the selected approach for this program. The detonator is a deflagration-to-detonator transfer (DDT) device using a secondary explosive, HMX, to generate the required shock wave output. The prototype development and initial system integration tests for the LITES and for the detonator were reported at the 1992 International Pyrotechnics Society Symposium and at the 1992 Survival and Flight Equipment National Symposium. Recent results are presented for the all-fire sensitivity and qualification tests conducted at two different laser initiation pulses.

  10. Laser induced damage in optical materials: ninth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1978-08-01

    The Ninth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 4-6 October 1977. The symposium was under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy (formerly ERDA), and the Office of Naval Research. About 185 scientists attended, including representatives of the United Kingdom, France, Canada, Australia, Union of South Africa, and the Soviet Union. The Symposium was divided into sessions concerning Laser Windows and Materials, Mirrors and Surfaces, Thin Films, Laser Glass and Glass Lasers, and Fundamental Mechanisms. As in previous years, the emphasis of the papers was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the uv region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength were also discussed. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The Tenth Annual Symposium is scheduled for 12-14 September 1978 at the National Bureau of Standards, Boulder, Colorado.

  11. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, Richard Burnite; McLean, Harry M.; Theobald, Wolfgang

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends criticallymore » on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density target as well as large and erratic spread of the electron beam with increasing short pulse duration. We have demonstrated, using newly available higher contrast lasers, an improved energy coupling, painting a promising picture for FI feasibility. • Our detailed experiments and analyses of fast electron transport dependence on target material have shown that it is feasible to collimate fast electron beam by self-generated resistive magnetic fields in engineered targets with a rather simple geometry. Stable and collimated electron beam with spot size as small as 50-μm after >100-μm propagation distance (an angular divergence angle of 20°!) in solid density plasma targets has been demonstrated with FI-relevant (10-ps, >1-kJ) laser pulses Such collimated beam would meet the required heating beam size for FI. • Our new experimental platforms developed for the OMEGA laser (i.e., i) high resolution 8 keV backlighter platform for cone-in-shell implosion and ii) the 8 keV imaging with Cu-doped shell targets for detailed transport characterization) have enabled us to experimentally confirm fuel assembly from cone-in-shell implosion with record-high areal density. We have also made the first direct measurement of fast electron transport and spatial energy deposition in integrated FI experiments enabling the first experiment-based benchmarking of integrated simulation codes. Executing this program required a large team. It was managed as a collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. The experimental program was carried out using the Titan laser at the Jupiter Laser Facility at LLNL, the OMEGA and OMEGA EP lasers at LLE and the Texas Petawatt laser at the University of Texas, Austin. Modeling has been pursued on large computing facilities at LLNL, OSU, and UCSD using codes developed (by us and others) within the HEDLP program, commercial codes, and by leveraging existing simulations codes developed by the National Nuclear Security Administration ICF program. One important aspect of this program was the involvement and training of young scientists including postdoctoral fellows and graduate students. This project generated an impressive forty articles in high quality journals including nine (two under review) in Physical Review Letters during the three years of this grant and five graduate students completed their doctoral dissertations.« less

  12. Recent advances in efficient long-life, eye-safe solid state and CO2 lasers for laser radar applications

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Buoncristiani, A. M.; Brockman, P.; Bair, C. H.; Schryer, D. R.; Upchurch, B. T.; Wood, G. M.

    1989-01-01

    The key problems in the development of eye-safe solid-state lasers are discussed, taking into account the energy transfer mechanisms between the complicated energy level manifolds of the Tm, Ho, Er ion dopants in hosts with decreasing crystal fields such as YAG or YLF. Optimization of energy transfer for efficient lasing through choice of dopant concentration, power density, crystal field and temperature is addressed. The tailoring of energy transfer times to provide efficient energy extraction for short pulses used in DIAL and Doppler lidar is considered. Recent advances in Pt/SnO2 oxide catalysts and other noble metal/metal oxide combinations for CO2 lasers are discussed. Emphasis is given to the dramatic effects of small quantities of H2O vapor for increasing the activity and lifetime of Pt/SnO2 catalysts and to increased lifetime operation with rare isotope (C-12)(O-18)2 lasing mixtures.

  13. Non-moving Hadamard matrix diffusers for speckle reduction in laser pico-projectors

    NASA Astrophysics Data System (ADS)

    Thomas, Weston; Middlebrook, Christopher

    2014-12-01

    Personal electronic devices such as cell phones and tablets continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have been examined as a means to lower speckle contrast. This paper presents a binary diffuser known as a Hadamard matrix diffuser. Using two static in-line Hadamard diffusers eliminates the need for rotation or vibration of the diffuser for temporal averaging. Two Hadamard diffusers were fabricated and contrast values measured showing good agreement with theory and simulated values.

  14. Surgical Management of Stones: New Technology

    PubMed Central

    Matlaga, Brian R.; Lingeman, James E.

    2011-01-01

    In recent years, the surgical treatment of kidney stone disease has undergone tremendous advances, many of which were possible only as a result of improvements in surgical technology. Rigid intracorporeal lithotrites, the mainstay of percutaneous nephrolithotomy, are now available as combination ultrasonic and ballistic devices. These combination devices have been reported to clear a stone burden with much greater efficiency than devices that operate by either ultrasonic or ballistic energy alone. The laser is the most commonly used flexible lithotrite; advances in laser lithotripsy have led to improvements in the currently utilized Holmium laser platform, as well as the development of novel laser platforms such as Thulium and Erbium devices. Our understanding of shock wave lithotripsy (SWL)has been improved over recent years as a consequence of basic science investigations. It is now recognized that there are certain maneuvers with SWL that the treating physician can do that will increase the likelihood of a successful outcome while minimizing the likelihood of adverse treatment-related events. PMID:19095207

  15. University of Rochester, Laboratory for Laser Energetics

    NASA Astrophysics Data System (ADS)

    1987-01-01

    In FY86 the Laboratory has produced a list of accomplishments in which it takes pride. LLE has met every laser-fusion program milestone to date in a program of research for direct-drive ultraviolet laser fusion originally formulated in 1981. LLE scientists authored or co-authored 135 scientific papers during 1985 to 1986. The collaborative experiments with NRL, LANL, and LLNL have led to a number of important ICF results. The cryogenic target system developed by KMS Fusion for LLE will be used in future high-density experiments on OMEGA to demonstrate the compression of thermonuclear fuel to 100 to 200 times that of solid (20 to 40 g/cm) in a test of the direct-drive concept, as noted in the National Academy of Sciences' report. The excellence of the advanced technology efforts at LLE is illustrated by the establishment of the Ultrafast Science Center by the Department of Defense through the Air Force Office of Scientific Research. Research in the Center will concentrate on bridging the gap between high-speed electronics and ultrafast optics by providing education, research, and development in areas critical to future communications and high-speed computer systems. The Laboratory for Laser Energetics continues its pioneering work on the interaction of intense radiation with matter. This includes inertial-fusion and advanced optical and optical electronics research; training people in the technology and applications of high-power, short-pulse lasers; and interacting with the scientific community, business, industry, and government to promote the growth of laser technology.

  16. Laser program annual report, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, L.W.; Krupke, W.F.; Strack, J.R.

    1981-06-01

    Volume 2 contains five sections that cover the areas of target design, target fabrication, diagnostics, and fusion experiments. Section 3 reports on target design activities, plasma theory and simulation, code development, and atomic theory. Section 4 presents the accomplishments of the Target Fabrication Group, Section 5 contains the results of our diagnostics development, and Section 6 describes advances made in the management and analysis of experimental data. Finally, Section 7 in Volume 2 reports the results of laser target experiments conducted during the year.

  17. Recent Advances in Laser-Ablative Synthesis of Bare Au and Si Nanoparticles and Assessment of Their Prospects for Tissue Engineering Applications.

    PubMed

    Al-Kattan, Ahmed; Nirwan, Viraj P; Popov, Anton; Ryabchikov, Yury V; Tselikov, Gleb; Sentis, Marc; Fahmi, Amir; Kabashin, Andrei V

    2018-05-24

    Driven by surface cleanness and unique physical, optical and chemical properties, bare (ligand-free) laser-synthesized nanoparticles (NPs) are now in the focus of interest as promising materials for the development of advanced biomedical platforms related to biosensing, bioimaging and therapeutic drug delivery. We recently achieved significant progress in the synthesis of bare gold (Au) and silicon (Si) NPs and their testing in biomedical tasks, including cancer imaging and therapy, biofuel cells, etc. We also showed that these nanomaterials can be excellent candidates for tissue engineering applications. This review is aimed at the description of our recent progress in laser synthesis of bare Si and Au NPs and their testing as functional modules (additives) in innovative scaffold platforms intended for tissue engineering tasks.

  18. Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications

    PubMed Central

    O'Neill, P. F.; Ben Azouz, A.; Vázquez, M.; Liu, J.; Marczak, S.; Slouka, Z.; Chang, H. C.; Diamond, D.; Brabazon, D.

    2014-01-01

    The capability of 3D printing technologies for direct production of complex 3D structures in a single step has recently attracted an ever increasing interest within the field of microfluidics. Recently, ultrafast lasers have also allowed developing new methods for production of internal microfluidic channels within the bulk of glass and polymer materials by direct internal 3D laser writing. This review critically summarizes the latest advances in the production of microfluidic 3D structures by using 3D printing technologies and direct internal 3D laser writing fabrication methods. Current applications of these rapid prototyped microfluidic platforms in biology will be also discussed. These include imaging of cells and living organisms, electrochemical detection of viruses and neurotransmitters, and studies in drug transport and induced-release of adenosine triphosphate from erythrocytes. PMID:25538804

  19. Solid State Laser Technology Development for Atmospheric Sensing Applications

    NASA Technical Reports Server (NTRS)

    Barnes, James C.

    1998-01-01

    NASA atmospheric scientists are currently planning active remote sensing missions that will enable global monitoring of atmospheric ozone, water vapor, aerosols and clouds as well as global wind velocity. The measurements of these elements and parameters are important because of the effects they have on climate change, atmospheric chemistry and dynamics, atmospheric transport and, in general, the health of the planet. NASA will make use of Differential Absorption Lidar (DIAL) and backscatter lidar techniques for active remote sensing of molecular constituents and atmospheric phenomena from advanced high-altitude aircraft and space platforms. This paper provides an overview of NASA Langley Research Center's (LaRC's) development of advanced solid state lasers, harmonic generators, and wave mixing techniques aimed at providing the broad range of wavelengths necessary to meet measurement goals of NASA's Earth Science Enterprise.

  20. An international review of laser Doppler vibrometry: Making light work of vibration measurement

    NASA Astrophysics Data System (ADS)

    Rothberg, S. J.; Allen, M. S.; Castellini, P.; Di Maio, D.; Dirckx, J. J. J.; Ewins, D. J.; Halkon, B. J.; Muyshondt, P.; Paone, N.; Ryan, T.; Steger, H.; Tomasini, E. P.; Vanlanduit, S.; Vignola, J. F.

    2017-12-01

    In 1964, just a few years after the invention of the laser, a fluid velocity measurement based on the frequency shift of scattered light was made and the laser Doppler technique was born. This comprehensive review paper charts advances in the development and applications of laser Doppler vibrometry (LDV) since those first pioneering experiments. Consideration is first given to the challenges that continue to be posed by laser speckle. Scanning LDV is introduced and its significant influence in the field of experimental modal analysis described. Applications in structural health monitoring and MEMS serve to demonstrate LDV's applicability on structures of all sizes. Rotor vibrations and hearing are explored as examples of the classic applications. Applications in acoustics recognise the versatility of LDV as demonstrated by visualisation of sound fields. The paper concludes with thoughts on future developments, using examples of new multi-component and multi-channel instruments.

  1. New technologies in dentistry

    NASA Astrophysics Data System (ADS)

    Zanin, Fatima A. A.; Brugnera, Aldo, Jr.; Pecora, Jesus D.

    1999-05-01

    The technology in dentistry has been developed significantly lately, increasing the technological level of new materials, methods and equipment have been developed. Undoubtedly the CO2 laser has contributed to this evolution particular to the treatment of the infected dentin. CO2 laser can sterilize and promote increase 6 to 8 times of dentin resistance, through the transformation the hydroxyapatite in calcium-phosphato-hydroxyapatite. We can reassure our patients about the use of pulsed CO2 laser due to better preservation of dental structure and its benefits permitting advanced esthetic treatments. The CEREC system, registers a tri-dimensional image of the preparation through a scan system, and sends it to the computer and the operator will edit the restorations so the equipment will finish porcelain restoration. The authors used a new laser 650 nm for caries detection and the other low lever laser (670 nm and 730 nm) considered an auxiliary method to prevent and treat the hypersensitivity in dentin.

  2. Development of laser-based technology for the routine first wall diagnostic on the tokamak EAST: LIBS and LIAS

    NASA Astrophysics Data System (ADS)

    Hu, Z.; Gierse, N.; Li, C.; Liu, P.; Zhao, D.; Sun, L.; Oelmann, J.; Nicolai, D.; Wu, D.; Wu, J.; Mao, H.; Ding, F.; Brezinsek, S.; Liang, Y.; Ding, H.; Luo, G.; Linsmeier, C.; EAST Team

    2017-12-01

    A laser based method combined with spectroscopy, such as laser-induced breakdown spectroscopy (LIBS) and laser-induced ablation spectroscopy (LIAS), is a promising technology for plasma-wall interaction studies. In this work, we report the development of in situ laser-based diagnostics (LIBS and LIAS) for the assessment of static and dynamic fuel retention on the first wall without removing the tiles between and during plasma discharges in the Experimental Advanced Superconducting Tokamak (EAST). The fuel retention on the first wall was measured after different wall conditioning methods and daily plasma discharges by in situ LIBS. The result indicates that the LIBS can be a useful tool to predict the wall condition in EAST. With the successful commissioning of a refined timing system for LIAS, an in situ approach to investigate fuel retention is proposed.

  3. Special issue on compact x-ray sources

    NASA Astrophysics Data System (ADS)

    Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James

    2014-04-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities. New schemes for compact accelerators: laser- and beam-driven plasma accelerators; dielectric laser accelerators; THz accelerators. Latest results for compact accelerators. Target design and staging of advanced accelerators. Advanced injection and phase space manipulation techniques. Novel diagnostics: single-shot measurement of sub-fs bunch duration; measurement of ultra-low emittance. Generation and characterization of incoherent radiation: betatron and undulator radiation; Thomson/Compton scattering sources, novel THz sources. Generation and characterization of coherent radiation. Novel FEL simulation techniques. Advances in simulations of novel accelerators: simulations of injection and acceleration processes; simulations of coherent and incoherent radiation sources; start-to-end simulations of fifth generation light sources. Novel undulator schemes. Novel laser drivers for laser-driven accelerators: high-repetition rate laser systems; high wall-plug efficiency systems. Applications of compact accelerators: imaging; radiography; medical applications; electron diffraction and microscopy. Please submit your article by 15 May 2014 (expected web publication: winter 2014); submissions received after this date will be considered for the journal, but may not be included in the special issue.

  4. Advanced biosensing methodologies developed for evaluating performance quality and safety of emerging biophotonics technologies and medical devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ilev, Ilko K.; Walker, Bennett; Calhoun, William; Hassan, Moinuddin

    2016-03-01

    Biophotonics is an emerging field in modern biomedical technology that has opened up new horizons for transfer of state-of-the-art techniques from the areas of lasers, fiber optics and biomedical optics to the life sciences and medicine. This field continues to vastly expand with advanced developments across the entire spectrum of biomedical applications ranging from fundamental "bench" laboratory studies to clinical patient "bedside" diagnostics and therapeutics. However, in order to translate these technologies to clinical device applications, the scientific and industrial community, and FDA are facing the requirement for a thorough evaluation and review of laser radiation safety and efficacy concerns. In many cases, however, the review process is complicated due the lack of effective means and standard test methods to precisely analyze safety and effectiveness of some of the newly developed biophotonics techniques and devices. There is, therefore, an immediate public health need for new test protocols, guidance documents and standard test methods to precisely evaluate fundamental characteristics, performance quality and safety of these technologies and devices. Here, we will overview our recent developments of novel test methodologies for safety and efficacy evaluation of some emerging biophotonics technologies and medical devices. These methodologies are based on integrating the advanced features of state-of-the-art optical sensor technologies and approaches such as high-resolution fiber-optic sensing, confocal and optical coherence tomography imaging, and infrared spectroscopy. The presentation will also illustrate some methodologies developed and implemented for testing intraocular lens implants, biochemical contaminations of medical devices, ultrahigh-resolution nanoscopy, and femtosecond laser therapeutics.

  5. Micro-scale thermal imaging of advanced organic and polymeric materials

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko

    2012-10-01

    Recent topics of micro-scale thermal imaging on advanced organic and polymeric materials are presented, the originally developed IR camera systems equipped with a real time direct impose-signal capturing device and a laser drive generating a modulated spot heating with a diode laser, controlled by the x-y positioning actuator, has been applied to measure the micro-scale thermal phenomena. The advanced organic and polymeric materials are now actively developed especially for the purpose of the effective heat dissipation in the new energy system, including, LED, Lithium battery, Solar cell, etc. The micro-scale thermal imaging in the heat dissipation process has become important in view of the effective power saving. In our system, the imposed temperature data are applied to the pixel emissivity corrections and visualizes the anisotropic thermal properties of the composite materials at the same time. The anisotropic thermal diffusion in the ultra-drawn high-thermal conductive metal-filler composite polymer film and the carbon-cloth for the battery systems are visualized.

  6. Developments in holographic-based scanner designs

    NASA Astrophysics Data System (ADS)

    Rowe, David M.

    1997-07-01

    Holographic-based scanning systems have been used for years in the high resolution prepress markets where monochromatic lasers are generally utilized. However, until recently, due to the dispersive properties of holographic optical elements (HOEs), along with the high cost associated with recording 'master' HOEs, holographic scanners have not been able to penetrate major scanning markets such as the laser printer and digital copier markets, low to mid-range imagesetter markets, and the non-contact inspection scanner market. Each of these markets has developed cost effective laser diode based solutions using conventional scanning approaches such as polygon/f-theta lens combinations. In order to penetrate these markets, holographic-based systems must exhibit low cost and immunity to wavelength shifts associated with laser diodes. This paper describes recent developments in the design of holographic scanners in which multiple HOEs, each possessing optical power, are used in conjunction with one curved mirror to passively correct focal plane position errors and spot size changes caused by the wavelength instability of laser diodes. This paper also describes recent advancements in low cost production of high quality HOEs and curved mirrors. Together these developments allow holographic scanners to be economically competitive alternatives to conventional devices in every segment of the laser scanning industry.

  7. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2016-03-17

    JOHNNIE CLARK, BRIAN WEST, AND ZACK JONES OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S XLINE SELECTIVE LASER MELTING SYSTEM. CURRENTLY ONE OF THE LARGEST METAL 3D PRINTERS, THE XLINE AT MARSHALL IS BEING USED TO DEVELOP AND CERTIFY NICKEL ALLOY 718 MATERIAL PROPERTIES AND LARGE MANUFACTURING TECH DEMOS FOR THE RS25 ENGINE AND THE COMMERCIAL CREWED VEHICLE PROJECTS.

  8. Independent Research and Independent Exploratory Development Annual Report Fiscal Year 1975

    DTIC Science & Technology

    1975-09-01

    and Coding Study.(Z?80) ................................... ......... .................... 40 Optical Cover CMMUnicallor’s Using Laser Transceiverst...Using Auger Spectroscopy and PUBLICATIONS Additional Advanced Analytical Techniques," Wagner, N. K., "Auger Electron Spectroscopy NELC Technical Note 2904...K.. "Analysis of Microelectronic Materials Using Auger Spectroscopy and Additional Advanced Analytical Techniques," Contact: Proceedings of the

  9. Beam shaping as an enabler for new applications

    NASA Astrophysics Data System (ADS)

    Guertler, Yvonne; Kahmann, Max; Havrilla, David

    2017-02-01

    For many years, laser beam shaping has enabled users to achieve optimized process results as well as manage challenging applications. The latest advancements in industrial lasers and processing optics have taken this a step further as users are able to adapt the beam shape to meet specific application requirements in a very flexible way. TRUMPF has developed a wide range of experience in creating beam profiles at the work piece for optimized material processing. This technology is based on the physical model of wave optics and can be used with ultra short pulse lasers as well as multi-kW cw lasers. Basically, the beam shape can be adapted in all three dimensions in space, which allows maximum flexibility. Besides adaption of intensity profile, even multi-spot geometries can be produced. This approach is very cost efficient, because a standard laser source and (in the case of cw lasers) a standard fiber can be used without any special modifications. Based on this innovative beam shaping technology, TRUMPF has developed new and optimized processes. Two of the most recent application developments using these techniques are cutting glass and synthetic sapphire with ultra-short pulse lasers and enhanced brazing of hot dip zinc coated steel for automotive applications. Both developments lead to more efficient and flexible production processes, enabled by laser technology and open the door to new opportunities. They also indicate the potential of beam shaping techniques since they can be applied to both single-mode laser sources (TOP Cleave) and multi-mode laser sources (brazing).

  10. Laser-plasma interaction experiments and diagnostics at NRL (Naval Research Laboratory). Memorandum report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ripin, B.H.; Grun, J.; Herbst, M.J.

    Laser plasma interaction experiments have now advanced to the point where very quantitative measurements are required to elucidate the physic issues important for laser fusion and other applications. Detailed time-resolved knowledge of the plasma density, temperature, velocity gradients, spatial structure, heat flow characteristics, radiation emission, etc, are needed over tremendou ranges of plasma density and temperature. Moreover, the time scales are very short, aggrevating the difficulty of the measurements further. Nonetheless, such substantial progress has been made in diagnostic development during the past few years that we are now able to do well diagnosed experiments. In this paper the authorsmore » review recent diagnostic developments for laser-plasma interactions, outline their regimes of applicability, and show examples of their utility. In addition to diagnostics for the high densities and temperature characteristic of laser fusion physics studies, diagnostics designed to study the two-stream interactions of laser created plasma flowing through an ambient low density plasma will be described.« less

  11. Long-period comet impact risk mitigation with Earth-based laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.

    2017-09-01

    Long-period comets (LPCs) frequently transit the inner solar system, and like near-Earth asteroids (NEAs), pose a continued risk of impact with Earth. Unlike NEAs, LPCs follow nearly parabolic trajectories and approach from the distant outer solar system where they cannot be observed. An LPC on an Earth-impact trajectory is unlikely to be discovered more than a few years in advance of its arrival, even with significant advancements in sky survey detection capabilities, likely leaving insufficient time to develop and deliver an interception mission to deflect the comet. However, recent proposals have called for the development of one or more large ˜ 1 km laser arrays placed on or near Earth primarily as a means for photon propulsion of low-mass spacecraft at delta-v above what would be feasible by traditional chemical or ion propulsion methods. Such a laser array can also be directed to target and heat a threatening comet, sublimating its ices and activating jets of dust and vapor which alter the comet's trajectory in a manner similar to rocket propulsion. Simulations of directed energy comet deflection were previously developed from astrometric models of nongravitational orbital perturbations from solar heating, an analogous process that has been observed in numerous comets. These simulations are used together with the distribution of known LPC trajectories to evaluate the effect of an operational Earth-based laser array on the LPC impact risk.

  12. Widely tunable gas laser for remote sensing

    NASA Technical Reports Server (NTRS)

    Rothe, D. E.

    1988-01-01

    An advanced, highly efficient and reliable Rare-Gas Halide laser was developed. It employs the following: (1) novel prepulse techniques and impedance matching for efficient energy transfer; (2) magnetic switches for high reliability; (3) x-ray preionization for discharge uniformity and beam quality; and (4) an integrated gas flow loop for compactness. When operated as a XeCl laser, the unit produces 2 J per pulse with good beam uniformity. Optical pulse duration is 100 ns. Pulse repetition rate was tested up to 25 Hz. Efficiency is 3 percent.

  13. The OICETS mission

    NASA Astrophysics Data System (ADS)

    Jono, Takashi; Arai, Katsuyoshi

    2017-11-01

    The Optical Inter-orbit Communications Engineering Test Satellite (OICETS) was successfully launched on 23th August 2005 and thrown into a circular orbit at the altitude of 610 km. The main mission is to demonstrate the free-space inter satellite laser communications with the cooperation of the Advanced Relay and Technology Mission (ARTEMIS) geostationary satellite developed by the European Space Agency. This paper presents the overview of the OICETS and laser terminal, a history of international cooperation between Japan Aerospace Exploration Agency (JAXA) and ESA and typical results of the inter-orbit laser communication experiment carried out with ARTEMIS.

  14. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials

    DOE PAGES

    Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.

    2016-12-06

    This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation undermore » ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.« less

  15. The contact neodymium-yttrium aluminum garnet laser. A new approach to arthroscopic laser surgery.

    PubMed

    O'Brien, S J; Miller, D V

    1990-03-01

    Arthroscopic treatment of meniscal lesions has been modified as technological advances have occurred. However, alternatives to conventional arthroscopic cutting tools, including electrocautery and CO2 lasers, have thus far met with limited success. The recent development of a sapphire tip has enabled the use of the neodymium-yttrium aluminum garnet (Nd-YAG) laser in a contact mode in a saline medium. This study compares the biology of the Nd-YAG laser to that of electrocautery and scalpel techniques with respect to its effects on articular cartilage and the meniscus. The contact Nd-YAG laser has advantages over both scalpel and electrocautery with regard to its effects on articular cartilage. It also has significant biologic advantages over electrocautery for meniscal lesions. Although in its infancy in the clinical setting, the contact Nd-YAG laser represents the possible beginning of a new era for application of laser energy in arthroscopy.

  16. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  17. Optical Breath Gas Sensor for Extravehicular Activity Application

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S> ; Chullen, Cinda; Falconi, Eric A.

    2012-01-01

    The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation Portable Life Support System (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen (O2) channel using a vertical cavity surface emitting laser (VCSEL). Both prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Based on the results of the initial instrument development, further prototype development and testing of instruments leveraging the lessons learned were desired. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU. .

  18. Laser resist screening for iP3500/3600 replacement for advanced reticle fabrication

    NASA Astrophysics Data System (ADS)

    Ota, Fumiko; Kobayashi, Hideo; Higuchi, Takao; Asakawa, Keishi

    2001-01-01

    This paper will describe resist screening results for iP3500/3600 replacement for the advanced laser reticle fabrication, resist coating thickness optimization proposal for the next generation as well. THMR-M100 (TOK) showed the best pattern profile with sharp shoulders and almost with no footing, and a newly developed resist, a joint-work between HOYA and a resist maker, showed the best performance in adhesion to chrome. However, there was not the best selection found unfortunately by this screening, which exceeded iP3500 in linearity and iso-dense bias (IDB) that was indispensable one for the advanced laser reticle fabrication. As regards coating thickness, we selected 307.5 nm thick as a candidate for coating thickness standard for the future with considering resist resolution performance such as linearity, γp(0-80) value and undercut, in conjunction with a risk of clear pinhole defects. For more precise comparison of iso-dense bias (IDB) performance, it would be better that the examination method is standardized because of the design pattern dependence of IDB.

  19. Advanced chip designs and novel cooling techniques for brightness scaling of industrial, high power diode laser bars

    NASA Astrophysics Data System (ADS)

    Heinemann, S.; McDougall, S. D.; Ryu, G.; Zhao, L.; Liu, X.; Holy, C.; Jiang, C.-L.; Modak, P.; Xiong, Y.; Vethake, T.; Strohmaier, S. G.; Schmidt, B.; Zimer, H.

    2018-02-01

    The advance of high power semiconductor diode laser technology is driven by the rapidly growing industrial laser market, with such high power solid state laser systems requiring ever more reliable diode sources with higher brightness and efficiency at lower cost. In this paper we report simulation and experimental data demonstrating most recent progress in high brightness semiconductor laser bars for industrial applications. The advancements are in three principle areas: vertical laser chip epitaxy design, lateral laser chip current injection control, and chip cooling technology. With such improvements, we demonstrate disk laser pump laser bars with output power over 250W with 60% efficiency at the operating current. Ion implantation was investigated for improved current confinement. Initial lifetime tests show excellent reliability. For direct diode applications <1 um smile and >96% polarization are additional requirements. Double sided cooling deploying hard solder and optimized laser design enable single emitter performance also for high fill factor bars and allow further power scaling to more than 350W with 65% peak efficiency with less than 8 degrees slow axis divergence and high polarization.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afanas'ev, Yurii V; Zavestovskaya, I N; Zvorykin, V D

    A review of reports made on the International Forum on Advanced High-Power Lasers and Applications, which was held at the beginning of November 1999 in Osaka (Japan), is presented. Five conferences were held during the forum on High-Power Laser Ablation, High-Power Lasers in Energy Engineering, High-Power Lasers in Civil Engineering and Architecture, High-Power Lasers in Manufacturing, and Advanced High-Power Lasers. The following trends in the field of high-power lasers and their applications were presented: laser fusion, laser applications in space, laser-triggered lightning, laser ablation of materials by short and ultrashort pulses, application of high-power lasers in manufacturing, application of high-powermore » lasers in mining, laser decommissioning and decontamination of nuclear reactors, high-power solid-state and gas lasers, x-ray and free-electron lasers. One can find complete information on the forum in SPIE, vols. 3885-3889. (chronicle)« less

  1. Researching the 915 nm high-power and high-brightness semiconductor laser single chip coupling module

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping

    2017-02-01

    Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.

  2. Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downer, Michael C.

    2014-04-30

    Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (suchmore » as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10-15 seconds) in duration and 150 Joules in energy (equivalent to the muzzle energy of a small pistol bullet). This duration was well matched to the natural electron density oscillation period of plasma of 1/100 atmospheric density, enabling efficient excitation of a plasma wake, while this energy was sufficient to drive a high-amplitude wake of the right shape to produce an energetic, collimated electron beam. Continuing research is aimed at increasing electron energy even further, increasing the number of electrons captured and accelerated, and developing applications of the compact, multi-GeV accelerator as a coherent, hard x-ray source for materials science, biomedical imaging and homeland security applications. The second major advance under this project was to develop new methods of visualizing the laser-driven plasma wake structures that underlie laser-plasma accelerators. Visualizing these structures is essential to understanding, optimizing and scaling laser-plasma accelerators. Yet prior to work under this project, computer simulations based on estimated initial conditions were the sole source of detailed knowledge of the complex, evolving internal structure of laser-driven plasma wakes. In this project we developed and demonstrated a suite of optical visualization methods based on well-known methods such as holography, streak cameras, and coherence tomography, but adapted to the ultrafast, light-speed, microscopic world of laser-driven plasma wakes. Our methods output images of laser-driven plasma structures in a single laser shot. We first reported snapshots of low-amplitude laser wakes in Nature Physics in 2006. We subsequently reported images of high-amplitude laser-driven plasma “bubbles”, which are important for producing electron beams with low energy spread, in Physical Review Letters in 2010. More recently, we have figured out how to image laser-driven structures that change shape while propagating in a single laser shot. The latter techniques, which use the methods of computerized tomography, were demonstrated on test objects – e.g. laser-driven filaments in air and glass – and reported in Optics Letters in 2013 and Nature Communications in 2014. Their output is a multi-frame movie rather than a snapshot. Continuing research is aimed at applying these tomographic methods directly to evolving laser-driven plasma accelerator structures in our laboratory, then, once perfected, to exporting them to plasma-based accelerator laboratories around the world as standard in-line metrology instruments.« less

  3. One Micron Laser Technology Advancements at GSFC

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2010-01-01

    This slide presentation reviews the advancements made in one micron laser technology at Goddard Space Flight Center. It includes information about risk factors that are being addressed by GSFC, and overviews of the various programs that GSFC is currently managing that are using 1 micron laser technology.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, Robert; McConnell, Elizabeth

    Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes.more » Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.« less

  5. Final Report on DTRA Basic Research Project #BRCALL08-Per3-C-2-0006 "High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvin, Jeffrey D.

    This project had two major goals. Final Goal: obtain spectrally resolved, absolutely calibrated x-ray emission data from uniquely uniform mm-scale near-critical-density high-Z plasmas not in local thermodynamic equilibrium (LTE) to benchmark modern detailed atomic physics models. Scientific significance: advance understanding of non-LTE atomic physics. Intermediate Goal: develop new nano-fabrication techniques to make suitable laser targets that form the required highly uniform non-LTE plasmas when illuminated by high-intensity laser light. Scientific significance: advance understanding of nano-science. The new knowledge will allow us to make x-ray sources that are bright at the photon energies of most interest for testing radiation hardening technologies,more » the spectral energy range where current x-ray sources are weak. All project goals were met.« less

  6. Advanced IR sensing technology research in the city of Tomsk, USSR

    NASA Astrophysics Data System (ADS)

    Vavilov, Vladimir P.; Ivanov, A. I.; Isakov, A. V.; Reino, V. V.; Shiryaev, Vladimir V.; Tsvyk, Ruvim S.

    1990-03-01

    Some large scientific organisations in the city of Tomsk, Siberia, USSR are involved into the researchings on the advanced IR sensing technology. They are Polytechnic Institute founded in 1896, Uriiversity of Tomsk founded in 1888, Institute of Atmosphere's Optics, Academy of Sciences arid Institute of Automatized Control Systems and Radio electronics. Main fields are as follows: 1) thermal (IR) nondestructive testing of materials, machines and systems; 2) optoelectronics; 3) laser optics, transmission of infrared through the atmosphere and investigation of energy distribution in laser beams. Researching equipment includes Western and Russian industrial thermovisers, lasers, personal computers, IR detectors etc and some borne-made devices and components. There are optical arid JR detectors Lndustry in Tomsk that allows i.e produce spheric and aspheric mirrors and lenses, JR filters, cadmium-mercury-teilur and indium anlymonide T1 receivers arid to develop the scanning and measuring devices on the base mentioned above. Seine projects to develop the specific Tomsk thermoviser so far have nOt come true so the main accent was made onto the computerized thermographic systems suitable for solution of particular scientific problems.

  7. Pulsed laser deposition—invention or discovery?

    NASA Astrophysics Data System (ADS)

    Venkatesan, T.

    2014-01-01

    The evolution of pulsed laser deposition had been an exciting process of invention and discovery, with the development of high Tc superconducting films as the main driver. It has become the method of choice in research and development for rapid prototyping of multicomponent inorganic materials for preparing a variety of thin films, heterostructures and atomically sharp interfaces, and has become an indispensable tool for advancing oxide electronics. In this paper I will give a personal account of the invention and development of this process at Bellcore/Rutgers, the opportunity, challenges and mostly the extraordinary excitement that was generated, typical of any disruptive technology.

  8. Energy-Based Facial Rejuvenation: Advances in Diagnosis and Treatment.

    PubMed

    Britt, Christopher J; Marcus, Benjamin

    2017-01-01

    The market for nonsurgical, energy-based facial rejuvenation techniques has increased exponentially since lasers were first used for skin rejuvenation in 1983. Advances in this area have led to a wide range of products that require the modern facial plastic surgeon to have a large repertoire of knowledge. To serve as a guide for current trends in the development of technology, applications, and outcomes of laser and laser-related technology over the past 5 years. We performed a review of PubMed from January 1, 2011, to March 1, 2016, and focused on randomized clinical trials, meta-analyses, systematic reviews, and clinical practice guidelines including case control, case studies and case reports when necessary, and included 14 articles we deemed landmark articles before 2011. Three broad categories of technology are leading non-energy-based rejuvenation technology: lasers, light therapy, and non-laser-based thermal tightening devices. Laser light therapy has continued to diversify with the use of ablative and nonablative resurfacing technologies, fractionated lasers, and their combined use. Light therapy has developed for use in combination with other technologies or stand alone. Finally, thermally based nonlaser skin-tightening devices, such as radiofrequency (RF) and intense focused ultrasonography (IFUS), are evolving technologies that have changed rapidly over the past 5 years. Improvements in safety and efficacy for energy-based treatment have expanded the patient base considering these therapies viable options. With a wide variety of options, the modern facial plastic surgeon can have a frank discussion with the patient regarding nonsurgical techniques that were never before available. Many of these patients can now derive benefit from treatments requiring significantly less downtime than before while the clinician can augment the treatment to maximize benefit to fit the patient's time schedule.

  9. Laser program. Annual report, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monsler, M.J.; Jarman, B.D.

    1979-03-01

    This volume documents progress in advanced quantum electronics - primarily the quest for advanced rep-rateable short-wavelength lasers with high efficiency. Application studies in electrical energy production and fissile fuel production are also described. Selected highlights of the advanced isotope separation program are also presented. (MOW)

  10. 36 Years of Remote Oceanographic Laser Fluorosensing: Findings, Challenges and Pathways to Explore

    NASA Astrophysics Data System (ADS)

    Chekalyuk, A. M.

    2009-12-01

    Since its initial bright start in early 70s, the oceanographic applications of laser remote fluorosensing have been mostly driven by the enthusiastic laser geeks, who tried to transfer the recent technological advances from their laboratory breadboards to the real world. This communication provides an overview of the key milestones and advances in the oceanographic applications of remote laser fluorosensing that is used for qualitative and quantitative characterization of the key aquatic constituents, including chromophoric dissolved organic matter, phytoplankton pigments, their biomass, community structure, and photo-physiological status. The basic principles and analytical techniques, including fluorescence excitation and emission measurements, as well as active control over the media to retrieve additional information (“super-active remote sensing”), are briefly discussed and illustrated with examples of practical applications. The laser excitation sources (including solid state, tunable lasers and optical parametric oscillators) and signal detectors and analyzers (including multi-spectral and hyperspectral systems) are discussed. The advantages and limitations of various platforms (stationary settings, ships, airplanes, helicopters, unmanned autonomous vehicles (UAV), and satellites) are analyzed. The recent findings, methodological and technological developments in oceanographic applications of laser fluorescence indicate that there is a significant, still underexplored potential of remote fluorosensing that may provide new observational capabilities and serve as a useful tool for oceanographic research, bio-environmental monitoring, and validation of passive satellite retrievals.

  11. MATILDA Version-2: Rough Earth TIALD Model for Laser Probabilistic Risk Assessment in Hilly Terrain - Part II

    DTIC Science & Technology

    2017-07-28

    Approved for public release; distribution unlimited. PA Case No: TSRL- PA-2017-0228 Air Force Research Laboratory 711th Human Performance Wing Airman...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory Engility Corp 8. PERFORMING ORGANIZATION...United States (US) Air Force Research Laboratory (AFRL) have collaborated to develop a US-UK laser range safety tool, the Military Advanced Technology

  12. MABEL Photon-Counting Laser Altimetry Data in Alaska for ICESat-2 Simulations and Development

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly; Neumann, T. A.; Amundson, M.; Kavanaugh, J. L.; Moussavi, M. S.; Walsh, K. M.; Cook, W. B.; Markus, T.

    2016-01-01

    Multiple Altimeter Beam Experimental Lidar (MABEL) maps Alaskan crevasses in detail, using 50 of the expected along-track Advanced Topographic Laser Altimeter System (ATLAS) signal-photon densities over summer ice sheets. Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) along-track data density, and spatial data density due to the multiple-beam strategy, will provide a new dataset to mid-latitude alpine glacier researchers.

  13. Graphene in NLO Devices for High Laser Energy Protection

    DTIC Science & Technology

    2010-10-01

    manufacturing graphene in > tonlyr quantities suitable for industrial applications, has been working to advance the application base ofgJ1lphene. We have...Transfer A suspension of graphene in toluene was sent to the Army’s Tank- Automotive Research, Development, and Engineering Center (TARDEC) for evaluation in...protection efficiency. Therefore, a critical component for evaluation and use of graphene suspensions for laser protection is dispersion of the graphene

  14. Development of an advanced Two-Micron triple-pulse IPDA lidar for carbon dioxide and water vapor measurements

    NASA Astrophysics Data System (ADS)

    Petros, Mulugeta; Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Antill, Charles; Remus, Ruben; Taylor, Bryant D.; Wong, Teh-Hwa; Reithmaier, Karl; Lee, Jane; Ismail, Syed; Davis, Kenneth J.

    2018-04-01

    An advanced airborne triple-pulse 2-μm integrated path differential absorption (IPDA) lidar is under development at NASA Langley Research Center that targets both carbon dioxide (CO2) and water vapor (H2O) measurements simultaneously and independently. This lidar is an upgrade to the successfully demonstrated CO2 2-μm double-pulse IPDA. Upgrades include high-energy, highrepetition rate 2-μm triple-pulse laser transmitter, innovative wavelength control and advanced HgCdTe (MCT) electron-initiated avalanche photodiode detection system. Ground testing and airborne validation plans are presented.

  15. Diamond field emitter array cathodes and possibilities of employing additive manufacturing for dielectric laser accelerating structures

    NASA Astrophysics Data System (ADS)

    Simakov, Evgenya I.; Andrews, Heather L.; Herman, Matthew J.; Hubbard, Kevin M.; Weis, Eric

    2017-03-01

    Demonstration of a stand-alone practical dielectric laser accelerator (DLA) requires innovation in two major critical components: high-current ultra-low-emittance cathodes and efficient laser accelerator structures. LANL develops two technologies that in our opinion are applicable to the novel DLA architectures: diamond field emitter array (DFEA) cathodes and additive manufacturing of photonic band-gap (PBG) structures. This paper discusses the results of testing of DFEA cathodes in the field-emission regime and the possibilities for their operation in the photoemission regime, and compares their emission characteristics to the specific needs of DLAs. We also describe recent advances in additive manufacturing of dielectric woodpile structures using a Nanoscribe direct laser-writing device capable of maskless lithography and additive manufacturing, and the development of novel infrared dielectric materials compatible with additive manufacturing.

  16. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  17. Advanced Receiver/Converter Experiments for Laser Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; ONeill, Mark; Fork, Richard

    2004-01-01

    For several years NASA Marshall Space Flight Center, UAH and ENTECH have been working on various aspects of space solar power systems. The current activity was just begun in January 2004 to further develop this new photovoltaic concentrator laser receiver/converter technology. During the next few months, an improved prototype will be designed, fabricated, and thoroughly tested under laser illumination. The final paper will describe the new concept, present its advantages over other laser receiver/converter approaches (including planar photovoltaic arrays), and provide the latest experiment results on prototype hardware (including the effects of laser irradiance level and cell temperature). With NASA's new human exploration plans to first return to the Moon, and then to proceed to Mars, the new photovoltaic concentrator laser receiver/converter technology could prove to be extremely useful in providing power to the landing sites and other phases of the missions. For example, to explore the scientifically interesting and likely resource-rich poles of the Moon (which may contain water) or the poles of Mars (which definitely contain water and carbon dioxide), laser power beaming could represent the simplest means of providing power to these regions, which receive little or no sunlight, making solar arrays useless there. In summary, the authors propose a paper on definition and experimental results of a novel photovoltaic concentrator approach for collecting and converting laser radiation to electrical power. The new advanced photovoltaic concentrator laser receiver/converter offers higher performance, lighter weight, and lower cost than competing concepts, and early experimental results are confirming the expected excellent Performance levels. After the small prototypes are successfully demonstrated, a larger array with even better performance is planned for the next phase experiments and demonstrations. Thereafter, a near-term flight experiment of the new technology should be developed and flown, to lay the groundwork for future space power applications in the Earth-Moon neighborhood, and ultimately encompassing Mars and its environs.

  18. High Energy Laser Joint Technology Office: a mission overview

    NASA Astrophysics Data System (ADS)

    Seeley, Don D.; Slater, John M.

    2004-10-01

    The High Energy Laser Joint Technology Office (HEL-JTO) was established in 2000 for the purpose of developing and executing a comprehensive investment strategy for HEL science and technology that would underpin weapons development. The JTO is currently sponsoring 80 programs across industry, academia, and government agencies with a budget of approximately $60 million. The competitively awarded programs are chosen to advance the current state of the art in HEL technology and fill technology gaps, thus providing a broad capability that can be harvested in acquisition programs by the military services.

  19. Advances in laser and tissue interactions: laser microbeams and optical trapping (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.; Makropoulou, Mersini; Papadopoulos, Dimitris; Papagiakoumou, Eirini; Pietreanu, D.

    2005-04-01

    The increasing use of lasers in biomedical research and clinical praxis leads to the development and application of new, non-invasive, therapeutic, surgical and diagnostic techniques. In laser surgery, the theory of ablation dictates that pulsed mid-infrared laser beams exhibit strong absorption by soft and hard tissues, restricting residual thermal damage to a minimum zone. Therefore, the development of high quality 3 μm lasers is considered to be an alternative for precise laser ablation of tissue. Among them are the high quality oscillator-two stages amplifier lasers developed, which will be described in this article. The beam quality delivered by these lasers to the biological tissue is of great importance in cutting and ablating operations. As the precision of the ablation is increased, the cutting laser interventions could well move to the microsurgery field. Recently, the combination of a laser scalpel with an optical trapping device, under microscopy control, is becoming increasingly important. Optical manipulation of microscopic particles by focused laser beams, is now widely used as a powerful tool for 'non-contact' micromanipulation of cells and organelles. Several laser sources are employed for trapping and varying laser powers are used in a broad range of applications of optical tweezers. For most of the lasers used, the focal spot of the trapping beam is of the order of a micron. As the trapped objects can vary in size from hundreds of nanometres to hundreds of microns, the technique has recently invaded in to the nanocosomos of genes and molecules. However, the use of optical trapping for quantitative research into biophysical processes requires accurate calculation of the optical forces and torques acting within the trap. The research and development efforts towards a mid-IR microbeam laser system, the design and realization efforts towards a visible laser trapping system and the first results obtained using a relatively new calibration method to calculate the forces experienced in the optical trap are discussed in detail in the following.

  20. Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry

    PubMed Central

    Stübinger, Stefan

    2010-01-01

    The erbium-doped yttrium aluminium garnet (Er:YAG) laser has emerged as a possible alternative to conventional methods of bone ablation because of its wavelength of 2.94 μm, which coincides with the absorption peak of water. Over the last decades in several experimental and clinical studies, the widespread initial assumption that light amplification for stimulated emission of radiation (laser) osteotomy inevitably provokes profound tissue damage and delayed wound healing has been refuted. In addition, the supposed disadvantage of prolonged osteotomy times could be overcome by modern short-pulsed Er:YAG laser systems. Currently, the limiting factors for a routine application of lasers for bone ablation are mainly technical drawbacks such as missing depth control and a difficult and safe guidance of the laser beam. This article gives a short overview of the development process and current possibilities of noncontact Er:YAG laser osteotomy in oral and implant surgery. PMID:23662082

  1. Laser application in neurosurgery

    PubMed Central

    Belykh, Evgenii; Yagmurlu, Kaan; Martirosyan, Nikolay L.; Lei, Ting; Izadyyazdanabadi, Mohammadhassan; Malik, Kashif M.; Byvaltsev, Vadim A.; Nakaji, Peter; Preul, Mark C.

    2017-01-01

    Background: Technological innovations based on light amplification created by stimulated emission of radiation (LASER) have been used extensively in the field of neurosurgery. Methods: We reviewed the medical literature to identify current laser-based technological applications for surgical, diagnostic, and therapeutic uses in neurosurgery. Results: Surgical applications of laser technology reported in the literature include percutaneous laser ablation of brain tissue, the use of surgical lasers in open and endoscopic cranial surgeries, laser-assisted microanastomosis, and photodynamic therapy for brain tumors. Laser systems are also used for intervertebral disk degeneration treatment, therapeutic applications of laser energy for transcranial laser therapy and nerve regeneration, and novel diagnostic laser-based technologies (e.g., laser scanning endomicroscopy and Raman spectroscopy) that are used for interrogation of pathological tissue. Conclusion: Despite controversy over the use of lasers for treatment, the surgical application of lasers for minimally invasive procedures shows promising results and merits further investigation. Laser-based microscopy imaging devices have been developed and miniaturized to be used intraoperatively for rapid pathological diagnosis. The multitude of ways that lasers are used in neurosurgery and in related neuroclinical situations is a testament to the technological advancements and practicality of laser science. PMID:29204309

  2. Development of ultrashort x-ray/gamma-ray sources using ultrahigh power lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee

    2017-05-01

    Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).

  3. Laser ignition - Spark plug development and application in reciprocating engines

    NASA Astrophysics Data System (ADS)

    Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria

    2018-03-01

    Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged solutions for positioning of the laser spark plug, i.e. placing it apart from or directly on the engine, are introduced. The path taken from the first solution proposed, to build a compact laser suitable for ignition, to the practical realization of a laser spark plug is described. Results obtained by ignition of automobile test engines, with laser devices that resemble classical spark plugs, are specifically discussed. It is emphasized that technological advances have brought this method of laser ignition close to the application and installation in automobiles powered by gasoline engines. Achievements made in the laser ignition of natural gas engines are outlined, as well as the utilization of laser ignition in other applications. Scientific and technical advances have allowed realization of laser devices with multiple (up to four) beam outputs, but many other important aspects (such as integration, thermal endurance or vibration strength) are still to be solved. Recent results of multi-beam ignition of a single-cylinder engine in a test bench set-up are encouraging and have led to increased research interest in this direction. A fundamental understanding of the processes involved in laser ignition is crucial in order to exploit the technology's full potential. Therefore, several measurement techniques, primarily optical types, used to characterize the laser ignition process are reviewed in this work.

  4. kW-class diode laser bars

    NASA Astrophysics Data System (ADS)

    Strohmaier, S. G.; Erbert, G.; Meissner-Schenk, A. H.; Lommel, M.; Schmidt, B.; Kaul, T.; Karow, M.; Crump, P.

    2017-02-01

    Progress will be presented on ongoing research into the development of ultra-high power and efficiency bars achieving significantly higher output power, conversion efficiency and brightness than currently commercially available. We combine advanced InAlGaAs/GaAs-based epitaxial structures and novel lateral designs, new materials and superior cooling architectures to enable improved performance. Specifically, we present progress in kilowatt-class 10-mm diode laser bars, where recent studies have demonstrated 880 W continuous wave output power from a 10 mm x 4 mm laser diode bar at 850 A of electrical current and 15°C water temperature. This laser achieves < 60% electro-optical efficiency at 880 W CW output power.

  5. New Diagnostic and Therapeutic Approaches for Preventing the Progression of Diabetic Retinopathy

    PubMed Central

    Park, Young Gun; Roh, Young-Jung

    2016-01-01

    Diabetic retinopathy (DR) is a severe sight-threatening complication of diabetes mellitus. Retinal laser photocoagulation, antivascular endothelial growth factors, steroid therapy, and pars plana vitrectomy are now used extensively to treat advanced stages of diabetic retinopathy. Currently, diagnostic devices like ultrawide field fundus fluorescein angiography and the improvement of optical coherence tomography have provided quicker and more precise diagnosis of early diabetic retinopathy. Thus, treatment protocols have been modified accordingly. Various types of lasers, including the subthreshold micropulse laser and RPE-targeting laser, and selective targeted photocoagulation may be future alternatives to conventional retinal photocoagulation, with fewer complications. The new developed intravitreal medications and implants have provided more therapeutic options, with promising results. PMID:26881240

  6. Laser and LED external teeth-bleaching

    NASA Astrophysics Data System (ADS)

    Zanin, Fatima; Brugnera, Aldo, Jr.; Marchesan, Melissa A.; Pecora, Jesus D.

    2004-05-01

    Teeth-bleaching is an initial phase in the reproduction of an aesthetic smile; thus, it is very important that the dentist knows how to diagnose the causes of color changes and indicate whitening before proposing dental treatment. Technological advances in teeth-whitening lead to the development of new techniques, improving comfort, security and decreasing time of execution: argon laser, diode laser, LED whitening, xenon light whitening. The clearing agent used in all techniques, including home whitening, is hydrogen peroxide (H2O2) in different concentrations. In this study, the authors describe mechanisms of gel activation, the use of Laser and LED's for teeth-bleaching, the importance of diagnosis and the comfort of the patient in in-office teeth-bleaching techniques.

  7. Application of Plasma Waveguides to High Energy Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysismore » of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We will continue our development of advanced simulation tools by modifying the QuickPIC algorithm to allow for the simulation of plasma particle pick-up by the wake fields. We have also performed extensive simulations of plasma slow wave structures for efficient THz generation by guided laser beams or accelerated electron beams. We will pursue experimental studies of direct laser acceleration, and THz generation by two methods, ponderomotive-induced THz polarization, and THz radiation by laser accelerated electron beams. We also plan to study both conventional and corrugated plasma channels using our new 30 TW in our new lab facilities. We will investigate production of very long hydrogen plasma waveguides (5 cm). We will study guiding at increasing power levels through the onset of laser-induced cavitation (bubble regime) to assess the role played by the preformed channel. Experiments in direct acceleration will be performed, using laser plasma wakefields as the electron injector. Finally, we will use 2-colour ionization of gases as a high frequency THz source (<60 THz) in order for femtosecond measurements of low plasma densities in waveguides and beams.« less

  8. Virtualization of Fuelbeds: Building the Next Generation of Fuels Data for Multiple-Scale Fire Modeling and Ecological Analysis

    NASA Astrophysics Data System (ADS)

    Rowell, Eric Martin

    The primary goal of this research is to advance methods for deriving fine-grained, scalable, wildland fuels attributes in 3-dimensions using terrestrial and airborne laser scanning technology. It is fundamentally a remote sensing research endeavor applied to the problem of fuels characterization. Advancements in laser scanning are beginning to have significant impacts on a range of modeling frameworks in fire research, especially those utilizing 3-dimensional data and benefiting from efficient data scaling. The pairing of laser scanning and fire modeling is enabling advances in understanding how fuels variability modulates fire behavior and effects. This dissertation details the development of methods and techniques to characterize and quantify surface fuelbeds using both terrestrial and airborne laser scanning. The primary study site is Eglin Airforce Base, Florida, USA, which provides a range of fuel types and conditions in a fire-adapted landscape along with the multi-disciplinary expertise, logistical support, and prescribed fire necessary for detailed characterization of fire as a physical process. Chapter 1 provides a research overview and discusses the state of fuels science and the related needs for highly resolved fuels data in the southeastern United States. Chapter 2, describes the use of terrestrial laser scanning for sampling fuels at multiple scales and provides analysis of the spatial accuracy of fuelbed models in 3-D. Chapter 3 describes the development of a voxel-based occupied volume method for predicting fuel mass. Results are used to inform prediction of landscape-scale fuel load using airborne laser scanning metrics as well as to predict post-fire fuel consumption. Chapter 4 introduces a novel fuel simulation approach which produces spatially explicit, statistically-defensible estimates of fuel properties and demonstrates a pathway for resampling observed data. This method also can be directly compared to terrestrial laser scanning data to assess how energy interception of the laser pulse affects characterization of the fuelbed. Chapter 5 discusses the contribution of this work to fire science and describes ongoing and future research derived from this work. Chapters 2 and 4 have been published in International Journal of Wildland Fire and Canadian Journal of Remote Sensing, respectively, and Chapter 3 is in preparation for publication.

  9. Oceanographic applications of laser technology

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1988-01-01

    Oceanographic activities with the Airborne Oceanographic Lidar (AOL) for the past several years have primarily been focussed on using active (laser induced pigment fluorescence) and concurrent passive ocean color spectra to improve existing ocean color algorithms for estimating primary production in the world's oceans. The most significant results were the development of a technique for selecting optimal passive wavelengths for recovering phytoplankton photopigment concentration and the application of this technique, termed active-passive correlation spectroscopy (APCS), to various forms of passive ocean color algorithms. Included in this activity is use of airborne laser and passive ocean color for development of advanced satellite ocean color sensors. Promising on-wavelength subsurface scattering layer measurements were recently obtained. A partial summary of these results are shown.

  10. Advanced infrared laser modulator development

    NASA Technical Reports Server (NTRS)

    Cheo, P. K.; Wagner, R.; Gilden, M.

    1984-01-01

    A parametric study was conducted to develop an electrooptic waveguide modulator for generating continuous tunable sideband power from an infrared CO2 laser. Parameters included were the waveguide configurations, microstrip dimensions device impedance, and effective dielectric constants. An optimum infrared laser modulator was established and was fabricated. This modulator represents the state-of-the-art integrated optical device, which has a three-dimensional topology to accommodate three lambda/4 step transformers for microwave impedance matching at both the input and output terminals. A flat frequency response of the device over 20 HGz or = 3 dB) was achieved. Maximum single sideband to carrier power greater than 1.2% for 20 W microwave input power at optical carrier wavelength of 10.6 microns was obtained.

  11. Progress toward the Wisconsin Free Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisognano, Joseph; Eisert, D; Fisher, M V

    2011-03-01

    The University of Wisconsin-Madison/Synchrotron Radiation Center is advancing its design for a seeded VUV/soft X-ray Free Electron Laser facility called WiFEL. To support this vision of an ultimate light source, we are pursuing a program of strategic R&D addressing several crucial elements. This includes development of a high repetition rate, VHF superconducting RF electron gun, R&D on photocathode materials by ARPES studies, and evaluation of FEL facility architectures (e.g., recirculation, compressor scenarios, CSR dechirping, undulator technologies) with the specific goal of cost containment. Studies of high harmonic generation for laser seeding are also planned.

  12. Engineered Heterostructures of 6.1 A III-V Semiconductors for Advanced Electronic and Optoelectronic Applications

    DTIC Science & Technology

    1999-01-01

    sensitive infrared detectors and mid- infrared semiconductor lasers. In this paper, we describe the ongoing work at the Naval Research Laboratory to develop...enormous flexibility in designing novel electronic and optical devices. Specifically, long-wave infrared (IR) detectors ,1 mid-wave IR lasers,2 high...frequency field effect transistors3 (FETs) and resonant interband tunneling diodes4 (RITDs) have been demonstrated. However, many of these applications

  13. High Power Mid Wave Infrared Semiconductor Lasers

    DTIC Science & Technology

    2006-06-15

    resonance and the gain spectrum. The devices were grown using solid source molecular beam epitaxy (MBE) in a V80 reactor. Two side polished, undoped...verify the inherent low activation energy. N-type and P-type AISb, and various compositions of InxAl 1xSb, were grown by solid-source molecular beam ...level monitoring. Advances in epitaxial growth of semiconductor materials have allowed the development of Arsenic- free optically-pumped MWIR lasers on

  14. Method and apparatus for delivering high power laser energy over long distances

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-04-07

    Systems, devices and methods for the transmission and delivery of high power laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

  15. Advanced Optical Fibers for High power Fiber lasers

    DTIC Science & Technology

    2015-08-24

    crystal fiber cladding . Advanced Optical Fibers for High Power Fiber Lasers http://dx.doi.org/10.5772/58958 223 lengths above the second-order mode cut...brightness multimode diode lasers for a given pump waveguide dimen‐ sion. In conventional double- clad fibers, low-index polymer coatings are typically used to...was below 0.2. The fiber was passive and there was no laser demonstration in this first attempt. The first cladding - pumping demonstration in an

  16. Small lasers in flow cytometry.

    PubMed

    Telford, William G

    2004-01-01

    Laser technology has made tremendous advances in recent years, particularly in the area of diode and diode-pumped solid state sources. Flow cytometry has been a direct beneficiary of these advances, as these small, low-maintenance, inexpensive lasers with reasonable power outputs are integrated into flow cytometers. In this chapter we review the contribution and potential of solid-state lasers to flow cytometry, and show several examples of these novel sources integrated into production flow cytometers. Technical details and critical parameters for successful application of these lasers for biomedical analysis are reviewed.

  17. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  18. Laser development for optimal helicopter obstacle warning system LADAR performance

    NASA Astrophysics Data System (ADS)

    Yaniv, A.; Krupkin, V.; Abitbol, A.; Stern, J.; Lurie, E.; German, A.; Solomonovich, S.; Lubashitz, B.; Harel, Y.; Engart, S.; Shimoni, Y.; Hezy, S.; Biltz, S.; Kaminetsky, E.; Goldberg, A.; Chocron, J.; Zuntz, N.; Zajdman, A.

    2005-04-01

    Low lying obstacles present immediate danger to both military and civilian helicopters performing low-altitude flight missions. A LADAR obstacle detection system is the natural solution for enhancing helicopter safety and improving the pilot situation awareness. Elop is currently developing an advanced Surveillance and Warning Obstacle Ranging and Display (SWORD) system for the Israeli Air Force. Several key factors and new concepts have contributed to system optimization. These include an adaptive FOV, data memorization, autonomous obstacle detection and warning algorithms and the use of an agile laser transmitter. In the present work we describe the laser design and performance and discuss some of the experimental results. Our eye-safe laser is characterized by its pulse energy, repetition rate and pulse length agility. By dynamically controlling these parameters, we are able to locally optimize the system"s obstacle detection range and scan density in accordance with the helicopter instantaneous maneuver.

  19. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, R. S.; Spinhirne, J. D.; Manizade, K. F.

    2004-01-01

    Multiangle remote sensing provides a wealth of information for earth and climate monitoring, such as the ability to measure the height of cloud tops through stereoscopic imaging. As technology advances so do the options for developing spacecraft instrumentation versatile enough to meet the demands associated with multiangle measurements. One such instrument is the infrared spectral imaging radiometer, which flew as part of mission STS-85 of the space shuttle in 1997 and was the first earth- observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height with a precision of +/- 620 m from the multispectral stereo measurements acquired during this flight has been developed, and the results are compared with coincident direct laser ranging measurements from the shuttle laser altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  20. Compact, High Power, Multi-Spectral Mid-Infrared Semiconductor Laser Package

    NASA Astrophysics Data System (ADS)

    Guo, Bujin; Hwang, Wen-Yen; Lin, Chich-Hsiang

    2001-10-01

    Through a vertically integrated effort involving atomic level material engineering, advanced device processing development, state-of-the-art optomechanical packaging, and thermal management, Applied Optoelectronics, Inc. (AOI), University of Houston (U H), and Physical Science, Inc. (PSI) have made progress in both Sb-based type-II semiconductor material and in P-based type-I laser device development. We have achieved record performance on inP based quantum cascade continuous wave (CW) laser (with more than 5 mW CW power at 210 K). Grating-coupled external-cavity quantum cascade lasers were studied for temperatures from 20 to 230 K. A tuning range of 88 nm has been obtained at 80 K. The technology can be made commercially available and represents a significant milestone with regard to the Dual Use Science and Technology (DUST) intention of fostering dual use commercial technology for defense need. AOI is the first commercial company to ship products of this licensed technology.

  1. Stretchable Random Lasers with Tunable Coherent Loops.

    PubMed

    Sun, Tzu-Min; Wang, Cih-Su; Liao, Chi-Shiun; Lin, Shih-Yao; Perumal, Packiyaraj; Chiang, Chia-Wei; Chen, Yang-Fang

    2015-12-22

    Stretchability represents a key feature for the emerging world of realistic applications in areas, including wearable gadgets, health monitors, and robotic skins. Many optical and electronic technologies that can respond to large strain deformations have been developed. Laser plays a very important role in our daily life since it was discovered, which is highly desirable for the development of stretchable devices. Herein, stretchable random lasers with tunable coherent loops are designed, fabricated, and demonstrated. To illustrate our working principle, the stretchable random laser is made possible by transferring unique ZnO nanobrushes on top of polydimethylsiloxane (PDMS) elastomer substrate. Apart from the traditional gain material of ZnO nanorods, ZnO nanobrushes were used as optical gain materials so they can serve as scattering centers and provide the Fabry-Perot cavity to enhance laser action. The stretchable PDMS substrate gives the degree of freedom to mechanically tune the coherent loops of the random laser action by changing the density of ZnO nanobrushes. It is found that the number of laser modes increases with increasing external strain applied on the PDMS substrate due to the enhanced possibility for the formation of coherent loops. The device can be stretched by up to 30% strain and subjected to more than 100 cycles without loss in laser action. The result shows a major advance for the further development of man-made smart stretchable devices.

  2. High power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Holzer, Marco

    2011-02-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  3. Visible spectral power emitted from a laser produced uranium plasma

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Jalufka, N. W.

    1975-01-01

    The development of plasma-core nuclear reactors for advanced terrestrial and space-power sources is researched. Experimental measurements of the intensity and the spectral distribution of radiation from a nonfissioning uranium plasma are reported.

  4. Monitoring non-thermal plasma processes for nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  5. Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  6. Advanced Computational Modeling of Vapor Deposition in a High-pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  7. High sensitive and high temporal and spatial resolved image of reactive species in atmospheric pressure surface discharge reactor by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Feng, Chun-Lei; Wang, Zhi-Wei; Ding, Hongbin

    2017-05-01

    The current paucity of spatial and temporal characterization of reactive oxygen and nitrogen species (RONS) concentration has been a major hurdle to the advancement and clinical translation of low temperature atmospheric plasmas. In this study, an advanced laser induced fluorescence (LIF) system has been developed to be an effective antibacterial surface discharge reactor for the diagnosis of RONS, where the highest spatial and temporal resolution of the LIF system has been achieved to ˜100 μm scale and ˜20 ns scale, respectively. Measurements on an oxidative OH radical have been carried out as typical RONS for the benchmark of the whole LIF system, where absolute number density calibration has been performed on the basis of the laser Rayleigh scattering method. Requirements for pixel resolved spatial distribution and outer plasma region detection become challenging tasks due to the low RONS concentration (˜ppb level) and strong interference, especially the discharge induced emission and pulsed laser induced stray light. In order to design the highly sensitive LIF system, a self-developed fluorescence telescope, the optimization of high precision synchronization among a tunable pulsed laser, a surface discharge generator, intensified Charge Coupled Device (iCCD) camera, and an oscilloscope have been performed. Moreover, an image BOXCAR approach has been developed to remarkably improve the sensitivity of the whole LIF system by optimizing spatial and temporal gating functions via both hardware and software, which has been integrated into our automatic control and data acquisition system on the LabVIEW platform. In addition, a reciprocation averaging measurement has been applied to verify the accuracy of the whole LIF detecting system, indicating the relative standard deviation of ˜3%.

  8. Spatiotemporal control of laser intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froula, Dustin H.; Turnbull, David; Davies, Andrew S.

    The controlled coupling of a laser to a plasma has the potential to address grand scientific challenges including reaching the Schwinger limit, developing compact free electron lasers, extending linear colliders to TeV energies, and generating novel light sources for probing electron dynamics within molecules. Currently, many such applications have limited flexibility and poor control over the laser focal volume. Here we present an advanced focusing scheme called a “flying focus” where a chromatic focusing system combined with chirped laser pulses enables a small–diameter laser focus to propagate nearly 100 times its Rayleigh length, while decoupling the speed at which themore » peak intensity moves from its group velocity. This unprecedented spatiotemporal control over the laser focal volume allows the laser focus to co- or counter–propagate along its axis at any velocity. Experiments validating the concept measured subluminal (-0.09c) to superluminal (39c) focal spot velocities generating a nearly constant peak intensity over 4.5 mm.« less

  9. Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide

    PubMed Central

    Yi, Longqing; Pukhov, Alexander; Shen, Baifei

    2016-01-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications. PMID:27320197

  10. Spatiotemporal control of laser intensity

    DOE PAGES

    Froula, Dustin H.; Turnbull, David; Davies, Andrew S.; ...

    2018-03-12

    The controlled coupling of a laser to a plasma has the potential to address grand scientific challenges including reaching the Schwinger limit, developing compact free electron lasers, extending linear colliders to TeV energies, and generating novel light sources for probing electron dynamics within molecules. Currently, many such applications have limited flexibility and poor control over the laser focal volume. Here we present an advanced focusing scheme called a “flying focus” where a chromatic focusing system combined with chirped laser pulses enables a small–diameter laser focus to propagate nearly 100 times its Rayleigh length, while decoupling the speed at which themore » peak intensity moves from its group velocity. This unprecedented spatiotemporal control over the laser focal volume allows the laser focus to co- or counter–propagate along its axis at any velocity. Experiments validating the concept measured subluminal (-0.09c) to superluminal (39c) focal spot velocities generating a nearly constant peak intensity over 4.5 mm.« less

  11. Method and apparatus for delivering high power laser energy over long distances

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2013-08-20

    Systems, devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

  12. Resonance ionization laser ion sources for on-line isotope separators (invited).

    PubMed

    Marsh, B A

    2014-02-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.

  13. Novel EO/IR sensor technologies

    NASA Astrophysics Data System (ADS)

    Lewis, Keith

    2011-10-01

    The requirements for advanced EO/IR sensor technologies are discussed in the context of evolving military operations, with significant emphasis on the development of new sensing technologies to meet the challenges posed by asymmetric threats. The Electro-Magnetic Remote Sensing (EMRS DTC) was established in 2003 to provide a centre of excellence in sensor research and development, supporting new capabilities in key military areas such as precision attack, battlespace manoeuvre and information superiority. In the area of advanced electro-optic technology, the DTC has supported work on discriminative imaging, advanced detectors, laser components/technologies, and novel optical techniques. This paper provides a summary of some of the EO/IR technologies explored by the DTC.

  14. Lasers and radiofrequency devices in dentistry.

    PubMed

    Green, James; Weiss, Adam; Stern, Avichai

    2011-07-01

    Advances in technology are changing the ways that patients experience dental treatment. Technology helps to decrease treatment time and makes the treatment more comfortable for the patient. One technological advance is the use of lasers in dentistry. Lasers are providing more efficient, more comfortable, and more predictable outcomes for patients. Lasers are used in all aspects of dentistry, including operative, periodontal, endodontic, orthodontic, and oral and maxillofacial surgery. Lasers are used for soft and hard tissue procedures in the treatment of pathologic conditions and for esthetic procedures. This article discusses how lasers work and their application in the various specialties within dentistry. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. New developments in surface technology and prototyping

    NASA Astrophysics Data System (ADS)

    Himmer, Thomas; Beyer, Eckhard

    2003-03-01

    Novel lightweight applications in the automotive and aircraft industries require advanced materials and techniques for surface protection as well as direct and rapid manufacturing of the related components and tools. The manufacturing processes presented in this paper are based on multiple additive and subtractive technologies such as laser cutting, laser welding, direct laser metal deposition, laser/plasma hybrid spraying technique or CNC milling. The process chain is similar to layer-based Rapid Prototyping Techniques. In the first step, the 3D CAD geometry is sliced into layers by a specially developed software. These slices are cut by high speed laser cutting and then joined together. In this way laminated tools or parts are built. To improve surface quality and to increase wear resistance a CNC machining center is used. The system consists of a CNC milling machine, in which a 3 kW Nd:YAG laser, a coaxial powder nozzle and a digitizing system are integrated. Using a new laser/plasma hybrid spraying technique, coatings can be deposited onto parts for surface protection. The layers show a low porosity and high adhesion strength, the thickness is up to 0.3 mm, and the lower effort for preliminary surface preparation reduces time and costs of the whole process.

  16. Speckle reduction methods in laser-based picture projectors

    NASA Astrophysics Data System (ADS)

    Akram, M. Nadeem; Chen, Xuyuan

    2016-02-01

    Laser sources have been promised for many years to be better light sources as compared to traditional lamps or light-emitting diodes (LEDs) for projectors, which enable projectors having wide colour gamut for vivid image, super brightness and high contrast for the best picture quality, long lifetime for maintain free operation, mercury free, and low power consumption for green environment. A major technology obstacle in using lasers for projection has been the speckle noise caused by to the coherent nature of the lasers. For speckle reduction, current state of the art solutions apply moving parts with large physical space demand. Solutions beyond the state of the art need to be developed such as integrated optical components, hybrid MOEMS devices, and active phase modulators for compact speckle reduction. In this article, major methods reported in the literature for the speckle reduction in laser projectors are presented and explained. With the advancement in semiconductor lasers with largely reduced cost for the red, green and the blue primary colours, and the developed methods for their speckle reduction, it is hoped that the lasers will be widely utilized in different projector applications in the near future.

  17. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  18. Laser-Based Lighting: Experimental Analysis and Perspectives

    PubMed Central

    Yushchenko, Maksym; Buffolo, Matteo; Meneghini, Matteo; Zanoni, Enrico

    2017-01-01

    This paper presents an extensive analysis of the operating principles, theoretical background, advantages and limitations of laser-based lighting systems. In the first part of the paper we discuss the main advantages and issues of laser-based lighting, and present a comparison with conventional LED-lighting technology. In the second part of the paper, we present original experimental data on the stability and reliability of phosphor layers for laser lighting, based on high light-intensity and high-temperature degradation tests. In the third part of the paper (for the first time) we present a detailed comparison between three different solutions for laser lighting, based on (i) transmissive phosphor layers; (ii) a reflective/angled phosphor layer; and (iii) a parabolic reflector, by discussing the advantages and drawbacks of each approach. The results presented within this paper can be used as a guideline for the development of advanced lighting systems based on laser diodes. PMID:29019958

  19. Organic Binder Developments for Solid Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Mobasher, Amir A.

    2003-01-01

    A number of rapid prototyping techniques are under development at Marshall Space Flight Center's (MSFC) National Center for Advanced Manufacturing Rapid Prototyping Laboratory. Commercial binder developments in creating solid models for rapid prototyping include: 1) Fused Deposition Modeling; 2) Three Dimensional Printing; 3) Selective Laser Sintering (SLS). This document describes these techniques developed by the private sector, as well as SLS undertaken by MSFC.

  20. Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The laser atmospheric wind sounder (LAWS) will provide a new space based capability for the direct measurement of atmospheric winds in the troposphere. LAWS will make a major contribution toward advancing the understanding and prediction of the total Earth system and NASA's Earth Observing System (EOS) Program. LAWS is designed to measure a fundamental atmospheric parameter required to advance weather forecasting accuracies and investigate global climatic change. LAWS has a potential added benefit of providing (global) concentration profiles of large aerosols including visible and subvisible cirrus clouds, volcanic dust, smoke, and other pollutants. The objective of this Phase One study was to develop a LAWS concept and configuration. The instrument design is outlined in this first volume of three.

  1. Ultrafast magnetodynamics with free-electron lasers

    NASA Astrophysics Data System (ADS)

    Malvestuto, Marco; Ciprian, Roberta; Caretta, Antonio; Casarin, Barbara; Parmigiani, Fulvio

    2018-02-01

    The study of ultrafast magnetodynamics has entered a new era thanks to the groundbreaking technological advances in free-electron laser (FEL) light sources. The advent of these light sources has made possible unprecedented experimental schemes for time-resolved x-ray magneto-optic spectroscopies, which are now paving the road for exploring the ultimate limits of out-of-equilibrium magnetic phenomena. In particular, these studies will provide insights into elementary mechanisms governing spin and orbital dynamics, therefore contributing to the development of ultrafast devices for relevant magnetic technologies. This topical review focuses on recent advancement in the study of non-equilibrium magnetic phenomena from the perspective of time-resolved extreme ultra violet (EUV) and soft x-ray spectroscopies at FELs with highlights of some important experimental results.

  2. Ultra-Sensitive Photoreceiver Boosts Data Transmission

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA depends on advanced, ultra-sensitive photoreceivers and photodetectors to provide high-data communications and pinpoint image-detection and -recognition capabilities from great distances. In 2003, Epitaxial Technologies LLC was awarded a Small Business Innovation Research (SBIR) contract from Goddard Space Flight Center to address needs for advanced sensor components. Epitaxial developed a photoreciever capable of single proton sensitivity that is also smaller, lighter, and requires less power than its predecessor. This receiver operates in several wavelength ranges; will allow data rate transmissions in the terabit range; and will enhance Earth-based missions for remote sensing of crops and other natural resources, including applications for fluorescence and phosphorescence detection. Widespread military and civilian applications are anticipated, especially through enhancing fiber optic communications, laser imaging, and laser communications.

  3. Navy/Marine Corps innovative science and technology developments for future enhanced mine detection capabilities

    NASA Astrophysics Data System (ADS)

    Holloway, John H., Jr.; Witherspoon, Ned H.; Miller, Richard E.; Davis, Kenn S.; Suiter, Harold R.; Hilton, Russell J.

    2000-08-01

    JMDT is a Navy/Marine Corps 6.2 Exploratory Development program that is closely coordinated with the 6.4 COBRA acquisition program. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. Prior to transition to acquisition, the COBRA ATD was extremely successful in demonstrating a passive airborne multispectral video sensor system operating in the tactical Pioneer unmanned aerial vehicle (UAV), combined with an integrated ground station subsystem to detect and locate minefields from surf zone to inland areas. JMDT is investigating advanced technology solutions for future enhancements in mine field detection capability beyond the current COBRA ATD demonstrated capabilities. JMDT has recently been delivered next- generation, innovative hardware which was specified by the Coastal System Station and developed under contract. This hardware includes an agile-tuning multispectral, polarimetric, digital video camera and advanced multi wavelength laser illumination technologies to extend the same sorts of multispectral detections from a UAV into the night and over shallow water and other difficult littoral regions. One of these illumination devices is an ultra- compact, highly-efficient near-IR laser diode array. The other is a multi-wavelength range-gateable laser. Additionally, in conjunction with this new technology, algorithm enhancements are being developed in JMDT for future naval capabilities which will outperform the already impressive record of automatic detection of minefields demonstrated by the COBAR ATD.

  4. Coherent Doppler lidar for automated space vehicle, rendezvous, station-keeping and capture

    NASA Technical Reports Server (NTRS)

    Dunkin, James A.

    1991-01-01

    Recent advances in eye-safe, short wavelength solid-state lasers offer real potential for the development of compact, reliable, light-weight, efficient coherent lidar. Laser diode pumping of these devices has been demonstrated, thereby eliminating the need for flash lamp pumping, which has been a major drawback to the use of these lasers in space based applications. Also these lasers now have the frequency stability required to make them useful in coherent lidar, which offers all of the advantages of non-coherent lidar, but with the additional advantage that direct determination of target velocity is possible by measurement of the Doppler shift. By combining the Doppler velocity measurement capability with the inherent high angular resolution and range accuracy of lidar it is possible to construct Doppler images of targets for target motion assessment. A coherent lidar based on a Tm,Ho:YAG 2-micrometer wavelength laser was constructed and successfully field tested on atmospheric targets in 1990. This lidar incorporated an all solid state (laser diode pumped) master oscillator, in conjunction with a flash lamp pumped slave oscillator. Solid-state laser technology is rapidly advancing, and with the advent of high efficiency, high power, semiconductor laser diodes as pump sources, all-solid-state, coherent lidars are a real possibility in the near future. MSFC currently has a feasibility demonstration effort under way which will involve component testing, and preliminary design of an all-solid-state, coherent lidar for automatic rendezvous, and capture. This two year effort, funded by the Director's Discretionary Fund is due for completion in 1992.

  5. High Pressure Low NOx Emissions Research: Recent Progress at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Chi-Ming, Lee; Tacina, Kathleen M.; Wey, Changlie

    2007-01-01

    In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been at demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9- injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.

  6. NASA Glenn High Pressure Low NOx Emissions Research

    NASA Technical Reports Server (NTRS)

    Tacina, Kathleen M.; Wey, Changlie

    2008-01-01

    In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9-injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.

  7. New developments in flexible cholesteric liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Schneider, Tod; Davis, Donald J.; Franklin, Sean; Venkataraman, Nithya; McDaniel, Diaz; Nicholson, Forrest; Montbach, Erica; Khan, Asad; Doane, J. William

    2007-02-01

    Flexible Cholesteric liquid crystal displays have been rapidly maturing into a strong contender in the flexible display market. Encapsulation of the Cholesteric liquid crystal permits the use of flexible plastic substrates and roll-to-roll production. Recent advances include ultra-thin displays, laser-cut segmented displays of variable geometry, and smart card applications. Exciting technologies such as simultaneous laser-edge sealing and singulation enable high volume production, excellent quality control and non-traditional display geometries and formats.

  8. Optical Breath Gas Sensor for Extravehicular Activity Application

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  9. Laser-boosted lightcraft technology demonstrator

    NASA Technical Reports Server (NTRS)

    Antonison, M.; Myrabo, Leik; Chen, S.; Decusatis, C.; Kusche, K.; Minucci, M.; Moder, J.; Morales, C.; Nelson, C.; Richard, J.

    1989-01-01

    The ultimate goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary manned launch vehicle technology that can potentially reduce payload transport costs by a factor of 1000 below the space shuttle orbiter. The Rensellaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This year's effort, the detailed description and performance analysis of an unmanned 1.4-m Lightcraft Technology Demonstrator (LTD) drone, is presented. The novel launch system employs a 100-MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120-kg LTD to orbit, with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high-quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware. A mass production cost goal of 10(exp 3)/kg for the LTD vehicle is probably realizable.

  10. New PbSnTe heterojunction laser diode structures with improved performance

    NASA Technical Reports Server (NTRS)

    Fonstad, C. G.; Kasemset, D.; Hsieh, H. H.; Rotter, S.

    1980-01-01

    Several recent advances in the state-of-the-art of lead tin telluride double heterojunction laser diodes are summarized. Continuous Wave operation to 120 K and pulsed operation to 166 K with single, lowest order transverse mode emission to in excess of four times threshold at 80 K were achieved in buried stripe lasers fabricated by liquid phase epitaxy in the lattice-matched system, lead-tin telluride-lead telluride selenide. At the same time, liquid phase epitaxy was used to produce PbSnTe distributed feedback lasers with much broader continuous single mode tuning ranges than are available from Fabry-Perot lasers. The physics and philosophy behind these advances is as important as the structures and performance of the specific devices embodying the advances, particularly since structures are continually being evolved and the performance continues to be improved.

  11. Laser and LED external teeth-bleaching

    NASA Astrophysics Data System (ADS)

    Zanin, Fatima A.; Brugnera, Aldo, Jr.; Marchesan, Melissa A.; Pecora, Jesus D.

    2004-09-01

    Teeth-bleaching is an initial phase in the reproduction of an aesthetic smile; thus, it is very important that the dentist knows how to diagnose the causes of color changes and indicate whitening before proposing dental treatment. Technological advances in teeth-whitening lead to the development of new techniques, improving comfort, security and decreasing time of execution: argon laser, diode Laser, LED whitening, xenon light whitening. The clearing agent used in all techniques, including home whitening, is hydrogen peroxide (H2O2) in different concentrations. In this study, the authors describe mechanisms of gel activation, the use of Laser and LED"s for teeth-bleaching, the importance of diagnosis and the comfort of the patient in in-office teeth-bleaching techniques.

  12. Thermal Cyclic Behavior of Thermal and Environmental Barrier Coatings Investigated Under High-Heat-Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Environmental barrier coatings (EBC's) have been developed to protect silicon-carbide- (SiC) based ceramic components in gas turbine engines from high-temperature environmental attack. With continuously increasing demands for significantly higher engine operating temperature, future EBC systems must be designed for both thermal and environmental protection of the engine components in combustion gases. In particular, the thermal barrier functions of EBC's become a necessity for reducing the engine-component thermal loads and chemical reaction rates, thus maintaining the required mechanical properties and durability of these components. Advances in the development of thermal and environmental barrier coatings (TBC's and EBC's, respectively) will directly impact the successful use of ceramic components in advanced engines. To develop high-performance coating systems, researchers must establish advanced test approaches. In this study, a laser high-heat-flux technique was employed to investigate the thermal cyclic behavior of TBC's and EBC's on SiC-reinforced SiC ceramic matrix composite substrates (SiC/SiC) under high thermal gradient and thermal cycling conditions. Because the laser heat flux test approach can monitor the coating's real-time thermal conductivity variations at high temperature, the coating thermal insulation performance, sintering, and delamination can all be obtained during thermal cycling tests. Plasma-sprayed yttria-stabilized zirconia (ZrO2-8 wt% Y2O3) thermal barrier and barium strontium aluminosilicate-based environmental barrier coatings (BSAS/BSAS+mullite/Si) on SiC/SiC ceramic matrix composites were investigated in this study. These coatings were laser tested in air under thermal gradients (the surface and interface temperatures were approximately 1482 and 1300 C, respectively). Some coating specimens were also subject to alternating furnace cycling (in a 90-percent water vapor environment at 1300 C) and laser thermal gradient cycling tests (in air), to investigate the water vapor effect. All cyclic tests were conducted using a 60-min hot-time temperature.

  13. Mobil Solar Energy Corporation thin EFG octagons. Semiannual subcontract report, 1 April 1992--30 September 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalejs, J.P.

    1993-09-01

    This report describes work carried out for the PVMaT program at Mobil Solar for the period covering April 1, 1992, to September 30, 1992. Mobil Solar is developing advanced technology for growing and cutting 200-{mu}m-thick edge-defined film-fed growth (EFG) octagon tubes that will reduce the manufacturing costs of 10-cm {times} 10-cm polycrystalline EFG silicon wafers. Mobil Solar has made progress in identifying factors that impact on thickness nonuniformity and means to reduce the deleterious impact of ambient-related effects that have caused reduction in crystal growth productivity and wafer yield. The current main obstacle to meeting material yield targets arises duemore » to the buckling produced by thermal stress. Studies of laser cutting of EFG silicon using ND:YAG and dye lasers are underway to develop reduced damage cutting methods. Mobil Solar has carried out design reviews for crystal growth and laser cutting equipment. A task has been initiated to evaluate new online sensors for crystal growth process control and to study implementation of advanced control concepts for productivity and yield improvements.« less

  14. An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.; Key, M.; Britten, J.; Beach, R.; Beer, G.; Brown, C.; Bryan, S.; Caird, J.; Carlson, T.; Crane, J.; Dawson, J.; Erlandson, A. C.; Fittinghoff, D.; Hermann, M.; Hoaglan, C.; Iyer, A.; Jones, L., II; Jovanovic, I.; Komashko, A.; Landen, O.; Liao, Z.; Molander, W.; Mitchell, S.; Moses, E.; Nielsen, N.; Nguyen, H.-H.; Nissen, J.; Payne, S.; Pennington, D.; Risinger, L.; Rushford, M.; Skulina, K.; Spaeth, M.; Stuart, B.; Tietbohl, G.; Wattellier, B.

    2004-12-01

    The technical challenges and motivations for high-energy, short-pulse generation with NIF and possibly other large-scale Nd : glass lasers are reviewed. High-energy short-pulse generation (multi-kilojoule, picosecond pulses) will be possible via the adaptation of chirped pulse amplification laser techniques on NIF. Development of metre-scale, high-efficiency, high-damage-threshold final optics is a key technical challenge. In addition, deployment of high energy petawatt (HEPW) pulses on NIF is constrained by existing laser infrastructure and requires new, compact compressor designs and short-pulse, fibre-based, seed-laser systems. The key motivations for HEPW pulses on NIF is briefly outlined and includes high-energy, x-ray radiography, proton beam radiography, proton isochoric heating and tests of the fast ignitor concept for inertial confinement fusion.

  15. Applied optics. Gain modulation by graphene plasmons in aperiodic lattice lasers.

    PubMed

    Chakraborty, S; Marshall, O P; Folland, T G; Kim, Y-J; Grigorenko, A N; Novoselov, K S

    2016-01-15

    Two-dimensional graphene plasmon-based technologies will enable the development of fast, compact, and inexpensive active photonic elements because, unlike plasmons in other materials, graphene plasmons can be tuned via the doping level. Such tuning is harnessed within terahertz quantum cascade lasers to reversibly alter their emission. This is achieved in two key steps: first, by exciting graphene plasmons within an aperiodic lattice laser and, second, by engineering photon lifetimes, linking graphene's Fermi energy with the round-trip gain. Modal gain and hence laser spectra are highly sensitive to the doping of an integrated, electrically controllable, graphene layer. Demonstration of the integrated graphene plasmon laser principle lays the foundation for a new generation of active, programmable plasmonic metamaterials with major implications across photonics, material sciences, and nanotechnology. Copyright © 2016, American Association for the Advancement of Science.

  16. Medical applications of ultra-short pulse lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment communitymore » perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.« less

  17. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  18. Speckle measuring instrument based on biological characteristics of the human eyes and speckle reduction with advanced electromagnetic micro-scanning mirror

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Fang, Tao; Sun, Min Yuan; Gao, Wei Nan; Zhang, Shuo; Bi, Yong

    2018-07-01

    Laser speckle is a major issue for laser projection displays. In various techniques of speckle reduction, speckle is quantified with a speckle contrast value. However, the measured speckle contrast is poorly suited for the subjective speckle perception of a human observer. Here, we investigate the characteristics of human eyes and propose a simplified optical transfer function of human eyes. Accordingly, two human-eye-modeled speckle measuring sets are configured. Based on the experimental set, an advanced electromagnetic micro-scanning mirror (EM-MSM) is exploited; which is of 6.5 mm in diameter and its half angle is 7.8° for a horizontal scan and 6.53° for a vertical scan. Finally, we quantitatively show that images generated with an EM-MSM exhibit superior quality. By providing human-eye-modeled speckle measuring instruments and an EM-MSM for speckle reduction, it has a promising promotion to laser projector development.

  19. Application of a 980-nanometer diode laser in neuroendoscopy: a case series.

    PubMed

    Reis, Rodolfo Casimiro; Teixeira, Manoel Jacobsen; Mancini, Marilia Wellichan; Almeida-Lopes, Luciana; de Oliveira, Matheus Fernandes; Pinto, Fernando Campos Gomes

    2016-02-01

    Ventricular neuroendoscopy represents an important advance in the treatment of hydrocephalus. High-power (surgical) Nd:YAG laser and low-level laser therapy (using 685-nm-wavelength diode laser) have been used in conjunction with neuroendoscopy with favorable results. This study evaluated the use of surgical 980-nm-wavelength diode laser for the neuroendoscopic treatment of ventricular diseases. Nine patients underwent a neuroendoscopic procedure with 980-nm diode laser. Complications and follow-up were recorded. Three in-hospital postoperative complications were recorded (1 intraventricular hemorrhage and 2 meningitis cases). The remaining 6 patients had symptom improvement after endoscopic surgery and were discharged from the hospital within 24-48 hours after surgery. Patients were followed for an average of 14 months: 1 patient developed meningitis and another died suddenly at home. The other patients did well and were asymptomatic until the last follow-up consultation. The 980-nm diode laser is considered an important therapeutic tool for endoscopic neurological surgeries. This study showed its application in different ventricular diseases.

  20. Optical Communications Telescope Laboratory (OCTL) Support of Space to Ground Link Demonstrations

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Kovalik, Joseph M.; Wright, Malcolm W.; Roberts, William T.

    2014-01-01

    The NASA/JPL Optical Communication Telescope Laboratory (OCTL) was built for dedicated research and development toward supporting free-space laser communications from space. Recently, the OCTL telescope was used to support the Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmospheric Dust Environment Explorer (LADEE) spacecraft and is planned for use with the upcoming Optical Payload for Lasercomm Science (OPALS) demonstration from the International Space Station (ISS). The use of OCTL to support these demonstrations is discussed in this report. The discussion will feed forward to ongoing and future space-to-ground laser communications as it advances toward becoming an operational capability.

  1. LLE 2009 annual report, October 2008-September 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none, none

    2010-01-01

    The fiscal year ending September 2009 (FY2009) concluded the second year of the third five-year renewal of Cooperative Agreement DE-FC52-08NA28302 with the U.S. Department of Energy (DOE). This annual report summarizes progress in inertial fusion research at the Laboratory for Laser Energetics (LLE) during the past fiscal year. It also reports on LLE’s progress on laboratory basic science research; laser, optical materials, and advanced technology development; operation of OMEGA and OMEGA EP for the National Laser Users’ Facility (NLUF), and other external users; and programs focusingon the education of high school, undergraduate, and graduate students during the year.

  2. Design and performance of a production-worthy excimer-laser-based stepper

    NASA Astrophysics Data System (ADS)

    Unger, Robert; Sparkes, Christopher; Disessa, Peter A.; Elliott, David J.

    1992-06-01

    Excimer-laser-based steppers have matured to a production-worthy state. Widefield high-NA lenses have been developed and characterized for imaging down to 0.35 micron and below. Excimer lasers have attained practical levels of performance capability and stability, reliability, safety, and operating cost. Excimer stepper system integration and control issues such as focus, exposure, and overlay stability have been addressed. Enabling support technologies -- resist systems, resist processing, metrology and conventional mask making -- continue to progress and are becoming available. This paper discusses specific excimer stepper design challenges, and presents characterization data from several field installations of XLSTM deep-UV steppers configured with an advanced lens design.

  3. Testing of active heat sink for advanced high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Copeland, Drew A.; Feeler, Ryan; Junghans, Jeremy

    2011-03-01

    We report on the development of a novel active heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink employs convective heat transfer by a liquid metal flowing at high speed inside a miniature sealed flow loop. Liquid metal flow in the loop is maintained electromagnetically without any moving parts. Thermal conductance of the heat sink is electronically adjustable, allowing for precise control of diode temperature and the laser light wavelength. This paper presents the principles and challenges of liquid metal cooling, and data from testing at high heat flux and high heat loads.

  4. Introductory lecture. Advanced laser spectroscopy in combustion chemistry: from elementary steps to practical devices.

    PubMed

    Wolfrum, J

    2001-01-01

    In recent years a large number of linear and nonlinear laser-based diagnostic techniques for nonintrusive measurements of species concentrations, temperatures, and gas velocities in a wide pressure and temperature range with high temporal and spatial resolution have been developed and have become extremely valuable tools to study many aspects of combustion. Beside the nonintrusive diagnostics of technical combustion devices the kinetics and microscopic dynamics of elementary chemical combustion reactions can be investigated in great detail by laser spectroscopy. These investigations show, that a small number of relatively simple elementary steps like H + O2-->OH + O, H2O2-->2OH, O + N2-->NO + N, NH2 + NO-->H2O + N2, OH + N2H control a large variety of combustion phenomena and pollutant formation processes. Laminar flames are ideal objects to develop the application of laser spectroscopic methods for practical combustion systems and to test and improve the gas-phase reaction mechanism in combustion models. Nonintrusive laser point and field measurements are of basic importance in the validation and further development of turbulent combustion models. Nonlinear laser spectroscopic techniques using infrared-visible sum-frequency generation can now bridge the pressure and materials gap to provide kinetic data for catalytic combustion. Finally, the potential of laser techniques for active combustion control in municipal waste incinerators is illustrated.

  5. Imaging of Biological Tissues by Visible Light CDI

    NASA Astrophysics Data System (ADS)

    Karpov, Dmitry; Dos Santos Rolo, Tomy; Rich, Hannah; Fohtung, Edwin

    Recent advances in the use of synchrotron and X-ray free electron laser (XFEL) based coherent diffraction imaging (CDI) with application to material sciences and medicine proved the technique to be efficient in recovering information about the samples encoded in the phase domain. The current state-of-the-art algorithms of reconstruction are transferable to optical frequencies, which makes laser sources a reasonable milestone both in technique development and applications. Here we present first results from table-top laser CDI system for imaging of biological tissues and reconstruction algorithms development and discuss approaches that are complimenting the data quality improvement that is applicable to visible light frequencies due to it's properties. We demonstrate applicability of the developed methodology to a wide class of soft bio-matter and condensed matter systems. This project is funded by DOD-AFOSR under Award No FA9550-14-1-0363 and the LANSCE Professorship at LANL.

  6. Advances in Strapdown Sensors

    DTIC Science & Technology

    1984-04-01

    axis laser gyro sensor assembly (1, 24) in a single Zerodur structure using interleaved laser paths to reduce net size/weight. If advances in mirror ...laser gyros, special design considerations - associated with mechanically dithered laaer gyros, the state-of-the-art in magnetic mirror and...from the lasing action of a helium-noon gas discharge within the optical cavity. The reflecting surfaces are die- lectric mirrors designed to

  7. Successful development of first-generation laser device; marking China's optoelectronic technology at world class level

    NASA Astrophysics Data System (ADS)

    1995-04-01

    Bell Laboratories has developed the world's first optical information processor. Its core device is a self-excited electrooptical effect apparatus array of symmetric operation. After being developed in the United States, this high-technology device was successfully developed by China's scientists,thus making the fact that China's optoelectronic technology is among the most advanced in the world.

  8. Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin

    2016-01-01

    The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires highly accurate CO2 sensing technology with performance beyond that presently in use on the International Space Station extravehicular mobility unit (EMU). Further, that accuracy needs to be provided over the full operating pressure range of the suit (3 to 25 psia). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) sensor based on infrared absorption spectroscopy is being developed for this purpose by Vista Photonics, Inc. Version 1.0 prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The prototypes were upgraded with more sophisticated communications and faster response times to version 2.0 and delivered to JSC in July 2012. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with an field-programmable gate array microcontroller architecture. Based on the results of the iterative instrument development, further prototype development and testing of instruments were performed leveraging the lessons learned where feasible. The present development extends and upgrades the earlier hardware for the advanced PLSS 2.5 prototypes for testing at JSC. The prototypes provide significantly enhanced accuracy for water vapor measurement and eliminate wavelength drift affecting the earlier versions. Various improvements to the electronics and gas sampling are currently being advanced including the companion development of engineering development units that will ultimately be capable of radiation tolerance. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  9. Orofacial hereditary haemorrhagic telangiectasia: high power diode laser in early and advanced lesion treatment

    NASA Astrophysics Data System (ADS)

    Tempesta, Angela; Franco, Simonetta; Miccoli, Simona; Suppressa, Patrizia; De Falco, Vincenzo; Crincoli, Vito; Lacaita, Mariagrazia; Giuliani, Michele; Favia, Gianfranco

    2014-01-01

    Hereditary Haemorrhagic Telangiectasia (HHT) is a muco-cutaneous inherited disease. Symptoms are epistaxis, visceral arterio-venous malformations, multiple muco-cutaneous telangiectasia with the risk of number increasing enlargement, bleeding, and super-infection. The aim of this work is to show the dual Diode Laser efficacy in preventive treatment of Early Lesions (EL < 2mm) and therapeutic treatment of Advanced Lesions (AL < 2mm). 21 patients affected by HHT with 822 muco-cutaneous telangiectatic nodules have been treated in several sessions with local anaesthesia and cooling of treated sites. EL preventive treatment consists of single Laser impulse (fibre 320) in ultrapulsed mode (2 mm single point spot). AL therapeutic treatment consists of repeated Laser impulses in pulsed mode (on 200ms / off 400ms). According to the results, Diode Laser used in pulsed and ultra-pulsed mode is very effective as noninvasive treatment both in early and advanced oral and perioral telangiectasia.

  10. Fiber Sensor Systems Based on Fiber Laser and Microwave Photonic Technologies

    PubMed Central

    Fu, Hongyan; Chen, Daru; Cai, Zhiping

    2012-01-01

    Fiber-optic sensors, especially fiber Bragg grating (FBG) sensors are very attractive due to their numerous advantages over traditional sensors, such as light weight, high sensitivity, cost-effectiveness, immunity to electromagnetic interference, ease of multiplexing and so on. Therefore, fiber-optic sensors have been intensively studied during the last several decades. Nowadays, with the development of novel fiber technology, more and more newly invented fiber technologies bring better and superior performance to fiber-optic sensing networks. In this paper, the applications of some advanced photonic technologies including fiber lasers and microwave photonic technologies for fiber sensing applications are reviewed. FBG interrogations based on several kinds of fiber lasers, especially the novel Fourier domain mode locking fiber laser, have been introduced; for the application of microwave photonic technology, examples of microwave photonic filtering utilized as a FBG sensing interrogator and microwave signal generation acting as a transversal loading sensor have been given. Both theoretical analysis and experimental demonstrations have been carried out. The comparison of these advanced photonic technologies for the applications of fiber sensing is carried out and important issues related to the applications have been addressed and the suitable and potential application examples have also been discussed in this paper. PMID:22778591

  11. Technology Advancements for Active Remote Sensing of Carbon Dioxide from Space using the ASCENDS CarbonHawk Experiment Simulator

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Nehrir, A. R.; Liu, Z.; Chen, S.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Fan, T. F.; Choi, Y.; Plant, J.; Yang, M. M.; Browell, E. V.; Harrison, F. W.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.

    2015-12-01

    This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights.

  12. Technology Advancements for Active Remote Sensing of Carbon Dioxide From Space using the ASCENDS CarbonHawk Experiment Simulator

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Liu, Z.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Carrion, W.; Hicks, J.; Fan, T. F.; Nehrir, A. R.; Browell, E. V.; Meadows, B.; Davis, K. J.

    2016-12-01

    This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights during the Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital flight campaign.

  13. Analysis of Technology for Compact Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    In view of the recent advances in the area of solid state and semiconductor lasers has created new possibilities for the development of compact and reliable coherent lidars for a wide range of applications. These applications include: Automated Rendezvous and Capture, wind shear and clear air turbulence detection, aircraft wake vortex detection, and automobile collision avoidance. The work performed by the UAH personnel under this Delivery Order, concentrated on design and analyses of a compact coherent lidar system capable of measuring range and velocity of hard targets, and providing air mass velocity data. The following is the scope of this work. a. Investigate various laser sources and optical signal detection configurations in support of a compact and lightweight coherent laser radar to be developed for precision range and velocity measurements of hard and fuzzy targets. Through interaction with MSFC engineers, the most suitable laser source and signal detection technique that can provide a reliable compact and lightweight laser radar design will be selected. b. Analyze and specify the coherent laser radar system configuration and assist with its optical and electronic design efforts. Develop a system design including its optical layout design. Specify all optical components and provide the general requirements of the electronic subsystems including laser beam modulator and demodulator drivers, detector electronic interface, and the signal processor. c. Perform a thorough performance analysis to predict the system measurement range and accuracy. This analysis will utilize various coherent laser radar sensitivity formulations and different target models.

  14. 44th Annual Anomalous Absorption Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beg, Farhat

    Conference Grant Report July 14, 2015 Submitted to the U. S. Department of Energy Attn: Dr. Sean Finnegan By the University of California, San Diego 9500 Gilman Drive La Jolla, California 92093 On behalf of the 44th Annual Anomalous Absorption Conference 8-13 June 2014, in Estes Park, Colorado Support Requested: $10,100 Amount expended: $3,216.14 Performance Period: 1 March 20 14 to 28 February 20 15 Principal Investigator Dr. Farhat Beg Center for Energy Research University of California, San Diego 9500 Gilman Drive La Jolla, California 92093-0417 858-822-1266 (telephone) 858-534-4543 (fax) fbeg@ucsd.edu Administrative Point of Contact: Brandi Pate, 858-534-0851, blpate®ucsd.edu I.more » Background The forty-fourth Anomalous Absorption Conference was held in Estes Park, Colorado from June 5-8, 2014 (aac2014.ucsd.edu). The first Anomalous Absorption Conference was held in 1971 to assemble experts in the poorly understood area of laser-plasma absorption. The goal of that conference was to address the anomalously large laser absorption seen in plasma experiments with respect to the laser absorption predicted by linear plasma theory. Great progress in this research area has been made in the decades since that first meeting, due in part to the scientific interactions that have occurred annually at this conference. Specifically, this includes the development of nonlinear laser-plasma theory and the simulation of laser interactions with plasmas. Each summer since that first meeting, this week-long conference has been held at unique locations in North America as a scientific forum for intense scientific exchanges relevant to the interaction of laser radiation with plasmas. Responsibility for organizing the conference has traditional rotated each year between the major Inertial Confinement Fusion (ICF) laboratories and universities including LANL, LLNL, LLE, UCLA UC Davis and NRL. As the conference has matured over the past four decades, its technical footprint has expanded beyond ICF-related laser-plasma interactions to encompass closely related technical areas including laser particle acceleration, high-intensity laser effects, short­ pulse laser interactions, PIC and Vlasov/rad-hydro modeling, inertial and magnetic fusion plasmas, advanced plasma diagnostics, alternate ignition schemes, EOS/transport/opacity, and this year, x­ ray free-electron lasers and their applications. The conference continues to be a showcase for the presentation and discussion of the latest developments in these areas. II. Meeting Report The conference was extremely successful with more than one hundred participants. There were ninety-nine (99) abstracts submitted. There were forty-four (44) presentations including eleven (11) invited talks. The following topics were covered: a) Radiation Hydrodynamics b) Implosion Plasma Kinetic Effects c) Alternate Ignition Schemes d) Astrophysical Phenomena e) Opacity/Transport/EOS f) High Power Lasers and Facilities g) High-Intensity Laser-Matter Interactions h) Hydrodynamics and Hydro-instabilities i) Hot Dense Plasma Atomic Processes j) High Energy Density Physics k) Laser Particle Acceleration Physics l) Advanced Plasma Diagnostics m) Advanced light sources and applications Despite significant advertising, there were two students who applied for the travel grants: Charlie Jarrott and Joohwan Kim. The total funds expended were $3,216.14.« less

  15. Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-02-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nm. A CW External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nm. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nm. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9W @ 532 nm wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  16. Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-01-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  17. Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers

    NASA Technical Reports Server (NTRS)

    Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela

    2010-01-01

    Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.

  18. Coherent Doppler Laser Radar: Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through headwind minimization. In addition to the airborne and space platforms, a coherent Doppler laser radar system in an unmanned aerial vehicle (UAV) could provide battlefield weather and target identification.

  19. Development of Advanced Laser Diode Sources

    NASA Technical Reports Server (NTRS)

    Coleman, J. J.; Papen, G. C.

    1998-01-01

    The design and operation of InGaAs-GaAs-AlGaAs asymmetric cladding ridge waveguide distributed Bragg reflector lasers is presented. Targeted for the remote sensing of water vapor with absorption lines in the lambda approximately 930 nm region, these devices operate CW with threshold currents as low as 11 MA and slope efficiencies as high as 0.37 W/A. Tbey also operate with over 30-dB side-mode suppression, and the typical CW characteristic temperature, T(sub o), is 95 K.

  20. Source technology as the foundation for modern infra-red counter measures (IRCM)

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.

    2010-10-01

    Protection of military aircraft from IR guided threats is paramount to ensure the survivability of aircrews, platforms, and to ensure mission success. At the foundation of all IRCM systems is the source; that component that provides the in-band radiant energy required for threat defeat. As such, source technology has evolved with IRCM technology to encompass the evolving systems architectures that encompass IRCM: 1) "Hot Brick" omni-directional sources; 2) arc lamps, and; 3) lasers. Lasers, as IRCM sources continue to evolve to meet the challenges of ever-evolving threats, superior techniques, economy of installation, and superior source technology. Lasers represent the single greatest advance in IRCM source technology and continue to evolve to meet ever more sophisticated threats. And have been used with great effect in all modern IRCM systems; evolving from frequency doubled CO2 lasers, to solid state lasers with OPOs, to semiconductor lasers including Quantum Cascade Lasers (QCLs); these last devices represent the latest advance in IRCM source technology offering all-band coverage, architectural simplicity, and economy of scale. While QCLs represent the latest advance in IRCM laser technology, fiber lasers show much promise in addressing multi-band operation as well as the ability to be coherently combined to achieve even greater output capability. Also, ultra-short pulse lasers are evolving to become practical for IRCM applications. Stay tuned ......

  1. Recent advances in laser-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  2. Laser rapid forming technology of high-performance dense metal components with complex structure

    NASA Astrophysics Data System (ADS)

    Huang, Weidong; Chen, Jing; Li, Yanming; Lin, Xin

    2005-01-01

    Laser rapid forming (LRF) is a new and advanced manufacturing technology that has been developed on the basis of combining high power laser cladding technology with rapid prototyping (RP) to realize net shape forming of high performance dense metal components without dies. Recently we have developed a set of LRF equipment. LRF experiments were carried out on the equipment to investigate the influences of processing parameters on forming characterizations systematically with the cladding powder materials as titanium alloys, superalloys, stainless steel, and copper alloys. The microstructure of laser formed components is made up of columnar grains or columnar dendrites which grow epitaxially from the substrate since the solid components were prepared layer by layer additionally. The result of mechanical testing proved that the mechanical properties of laser formed samples are similar to or even over that of forging and much better than that of casting. It is shown in this paper that LRF technology is providing a new solution for some difficult processing problems in the high tech field of aviation, spaceflight and automobile industries.

  3. Thermo-optical Modelling of Laser Matter Interactions in Selective Laser Melting Processes.

    NASA Astrophysics Data System (ADS)

    Vinnakota, Raj; Genov, Dentcho

    Selective laser melting (SLM) is one of the promising advanced manufacturing techniques, which is providing an ideal platform to manufacture components with zero geometric constraints. Coupling the electromagnetic and thermodynamic processes involved in the SLM, and developing the comprehensive theoretical model of the same is of great importance since it can provide significant improvements in the printing processes by revealing the optimal parametric space related to applied laser power, scan velocity, powder material, layer thickness and porosity. Here, we present a self-consistent Thermo-optical model which simultaneously solves the Maxwell's and the heat transfer equations and provides an insight into the electromagnetic energy released in the powder-beds and the concurrent thermodynamics of the particles temperature rise and onset of melting. The numerical calculations are compared with developed analytical model of the SLM process providing insight into the dynamics between laser facilitated Joule heating and radiation mitigated rise in temperature. These results provide guidelines toward improved energy efficiency and optimization of the SLM process scan rates. The current work is funded by the NSF EPSCoR CIMM project under award #OIA-1541079.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Hansheng

    The ICF Program in China has made significant progress with multilabs' efforts in the past years. The eight-beam SG-II laser facility, upgraded from the two-beam SG-I facility, is nearly completed for 1.05 {mu}m light output and is about to be operated for experiments. Some benchmark experiments have been conducted for disk targets. Advanced diagnostic techniques, such as an x-ray microscope with a 7-{mu}m spatial resolution and x-ray framing cameras with a temporal resolution better than 65ps, have been developed. Lower energy pumping with prepulse technique for Ne-like Ti laser at 32.6nm has succeeded and shadowgraphy of a fine mesh hasmore » been demonstrated with the Ti laser beam. A national project, SG-III laser facility, has been proposed to produce 60 kJ blue light for target physics experiments and is being conceptually designed. New laser technology, including maltipass amplification, large aperture plasma electrode switches and laser glass with fewer platinum grains have been developed to meet the requirements of the SG-III Project. The Technical Integration Line (TIL) as a scientific prototype beamlet of SG-III will be first built in the next few years.« less

  5. Laser fringe anemometry for aero engine components

    NASA Technical Reports Server (NTRS)

    Strazisar, A. J.

    1986-01-01

    Advances in flow measurement techniques in turbomachinery continue to be paced by the need to obtain detailed data for use in validating numerical predictions of the flowfield and for use in the development of empirical models for those flow features which cannot be readily modelled numerically. The use of laser anemometry in turbomachinery research has grown over the last 14 years in response to these needs. Based on past applications and current developments, this paper reviews the key issues which are involved when considering the application of laser anemometry to the measurement of turbomachinery flowfields. Aspects of laser fringe anemometer optical design which are applicable to turbomachinery research are briefly reviewed. Application problems which are common to both laser fringe anemometry (LFA) and laser transit anemometry (LTA) such as seed particle injection, optical access to the flowfield, and measurement of rotor rotational position are covered. The efficiency of various data acquisition schemes is analyzed and issues related to data integrity and error estimation are addressed. Real-time data analysis techniques aimed at capturing flow physics in real time are discussed. Finally, data reduction and analysis techniques are discussed and illustrated using examples taken from several LFA turbomachinery applications.

  6. Image analysis algorithms for the advanced radiographic capability (ARC) grating tilt sensor at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Roberts, Randy S.; Bliss, Erlan S.; Rushford, Michael C.; Halpin, John M.; Awwal, Abdul A. S.; Leach, Richard R.

    2014-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system designed to produce a sequence of short pulses used to backlight imploding fuel capsules. Laser pulses from a short-pulse oscillator are dispersed in wavelength into long, low-power pulses, injected in the NIF main laser for amplification, and then compressed into high-power pulses before being directed into the NIF target chamber. In the target chamber, the laser pulses hit targets which produce x-rays used to backlight imploding fuel capsules. Compression of the ARC laser pulses is accomplished with a set of precision-surveyed optical gratings mounted inside of vacuum vessels. The tilt of each grating is monitored by a measurement system consisting of a laser diode, camera and crosshair, all mounted in a pedestal outside of the vacuum vessel, and a mirror mounted on the back of a grating inside the vacuum vessel. The crosshair is mounted in front of the camera, and a diffraction pattern is formed when illuminated with the laser diode beam reflected from the mirror. This diffraction pattern contains information related to relative movements between the grating and the pedestal. Image analysis algorithms have been developed to determine the relative movements between the gratings and pedestal. In the paper we elaborate on features in the diffraction pattern, and describe the image analysis algorithms used to monitor grating tilt changes. Experimental results are provided which indicate the high degree of sensitivity provided by the tilt sensor and image analysis algorithms.

  7. Laser Speckle Contrast Imaging of Cerebral Blood Flow

    PubMed Central

    Dunn, Andrew K.

    2011-01-01

    Laser speckle contrast imaging (LSCI) has emerged over the past decade as a powerful, yet simple, method for imaging of blood flow dynamics in real time. The rapid adoption of LSCI for physiological studies is due to the relative ease and low cost of building an instrument as well as the ability to quantify blood flow changes with excellent spatial and temporal resolution. Although measurements are limited to superficial tissues with no depth resolution, LSCI has been instrumental in pre-clinical studies of neurological disorders as well as clinical applications including dermatological, neurosurgical and endoscopic studies. Recently a number of technical advances have been developed to improve the quantitative accuracy and temporal resolution of speckle imaging. This article reviews some of these recent advances and describes several applications of speckle imaging. PMID:22109805

  8. Automated Laser Ultrasonic Testing (ALUT) of Hybrid Arc Welds for Pipeline Construction, #272

    DOT National Transportation Integrated Search

    2009-12-22

    One challenge in developing new gas reserves is the high cost of pipeline construction. Welding costs are a major component of overall construction costs. Industry continues to seek advanced pipeline welding technologies to improve productivity and s...

  9. Advanced Opto-Electronics (LIDAR and Microsensor Development)

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern C. (Technical Monitor); Spangler, Lee H.

    2005-01-01

    Our overall intent in this aspect of the project were to establish a collaborative effort between several departments at Montana State University for developing advanced optoelectronic technology for advancing the state-of-the-art in optical remote sensing of the environment. Our particular focus was on development of small systems that can eventually be used in a wide variety of applications that might include ground-, air-, and space deployments, possibly in sensor networks. Specific objectives were to: 1) Build a field-deployable direct-detection lidar system for use in measurements of clouds, aerosols, fish, and vegetation; 2) Develop a breadboard prototype water vapor differential absorption lidar (DIAL) system based on highly stable, tunable diode laser technology developed previously at MSU. We accomplished both primary objectives of this project, in developing a field-deployable direct-detection lidar and a breadboard prototype of a water vapor DIAL system. Paper summarizes each of these accomplishments.

  10. Advances in high-power 9XXnm laser diodes for pumping fiber lasers

    NASA Astrophysics Data System (ADS)

    Skidmore, Jay; Peters, Matthew; Rossin, Victor; Guo, James; Xiao, Yan; Cheng, Jane; Shieh, Allen; Srinivasan, Raman; Singh, Jaspreet; Wei, Cailin; Duesterberg, Richard; Morehead, James J.; Zucker, Erik

    2016-03-01

    A multi-mode 9XXnm-wavelength laser diode was developed to optimize the divergence angle and reliable ex-facet power. Lasers diodes were assembled into a multi-emitter pump package that is fiber coupled via spatial and polarization multiplexing. The pump package has a 135μm diameter output fiber that leverages the same optical train and mechanical design qualified previously. Up to ~ 270W CW power at 22A is achieved at a case temperature ~ 30ºC. Power conversion efficiency is 60% (peak) that drops to 53% at 22A with little thermal roll over. Greater than 90% of the light is collected at < 0.12NA at 16A drive current that produces 3.0W/(mm-mr)2 radiance from the output fiber.

  11. The Effect of Rare Earth on the Structure and Performance of Laser Clad Coatings

    NASA Astrophysics Data System (ADS)

    Bao, Ruiliang; Yu, Huijun; Chen, Chuanzhong; Dong, Qing

    Laser cladding is one kind of advanced surface modification technology and has the abroad prospect in making the wear-resistant coating on metal substrates. However, the application of laser cladding technology does not achieve the people's expectation in the practical production because of many defects such as cracks, pores and so on. The addiction of rare earth can effectively reduce the number of cracks in the clad coating and enhance the coating wear-resistance. In the paper, the effects of rare earth on metallurgical quality, microstructure, phase structure and wear-resistance are analyzed in turns. The preliminary discussion is also carried out on the effect mechanism of rare earth. At last, the development tendency of rare earth in the laser cladding has been briefly elaborated.

  12. New advanced characterization tools for PW-class lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Quéré, Fabien

    2017-05-01

    Spatio-temporal couplings (STC) of laser beams are ubiquitous in ultrafast optics. In the femtosecond range, chirped-pulse amplification (CPA), the key technology of amplified ultrashort pulses, relies on the use of massive STCs induced at different locations in laser systems (for instance by gratings or prisms), which should all eventually perfectly cancel out at the laser output. Residual STCs, for example resulting from imperfect compensation, decrease the peak intensity at focus by increasing both the focal spot size and the pulse duration. This is particularly detrimental for ultrahigh-intensity (UHI) lasers, which aim for the highest possible peak intensities. However, it is precisely with these lasers that such uncontrolled defects are most likely to occur, due to the complexity of these systems and the large diameters of the output beams. Accurately measuring STCs is thus essential in ultrafast optics. Significant progress has been made in the last decade, and several techniques are now available for the partial or complete spatiotemporal characterization of near-visible femtosecond laser beams. However, none of these has yet been applied to UHI femtosecond lasers, due to the difficulty of handling these large and powerful beams. As a result, all UHI lasers are currently characterized under the unjustified and unverified assumption of the absence of STCs, using separate measurements in space and time. This situation is now becoming a major bottleneck for the development of UHI lasers and their applications. In particular, the optimal and reliable operation of PW-class lasers now available or under construction all around the world will simply not be possible without a proper spatiotemporal metrology. In this talk, we present the first complete spatiotemporal experimental reconstruction of the field E(t,r) for a 100 TW peak-power laser, obtained using self-referenced spatially-resolved Fourier transform spectroscopy [1,2], and thus reveal the spatiotemporal distortions that can affect such beams [3]. This new measurement capability opens the way to in-depth characterization and optimization of ultra-intense lasers and ultimately to the advanced control of relativistic motion of matter with femtosecond laser beams structured in space-time.

  13. Inertial Confinement Fusion Quarterly Report: April--June 1993. Volume 3, Number 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGowan, B.J.; Kotowski, M.; Schleich, D.

    1993-11-01

    This issue of the ICF Quarterly contains six articles describing recent advances in Lawrence Livermore National Laboratory`s inertial confinement fusion (ICF) program. The current emphasis of the ICF program is in support of DOE`s National Ignition Facility (NIF) initiative for demonstrating ignition and gain with a 1-2 MJ glass laser. The articles describe recent Nova experiments and investigations tailored towards enhancing understanding of the key physics and technological issues for the NIF. Titles of the articles are: development of large-aperture KDP crystals; inner-shell photo-ionized X-ray lasers; X-ray radiographic measurements of radiation-driven shock and interface motion in solid density materials; themore » role of nodule defects in laser-induced damage of multilayer optical coatings; techniques for Mbar to near-Gbar equation-of-state measurements with the Nova laser; parametric instabilities and laser-beam smoothing.« less

  14. Advanced injection seeder for various applications: form LIDARs to supercontinuum sources

    NASA Astrophysics Data System (ADS)

    Grzes, Pawel

    2017-12-01

    The paper describes an injection seeder driver (prototype) for a directly modulated semiconductor laser diode. The device provides adjustable pulse duration and repetition frequency to shape an output signal. A temperature controller stabilizes a laser diode spectrum. Additionally, to avoid a back oscillation, redundant power supply holds a generation until next stages shut down. Low EMI design and ESD protection guarantee stable operation even in a noisy environment. The controller is connected to the PC via USB and parameters of the pulse are digitally controlled through a graphical interface. The injection seeder controller can be used with a majority of commercially available laser diodes. In the experimental setup a telecommunication DFB laser with 4 GHz bandwidth was used. It allows achieving subnanosecond pulses generated at the repetition rate ranging from 1 kHz to 50 MHz. The developed injection seeder controller with a proper laser diode can be used in many scientific, industrial and medical applications.

  15. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  16. Direct-drive inertial confinement fusion: A review

    NASA Astrophysics Data System (ADS)

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Myatt, J. F.; Schmitt, A. J.; Sethian, J. D.; Short, R. W.; Skupsky, S.; Theobald, W.; Kruer, W. L.; Tanaka, K.; Betti, R.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Seka, W.; Solodov, A. A.; Soures, J. M.; Stoeckl, C.; Zuegel, J. D.

    2015-11-01

    The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser-plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon-decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive-ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.

  17. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, Redgie S.; Spinhirne, James D.; OCStarr, David (Technical Monitor)

    2001-01-01

    Multi-angle remote sensing provides a wealth of information for earth and climate monitoring. And, as technology advances so do the options for developing instrumentation versatile enough to meet the demands associated with these types of measurements. In the current work, the multiangle measurement capability of the Infrared Spectral Imaging Radiometer is demonstrated. This instrument flew as part of mission STS-85 of the space shuttle Columbia in 1997 and was the first earth-observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height from the multi-spectral stereo measurements acquired during this flight has been developed and the results demonstrate that a vertical precision of 10.6 km was achieved. Further, the accuracy of these measurements is confirmed by comparison with coincident direct laser ranging measurements from the Shuttle Laser Altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  18. Electric motor for laser-mechanical drilling

    DOEpatents

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  19. Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles

    PubMed Central

    Mocan, Lucian; Tabaran, Flaviu A; Mocan, Teodora; Pop, Teodora; Mosteanu, Ofelia; Agoston-Coldea, Lucia; Matea, Cristian T; Gonciar, Diana; Zdrehus, Claudiu; Iancu, Cornel

    2017-01-01

    The issue of multidrug resistance (MDR) has become an increasing threat to public health. One alternative strategy against MDR bacteria would be to construct therapeutic vectors capable of physically damaging these microorganisms. Gold nanoparticles hold great promise for the development of such therapeutic agents, since the nanoparticles exhibit impressive properties, of which the most important is the ability to convert light into heat. This property has scientific significance since is exploited to develop nano-photothermal vectors to destroy bacteria at a molecular level. The present paper summarizes the latest advancements in the field of nanotargeted laser hyperthermia of MDR bacteria mediated by gold nanoparticles. PMID:28356741

  20. Advanced Environmental Barrier Coatings Development for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.

    2005-01-01

    Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.

  1. Evolution and advanced technology. [of Flight Telerobotic Servicer

    NASA Technical Reports Server (NTRS)

    Ollendorf, Stanford; Pennington, Jack E.; Hansen, Bert, III

    1990-01-01

    The NASREM architecture with its standard interfaces permits development and evolution of the Flight Telerobotic Servicer to greater autonomy. Technologies in control strategies for an arm with seven DOF, including a safety system containing skin sensors for obstacle avoidance, are being developed. Planning and robotic execution software includes symbolic task planning, world model data bases, and path planning algorithms. Research over the last five years has led to the development of laser scanning and ranging systems, which use coherent semiconductor laser diodes for short range sensing. The possibility of using a robot to autonomously assemble space structures is being investigated. A control framework compatible with NASREM is being developed that allows direct global control of the manipulator. Researchers are developing systems that permit an operator to quickly reconfigure the telerobot to do new tasks safely.

  2. Some recent studies on laser cladding and dissimilar welding

    NASA Astrophysics Data System (ADS)

    Kaul, Rakesh; Ganesh, P.; Paul, C. P.; Albert, S. K.; Mudali, U. Kamachi; Nath, A. K.

    2006-01-01

    Indigenous development of high power CO II laser technology and industrial application of lasers represent two important mandates of the laser program, being pursued at Centre for Advanced Technology (CAT), India. The present paper describes some of the important laser material processing studies, involving cladding and dissimilar welding, performed in authors' laboratory. The first case study describes how low heat input characteristics of laser cladding process has been successfully exploited for suppressing dilution in "Colmonoy6" (a nickel-base hardfacing alloy) deposits on austenitic stainless steel components. Crack free hardfaced deposits were obtained by controlling heating and cooling rates associated with laser treatment. The results show significant advantage over Colmonoy 6 deposits made by GTAW, where a 2.5 mm thick region of dilution (with reduced hardness) develops next to substrateiclad interface. The next work involves laser-assisted deposition of graded "Stellite6" (a Co-base hardfacing alloy) with smooth transition in chemical composition and hardness for enhanced resistance against cracking, esp. under thermal cycling conditions. The following two case studies demonstrate significant improvement in corrosion properties of type 304L stainless steel by laser surface alloying, achieved through cladding route. The following case study demonstrates engineering of fusion zone microstructure of end plug dissimilar weld (between alloy D9 and type 3 16M stainless steel) by controlled preferential displacement of focused laser beam, which, in-turn, enhanced its resistance against solidification cracking. Crater appearing at the termination point of laser weld is also eliminated by ramping of laser power towards the end of laser welding. The last case study involves engineering of fusion zone microstructure of dissimilar laser weld between type 304 austenitic stainless steel and stabilized 17%Cr ferritic stainless steel by controlling welding parameters.

  3. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    PubMed

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.

  4. Processing-Structure-Property Relationships in Laser-Annealed PbSe Nanocrystal Thin Films.

    PubMed

    Treml, Benjamin E; Robbins, Andrew B; Whitham, Kevin; Smilgies, Detlef-M; Thompson, Michael O; Hanrath, Tobias

    2015-01-01

    As nanocrystal (NC) synthesis techniques and device architectures advance, it becomes increasingly apparent that new ways of connecting NCs with each other and their external environment are required to realize their considerable potential. Enhancing inter-NC coupling by thermal annealing has been a long-standing challenge. Conventional thermal annealing approaches are limited by the challenge of annealing the NC at sufficiently high temperatures to remove surface-bound ligands while at the same time limiting the thermal budget to prevent large-scale aggregation. Here we investigate nonequilibrium laser annealing of NC thin films that enables separation of the kinetic and thermodynamic aspects of nanocrystal fusion. We show that laser annealing of NC assemblies on nano- to microsecond time scales can transform initially isolated NCs in a thin film into an interconnected structure in which proximate dots "just touch". We investigate both pulsed laser annealing and laser spike annealing and show that both annealing methods can produce "confined-but-connected" nanocrystal films. We develop a thermal transport model to rationalize the differences in resulting film morphologies. Finally we show that the insights gained from study of nanocrystal mono- and bilayers can be extended to three-dimensional NC films. The basic processing-structure-property relationships established in this work provide guidance to future advances in creating functional thin films in which constituent NCs can purposefully interact.

  5. Maximizing cost-effectiveness by adjusting treatment strategy according to glaucoma severity

    PubMed Central

    Guedes, Ricardo Augusto Paletta; Guedes, Vanessa Maria Paletta; Gomes, Carlos Eduardo de Mello; Chaoubah, Alfredo

    2016-01-01

    Abstract Background: The aim of this study is to determine the most cost-effective strategy for the treatment of primary open-angle glaucoma (POAG) in Brazil, from the payer's perspective (Brazilian Public Health System) in the setting of the Glaucoma Referral Centers. Methods: Study design was a cost-effectiveness analysis of different treatment strategies for POAG. We developed 3 Markov models (one for each glaucoma stage: early, moderate and advanced), using a hypothetical cohort of POAG patients, from the perspective of the Brazilian Public Health System (SUS) and a horizon of the average life expectancy of the Brazilian population. Different strategies were tested according to disease severity. For early glaucoma, we compared observation, laser and medications. For moderate glaucoma, medications, laser and surgery. For advanced glaucoma, medications and surgery. Main outcome measures were ICER (incremental cost-effectiveness ratio), medical direct costs and QALY (quality-adjusted life year). Results: In early glaucoma, both laser and medical treatment were cost-effective (ICERs of initial laser and initial medical treatment over observation only, were R$ 2,811.39/QALY and R$ 3,450.47/QALY). Compared to observation strategy, the two alternatives have provided significant gains in quality of life. In moderate glaucoma population, medical treatment presented the highest costs among treatment strategies. Both laser and surgery were highly cost-effective in this group. For advanced glaucoma, both tested strategies were cost-effective. Starting age had a great impact on results in all studied groups. Initiating glaucoma therapy using laser or surgery were more cost-effective, the younger the patient. Conclusion: All tested treatment strategies for glaucoma provided real gains in quality of life and were cost-effective. However, according to the disease severity, not all strategies provided the same cost-effectiveness profile. Based on our findings, there should be a preferred strategy for each glaucoma stage, according to a cost-effectiveness ratio ranking. PMID:28033286

  6. Compact, diode-pumped, solid-state lasers for next generation defence and security sensors

    NASA Astrophysics Data System (ADS)

    Silver, M.; Lee, S. T.; Borthwick, A.; McRae, I.; Jackson, D.; Alexander, W.

    2015-06-01

    Low-cost semiconductor laser diode pump sources have made a dramatic impact in sectors such as advanced manufacturing. They are now disrupting other sectors, such as defence and security (D&S), where Thales UK is a manufacturer of sensor systems for application on land, sea, air and man portable. In this talk, we will first give an overview of the market trends and challenges in the D&S sector. Then we will illustrate how low cost pump diodes are enabling new directions in D&S sensors, by describing two diode pumped, solid- state laser products currently under development at Thales UK. The first is a new generation of Laser Target Designators (LTD) that are used to identify targets for the secure guiding of munitions. Current systems are bulky, expensive and require large battery packs to operate. The advent of low cost diode technology, merged with our novel solid-state laser design, has created a designator that will be the smallest, lowest cost, STANAG compatible laser designator on the market. The LTD delivers greater that 50mJ per pulse up to 20Hz, and has compact dimensions of 125×70×55mm. Secondly, we describe an ultra-compact, eye-safe, solid-state laser rangefinder (LRF) with reduced size, weight and power consumption compared to existing products. The LRF measures 100×55×34mm, weighs 200g, and can range to greater than 10km with a single laser shot and at a reprate of 1Hz. This also leverages off advances in laser pump diodes, but also utilises low cost, high reliability, packaging technology commonly found in the telecoms sector. As is common in the D&S sector, the products are designed to work in extreme environments, such as wide temperature range (-40 to +71°C) and high levels of shock and vibration. These disruptive products enable next- generation laser sensors such as rangefinders, target designators and active illuminated imagers.

  7. Office flexible cystoscopy.

    PubMed

    Kavoussi, L R; Clayman, R V

    1988-11-01

    Since the development of the first purpose-built flexible cystoscope in 1984, flexible cystoscopy has become an accepted diagnostic and therapeutic modality. Indeed, it is estimated that more than 10 per cent of practicing urologists are already familiar with this technology. The flexible cystoscope has markedly extended the urologist's ability to examine the bladder, and it has become a valuable adjunct to the rigid cystoscope. Although the operation of this instrument is vastly different from that of its rigid counterpart, with practice, the technique can be learned. After experience is obtained with diagnostic flexible cystoscopy, the urologist will likely prefer this new instrument for bladder inspection, as it provides for a more thorough yet less morbid and less expensive examination. In the future, the development of improved and smaller instrumentation will further extend the therapeutic indications for flexible cystoscopy. Indeed, advances in laser technology are already providing the urologist with 300- to 600-micron (0.9 to 1.8F) flexible probes capable of incision (KTP laser), fulguration (Nd:YAG laser), and stone disintegration (tunable dye laser). Lastly, the skills obtained in using the flexible cystoscope are all readily applicable to the development of dexterity with the already available flexible nephroscope and the more recently developed flexible ureteroscope.

  8. Advanced and tendencies in the development of display technologies

    NASA Astrophysics Data System (ADS)

    Kompanets, I. N.

    2006-06-01

    Advances and key display applications are discussed. Computer, compact mobile, TV and collective large screen displays are mentioned. Flat panel displays step on CRT devices to leave them behind in 2007. Materials, active matricies and applications of bright radiative field emission and organic LED displays are developing successively and pressing other technologies to be used in photo-cameras, cellular phones, auto-cars and avionics. Progress in flexible screens can substantially extend the display design and application soon. 3D display systems are under intensive development, and laser is an important unit in some vaiants of holographic and volumetric 3D displays. Value forecast of different display markets is presented.

  9. Next generation DIRCM for 2.1-2.3 micron wavelength based on direct-diode GaSb technology

    NASA Astrophysics Data System (ADS)

    Dvinelis, Edgaras; Naujokaitė, Greta; Greibus, Mindaugas; Trinkūnas, Augustinas; Vizbaras, Kristijonas; Vizbaras, Augustinas

    2018-02-01

    Continuous advances in low-cost MANPAD heat-seeking missile technology over the past 50 years remains the number one hostile threat to airborne platforms globally responsible for over 60 % of casualties. Laser based directional countermeasure (DIRCM) technology have been deployed to counter the threat. Ideally, a laser based DIRCM system must involve a number of lasers emitting at different spectral bands mimicking the spectral signature of the airborne platform. Up to now, near and mid infrared spectral bands have been covered with semiconductor laser technology and only SWIR band remained with bulky fiber laser technology. Recent technology developments on direct-diode GaSb laser technology at Brolis Semiconductors offer a replacement for the fiber laser source leading to significant improvements by few orders of magnitude in weight, footprint, efficiency and cost. We demonstrate that with careful engineering, several multimode emitters can be combined to provide a directional laser beam with radiant intensity from 10 kW/sr to 60 kW/sr in an ultra-compact hermetic package with weight < 30 g and overall efficiency of 15 % in the 2.1- 2.3 micron spectral band offering 150 times improvement in efficiency and reduction in footprint. We will discuss present results, challenges and future developments for such next-generation integrated direct diode DIRCM modules for SWIR band.

  10. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azer Yalin; Bryan Willson

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies andmore » approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.« less

  11. APPLICATION OF JET REMPI AND LIBS TO AIR TOXIC MONITORING

    EPA Science Inventory

    The paper discusses three advanced, laser-based monitoring techniques that the EPA is assisting in developing for real time measurement of toxic aerosol compounds. One of the three techniques is jet resonance enhanced multiphoton ionization (Jet REMPI) coupled with a time-of-flig...

  12. A Structured Light Sensor System for Tree Inventory

    NASA Technical Reports Server (NTRS)

    Chien, Chiun-Hong; Zemek, Michael C.

    2000-01-01

    Tree Inventory is referred to measurement and estimation of marketable wood volume in a piece of land or forest for purposes such as investment or for loan applications. Exist techniques rely on trained surveyor conducting measurements manually using simple optical or mechanical devices, and hence are time consuming subjective and error prone. The advance of computer vision techniques makes it possible to conduct automatic measurements that are more efficient, objective and reliable. This paper describes 3D measurements of tree diameters using a uniquely designed ensemble of two line laser emitters rigidly mounted on a video camera. The proposed laser camera system relies on a fixed distance between two parallel laser planes and projections of laser lines to calculate tree diameters. Performance of the laser camera system is further enhanced by fusion of information induced from structured lighting and that contained in video images. Comparison will be made between the laser camera sensor system and a stereo vision system previously developed for measurements of tree diameters.

  13. Magnetic-Field-Assisted Terahertz Quantum Cascade Laser Operating up to 225 K

    NASA Technical Reports Server (NTRS)

    Wade, A.; Fedorov, G.; Smirnov, D.; Kumar, S.; Williams, B. S.; Hu, Q.; Reno, J. L.

    2008-01-01

    Advances in semiconductor bandgap engineering have resulted in the recent development of the terahertz quantum cascade laser1. These compact optoelectronic devices now operate in the frequency range 1.2-5 THz, although cryogenic cooling is still required2.3. Further progress towards the realization of devices operating at higher temperatures and emitting at longer wavelengths (sub-terahertz quantum cascade lasers) is difficult because it requires maintaining a population inversion between closely spaced electronic sub-bands (1 THz approx. equals 4 meV). Here, we demonstrate a magnetic-field-assisted quantum cascade laser based on the resonant-phonon design. By applying appropriate electrical bias and strong magnetic fields above 16 T, it is possible to achieve laser emission from a single device over a wide range of frequencies (0.68-3.33 THz). Owing to the suppression of inter-landau-level non-radiative scattering, the device shows magnetic field assisted laser action at 1 THz at temperatures up to 215 K, and 3 THz lasing up to 225 K.

  14. Some emerging applications of lasers

    NASA Astrophysics Data System (ADS)

    Christensen, C. P.

    1982-10-01

    Applications of lasers in photochemistry, advanced instrumentation, and information storage are discussed. Laser microchemistry offers a number of new methods for altering the morphology of a solid surface with high spatial resolution. Recent experiments in material deposition, material removal, and alloying and doping are reviewed. A basic optical disk storage system is described and the problems faced by this application are discussed, in particular those pertaining to recording media. An advanced erasable system based on the magnetooptic effect is described. Applications of lasers for remote sensing are discussed, including various lidar systems, the use of laser-induced fluorescence for oil spill characterization and uranium exploration, and the use of differential absorption for detection of atmospheric constituents, temperature, and humidity.

  15. Recent advances and challenges for diode-pumped solid-state lasers as an inertial fusion energy driver candidate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, S.A.; Beach, R.J.; Bibeau, C.

    We discuss how solid-state laser technology can serve in the interests of fusion energy beyond the goals of the National Ignition Facility (NIF), which is now being constructed to ignite a deuterium-tritium target to fusion conditions in the laboratory for the first time. We think that advanced solid-state laser technology can offer the repetition-rate and efficiency needed to drive a fusion power plant, in contrast to the single-shot character of NIF. As discuss below, we propose that a gas-cooled, diode-pumped Yb:S-FAP laser can provide a new paradigm for fusion laser technology leading into the next century.

  16. ManPortable and UGV LIVAR: advances in sensor suite integration bring improvements to target observation and identification for the electronic battlefield

    NASA Astrophysics Data System (ADS)

    Lynam, Jeff R.

    2001-09-01

    A more highly integrated, electro-optical sensor suite using Laser Illuminated Viewing and Ranging (LIVAR) techniques is being developed under the Army Advanced Concept Technology- II (ACT-II) program for enhanced manportable target surveillance and identification. The ManPortable LIVAR system currently in development employs a wide-array of sensor technologies that provides the foot-bound soldier and UGV significant advantages and capabilities in lightweight, fieldable, target location, ranging and imaging systems. The unit incorporates a wide field-of-view, 5DEG x 3DEG, uncooled LWIR passive sensor for primary target location. Laser range finding and active illumination is done with a triggered, flash-lamp pumped, eyesafe micro-laser operating in the 1.5 micron region, and is used in conjunction with a range-gated, electron-bombarded CCD digital camera to then image the target objective in a more- narrow, 0.3$DEG, field-of-view. Target range determination is acquired using the integrated LRF and a target position is calculated using data from other onboard devices providing GPS coordinates, tilt, bank and corrected magnetic azimuth. Range gate timing and coordinated receiver optics focus control allow for target imaging operations to be optimized. The onboard control electronics provide power efficient, system operations for extended field use periods from the internal, rechargeable battery packs. Image data storage, transmission, and processing performance capabilities are also being incorporated to provide the best all-around support, for the electronic battlefield, in this type of system. The paper will describe flash laser illumination technology, EBCCD camera technology with flash laser detection system, and image resolution improvement through frame averaging.

  17. Laser vaccine adjuvants. History, progress, and potential.

    PubMed

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines.

  18. Laser vaccine adjuvants

    PubMed Central

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines. PMID:25424797

  19. EDITORIAL: Recent developments in biomedical optics

    NASA Astrophysics Data System (ADS)

    Wang, Ruikang K.; Hebden, Jeremy C.; Tuchin, Valery V.

    2004-04-01

    The rapid growth in laser and photonic technology has resulted in new tools being proposed and developed for use in the medical and biological sciences. Specifically, a discipline known as biomedical optics has emerged which is providing a broad variety of optical techniques and instruments for diagnostic, therapeutic and basic science applications. New laser sources, detectors and measurement techniques are yielding powerful new methods for the study of diseases on all scales, from single molecules, to specific tissues and whole organs. For example, novel laser microscopes permit spectroscopic and force measurements to be performed on single protein molecules; new optical devices provide information on molecular dynamics and structure to perform `optical biopsy' non-invasively and almost instantaneously; and optical coherence tomography and diffuse optical tomography allow visualization of specific tissues and organs. Using genetic promoters to derive luciferase expression, bioluminescence methods can generate molecular light switches, which serve as functional indicator lights reporting cellular conditions and responses in living animals. This technique could allow rapid assessment of and response to the effects of anti-tumour drugs, antibiotics, or antiviral drugs. This issue of Physics in Medicine and Biology highlights recent research in biomedical optics, and is based on invited contributions to the International Conference on Advanced Laser Technology (Focused on Biomedical Optics) held at Cranfield University at Silsoe on 19--23 September 2003. This meeting included sessions devoted to: diffuse optical imaging and spectroscopy; optical coherence tomography and coherent domain techniques; optical sensing and applications in life science; microscopic, spectroscopic and opto-acoustic imaging; therapeutic and diagnostic applications; and laser interaction with organic and inorganic materials. Twenty-one papers are included in this special issue. The first paper gives an overview on the current status of scanning laser ophthalmoscopy and its role in bioscience and medicine, while the second paper describes the current problems in tissue engineering and the potential role for optical coherence tomography. The following seven papers present and discuss latest developments in infrared spectroscopy and diffuse optical tomography for medical diagnostics. Eight further papers report recent advances in optical coherence tomography, covering new and evolving methods and instrumentation, theoretical and numerical modelling, and its clinical applications. The remaining papers cover miscellaneous topics in biomedical optics, including new developments in opto-acoustic imaging techniques, laser speckle imaging of blood flow in microcirculations, and potential of hollow-core photonic-crystal fibres for laser dentistry. We thank all the authors for their valuable contributions and their prompt responses to reviewers' comments. We are also very grateful to the reviewers for their hard work and their considerable efforts to meet tight deadlines.

  20. Liquid crystals for laser applications

    NASA Astrophysics Data System (ADS)

    Jacobs, S. D.; Marshall, K. L.; Schmid, A.

    1992-10-01

    This article highlights some of the advances made in the use of liquid crystals for laser applications from 1982 through 1992. New materials and new effects were discovered, many new devices were developed, and novel applications for well-understood phenomena were conceived. This was quite an eventful time period. Several new books were published on the broad subject of LC's, and the international scientific community organized a society devoted to encouraging further scientific and educational advancement in the field. Attention was focused on LC's in October of 1991 when the Nobel Prize in Physics was awarded to Pierre-Gilles de Gennes for his pioneering work toward understanding order phenomena in LC's and polymers. This article is divided into four sections. The first section discusses new materials, specifically ferroelectric LC's and LC polymers. The former have opened up the realm of submicrosecond response for LC devices, and the latter have significantly reduced the sensitivity of LC optics to temperature. Some new insights into the optical properties of materials are also mentioned. The second section reviews new developments in passive applications for cholesterics and nematics. Included here are the fabrication of cholesteric laser mirrors and apodizers, the use of LC polymers for notch filters and as optical storage media, and some novel nematic retarder concepts such as the distributed polarization rotator.

  1. Process Optimization of Dual-Laser Beam Welding of Advanced Al-Li Alloys Through Hot Cracking Susceptibility Modeling

    NASA Astrophysics Data System (ADS)

    Tian, Yingtao; Robson, Joseph D.; Riekehr, Stefan; Kashaev, Nikolai; Wang, Li; Lowe, Tristan; Karanika, Alexandra

    2016-07-01

    Laser welding of advanced Al-Li alloys has been developed to meet the increasing demand for light-weight and high-strength aerospace structures. However, welding of high-strength Al-Li alloys can be problematic due to the tendency for hot cracking. Finding suitable welding parameters and filler material for this combination currently requires extensive and costly trial and error experimentation. The present work describes a novel coupled model to predict hot crack susceptibility (HCS) in Al-Li welds. Such a model can be used to shortcut the weld development process. The coupled model combines finite element process simulation with a two-level HCS model. The finite element process model predicts thermal field data for the subsequent HCS hot cracking prediction. The model can be used to predict the influences of filler wire composition and welding parameters on HCS. The modeling results have been validated by comparing predictions with results from fully instrumented laser welds performed under a range of process parameters and analyzed using high-resolution X-ray tomography to identify weld defects. It is shown that the model is capable of accurately predicting the thermal field around the weld and the trend of HCS as a function of process parameters.

  2. Laser-Material Interactions for Flexible Applications.

    PubMed

    Joe, Daniel J; Kim, Seungjun; Park, Jung Hwan; Park, Dae Yong; Lee, Han Eol; Im, Tae Hong; Choi, Insung; Ruoff, Rodney S; Lee, Keon Jae

    2017-07-01

    The use of lasers for industrial, scientific, and medical applications has received an enormous amount of attention due to the advantageous ability of precise parameter control for heat transfer. Laser-beam-induced photothermal heating and reactions can modify nanomaterials such as nanoparticles, nanowires, and two-dimensional materials including graphene, in a controlled manner. There have been numerous efforts to incorporate lasers into advanced electronic processing, especially for inorganic-based flexible electronics. In order to resolve temperature issues with plastic substrates, laser-material processing has been adopted for various applications in flexible electronics including energy devices, processors, displays, and other peripheral electronic components. Here, recent advances in laser-material interactions for inorganic-based flexible applications with regard to both materials and processes are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Laser cutting of ultra-thin glasses based on a nonlinear laser interaction effect

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Wu, Zhouling

    2013-07-01

    Glass panel substrates have been widely used in consumer electronics such as in flat panel TVs, laptops, and cell phones. With the advancement in the industry, the glass substrates are becoming thinner and stronger for reduced weight and volume, which brings great challenges for traditional mechanical processes in terms of cut quality, yield, and throughput. Laser glass cutting provides a non-contact process with minimum impact and superior quality compared to the mechanical counterparts. In this paper, we presented recent progresses in advanced laser processing of ultra-thin glass substrates, especially laser-cutting of ultra-thin glasses by a high power laser through a nonlinear interaction effect. Our results indicate that this technique has great potential of application for mass production of ultra-thin glass substrates.

  4. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    PubMed

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  5. Advanced capabilities for in situ planetary mass spectrometry

    NASA Astrophysics Data System (ADS)

    Arevalo, R. D., Jr.; Mahaffy, P. R.; Brinckerhoff, W. B.; Getty, S.; Benna, M.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Cornish, T.; Hovmand, L.

    2015-12-01

    NASA GSFC has delivered highly capable quadrupole mass spectrometers (QMS) for missions to Venus (Pioneer Venus), Jupiter (Galileo), Saturn/Titan (Cassini-Huygens), Mars (MSL and MAVEN), and the Moon (LADEE). Our understanding of the Solar System has been expanded significantly by these exceedingly versatile yet low risk and cost efficient instruments. GSFC has developed more recently a suite of advanced instrument technologies promising enhanced science return while selectively leveraging heritage designs. Relying on a traditional precision QMS, the Analysis of Gas Evolved from Samples (AGES) instrument measures organic inventory, determines exposure age and establishes the absolute timing of deposition/petrogenesis of interrogated samples. The Mars Organic Molecule Analyzer (MOMA) aboard the ExoMars 2018 rover employs a two-dimensional ion trap, built analogously to heritage QMS rod assemblies, which can support dual ionization sources, selective ion enrichment and tandem mass spectrometry (MS/MS). The same miniaturized analyzer serves as the core of the Linear Ion Trap Mass Spectrometer (LITMS) instrument, which offers negative ion detection (switchable polarity) and an extended mass range (>2000 Da). Time-of-flight mass spectrometers (TOF-MS) have been interfaced to a range of laser sources to progress high-sensitivity laser ablation and desorption methods for analysis of inorganic and non-volatile organic compounds, respectively. The L2MS (two-step laser mass spectrometer) enables the desorption of neutrals and/or prompt ionization at IR (1.0 up to 3.1 µm, with an option for tunability) or UV wavelengths (commonly 266 or 355 nm). For the selective ionization of specific classes of organics, such as aromatic hydrocarbons, a second UV laser may be employed to decouple the desorption and ionization steps and limit molecular fragmentation. Mass analyzers with substantially higher resolving powers (up to m/Δm > 100,000), such as the Advanced Resolution Organic Molecule Analyzer (AROMA) and multipass QMS instruments now under development, offer the potential to disambiguate key chemical signatures in complex mass spectra. Other innovative technologies being pursued include: ion inlet systems; tunable lasers; high-temp pyrolysis ovens; and, sample capture/enrichment techniques.

  6. Semiconductor Reference Oscillator Development for Coherent Detection Optical Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Mansour, Kamjou; Menzies, Robert T.; Qiu, Yueming; Forouhar, Siamak; Maker, Paul D.; Muller, Richard E.

    2001-01-01

    The NASA Earth Science Enterprise Advanced Technology Initiatives Program is supporting a program for the development of semiconductor laser reference oscillators for application to coherent optical remote sensing from Earth orbit. Local oscillators provide the frequency reference required for active spaceborne optical remote sensing concepts that involve heterodyne (coherent) detection. Two recent examples of such schemes are Doppler wind lidar and tropospheric carbon dioxide measurement by laser absorption spectrometry, both of which are being proposed at a wavelength of 2.05 microns. Frequency-agile local oscillator technology is important to such applications because of the need to compensate for large platform-induced Doppler components that would otherwise interfere with data interpretation. Development of frequency-agile local oscillator approaches has heretofore utilized the same laser material as the transmitter laser (Tm,Ho:YLF in the case of the 2.05-micron wavelength mentioned above). However, a semiconductor laser-based frequency-agile local oscillator offers considerable scope for reduced mechanical complexity and improved frequency agility over equivalent crystal laser devices, while their potentially faster tuning capability suggest the potential for greater scanning versatility. The program we report on here is specifically tasked with the development of prototype novel architecture semiconductor lasers with the power, tunability, and spectral characteristics required for coherent Doppler lidar. The baseline approach for this work is the distributed feedback (DFB) laser, in which gratings are etched into the semiconductor waveguide structures along the entire length of the laser cavity. However, typical DFB lasers at the wavelength of interest have linewidths that exhibit unacceptable growth when driven at the high currents and powers that are required for the Doppler lidar application. Suppression of this behavior by means of corrugation pitch-modulation (using a detuned central section to prevent intensity peaking in the center of the cavity) is currently under investigation to achieve the required performance goals.

  7. Recent Advances in Solar Cell Technology

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

    1996-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

  8. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    NASA Technical Reports Server (NTRS)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  9. Direct Deposition of Metal (DDM) as a Repair Process for Metallic Military Parts

    DTIC Science & Technology

    2013-01-20

    metal powder has properties metallurgically compatible with the substrate material. As the laser beam advances along a predefined tool path in a layer...Methodology Background During the DDM process, the energy of a high power industrial laser beam and a concentric stream of metallic alloy powder ...compatible with the substrate material. As the laser beam advances along a predefined tool path in a layer by layer fashion, metal powder is deposited

  10. Long-term follow-up after transoral laser microsurgery and adjuvant radiotherapy for advanced recurrent squamous cell carcinoma of the head and neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christiansen, Hans; Hermann, Robert Michael; Martin, Alexios

    Purpose: The aim of this study was to evaluate the efficacy of adjuvant radiotherapy after transoral laser microsurgery for advanced recurrent head-and-neck squamous cell carcinoma (HNSCC). Patients and Methods: Between 1988 and 2000, 37 patients with advanced local recurrences (23 local and 14 locoregional recurrences) of HNSCC without distant metastases were treated in curative intent with organ-preserving transoral laser microsurgery and adjuvant radiotherapy (before 1994 split-course radiotherapy with carboplatinum, after 1994 conventional radiotherapy). Initial therapy of the primary (8.1% oral cavity, 35.1% oropharynx, 13.5% hypopharynx, and 43.3% larynx) before relapse was organ-preserving transoral laser microsurgery without any adjuvant therapy. Results:more » After a median follow-up of 124 months, the 5-year overall survival rate was 21.3%, the loco-regional control rate 48.3%, respectively. In multivariate analysis, stage of original primary tumor (Stage I/II vs. Stage III/IV), and patient age (<58 years vs. {>=}58 years) showed statistically significant impact on prognosis. In laryngeal cancer, larynx preservation rate after treatment for recurrent tumor was 50% during follow-up. Conclusion: Our data show that organ-preserving transoral laser microsurgery followed by adjuvant radiotherapy is a curative option for patients who have advanced recurrence after transoral laser surgery and is an alternative to radical treatment.« less

  11. Galvanometer scanning technology for laser additive manufacturing

    NASA Astrophysics Data System (ADS)

    Luo, Xi; Li, Jin; Lucas, Mark

    2017-02-01

    A galvanometer laser beam scanning system is an essential element in many laser additive manufacturing (LAM) technologies including Stereolithography (SLA), Selective Laser Sintering (SLS) and Selective Laser Melting (SLM). Understanding the laser beam scanning techniques and recent innovations in this field will greatly benefit the 3D laser printing system integration and technology advance. One of the challenges to achieve high quality 3D printed parts is due to the non-uniform laser power density delivered on the materials caused by the acceleration and deceleration movements of the galvanometer at ends of the hatching and outlining patterns. One way to solve this problem is to modulate the laser power as the function of the scanning speed during the acceleration or deceleration periods. Another strategy is to maintain the constant scanning speed while accurately coordinating the laser on and off operation throughout the job. In this paper, we demonstrate the high speed, high accuracy and low drift digital scanning technology that incorporates both techniques to achieve uniform laser density with minimal additional process development. With the constant scanning speed method, the scanner not only delivers high quality and uniform results, but also a throughput increase of 23% on a typical LAM job, compared to that of the conventional control method that requires galvanometer acceleration and deceleration movements.

  12. Use of a novel tunable solid state disk laser as a diagnostic system for laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Paa, Wolfgang; Triebel, Wolfgang

    2004-09-01

    An all solid state disk laser system-named "Advanced Disk Laser (ADL)" -particularly tailored for laser induced fluorescence (LIF) in combustion processes is presented. The system currently under development comprises an Yb:YAG-seedlaser and a regenerative amplifier. Both are based on the disk laser concept as a new laser architecture. This allows a tunable, compact, efficient diode pumped solid state laser (DPSSL) system with repetition rates in the kHz region. After frequency conversion to the UV-spectral region via third and fourth harmonics generation, this laser-due to its unique properties such as single-frequency operation, wavelength tuneability and excellent beam profile-is well suited for excitation of small molecules such as formaldehyde, OH, NO or O2, which are characteristic for combustion processes. Using the method of planar laser induced fluorescence (PLIF) we observed concentration distributions of formaldehyde in cool and hot flames of a specially designed diethyl-ether burner. The images recorded with 1 kHz repetition rate allow visualizing the distribution of formaldehyde on a 1 ms time scale. This demonstrates for the first time the usability of this novel laser for LIF measurements and is the first step towards integration of the ADL into capsules for drop towers and the international space station.

  13. Easy performance of 6-color confocal immunofluorescence with 4-laser line microscopes.

    PubMed

    Eissing, Nathalie; Heger, Lukas; Baranska, Anna; Cesnjevar, Robert; Büttner-Herold, Maike; Söder, Stephan; Hartmann, Arndt; Heidkamp, Gordon F; Dudziak, Diana

    2014-09-01

    Confocal laser scanning microscopy is an advanced technique for imaging tissue samples in vitro and in vivo at high optical resolution. The development of new fluorochrome variants do not only make it possible to perform multicolor flow cytometry of single cells, but in combination with high resolution laser scanning systems also to investigate the distribution of cells in lymphoid tissues by confocal immunofluorescence analyses, thus allowing the distinction of various cell populations directly in the tissue. Here, we provide a protocol for the visualization of at least six differently fluorochrome-labeled antibodies at the same time using a conventional confocal laser scanning microscope with four laser lines (405 nm, 488 nm, 555 nm, and 639 nm laser wavelength) in both murine and human tissue samples. We further demonstrate that compensation correction algorithms are not necessary to reduce spillover of fluorochromes into other channels when the used fluorochromes are combined according to their specific emission bands and the varying Stokes shift for co-excited fluorochromes with the same laser line. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Laser rocket system analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  15. Time and frequency technology at NIST

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.

    1994-01-01

    The state of development of advanced timing systems at NIST is described. The work on cesium and rubidium frequency standards, stored-ion frequency standards, diode lasers used to pump such standards, time transfer, and methods for characterizing clocks, oscillators, and time distribution systems is presented. The emphasis is on NIST-developed technology rather than the general state of the art in this field.

  16. Advances in radiometry for ocean color

    USGS Publications Warehouse

    Brown, S.W.; Clark, D.K.; Johnson, B.C.; Yoon, H.; Lykke, K.R.; Flora, S.J.; Feinholz, M.E.; Souaidia, N.; Pietras, C.; Stone, T.C.; Yarbrough, M.A.; Kim, Y.S.; Barnes, R.A.; Mueller, J.L.

    2004-01-01

    We have presented a number of recent developments in radiometry that directly impact the uncertainties achievable in ocean-color research. Specifically, a new (2000) U. S. national irradiance scale, a new LASER-based facility for irradiance and radiance responsivity calibrations, and applications of the LASER facility for the calibration of sun photometers and characterization of spectrographs were discussed. For meaningful long-time-series global chlorophyll-a measurements, all instruments involved in radiometric measurements, including satellite sensors, vicarious calibration sensors, sensors used in the development of bio-optical algorithms and atmospheric characterization need to be fully characterized and corrected for systematic errors, including, but not limited to, stray light. A unique, solid-state calibration source is under development to reduce the radiometric uncertainties in ocean color instruments, in particular below 400 nm. Lunar measurements for trending of on-orbit sensor channel degradation were described. Unprecedented assessments, within 0.1 %, of temporal stability and drift in a satellite sensor's radiance responsivity are achievable with this approach. These developments advance the field of ocean color closer to the desired goal of reducing the uncertainty in the fundamental radiometry to a small component of the overall uncertainty in the derivation of remotely sensed ocean-color data products such as chlorophyll a.

  17. Perovskite Materials for Light-Emitting Diodes and Lasers.

    PubMed

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Design of an Fiber-Coupled Laser Heterodyne Interferometer for the FLARE

    NASA Astrophysics Data System (ADS)

    Frank, Samuel; Yoo, Jongsoo; Ji, Hantao; Jara-Almonte, Jon

    2016-10-01

    The FLARE (Facility for Laboratory Reconnection Experiments), which is currently under construction at PPPL, requires a complete set of laboratory plasma diagnostics. The Langmuir probes that will be used in the device to gather local density data require a reliable interferometer system to serve as baseline for density measurement calibration. A fully fiber-coupled infrared laser heterodyne interferometer has been designed in order to serve as the primary line-integrated electron density diagnostic. Thanks to advances in the communications industry many fiber optic devices and phase detection methods have advanced significantly becoming increasingly reliable and inexpensive. Fully fiber coupling a plasma interferometer greatly simplifies alignment procedures needed since the only free space laser path needing alignment is through the plasma itself. Fiber-coupling also provides significant resistance to vibrational noise, a common problem in plasma interferometry systems. This device also uses a greatly simplified phase detection scheme in which chips, originally developed for the communications industry, capable of directly detecting the phase shift of a signal with high time resolution. The design and initial performance of the system will be discussed.

  19. Laser Nano-Neurosurgery from Gentle Manipulation to Nano-Incision of Neuronal Cells and Scaffolds: An Advanced Neurotechnology Tool.

    PubMed

    Soloperto, Alessandro; Palazzolo, Gemma; Tsushima, Hanako; Chieregatti, Evelina; Vassalli, Massimo; Difato, Francesco

    2016-01-01

    Current optical approaches are progressing far beyond the scope of monitoring the structure and function of living matter, and they are becoming widely recognized as extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation of living tissues, single cells, or even single-molecules is becoming a well-established methodology, thus founding the onset of new experimental paradigms and research fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating, or even ablating single cells with subcellular precision, and operating intracellular surgical protocols at the level of single organelles. In the present review, we report the state of the art of laser manipulation in neuroscience, to inspire future applications of light-assisted tools in nano-neurosurgery.

  20. Intelligent Image Analysis for Image-Guided Laser Hair Removal and Skin Therapy

    NASA Technical Reports Server (NTRS)

    Walker, Brian; Lu, Thomas; Chao, Tien-Hsin

    2012-01-01

    We present the development of advanced automatic target recognition (ATR) algorithms for the hair follicles identification in digital skin images to accurately direct the laser beam to remove the hair. The ATR system first performs a wavelet filtering to enhance the contrast of the hair features in the image. The system then extracts the unique features of the targets and sends the features to an Adaboost based classifier for training and recognition operations. The ATR system automatically classifies the hair, moles, or other skin lesion and provides the accurate coordinates of the intended hair follicle locations. The coordinates can be used to guide a scanning laser to focus energy only on the hair follicles. The intended benefit would be to protect the skin from unwanted laser exposure and to provide more effective skin therapy.

  1. Fabrication of a 20.5-inch-diameter segmented silicon annular optic prototype for the ROMA program

    NASA Astrophysics Data System (ADS)

    Hassell, Frank R.; Groark, Frank M.

    1995-10-01

    Recent advancements in single crystal silicon material science and fabrication capabilities and very low absorption (VLA) multi-layer dielectric coating technology have led to the development of uncooled, large aperture, high power mirrors for high energy laser (HEL) systems. Based on this success, a segmented single-crystal silicon substrate concept has been selected as the baseline fabrication approach for uncooled 1.2 meter diameter resonator annular optics for the Alpha space based high energy laser. The objective of this Resonator Optics Materials Assessment (ROMA) task was to demonstrate all of the key fabrication processes required to fabricate the full sized annular optics for the Alpha space based high energy laser. This paper documents the fabrication of a half-scale annular optic prototype (AOP) of the Alpha laser rear cone.

  2. The story of laser brazing technology

    NASA Astrophysics Data System (ADS)

    Hoffmann, Peter; Dierken, Roland

    2012-03-01

    This article gives an overview on the development of laser brazing technology as a new joining technique for car body production. The story starts with fundamental research work at German institutes in 1993, continues with the first implementations in automobile production in 1998, gives examples of applications since then and ends with an outlook. Laser brazing adapted design of joints and boundary conditions for a safe processing are discussed. Besides a better understanding for the sensitivity of the process against joint irregularities and misalignment, the key to successful launch was an advanced system technology. Different working heads equipped with wire feeding device, seam tracking system or tactile sensors for an automated teaching are presented in this paper. Novel laser heads providing a two beam technology will allow improved penetration depth of the filler wire and a more ecological processing by means of energy consumption.

  3. Laser Nano-Neurosurgery from Gentle Manipulation to Nano-Incision of Neuronal Cells and Scaffolds: An Advanced Neurotechnology Tool

    PubMed Central

    Soloperto, Alessandro; Palazzolo, Gemma; Tsushima, Hanako; Chieregatti, Evelina; Vassalli, Massimo; Difato, Francesco

    2016-01-01

    Current optical approaches are progressing far beyond the scope of monitoring the structure and function of living matter, and they are becoming widely recognized as extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation of living tissues, single cells, or even single-molecules is becoming a well-established methodology, thus founding the onset of new experimental paradigms and research fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating, or even ablating single cells with subcellular precision, and operating intracellular surgical protocols at the level of single organelles. In the present review, we report the state of the art of laser manipulation in neuroscience, to inspire future applications of light-assisted tools in nano-neurosurgery. PMID:27013962

  4. Dry eye after laser in-situ keratomileusis.

    PubMed

    Raoof, Duna; Pineda, Roberto

    2014-01-01

    Laser-assisted in-situ keratomileusis (LASIK) is one of the most commonly performed refractive procedures with excellent visual outcomes. Dry eye syndrome is one of the most frequently seen complications after LASIK, with most patients developing at least some mild dry eye symptoms postoperatively. To achieve improved visual outcomes and greater patient satisfaction, it is essential to identify patients prone to dry eyes preoperatively, and initiate treatment early in the course. Enhanced understanding of the pathophysiology of post-LASIK dry eye will help advance our approach to its management.

  5. AFRL Advanced Electric Lasers Branch - Construction and Upgrade of a 50-watt Facility-Class Sodium Guidestar Pump Laser

    NASA Astrophysics Data System (ADS)

    Bronder, T.; Miller, H.; Stohs, J.; Lu, C.; Baker, J.; Lucero, A.

    The development of a reliable and effective laser source for pumping mesospheric sodium to generate an artificial guidestar has been well documented. From the early achievements with 589nm high-power dye lasers at the Keck and Lick observatories to the ground-breaking 50W CW FASOR (Frequency Addition Source of Optical Radiation) Guidestar at the Air Forces Starfire Optical Range (SOR), there has been intense interest in this technology from both the academic and military communities. Beginning in the fall of 2008, the Air Force Research Laboratorys Advanced Electric Lasers Branch began a project to build, test, verify and deliver an upgraded version of the SOR FASOR for use at the AF Maui Optical Station (AMOS) in the summer of 2010. This FASOR will be similar in design to the existing SOR device and produce 50W of diffraction limited, linearly polarized narrow linewidth 589nm light by combining the output of two injection-locked Nd:YAG ring lasers (operating at 1064nm and 1319nm) using resonant sum-frequency generation in a lithium triborate crystal (LBO). The upgraded features will include modularized sub-components, embedded control electronics, and a simplified cooling system. The first portion of this upgrade project is to reconstruct the current SOR FASOR components and include improved methods of regulating the gain modules of the two injection lasers. In parallel with this effort, the technical plans for the modularization and re-packaging of the FASOR will be finalized and coordinated with the staff at Maui. This presentation will summarize the result of these efforts to date and provide updates on the AMOS FASOR status. Additionally, plans for "next-generation" FASOR upgrades for both SOR and AMOS will also be discussed.

  6. Analysis of Active Sensor Discrimination Requirements for Various Defense Missile Defense Scenarios Final Report 1999(99-ERD-080)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledebuhr, A.G.; Ng, L.C.; Gaughan, R.J.

    2000-02-15

    During FY99, we have explored and analyzed a combined passive/active sensor concept to support the advanced discrimination requirements for various missile defense scenario. The idea is to combine multiple IR spectral channels with an imaging LIDAR (Light Detection and Ranging) behind a common optical system. The imaging LIDAR would itself consist of at least two channels; one at the fundamental laser wavelength (e.g., the 1.064 {micro}m for Nd:YAG) and one channel at the frequency doubled (at 532 nm for Nd:YAG). two-color laser output would, for example, allow the longer wavelength for a direct detection time of flight ranger and anmore » active imaging channel at the shorter wavelength. The LIDAR can function as a high-resolution 2D spatial image either passively or actively with laser illumination. Advances in laser design also offer three color (frequency tripled) systems, high rep-rate operation, better pumping efficiencies that can provide longer distance acquisition, and ranging for enhanced discrimination phenomenology. New detector developments can enhance the performance and operation of both LIDAR channels. A real time data fusion approach that combines multi-spectral IR phenomenology with LIDAR imagery can improve both discrimination and aim-point selection capability.« less

  7. Laser-induced damage in optical materials: sixteenth ASTM symposium.

    PubMed

    Bennett, H E; Guenther, A H; Milam, D; Newnam, B E

    1987-03-01

    The Sixteenth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, CO, 15-17 Oct. 1984. The Symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, the Office of Naval Research, and the Air Force Office of Scientific Research. Approximately 180 scientists attended the Symposium, including representatives from England, France, The Netherlands, Scotland, and West Germany. The Symposium was divided into sessions concerning Materials and Measurements, Mirrors and Surfaces, Thin Films, and Fundamental Mechanisms. As in previous years, the emphasis of the papers presented at the Symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high-power apparatus. The wavelength range of prime interest was from 10.6,microm to the UV region. Highlights included surface characterization, thin-film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. Harold E. Bennett of the U.S. Naval Weapons Center, Arthur H. Guenther of the U.S. Air Force Weapons Laboratory, David Milam of the Lawrence Livermore National Laboratory, and Brian E. Newnam of the Los Alamos National Laboratory were cochairmen of the Symposium.

  8. Noncontact Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Lee, Mark C. (Editor)

    1988-01-01

    Noncontact temperature measurement has been identified as one of the eight advanced technology development (ATD) areas to support the effort of the Microgravity Science and Applications Division in developing six Space Station flight experiment facilities. This two-day workshop was an opportunity for all six disciplines to present their requirements on noncontact temperature measurement and to discuss state-of-the-art developments. Multi-color pyrometry, laser pyrometry and radiometric imaging techniques are addressed.

  9. The Space Laser Business Model

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Creating long-duration, high-powered lasers, for satellites, that can withstand the type of optical misalignment and damage dished out by the unforgiving environment of space, is work that is unique to NASA. It is complicated, specific work, where each step forward is into uncharted territory. In the 1990s, as this technology was first being created, NASA gave free reign to a group of "laser jocks" to develop their own business model and supply the Space Agency with the technology it needed. It was still to be a part of NASA as a division of Goddard Space Flight Center, but would operate independently out of a remote office. The idea for this satellite laboratory was based on the Skunk Works concept at Lockheed Martin Corporation. Formerly known as the Lockheed Corporation, in 1943, the aerospace firm, realizing that the type of advanced research it needed done could not be performed within the confines of a larger company, allowed a group of researchers and engineers to essentially run their own microbusiness without the corporate oversight. The Skunk Works project, in Burbank, California, produced America s first jet fighter, the world s most successful spy plane (U-2), the first 3-times-the-speed-of-sound surveillance aircraft, and the F-117A Nighthawk Stealth Fighter. Boeing followed suit with its Phantom Works, an advanced research and development branch of the company that operates independent of the larger unit and is responsible for a great deal of its most cutting-edge research. NASA s version of this advanced business model was the Space Lidar Technology Center (SLTC), just south of Goddard, in College Park, Maryland. Established in 1998 under a Cooperative Agreement between Goddard and the University of Maryland s A. James Clark School of Engineering, it was a high-tech laser shop where a small group of specialists, never more than 20 employees, worked all hours of the day and night to create the cutting- edge technology the Agency required of them. Drs. Robert Afzal and Joseph Dallas were directors of the SLTC, and led the development and production of active spaceborne, remote-sensing, optical instruments. As a pioneer in the area of photonics, Dr. Dallas led basic research, development, and production of semiconductor laser diode products, improving coupling efficiency through novel physical optics modeling and intracavity phase-correction techniques. He worked for NASA for 15 years, 11 of which were as a civil servant, and 4 of which were as a contractor.

  10. Simulation and experimental research on spherical dome by 3D laser forming of square feet

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Wang, Yang

    2007-01-01

    Laser forming is a technique of using the energy from a laser beam to modify and adjust the curvature of sheet metals or hard materials. 2-dimensional laser forming can reasonably accurately control bend angles with various materials. To advance this process further for realistic forming applications in a manufacturing industry, it is necessary to consider larger scale controlled 3-dimensional laser forming. However, this is a different situation for 3-dimensional laser forming. The work presented in this paper uses the spider scanning path to form the thin square sheet to spherical dome by laser forming. The explicit dynamic analysis on 3-dimentional laser forming is shown in the article. On the base of temperature gradient mechanism of 2-dimensional laser forming, depending on the geometry and the thermo-physical properties of stainless steel lCrl8Ni9Ti, develop the mechanism of laser forming of thin square sheet to the spherical dome. This paper discusses the interaction between moving laser beam and sheet, the temperature field on the sheet, and the step transition of stress and deformation in laser forming. In order to give the verification on the results of simulation, the correlative experiment has progressed with Lumonics JK7O2H Nd:YAG laser. The results of experiments are in accord with the simulation.

  11. Swords to plowshares: Shock wave applications to advanced lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trucano, T.G.; Grady, D.E.; Kubiak, G.D.

    1995-03-01

    Extreme UltraViolet Lithography (EUVL) seeks to apply radiation in a wavelength region centered near 13 nm to produce microcircuits having features sizes 0.1 micron or less. A critical requirement for the commercial application of this technology is the development of an economical, compact source of this radiation which is suitable for lithographic applications. A good candidate is a laser-plasma source, which is generated by the interaction of an intermediate intensity laser pulse (up to 10{sup 12} W/cm{sup 2}) with a metallic target. While such a source has radiative characteristics which satisfy the needs of an EUVL source, the debris generatedmore » during the laser-target interaction strikes at the economy of the source. Here, the authors review the use of concepts and computer modeling, originally developed for hypervelocity impact analysis, to study this problem.« less

  12. OSIRIS - an object-oriented parallel 3D PIC code for modeling laser and particle beam-plasma interaction

    NASA Astrophysics Data System (ADS)

    Hemker, Roy

    1999-11-01

    The advances in computational speed make it now possible to do full 3D PIC simulations of laser plasma and beam plasma interactions, but at the same time the increased complexity of these problems makes it necessary to apply modern approaches like object oriented programming to the development of simulation codes. We report here on our progress in developing an object oriented parallel 3D PIC code using Fortran 90. In its current state the code contains algorithms for 1D, 2D, and 3D simulations in cartesian coordinates and for 2D cylindrically-symmetric geometry. For all of these algorithms the code allows for a moving simulation window and arbitrary domain decomposition for any number of dimensions. Recent 3D simulation results on the propagation of intense laser and electron beams through plasmas will be presented.

  13. Ex vivo evaluation of super pulse diode laser system with smart temperature feedback for contact soft-tissue surgery

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Ilya; Boutoussov, Dmitri; Vybornov, Alexander; Perchuk, Igor; Meleshkevich, Val; Altshuler, Gregory

    2018-02-01

    Until recently, Laser Diodes (LD) have been limited in their ability to deliver high peak power levels, which, in turn, limited their clinical capabilities. New technological developments made possible advent of "super pulse" LD (SPLD). Moreover, advanced means of smart thermal feedback enable precise control of laser power, thus ensuring safe and optimally efficacious application. In this work, we have evaluated a prototype SPLD system ex vivo. The device provided up to 25 W average and up to 150 W pulse power at 940 nm wavelength. The laser was operated in the thermal feedback-controlled mode, where power of the laser was varied automatically as a function of real-time thermal feedback to maintain constant tip temperature. The system was also equipped with a fiber tip initiated with advanced TiO2 /tungsten technique. Evaluation methods were designed to assess: 1) Speed and depth of cutting; 2) Dimensions of coagulative margin. The SPLD system was compared with industry-leading conventional diode and CO2 devices. The results indicate that the SPLD system provides increase in speed of controlled cutting by a factor of >2 in comparison with the conventional diode laser and approaching that of CO2 device. The produced ratio of the depth of cut to the thermal damage margin was significantly higher than conventional diodes and close to that of the CO2 system, suggesting optimal hemostasis conditions. SPLD technology with real-time temperature control has a potential for creating a new standard of care in the field of precision soft tissue surgery.

  14. Robust remote-pumping sodium laser for advanced LIDAR and guide star applications

    NASA Astrophysics Data System (ADS)

    Ernstberger, Bernhard; Enderlein, Martin; Friedenauer, Axel; Schwerdt, Robin; Wei, Daoping; Karpov, Vladimir; Leisching, Patrick; Clements, Wallace R. L.; Kaenders, Wilhelm G.

    2015-10-01

    The performance of large ground-based optical telescopes is limited due to wavefront distortions induced by atmospheric turbulence. Adaptive optics systems using natural guide stars with sufficient brightness provide a practical way for correcting the wavefront errors by means of deformable mirrors. Unfortunately, the sky coverage of bright stars is poor and therefore the concept of laser guide stars was invented, creating an artificial star by exciting resonance fluorescence from the mesospheric sodium layer about 90 km above the earth's surface. Until now, mainly dye lasers or sumfrequency mixing of solid state lasers were used to generate laser guide stars. However, these kinds of lasers require a stationary laser clean room for operation and are extremely demanding in maintenance. Under a development contract with the European Southern Observatory (ESO) and W. M. Keck Observatory (WMKO), TOPTICA Photonics AG and its partner MPB Communications have finalized the development of a next-generation sodium guide star laser system which is available now as a commercial off-the-shelf product. The laser is based on a narrow-band diode laser, Raman fiber amplifier (RFA) technology and resonant second-harmonic generation (SHG), thus highly reliable and simple to operate and maintain. It emits > 22 W of narrow-linewidth (≈ 5 MHz) continuous-wave radiation at sodium resonance and includes a re-pumping scheme for boosting sodium return flux. Due to the SHG resonator acting as spatial mode filter and polarizer, the output is diffraction-limited with RMS wavefront error < λ/25. Apart from this unique optical design, a major effort has been dedicated to integrating all optical components into a ruggedized system, providing a maximum of convenience and reliability for telescope operators. The new remote-pumping architecture allows for a large spatial separation between the main part of the laser and the compact laser head. Together with a cooling-water flow of less than 5 l/min and an overall power consumption of < 700 W, the system offers a maximum of flexibility with minimal infrastructure demands on site. Each system is built in a modular way, based on the concept of line-replaceable units (LRU). A comprehensive system software, as well as an intuitive service GUI, allow for remote control and error tracking down to at least the LRU level. In case of a failure, any LRU can be easily replaced. With these fiber-based guide star lasers, TOPTICA for the first time offers a fully engineered, off-the-shelf guide star laser system for groundbased optical telescopes providing convenient, turn-key operation in remote and harsh locations. Reliability and flexibility will be beneficial in particular for advanced satellite and space debris tracking as well as LIDAR applications.

  15. Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques.

    PubMed

    Kuehne, Alexander J C; Gather, Malte C

    2016-11-09

    Organic dyes have been used as gain medium for lasers since the 1960s, long before the advent of today's organic electronic devices. Organic gain materials are highly attractive for lasing due to their chemical tunability and large stimulated emission cross section. While the traditional dye laser has been largely replaced by solid-state lasers, a number of new and miniaturized organic lasers have emerged that hold great potential for lab-on-chip applications, biointegration, low-cost sensing and related areas, which benefit from the unique properties of organic gain materials. On the fundamental level, these include high exciton binding energy, low refractive index (compared to inorganic semiconductors), and ease of spectral and chemical tuning. On a technological level, mechanical flexibility and compatibility with simple processing techniques such as printing, roll-to-roll, self-assembly, and soft-lithography are most relevant. Here, the authors provide a comprehensive review of the developments in the field over the past decade, discussing recent advances in organic gain materials, which are today often based on solid-state organic semiconductors, as well as optical feedback structures, and device fabrication. Recent efforts toward continuous wave operation and electrical pumping of solid-state organic lasers are reviewed, and new device concepts and emerging applications are summarized.

  16. Phase-Shifted Laser Feedback Interferometry

    NASA Technical Reports Server (NTRS)

    Ovryn, Benjie

    1999-01-01

    Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.

  17. Precision laser range finder system design for Advanced Technology Laboratory applications

    NASA Technical Reports Server (NTRS)

    Golden, K. E.; Kohn, R. L.; Seib, D. H.

    1974-01-01

    Preliminary system design of a pulsed precision ruby laser rangefinder system is presented which has a potential range resolution of 0.4 cm when atmospheric effects are negligible. The system being proposed for flight testing on the advanced technology laboratory (ATL) consists of a modelocked ruby laser transmitter, course and vernier rangefinder receivers, optical beacon retroreflector tracking system, and a network of ATL tracking retroreflectors. Performance calculations indicate that spacecraft to ground ranging accuracies of 1 to 2 cm are possible.

  18. Femtosecond laser beam propagation through corneal tissue: Evaluation of therapeutic laser-stimulated second and third- harmonic generation

    NASA Astrophysics Data System (ADS)

    Calhoun, William R., III

    One of the most recent advancements in laser technology is the development of ultrashort pulsed femtosecond lasers (FSLs). FSLs are improving many fields due to their unique extreme precision, low energy and ablation characteristics. In the area of laser medicine, ophthalmic surgeries have seen very promising developments. Some of the most commonly performed surgical operations in the world, including laser-assisted in-situ keratomileusis (LASIK), lens replacement (cataract surgery), and keratoplasty (cornea transplant), now employ FSLs for their unique abilities that lead to improved clinical outcome and patient satisfaction. The application of FSLs in medical therapeutics is a recent development, and although they offer many benefits, FSLs also stimulate nonlinear optical effects (NOEs), many of which were insignificant with previously developed lasers. NOEs can change the laser characteristics during propagation through a medium, which can subsequently introduce unique safety concerns for the surrounding tissues. Traditional approaches for characterizing optical effects, laser performance, safety and efficacy do not properly account for NOEs, and there remains a lack of data that describe NOEs in clinically relevant procedures and tissues. As FSL technology continues to expand towards new applications, FSL induced NOEs need to be better understood in order to ensure safety as FSL medical devices and applications continue to evolve at a rapid pace. In order to improve the understanding of FSL-tissue interactions related to NOEs stimulated during laser beam propagation though corneal tissue, research investigations were conducted to evaluate corneal optical properties and determine how corneal tissue properties including corneal layer, collagen orientation and collagen crosslinking, and laser parameters including pulse energy, repetition rate and numerical aperture affect second and third-harmonic generation (HG) intensity, duration and efficiency. The results of these studies revealed that all laser parameters and tissue properties had a substantial influence on HG. The dynamic relationship between optical breakdown and HG was responsible for many observed changes in HG metrics. The results also demonstrated that the new generation of therapeutic FSLs has the potential to generate hazardous effects if not carefully controlled. Finally, recommendations are made to optimize current and guide future FSL applications.

  19. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1982-01-01

    Developments in Earth-based radio technology are reported. The Deep Space Network is discussed in terms of its advanced systems, network and facility engineering and implementation, operations, and energy sources. Problems in pulse communication and radio frequency interference are addressed with emphasis on pulse position modulation and laser beam collimation.

  20. Advanced Biomimetic Implants Based on Nanostructured Coatings Synthesized by Pulsed Laser Technologies

    NASA Astrophysics Data System (ADS)

    Mihailescu, Ion N.; Ristoscu, Carmen; Bigi, Adriana; Mayer, Isaac

    Calcium phosphates (CaPs) are alternative substitutes for human bones and so primary candidates for the manufacture of medical implants. Unfortunately, they do not withstand stress in bulk. To overcome this obstacle, a solution was developed to cover metallic implants with functional biomimetic layers.

  1. Compact laser accelerators for X-ray phase-contrast imaging

    PubMed Central

    Najmudin, Z.; Kneip, S.; Bloom, M. S.; Mangles, S. P. D.; Chekhlov, O.; Dangor, A. E.; Döpp, A.; Ertel, K.; Hawkes, S. J.; Holloway, J.; Hooker, C. J.; Jiang, J.; Lopes, N. C.; Nakamura, H.; Norreys, P. A.; Rajeev, P. P.; Russo, C.; Streeter, M. J. V.; Symes, D. R.; Wing, M.

    2014-01-01

    Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300 TW laser, which allowed the energy of the synchrotron source to be extended to the 10–100 keV range. PMID:24470414

  2. Laser in the management of burn scars.

    PubMed

    Willows, Brooke M; Ilyas, Muneeb; Sharma, Amit

    2017-11-01

    Burn scars are associated with significant morbidity ranging from contractures, pruritus, and disfigurement to psychosocial impairment. Traditional therapies include silicone gel, compression garments, corticosteroid injections, massage therapy, and surgical procedures, however, newer and advanced therapies for the treatment of burn scars have been developed. Lasers, specifically ablative fractional lasers, show potential for the treatment of burn scars. Both MeSH and keyword searches of the PubMed, Medline and Embase databases were performed and relevant articles were read in full for the compilation of this review. Fifty-one relevant observational studies, clinical trials, and systematic reviews published in English from 2006 to 2016 were reviewed and summarized. Laser therapy is effective for the treatment of burn scar appearance, including measures such as pigmentation, vascularity, pliability, and thickness. Ablative fractional laser therapy, in particular, shows significant potential for the release of contractures allowing for improved range of motion of affected joints. Patients may benefit from the use of lasers in the treatment of burn scars, and the safety profile of lasers allows the benefits of treatment to outweigh the risks. Laser therapy should be included in burn scar treatment protocols as an adjuvant therapy to traditional interventions. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  3. Combined Advanced Finishing and UV-Laser Conditioning for Producing UV-Damage-Resistant Fused Silica Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Penetrante, B; Golini, D

    2001-11-01

    Laser induced damage initiation on fused silica optics can limit the lifetime of the components when used in high power UV laser environments. Foe example in inertial confinement fusion research applications, the optics can be exposed to temporal laser pulses of about 3-nsec with average fluences of 8 J/cm{sup 2} and peak fluences between 12 and 15 J/cm{sup 2}. During the past year, we have focused on optimizing the damage performance at a wavelength of 355-nm (3{omega}), 3-nsec pulse length, for optics in this category by examining a variety of finishing technologies with a challenge to improve the laser damagemore » initiation density by at least two orders of magnitude. In this paper, we describe recent advances in improving the 3{omega} damage initiation performance of laboratory-scale zirconium oxide and cerium oxide conventionally finished fused silica optics via application of processes incorporating magnetorheological finishing (MRF), wet chemical etching, and UV laser conditioning. Details of the advanced finishing procedures are described and comparisons are made between the procedures based upon large area 3{omega} damage performance, polishing layer contamination, and optical subsurface damage.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James A. Smith; Jeffrey M. Lacy; Barry H. Rabin

    12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEUmore » to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimen’s surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser shock.« less

  5. Coatings for high energy applications. The Nova laser

    NASA Astrophysics Data System (ADS)

    Wirtenson, G. R.

    The combined requirements of energy density, multiple wavelength, and aperture make the coatings for the Nova Inertial Confinement Fusion (ICF) laser unique. This ten beam neodymium glass laser system, built at the Lawrence Livermore National Laboratory (LLNL), has over a thousand major optical components; some larger than one meter in diameter and weighing 380 Kg. The laser operates at 1054 nm and can be frequency doubled to 527 nm or tripled to 351 nm by means of full aperture potassium dihydrogen phosphate (KDP) crystal arrays. The 1.0 nsec fluence varies along the laser chain, sometimes reaching values as high as 16 J/cm(2) at the input lens to one of the spatial filters. The design specifications of this massive optical system were changed several times as the state-of-the-art advanced. Each change required redesign of the optical coatings even as vendors were preparing for production runs. Frequency conversion to include shorter wavelengths mandated the first major coating redesign and was followed almost immediately by a second redesign to reduce solarization effects in borosilicate crown glass. The conventional thermal evaporation process although successful for the deposition of mirror coatings, was not able to produce antireflection coatings able to survive the locally high chain fluences. As a consequence it became necessary to develop another technique. Solution produced coatings were developed having transmissions exceeding 99% per part and damage threshold values equal to the bare substrate. The unique requirement of the Nova laser necessitated special deposition and metrology equipment. These programmatic developments will be reviewed in the context of the cooperative working relationship developed between LLNL and its vendors. It was this excellent relationship which has enabled LLNL to obtain these highly specialized coatings for the Nova laser.

  6. CO2 laser drives extreme ultraviolet nano-lithography — second life of mature laser technology

    NASA Astrophysics Data System (ADS)

    Nowak, K. M.; Ohta, T.; Suganuma, T.; Fujimoto, J.; Mizoguchi, H.; Sumitani, A.; Endo, A.

    2013-12-01

    It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO2 media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO2 laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO2 laser employing a whole spectrum of CO2 technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO2 laser technology and the requirements for multi-kiloWatt CO2 laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO2 lasers.

  7. Path toward a high-energy solid-state laser

    NASA Astrophysics Data System (ADS)

    Wood, Gary L.; Merkle, Larry D.; Dubinskii, Mark; Zandi, Bahram

    2004-04-01

    Lasers have come a long way since the first demonstration by Maiman of a ruby crystal laser in 1960. Lasers are used as scientific tools as well as for a wide variety of applications for both commercial industry and the military. Today lasers come in all types, shapes and sizes depending on their application. The solid-state laser has some distinct advantages in that it can be rugged, compact, and self contained, making it reliable over long periods of time. With the advent of diode laser pumping a ten times increase in overall laser efficiency has been realized. This significant event, and others, is changing the way solid-state lasers are applied and allows new possibilities. One of those new areas of exploration is the high energy laser. Solid-state lasers for welding are already developed and yield energies in the 0.5 to 6 kilojoule range. These lasers are at the forefront of what is possible in terms of high energy solid-state lasers. It is possible to achieve energies of greater than 100 kJ. These sorts of energies would allow applications, in addition to welding, such as directed energy weapons, extremely remote sensing, power transfer, propulsion, biological and chemical agent neutralization and unexploded and mine neutralization. This article will review these new advances in solid-state lasers and the different paths toward achieving a high energy laser. The advantages and challenges of each approach will be highlighted.

  8. Laser induced damage in optical materials: tenth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1979-07-01

    The tenth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 12-14 September 1978. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, and the Office of Naval Research. About 175 scientists attended, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and the Soviet Union. The symposium was divided into sessions concerning the measurement of absorption characteristics, bulk material properties, mirrors and surfaces, thin film damage, coating materials and design, and breakdown phenomena. As in previous years, the emphasis of the papers presented was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was also discussed. In commemoration of the tenth symposium in this series, a number of comprehensive review papers were presented to assess the state of the art in various facets of laser induced damage in optical materials. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The eleventh annual symposium is scheduled for 30-31 October 1979 at the National Bureau of Standards, Boulder, Colorado.

  9. Making holograms: an educational CD-ROM

    NASA Astrophysics Data System (ADS)

    John, Pearl; Poche, Elaine J.

    2004-06-01

    The Columbia Career Center high school SPIE chapter has created an educational CD-ROM to teach holography to students on the threshold of a career path in Photonics. This paper examines the development of the CD-ROM as an educational project from the perspectives of both teacher and student. Holography has been used successfully in educational institutions as a motivational tool for students and a vehicle for the teaching of a wide variety of skills. These include problem solving, teamwork, safety, communication, research, mathematics, analysis of data, documentation, equipment handling, and knowledge of light theory, which involves the principals of reflection, refraction, diffraction, interference and polarization. All of these skills are essential to the photonics industry and, as a result, holography is considered by the Center for Occupational Research and Development (CORD)1 to be a national photonics skill standard for Laser Electro-optical Technicians (LEOTs). Thus, training in holography - using both simple and advanced techniques and equipment - prepares students for a variety of vocations involving laser technology. However, the teaching of holography can be beneficial at many different levels of education, including middle and high school students, college students and interested adults. The educational CD-ROM, "Making Holograms," is the first of its kind. It includes both simple, single beam holography using a laser pointer, and more advanced split-beam setups using helium neon lasers. This paper outlines both the benefits and challenges involved in the production of an educational CD-ROM on holography by high school students and their advisor in an SPIE high school chapter.

  10. Advanced Turboprop Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1979-08-21

    NASA Lewis Research Center researcher, John S. Sarafini, uses a laser doppler velocimeter to analyze a Hamilton Standard SR-2 turboprop design in the 8- by 6-Foot foot Supersonic Wind Tunnel. Lewis researchers were analyzing a series of eight-bladed propellers in their wind tunnels to determine their operating characteristics at speeds up to Mach 0.8. The program, which became the Advanced Turboprop (ATP), was part of a NASA-wide Aircraft Energy Efficiency Program undertaken to reduce aircraft fuel costs by 50 percent. The ATP concept was different from the turboprops in use in the 1950s. The modern versions had at least eight blades and were swept back for better performance. Bell Laboratories developed the laser doppler velocimeter technology in the 1960s to measure velocity of transparent fluid flows or vibration motion on reflective surfaces. Lewis researchers modified the device to measure the flow field of turboprop configurations in the transonic speed region. The modifications were necessary to overcome the turboprop’s vibration and noise levels. The laser beam was split into two beams which were crossed at a specific point. This permits researchers to measure two velocity components simultaneously. This data measures speeds both ahead and behind the propeller blades. Researchers could use this information as they sought to advance flow fields and to verify computer modeling codes.

  11. The Advanced Glaucoma Intervention Study (AGIS): 5. Encapsulated bleb after initial trabeculectomy.

    PubMed

    Schwartz, A L; Van Veldhuisen, P C; Gaasterland, D E; Ederer, F; Sullivan, E K; Cyrlin, M N

    1999-01-01

    To compare the incidence of encapsulated bleb after trabeculectomy in eyes with and without previous argon laser trabeculoplasty and to assess other risk factors for encapsulated bleb development. After medical treatment failure, eyes enrolled in the Advanced Glaucoma Intervention Study (AGIS) were randomly assigned to sequences of interventions starting with either argon laser trabeculoplasty or trabeculectomy. In the present study we compared the clinical course for 1 year after trabeculectomy in 119 eyes with failed argon laser trabeculoplasty with that of 379 eyes without previous argon laser trabeculoplasty. Data on bleb encapsulation were collected at the time that the encapsulation was diagnosed, and 3 and 6 months later. Of multiple factors examined in the AGIS data for the risk of developing encapsulated bleb, only male gender and high school graduation without further formal education were statistically significant. Encapsulation occurred in 18.5% of eyes with previous argon laser trabeculoplasty failure and 14.5% of eyes without previous argon laser trabeculoplasty (unadjusted relative risk, 1.27; 95% confidence limits = 0.81, 2.00; P = .23). After adjusting for age, gender, educational achievement, prescribed systemic beta-blockers, diabetes, visual field score, and years since glaucoma diagnosis, this difference remains statistically not significant. Four weeks after trabeculectomy, mean intraocular pressure was 7.5 mm Hg higher in eyes with (22.5 mm Hg) than without (15.0 mm Hg) encapsulated bleb; at 1 year after trabeculectomy and the resumption of medical therapy when needed, this excess was reduced to 1.4 mm Hg. This study, as did two previous studies, found male gender to be a risk factor for bleb encapsulation. Four studies, including the present study, have reported a higher rate of encapsulation in eyes with previous argon laser trabeculoplasty; in two of the studies, one of which was the present study, the rate was not statistically significantly higher; in the other two studies the rate was significantly higher. The 4-week postoperative mean intraocular pressure was higher in eyes with than without encapsulated bleb; with the resumption of medical treatment the two means converged after 1 year.

  12. Advanced beamed-energy and field propulsion concepts

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.

    1983-01-01

    Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.

  13. Development of Advanced Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  14. Adaptive real-time dual-comb spectroscopy.

    PubMed

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W

    2014-02-27

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  15. Adaptive real-time dual-comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-02-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  16. Adaptive real-time dual-comb spectroscopy

    PubMed Central

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-01-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences. PMID:24572636

  17. Modeling combined heat transfer in an all solid state optical cryocooler

    NASA Astrophysics Data System (ADS)

    Kuzhiveli, Biju T.

    2017-12-01

    Attaining cooling effect by using laser induced anti-Stokes fluorescence in solids appears to have several advantages over conventional mechanical systems and has been the topic of recent analysis and experimental work. Using anti-Stokes fluorescence phenomenon to remove heat from a glass by pumping it with laser light, stands as a pronouncing physical basis for solid state cooling. Cryocooling by fluorescence is a feasible solution for obtaining compactness and reliability. It has a distinct niche in the family of small capacity cryocoolers and is undergoing a revolutionary advance. In pursuit of developing laser induced anti-Stokes fluorescent cryocooler, it is required to develop numerical tools that support the thermal design which could provide a thorough analysis of combined heat transfer mechanism within the cryocooler. The paper presents the details of numerical model developed for the cryocooler and the subsequent development of a computer program. The program has been used for the understanding of various heat transfer mechanisms and is being used for thermal design of components of an anti-Stokes fluorescent cryocooler.

  18. Laser Metrology In Biomechanics

    NASA Astrophysics Data System (ADS)

    Pryputniewicz, Ryszard J.

    1983-12-01

    Modern treatment of sceletal disharmonies and malocclusions utilizes application of external forces. In order to effectively use these therapeutic forces, knowledge of three-dimensional displacements of bones with correlation to biological changes is required. In the past, this problem has been studied in a number of ways using, for example, strain gauges, brittle coatings, photoelasticity, as well as clinical observations and mathematical modeling. Becouse of their inherent limitations, these techniques did not always provide all the information necessary for development of meaningful relationships between the applied force system and the resulting biological remodeling. However, recent advances in the field of la-ser metrology allowed to overcome some of the dificulties found in the earlier methods and permitted development of new techniques for non-invasive measurements of bone motions in three-dimensional space. These laser techniques are particularly useful in biomechanics because they provide for rapid and accurate determination of displacements over the entire surface of the investigate object. In this paper, application of laser techniques for quantitative in-vivo and in-vitro measurements in biomechanics will be discussed and illustrated with representative examples.

  19. Design and characterization of Yb and Nd doped transparent ceramics for high power laser applications: recent advancements

    NASA Astrophysics Data System (ADS)

    Lapucci, A.; Vannini, M.; Ciofini, M.; Pirri, A.; Nikl, M.; Li, J.; Esposito, L.; Biasini, V.; Hostasa, J.; Goto, T.; Boulon, G.; Maksimov, R.; Gizzi, L.; Labate, L.; Toci, G.

    2017-01-01

    We report a review on our recent developments in Yttebium and Neodymium doped laser ceramics, along two main research lines. The first is the design and development of Yb:YAG ceramics with non uniform doping distribution, for the management of thermo-mechanical stresses and for the mitigation of ASE: layered structures have been produced by solid state reactive sintering, using different forming processes (spray drying and cold press of the homogenized powders, tape cast of the slurry); samples have been characterized and compared to FEM analysis. The second is the investigation of Lutetium based ceramics (such as mixed garnets LuYAG and Lu2O3); this interest is mainly motivated by the favorable thermal properties of these hosts under high doping. We recently obtained for the first time high efficiency laser emission from Yb doped LuYAG ceramics. The investigation on sesquioxides has been focused on Nddoped Lu2O3 ceramics, fabricated with the Spark Plasma Sintering method (SPS). We recently achieved the first laser emission above 1 W from Nd doped Lu2O3 ceramics fabricated by SPS.

  20. 2011 Laser Diagnostics in Combustion Gordon Research Conference, (August 14-19, 2011, Waterville Valley Resort, Waterville Valley, NH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Settersten

    2011-08-19

    The vast majority of the world's energy needs are met by combustion of fossil fuels. Optimum utilization of limited resources and control of emissions of pollutants and greenhouse gases demand sustained improvement of combustion technology. This task can be satisfied only by detailed knowledge of the underlying physical and chemical processes. Non-intrusive laser diagnostics continuously contribute to our growing understanding of these complex and coupled multi-scale processes. The GRC on Laser Diagnostics in Combustion focuses on the most recent scientific advances and brings together scientists and engineers working at the leading edge of combustion research. Major tasks of the communitymore » are developing and applying methods for precise and accurate measurements of fluid motion and temperatures; chemical compositions; multi-phase phenomena appearing near walls, in spray and sooting combustion; improving sensitivities, precision, spatial resolution and tracking transients in their spatio-temporal development. The properties and behaviour of novel laser sources, detectors, optical systems that lead to new diagnostic capabilities are also part of the conference program.« less

  1. Part II: morphological analysis of embryonic development following femtosecond laser manipulation

    NASA Astrophysics Data System (ADS)

    Kohli, V.; Elezzabi, A. Y.

    2008-02-01

    The zebrafish (Danio rerio) is an attractive model system that has received wide attention for its usefulness in the study of development and disease. This organism represents a closer analog to humans than the common invetebrates Drosophila melanogaster and Caenorhabditis elegans, making this species an ideal model for human health research. Non-invasive manipulation of the zebrafish has been challenging, owing to the outer proteinaceous membrane and multiple embryonic barriers. A novel tool capable of manipulating early cleavage stage embryonic cells would be important for future advancements in medial research and the aquaculture industry. Herein, we demonstrate the laser surgery of early cleavage stage (2-cell) blastomere cells using a range of average laser powers and beam dwell times. Since the novelty of this manipulation tool depends on its non-invasive application, we examined short- and long-term laser-induced developmental defects following embryonic surgery. Laser-manipulated embryos were reared to 2 and 7 days post-fertilization and compared to control embryos at the same developmental stages. Morphological analysis was performed using light microscopy and scanning electron microscopy. Developmental features that were examined included the antero- and dorsal-lateral whole body views of the larvae, the olfactory pit, dorsal, ventral and pectoral fins, notochord, pectoral fin buds, otic capsule, otic vesicle, neuromast patterning, and kinocilia of the olfactory pit rim and cristae of the lateral wall of the ear. Laser-manipulated embryos developed normally relative to the controls, with developmental patterning and morphology at 2 and 7 days indistinguishable from control larvae.

  2. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-08-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process.

  3. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    PubMed Central

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-01-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process. PMID:27484188

  4. Nonlinear dynamics of laser systems with elements of a chaos: Advanced computational code

    NASA Astrophysics Data System (ADS)

    Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Kuznetsova, A. A.; Buyadzhi, A. A.; Prepelitsa, G. P.; Ternovsky, V. B.

    2017-10-01

    A general, uniform chaos-geometric computational approach to analysis, modelling and prediction of the non-linear dynamics of quantum and laser systems (laser and quantum generators system etc) with elements of the deterministic chaos is briefly presented. The approach is based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analysis, false nearest neighbour algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc There are firstly presented the numerical data on the topological and dynamical invariants (in particular, the correlation, embedding, Kaplan-York dimensions, the Lyapunov’s exponents, Kolmogorov’s entropy and other parameters) for laser system (the semiconductor GaAs/GaAlAs laser with a retarded feedback) dynamics in a chaotic and hyperchaotic regimes.

  5. Benefits of low-power lasers on oral soft tissue

    NASA Astrophysics Data System (ADS)

    Eduardo, Carlos d. P.; Cecchini, Silvia C. M.; Cecchini, Renata C.

    1996-04-01

    The last five years have represented a great advance in relation to laser development. Countries like Japan, United States, French, England, Israel and others, have been working on the association of researches and clinical applications, in the field of laser. Low power lasers like He-Ne laser, emitting at 632,8 nm and Ga-As-Al laser, at 790 nm, have been detached acting not only as a coadjutant but some times as an specific treatment. Low power lasers provide non thermal effect at wavelengths believed to stimulate circulation and cellular activity. These lasers have been used to promote wound healing and reduce inflammation edema and pain. This work presents a five year clinical study with good results related to oral tissue healing. Oral cavity lesions, like herpes and aphthous ulcers were irradiated with Ga-Al- As laser. In both cases, an excellent result was obtained. The low power laser application decrease the painful sintomatology immediately and increase the reparation process of these lesions. An excellent result was obtained with application of low power laser in herpetic lesions associated with a secondary infection situated at the lip commissure covering the internal tissue of the mouth. The healing occurred after one week. An association of Ga-Al-As laser and Nd:YAG laser have been also proven to be good therapy for these kind of lesions. This association of low and high power laser has been done since 1992 and it seems to be a complement of the conventional therapies.

  6. Overview of Experimental Capabilities - Supersonics

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2007-01-01

    This viewgraph presentation gives an overview of experimental capabilities applicable to the area of supersonic research. The contents include: 1) EC Objectives; 2) SUP.11: Elements; 3) NRA; 4) Advanced Flight Simulator Flexible Aircraft Simulation Studies; 5) Advanced Flight Simulator Flying Qualities Guideline Development for Flexible Supersonic Transport Aircraft; 6) Advanced Flight Simulator Rigid/Flex Flight Control; 7) Advanced Flight Simulator Rapid Sim Model Exchange; 8) Flight Test Capabilities Advanced In-Flight Infrared (IR) Thermography; 9) Flight Test Capabilities In-Flight Schlieren; 10) Flight Test Capabilities CLIP Flow Calibration; 11) Flight Test Capabilities PFTF Flowfield Survey; 12) Ground Test Capabilities Laser-Induced Thermal Acoustics (LITA); 13) Ground Test Capabilities Doppler Global Velocimetry (DGV); 14) Ground Test Capabilities Doppler Global Velocimetry (DGV); and 15) Ground Test Capabilities EDL Optical Measurement Capability (PIV) for Rigid/Flexible Decelerator Models.

  7. Development of a UAV-based Global Ozone Lidar Demonstrator (GOLD)

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Deyoung, R. J.; Hair, J. W.; Ismail, S.; McGee, T.; Hardesty, R. M.; Brewer, W. A.; McDermid, I. S.

    2006-12-01

    Global ozone measurements are needed across the troposphere with high vertical resolution to enable comprehensive studies of continental and intercontinental atmospheric chemistry and dynamics, which are affected by diverse natural and human-induced processes. The development of a unattended aerial vehicle (UAV) based Global Ozone Lidar Demonstrator (GOLD) is an important step in enabling a space-based ozone and aerosol lidar and for conducting unique UAV-based large-scale atmospheric investigations. The GOLD system will incorporate the most advanced technology developed under the NASA Laser Risk Reduction Program (LRRP) and the Small Business Innovative Research (SBIR) program to produce a compact, autonomously operating ozone and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. This system will leverage advanced Nd:YAG and optical parametric oscillator (OPO) laser technologies being developed by ITT Industries under the LRRP and the autonomously operating ozone DIAL system being developed by Science and Engineering Services Inc. (SESI) under an SBIR Phase-3 contract. Laser components from ITT will be integrated into the SESI DIAL system, and the resulting GOLD system will be flight tested on a NASA UAV. The development of the GOLD system was initiated as part of the NASA Instrument Incubator Program in December 2005, and great progress has been made towards completing major GOLD subsystems. ITT has begun construction of the high-power Nd:YAG pump laser and the ultraviolet OPO for generating the ozone DIAL wavelengths of 290 and 300 nm and the aerosol visible wavelength at 532 nm. SESI is completing the Phase-3 SBIR contract for the delivery and demonstration of the ozone DIAL receiver and data system, and NOAA is completing detector evaluations for use in the GOLD system. Welch Mechanical is examining system designs for integrating GOLD into the external pod that will be hung under the new IKANA (Predator-B) UAV that NASA Dryden is acquiring. Details of the GOLD system design and development will be presented in this paper, and science applications for a UAV-based and space-based ozone lidar will be discussed.

  8. Applications of high power lasers. [using reflection holograms for machining and surface treatment

    NASA Technical Reports Server (NTRS)

    Angus, J. C.

    1979-01-01

    The use of computer generated, reflection holograms in conjunction with high power lasers for precision machining of metals and ceramics was investigated. The Reflection holograms which were developed and made to work at both optical wavelength (He-Ne, 6328 A) and infrared (CO2, 10.6) meet the primary practical requirement of ruggedness and are relatively economical and simple to fabricate. The technology is sufficiently advanced now so that reflection holography could indeed be used as a practical manufacturing device in certain applications requiring low power densities. However, the present holograms are energy inefficient and much of the laser power is lost in the zero order spot and higher diffraction orders. Improvements of laser machining over conventional methods are discussed and addition applications are listed. Possible uses in the electronics industry include drilling holes in printed circuit boards making soldered connections, and resistor trimming.

  9. Two-Photon Laser-Induced Fluorescence O and N Atoms for the Study of Heterogeneous Catalysis in a Diffusion Reactor

    NASA Technical Reports Server (NTRS)

    Pallix, Joan B.; Copeland, Richard A.; Arnold, James O. (Technical Monitor)

    1995-01-01

    Advanced laser-based diagnostics have been developed to examine catalytic effects and atom/surface interactions on thermal protection materials. This study establishes the feasibility of using laser-induced fluorescence for detection of O and N atom loss in a diffusion tube to measure surface catalytic activity. The experimental apparatus is versatile in that it allows fluorescence detection to be used for measuring species selective recombination coefficients as well as diffusion tube and microwave discharge diagnostics. Many of the potential sources of error in measuring atom recombination coefficients by this method have been identified and taken into account. These include scattered light, detector saturation, sample surface cleanliness, reactor design, gas pressure and composition, and selectivity of the laser probe. Recombination coefficients and their associated errors are reported for N and O atoms on a quartz surface at room temperature.

  10. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    PubMed Central

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-01-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions. PMID:28176862

  11. Laser assisted immunotherapy (LIT) for chemotherapy-resistant neoplasms: recent case reports

    NASA Astrophysics Data System (ADS)

    Nordquist, Robert E.; Bahavar, Cody; Zhou, Feifan; Hode, Tomas; Chen, Wei R.; Li, Xiaosong; Naylor, Mark F.

    2014-02-01

    T-cell stimulators such as anti-CTLA-4 antibodies enhance immunologic responses to chemotherapy-resistant solid tumors, such as melanoma, advanced breast cancer, ovarian cancer and pancreatic cancer. The efficacy of these new immunotherapy agents can in theory be enhanced substantially by therapies that stimulate new immunologic (T-cell) responses against the tumor. Laser immunotherapy (LIT) with imiquimod and InCVAX are techniques that produce useful responses in patients with advanced melanoma, the prototypical chemotherapy resistant solid tumor. The mechanism of action of these therapies is thought to be immunological, including the development of new T-cell responses. We have therefore been combining LIT using imiquimod and InCVAX treatment with the new T-cell stimulators (ipilimumab) in cases of stage IV melanoma. While still anecdotal, the use of novel combinations of immunologic therapies should provide much improved responses for chemotherapy-resistant solid tumors (such as melanoma) than was previously possible. Newer T-cell stimulating drugs such as the anti-PD-1 antibodies and anti-PD-L1 antibodies will make this general approach to treating chemoresistant advanced tumors even more effective in the future.

  12. Advanced Laser Technologies for High-brightness Photocathode Electron Gun

    NASA Astrophysics Data System (ADS)

    Tomizawa, Hiromitsu

    A laser-excited photocathode RF gun is one of the most reliable high-brightness electron beam sources for XFELs. Several 3D laser shaping methods have been developed as ideal photocathode illumination sources at SPring-8 since 2001. To suppress the emittance growth caused by nonlinear space-charge forces, the 3D cylindrical UV-pulse was optimized spatially as a flattop and temporally as squarely stacked chirped pulses. This shaping system is a serial combination of a deformable mirror that adaptively shapes the spatial profile with a genetic algorithm and a UV-pulse stacker that consists of four birefringent α-BBO crystal rods for temporal shaping. Using this 3D-shaped pulse, a normalized emittance of 1.4 π mm mrad was obtained in 2006. Utilizing laser's Z-polarization, Schottky-effect-gated photocathode gun was proposed in 2006. The cathode work functions are reduced by a laser-induced Schottky effect. As a result of focusing a radially polarized laser pulse with a hollow lens in vacuum, the Z-field (Z-polarization) is generated at the cathode.

  13. Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium-seeded pulse detonation

    NASA Astrophysics Data System (ADS)

    Sanders, Scott Thomas; Mattison, Daniel W.; Ma, Lin; Jeffries, Jay B.; Hanson, Ronald K.

    2002-06-01

    The rapid, broad wavelength scanning capabilities of advanced diode lasers allow extension of traditional diode-laser absorption techniques to high pressure, transient, and generally hostile environments. Here, we demonstrate this extension by applying a vertical cavity surface-emitting laser (VCSEL) to monitor gas temperature and pressure in a pulse detonation engine (PDE). Using aggressive injection current modulation, the VCSEL is scanned through a 10 cm-1 spectral window at megahertz rates roughly 10 times the scanning range and 1000 times the scanning rate of a conventional diode laser. The VCSEL probes absorption lineshapes of the ~ 852 nm D2 transition of atomic Cs, seeded at ~ 5 ppm into the feedstock gases of a PDE. Using these lineshapes, detonated-gas temperature and pressure histories, spanning 2000 4000 K and 0.5 30 atm, respectively, are recorded with microsecond time response. The increasing availability of wavelength-agile diode lasers should support the development of similar sensors for other harsh flows, using other absorbers such as native H2O.

  14. The Influence of Geometrical Structure of AlInGaN Double Quantum Well (DQWs) UV Diode Laser on Its Performance and Operating Parameters

    NASA Astrophysics Data System (ADS)

    Ghazai, A. J.; Thahab, S. M.; Hassan, H. Abu; Hassan, Z.

    2010-07-01

    The development of efficient MQWs active regions of quaternary InAlGaN in the ultraviolet (UV) region is an engaging challenge by itself. Demonstrating lasers at such low wavelength will require resolving a number of materials, growth and device design issues. However, the quaternary AlInGaN represents a more versatile material since the bandgap and lattice constant can be independently varied. We report a quaternary AlInGaN double-quantum wells (DQWs) UV laser diode (LDs) study by using the simulation program of Integrated System Engineering-Technical Computer Aided Design (ISE TCAD). Advanced physical models of semiconductor properties were used. In this paper, the enhancement in the performance of AlInGaN laser diode can be achieved by optimizing the laser structure geometry design. The AlInGaN laser diodes operating parameters such as internal quantum efficiency ηi, internal loss αi and transparency threshold current density show effective improvements that contribute to a better performance.

  15. Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems.

    PubMed

    Hinchet, Ronan; Kim, Sang-Woo

    2015-08-25

    In this issue of ACS Nano, Tang et al. investigate the ability of a triboelectric nanogenerator (TENG) to self-power a low-level laser cure system for osteogenesis by studying the efficiency of a bone remodeling laser treatment that is powered by a skin-patch-like TENG instead of a battery. We outline this field by highlighting the motivations for self-powered biomedical systems and by discussing recent progress in nanogenerators. We note the overlap between biomedical devices and TENGs and their dawning synergy, and we highlight key prospects for future developments. Biomedical systems should be more autonomous. This advance could improve their body integration and fields of action, leading to new medical diagnostics and treatments. However, future self-powered biomedical systems will need to be more flexible, biocompatible, and biodegradable. These advances hold the promise of enabling new smart autonomous biomedical systems and contributing significantly to the Internet of Things.

  16. Coherent laser radar at 2 microns using solid-state lasers

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Suni, Paul J. M.; Hale, Charley P.; Hannon, Stephen M.; Magee, James R.; Bruns, Dale L.; Yuen, Eric H.

    1993-01-01

    Coherent laser radar systems using 2-micron Tm- and Tm, Ho-doped solid-state lasers are useful for the remote range-resolved measurement of atmospheric winds, aerosol backscatter, and DIAL measurements of atmospheric water vapor and CO2 concentrations. Recent measurements made with a 2-micron coherent laser radar system, advances in the laser technology, and atmospheric propagation effects on 2-micron coherent lidar performance are described.

  17. A Novel High Efficient Laser Transmitter Design for a Space-borne Ozone Differential Lidar (DIAL)

    NASA Technical Reports Server (NTRS)

    Edwards, W. C.; Chen, S.; Petway, L. B.; Marsh, W. D.; Storm, M. E.; Barnes, J. C.

    2000-01-01

    Development of a UV laser transmitter capable of operating from a space platform is a critical step in enabling global earth observations of aerosols and ozone at resolutions greater than current passive instrument capabilities. Tropospheric chemistry is well recognized as the next frontier for global atmospheric measurement. NASA Langley Research Center (LaRC) and the Canadian Space Agency (CSA) have jointly studied the requirements for a satellite based, global ozone monitoring instrument. The study, called Ozone Research using Advanced Cooperative Lidar Experiment (ORACLE) has defined the Differential Absorption Lidar (DIAL) instrument performance, weight and power, and configuration requirements for a space based measurement. In order to achieve the measurement resolution and acceptable signal-to-noise from lidar returns, 500mJ/pulse (5 Watts average power) is required at both 305-308nm and 315-320nm wavelengths. These are consecutive pulses, in a 10 Hz, double-pulsed format. The two wavelengths are used as the on- and off-lines for the ozone DIAL measurement. NASA Langley is currently developing technology for a UV laser transmitter capable of meeting the ORACLE requirements. Experimental efforts to date have shown that the UV generation scheme is viable, and that energies greater than l00mJ/pulse are possible. In this paper, we will briefly discuss the down select process for the proposed laser design, the study effort to date and the laser system design, including both primary and alternate approaches. We will describe UV laser technology that minimizes the total number of optical components (for enhanced reliability) as well as the number of UV coated optics required to transmit the light from the laser (for enhanced optical damage resistance). While the goal is to develop a laser that will produce 500 mJ of energy, we will describe an optional design that will produce output energies between 100 - 200 mJ/unit and techniques for combining multiple laser modules in order to transmit a minimum of 500mJ of UV energy in each pulse of the on- and off-line pulse pairs. This modular laser approach provides redundancy and significantly reduces development time, risk and cost when compared to the development of a single, 500mJ double-pulsed laser subsystem. Finally, we will summarize the laser development effort to date, including results that include the highest known UV energy ( 130 mJ at 320nm) ever produced by a solid-state laser operating in this wavelength region.

  18. Effect of Moisture Content of Paper Material on Laser Cutting

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi; Salminen, Antti

    Laser technology has been used in industrial processes for several decades. The most advanced development and implementation took place in laser welding and cutting of metals in automotive and ship building industries. However, there is high potential to apply laser processing to other materials in various industrial fields. One of these potential fields could be paper industry to fulfill the demand for high quality, fast and reliable cutting technology. Difficulties in industrial application of laser cutting for paper industry are associated to lack of basic information, awareness of technology and its application possibilities. Nowadays possibilities of using laser cutting for paper materials are widened and high automation level of equipment has made this technology more interesting for manufacturing processes. Promising area of laser cutting application at paper making machines is longitudinal cutting of paper web (edge trimming). There are few locations at a paper making machine where edge trimming is usually done: wet press section, calender or rewinder. Paper web is characterized with different moisture content at different points of the paper making machine. The objective of this study was to investigate the effect of moisture content of paper material on laser cutting parameters. Effect of moisture content on cellulose fibers, laser absorption and energy needed for cutting is described as well. Laser cutting tests were carried out using CO2 laser.

  19. The role of lasers in modern urology.

    PubMed

    Dołowy, Łukasz; Krajewski, Wojciech; Dembowski, Janusz; Zdrojowy, Romuald; Kołodziej, Anna

    2015-01-01

    The functioning of modern urological departments and the high level of service they provide is possible through, among other things, the use of modern laser techniques. Open operations have been replaced by minimally invasive procedures, and classical surgical tools by advanced lasers. The search for new applications with lasers began as technology developed. Among many devices available, holmium, diode and thulium lasers are currently the most popular. Depending on the wavelength, the absorption by water and hemoglobin and the depth of penetration, lasers can be used for coagulation, vaporization and enucleation. In many centres, after all the possibilities of pharmacological treatment have been exhausted, lasers are used as the primary treatment for patients with benign prostatic hyperplasia, with therapeutic results that are better than those obtained through open or endoscopic operations. The use of lasers in the treatment of urolithiasis, urinary strictures and bladder tumours has made treatment of older patients with multiple comorbidities safe, without further necessity to modify the anticoagulant drug treatment. Laser procedures are additionally less invasive, reduce hospitalization time and enable a shorter bladder catheterization time, sometimes even eliminating the need for bladder catherterization completely. Such procedures are also characterized by more stable outcomes and a lower number of reoperations. There are also indications that with the increased competition among laser manufacturers, decreased purchase and maintenance costs, and increased operational safety, laser equipment will become mandatory and indispensable asset in all urology wards.

  20. Advances in Laser/Lidar Technologies for NASA's Science and Exploration Mission's Applications

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    NASA's Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.

  1. New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning.

    PubMed

    Malhi, Yadvinder; Jackson, Tobias; Patrick Bentley, Lisa; Lau, Alvaro; Shenkin, Alexander; Herold, Martin; Calders, Kim; Bartholomeus, Harm; Disney, Mathias I

    2018-04-06

    Terrestrial laser scanning (TLS) opens up the possibility of describing the three-dimensional structures of trees in natural environments with unprecedented detail and accuracy. It is already being extensively applied to describe how ecosystem biomass and structure vary between sites, but can also facilitate major advances in developing and testing mechanistic theories of tree form and forest structure, thereby enabling us to understand why trees and forests have the biomass and three-dimensional structure they do. Here we focus on the ecological challenges and benefits of understanding tree form, and highlight some advances related to capturing and describing tree shape that are becoming possible with the advent of TLS. We present examples of ongoing work that applies, or could potentially apply, new TLS measurements to better understand the constraints on optimization of tree form. Theories of resource distribution networks, such as metabolic scaling theory, can be tested and further refined. TLS can also provide new approaches to the scaling of woody surface area and crown area, and thereby better quantify the metabolism of trees. Finally, we demonstrate how we can develop a more mechanistic understanding of the effects of avoidance of wind risk on tree form and maximum size. Over the next few years, TLS promises to deliver both major empirical and conceptual advances in the quantitative understanding of trees and tree-dominated ecosystems, leading to advances in understanding the ecology of why trees and ecosystems look and grow the way they do.

  2. Advancing radiation balanced lasers (RBLs) in rare-earth (RE)-doped solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hehlen, Markus Peter

    2016-11-21

    These slides cover the following topics: Mid-IR lasers in crystals using two-tone RBL (Single-dopant two-tone RBLs: Tm 3+, Er 3+, and Co-doped two-tone RBLs: (Yb 3+, Nd 3+) and (Ho 3+, Tm 3+); Advanced approaches to RBL crystals (Precursor purification, Micro-pulling-down crystal growth, and Bridgman crystal growth); Advanced approaches to RBL fibers (Materials for RBL glass fibers, Micro-structured fibers for RBL, and Fiber preform synthesis); and finally objectives.

  3. Technological Innovations from NASA

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.

    2006-01-01

    The challenge of human space exploration places demands on technology that push concepts and development to the leading edge. In biotechnology and biomedical equipment development, NASA science has been the seed for numerous innovations, many of which are in the commercial arena. The biotechnology effort has led to rational drug design, analytical equipment, and cell culture and tissue engineering strategies. Biomedical research and development has resulted in medical devices that enable diagnosis and treatment advances. NASA Biomedical developments are exemplified in the new laser light scattering analysis for cataracts, the axial flow left ventricular-assist device, non contact electrocardiography, and the guidance system for LASIK surgery. Many more developments are in progress. NASA will continue to advance technologies, incorporating new approaches from basic and applied research, nanotechnology, computational modeling, and database analyses.

  4. Laser ablation in temporomandibular joint disorders and a case report involving an ossifying fibroma: how optics could potentially advance treatments in oral and maxillofacial surgery

    NASA Astrophysics Data System (ADS)

    Tandon, Rahul; Stevens, Timothy W.; Stringer, Dale E.; Dean, Jeff S.; Herford, Alan S.

    2013-03-01

    Introduction: In the field of oral and maxillofacial surgery, there are many applications for lasers and optics. The first part of this manuscript is to discuss laser therapy and garner suggestions on how it can be improved. The second part is to present a case in which complications of a bone graft delayed healing and a return to normalcy for the patient. It is the goal of this paper to utilize the new advancements in optics so that patient care can be improved. Laser Therapy: Laser ablation and low-level laser therapy have been used in a variety of joint adhesion cases, including arthritis of the hand and foot. In the field of oral and maxillofacial surgery, this method has been used to treat pain and mobility dysfunction in patients with temporomandibular joint disease. While the outcomes have been promising, lack of familiarity with the device or doubt about its effects have reduced its use. This reduction in use has left the actual process of laser therapy relatively unchanged. Case Presentation: A 28 year-old female presented for a mandibular resection due to an ossifying fibroma. In the next several months her reconstructed area displayed significant signs of infection, as well as graft failure. X-rays, unfortunately, did not display the actual metabolic activity. Although the patient was reconstructed successfully thereafter, with more advanced technology available the patient could have endured a more comfortable treatment. Conclusion: While there are many more areas of oral and maxillofacial surgery that could potentially benefit from advances in optical technology, we have chosen to highlight these two areas due to their prevalence within our community.

  5. Direct-drive inertial confinement fusion: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.

    The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermalmore » electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less

  6. Direct-drive inertial confinement fusion: A review

    DOE PAGES

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; ...

    2015-11-25

    In this study, the direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. Themore » problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 um—the third harmonic of the Nd:glass laser—and 0.248 um (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be non-local in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [C. A. Haynam et al., Appl. Opt. 46 (16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less

  7. Direct-drive inertial confinement fusion: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.

    In this study, the direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. Themore » problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 um—the third harmonic of the Nd:glass laser—and 0.248 um (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be non-local in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [C. A. Haynam et al., Appl. Opt. 46 (16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less

  8. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.

    PubMed

    Li, Pan; Yu, Haibo; Liu, Na; Wang, Feifei; Lee, Gwo-Bin; Wang, Yuechao; Liu, Lianqing; Li, Wen Jung

    2018-05-23

    The development of microengineered hydrogels co-cultured with cells in vitro could advance in vivo bio-systems in both structural complexity and functional hierarchy, which holds great promise for applications in regenerative tissues or organs, drug discovery and screening, and bio-sensors or bio-actuators. Traditional hydrogel microfabrication technologies such as ultraviolet (UV) laser or multiphoton laser stereolithography and three-dimensional (3D) printing systems have advanced the development of 3D hydrogel micro-structures but need either expensive and complex equipment, or harsh material selection with limited photoinitiators. Herein, we propose a simple and flexible hydrogel microfabrication method based on a ubiquitous visible-light projection system combined with a custom-designed photosensitive microfluidic chip, to rapidly (typically several to tens of seconds) fabricate various two-dimensional (2D) hydrogel patterns and 3D hydrogel constructs. A theoretical layer-by-layer model that involves continuous polymerizing-delaminating-polymerizing cycles is presented to explain the polymerization and structural formation mechanism of hydrogels. A large area of hydrogel patterns was efficiently fabricated without the usage of costly laser systems or photoinitiators, i.e., a stereoscopic mesh-like hydrogel network with intersecting hydrogel micro-belts was fabricated via a series of dynamic-changing digital light projections. The pores and gaps of the hydrogel network are tunable, which facilitates the supply of nutrients and discharge of waste in the construction of 3D thick bio-models. Cell co-culture experiments showed the effective regulation of cell spreading by hydrogel scaffolds fabricated by the new method presented here. This visible light enabled hydrogel microfabrication method may provide new prospects for designing cell-based units for advanced biomedical studies, e.g., for 3D bio-models or bio-actuators in the future.

  9. Laser induced damage in optical materials: 8th ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1977-05-01

    The Eighth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was hosted by the National Bureau of Standards in Boulder, Colorado, from 13 to 15 July 1976. The Symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Energy Research and Development Administration, and the Office of Naval Research. About 160 scientists attended the Symposium, including representatives of the United Kingdom, France, Canada, and Brazil. The Symposium was divided into five half-day sessions concerning Bulk Material Properties and Thermal Behavior, Mirrors and Surfaces, Thin Film Properties, Thin Film Damage, and Scaling Laws and Fundamental Mechanisms. As in previous years, the emphasis of the papers presented at the Symposium was directed toward new frontiers and new developments. Particular emphasis was given to new materials for use at 10.6 microm in mirror substrates, windo s, and coatings. New techniques in film deposition and advances in diamond-turning of optics were described. The scaling of damage thresholds with pulse duration, focal area, and wavelength were discussed. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons of the Symposium. The Ninth Annual Symposium is scheduled for 4-6 October 1977 at the National Bureau of Standards, Boulder, Colorado.

  10. Lasers '81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, C.B.

    1982-01-01

    Progress in lasers is discussed. The subjects addressed include: excimer lasers, surface spectroscopy, modern laser spectroscopy, free electron lasers, cavities and propagation, lasers in medicine, X-ray and gamma ray lasers, laser spectroscopy of small molecules and clusters, optical bistability, excitons, nonlinear optics in the X-ray and gamma ray regions, collective atomic phenomena, tunable IR lasers, far IR/submillimeter lasers, and laser-assisted collisions. Also treated are: special applications, multiphoton processes in atoms and small molecules, nuclear pumped lasers, material processing and applications, polarization, high energy lasers, laser chemistry, IR molecular lasers, laser applications of collision and dissociation phenomena, solid state laser materials,more » phase conjugation, advances in laser technology for fusion, metal vapor lasers, picosecond phenomena, laser ranging and geodesy, and laser photochemistry of complex molecules.« less

  11. Air Force Science and Technology Plan

    DTIC Science & Technology

    2011-01-01

    charged particles and guide high- power microwaves and radiofrequency waves in the air • Bioenergy – developing renewable biosolar hydrogen...Aeronautical sciences, control sciences, structures and integration Directed Energy High- power microwaves , lasers, beam control, space situational...Propulsion Turbine and rocket engines, advanced propulsion systems , system -level thermal management, and propulsion fuels and propellants Sensors Air

  12. High-brightness diode pump sources for solid-state and fiber laser pumping across 8xx-9xx nm range

    NASA Astrophysics Data System (ADS)

    Diamant, Ronen; Berk, Yuri; Cohen, Shalom; Klumel, Genady; Levy, Moshe; Openhaim, Yaki; Peleg, Ophir; Yanson, Dan; Karni, Yoram

    2011-06-01

    Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scalable QCW pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.

  13. Scaleable multi-format QCW pump stacks based on 200W laser diode bars and mini bars at 808nm and 940nm

    NASA Astrophysics Data System (ADS)

    Berk, Yuri; Karni, Yoram; Klumel, Genady; Openhaim, Yaakov; Cohen, Shalom; Yanson, Dan

    2011-03-01

    Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scaleable pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.

  14. Combat Development Study. Close Support Study Group 2 (CSSG 2). Volume 3. Main Report. Chapters 8-14 and Appendices A-G

    DTIC Science & Technology

    1980-02-01

    support structure with respect to laser designation and acquistion systems and laser/guided munitions? Discussion, The advanced attack helicopter cu...times to practically zero even under the heavy load conditions described herein. The AMSAA analysis results, described In a preceding paragraph, were...M113A1 (1) AN/VRC-47 (1) GLLD (1) AN/VRC-47 (2) AN/GRC-160 (1) PADS (2) AN/GRC-160 (1) AN/GRA-39 (1) AN/VRC-47 (2) AN/GRA-39 (1) KY-38 (2) AN/GRC-160

  15. Symposium Gyro Technology 1984; Proceedings of the Symposium, Universitaet Stuttgart, West Germany, September 11, 12, 1984

    NASA Astrophysics Data System (ADS)

    Sorg, H.

    Among the topics discussed are: drift and scale factor tests on the SEL fiber gyro; integrated optical rate sensor development; and the beam geometry of a ring laser gyro in relation to its performance. Consideration is also given to: a fast filtering technique for measuring random walk in a laser gyro; vibratory gyroscopic sensors; a redundant strapdown reference for advanced aircraft flight control systems; and a low-cost piezoelectric rate/acceleration sensor. Additional topics include: an inertial guidance system for a Low-Earth-Orbit (LEO) vehicle; and signal disturbance effects in a strapdown northfinder.

  16. Q-Switching in a Neodymium Laser

    ERIC Educational Resources Information Center

    Holgado, Warein; Sola, Inigo J.; Jarque, Enrique Conejero; Jarabo, Sebastian; Roso, Luis

    2012-01-01

    We present a laboratory experiment for advanced undergraduate or graduate laser-related classes to study the performance of a neodymium laser. In the experiment, the student has to build the neodymium laser using an open cavity. After that, the cavity losses are modulated with an optical chopper located inside, so the Q-switching regime is…

  17. Laser Microsurgery in Caenorhabditis elegans

    PubMed Central

    Fang-Yen, Christopher; Gabel, Christopher V.; Samuel, Aravinthan D. T.; Bargmann, Cornelia I.; Avery, Leon

    2013-01-01

    Laser killing of cell nuclei has long been a powerful means of examining the roles of individual cells in C. elegans. Advances in genetics, laser technology, and imaging have further expanded the capabilities and usefulness of laser surgery. Here, we review the implementation and application of currently used methods for target edoptical disruption in C. elegans. PMID:22226524

  18. Acousto-ultrasonic nondestructive evaluation of materials using laser beam generation and detection

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.; Vary, Alex; Kautz, Harold

    1990-01-01

    Presented in viewgraph format, the possibility of using laser generation and detection of ultrasound to replace piezoelectric transducers for the acousto-ultrasonic technique is advanced. The advantages and disadvantages of laser acousto-ultrasonics are outlined. Laser acousto-ultrasonics complements standard piezoelectric acousto-ultrasonics and offers non-contact nondestructive evaluation.

  19. A new multipurpose CO2 laser therapy instrument.

    PubMed

    Peng, X

    1995-02-01

    A new multipurpose CO2 laser therapy instrument has been developed. It is a highly efficient medical instrument. By use of high laser power density to coagulate, evaporate, and cut body tissue on the nidus, the operation can be controlled and has obvious curative effects. Unlike other kinds of CO2 laser therapy instruments, this device has an advanced switching power supply (SPS) and red guiding light system. With an overcurrent protective device, an overvoltage protective device, and a high-voltage shield device, it provides efficiency, stability, reliability, and low loss. The plastic casing does not leak electricity and the film switches are designed for clinical practice convenience. Additionally, the laser power is numerically displayed and can be set prior to the procedure. The distinct visible guiding light of the laser output makes the operation more convenient and accurate. Because of this unique design and properties, it is a leading model in China. The instrument can be widely used for surgery, gynecology, dermatology, and otolaryngology. The radiation therapy of low laser power density has the effect of being antiinflamatory, analgesic, and antipruritic, and promotes cure of the epithelium. Moreover, it is effective to treat all sorts of sprains, scapulohumeral periarthritis, arthritis, sciatica, and surface ulcers.

  20. Diode pumped Nd:YAG laser development

    NASA Technical Reports Server (NTRS)

    Reno, C. W.; Herzog, D. G.

    1976-01-01

    A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.

  1. LPI Experiments at the Nike Laser*

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Oh, J.; Afeyan, B.; Phillips, L.; Seely, J.; Brown, C.; Karasik, M.; Serlin, V.; Obenschain, S.; Chan, L.-Y.; Kehne, D.; Brown, D.; Schmitt, A.; Velikovich, A.; Feldman, U.; Holland, G.; Aglitskiy, Y.

    2007-11-01

    Advanced implosion designs under development at NRL for direct drive inertial confinement fusion incorporate high intensity pulses from a krypton-fluoride (KrF) laser to achieve significant gain with lower total laser energy (Etot˜500 kJ). These designs will be affected by the thresholds and magnitudes of laser plasma instabilities (LPI). The Nike laser can create short, high intensity pulses (t <0.4 ns; I>10^15 W/cm^2) to explore how LPI will be influenced by the deep UV (248 nm), broad bandwidth (2-3 THz), and induced spatial incoherence beam smoothing of the NRL KrF laser systems. Previous results demonstrated no visible/VUV signatures of two-plasmon decay (2φp) for overlapped intensities ˜2x10^15 W/cm^2. We have increased the laser intensity and expanded the range of targets and diagnostics. Single and double pulse experiments are being planned with solid, foam, and cryogenic targets. In addition to spectrometers to study SRS, 2φp, SBS, and the parametric decay instability, hard x-ray spectrometers (hν>2 keV) and a scintillator/photomultiplier array (hν>10 keV) have been deployed to examine hot electron generation. *Work supported by U. S. DoE.

  2. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    NASA Astrophysics Data System (ADS)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  3. Art in the Service of Science

    NASA Astrophysics Data System (ADS)

    Asmus, J. F.

    In fields such as studio art, art conservation, archaeology, anthropology, music, and architecture it is often understood that many of the advances emerge from the introduction of new developments from science and technology. Scientific research is often justified on the basis of its past as well as potential future fallout into other endeavors as diverse as medicine, manufacturing, and the humanities. The diffusion of scientific innovation into the practice of art conservation has been punctuated by the introduction of a series of diverse technologies. Trace element and isotopic analyses, infrared imaging, ultraviolet fluorescence inspection, advanced coatings and adhesives, scanning electron microscopy, and photon/electron microprobes are notable examples. For the past thirty years various laser technologies have demonstrated utility in the practice of art conservation, as well. These include photon cleaning and divestment, holographic display and nondestructive analysis, surface characterization through laser fluorescence, radiation scattering and absorption, as well as laser-induced ultrasound. At the dawn of laser technology's introduction into the art conservation field (1972-74) the Center for Art/Science Studies (CASS) was established at the University of California, San Diego (UCSD) with the hope of accelerating and broadening the diffusion of scientific developments into art conservation practice. Surprisingly, one of the first events in the CASS/UCSD transpired when a Visual Arts Department student employed a primitive laser statue cleaner to "correct" a silk-screen print. In the course of maintaining her laser this art student discovered a dramatically improved method for aligning the complex optical beam train by utilizing her artistic training. A few months later another CASS/UCSD student in the Photographic Arts Program (while modifying a ruby laser to experiment with theater-lighting special effects) discovered an improved laser beam-profile diagnostic technique. These two, seemingly trite, examples of scientific serendipity "in reverse" are not isolated anomalies. History is replete with instances of art coming to the aid of science and technology. Examples include Samuel Morse's drawing upon his skill as a painter in support of his electrical engineering research, the collaboration of Michele Besso and Albert Einstein in the formulation of Special Relativity, Picasso's vision of wave-function collapse in Quantum Electrodynamics, and Jay DeFeo's depiction of Big Bangs and Black Holes while cosmologists were focusing on Fred Hoyle's steady-state continuum theory of the universe.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucksbaum, P.H.; Ceglio, N.M.

    This volume contains the papers delivered at the conference which chronicle the major advances in short-wavelength laser physics and technology. It is divided into the following sections: Sources of Short-Wavelength Radiation; Applications of Short-Wavelength Radiation; High-Intensity Laser Sources; and High-Intensity Laser-Matter Interactions.

  5. On the Composition and Temperature of the Terrestrial Planetary Core

    NASA Astrophysics Data System (ADS)

    Fei, Yingwei

    2013-06-01

    The existence of liquid cores of terrestrial planets such as the Earth, Mar, and Mercury has been supported by various observation. The liquid state of the core provides a unique opportunity for us to estimate the temperature of the core if we know the melting temperature of the core materials at core pressure. Dynamic compression by shock wave, laser-heating in diamond-anvil cell, and resistance-heating in the multi-anvil device can melt core materials over a wide pressure range. There have been significant advances in both dynamic and static experimental techniques and characterization tool. In this tal, I will review some of the recent advances and results relevant to the composition and thermal state of the terrestrial core. I will also present new development to analyze the quenched samples recovered from laser-heating diamond-anvil cell experiments using combination of focused ion beam milling, high-resolution SEM imaging, and quantitative chemical analysi. With precision milling of the laser-heating spo, the melting point and element partitioning between solid and liquid can be precisely determined. It is also possible to re-construct 3D image of the laser-heating spot at multi-megabar pressures to better constrain melting point and understanding melting process. The new techniques allow us to extend precise measurements of melting relations to core pressures, providing better constraint on the temperature of the cor. The research is supported by NASA and NSF grants.

  6. Laser ablation/ionization characterization of solids: Second interim progress report of the strategic environmental research development program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, W.P.; Bushaw, B.A.; McCarthy, M.I.

    1996-10-01

    The Department of Energy is undertaking the enormous task of remediating defense wastes and environmental insults which have occurred over 50 years of nuclear weapons production. It is abundantly clear that significant technology advances are needed to characterize, process, and store highly radioactive waste and to remediate contaminated zones. In addition to the processing and waste form issues, analytical technologies needed for the characterization of solids, and for monitoring storage tanks and contaminated sites do not exist or are currently expensive labor-intensive tasks. This report describes progress in developing sensitive, rapid, and widely applicable laser-based mass spectrometry techniques for analysismore » of mixed chemical wastes and contaminated soils.« less

  7. EDITORIAL: Semiconductor lasers: the first fifty years Semiconductor lasers: the first fifty years

    NASA Astrophysics Data System (ADS)

    Calvez, S.; Adams, M. J.

    2012-09-01

    Anniversaries call for celebrations. Since it is now fifty years since the first semiconductor lasers were reported, it is highly appropriate to celebrate this anniversary with a Special Issue dedicated to the topic. The semiconductor laser now has a major effect on our daily lives since it has been a key enabler in the development of optical fibre communications (and hence the internet and e-mail), optical storage (CDs, DVDs, etc) and barcode scanners. In the early 1960s it was impossible for most people (with the exception of very few visionaries) to foresee any of these future developments, and the first applications identified were for military purposes (range-finders, target markers, etc). Of course, many of the subsequent laser applications were made possible by developments in semiconductor materials, in the associated growth and fabrication technology, and in the increased understanding of the underlying fundamental physics. These developments continue today, so that the subject of semiconductor lasers, although mature, is in good health and continues to grow. Hence, we can be confident that the pervasive influence of semiconductor lasers will continue to develop as optoelectronics technology makes further advances into other sectors such as healthcare, security and a whole host of applications based on the global imperatives to reduce energy consumption, minimise environmental impact and conserve resources. The papers in this Special Issue are intended to tell some of the story of the last fifty years of laser development as well as to provide evidence of the current state of semiconductor laser research. Hence, there are a number of papers where the early developments are recalled by authors who played prominent parts in the story, followed by a selection of papers from authors who are active in today's exciting research. The twenty-fifth anniversary of the semiconductor laser was celebrated by the publication of a number of papers dealing with the early achievements in the June 1987 Special Issue of IEEE Journal of Quantum Electronics. The Millennium Issue of IEEE Journal of Selected Topics in Quantum Electronics presented a further set of articles on historical aspects of the subject as well as a 'snapshot' of current research in June 2000. It is not the intention here to duplicate any of this historical material that is already available, but rather to complement it with personal recollections from researchers who were involved in laser development in the USA, France, Russia and the UK. Hence, in addition to fascinating accounts of the discovery of the theoretical condition for stimulated emission from semiconductors and of the pioneering work at IBM, there are two complementary views of the laser research at the Lebedev Institute, and personal insights into the developments at STL and at Bell Laboratories. These are followed by an account of the scientific and technological connections between the early pioneering breakthroughs and the commercialisation of semiconductor laser products. Turning to the papers from today's researchers, there is coverage of many of the current 'hot' topics including quantum cascade lasers, mid-infrared lasers, high-power lasers, the exciting developments in understanding and exploiting the nonlinear dynamics of lasers, and photonic integrated circuits with extremely high communication data capacity, as well as reports of recent progress on laser materials such as dilute nitrides and bismides, photonic crystals, quantum dots and organic semiconductors. Thanks are due to Jarlath McKenna for sterling support from IOP Publishing and to Peter Blood for instigating this Special Issue and inviting us to serve as Guest Editors.

  8. Searching for Fast Radio Bursts with the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)

    NASA Astrophysics Data System (ADS)

    Fisher, Ryan Patrick; Hughey, Brennan; Howell, Eric; LIGO Collaboration

    2018-01-01

    Although Fast Radio Bursts (FRB) are being detected with increasing frequency, their progenitor systems are still mostly a mystery. We present the plan to conduct targeted searches for gravitational-wave counterparts to these FRB events in the data from the first and second observing runs of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO).

  9. Laser Processing of Metals and Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singaravelu, Senthilraja

    2012-05-01

    A laser offers a unique set of opportunities for precise delivery of high quality coherent energy. This energy can be tailored to alter the properties of material allowing a very flexible adjustment of the interaction that can lead to melting, vaporization, or just surface modification. Nowadays laser systems can be found in nearly all branches of research and industry for numerous applications. Sufficient evidence exists in the literature to suggest that further advancements in the field of laser material processing will rely significantly on the development of new process schemes. As a result they can be applied in various applicationsmore » starting from fundamental research on systems, materials and processes performed on a scientific and technical basis for the industrial needs. The interaction of intense laser radiation with solid surfaces has extensively been studied for many years, in part, for development of possible applications. In this thesis, I present several applications of laser processing of metals and polymers including polishing niobium surface, producing a superconducting phase niobium nitride and depositing thin films of niobium nitride and organic material (cyclic olefin copolymer). The treated materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), atomic force microscopy (AFM), high resolution optical microscopy, surface profilometry, Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). Power spectral density (PSD) spectra computed from AFM data gives further insight into the effect of laser melting on the topography of the treated niobium.« less

  10. Future prospects in dermatologic applications of lasers, nanotechnology, and other new technologies.

    PubMed

    Boixeda, P; Feltes, F; Santiago, J L; Paoli, J

    2015-04-01

    We review novel technologies with diagnostic and therapeutic applications in dermatology. Among the diagnostic techniques that promise to become part of dermatologic practice in the future are optical coherence tomography, multiphoton laser scanning microscopy, Raman spectroscopy, thermography, and 7-T magnetic resonance imaging. Advances in therapy include novel light-based treatments, such as those applying lasers to new targets and in new wavelengths. Devices for home therapy are also appearing. We comment on the therapeutic uses of plasma, ultrasound, radiofrequency energy, total reflection amplification of spontaneous emission of radiation, light stimulation, and transepidermal drug delivery. Finally, we mention some basic developments in nanotechnology with prospects for future application in dermatology. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  11. VCSEL proliferation

    NASA Astrophysics Data System (ADS)

    Tatum, Jim

    2007-02-01

    Since the commercialization of Vertical Cavity Surface Emitting Lasers (VCSELs) in 1996, Finisar's Advanced Optical Components Division has shipped well over 50 Million VCSELs. The vast majority of these were shipped into the data communications industry, which was essentially the only volume application until 2005. The driver for VCSEL manufacturing might well shift to the increasingly popular laser based optical mouse. The advantages of the laser based mouse over traditional LED mice include operation on a wider range of surfaces, higher resolution, and increased battery lifetime. What is the next application that will drive growth in VCSELs? This paper will offer a historical perspective on the emergence of VCSELs from the laboratory to reality, and the companies that have played key roles in VCSEL commercialization. Furthermore, a perspective on the market needs of future VCSEL development and applications is described.

  12. LLE 2010 Annual Report October 2009 - September 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-01-01

    The fiscal year ending September 2010 (FY10) concluded the third year of the third five-year renewal of Cooperative Agreement DE-FC52-08NA28302 with the U.S. Department of Energy (DOE). This annual report summarizes progress in inertial fusion research at the Laboratory for Laser Energetics (LLE) during the past fiscal year including work on the National Ignition Campaign (NIC). It also reports on LLE's progress on laboratory basic science research; laser, optical materials, and advanced technology development; operation of OMEGA and OMEGA EP for the NIC and high-energy density (HED) campaigns, the National Laser Users Facility (NLUF), and for other external users; andmore » programs focusing on the education of high school, undergraduate, and graduate students during the year.« less

  13. Demonstration of an advanced fibre laser hydrophone array in Gulf St Vincent

    NASA Astrophysics Data System (ADS)

    Foster, Scott; Tikhomirov, Alexei; Harrison, Joanne; van Velzen, John

    2015-09-01

    We have developed an 8-element fibre laser seabed array demonstrating state-of-the art performance characteristics for a fibre laser sensing system. The system employs sea-state-zero sensitivity hydrophones with a flat acoustic response over a bandwidth exceeding 5kHz and very low inertial sensitivity. The system contains no outboard electronics and few metal components making it extremely light, compact, and low complexity. The array may be deployed up to 4 km from a land or sea based platform to a depth of up to 80m. Power delivery and telemetry for all 8 sensors is achieved via a single 2mm diameter optical fibre cable weighing less than 5kg per km. We report here results of the first field trials of this system.

  14. Experimental and numerical investigation on cladding of corrosion-erosion resistant materials by a high power direct diode laser

    NASA Astrophysics Data System (ADS)

    Farahmand, Parisa

    In oil and gas industry, soil particles, crude oil, natural gas, particle-laden liquids, and seawater can carry various highly aggressive elements, which accelerate the material degradation of component surfaces by combination of slurry erosion, corrosion, and wear mechanisms. This material degradation results into the loss of mechanical properties such as strength, ductility, and impact strength; leading to detachment, delamination, cracking, and ultimately premature failure of components. Since the failure of high valued equipment needs considerable cost and time to be repaired or replaced, minimizing the tribological failure of equipment under aggressive environment has been gaining increased interest. It is widely recognized that effective management of degradation mechanisms will contribute towards the optimization of maintenance, monitoring, and inspection costs. The hardfacing techniques have been widely used to enhance the resistance of surfaces against degradation mechanisms. Applying a surface coating improves wear and corrosion resistance and ensures reliability and long-term performance of coated parts. A protective layer or barrier on the components avoids the direct mechanical and chemical contacts of tool surfaces with process media and will reduce the material loss and ultimately its failure. Laser cladding as an advanced hardfacing technique has been widely used for industrial applications in order to develop a protective coating with desired material properties. During the laser cladding, coating material is fused into the base material by means of a laser beam in order to rebuild a damaged part's surface or to enhance its surface function. In the hardfacing techniques such as atmospheric plasma spraying (APS), high velocity oxygen-fuel (HVOF), and laser cladding, mixing of coating materials with underneath surface has to be minimized in order to utilize the properties of the coating material most effectively. In this regard, laser cladding offers advantages due to creating coating layers with superior properties in terms of purity, homogeneity, low dilution, hardness, bonding, and microstructure. In the development of modern materials for hardfacing applications, the functionality is often improved by combining materials with different properties into composites. Metal Matrix Composite (MMC) coating is a composite material with two constituent parts, i.e., matrix and the reinforcement. This class of composites are addressing improved mechanical properties such as stiffness, strength, toughness, and tribological and chemical resistance. Fabrication of MMCs is to achieve a combination of properties not achievable by any of the materials acting alone. MMCs have attracted significant attention for decades due to their combination of wear-resistivity, corrosion-resistivity, thermal, electrical and magnetic properties. Presently, there is a strong emphasis on the development of advanced functional coatings for corrosion, erosion, and wear protection for different industrial applications. In this research, a laser cladding system equipped with a high power direct diode laser associated with gas driven metal powder delivery system was used to develop advanced MMC coatings. The high power direct diode laser used in this study offers wider beam spot, shorter wavelength and uniform power distribution. These properties make the cladding set-up ideal for coating due to fewer cladding tracks, lower operation cost, higher laser absorption, and improved coating qualities. In order to prevent crack propagation, porosity, and uniform dispersion of carbides in MMC coating, cladding procedure was assisted by an induction heater as a second heat source. The developed defect free MMC coatings were combined with nano-size particles of WC, rare earth (RE) element (La2O3), and Mo as a refractory metal to enhance mechanical properties, chemical composition, and subsequently improve the tribological performance of the coatings. The resistance of developed MMC coatings were examined under highly accelerated slurry erosion, corrosion, and wear as the most frequently encountered failure modes of mechanical components. The microstructure, mechanical properties, and the level of induced residual stress on the coating after cladding procedure are closely related to cladding process variables. Study about the effect of processing parameters on clad quality and experienced thermal history and thermally-induced stress evolution requires both theoretical and experimental understanding of the associated physical phenomena. Numerical modeling offers a cost-efficient way to better understand the related complex physics in laser cladding process. It helps to reveal the effects and significance of each processing parameters on the desired characteristics of clad parts. Successful numerical simulation can provide unique insight into complex laser cladding process, efficiently calculate the complex procedure, and help to obtain coating parts with quality integrity. Therefore, current study develops a three-dimensional (3D) transient and uncoupled thermo-elastic-plastic model to study thermal history, molten pool evolution, thermally induced residual stress, and the effect of utilizing an induction heater as a second heat source on the mechanical properties and microstructural properties of final cladded coating.

  15. New test techniques and analytical procedures for understanding the behavior of advanced propellers

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Bober, L. J.; Neumann, H. E.

    1983-01-01

    Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.

  16. Advances in 193 nm excimer lasers for mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  17. Two-dimensional transient temperature distribution within a metal undergoing multiple phase changes caused by laser irradiation at the surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minardi, A.; Bishop, P.J.

    1988-11-01

    Metal-laser interactions have become increasingly important due to advances in laser-machining processes, laser weaponry, and rocket propulsion using laser beams. An interesting physical phenomenon that is not well understood is the interaction of the metal plasma above a surface with a laser beam. Although most models neglect the natural convection, other papers, such as by Sparrow et al., have considered this effect and found it to be of importance at low energy fluxes. This study assumes that the laser beam has a spatial variation, and thus a two-dimensional model for the temperature distribution within the substrate is required. Further, itmore » was assumed at first that the thermophysical properties are constant, but modifications were made to allow for different thermal conductivities of the liquid and solid phases. The model was developed to describe the physical processes until the vapor just forms, so that movement of the vapor away from the surface will not be considered. Natural convection will be neglected in the liquid pool, and radiation losses from the surface wil be neglected since these are very small in comparison to the energy absorbed from the high intensity laser beam.« less

  18. Database structure for the Laser Accident and Incident Registry (LAIR)

    NASA Astrophysics Data System (ADS)

    Ness, James W.; Hoxie, Stephen W.; Zwick, Harry; Stuck, Bruce E.; Lund, David J.; Schmeisser, Elmar T.

    1997-05-01

    The ubiquity of laser radiation in military, medical, entertainment, telecommunications and research industries and the significant risk, of eye injury from this radiation are firmly established. While important advances have been made in understanding laser bioeffects using animal analogues and clinical data, the relationships among patient characteristics, exposure conditions, severity of the resulting injury, and visual function are fragmented, complex and varied. Although accident cases are minimized through laser safety regulations and control procedures, accumulated accident case information by the laser eye injury evaluation center warranted the development of a laser accident and incident registry. The registry includes clinical data for validating and refining hypotheses on injury and recovery mechanisms; a means for analyzing mechanisms unique to human injury; and a means for identifying future areas of investigation. The relational database supports three major sections: (1) the physics section defines exposure circumstances, (2) the clinical/ophthalmologic section includes fundus and scanning laser ophthalmoscope images, and (3) the visual functions section contains specialized visual function exam results. Tools are available for subject-matter experts to estimate parameters like total intraocular energy, ophthalmic lesion grade, and exposure probability. The database is research oriented to provide a means for generating empirical relationships to identify symptoms for definitive diagnosis and treatment of laser induced eye injuries.

  19. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter "linac"); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laserbased acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  20. Fluorescence Microscopy Gets Faster and Clearer: Roles of Photochemistry and Selective Illumination

    PubMed Central

    Wolenski, Joseph S.; Julich, Doerthe

    2014-01-01

    Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophore chemistry have enabled scientists to see beyond the diffraction barrier, image deeper into live specimens, and acquire images at unprecedented speed. Selective plane illumination microscopy has provided significant gains in the spatial and temporal acquisition of fluorescence specimens several mm in thickness. With commercial systems now available, this method promises to expand on recent advances in 2-photon deep-tissue imaging with improved speed and reduced photobleaching compared to laser scanning confocal microscopy. Superresolution microscopes are also available in several modalities and can be coupled with selective plane illumination techniques. The combination of methods to increase resolution, acquisition speed, and depth of collection are now being married to common microscope systems, enabling scientists to make significant advances in live cell and in situ imaging in real time. We show that light sheet microscopy provides significant advantages for imaging live zebrafish embryos compared to laser scanning confocal microscopy. PMID:24600334

  1. Development of the Global Ozone Lidar Demonstrator (GOLD) Instrument for Deployment on the NASA Global Hawk

    NASA Technical Reports Server (NTRS)

    Hair, Jonathan W.; Browell, Edward V.; McGee, Thomas; Butler, Carolyn; Fenn, Marta; Os,ao (. Sued); Notari, Anthony; Collins, James; Cleckner, Craig; Hostetler, Chris

    2010-01-01

    A compact ozone (O3) and aerosol lidar system is being developed for conducting global atmospheric investigations from the NASA Global Hawk Uninhabited Aerial Vehicle (UAV) and for enabling the development and test of a space-based O3 and aerosol lidar. GOLD incorporates advanced technologies and designs to produce a compact, autonomously operating O3 and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. The GOLD system leverages advanced Nd:YAG and optical parametric oscillator laser technologies and receiver optics, detectors, and electronics. Significant progress has been made toward the development of the GOLD system, and this paper describes the objectives of this program, basic design of the GOLD system, and results from initial ground-based atmospheric tests.

  2. Laser bottom hole assembly

    DOEpatents

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  3. Active optical system for advanced 3D surface structuring by laser remelting

    NASA Astrophysics Data System (ADS)

    Pütsch, O.; Temmler, A.; Stollenwerk, J.; Willenborg, E.; Loosen, P.

    2015-03-01

    Structuring by laser remelting enables completely new possibilities for designing surfaces since material is redistributed but not wasted. In addition to technological advantages, cost and time benefits yield from shortened process times, the avoidance of harmful chemicals and the elimination of subsequent finishing steps such as cleaning and polishing. The functional principle requires a completely new optical machine technology that maintains the spatial and temporal superposition and manipulation of three different laser beams emitted from two laser sources of different wavelength. The optical system has already been developed and demonstrated for the processing of flat samples of hot and cold working steel. However, since particularly the structuring of 3D-injection molds represents an application example of high innovation potential, the optical system has to take into account the elliptical beam geometry that occurs when the laser beams irradiate a curved surface. To take full advantage of structuring by remelting for the processing of 3D surfaces, additional optical functionality, called EPS (elliptical pre-shaping) has to be integrated into the existing set-up. The development of the beam shaping devices not only requires the analysis of the mechanisms of the beam projection but also a suitable optical design. Both aspects are discussed in this paper.

  4. Laser-plasma accelerator and femtosecond photon sources-based ultrafast radiation chemistry and biophysics

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.

    2017-02-01

    The initial distribution of energy deposition triggered by the interaction of ionizing radiations (far UV and X rays, electron, proton and accelerated ions) with molecular targets or integrated biological systems is often decisive for the spatio-temporal behavior of radiation effects that take place on several orders of magnitude. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances on primary radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to laser-driven relativistic particles acceleration. Recent advances of powerful TW laser sources (~ 1019 Wcm-2) and laser-plasma interactions providing ultrashort relativistic particle beams in the energy domain 2.5-150 MeV open exciting opportunities for the development of high-energy radiation femtochemistry (HERF). Early radiation damages being dependent on the survival probability of secondary electrons and radial distribution of short-lived radicals inside ionization clusters, a thorough knowledge of these processes involves the real-time probing of primary events in the temporal range 10-14-10-11 s. In the framework of a closed synergy between low-energy radiation femtochemistry (LERF) and the emerging domain of HERF, the paper focuses on early phenomena that occur in the prethermal regime of low-energy secondary electrons, considering very short-lived quantum effects in aqueous environments. A high dose-rate delivered by femtosecond electron beam (~ 1011-1013 Gy s-1) can be used to investigate early radiation processes in native ionization tracks, down to 10-12 s and 10-9 m. We explain how this breakthrough favours the innovating development of real-time nanodosimetry in biologically relevant environments and open new perspectives for spatio-temporal radiation biophysics. The emerging domain of HERF would provide guidance for understanding the specific bioeffects of ultrashort particle bunches. This domain represents also a prerequisite for the control of in vitro and in vivo irradiation at ultrahigh dose-rates or the investigation of ultrafast dose-fractionating phenomena.

  5. Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Bigelow, Chad E.; Iftimia, Nicusor V.; Ustun, Teoman E.; Noojin, Gary D.; Stolarski, David J.; Hodnett, Harvey M.; Imholte, Michelle L.; Kumru, Semih S.; McCall, Michelle N.; Toth, Cynthia A.; Rockwell, Benjamin A.

    2006-02-01

    Precise targeting of retinal structures including retinal pigment epithelial cells, feeder vessels, ganglion cells, photoreceptors, and other cells important for light transduction may enable earlier disease intervention with laser therapies and advanced methods for vision studies. A novel imaging system based upon scanning laser ophthalmoscopy (SLO) with adaptive optics (AO) and active image stabilization was designed, developed, and tested in humans and animals. An additional port allows delivery of aberration-corrected therapeutic/stimulus laser sources. The system design includes simultaneous presentation of non-AO, wide-field (~40 deg) and AO, high-magnification (1-2 deg) retinal scans easily positioned anywhere on the retina in a drag-and-drop manner. The AO optical design achieves an error of <0.45 waves (at 800 nm) over +/-6 deg on the retina. A MEMS-based deformable mirror (Boston Micromachines Inc.) is used for wave-front correction. The third generation retinal tracking system achieves a bandwidth of greater than 1 kHz allowing acquisition of stabilized AO images with an accuracy of ~10 μm. Normal adult human volunteers and animals with previously-placed lesions (cynomolgus monkeys) were tested to optimize the tracking instrumentation and to characterize AO imaging performance. Ultrafast laser pulses were delivered to monkeys to characterize the ability to precisely place lesions and stimulus beams. Other advanced features such as real-time image averaging, automatic highresolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an important tool to clinicians and researchers for early detection and treatment of retinal diseases.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Bo-Young; Choi, Daewoong; Park, Se Hwan

    Korea Atomic Energy Research Institute (KAERI) have been developing the design and deployment methodology of Laser- Induced Breakdown Spectroscopy (LIBS) instrument for safeguards application within the argon hot cell environment at Advanced spent fuel Conditioning Process Facility (ACPF), where ACPF is a facility being refurbished for the laboratory-scaled demonstration of advanced spent fuel conditioning process. LIBS is an analysis technology used to measure the emission spectra of excited elements in the local plasma of a target material induced by a laser. The spectra measured by LIBS are analyzed to verify the quality and quantity of the specific element in themore » target matrix. Recently LIBS has been recognized as a promising technology for safeguards purposes in terms of several advantages including a simple sample preparation and in-situ analysis capability. In particular, a feasibility study of LIBS to remotely monitor the nuclear material in a high radiation environment has been carried out for supporting the IAEA safeguards implementation. Fiber-Optic LIBS (FO-LIBS) deployment was proposed by Applied Photonics Ltd because the use of fiber optics had benefited applications of LIBS by delivering the laser energy to the target and by collecting the plasma light. The design of FO-LIBS instrument for the measurement of actinides in the spent fuel and high temperature molten salt at ACPF had been developed in cooperation with Applied Photonics Ltd. FO-LIBS has some advantages as followings: the detectable plasma light wavelength range is not limited by the optical properties of the thick lead-glass shield window and the potential risk of laser damage to the lead-glass shield window is not considered. The remote LIBS instrument had been installed at ACPF and then the feasibility study for monitoring actinide elements such as uranium, plutonium, and curium in process materials has been carried out. (authors)« less

  7. Roadmap to MaRIE March 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Cris William

    Los Alamos National Laboratory’s proposed MaRIE facility is slated to introduce the world’s highest energy hard x-ray free electron laser (XFEL). As the light source for the Matter-Radiation Interactions in Extremes experimental facility (MaRIE), the 42-keV XFEL, with bursts of x-ray pulses at gigahertz repetition for studying fast dynamical processes, will help accelerate discovery and design of the advanced materials needed to meet 21st-century national security and energy security challenges. Yet the science of free-electron lasers has a long and distinguished history at Los Alamos National Laboratory (LANL), where for nearly four decades Los Alamos scientists have been performing research,more » design, development, and collaboration work in FEL science. The work at Los Alamos has evolved from low-gain amplifier and oscillator FEL development to highbrightness photoinjector development, and later, self-amplified spontaneous emission (SASE) and high-gain amplifier FEL development.« less

  8. Energy conversion and storage program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy conversion; (4) characterization of complex chemical processes; and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  9. High speed visible light communication using blue GaN laser diodes

    NASA Astrophysics Data System (ADS)

    Watson, S.; Viola, S.; Giuliano, G.; Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Targowski, G.; Watson, M. A.; White, H.; Rowe, D.; Laycock, L.; Kelly, A. E.

    2016-10-01

    GaN-based laser diodes have been developed over the last 20 years making them desirable for many security and defence applications, in particular, free space laser communications. Unlike their LED counterparts, laser diodes are not limited by their carrier lifetime which makes them attractive for high speed communication, whether in free space, through fiber or underwater. Gigabit data transmission can be achieved in free space by modulating the visible light from the laser with a pseudo-random bit sequence (PRBS), with recent results approaching 5 Gbit/s error free data transmission. By exploiting the low-loss in the blue part of the spectrum through water, data transmission experiments have also been conducted to show rates of 2.5 Gbit/s underwater. Different water types have been tested to monitor the effect of scattering and to see how this affects the overall transmission rate and distance. This is of great interest for communication with unmanned underwater vehicles (UUV) as the current method using acoustics is much slower and vulnerable to interception. These types of laser diodes can typically reach 50-100 mW of power which increases the length at which the data can be transmitted. This distance could be further improved by making use of high power laser arrays. Highly uniform GaN substrates with low defectivity allow individually addressable laser bars to be fabricated. This could ultimately increase optical power levels to 4 W for a 20-emitter array. Overall, the development of GaN laser diodes will play an important part in free space optical communications and will be vital in the advancement of security and defence applications.

  10. Airborne Lidar for Simultaneous Measurement of Column CO2 and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Antill, Charles W.; Remus, Ruben; Yu, Jirong

    2016-01-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption feathers for the gas at this particular wavelength. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers. This paper will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar. The development of this active optical remote sensing IPDA instrument is targeted for measuring both CO2 and water vapor (H2O) in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver telescope, detection system and data acquisition. Future plans for the IPDA lidar system for ground integration, testing and flight validation will also be presented.

  11. Advanced technology component derating

    NASA Astrophysics Data System (ADS)

    Jennings, Timothy A.

    1992-02-01

    A technical study performed to determine the derating criteria of advanced technology components is summarized. The study covered existing criteria from AFSC Pamphlet 800-27 and the development of new criteria based on data, literature searches, and the use of advanced technology prediction methods developed in RADC-TR-90-72. The devices that were investigated were as follows: VHSIC, ASIC, MIMIC, Microprocessor, PROM, Power Transistors, RF Pulse Transistors, RF Multi-Transistor Packages, Photo Diodes, Photo Transistors, Opto-Electronic Couplers, Injection Laser Diodes, LED, Hybrid Deposited Film Resistors, Chip Resistors, and Capacitors and SAW devices. The results of the study are additional derating criteria that extend the range of AFSC Pamphlet 800-27. These data will be transitioned from the report to AFSC Pamphlet 800-27 for use by government and contractor personnel in derating electronics systems yielding increased safety margins and improved system reliability.

  12. Emerging enhanced imaging technologies of the esophagus: spectroscopy, confocal laser endomicroscopy, and optical coherence tomography.

    PubMed

    Robles, Lourdes Y; Singh, Satish; Fisichella, Piero Marco

    2015-05-15

    Despite advances in diagnoses and therapy, esophageal adenocarcinoma remains a highly lethal neoplasm. Hence, a great interest has been placed in detecting early lesions and in the detection of Barrett esophagus (BE). Advanced imaging technologies of the esophagus have then been developed with the aim of improving biopsy sensitivity and detection of preplastic and neoplastic cells. The purpose of this article was to review emerging imaging technologies for esophageal pathology, spectroscopy, confocal laser endomicroscopy (CLE), and optical coherence tomography (OCT). We conducted a PubMed search using the search string "esophagus or esophageal or oesophageal or oesophagus" and "Barrett or esophageal neoplasm" and "spectroscopy or optical spectroscopy" and "confocal laser endomicroscopy" and "confocal microscopy" and "optical coherence tomography." The first and senior author separately reviewed all articles. Our search identified: 19 in vivo studies with spectroscopy that accounted for 1021 patients and 4 ex vivo studies; 14 clinical CLE in vivo studies that accounted for 941 patients and 1 ex vivo study with 13 patients; and 17 clinical OCT in vivo studies that accounted for 773 patients and 2 ex vivo studies. Human studies using spectroscopy had a very high sensitivity and specificity for the detection of BE. CLE showed a high interobserver agreement in diagnosing esophageal pathology and an accuracy of predicting neoplasia. We also found several clinical studies that reported excellent diagnostic sensitivity and specificity for the detection of BE using OCT. Advanced imaging technology for the detection of esophageal lesions is a promising field that aims to improve the detection of early esophageal lesions. Although advancing imaging techniques improve diagnostic sensitivities and specificities, their integration into diagnostic protocols has yet to be perfected. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Lessons Learned from the Advanced Topographic Laser Altimeter System

    NASA Technical Reports Server (NTRS)

    Garrison, Matt; Patel, Deepak; Bradshaw, Heather; Robinson, Frank; Neuberger, Dave

    2016-01-01

    The ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) instrument is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This presentation walks through the lessons learned from design, hardware, analysis and testing perspective. ATLAS lessons learned include general thermal design, analysis, hardware, and testing issues as well as lessons specific to laser systems, two-phase thermal control, and optical assemblies with precision alignment requirements.

  14. Fifty years of atomic time-keeping at VNIIFTRI

    NASA Astrophysics Data System (ADS)

    Domnin, Yu; Gaigerov, B.; Koshelyaevsky, N.; Poushkin, S.; Rusin, F.; Tatarenkov, V.; Yolkin, G.

    2005-06-01

    Time metrology in Russia in the second half of the twentieth century has been marked, as in other advanced countries, by the rapid development of time and frequency quantum standards and the beginning of atomic time-keeping. This brief review presents the main developments and studies in time and frequency measurement, and the improvement of accuracy and atomic time-keeping at the VNIIFTRI—the National Metrology Institute keeping primary time and frequency standards and ensuring unification of measurement. The milestones along the way have been the ammonia and hydrogen masers, primary caesium beam and fountain standards and laser frequency standards. For many years, VNIIFTRI was the only world laboratory that applied hydrogen-maser clock ensembles for time-keeping. VNIIFTRI's work on international laser standard frequency comparisons and absolute frequency measurements contributed greatly to the adoption by the CIPM of a highly accurate value for the He-Ne/CH4 laser frequency. VNIIFTRI and the VNIIM were the first to establish a united time, frequency and length standard.

  15. A Long Distance Laser Altimeter for Terrain Relative Navigation and Spacecraft Landing

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.

    2014-01-01

    A high precision laser altimeter was developed under the Autonomous Landing and Hazard Avoidance (ALHAT) project at NASA Langley Research Center. The laser altimeter provides slant-path range measurements from operational ranges exceeding 30 km that will be used to support surface-relative state estimation and navigation during planetary descent and precision landing. The altimeter uses an advanced time-of-arrival receiver, which produces multiple signal-return range measurements from tens of kilometers with 5 cm precision. The transmitter is eye-safe, simplifying operations and testing on earth. The prototype is fully autonomous, and able to withstand the thermal and mechanical stresses experienced during test flights conducted aboard helicopters, fixed-wing aircraft, and Morpheus, a terrestrial rocket-powered vehicle developed by NASA Johnson Space Center. This paper provides an overview of the sensor and presents results obtained during recent field experiments including a helicopter flight test conducted in December 2012 and Morpheus flight tests conducted during March of 2014.

  16. Simulation Studies of the Dielectric Grating as an Accelerating and Focusing Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soong, Ken; Peralta, E.A.; Byer, R.L.

    A grating-based design is a promising candidate for a laser-driven dielectric accelerator. Through simulations, we show the merits of a readily fabricated grating structure as an accelerating component. Additionally, we show that with a small design perturbation, the accelerating component can be converted into a focusing structure. The understanding of these two components is critical in the successful development of any complete accelerator. The concept of accelerating electrons with the tremendous electric fields found in lasers has been proposed for decades. However, until recently the realization of such an accelerator was not technologically feasible. Recent advances in the semiconductor industry,more » as well as advances in laser technology, have now made laser-driven dielectric accelerators imminent. The grating-based accelerator is one proposed design for a dielectric laser-driven accelerator. This design, which was introduced by Plettner, consists of a pair of opposing transparent binary gratings, illustrated in Fig. 1. The teeth of the gratings serve as a phase mask, ensuring a phase synchronicity between the electromagnetic field and the moving particles. The current grating accelerator design has the drive laser incident perpendicular to the substrate, which poses a laser-structure alignment complication. The next iteration of grating structure fabrication seeks to monolithically create an array of grating structures by etching the grating's vacuum channel into a fused silica wafer. With this method it is possible to have the drive laser confined to the plane of the wafer, thus ensuring alignment of the laser-and-structure, the two grating halves, and subsequent accelerator components. There has been previous work using 2-dimensional finite difference time domain (2D-FDTD) calculations to evaluate the performance of the grating accelerator structure. However, this work approximates the grating as an infinite structure and does not accurately model a realizable structure. In this paper, we will present a 3-dimensional frequency-domain simulation of both the infinite and the finite grating accelerator structure. Additionally, we will present a new scheme for a focusing structure based on a perturbation of the accelerating structure. We will present simulations of this proposed focusing structure and quantify the quality of the focusing fields.« less

  17. Development of an ultrahigh-performance infrared detector platform for advanced spectroscopic sensing systems

    NASA Astrophysics Data System (ADS)

    Jain, Manish; Wicks, Gary; Marshall, Andrew; Craig, Adam; Golding, Terry; Hossain, Khalid; McEwan, Ken; Howle, Chris

    2014-05-01

    Laser-based stand-off sensing of threat agents (e.g. explosives, toxic industrial chemicals or chemical warfare agents), by detection of distinct infrared spectral absorption signature of these materials, has made significant advances recently. This is due in part to the availability of infrared and terahertz laser sources with significantly improved power and tunability. However, there is a pressing need for a versatile, high performance infrared sensor that can complement and enhance the recent advances achieved in laser technology. This work presents new, high performance infrared detectors based on III-V barrier diodes. Unipolar barrier diodes, such as the nBn, have been very successful in the MWIR using InAs(Sb)-based materials, and in the MWIR and LWIR using type-II InAsSb/InAs superlattice-based materials. This work addresses the extension of the barrier diode architecture into the SWIR region, using GaSb-based and InAs-based materials. The program has resulted in detectors with unmatched performance in the 2-3 μm spectral range. Temperature dependent characterization has shown dark currents to be diffusion limited and equal to, or within a factor of 5, of the Rule 07 expression for Auger-limited HgCdTe detectors. Furthermore, D* values are superior to those of existing detectors in the 2-3 μm band. Of particular significance to spectroscopic sensing systems is the ability to have near-background limited performance at operation temperatures compatible with robust and reliable solid state thermoelectric coolers.

  18. Diode laser treatment and clinical management of multiple oral lesions in patients with hereditary haemorrhagic telangiectasia.

    PubMed

    Favia, G; Tempesta, A; Limongelli, L; Suppressa, P; Sabbà, C; Maiorano, E

    2016-05-01

    Hereditary haemorrhagic telangiectasia (HHT) is rare, and characterised by vascular dysplasia that leads to various symptoms including visceral arteriovenous malformations and mucocutaneous telangiectatic lesions. Our aim was to describe the clinical features and options for the treatment of multiple oral lesions, and to illustrate the efficacy of the diode laser in the treatment of early (<2mm) and advanced lesions (2mm or more). We report 24 patients with 1200 oral telangiectatic lesions, which were often associated with regular bleeding (from monthly to daily), superinfection, pain, and swelling, and treated with multiple sessions of laser according to the number and size of the lesions. Early lesions were treated with a single laser impulse in ultrapulsed mode, and advanced lesions with repeated laser impulses in pulsed mode (t-on 200ms/t-off 500ms), at a power of 8W. Early lesions healed completely after laser photocoagulation with no operative or postoperative complications, while advanced lesions improved with a remarkable reduction in size but more discomfort. Protective occlusal plates were sometimes used to reduce the incidence of new lesions caused by dental trauma. The treatment of oral telangiectatic lesions is still being debated, and it is important to improve quality of life for patients. Diode laser surgery could be an effective treatment for oral lesions in those with hereditary haemorrhagic telangiectasia. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials

    NASA Astrophysics Data System (ADS)

    Garcia-Giron, A.; Sola, D.; Peña, J. I.

    2016-02-01

    In this work, results obtained by laser ablation of advanced ceramics and glass-ceramic materials assisted by liquids are reported. A Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulse-width in the nanosecond range was used to machine the materials, which were immersed in water and ethylene glycol. Variation in geometrical parameters, morphology, and ablation yields were studied by using the same laser working conditions. It was observed that machined depth and removed volume depended on the thermal, optical, and mechanical features of the processed materials as well as on the properties of the surrounding medium in which the laser processing was carried out. Variation in ablation yields was studied in function of the liquid used to assist the laser process and related to refractive index and viscosity. Material features and working conditions were also related to the obtained results in order to correlate ablation parameters with respect to the hardness of the processed materials.

  20. A guide to LIDAR data acquisition and processing for the forests of the Pacific Northwest.

    Treesearch

    Demetrios Gatziolis; Hans-Erik Andersen

    2008-01-01

    Light detection and ranging (LIDAR) is an emerging remote-sensing technology with promising potential to assist in mapping, monitoring, and assessment of forest resources. Continuous technological advancement and substantial reductions in data acquisition cost have enabled acquisition of laser data over entire states and regions. These developments have triggered an...

  1. Highlights of NASA's Role in Developing State-of-the-Art Nondestructive Evaluation for Composites

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Since the 1970's, when the promise of composites was being pursued for aeronautics applications, NASA has had programs that addressed the development of NDE methods for composites. These efforts included both microscopic and macroscopic NDE. At the microscopic level, NDE investigations interrogated composites at the submicron to micron level to understand a composite's microstructure. A novel microfocus CT system was developed as well as the science underlying applications of acoustic microscopy to a composite's component material properties. On the macroscopic scale NDE techniques were developed that advanced the capabilities to be faster and more quantitative. Techniques such as stiffness imaging, ultrasonic arrays, laser based ultrasound, advanced acoustic emission, thermography, and novel health monitoring systems were researched. Underlying these methods has been a strong modeling capability that has aided in method development.

  2. The role of lasers in modern urology

    PubMed Central

    Dołowy, Łukasz; Dembowski, Janusz; Zdrojowy, Romuald; Kołodziej, Anna

    2015-01-01

    Introduction The functioning of modern urological departments and the high level of service they provide is possible through, among other things, the use of modern laser techniques. Material and methods Open operations have been replaced by minimally invasive procedures, and classical surgical tools by advanced lasers. The search for new applications with lasers began as technology developed. Among many devices available, holmium, diode and thulium lasers are currently the most popular. Results Depending on the wavelength, the absorption by water and hemoglobin and the depth of penetration, lasers can be used for coagulation, vaporization and enucleation. In many centres, after all the possibilities of pharmacological treatment have been exhausted, lasers are used as the primary treatment for patients with benign prostatic hyperplasia, with therapeutic results that are better than those obtained through open or endoscopic operations. The use of lasers in the treatment of urolithiasis, urinary strictures and bladder tumours has made treatment of older patients with multiple comorbidities safe, without further necessity to modify the anticoagulant drug treatment. Laser procedures are additionally less invasive, reduce hospitalization time and enable a shorter bladder catheterization time, sometimes even eliminating the need for bladder catherterization completely. Such procedures are also characterized by more stable outcomes and a lower number of reoperations. Conclusions There are also indications that with the increased competition among laser manufacturers, decreased purchase and maintenance costs, and increased operational safety, laser equipment will become mandatory and indispensable asset in all urology wards. PMID:26251737

  3. Contrast and Intensity upgrades to the Texas Petawatt laser for hadron generation and non-linear QED experiments

    NASA Astrophysics Data System (ADS)

    Hegelich, Bjorn M.; Arefiev, Alexey; Ditmire, Todd; Donovan, Michael E.; Dyer, Gillis; Gaul, Erhard; Labun, Lance; Luedtke, Scott; Martinez, Mikael; McCarry, Edward; Stark, David; Pomerantz, Ishay; Tiwari, Ganesh; Toncian, Toma

    2015-11-01

    Advances in laser-based hadron generation, especially with respect to particle energy, as well as reaching the new regime of radiation dominated plasmas and non-linear QED, require laser fields of Petavolts per meter that preferably interact with very high density, overcritical plasmas. To achieve these conditions we are upgrading the Texas Petawatt Laser both respect to on-target laser intensity and laser-contrast, aiming to reach intensities of ~ 5x1022 W/cm2 and pulse contrast parameters allowing the interaction with overcritical, yet ultrathin, sub-micron targets. We will report on the planned experiments aimed at ion acceleration, neutron generation and the first experimental measurement of radiation reactions to motivate the chosen upgrade parameters. We will further report on the technical changes to the laser and present first measurements of the achieved intensity and contrast parameters. This work was supported by NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSE-FP014), the Air Force Office of Scientific Research (FA9550-14-1-0045) and the National Institute of Health SBIR.

  4. Recent advances in the development and application of nanoelectrodes.

    PubMed

    Fan, Yunshan; Han, Chu; Zhang, Bo

    2016-10-07

    Nanoelectrodes have key advantages compared to electrodes of conventional size and are the tool of choice for numerous applications in both fundamental electrochemistry research and bioelectrochemical analysis. This Minireview summarizes recent advances in the development, characterization, and use of nanoelectrodes in nanoscale electroanalytical chemistry. Methods of nanoelectrode preparation include laser-pulled glass-sealed metal nanoelectrodes, mass-produced nanoelectrodes, carbon nanotube based and carbon-filled nanopipettes, and tunneling nanoelectrodes. Several new topics of their recent application are covered, which include the use of nanoelectrodes for electrochemical imaging at ultrahigh spatial resolution, imaging with nanoelectrodes and nanopipettes, electrochemical analysis of single cells, single enzymes, and single nanoparticles, and the use of nanoelectrodes to understand single nanobubbles.

  5. The diagnostics of ultra-short pulse laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Roth, Markus

    2011-09-01

    Since the invention of the laser, coherent light has been used to break down solid or gaseous material and transform it into a plasma. Over the last three decades two things have changed. Due to multiple advancements and design of high power lasers it is now possible to increase the electric and magnetic field strength that pushed the electron motion towards the regime of relativistic plasma physics. Moreover, due to the short pulse duration of the driving laser the underlying physics has become so transient that concepts like thermal equilibrium (even a local one) or spatial isotropy start to fail. Consequently short pulse laser-driven plasmas have become a rich source of new phenomena that we are just about beginning to explore. Such phenomena, like particle acceleration, nuclear laser-induced reactions, the generation of coherent secondary radiation ranging from THz to high harmonics and the production of attosecond pulses have excited an enormous interest in the study of short pulse laser plasmas. The diagnostics of such ultra-short pulse laser plasmas is a challenging task that involves many and different techniques compared to conventional laser-produced plasmas. While this review cannot cover the entire field of diagnostics that has been developed over the last years, we will try to give a summarizing description of the most important techniques that are currently being used.

  6. Controllable robust laser driven ion acceleration from near-critical density relativistic self-transparent plasma

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Meyer-Ter-Vehn, Juergen; Ruhl, Hartmut

    2017-10-01

    We introduce an alternative approach for laser driven self-injected high quality ion acceleration. We call it ion wave breaking acceleration. It operates in relativistic self-transparent plasma for ultra-intense ultra-short laser pulses. Laser propagating in a transparent plasma excites an electron wave as well as an ion wave. When the ion wave breaks, a fraction of ions is self-injected into the positive part of the laser driven wake. This leads to a superior ion pulse with peaked energy spectra; in particular in realistic three-dimensional geometry, the injection occurs localized close to the laser axis producing highly directed bunches. A theory is developed to investigate the ion wave breaking dynamics. Three dimensional Particle-in-Cell simulations with pure-gaussian laser pulses and pre-expanded near-critical density plasma targets have been done to verify the theoretical results. It is shown that hundreds of MeV, easily controllable and manipulable, micron-scale size, highly collimated and quasi-mono-energetic ion beams can be produced by using ultra-intense ultra-short laser pulses with total laser energies less than 10 Joules. Such ion beams may find important applications in tumour therapy. B. Liu acknowledges support from the Alexander von Humboldt Foundation. B. Liu and H. Ruhl acknowledge supports from the Gauss Centre for Supercomputing (GCS), and the Cluster-of-Excellence Munich Centre for Advanced Photonics (MAP).

  7. Lasers and wound healing.

    PubMed

    Nemeth, A J

    1993-10-01

    The advances in laser surgery over the past decade have been remarkable and have significantly altered the management of a host of dermatologic disorders. This article focuses on the CO2 laser as a cutting and vaporization tool and reviews the features that distinguish CO2 laser-induced wounds from those created by a scalpel. Tissue welding, wound management after skin treatment with the visible light lasers based on the principle of selective photothermolysis, as well as the controversial field of low-energy laser therapy (biostimulation) are also addressed.

  8. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology

    PubMed Central

    Omi, Tokuya; Numano, Kayoko

    2014-01-01

    Background: Tremendous advances have been made in the medical application of the laser in the past few decades. Many diseases in the dermatological field are now indications for laser treatment that qualify for reimbursement by many national health insurance systems. Among laser types, the carbon dioxide (CO2) laser remains an important system for the dermatologist. Rationale: The lasers used in photosurgery have wavelengths that differ according to their intended use and are of various types, but the CO2 laser is one of the most widely used lasers in the dermatology field. With its wavelength in the mid-infrared at 10,600 nm, CO2 laser energy is wellabsorbed in water. As skin contains a very high water percentage, this makes the CO2 laser ideal for precise, safe ablation with good hemostasis. In addition to its efficacy in ablating benign raised lesions, the CO2 laser has been reported to be effective in the field of esthetic dermatology in the revision of acne scars as well as in photorejuvenation. With the addition of fractionation of the beam of energy into myriad microbeams, the fractional CO2 laser has offered a bridge between the frankly full ablative indications and the nonablative skin rejuvenation systems of the 2000s in the rejuvenation of photoaged skin on and off the face. Conclusions: The CO2 laser remains an efficient, precise and safe system for the dermatologist. Technological advances in CO2 laser construction have meant smaller spot sizes and greater precision for laser surgery, and more flexibility in tip sizes and protocols for fractional CO2 laser treatment. The range of dermatological applications of the CO2 laser is expected to continue to increase in the future. PMID:24771971

  9. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology.

    PubMed

    Omi, Tokuya; Numano, Kayoko

    2014-03-27

    Tremendous advances have been made in the medical application of the laser in the past few decades. Many diseases in the dermatological field are now indications for laser treatment that qualify for reimbursement by many national health insurance systems. Among laser types, the carbon dioxide (CO2) laser remains an important system for the dermatologist. The lasers used in photosurgery have wavelengths that differ according to their intended use and are of various types, but the CO2 laser is one of the most widely used lasers in the dermatology field. With its wavelength in the mid-infrared at 10,600 nm, CO2 laser energy is wellabsorbed in water. As skin contains a very high water percentage, this makes the CO2 laser ideal for precise, safe ablation with good hemostasis. In addition to its efficacy in ablating benign raised lesions, the CO2 laser has been reported to be effective in the field of esthetic dermatology in the revision of acne scars as well as in photorejuvenation. With the addition of fractionation of the beam of energy into myriad microbeams, the fractional CO2 laser has offered a bridge between the frankly full ablative indications and the nonablative skin rejuvenation systems of the 2000s in the rejuvenation of photoaged skin on and off the face. The CO2 laser remains an efficient, precise and safe system for the dermatologist. Technological advances in CO2 laser construction have meant smaller spot sizes and greater precision for laser surgery, and more flexibility in tip sizes and protocols for fractional CO2 laser treatment. The range of dermatological applications of the CO2 laser is expected to continue to increase in the future.

  10. Compact, High-Power, Fiber-Laser-Based Coherent Sources Tunable in the Mid-Infrared and THz Spectrum

    DTIC Science & Technology

    2015-02-20

    conversion sources and optical parametric oscillators (OPOs) for the deep mid-infrared (mid-IR) spectral regions >5 μm. We have successfully developed... oscillators (OPOs) for the deep mid-infrared (mid-IR) spectral regions >5 µm. We have successfully developed tunable deep mid-IR systems in both...the advancement of nonlinear frequency conversion sources and optical parametric oscillators (OPOs) for the deep mid-infrared (mid- IR) spectral

  11. SPADAS: a high-speed 3D single-photon camera for advanced driver assistance systems

    NASA Astrophysics Data System (ADS)

    Bronzi, D.; Zou, Y.; Bellisai, S.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F.

    2015-02-01

    Advanced Driver Assistance Systems (ADAS) are the most advanced technologies to fight road accidents. Within ADAS, an important role is played by radar- and lidar-based sensors, which are mostly employed for collision avoidance and adaptive cruise control. Nonetheless, they have a narrow field-of-view and a limited ability to detect and differentiate objects. Standard camera-based technologies (e.g. stereovision) could balance these weaknesses, but they are currently not able to fulfill all automotive requirements (distance range, accuracy, acquisition speed, and frame-rate). To this purpose, we developed an automotive-oriented CMOS single-photon camera for optical 3D ranging based on indirect time-of-flight (iTOF) measurements. Imagers based on Single-photon avalanche diode (SPAD) arrays offer higher sensitivity with respect to CCD/CMOS rangefinders, have inherent better time resolution, higher accuracy and better linearity. Moreover, iTOF requires neither high bandwidth electronics nor short-pulsed lasers, hence allowing the development of cost-effective systems. The CMOS SPAD sensor is based on 64 × 32 pixels, each able to process both 2D intensity-data and 3D depth-ranging information, with background suppression. Pixel-level memories allow fully parallel imaging and prevents motion artefacts (skew, wobble, motion blur) and partial exposure effects, which otherwise would hinder the detection of fast moving objects. The camera is housed in an aluminum case supporting a 12 mm F/1.4 C-mount imaging lens, with a 40°×20° field-of-view. The whole system is very rugged and compact and a perfect solution for vehicle's cockpit, with dimensions of 80 mm × 45 mm × 70 mm, and less that 1 W consumption. To provide the required optical power (1.5 W, eye safe) and to allow fast (up to 25 MHz) modulation of the active illumination, we developed a modular laser source, based on five laser driver cards, with three 808 nm lasers each. We present the full characterization of the 3D automotive system, operated both at night and during daytime, in both indoor and outdoor, in real traffic, scenario. The achieved long-range (up to 45m), high dynamic-range (118 dB), highspeed (over 200 fps) 3D depth measurement, and high precision (better than 90 cm at 45 m), highlight the excellent performance of this CMOS SPAD camera for automotive applications.

  12. Unclassified Publications of Lincoln Laboratory, 1 January-31 December 1987. Volume 13

    DTIC Science & Technology

    1987-12-31

    Visible-Laser Photochemical Etching of Cr , Mo, and W 5901 High-Speed Electronic Beam Steering Using Injection Locking of a Laser-Diode Array...of High- Power Broad-Area Diode Lasers High-Temperature Point-Contact Transistors and Schottky Diodes Formed on Synthetic Boron- Doped Diamond...SPEECHES MS No. 593IB C02 Laser Radar 6550B Recent Advances in Transition-Metal- Doped Lasers 6714D Radiation Damage in Dry

  13. Three-year program to improve critical 1-micron Qsw laser technology for Earth observation

    NASA Astrophysics Data System (ADS)

    Sakaizawa, Daisuke; Chishiki, Yoshikazu; Satoh, Yohei; Hanada, Tatsuyuki; Yamakawa, Shiro; Ogawa, Takayo; Wada, Satoshi; Ishii, Shoken; Mizutani, Kohei; Yasui, Motoaki

    2012-11-01

    Laser remote sensing technologies are valuable for a variety of scientific requirements. These measurement techniques are involved in several earth science areas, including atmospheric chemistry, aerosols and clouds, wind speed and directions, prediction of pollution, oceanic mixed layer depth, vegetation canopy height (biomass), ice sheet, surface topography, and others. Much of these measurements have been performed from the ground to aircraft over the past decades. To improve knowledge of these science areas with transport models (e.g. AGCM), further advances of vertical profile are required. JAXA collaborated with NICT and RIKEN started a new cross-sectional 3-year program to improve a technology readiness of the critical 1-micron wavelengths from 2011. The efficient frequency conversions such as second and third harmonic generation and optical parametric oscillation/generation are applied. A variety of elements are common issues to lidar instruments, which includes heat rejection using high thermal conductivity materials, laser diode life time and reliability, wavelength control, and suppression of contamination control. And the program has invested in several critical areas including advanced laser transmitter technologies to enable science measurements and improvement of knowledge for space-based laser diode arrays, Pockels cells, advanced nonlinear wavelength conversion technology for space-based LIDIRs. Final goal is aim to realize 15 watt class Q-switched pulse laser over 3-year lifetime.

  14. Laser pattern generator challenges in airborne molecular contamination protection

    NASA Astrophysics Data System (ADS)

    Ekberg, Mats; Skotte, Per-Uno; Utterback, Tomas; Paul, Swaraj; Kishkovich, Oleg P.; Hudzik, James S.

    2003-08-01

    The introduction of photomask laser pattern generators presents new challenges to system designers and manufacturers. One of the laser pattern generator's environmental operating challenges is Airborne Molecular Contamination (AMC), which affects both chemically amplified resists (CAResist) and laser optics. Similar challenges in CAResist protection have already been addressed in semiconductor wafer lithography with reasonable solutions and experience gained by all those involved. However, photomask and photomask equipment manufacturers have not previously had a comparable experience, and some photomask AMC issues differ from those seen in semiconductor wafer lithography. Culminating years of AMC experience, the authors discuss specific requirements of Photomask AMC. Air sampling and material of construction analysis were performed to understand these particular AMC challenges and used to develop an appropriate filtration specification for different classes of contaminates. The authors portray the importance of cooperation between tool designers and AMC experts early in the design stage to assure goal attainment to maximize both process stability and machine productivity in advanced mask making. In conclusion, the authors provide valuable recommendations to both laser tool users and other equipment manufacturers.

  15. Advanced Orion Optimized Laser System Analysis

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Contractor shall perform a complete analysis of the potential of the solid state laser in the very long pulse mode (100 ns pulse width, 10-30 hz rep-rate) and in the very short pulse mode (100 ps pulse width 10-30 hz rep rate) concentrating on the operation of the device in the 'hot-rod' mode, where no active cooling the laser operation is attempted. Contractor's calculations shall be made of the phase aberrations which develop during the repped-pulse train, and the results shall feed into the adaptive optics analyses. The contractor shall devise solutions to work around ORION track issues. A final report shall be furnished to the MSFC COTR including all calculations and analysis of estimates of bulk phase and intensity aberration distribution in the laser output beam as a function of time during the repped-pulse train for both wave forms (high-energy/long-pulse, as well as low-energy/short-pulse). Recommendations shall be made for mitigating the aberrations by laser re-design and/or changes in operating parameters of optical pump sources and/or designs.

  16. Down-Bore Two-Laser Heterodyne Velocimetry of an Implosion-Driven Hypervelocity Launcher

    NASA Astrophysics Data System (ADS)

    Hildebrand, Myles; Huneault, Justin; Loiseau, Jason; Higgins, Andrew J.

    2015-06-01

    The implosion-driven launcher uses explosives to shock-compress helium, driving well-characterized projectiles to velocities exceeding 10 km/s. The masses of projectiles range between 0.1 - 10 g, and the design shows excellent scalability, reaching similar velocities across different projectile sizes. In the past, velocity measurements have been limited to muzzle velocity obtained via a high-speed videography upon the projectile exiting the launch tube. Recently, Photonic Doppler Velocimetry (PDV) has demonstrated the ability to continuously measure in-bore velocity, even in the presence of significant blow-by of high temperature helium propellant past the projectile. While a single-laser PDV is limited to approximately 8 km/s, a two-laser PDV system is developed that uses two lasers operating near 1550 nm to provide velocity measurement capabilities up to 16 km/s. The two laser PDV system is used to obtain a continuous velocity history of the projectile throughout the entire launch cycle. These continuous velocity data are used to validate models of the launcher cycle and compare different advanced concepts aimed at increasing the projectile velocity to well beyond 10 km/s.

  17. Advanced solar energy conversion. [solar pumped gas lasers

    NASA Technical Reports Server (NTRS)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  18. Non-optically combined multispectral source for IR, visible, and laser testing

    NASA Astrophysics Data System (ADS)

    Laveigne, Joe; Rich, Brian; McHugh, Steve; Chua, Peter

    2010-04-01

    Electro Optical technology continues to advance, incorporating developments in infrared and laser technology into smaller, more tightly-integrated systems that can see and discriminate military targets at ever-increasing distances. New systems incorporate laser illumination and ranging with gated sensors that allow unparalleled vision at a distance. These new capabilities augment existing all-weather performance in the mid-wave infrared (MWIR) and long-wave infrared (LWIR), as well as low light level visible and near infrared (VNIR), giving the user multiple means of looking at targets of interest. There is a need in the test industry to generate imagery in the relevant spectral bands, and to provide temporal stimulus for testing range-gated systems. Santa Barbara Infrared (SBIR) has developed a new means of combining a uniform infrared source with uniform laser and visible sources for electro-optics (EO) testing. The source has been designed to allow laboratory testing of surveillance systems incorporating an infrared imager and a range-gated camera; and for field testing of emerging multi-spectral/fused sensor systems. A description of the source will be presented along with performance data relating to EO testing, including output in pertinent spectral bands, stability and resolution.

  19. Advanced development of Pb-salt semiconductor lasers for the 8.0 to 15.0 micrometer spectral region

    NASA Technical Reports Server (NTRS)

    Linden, K. J.; Butler, J. F.; Nill, K. W.

    1977-01-01

    The technology was studied for producing Pb-salt diode lasers for the 8-51 micron spectral region suitable for use as local oscillators in a passive Laser Heterodyne Spectrometer (LHS). Consideration was given to long range NASA plans for the utilization of the passive LHS in a space shuttle environment. The general approach was to further develop the method of compositional interdiffusion (CID) recently reported, and used successfully at shorter wavelength. This technology was shown to provide an effective and reproducible method of producing a single-heterostructure (SH) diode of either the heterojunction or single-sided configuration. Performance specifications were exceeded in several devices, with single-ended CW power outputs as high as 0.88 milliwatts in a mode being achieved. The majority of the CID lasers fabricated had CW operating temperatures of over 60K; 30% of them operated CW above the boiling temperature of liquid nitrogen. CW operation above liquid nitrogen temperature was possible for wavelengths as long as 10.3 microns. Operation at 77K is significant with respect to space shuttle operations since its allows considerable simplification of cooling method.

  20. An Overview of Communications Technology and Development Efforts for 2015 SBIR Phase I

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report highlights innovative SBIR 2015 Phase I projects specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are fifteen technologies featured with emphasis on a wide spectrum of applications such as novel solid state lasers for space-based water vapor dial; wide temperature, high voltage and energy density capacitors for aerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser for methane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites; a SIC-based microcontroller for high-temperature in-situ instruments and systems; improved yield, performance and reliability of high-actuator-count deformable mirrors; embedded multifunctional optical sensor system; switching electronics for space-based telescopes with advanced AO systems; integrated miniature DBR laser module for Lidar instruments; and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. space-based water vapor dial; wide temperature, high voltage and energy density capacitors foraerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser formethane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites.

  1. Laser decontamination and decomposition of PCB-containing paint

    NASA Astrophysics Data System (ADS)

    Anthofer, A.; Kögler, P.; Friedrich, C.; Lippmann, W.; Hurtado, A.

    2017-01-01

    Decontamination of concrete surfaces contaminated with paint containing polychlorinated biphenyls is an elaborate and complex task that must be performed within the scope of nuclear power plant dismantling as well as conventional pollutant cleanup in buildings. The state of the art is mechanical decontamination, which generates dust as well as secondary waste and is both dangerous and physically demanding. Moreover, the ablated PCB-containing paint has to be treated in a separate process step. Laser technology offers a multitude of possibilities for contactless surface treatment with no restoring forces and a high potential for automation. An advanced experimental setup was developed for performing standard laser decontamination investigations on PCB-painted concrete surfaces. As tested with epoxy paints, a high-power diode laser with a laser power of 10 kW in continuous wave (CW) mode was implemented and resulted in decontamination of the concrete surfaces as well as significant PCB decomposition. The experimental results showed PCB removal of 96.8% from the concrete surface and PCB decomposition of 88.8% in the laser decontamination process. Significant PCDD/F formation was thereby avoided. A surface ablation rate of approx. 7.2 m2/h was realized.

  2. Spatiotemporal dynamics of DNA repair proteins following laser microbeam induced DNA damage – When is a DSB not a DSB?☆

    PubMed Central

    Reynolds, Pamela; Botchway, Stanley W.; Parker, Anthony W.; O’Neill, Peter

    2013-01-01

    The formation of DNA lesions poses a constant threat to cellular stability. Repair of endogenously and exogenously produced lesions has therefore been extensively studied, although the spatiotemporal dynamics of the repair processes has yet to be fully understood. One of the most recent advances to study the kinetics of DNA repair has been the development of laser microbeams to induce and visualize recruitment and loss of repair proteins to base damage in live mammalian cells. However, a number of studies have produced contradictory results that are likely caused by the different laser systems used reflecting in part the wavelength dependence of the damage induced. Additionally, the repair kinetics of laser microbeam induced DNA lesions have generally lacked consideration of the structural and chemical complexity of the DNA damage sites, which are known to greatly influence their reparability. In this review, we highlight the key considerations when embarking on laser microbeam experiments and interpreting the real time data from laser microbeam irradiations. We compare the repair kinetics from live cell imaging with biochemical and direct quantitative cellular measurements for DNA repair. PMID:23688615

  3. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered by Chen et al where the driver, instead of being a laser, is a whistler wave known as the magnetowave plasma accelerator. The application to electron--positron plasmas that are found around pulsars is studied in the paper by Shukla, and to muon acceleration by Peano et al. Electron wakefield experiments are now concentrating on control and optimisation of high-quality beams that can be used as drivers for novel radiation sources. Studies by Thomas et al show that filamentation has a deleterious effect on the production of high quality mono-energetic electron beams and is caused by non-optimal choice of focusing geometry and/or electron density. It is crucial to match the focusing with the right plasma parameters and new types of plasma channels are being developed, such as the magnetically controlled plasma waveguide reported by Froula et al. The magnetic field provides a pressure profile shaping the channel to match the guiding conditions of the incident laser, resulting in predicted electron energies of 3GeV. In the forced laser-wakefield experiment Fang et al show that pump depletion reduces or inhibits the acceleration of electrons. One of the earlier laser acceleration concepts known as the beat wave may be revived due to the work by Kalmykov et al who report on all-optical control of nonlinear focusing of laser beams, allowing for stable propagation over several Rayleigh lengths with pre-injected electrons accelerated beyond 100 MeV. With the increasing number of petawatt lasers, attention is being focused on different acceleration regimes such as stochastic acceleration by counterpropagating laser pulses, the relativistic mirror, or the snow-plough effect leading to single-step acceleration reported by Mendonca. During wakefield acceleration the leading edge of the pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake while the trailing edge of the laser pulse undergoes frequency up-shift. This is commonly known as photon deceleration and acceleration and is the result of a modulational instability. Simulations reported by Trines et al using a photon-in-cell code or wave kinetic code agree extremely well with experimental observation. Ion acceleration is actively studied; for example the papers by Robinson, Macchi, Marita and Tripathi all discuss different types of acceleration mechanisms from direct laser acceleration, Coulombic explosion and double layers. Ion acceleration is an exciting development that may have great promise in oncology. The surprising application is in muon acceleration, demonstrated by Peano et al who show that counterpropagating laser beams with variable frequencies drive a beat structure with variable phase velocity, leading to particle trapping and acceleration with possible application to a future muon collider and neutrino factory. Laser and plasma accelerators remain one of the exciting areas of plasma physics with applications in many areas of science ranging from laser fusion, novel high-brightness radiation sources, particle physics and medicine. The guest editor would like to thank all authors and referees for their invaluable contributions to this special issue.

  4. Advanced Rigid Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    NASA Exploration Systems Mission Directorate s (ESMD) Entry, Descent, and Landing (EDL) Technology Development Project (TDP) and the NASA Aeronautics Research Mission Directorate s (ARMD) Hypersonics Project are developing new advanced rigid ablators in an effort to substantially increase reliability, decrease mass, and reduce life cycle cost of rigid aeroshell-based entry systems for multiple missions. Advanced Rigid Ablators combine ablation resistant top layers capable of high heat flux entry and enable high-speed EDL with insulating mass-efficient bottom that, insulate the structure and lower the areal weight. These materials may benefit Commercial Orbital Transportation Services (COTS) vendors and may potentially enable new NASA missions for higher velocity returns (e.g. asteroid, Mars). The materials have been thermally tested to 400-450 W/sq cm at the Laser Hardened Materials Evaluation Lab (LHMEL), Hypersonics Materials Evaluation Test System (HyMETS) and in arcjet facilities. Tested materials exhibit much lower backface temperatures and reduced recession over the baseline materials (PICA). Although the EDL project is ending in FY11, NASA in-house development of advanced ablators will continue with a focus on varying resin systems and fiber/resin interactions.

  5. Organic Micro/Nanoscale Lasers.

    PubMed

    Zhang, Wei; Yao, Jiannian; Zhao, Yong Sheng

    2016-09-20

    Micro/nanoscale lasers that can deliver intense coherent light signals at (sub)wavelength scale have recently captured broad research interest because of their potential applications ranging from on-chip information processing to high-throughput sensing. Organic molecular materials are a promising kind of ideal platform to construct high-performance microlasers, mainly because of their superiority in abundant excited-state processes with large active cross sections for high gain emissions and flexibly assembled structures for high-quality microcavities. In recent years, ever-increasing efforts have been dedicated to developing such organic microlasers toward low threshold, multicolor output, broadband tunability, and easy integration. Therefore, it is increasingly important to summarize this research field and give deep insight into the structure-property relationships of organic microlasers to accelerate the future development. In this Account, we will review the recent advances in organic miniaturized lasers, with an emphasis on tunable laser performances based on the tailorable microcavity structures and controlled excited-state gain processes of organic materials toward integrated photonic applications. Organic π-conjugated molecules with weak intermolecular interactions readily assemble into regular nanostructures that can serve as high-quality optical microcavities for the strong confinement of photons. On the basis of rational material design, a series of optical microcavities with different structures have been controllably synthesized. These microcavity nanostructures can be endowed with effective four-level dynamic gain processes, such as excited-state intramolecular charge transfer, excited-state intramolecular proton transfer, and excimer processes, that exhibit large dipole optical transitions for strongly active gain behaviors. By tailoring these excited-state processes with molecular/crystal engineering and external stimuli, people have effectively modulated the performances of organic micro/nanolasers. Furthermore, by means of controlled assembly and tunable laser performances, efficient outcoupling of microlasers has been successfully achieved in various organic hybrid microstructures, showing considerable potential for the integrated photonic applications. This Account starts by presenting an overview of the research evolution of organic microlasers in terms of microcavity resonators and energy-level gain. Then a series of strategies to tailor the microcavity structures and excited-state dynamics of organic nanomaterials for the modulation of lasing performances are highlighted. In the following part, we introduce the construction and advanced photonic functionalities of organic-microlaser-based hybrid structures and their applications in integrated nanophotonics. Finally, we provide our outlook on the current challenges as well as the future development of organic microlasers. It is anticipated that this Account will provide inspiration for the development of miniaturized lasers with desired performances by tailoring of excited-state processes and microcavity structures toward integrated photonic applications.

  6. High resolution temperature mapping of gas turbine combustor simulator exhaust with femtosecond laser induced fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan

    2017-04-01

    Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.

  7. Combustor deployments of femtosecond laser written fiber Bragg grating arrays for temperature measurements surpassing 1000°C

    NASA Astrophysics Data System (ADS)

    Walker, Robert B.; Ding, Huimin; Coulas, David; Mihailov, Stephen J.; Duchesne, Marc A.; Hughes, Robin W.; McCalden, David J.; Burchat, Ryan; Yandon, Robert; Yun, Sangsig; Ramachandran, Nanthan; Charbonneau, Michel

    2017-05-01

    Femtosecond Infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent to advanced power plant technologies and gas turbine engines, under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper reviews our fabrication and deployment of hundreds of fs-IR written FBGs, for monitoring temperature gradients of an oxy-fuel fluidized bed combustor and an aerospace gas turbine combustor simulator.

  8. Laser Doppler velocimetry primer

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1985-01-01

    Advanced research in experimental fluid dynamics required a familiarity with sophisticated measurement techniques. In some cases, the development and application of new techniques is required for difficult measurements. Optical methods and in particular, the laser Doppler velocimeter (LDV) are now recognized as the most reliable means for performing measurements in complex turbulent flows. And such, the experimental fluid dynamicist should be familiar with the principles of operation of the method and the details associated with its application. Thus, the goals of this primer are to efficiently transmit the basic concepts of the LDV method to potential users and to provide references that describe the specific areas in greater detail.

  9. Novel approaches to increasing the brightness of broad area lasers

    NASA Astrophysics Data System (ADS)

    Crump, P.; Winterfeldt, M.; Decker, J.; Ekterai, M.; Fricke, J.; Knigge, S.; Maaßdorf, A.; Erbert, G.

    2016-03-01

    Progress in studies to increase the lateral brightness Blat of broad area lasers is reviewed. Blat=Pout/BPPlat is maximized by developing designs and technology for lowest lateral beam parameter product, BPPlat, at highest optical output power Pout. This can be achieved by limiting the number of guided lateral modes and by improving the beam quality of low-order lateral modes. Important effects to address include process and packaging induced wave-guiding, lateral carrier accumulation and the thermal lens profile. A careful selection of vertical design is also shown to be important, as are advanced techniques to filter out higher order modes.

  10. Development of fiber lasers and devices for coherent Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Lamb, Erin Stranford

    As ultrafast laser technology has found expanding application in machining, spectroscopy, microscopy, surgery, and numerous other areas, the desire for inexpensive and robust laser sources has grown. Until recently, nonlinear effects in fiber systems due to the tight confinement of the light in the core have limited their performance. However, with advances in managing nonlinearity through pulse propagation physics and the use of large core fibers, the performance of fiber lasers can compete with that of their solid-state counterparts. As specific applications, such as coherent Raman scattering microscopy, emerge that stand to benefit from fiber technology, new performance challenges in areas such as laser noise are anticipated. This thesis studies nonlinear pulse propagation in fiber lasers and fiber parametric devices. Applications of dissipative solitons and self-similar pulse propagation to low-repetition rate oscillators that have the potential to simplify short-pulse amplification schemes will be examined. The rest of this thesis focuses on topics relevant to fiber laser development for coherent Raman scattering microscopy sources. Coherent pulse division and recombination inside the laser cavity will be introduced as an energy-scaling mechanism and demonstrated for a fiber soliton laser. The relative intensity noise properties of mode-locked fiber lasers, with a particular emphasis on normal dispersion lasers, will be explored in simulation and experiment. A fiber optical parametric oscillator will be studied in detail for low noise frequency conversion of picosecond pulses, and its utility for coherent Raman imaging will be demonstrated. Spectral compression of femtosecond pulses is used to generate picosecond pulses to pump this device, and this technique provides a route to future noise reduction in the system. Furthermore, this device forms a multimodal source capable of providing the picosecond pulses for coherent Raman scattering microscopy and the high energy femtosecond pulses for other multiphoton imaging techniques. Finally, ideas for future extensions of this work will be discussed.

  11. Inter-satellite laser link acquisition with dual-way scanning for Space Advanced Gravity Measurements mission

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Yi; Ming, Min; Jiang, Yuan-Ze; Duan, Hui-Zong; Yeh, Hsien-Chi

    2018-06-01

    Laser link acquisition is a key technology for inter-satellite laser ranging and laser communication. In this paper, we present an acquisition scheme based on the differential power sensing method with dual-way scanning, which will be used in the next-generation gravity measurement mission proposed in China, called Space Advanced Gravity Measurements (SAGM). In this scheme, the laser beams emitted from two satellites are power-modulated at different frequencies to enable the signals of the two beams to be measured distinguishably, and their corresponding pointing angles are determined by using the differential power sensing method. As the master laser beam and the slave laser beam are decoupled, the dual-way scanning method, in which the laser beams of both the master and the slave satellites scan uncertainty cones simultaneously and independently, can be used, instead of the commonly used single-way scanning method, in which the laser beam of one satellite scans and that of the other one stares. Therefore, the acquisition time is reduced significantly. Numerical simulation and experiments of the acquisition process are performed using the design parameters of the SAGM mission. The results show that the average acquisition time is less than 10 s for a scanning range of 1-mrad radius with a success rate of more than 99%.

  12. Geometrical quality evaluation in laser cutting of Inconel-718 sheet by using Taguchi based regression analysis and particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Shrivastava, Prashant Kumar; Pandey, Arun Kumar

    2018-03-01

    The Inconel-718 is one of the most demanding advanced engineering materials because of its superior quality. The conventional machining techniques are facing many problems to cut intricate profiles on these materials due to its minimum thermal conductivity, minimum elastic property and maximum chemical affinity at magnified temperature. The laser beam cutting is one of the advanced cutting method that may be used to achieve the geometrical accuracy with more precision by the suitable management of input process parameters. In this research work, the experimental investigation during the pulsed Nd:YAG laser cutting of Inconel-718 has been carried out. The experiments have been conducted by using the well planned orthogonal array L27. The experimentally measured values of different quality characteristics have been used for developing the second order regression models of bottom kerf deviation (KD), bottom kerf width (KW) and kerf taper (KT). The developed models of different quality characteristics have been utilized as a quality function for single-objective optimization by using particle swarm optimization (PSO) method. The optimum results obtained by the proposed hybrid methodology have been compared with experimental results. The comparison of optimized results with the experimental results shows that an individual improvement of 75%, 12.67% and 33.70% in bottom kerf deviation, bottom kerf width, and kerf taper has been observed. The parametric effects of different most significant input process parameters on quality characteristics have also been discussed.

  13. Strabismus

    MedlinePlus

    ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...

  14. Nystagmus

    MedlinePlus

    ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...

  15. Uveitis

    MedlinePlus

    ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...

  16. Retinoblastoma

    MedlinePlus

    ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...

  17. Photonics technology development for optical fuzing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.J.; Geib, Kent Martin; von der Lippe, C.M.

    2005-07-01

    This paper describes the photonic component development, which exploits pioneering work and unique expertise at Sandia National Laboratories, ARDEC and the Army Research Laboratory by combining key optoelectronic technologies to design and demonstrate components for this fuzing application. The technologies under investigation for the optical fuze design covered in this paper are vertical cavity surface emitting lasers (VECSELs), integrated resonant cavity photodetectors (RCPD), and diffractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components designed suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employmore » discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications.« less

  18. Precision machining of advanced materials with waterjets

    NASA Astrophysics Data System (ADS)

    Liu, H. T.

    2017-01-01

    Recent advances in abrasive waterjet technology have elevated to the state that it often competes on equal footing with lasers and EDM for precision machining. Under the support of a National Science Foundation SBIR Phase II grant, OMAX has developed and commercialized micro abrasive water technology that is incorporated into a MicroMAX® JetMa- chining® Center. Waterjet technology, combined both abrasive waterjet and micro abrasive waterjet technology, is capable of machining most materials from macro to micro scales for a wide range of part size and thickness. Waterjet technology has technological and manufacturing merits that cannot be matched by most existing tools. As a cold cutting tool that creates no heat-affected zone, for example, waterjet cuts much faster than wire EDM and laser when measures to minimize a heat-affected zone are taken into account. In addition, waterjet is material independent; it cuts materials that cannot be cut or are difficult to cut otherwise. The versatility of waterjet has also demonstrated machining simulated nanomaterials with large gradients of material properties from metal, nonmetal, to anything in between. This paper presents waterjet-machined samples made of a wide range of advanced materials from macro to micro scales.

  19. Development of advanced generator of singlet oxygen for a COIL

    NASA Astrophysics Data System (ADS)

    Kodymová, Jarmila; Špalek, Otomar; Jirásek, Vít; Čenský, Miroslav; Hrubý, Jan

    2006-05-01

    The generator of singlet oxygen (SOG) remains still a challenge for a chemical oxygen-iodine laser (COIL). Hitherto, only chemical generators based on the gas-liquid reaction system (chlorine-basic hydrogen peroxide) can supply singlet oxygen, O II(1Δ), in enough high yields and at pressures to maintain operation of the high power supersonic COIL facilities. Employing conventional generators of jet-type or rotating disc-type makes often problems resulting mainly from liquid droplets entrained by an O II (1Δ) stream into the laser cavity, and a limited scalability of these generators. Advanced generator concepts investigated currently are based on two different approaches: (i)O II(1Δ) generation by the electrical discharge in various configurations, eliminating thus a liquid chemistry, and (ii) O II(1Δ) generation by the conventional chemistry in novel configurations offering the SOG efficiency increase and eliminating drawbacks of existing devices. One of the advanced concepts of chemical generator - a spray SOG with centrifugal separation of gasliquid phases - has been proposed and investigated in our laboratory. In this paper we present a description of the generator principle, some essential results of theoretical estimations, and interim experimental results obtained with the spray SOG.

  20. Laser acceleration of quasi-monoenergetic MeV ion beams.

    PubMed

    Hegelich, B M; Albright, B J; Cobble, J; Flippo, K; Letzring, S; Paffett, M; Ruhl, H; Schreiber, J; Schulze, R K; Fernández, J C

    2006-01-26

    Acceleration of particles by intense laser-plasma interactions represents a rapidly evolving field of interest, as highlighted by the recent demonstration of laser-driven relativistic beams of monoenergetic electrons. Ultrahigh-intensity lasers can produce accelerating fields of 10 TV m(-1) (1 TV = 10(12) V), surpassing those in conventional accelerators by six orders of magnitude. Laser-driven ions with energies of several MeV per nucleon have also been produced. Such ion beams exhibit unprecedented characteristics--short pulse lengths, high currents and low transverse emittance--but their exponential energy spectra have almost 100% energy spread. This large energy spread, which is a consequence of the experimental conditions used to date, remains the biggest impediment to the wider use of this technology. Here we report the production of quasi-monoenergetic laser-driven C5+ ions with a vastly reduced energy spread of 17%. The ions have a mean energy of 3 MeV per nucleon (full-width at half-maximum approximately 0.5 MeV per nucleon) and a longitudinal emittance of less than 2 x 10(-6) eV s for pulse durations shorter than 1 ps. Such laser-driven, high-current, quasi-monoenergetic ion sources may enable significant advances in the development of compact MeV ion accelerators, new diagnostics, medical physics, inertial confinement fusion and fast ignition.

Top