NASA Technical Reports Server (NTRS)
Ardema, Mark D.
1995-01-01
This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark B. Murphy
The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.
Advanced methods of structural and trajectory analysis for transport aircraft
NASA Technical Reports Server (NTRS)
Ardema, Mark D.
1995-01-01
This report summarizes the efforts in two areas: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of trajectory optimization. The majority of the effort was spent in the structural weight area. A draft of 'Analytical Fuselage and Wing Weight Estimation of Transport Aircraft', resulting from this research, is included as an appendix.
Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft
NASA Technical Reports Server (NTRS)
Ardema, Mark D.
1996-01-01
In this report the author describes: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of flight path optimization. A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT bas traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight.
NASA Astrophysics Data System (ADS)
Among the topics discussed are: advanced energy conversion concepts, power sources for aircraft and spacecraft, alternate fuels for industrial and vehicular applications, biomass-derived fuels, electric vehicle design and development status, electrochemical energy conversion systems, electric power generation cycles, energy-efficient industrial processes, and energy policy and system analysis. Also discussed are advanced methods for energy storage and transport, fossil fuel conversion systems, geothermal energy system development and performance, novel and advanced heat engines, hydrogen fuel-based energy systems, MHD technology development status, nuclear energy systems, solar energy conversion methods, advanced heating and cooling systems, Stirling cycle device development, terrestrial photovoltaic systems, and thermoelectric and thermionic systems.
Cost estimating methods for advanced space systems
NASA Technical Reports Server (NTRS)
Cyr, Kelley
1988-01-01
The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi
2013-11-29
This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implementmore » a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.« less
Advances in Adaptive Control Methods
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2009-01-01
This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.
NASA Technical Reports Server (NTRS)
Harris, Charles E. (Editor)
1994-01-01
International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.
Testing and evaluation of tactical electro-optical sensors
NASA Astrophysics Data System (ADS)
Middlebrook, Christopher T.; Smith, John G.
2002-07-01
As integrated electro-optical sensor payloads (multi- sensors) comprised of infrared imagers, visible imagers, and lasers advance in performance, the tests and testing methods must also advance in order to fully evaluate them. Future operational requirements will require integrated sensor payloads to perform missions at further ranges and with increased targeting accuracy. In order to meet these requirements sensors will require advanced imaging algorithms, advanced tracking capability, high-powered lasers, and high-resolution imagers. To meet the U.S. Navy's testing requirements of such multi-sensors, the test and evaluation group in the Night Vision and Chemical Biological Warfare Department at NAVSEA Crane is developing automated testing methods, and improved tests to evaluate imaging algorithms, and procuring advanced testing hardware to measure high resolution imagers and line of sight stabilization of targeting systems. This paper addresses: descriptions of the multi-sensor payloads tested, testing methods used and under development, and the different types of testing hardware and specific payload tests that are being developed and used at NAVSEA Crane.
Manufacturing development of DC-10 advanced rudder
NASA Technical Reports Server (NTRS)
Cominsky, A.
1979-01-01
The design, manufacture, and ground test activities during development of production methods for an advanced composite rudder for the DC-10 transport aircraft are described. The advanced composite aft rudder is satisfactory for airline service and a cost saving in a full production manufacturing mode is anticipated.
Graphite/Polyimide Composites. [conference on Composites for Advanced Space Transportation Systems
NASA Technical Reports Server (NTRS)
Dexter, H. B. (Editor); Davis, J. G., Jr. (Editor)
1979-01-01
Technology developed under the Composites for Advanced Space Transportation System Project is reported. Specific topics covered include fabrication, adhesives, test methods, structural integrity, design and analysis, advanced technology developments, high temperature polymer research, and the state of the art of graphite/polyimide composites.
DOT National Transportation Integrated Search
2016-06-30
This research developed advanced type 2 safety performance functions (SPF) for roadway segments, intersections and ramps on the entire Caltrans network. The advanced type 2 SPFs included geometrics, traffic volume and hierarchical random effects, whi...
Overview of an Advanced Hypersonic Structural Concept Test Program
NASA Technical Reports Server (NTRS)
Stephens, Craig A.; Hudson, Larry D.; Piazza, Anthony
2007-01-01
This viewgraph presentation provides an overview of hypersonics M&S advanced structural concepts development and experimental methods. The discussion on concepts development includes the background, task objectives, test plan, and current status of the C/SiC Ruddervator Subcomponent Test Article (RSTA). The discussion of experimental methods examines instrumentation needs, sensors of interest, and examples of ongoing efforts in the development of extreme environment sensors.
Advanced Computational Methods for Monte Carlo Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
This course is intended for graduate students who already have a basic understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for thesis research, for developing new state-of-the-art methods, or for working with modern production Monte Carlo codes.
MAESTRO: Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology
NASA Astrophysics Data System (ADS)
Barthe, Jean; Hugon, Régis; Nicolai, Jean Philippe
2007-12-01
The integrated project MAESTRO (Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology) under contract with the European Commission in life sciences FP6 (LSHC-CT-2004-503564), concerns innovative research to develop and validate in clinical conditions, advanced methods and equipment needed in cancer treatment for new modalities in high-conformal external radiotherapy using electrons, photons and protons beams of high energy.
The high-order decoupled direct method in three dimensions for particular matter (HDDM-3D/PM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity...
Advanced Ablative Insulators and Methods of Making Them
NASA Technical Reports Server (NTRS)
Congdon, William M.
2005-01-01
Advanced ablative (more specifically, charring) materials that provide temporary protection against high temperatures, and advanced methods of designing and manufacturing insulators based on these materials, are undergoing development. These materials and methods were conceived in an effort to replace the traditional thermal-protection systems (TPSs) of re-entry spacecraft with robust, lightweight, better-performing TPSs that can be designed and manufactured more rapidly and at lower cost. These materials and methods could also be used to make improved TPSs for general aerospace, military, and industrial applications.
Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment
NASA Technical Reports Server (NTRS)
Rowell, Lawrence F.; Korte, John J.
2003-01-01
NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.
Identifying Advanced Technologies for Education's Future.
ERIC Educational Resources Information Center
Moore, Gwendolyn B.; Yin, Robert K.
A study to determine how three advanced technologies might be applied to the needs of special education students helped inspire the development of a new method for identifying such applications. This new method, named the "Hybrid Approach," combines features of the two traditional methods: technology-push and demand-pull. Technology-push involves…
The development of advanced manufacturing systems
NASA Astrophysics Data System (ADS)
Doumeingts, Guy; Vallespir, Bruno; Darricau, Didier; Roboam, Michel
Various methods for the design of advanced manufacturing systems (AMSs) are reviewed. The specifications for AMSs and problems inherent in their development are first discussed. Three models, the Computer Aided Manufacturing-International model, the National Bureau of Standards model, and the GRAI model, are considered in detail. Hierarchical modeling tools such as structured analysis and design techniques, Petri nets, and the Icam definition method are used in the development of integrated manufacturing models. Finally, the GRAI method is demonstrated in the design of specifications for the production management system of the Snecma AMS.
Developments at the Advanced Design Technologies Testbed
NASA Technical Reports Server (NTRS)
VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.
2003-01-01
A report presents background and historical information, as of August 1998, on the Advanced Design Technologies Testbed (ADTT) at Ames Research Center. The ADTT is characterized as an activity initiated to facilitate improvements in aerospace design processes; provide a proving ground for product-development methods and computational software and hardware; develop bridging methods, software, and hardware that can facilitate integrated solutions to design problems; and disseminate lessons learned to the aerospace and information technology communities.
NASA Technical Reports Server (NTRS)
Harris, Charles E. (Editor)
1994-01-01
The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance.
Heuristics Applied in the Development of Advanced Space Mission Concepts
NASA Technical Reports Server (NTRS)
Nilsen, Erik N.
1998-01-01
Advanced mission studies are the first step in determining the feasibility of a given space exploration concept. A space scientist develops a science goal in the exploration of space. This may be a new observation method, a new instrument or a mission concept to explore a solar system body. In order to determine the feasibility of a deep space mission, a concept study is convened to determine the technology needs and estimated cost of performing that mission. Heuristics are one method of defining viable mission and systems architectures that can be assessed for technology readiness and cost. Developing a viable architecture depends to a large extent upon extending the existing body of knowledge, and applying it in new and novel ways. These heuristics have evolved over time to include methods for estimating technical complexity, technology development, cost modeling and mission risk in the unique context of deep space missions. This paper examines the processes involved in performing these advanced concepts studies, and analyzes the application of heuristics in the development of an advanced in-situ planetary mission. The Venus Surface Sample Return mission study provides a context for the examination of the heuristics applied in the development of the mission and systems architecture. This study is illustrative of the effort involved in the initial assessment of an advance mission concept, and the knowledge and tools that are applied.
Structures and Materials Working Group report
NASA Technical Reports Server (NTRS)
Torczyner, Robert; Hanks, Brantley R.
1986-01-01
The appropriateness of the selection of four issues (advanced materials development, analysis/design methods, tests of large flexible structures, and structural concepts) was evaluated. A cross-check of the issues and their relationship to the technology drivers is presented. Although all of the issues addressed numerous drivers, the advanced materials development issue impacts six out of the seven drivers and is considered to be the most crucial. The advanced materials technology development and the advanced design/analysis methods development were determined to be enabling technologies with the testing issues and development of structural concepts considered to be of great importance, although not enabling technologies. In addition, and of more general interest and criticality, the need for a Government/Industry commitment which does not now exist, was established. This commitment would call for the establishment of the required infrastructure to facilitate the development of the capabilities highlighted through the availability of resources and testbed facilities, including a national testbed in space to be in place in ten years.
NASA Technical Reports Server (NTRS)
Anderson, B. H.
1983-01-01
A broad program to develop advanced, reliable, and user oriented three-dimensional viscous design techniques for supersonic inlet systems, and encourage their transfer into the general user community is discussed. Features of the program include: (1) develop effective methods of computing three-dimensional flows within a zonal modeling methodology; (2) ensure reasonable agreement between said analysis and selective sets of benchmark validation data; (3) develop user orientation into said analysis; and (4) explore and develop advanced numerical methodology.
Advanced space propulsion concepts
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.
1993-01-01
The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.
Advances in phage display technology for drug discovery.
Omidfar, Kobra; Daneshpour, Maryam
2015-06-01
Over the past decade, several library-based methods have been developed to discover ligands with strong binding affinities for their targets. These methods mimic the natural evolution for screening and identifying ligand-target interactions with specific functional properties. Phage display technology is a well-established method that has been applied to many technological challenges including novel drug discovery. This review describes the recent advances in the use of phage display technology for discovering novel bioactive compounds. Furthermore, it discusses the application of this technology to produce proteins and peptides as well as minimize the use of antibodies, such as antigen-binding fragment, single-chain fragment variable or single-domain antibody fragments like VHHs. Advances in screening, manufacturing and humanization technologies demonstrate that phage display derived products can play a significant role in the diagnosis and treatment of disease. The effects of this technology are inevitable in the development pipeline for bringing therapeutics into the market, and this number is expected to rise significantly in the future as new advances continue to take place in display methods. Furthermore, a widespread application of this methodology is predicted in different medical technological areas, including biosensing, monitoring, molecular imaging, gene therapy, vaccine development and nanotechnology.
NASA Astrophysics Data System (ADS)
-Aurel Cherecheş, Ioan; -Ioana Borzan, Adela; -Laurean Băldean, Doru
2017-10-01
Study of construction and wearing process in the case of piston-rings and other significant components from internal combustion engines leads at any time to creative and useful optimizing ideas, both in designing and manufacturing phases. Main objective of the present paper is to realize an interdisciplinary research using advanced methods in piston-rings evaluation of a common vehicle on the streets which is Ford Focus FYDD. Specific objectives are a theoretical study of the idea for advanced analysis method in piston-rings evaluation and an applied research developed in at Technical University from Cluj-Napoca with the motor vehicle caught in the repairing process.
External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator
NASA Technical Reports Server (NTRS)
Niedra, Janis M.; Geng, Steven M.
2013-01-01
Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
The System Analysis Module (SAM) is an advanced and modern system analysis tool being developed at Argonne National Laboratory under the U.S. DOE Office of Nuclear Energy’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM development aims for advances in physical modeling, numerical methods, and software engineering to enhance its user experience and usability for reactor transient analyses. To facilitate the code development, SAM utilizes an object-oriented application framework (MOOSE), and its underlying meshing and finite-element library (libMesh) and linear and non-linear solvers (PETSc), to leverage modern advanced software environments and numerical methods. SAM focuses on modeling advanced reactormore » concepts such as SFRs (sodium fast reactors), LFRs (lead-cooled fast reactors), and FHRs (fluoride-salt-cooled high temperature reactors) or MSRs (molten salt reactors). These advanced concepts are distinguished from light-water reactors in their use of single-phase, low-pressure, high-temperature, and low Prandtl number (sodium and lead) coolants. As a new code development, the initial effort has been focused on modeling and simulation capabilities of heat transfer and single-phase fluid dynamics responses in Sodium-cooled Fast Reactor (SFR) systems. The system-level simulation capabilities of fluid flow and heat transfer in general engineering systems and typical SFRs have been verified and validated. This document provides the theoretical and technical basis of the code to help users understand the underlying physical models (such as governing equations, closure models, and component models), system modeling approaches, numerical discretization and solution methods, and the overall capabilities in SAM. As the code is still under ongoing development, this SAM Theory Manual will be updated periodically to keep it consistent with the state of the development.« less
FY2016 Ceramic Fuels Development Annual Highlights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcclellan, Kenneth James
Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts.more » Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.« less
NASA Astrophysics Data System (ADS)
Miura, Hitoshi
The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.
Development of ASTM Standard for SiC-SiC Joint Testing Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, George; Back, Christina
2015-10-30
As the nuclear industry moves to advanced ceramic based materials for cladding and core structural materials for a variety of advanced reactors, new standards and test methods are required for material development and licensing purposes. For example, General Atomics (GA) is actively developing silicon carbide (SiC) based composite cladding (SiC-SiC) for its Energy Multiplier Module (EM2), a high efficiency gas cooled fast reactor. Through DOE funding via the advanced reactor concept program, GA developed a new test method for the nominal joint strength of an endplug sealed to advanced ceramic tubes, Fig. 1-1, at ambient and elevated temperatures called themore » endplug pushout (EPPO) test. This test utilizes widely available universal mechanical testers coupled with clam shell heaters, and specimen size is relatively small, making it a viable post irradiation test method. The culmination of this effort was a draft of an ASTM test standard that will be submitted for approval to the ASTM C28 ceramic committee. Once the standard has been vetted by the ceramics test community, an industry wide standard methodology to test joined tubular ceramic components will be available for the entire nuclear materials community.« less
Evaluation of 3-D graphics software: A case study
NASA Technical Reports Server (NTRS)
Lores, M. E.; Chasen, S. H.; Garner, J. M.
1984-01-01
An efficient 3-D geometry graphics software package which is suitable for advanced design studies was developed. The advanced design system is called GRADE--Graphics for Advanced Design. Efficiency and ease of use are gained by sacrificing flexibility in surface representation. The immediate options were either to continue development of GRADE or to acquire a commercially available system which would replace or complement GRADE. Test cases which would reveal the ability of each system to satisfy the requirements were developed. A scoring method which adequately captured the relative capabilities of the three systems was presented. While more complex multi-attribute decision methods could be used, the selected method provides all the needed information without being so complex that it is difficult to understand. If the value factors are modestly perturbed, system Z is a clear winner based on its overall capabilities. System Z is superior in two vital areas: surfacing and ease of interface with application programs.
Advanced optical manufacturing digital integrated system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong
2012-10-01
It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.
NASA Technical Reports Server (NTRS)
Wanthal, Steven; Schaefer, Joseph; Justusson, Brian; Hyder, Imran; Engelstad, Stephen; Rose, Cheryl
2017-01-01
The Advanced Composites Consortium is a US Government/Industry partnership supporting technologies to enable timeline and cost reduction in the development of certified composite aerospace structures. A key component of the consortium's approach is the development and validation of improved progressive damage and failure analysis methods for composite structures. These methods will enable increased use of simulations in design trade studies and detailed design development, and thereby enable more targeted physical test programs to validate designs. To accomplish this goal with confidence, a rigorous verification and validation process was developed. The process was used to evaluate analysis methods and associated implementation requirements to ensure calculation accuracy and to gage predictability for composite failure modes of interest. This paper introduces the verification and validation process developed by the consortium during the Phase I effort of the Advanced Composites Project. Specific structural failure modes of interest are first identified, and a subset of standard composite test articles are proposed to interrogate a progressive damage analysis method's ability to predict each failure mode of interest. Test articles are designed to capture the underlying composite material constitutive response as well as the interaction of failure modes representing typical failure patterns observed in aerospace structures.
Recent advances in peanut breeding and genetics
USDA-ARS?s Scientific Manuscript database
Most previous advances in peanut cultivar development have been made using conventional breeding methods for self-pollinated crops. Peanut has lagged behind many other crops on use of molecular genetic technology for cultivar development in part due to lack of investment, but also because of low le...
Advances in Statistical Methods for Substance Abuse Prevention Research
MacKinnon, David P.; Lockwood, Chondra M.
2010-01-01
The paper describes advances in statistical methods for prevention research with a particular focus on substance abuse prevention. Standard analysis methods are extended to the typical research designs and characteristics of the data collected in prevention research. Prevention research often includes longitudinal measurement, clustering of data in units such as schools or clinics, missing data, and categorical as well as continuous outcome variables. Statistical methods to handle these features of prevention data are outlined. Developments in mediation, moderation, and implementation analysis allow for the extraction of more detailed information from a prevention study. Advancements in the interpretation of prevention research results include more widespread calculation of effect size and statistical power, the use of confidence intervals as well as hypothesis testing, detailed causal analysis of research findings, and meta-analysis. The increased availability of statistical software has contributed greatly to the use of new methods in prevention research. It is likely that the Internet will continue to stimulate the development and application of new methods. PMID:12940467
Energy conversion and storage program
NASA Astrophysics Data System (ADS)
Cairns, E. J.
1992-03-01
The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy conversion; (4) characterization of complex chemical processes; and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.
An evolving-requirements technology assessment process for advanced propulsion concepts
NASA Astrophysics Data System (ADS)
McClure, Erin Kathleen
The following dissertation investigates the development of a methodology suitable for the evaluation of advanced propulsion concepts. At early stages of development, both the future performance of these concepts and their requirements are highly uncertain, making it difficult to forecast their future value. Developing advanced propulsion concepts requires a huge investment of resources. The methodology was developed to enhance the decision-makers understanding of the concepts, so that they could mitigate the risks associated with developing such concepts. A systematic methodology to identify potential advanced propulsion concepts and assess their robustness is necessary to reduce the risk of developing advanced propulsion concepts. Existing advanced design methodologies have evaluated the robustness of technologies or concepts to variations in requirements, but they are not suitable to evaluate a large number of dissimilar concepts. Variations in requirements have been shown to impact the development of advanced propulsion concepts, and any method designed to evaluate these concepts must incorporate the possible variations of the requirements into the assessment. In order to do so, a methodology was formulated to be capable of accounting for two aspects of the problem. First, it had to systemically identify a probabilistic distribution for the future requirements. Such a distribution would allow decision-makers to quantify the uncertainty introduced by variations in requirements. Second, the methodology must be able to assess the robustness of the propulsion concepts as a function of that distribution. This dissertation describes in depth these enabling elements and proceeds to synthesize them into a new method, the Evolving Requirements Technology Assessment (ERTA). As a proof of concept, the ERTA method was used to evaluate and compare advanced propulsion systems that will be capable of powering a hurricane tracking, High Altitude, Long Endurance (HALE) unmanned aerial vehicle (UAV). The use of the ERTA methodology to assess HALE UAV propulsion concepts demonstrated that potential variations in requirements do significantly impact the assessment and selection of propulsion concepts. The proof of concept also demonstrated that traditional forecasting techniques, such as the cross impact analysis, could be used to forecast the requirements for advanced propulsion concepts probabilistically. "Fitness", a measure of relative goodness, was used to evaluate the concepts. Finally, stochastic optimizations were used to evaluate the propulsion concepts across the range of requirement sets that were considered.
NASA Astrophysics Data System (ADS)
Dunn, Michael
2008-10-01
For over 30 years, the Oak Ridge National Laboratory (ORNL) has performed research and development to provide more accurate nuclear cross-section data in the resonance region. The ORNL Nuclear Data (ND) Program consists of four complementary areas of research: (1) cross-section measurements at the Oak Ridge Electron Linear Accelerator; (2) resonance analysis methods development with the SAMMY R-matrix analysis software; (3) cross-section evaluation development; and (4) cross-section processing methods development with the AMPX software system. The ND Program is tightly coupled with nuclear fuel cycle analyses and radiation transport methods development efforts at ORNL. Thus, nuclear data work is performed in concert with nuclear science and technology needs and requirements. Recent advances in each component of the ORNL ND Program have led to improvements in resonance region measurements, R-matrix analyses, cross-section evaluations, and processing capabilities that directly support radiation transport research and development. Of particular importance are the improvements in cross-section covariance data evaluation and processing capabilities. The benefit of these advances to nuclear science and technology research and development will be discussed during the symposium on Nuclear Physics Research Connections to Nuclear Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Carmack; L. Braase; F. Goldner
The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors, enhance proliferation resistance of nuclear fuel, effectively utilize nuclear energy resources, and address the longer-term waste management challenges. This includes development of a state of the art Research and Development (R&D) infrastructure to support the use of a “goal oriented science based approach.” AFC uses a “goal oriented, science based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performancemore » under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. One of the most challenging aspects of AFC is the management, integration, and coordination of major R&D activities across multiple organizations. AFC interfaces and collaborates with Fuel Cycle Technologies (FCT) campaigns, universities, industry, various DOE programs and laboratories, federal agencies (e.g., Nuclear Regulatory Commission [NRC]), and international organizations. Key challenges are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Challenged with the research and development of fuels for two different reactor technology platforms, AFC targeted transmutation fuel development and focused ceramic fuel development for Advanced LWR Fuels.« less
Advanced Small Modular Reactor Economics Model Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.
2014-10-01
The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis ofmore » the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the analysis shows that the propagation of error method introduces essentially negligible error, especially when compared to the uncertainty associated with some of the estimates themselves. The results of these uncertainty analyses generally quantify and identify the sources of uncertainty in the overall cost estimation. The obvious generalization—that capital cost uncertainty is the main driver—can be shown to be an accurate generalization for the current state of reactor cost analysis. However, the detailed analysis on a component-by-component basis helps to demonstrate which components would benefit most from research and development to decrease the uncertainty, as well as which components would benefit from research and development to decrease the absolute cost.« less
Free-wake computation of helicopter rotor flowfields in forward flight
NASA Technical Reports Server (NTRS)
Ramachandran, K.; Schlechtriem, S.; Caradonna, F. X.; Steinhoff, John
1993-01-01
A new method has been developed for computing advancing rotor flows. This method uses the Vorticity Embedding technique, which has been developed and validated over the last several years for hovering rotor problems. In this work, the unsteady full potential equation is solved on an Eulerian grid with an embedded vortical velocity field. This vortical velocity accounts for the influence of the wake. Dynamic grid changes that are required to accommodate prescribed blade motion and deformation are included using a novel grid blending method. Free wake computations have been performed on a two-bladed AH-1G rotor at low advance ratios including blade motion. Computed results are compared with experimental data. The sudden variations in airloads due to blade-vortex interactions on the advancing and retreating sides are well captured. The sensitivity of the computed solution to various factors like core size, time step and grids has been investigated. Computed wake geometries and their influence on the aerodynamic loads at these advance ratios are also discussed.
Cross-Proportions: A Conceptual Method for Developing Quantitative Problem-Solving Skills
ERIC Educational Resources Information Center
Cook, Elzbieta; Cook, Stephen L.
2005-01-01
The cross-proportion method allows both the instructor and the student to easily determine where an error is made during problem solving. The C-P method supports a strong cognitive foundation upon which students can develop other diagnostic methods as they advance in chemistry and scientific careers.
Qiao, Guixiu; Weiss, Brian A.
2016-01-01
Unexpected equipment downtime is a ‘pain point’ for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system. PMID:28058172
Qiao, Guixiu; Weiss, Brian A
2016-01-01
Unexpected equipment downtime is a 'pain point' for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system.
Toward improved durability in advanced aircraft engine hot sections
NASA Technical Reports Server (NTRS)
Sokolowski, Daniel E. (Editor)
1989-01-01
The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.
ERIC Educational Resources Information Center
Hanson, Laura C.; Armstrong, Tonya D.; Green, Melissa A.; Hayes, Michelle; Peacock, Stacie; Elliot-Bynum, Sharon; Goldmon, Moses V.; Corbie-Smith, Giselle; Earp, Jo Anne
2013-01-01
Peer support interventions extend care and health information to underserved populations yet rarely address serious illness. Investigators from a well-defined academic-community partnership developed and evaluated a peer support intervention for African Americans facing advanced cancer. Evaluation methods used the Reach, Efficacy, Adoption,…
Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromm, Bradley; Hauch, Benjamin; Sridharan, Kumar
2016-12-01
A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulationmore » tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jeff; Rylander, Matthew; Boemer, Jens
The fourth solicitation of the California Solar Initiative (CSI) Research, Development, Demonstration and Deployment (RD&D) Program established by the California Public Utilities Commission (CPUC) supported the Electric Power Research Institute (EPRI), National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) with data provided from Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E) conducted research to determine optimal default settings for distributed energy resource advanced inverter controls. The inverter functions studied are aligned with those developed by the California Smart Inverter Working Group (SIWG) and those being considered by the IEEE 1547more » Working Group. The advanced inverter controls examined to improve the distribution system response included power factor, volt-var, and volt-watt. The advanced inverter controls examined to improve the transmission system response included frequency and voltage ride-through as well as Dynamic Voltage Support. This CSI RD&D project accomplished the task of developing methods to derive distribution focused advanced inverter control settings, selecting a diverse set of feeders to evaluate the methods through detailed analysis, and evaluating the effectiveness of each method developed. Inverter settings focused on the transmission system performance were also evaluated and verified. Based on the findings of this work, the suggested advanced inverter settings and methods to determine settings can be used to improve the accommodation of distributed energy resources (PV specifically). The voltage impact from PV can be mitigated using power factor, volt-var, or volt-watt control, while the bulk system impact can be improved with frequency/voltage ride-through.« less
Highlights of NASA's Role in Developing State-of-the-Art Nondestructive Evaluation for Composites
NASA Technical Reports Server (NTRS)
2001-01-01
Since the 1970's, when the promise of composites was being pursued for aeronautics applications, NASA has had programs that addressed the development of NDE methods for composites. These efforts included both microscopic and macroscopic NDE. At the microscopic level, NDE investigations interrogated composites at the submicron to micron level to understand a composite's microstructure. A novel microfocus CT system was developed as well as the science underlying applications of acoustic microscopy to a composite's component material properties. On the macroscopic scale NDE techniques were developed that advanced the capabilities to be faster and more quantitative. Techniques such as stiffness imaging, ultrasonic arrays, laser based ultrasound, advanced acoustic emission, thermography, and novel health monitoring systems were researched. Underlying these methods has been a strong modeling capability that has aided in method development.
Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.
Handels, H; Ehrhardt, J
2009-01-01
Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or operation planning is a complex interdisciplinary process. Image computing methods enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.
Directed evolution: tailoring biocatalysts for industrial applications.
Kumar, Ashwani; Singh, Suren
2013-12-01
Current challenges and promises of white biotechnology encourage protein engineers to use a directed evolution approach to generate novel and useful biocatalysts for various sets of applications. Different methods of enzyme engineering have been used in the past in an attempt to produce enzymes with improved functions and properties. Recent advancement in the field of random mutagenesis, screening, selection and computational design increased the versatility and the rapid development of enzymes under strong selection pressure with directed evolution experiments. Techniques of directed evolution improve enzymes fitness without understanding them in great detail and clearly demonstrate its future role in adapting enzymes for use in industry. Despite significant advances to date regarding biocatalyst improvement, there still remains a need to improve mutagenesis strategies and development of easy screening and selection tools without significant human intervention. This review covers fundamental and major development of directed evolution techniques, and highlights the advances in mutagenesis, screening and selection methods with examples of enzymes developed by using these approaches. Several commonly used methods for creating molecular diversity with their advantages and disadvantages including some recently used strategies are also discussed.
Combined Heat and Power Protocol for Uniform Methods Project | Advanced
Manufacturing Research | NREL Combined Heat and Power Protocol for Uniform Methods Project Combined Heat and Power Protocol for Uniform Methods Project NREL developed a protocol that provides a ; is consistent with the scope and other protocols developed for the Uniform Methods Project (UMP
Blake, Phillipa; Durão, Solange; Naude, Celeste E; Bero, Lisa
2018-01-01
Abstract Evidence-informed guideline development methods underpinned by systematic reviews ensure that guidelines are transparently developed, free from overt bias, and based on the best available evidence. Only recently has the nutrition field begun using these methods to develop public health nutrition guidelines. Given the importance of following an evidence-informed approach and recent advances in related methods, this study sought to describe the methods used to synthesize evidence, rate evidence quality, grade recommendations, and manage conflicts of interest (COIs) in national food-based dietary guidelines (FBDGs). The Food and Agriculture Organization’s FBDGs database was searched to identify the latest versions of FBDGs published from 2010 onward. Relevant data from 32 FBDGs were extracted, and the findings are presented narratively. This study shows that despite advances in evidence-informed methods for developing dietary guidelines, there are variations and deficiencies in methods used to review evidence, rate evidence quality, and grade recommendations. Dietary guidelines should follow systematic and transparent methods and be informed by the best available evidence, while considering important contextual factors and managing conflicts of interest. PMID:29425371
Gupta, Sayan; Feng, Jun; Chance, Mark; Ralston, Corie
2016-01-01
Synchrotron X-ray Footprinting is a powerful in situ hydroxyl radical labeling method for analysis of protein structure, interactions, folding and conformation change in solution. In this method, water is ionized by high flux density broad band synchrotron X-rays to produce a steady-state concentration of hydroxyl radicals, which then react with solvent accessible side-chains. The resulting stable modification products are analyzed by liquid chromatography coupled to mass spectrometry. A comparative reactivity rate between known and unknown states of a protein provides local as well as global information on structural changes, which is then used to develop structural models for protein function and dynamics. In this review we describe the XF-MS method, its unique capabilities and its recent technical advances at the Advanced Light Source. We provide a comparison of other hydroxyl radical and mass spectrometry based methods with XFMS. We also discuss some of the latest developments in its usage for studying bound water, transmembrane proteins and photosynthetic protein components, and the synergy of the method with other synchrotron based structural biology methods.
Computational structural mechanics methods research using an evolving framework
NASA Technical Reports Server (NTRS)
Knight, N. F., Jr.; Lotts, C. G.; Gillian, R. E.
1990-01-01
Advanced structural analysis and computational methods that exploit high-performance computers are being developed in a computational structural mechanics research activity sponsored by the NASA Langley Research Center. These new methods are developed in an evolving framework and applied to representative complex structural analysis problems from the aerospace industry. An overview of the methods development environment is presented, and methods research areas are described. Selected application studies are also summarized.
Helitzer, Deborah; Morahan, Page; Chang, Shine; Gleason, Katharine; Cardinali, Gina; Wu, Chih-Chieh
2012-01-01
Abstract Background Surprisingly little research is available to explain the well-documented organizational and societal influences on persistent inequities in advancement of women faculty. Methods The Systems of Career Influences Model is a framework for exploring factors influencing women's progression to advanced academic rank, executive positions, and informal leadership roles in academic medicine. The model situates faculty as agents within a complex adaptive system consisting of a trajectory of career advancement with opportunities for formal professional development programming; a dynamic system of influences of organizational policies, practices, and culture; and a dynamic system of individual choices and decisions. These systems of influence may promote or inhibit career advancement. Within this system, women weigh competing influences to make career advancement decisions, and leaders of academic health centers prioritize limited resources to support the school's mission. Results and Conclusions The Systems of Career Influences Model proved useful to identify key research questions. We used the model to probe how research in academic career development might be applied to content and methods of formal professional development programs. We generated a series of questions and hypotheses about how professional development programs might influence professional development of health science faculty members. Using the model as a guide, we developed a study using a quantitative and qualitative design. These analyses should provide insight into what works in recruiting and supporting productive men and women faculty in academic medical centers. PMID:23101486
Technological advances in precision medicine and drug development.
Maggi, Elaine; Patterson, Nicole E; Montagna, Cristina
New technologies are rapidly becoming available to expand the arsenal of tools accessible for precision medicine and to support the development of new therapeutics. Advances in liquid biopsies, which analyze cells, DNA, RNA, proteins, or vesicles isolated from the blood, have gained particular interest for their uses in acquiring information reflecting the biology of tumors and metastatic tissues. Through advancements in DNA sequencing that have merged unprecedented accuracy with affordable cost, personalized treatments based on genetic variations are becoming a real possibility. Extraordinary progress has been achieved in the development of biological therapies aimed to even further advance personalized treatments. We provide a summary of current and future applications of blood based liquid biopsies and how new technologies are utilized for the development of biological therapeutic treatments. We discuss current and future sequencing methods with an emphasis on how technological advances will support the progress in the field of precision medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revil, Andre
2013-01-15
Understanding the influence of coupled biological, chemical, and hydrological processes on subsurface contaminant behavior at multiple scales is a prerequisite for developing effective remedial approaches, whether they are active remediation or natural attenuation strategies. To develop this understanding, methods are needed that can measure critical components of the natural system in real time. The self-potential method corresponds to the passive measurement of the distribution of the electrical potential at the surface of the Earth or in boreholes. This method is very complemetary to other geophysical methods like DC resistivity and induced polarization. In this report, we summarize of research effortsmore » to advance the theory of low-frequency geoelectrical methods and their applications to the contaminant plumes in the vicinity of the former S-3 settling basins at Oak Ridge, TN.« less
Work Domain Analysis Methodology for Development of Operational Concepts for Advanced Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugo, Jacques
2015-05-01
This report describes a methodology to conduct a Work Domain Analysis in preparation for the development of operational concepts for new plants. This method has been adapted from the classical method described in the literature in order to better deal with the uncertainty and incomplete information typical of first-of-a-kind designs. The report outlines the strategy for undertaking a Work Domain Analysis of a new nuclear power plant and the methods to be used in the development of the various phases of the analysis. Basic principles are described to the extent necessary to explain why and how the classical method wasmore » adapted to make it suitable as a tool for the preparation of operational concepts for a new nuclear power plant. Practical examples are provided of the systematic application of the method and the various presentation formats in the operational analysis of advanced reactors.« less
DOT National Transportation Integrated Search
2010-10-01
The Volvo-Ford-UMTRI project: Safety Impact Methodology (SIM) for Lane Departure Warning is part of the U.S. Department of Transportation's Advanced Crash Avoidance Technologies (ACAT) program. The project developed a basic analytical framework for e...
Abstract - A standardized version of a mobile tracer correlation measurement method was developed and used for assessment of methane emissions from 15 landfills in 56 field deployments from 2009 to 2013. This general area source measurement method uses advances in instrumentation...
Test Method Designed to Evaluate Cylinder Liner-Piston Ring Coatings for Advanced Heat Engines
NASA Technical Reports Server (NTRS)
Radil, Kevin C.
1997-01-01
Research on advanced heat engine concepts, such as the low-heat-rejection engine, have shown the potential for increased thermal efficiency, reduced emissions, lighter weight, simpler design, and longer life in comparison to current diesel engine designs. A major obstacle in the development of a functional advanced heat engine is overcoming the problems caused by the high combustion temperatures at the piston ring/cylinder liner interface, specifically at top ring reversal (TRR). Therefore, advanced cylinder liner and piston ring materials are needed that can survive under these extreme conditions. To address this need, researchers at the NASA Lewis Research Center have designed a tribological test method to help evaluate candidate piston ring and cylinder liner materials for advanced diesel engines.
Research requirements to reduce civil helicopter life cycle cost
NASA Technical Reports Server (NTRS)
Blewitt, S. J.
1978-01-01
The problem of the high cost of helicopter development, production, operation, and maintenance is defined and the cost drivers are identified. Helicopter life cycle costs would decrease by about 17 percent if currently available technology were applied. With advanced technology, a reduction of about 30 percent in helicopter life cycle costs is projected. Technological and managerial deficiencies which contribute to high costs are examined, basic research and development projects which can reduce costs include methods for reduced fuel consumption; improved turbine engines; airframe and engine production methods; safety; rotor systems; and advanced transmission systems.
Silvicultural methods for regenerating oaks
F. Bryan Clark; Richard F. Watt
1971-01-01
Advance reproduction is the key to forming the new oak stand. However, the size or strength of the advance stems is just as important as number. Most oak stands approaching maturity have enough advance reproduction, but many do not. In such cases, harvest cuttings must be delayed and overstory densities regulated to favor the establishment and development of new oaks...
NASA Technical Reports Server (NTRS)
Stern, Martin O.
1992-01-01
This report describes a study to evaluate the benefits of advanced propulsion technologies for transporting materials between low Earth orbit and the Moon. A relatively conventional reference transportation system, and several other systems, each of which includes one advanced technology component, are compared in terms of how well they perform a chosen mission objective. The evaluation method is based on a pairwise life-cycle cost comparison of each of the advanced systems with the reference system. Somewhat novel and economically important features of the procedure are the inclusion not only of mass payback ratios based on Earth launch costs, but also of repair and capital acquisition costs, and of adjustments in the latter to reflect the technological maturity of the advanced technologies. The required input information is developed by panels of experts. The overall scope and approach of the study are presented in the introduction. The bulk of the paper describes the evaluation method; the reference system and an advanced transportation system, including a spinning tether in an eccentric Earth orbit, are used to illustrate it.
Sharma, C.; Thenkabail, P.; Sharma, R. R.
2011-01-01
The paper develops approaches and methods of modeling and mapping land and water productivity of rain-fed crops in semi-arid environments of India using hyperspectral, hyperspatial, and advanced multispectral remote sensing data and linking the same to field-plot data and climate station data. The overarching goal is to provide information to advance water harvesting technologies in the agricultural croplands of the semi-arid environments of India by conducting research in a representative pilot site in Jodhpur, Rajasthan, India. ?? 2011 IEEE.
Microbiological Quality and Food Safety of Plants Grown on ISS Project
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M. (Compiler)
2014-01-01
The goal of this project is to select and advance methods to enable real-time sampling, microbiological analysis, and sanitation of crops grown on the International Space Station (ISS). These methods would validate the microbiological quality of crops grown for consumption to ensure safe and palatable fresh foods. This would be achieved through the development / advancement of microbiological sample collection, rapid pathogen detection and effective sanitation methods that are compatible with a microgravity environment.
Analysis of live cell images: Methods, tools and opportunities.
Nketia, Thomas A; Sailem, Heba; Rohde, Gustavo; Machiraju, Raghu; Rittscher, Jens
2017-02-15
Advances in optical microscopy, biosensors and cell culturing technologies have transformed live cell imaging. Thanks to these advances live cell imaging plays an increasingly important role in basic biology research as well as at all stages of drug development. Image analysis methods are needed to extract quantitative information from these vast and complex data sets. The aim of this review is to provide an overview of available image analysis methods for live cell imaging, in particular required preprocessing image segmentation, cell tracking and data visualisation methods. The potential opportunities recent advances in machine learning, especially deep learning, and computer vision provide are being discussed. This review includes overview of the different available software packages and toolkits. Copyright © 2017. Published by Elsevier Inc.
Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques.
Pindelska, Edyta; Sokal, Agnieszka; Kolodziejski, Waclaw
2017-08-01
The main goal of a novel drug development is to obtain it with optimal physiochemical, pharmaceutical and biological properties. Pharmaceutical companies and scientists modify active pharmaceutical ingredients (APIs), which often are cocrystals, salts or carefully selected polymorphs, to improve the properties of a parent drug. To find the best form of a drug, various advanced characterization methods should be used. In this review, we have described such analytical methods, dedicated to solid drug forms. Thus, diffraction, spectroscopic, thermal and also pharmaceutical characterization methods are discussed. They all are necessary to study a solid API in its intrinsic complexity from bulk down to the molecular level, gain information on its structure, properties, purity and possible transformations, and make the characterization efficient, comprehensive and complete. Furthermore, these methods can be used to monitor and investigate physical processes, involved in the drug development, in situ and in real time. The main aim of this paper is to gather information on the current advancements in the analytical methods and highlight their pharmaceutical relevance. Copyright © 2017 Elsevier B.V. All rights reserved.
Collaborating with nurse leaders to develop patient safety practices.
Kanerva, Anne; Kivinen, Tuula; Lammintakanen, Johanna
2017-07-03
Purpose The organisational level and leadership development are crucial elements in advancing patient safety, because patient safety weaknesses are often caused by system failures. However, little is known about how frontline leader and director teams can be supported to develop patient safety practices. The purpose of this study is to describe the patient safety development process carried out by nursing leaders and directors. The research questions were: how the chosen development areas progressed in six months' time and how nursing leaders view the participatory development process. Design/methodology/approach Participatory action research was used to engage frontline nursing leaders and directors into developing patient safety practices. Semi-structured group interviews ( N = 10) were used in data collection at the end of a six-month action cycle, and data were analysed using content analysis. Findings The participatory development process enhanced collaboration and gave leaders insights into patient safety as a part of the hospital system and their role in advancing it. The chosen development areas advanced to different extents, with the greatest improvements in those areas with simple guidelines to follow and in which the leaders were most participative. The features of high-reliability organisation were moderately identified in the nursing leaders' actions and views. For example, acting as a change agent to implement patient safety practices was challenging. Participatory methods can be used to support leaders into advancing patient safety. However, it is important that the participants are familiar with the method, and there are enough facilitators to steer development processes. Originality/value Research brings more knowledge of how leaders can increase their effectiveness in advancing patient safety and promoting high-reliability organisation features in the healthcare organisation.
Sustainment of Individual and Collective Future Combat Skills: Modeling and Research Methods
2010-01-01
expertise: Novice, Advanced Beginner , Competent, Proficient, and Expert. According to this conceptualization, tactical leaders develop cognitively...to equipment or containers. • Checklists, flowcharts , worksheets, decision tables, and system-fault tables. • Written instructions (e.g., on...novice; (2) advanced beginner ; (3) competent; (4) proficient; and (5) expert. Going from novice to expert, each level of skill development reflects
NASA Astrophysics Data System (ADS)
Caloz, Misael; Kafrouni, Marilyne; Leturgie, Quentin; Corde, Stéphanie; Downes, Simon; Lehmann, Joerg; Thwaites, David
2015-01-01
There are few reported intercomparisons or audits of combinations of advanced radiotherapy methods, particularly for 4D treatments. As part of an evaluation of the implementation of advanced radiotherapy technology, a phantom and associated methods, initially developed for in-house commissioning and QA of 4D lung treatments, has been developed further with the aim of using it for end-to-end dose intercomparison of 4D treatment planning and delivery. The respiratory thorax phantom can house moving inserts with variable speed (breathing rate) and motion amplitude. In one set-up mode it contains a small ion chamber for point dose measurements, or alternatively it can hold strips of radiochromic film to measure dose distributions. Initial pilot and feasibility measurements have been carried out in one hospital to thoroughly test the methods and procedures before using it more widely across a range of hospitals and treatment systems. Overall, the results show good agreement between measured and calculated doses and distributions, supporting the use of the phantom and methodology for multi-centre intercomparisons. However, before wider use, refinements of the method and analysis are currently underway particularly for the film measurements.
Advances in serological, imaging techniques and molecular diagnosis of Toxoplasma gondii infection.
Rostami, Ali; Karanis, Panagiotis; Fallahi, Shirzad
2018-06-01
Toxoplasmosis is worldwide distributed zoonotic infection disease with medical importance in immunocompromised patients, pregnant women and congenitally infected newborns. Having basic information on the traditional and new developed methods is essential for general physicians and infectious disease specialists for choosing a suitable diagnostic approach for rapid and accurate diagnosis of the disease and, consequently, timely and effective treatment. We conducted English literature searches in PubMed from 1989 to 2016 using relevant keywords and summarized the recent advances in diagnosis of toxoplasmosis. Enzyme-linked immunosorbent assay (ELISA) was most used method in past century. Recently advanced ELISA-based methods including chemiluminescence assays (CLIA), enzyme-linked fluorescence assay (ELFA), immunochromatographic test (ICT), serum IgG avidity test and immunosorbent agglutination assays (ISAGA) have shown high sensitivity and specificity. Recent studies using recombinant or chimeric antigens and multiepitope peptides method demonstrated very promising results to development of new strategies capable of discriminating recently acquired infections from chronic infection. Real-time PCR and loop-mediated isothermal amplification (LAMP) are two recently developed PCR-based methods with high sensitivity and specificity and could be useful to early diagnosis of infection. Computed tomography, magnetic resonance imaging, nuclear imaging and ultrasonography could be useful, although their results might be not specific alone. This review provides a summary of recent developed methods and also attempts to improve their sensitivity for diagnosis of toxoplasmosis. Serology, molecular and imaging technologies each has their own advantages and limitations which can certainly achieve definitive diagnosis of toxoplasmosis by combining these diagnostic techniques.
Development of advanced entry, descent, and landing technologies for future Mars Missions
NASA Technical Reports Server (NTRS)
Chu, Cheng-Chih (Chester)
2006-01-01
Future Mars missions may need the capability to land much closer to a desired target and/or advanced methods of detecting, avoiding, or tolerating landing hazards. Therefore, technologies that enable 'pinpoint landing' (within tens of meters to 1 km of a target site) will be crucial to meet future mission requirements. As part of NASA Research Announcement, NRA 03-OSS-01, NASA solicited proposals for technology development needs of missions to be launched to Mars during or after the 2009 launch opportunity. Six technology areas were identified as of high priority including advanced entry, descent, and landing (EDL) technologies. In May 2004, 11 proposals with PIs from universities, industries, and NASA centers, were awarded in the area of advanced EDL by NASA for further study and development. This paper presents an overview of these developing technologies.
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Jenkins, Michael G.
2003-01-01
Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.
Energy Conversion and Storage Program
NASA Astrophysics Data System (ADS)
Cairns, E. J.
1993-06-01
This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.
An advanced analysis method of initial orbit determination with too short arc data
NASA Astrophysics Data System (ADS)
Li, Binzhe; Fang, Li
2018-02-01
This paper studies the initial orbit determination (IOD) based on space-based angle measurement. Commonly, these space-based observations have short durations. As a result, classical initial orbit determination algorithms give poor results, such as Laplace methods and Gauss methods. In this paper, an advanced analysis method of initial orbit determination is developed for space-based observations. The admissible region and triangulation are introduced in the method. Genetic algorithm is also used for adding some constraints of parameters. Simulation results show that the algorithm can successfully complete the initial orbit determination.
Advanced Combustion Numerics and Modeling - FY18 First Quarter Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitesides, R. A.; Killingsworth, N. J.; McNenly, M. J.
This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emergingmore » needs of the engine designers, engine modelers and fuel mechanism developers.« less
Systems-Level Synthetic Biology for Advanced Biofuel Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall
2015-03-01
Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcusmore » sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.« less
Large-scale structural analysis: The structural analyst, the CSM Testbed and the NAS System
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Mccleary, Susan L.; Macy, Steven C.; Aminpour, Mohammad A.
1989-01-01
The Computational Structural Mechanics (CSM) activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM testbed methods development environment is presented and some numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.
MixSIAR: advanced stable isotope mixing models in R
Background/Question/Methods The development of stable isotope mixing models has coincided with modeling products (e.g. IsoSource, MixSIR, SIAR), where methodological advances are published in parity with software packages. However, while mixing model theory has recently been ex...
Technology readiness levels for advanced nuclear fuels and materials development
Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...
2016-12-23
The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less
Technology readiness levels for advanced nuclear fuels and materials development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, W. J.; Braase, L. A.; Wigeland, R. A.
The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less
Recent advances in immunosensor for narcotic drug detection
Gandhi, Sonu; Suman, Pankaj; Kumar, Ashok; Sharma, Prince; Capalash, Neena; Suri, C. Raman
2015-01-01
Introduction: Immunosensor for illicit drugs have gained immense interest and have found several applications for drug abuse monitoring. This technology has offered a low cost detection of narcotics; thereby, providing a confirmatory platform to compliment the existing analytical methods. Methods: In this minireview, we define the basic concept of transducer for immunosensor development that utilizes antibodies and low molecular mass hapten (opiate) molecules. Results: This article emphasizes on recent advances in immunoanalytical techniques for monitoring of opiate drugs. Our results demonstrate that high quality antibodies can be used for immunosensor development against target analyte with greater sensitivity, specificity and precision than other available analytical methods. Conclusion: In this review we highlight the fundamentals of different transducer technologies and its applications for immunosensor development currently being developed in our laboratory using rapid screening via immunochromatographic kit, label free optical detection via enzyme, fluorescence, gold nanoparticles and carbon nanotubes based immunosensing for sensitive and specific monitoring of opiates. PMID:26929925
NASA Astrophysics Data System (ADS)
Iwamoto, Mitsumasa; Taguchi, Dai
2018-03-01
Thermally stimulated current (TSC) measurement is widely used in a variety of research fields, i.e., physics, electronics, electrical engineering, chemistry, ceramics, and biology. TSC is short-circuit current that flows owing to the displacement of charges in samples during heating. TSC measurement is very simple, but TSC curves give very important information on charge behaviors. In the 1970s, TSC measurement contributed greatly to the development of electrical insulation engineering, semiconductor device technology, and so forth. Accordingly, the TSC experimental technique and its analytical method advanced. Over the past decades, many new molecules and advanced functional materials have been discovered and developed. Along with this, TSC measurement has attracted much attention in industries and academic laboratories as a way of characterizing newly discovered materials and devices. In this review, we report the latest research trend in the TSC method for the development of materials and devices in Japan.
Recent advances in testing of microsphere drug delivery systems.
Andhariya, Janki V; Burgess, Diane J
2016-01-01
This review discusses advances in the field of microsphere testing. In vitro release-testing methods such as sample and separate, dialysis membrane sacs and USP apparatus IV have been used for microspheres. Based on comparisons of these methods, USP apparatus IV is currently the method of choice. Accelerated in vitro release tests have been developed to shorten the testing time for quality control purposes. In vitro-in vivo correlations using real-time and accelerated release data have been developed, to minimize the need to conduct in vivo performance evaluation. Storage stability studies have been conducted to investigate the influence of various environmental factors on microsphere quality throughout the product shelf life. New tests such as the floating test and the in vitro wash-off test have been developed along with advancement in characterization techniques for other physico-chemical parameters such as particle size, drug content, and thermal properties. Although significant developments have been made in microsphere release testing, there is still a lack of guidance in this area. Microsphere storage stability studies should be extended to include microspheres containing large molecules. An agreement needs to be reached on the use of particle sizing techniques to avoid inconsistent data. An approach needs to be developed to determine total moisture content of microspheres.
Review of recent advances in analytical techniques for the determination of neurotransmitters
Perry, Maura; Li, Qiang; Kennedy, Robert T.
2009-01-01
Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472
Advanced boundary layer transition measurement methods for flight applications
NASA Technical Reports Server (NTRS)
Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.
1986-01-01
In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.
NASA Technical Reports Server (NTRS)
Mcgowan, David M.; Bostic, Susan W.; Camarda, Charles J.
1993-01-01
The development of two advanced reduced-basis methods, the force derivative method and the Lanczos method, and two widely used modal methods, the mode displacement method and the mode acceleration method, for transient structural analysis of unconstrained structures is presented. Two example structural problems are studied: an undamped, unconstrained beam subject to a uniformly distributed load which varies as a sinusoidal function of time and an undamped high-speed civil transport aircraft subject to a normal wing tip load which varies as a sinusoidal function of time. These example problems are used to verify the methods and to compare the relative effectiveness of each of the four reduced-basis methods for performing transient structural analyses on unconstrained structures. The methods are verified with a solution obtained by integrating directly the full system of equations of motion, and they are compared using the number of basis vectors required to obtain a desired level of accuracy and the associated computational times as comparison criteria.
2015-12-01
Over the past two decades the United States has revolutionized the war fighting industry with advancements in Low Observable ( LO ) technology and...precision strike capability. Advanced LO weapon systems such as the F-35, F-22 and the B-2 have been developed and portrayed as stealth aircraft. In...Because LO technology is in a physical form, methods can and have been developed to exploit the inherent weaknesses. Additionally, the technological
Integrative methods for analyzing big data in precision medicine.
Gligorijević, Vladimir; Malod-Dognin, Noël; Pržulj, Nataša
2016-03-01
We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of "Big Data" in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zebra: An advanced PWR lattice code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, L.; Wu, H.; Zheng, Y.
2012-07-01
This paper presents an overview of an advanced PWR lattice code ZEBRA developed at NECP laboratory in Xi'an Jiaotong Univ.. The multi-group cross-section library is generated from the ENDF/B-VII library by NJOY and the 361-group SHEM structure is employed. The resonance calculation module is developed based on sub-group method. The transport solver is Auto-MOC code, which is a self-developed code based on the Method of Characteristic and the customization of AutoCAD software. The whole code is well organized in a modular software structure. Some numerical results during the validation of the code demonstrate that this code has a good precisionmore » and a high efficiency. (authors)« less
Development of advanced lightweight containment systems
NASA Technical Reports Server (NTRS)
Stotler, C.
1981-01-01
Parametric type data were obtained on advanced lightweight containment systems. These data were used to generate design methods and procedures necessary for the successful development of such systems. The methods were then demonstrated through the design of a lightweight containment system for a CF6 size engine. The containment concept evaluated consisted basically of a lightweight structural sandwich shell wrapped with dry Kevlar cloth. The initial testing was directed towards the determination of the amount of Kevlar required to result in threshold containment for a specific set of test conditions. A relationship was then developed between the thickness required and the energy of the released blade so that the data could be used to design for conditions other than those tested.
The overall goal of this task is to help reduce the uncertainties in the assessment of environmental health and human exposure by better characterizing hazardous wastes through cost-effective analytical methods. Research projects are directed towards the applied development and ...
Third molar development in a contemporary Danish 13-25year old population.
Arge, Sara; Boldsen, Jesper Lier; Wenzel, Ann; Holmstrup, Palle; Jensen, Niels Dyrgaard; Lynnerup, Niels
2018-05-16
We present a reference database for third molar development based on a contemporary Danish population. A total of 1302 digital panoramic images were evaluated. The images were taken at a known chronological age, ranging from 13 to 25years. Third molar development was scored according to the Köhler modification of the 10-stage method of Gleiser and Hunt. We found that third molar development was generally advanced in the maxilla compared to the mandible and in males compared to females; in addition, the mandibular third molar mesial roots were generally more advanced in development than were the distal roots. There was no difference in third molar development between the left and right side of the jaws. Establishing global and robust databases on dental development is crucial for further development of forensic methods to evaluate age. Copyright © 2018. Published by Elsevier B.V.
CSM Testbed Development and Large-Scale Structural Applications
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Gillian, R. E.; Mccleary, Susan L.; Lotts, C. G.; Poole, E. L.; Overman, A. L.; Macy, S. C.
1989-01-01
A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.
DOT National Transportation Integrated Search
2012-06-01
Our current ability to forecast demand on tolled facilities has not kept pace with advances in decision sciences and : technological innovation. The current forecasting methods suffer from lack of descriptive power of actual behavior because : of the...
Computational methods in drug discovery
Leelananda, Sumudu P
2016-01-01
The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein–ligand docking, pharmacophore modeling and QSAR techniques are reviewed. PMID:28144341
Computational methods in drug discovery.
Leelananda, Sumudu P; Lindert, Steffen
2016-01-01
The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein-ligand docking, pharmacophore modeling and QSAR techniques are reviewed.
Advanced protein crystal growth programmatic sensitivity study
NASA Technical Reports Server (NTRS)
1992-01-01
The purpose of this study is to define the costs of various APCG (Advanced Protein Crystal Growth) program options and to determine the parameters which, if changed, impact the costs and goals of the programs and to what extent. This was accomplished by developing and evaluating several alternate programmatic scenarios for the microgravity Advanced Protein Crystal Growth program transitioning from the present shuttle activity to the man tended Space Station to the permanently manned Space Station. These scenarios include selected variations in such sensitivity parameters as development and operational costs, schedules, technology issues, and crystal growth methods. This final report provides information that will aid in planning the Advanced Protein Crystal Growth Program.
Space Flight Software Development Software for Intelligent System Health Management
NASA Technical Reports Server (NTRS)
Trevino, Luis C.; Crumbley, Tim
2004-01-01
The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.
[Isolation and identification methods of enterobacteria group and its technological advancement].
Furuta, Itaru
2007-08-01
In the last half-century, isolation and identification methods of enterobacteria groups have markedly improved by technological advancement. Clinical microbiology tests have changed overtime from tube methods to commercial identification kits and automated identification. Tube methods are the original method for the identification of enterobacteria groups, that is, a basically essential method to recognize bacterial fermentation and biochemical principles. In this paper, traditional tube tests are discussed, such as the utilization of carbohydrates, indole, methyl red, and citrate and urease tests. Commercial identification kits and automated instruments by computer based analysis as current methods are also discussed, and those methods provide rapidity and accuracy. Nonculture techniques of nucleic acid typing methods using PCR analysis, and immunochemical methods using monoclonal antibodies can be further developed.
Multigrid Methods for Aerodynamic Problems in Complex Geometries
NASA Technical Reports Server (NTRS)
Caughey, David A.
1995-01-01
Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.
Wright, M. Jerry; Valentine, Gerald
2017-01-01
Objective The 2009 Family Smoking Prevention and Tobacco Control Act (TCA) created unprecented enabling conditions for establishing national regulatory policy that reduces the burden of public health and societal problems associated with tobacco product use. The Center for Tobacco Products (CTP), created by the FDA to implement the TCA, developed a first-of-its-kind FDA/National Institutes of Health (NIH) collaborative program to fund Tobacco Centers of Regulatory Science (TCORS). Methods To assist the TCORS with addressing research priorites, working groups (WGs) comprised of FDA-CTP liasions and TCORS investigators were formed. Under the direction of the Center for Evaluation and Coordination of Trainin and Research (CECTR), the TCORS WGs seek to develop tangible work products in their respective areas of focus. Results The focus of the behavioral pharmacology WG evolved from publishing a narrow paper on behavioral methods in electronic cigarette research to a collection of papers on advances in behavioral laboratory methods that may inform tobacco regulatory science. Conclusion This Special Issue contains articles that address all of the CTP research priorities and demonstrates how advances in behavioral laboratory methods made by TCORS investigators can inform FDA efforst to regulate tobacco products. PMID:29152546
Advances in Molecular Serotyping and Subtyping of Escherichia coli.
Fratamico, Pina M; DebRoy, Chitrita; Liu, Yanhong; Needleman, David S; Baranzoni, Gian Marco; Feng, Peter
2016-01-01
Escherichia coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and H- serotyping for differentiating and characterizing E. coli have been used for many years; however, these methods are generally time consuming and not always accurate. Advances in next generation sequencing technologies have made it possible to develop genetic-based subtyping and molecular serotyping methods for E. coli, which are more discriminatory compared to phenotypic typing methods. Furthermore, whole genome sequencing (WGS) of E. coli is replacing established subtyping methods such as pulsed-field gel electrophoresis, providing a major advancement in the ability to investigate food-borne disease outbreaks and for trace-back to sources. A variety of sequence analysis tools and bioinformatic pipelines are being developed to analyze the vast amount of data generated by WGS and to obtain specific information such as O- and H-group determination and the presence of virulence genes and other genetic markers.
Feedstock powder processing research needs for additive manufacturing development
Anderson, Iver E.; White, Emma M. H.; Dehoff, Ryan
2018-02-01
Additive manufacturing (AM) promises to redesign traditional manufacturing by enabling the ultimate in agility for rapid component design changes in commercial products and for fabricating complex integrated parts. Here, by significantly increasing quality and yield of metallic alloy powders, the pace for design, development, and deployment of the most promising AM approaches can be greatly accelerated, resulting in rapid commercialization of these advanced manufacturing methods. By successful completion of a critical suite of processing research tasks that are intended to greatly enhance gas atomized powder quality and the precision and efficiency of powder production, researchers can help promote continued rapidmore » growth of AM. Finally, other powder-based or spray-based advanced manufacturing methods could also benefit from these research outcomes, promoting the next wave of sustainable manufacturing technologies for conventional and advanced materials.« less
Feedstock powder processing research needs for additive manufacturing development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver E.; White, Emma M. H.; Dehoff, Ryan
Additive manufacturing (AM) promises to redesign traditional manufacturing by enabling the ultimate in agility for rapid component design changes in commercial products and for fabricating complex integrated parts. Here, by significantly increasing quality and yield of metallic alloy powders, the pace for design, development, and deployment of the most promising AM approaches can be greatly accelerated, resulting in rapid commercialization of these advanced manufacturing methods. By successful completion of a critical suite of processing research tasks that are intended to greatly enhance gas atomized powder quality and the precision and efficiency of powder production, researchers can help promote continued rapidmore » growth of AM. Finally, other powder-based or spray-based advanced manufacturing methods could also benefit from these research outcomes, promoting the next wave of sustainable manufacturing technologies for conventional and advanced materials.« less
Statistical methods in personality assessment research.
Schinka, J A; LaLone, L; Broeckel, J A
1997-06-01
Emerging models of personality structure and advances in the measurement of personality and psychopathology suggest that research in personality and personality assessment has entered a stage of advanced development, in this article we examine whether researchers in these areas have taken advantage of new and evolving statistical procedures. We conducted a review of articles published in the Journal of Personality, Assessment during the past 5 years. Of the 449 articles that included some form of data analysis, 12.7% used only descriptive statistics, most employed only univariate statistics, and fewer than 10% used multivariate methods of data analysis. We discuss the cost of using limited statistical methods, the possible reasons for the apparent reluctance to employ advanced statistical procedures, and potential solutions to this technical shortcoming.
A thesis on the Development of an Automated SWIFT Edge Detection Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trujillo, Christopher J.
Throughout the world, scientists and engineers such as those at Los Alamos National Laboratory, perform research and testing unique only to applications aimed towards advancing technology, and understanding the nature of materials. With this testing, comes a need for advanced methods of data acquisition and most importantly, a means of analyzing and extracting the necessary information from such acquired data. In this thesis, I aim to produce an automated method implementing advanced image processing techniques and tools to analyze SWIFT image datasets for Detonator Technology at Los Alamos National Laboratory. Such an effective method for edge detection and point extractionmore » can prove to be advantageous in analyzing such unique datasets and provide for consistency in producing results.« less
New Developments of the Shared Concern Method.
ERIC Educational Resources Information Center
Pikas, Anatol
2002-01-01
Reviews and describes new developments in the Shared Concern method (SCm), a tool for tackling group bullying amongst teenagers by individual talks. The psychological mechanisms of healing in the bully group and what hinders the bully therapist in eliciting them have become better clarified. The most important recent advancement of the SCm…
Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.; Zagaris, George
2009-01-01
A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.
Domain Decomposition By the Advancing-Partition Method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2008-01-01
A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.
Pedagogical Practices and Counselor Self-Efficacy: A Mixed Methods Investigations
ERIC Educational Resources Information Center
Brogan, Justin R.
2009-01-01
The current study investigated the Lecture Teaching Method and Socratic Teaching Method to determine if there was a relationship between pedagogical methods and Counselor Self-Efficacy (CSE). A course in Advanced Professional Development was utilized to determine if teaching methods could affect student perceptions of competence to practice…
Printing, folding and assembly methods for forming 3D mesostructures in advanced materials
NASA Astrophysics Data System (ADS)
Zhang, Yihui; Zhang, Fan; Yan, Zheng; Ma, Qiang; Li, Xiuling; Huang, Yonggang; Rogers, John A.
2017-03-01
A rapidly expanding area of research in materials science involves the development of routes to complex 3D structures with feature sizes in the mesoscopic range (that is, between tens of nanometres and hundreds of micrometres). A goal is to establish methods for controlling the properties of materials systems and the function of devices constructed with them, not only through chemistry and morphology, but also through 3D architectures. The resulting systems, sometimes referred to as metamaterials, offer engineered behaviours with optical, thermal, acoustic, mechanical and electronic properties that do not occur in the natural world. Impressive advances in 3D printing techniques represent some of the most broadly recognized developments in this field, but recent successes with strategies based on concepts in origami, kirigami and deterministic assembly provide additional, unique options in 3D design and high-performance materials. In this Review, we highlight the latest progress and trends in methods for fabricating 3D mesostructures, beginning with the development of advanced material inks for nozzle-based approaches to 3D printing and new schemes for 3D optical patterning. In subsequent sections, we summarize more recent methods based on folding, rolling and mechanical assembly, including their application with materials such as designer hydrogels, monocrystalline inorganic semiconductors and graphene.
Engineering hybrid exosomes by membrane fusion with liposomes.
Sato, Yuko T; Umezaki, Kaori; Sawada, Shinichi; Mukai, Sada-atsu; Sasaki, Yoshihiro; Harada, Naozumi; Shiku, Hiroshi; Akiyoshi, Kazunari
2016-02-25
Exosomes are a valuable biomaterial for the development of novel nanocarriers as functionally advanced drug delivery systems. To control and modify the performance of exosomal nanocarriers, we developed hybrid exosomes by fusing their membranes with liposomes using the freeze-thaw method. Exosomes embedded with a specific membrane protein isolated from genetically modified cells were fused with various liposomes, confirming that membrane engineering methods can be combined with genetic modification techniques. Cellular uptake studies performed using the hybrid exosomes revealed that the interactions between the developed exosomes and cells could be modified by changing the lipid composition or the properties of the exogenous lipids. These results suggest that the membrane-engineering approach reported here offers a new strategy for developing rationally designed exosomes as hybrid nanocarriers for use in advanced drug delivery systems.
[To see the future development of burn medicine from the view of holistic integrative medicine].
Hu, D H; Tao, K
2017-04-20
The therapeutic methods and effects have been improved greatly in the past few decades for burn care and management with several important advancements which have resulted in more effective patient stabilization and significantly decreased mortality in China. However, the challenges still exist, such as how to further improve the recovery of the patients' appearance and function, and how to advance the treatment of severe deep extensive burn injury, etc. The theory of holistic integrative medicine (HIM) provides a new opportunity for the development of clinical medicine. This article emphasizes the important roles of HIM in exploration of burn medicine, considering the advanced development of modern life sciences and relevant techniques.
Advanced microscopic methods for the detection of adhesion barriers in immunology in medical imaging
NASA Astrophysics Data System (ADS)
Lawrence, Shane
2017-07-01
Advanced methods of microscopy and advanced techniques of analysis stemming therefrom have developed greatly in the past few years.The use of single discrete methods has given way to the combination of methods which means an increase in data for processing to progress to the analysis and diagnosis of ailments and diseases which can be viewed by each and any method.This presentation shows the combination of such methods and gives example of the data which arises from each individual method and the combined methodology and suggests how such data can be streamlined to enable conclusions to be drawn about the particular biological and biochemical considerations that arise.In this particular project the subject of the methodology was human lactoferrin and the relation of the adhesion properties of hlf in the overcoming of barriers to adhesion mainly on the perimeter of the cellular unit and how this affects the process of immunity in any particular case.
Organizing a Community Advanced Pharmacy Practice Experience
Koenigsfeld, Carrie Foust; Tice, Angela L
2006-01-01
Setting up a community advanced pharmacy practice experience can be an overwhelming task for many pharmacy preceptors. This article provides guidance to pharmacist preceptors in developing a complete and effective community advanced pharmacy practice experience (APPE). When preparing for the APPE, initial discussions with the college or school of pharmacy are key. Benefits, training, and requirements should be addressed. Site preparation, including staff education, will assist in the development process. The preceptor should plan orientation day activities and determine appropriate evaluation and feedback methods. With thorough preparation, the APPE will be rewarding for both the student and the pharmacy site. PMID:17136163
Organizing a community advanced pharmacy practice experience.
Koenigsfeld, Carrie Foust; Tice, Angela L
2006-02-15
Setting up a community advanced pharmacy practice experience can be an overwhelming task for many pharmacy preceptors. This article provides guidance to pharmacist preceptors in developing a complete and effective community advanced pharmacy practice experience (APPE). When preparing for the APPE, initial discussions with the college or school of pharmacy are key. Benefits, training, and requirements should be addressed. Site preparation, including staff education, will assist in the development process. The preceptor should plan orientation day activities and determine appropriate evaluation and feedback methods. With thorough preparation, the APPE will be rewarding for both the student and the pharmacy site.
A Primer In Advanced Fatigue Life Prediction Methods
NASA Technical Reports Server (NTRS)
Halford, Gary R.
2000-01-01
Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.
Computational Methods Development at Ames
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Smith, Charles A. (Technical Monitor)
1998-01-01
This viewgraph presentation outlines the development at Ames Research Center of advanced computational methods to provide appropriate fidelity computational analysis/design capabilities. Current thrusts of the Ames research include: 1) methods to enhance/accelerate viscous flow simulation procedures, and the development of hybrid/polyhedral-grid procedures for viscous flow; 2) the development of real time transonic flow simulation procedures for a production wind tunnel, and intelligent data management technology; and 3) the validation of methods and the flow physics study gives historical precedents to above research, and speculates on its future course.
Technology Alignment and Portfolio Prioritization (TAPP)
NASA Technical Reports Server (NTRS)
Funaro, Gregory V.; Alexander, Reginald A.
2015-01-01
Technology Alignment and Portfolio Prioritization (TAPP) is a method being developed by the Advanced Concepts Office, at NASA Marshall Space Flight Center. The TAPP method expands on current technology assessment methods by incorporating the technological structure underlying technology development, e.g., organizational structures and resources, institutional policy and strategy, and the factors that motivate technological change. This paper discusses the methods ACO is currently developing to better perform technology assessments while taking into consideration Strategic Alignment, Technology Forecasting, and Long Term Planning.
Advances in NMR Spectroscopy for Lipid Oxidation Assessment
USDA-ARS?s Scientific Manuscript database
Although there are many analytical methods developed for the assessment of lipid oxidation, different analytical methods often give different, sometimes even contradictory, results. The reason for this inconsistency is that although there are many different kinds of oxidation products, most methods ...
Advanced Engineering Environments: Implications for Aerospace Manufacturing
NASA Technical Reports Server (NTRS)
Thomas, D.
2001-01-01
There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.
An advanced panel method for analysis of arbitrary configurations in unsteady subsonic flow
NASA Technical Reports Server (NTRS)
Dusto, A. R.; Epton, M. A.
1980-01-01
An advanced method is presented for solving the linear integral equations for subsonic unsteady flow in three dimensions. The method is applicable to flows about arbitrary, nonplanar boundary surfaces undergoing small amplitude harmonic oscillations about their steady mean locations. The problem is formulated with a wake model wherein unsteady vorticity can be convected by the steady mean component of flow. The geometric location of the unsteady source and doublet distributions can be located on the actual surfaces of thick bodies in their steady mean locations. The method is an outgrowth of a recently developed steady flow panel method and employs the linear source and quadratic doublet splines of that method.
Recent advances in analytical methods, biomarker discovery, cell-based assay development, computational tools, sensor/monitor, and omics technology have enabled new streams of exposure and toxicity data to be generated at higher volumes and speed. These new data offer the opport...
Collaborative Learning in Advanced Supply Systems: The KLASS Pilot Project.
ERIC Educational Resources Information Center
Rhodes, Ed; Carter, Ruth
2003-01-01
The Knowledge and Learning in Advanced Supply Systems (KLASS) project developed collaborative learning networks of suppliers in the British automotive and aerospace industries. Methods included face-to-face and distance learning, work toward National Vocational Qualifications, and diagnostic workshops for senior managers on improving quality,…
USDA-ARS?s Scientific Manuscript database
Background: Availability of a large number of data sets in public repositories and the advances in integrating multi-omics methods have greatly advanced our understanding of biological organisms and microbial associates, as well as large subcellular organelles, such as mitochondria. Mitochondrial ...
Development of improved coating for advanced carbon-carbon components
NASA Technical Reports Server (NTRS)
Yamaki, Y. R.; Brown, J. J.
1984-01-01
Reaction sintered silicon nitride (RSSN) was studied as a substitute coating material on the carbon-carbon material (RCC) presently used as a heat shield on the space shuttle, and on advanced carbon-carbon (ACC), a later development. On RCC, RSSN showed potential in a 538 C (1000 F) screening test in which silicon carbide coated material exhibits its highest oxidation rate; RSSN afforded less protection to ACC because of a larger thermal expansion mismatch. Organosilicon densification and metallic silicon sealing methods were studied as means of further increasing the oxidation resistance of the coating, and some improvement was noted when these methods were employed.
Køppe, Simo; Dammeyer, Jesper
2014-09-01
The evolution of developmental psychology has been characterized by the use of different quantitative and qualitative methods and procedures. But how does the use of methods and procedures change over time? This study explores the change and development of statistical methods used in articles published in Child Development from 1930 to 2010. The methods used in every article in the first issue of every volume were categorized into four categories. Until 1980 relatively simple statistical methods were used. During the last 30 years there has been an explosive use of more advanced statistical methods employed. The absence of statistical methods or use of simple methods had been eliminated.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Salem, Jonathan A.
1998-01-01
The service life of structural ceramic components is often limited by the process of slow crack growth. Therefore, it is important to develop an appropriate testing methodology for accurately determining the slow crack growth design parameters necessary for component life prediction. In addition, an appropriate test methodology can be used to determine the influences of component processing variables and composition on the slow crack growth and strength behavior of newly developed materials, thus allowing the component process to be tailored and optimized to specific needs. At the NASA Lewis Research Center, work to develop a standard test method to determine the slow crack growth parameters of advanced ceramics was initiated by the authors in early 1994 in the C 28 (Advanced Ceramics) committee of the American Society for Testing and Materials (ASTM). After about 2 years of required balloting, the draft written by the authors was approved and established as a new ASTM test standard: ASTM C 1368-97, Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Ambient Temperature. Briefly, the test method uses constant stress-rate testing to determine strengths as a function of stress rate at ambient temperature. Strengths are measured in a routine manner at four or more stress rates by applying constant displacement or loading rates. The slow crack growth parameters required for design are then estimated from a relationship between strength and stress rate. This new standard will be published in the Annual Book of ASTM Standards, Vol. 15.01, in 1998. Currently, a companion draft ASTM standard for determination of the slow crack growth parameters of advanced ceramics at elevated temperatures is being prepared by the authors and will be presented to the committee by the middle of 1998. Consequently, Lewis will maintain an active leadership role in advanced ceramics standardization within ASTM. In addition, the authors have been and are involved with several international standardization organizations including the Versailles Project on Advanced Materials and Standards (VAMAS), the International Energy Agency (IEA), and the International Organization for Standardization (ISO). The associated standardization activities involve fracture toughness, strength, elastic modulus, and the machining of advanced ceramics.
2002-01-01
the present work, the Advanced Mean Value method developed by Millwater and co-workers is used [6-10]. II.1.1 Advanced Mean-Value Method The...Engineering A, submitted for publication, December, , 2001. 6. H. R. Millwater and Y.-T. Wu, “Computational Structural Reliability Analysis of a...Turbine Blade,” Proceedings International Gas Turbine and Aeroengine Congress and Exposition, Cincinnati, OH, May 24-27, 1993. 7. Millwater , H.R., Y
Applying flow chemistry: methods, materials, and multistep synthesis.
McQuade, D Tyler; Seeberger, Peter H
2013-07-05
The synthesis of complex molecules requires control over both chemical reactivity and reaction conditions. While reactivity drives the majority of chemical discovery, advances in reaction condition control have accelerated method development/discovery. Recent tools include automated synthesizers and flow reactors. In this Synopsis, we describe how flow reactors have enabled chemical advances in our groups in the areas of single-stage reactions, materials synthesis, and multistep reactions. In each section, we detail the lessons learned and propose future directions.
Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost
NASA Astrophysics Data System (ADS)
Shen, A. W.; Guo, J. L.; Wang, Z. J.
2015-12-01
In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.
NASA Astrophysics Data System (ADS)
Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.
2006-03-01
Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, hand-held, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.
architectures. Crowlely's group has designed and implemented new methods and algorithms specifically for biomass , Crowley developed highly parallel methods for simulations of bio-macromolecules. Affiliated Research advanced sampling methods, Crowley and his team determine free energies such as binding of substrates
Strongyloides stercoralis and relatives: recent advances in general and molecular biology.
Lok, James B
2014-12-01
Human strongyloidiasis is a threat to global health, presenting significant challenges in diagnosis and clinical management. The imperative to incorporate strongyoidiasis more fully into control programs for soil-transmitted helminths is increasingly recognized. The unique life cycles of S. stercoralis and congeneric species contain both free-living and parasitic generations, and transcriptomic methods have recently identified genes of potential importance to parasitism in these parasites. Proteomics recently revealed stage-specific secreted proteins that appear crucial to the host-parasite interaction. A comprehensive genome sequencing project for Strongyloides spp. is now nearing completion. Recent technical advances in transgenesis for S. stercoralis and S. ratti , including the first establishment of stable transgenic lines, promise to advance functional evaluations of genes expressed in conjunction with crucial life cycle events. Studies employing these methods recently bolstered the hypothesis that S. stercoralis uses cellular signaling pathways homologous to three that regulate dauer larval development in Caenorhabditis elegans to regulate morphogenesis and development of its infective third-stage larva. The free-living generation of Strongyloides makes classical genetics formally possible. Recent advances, such as a genetic map of S. ratti and a molecular genetic and karyotypic analysis of sex determination in S. papillosus , will greatly facilitate this approach. Advanced methods for study of chemosensation in C. elegans were recently applied to discover numerous host attractant molecules that mediate host finding and contact by infective third-stage larvae of Strongyloides spp. Finally, nucleic acid-based diagnostic methods have recently come to the fore as alternatives to parasitological and immunodiagnostic techniques.
NASA Astrophysics Data System (ADS)
Fryd, Michael M.; Mason, Thomas G.
2012-05-01
Recent advances in the growing field of nanoemulsions are opening up new applications in many areas such as pharmaceuticals, foods, and cosmetics. Moreover, highly controlled nanoemulsions can also serve as excellent model systems for investigating basic scientific questions about soft matter. Here, we highlight some of the most recent developments in nanoemulsions, focusing on methods of formation, surface modification, material properties, and characterization. These developments provide insight into the substantial advantages that nanoemulsions can offer over their microscale emulsion counterparts.
Recent Advances in Clinical Natural Language Processing in Support of Semantic Analysis
Mowery, D.; South, B. R.; Kvist, M.; Dalianis, H.
2015-01-01
Summary Objectives We present a review of recent advances in clinical Natural Language Processing (NLP), with a focus on semantic analysis and key subtasks that support such analysis. Methods We conducted a literature review of clinical NLP research from 2008 to 2014, emphasizing recent publications (2012-2014), based on PubMed and ACL proceedings as well as relevant referenced publications from the included papers. Results Significant articles published within this time-span were included and are discussed from the perspective of semantic analysis. Three key clinical NLP subtasks that enable such analysis were identified: 1) developing more efficient methods for corpus creation (annotation and de-identification), 2) generating building blocks for extracting meaning (morphological, syntactic, and semantic subtasks), and 3) leveraging NLP for clinical utility (NLP applications and infrastructure for clinical use cases). Finally, we provide a reflection upon most recent developments and potential areas of future NLP development and applications. Conclusions There has been an increase of advances within key NLP subtasks that support semantic analysis. Performance of NLP semantic analysis is, in many cases, close to that of agreement between humans. The creation and release of corpora annotated with complex semantic information models has greatly supported the development of new tools and approaches. Research on non-English languages is continuously growing. NLP methods have sometimes been successfully employed in real-world clinical tasks. However, there is still a gap between the development of advanced resources and their utilization in clinical settings. A plethora of new clinical use cases are emerging due to established health care initiatives and additional patient-generated sources through the extensive use of social media and other devices. PMID:26293867
NASA Astrophysics Data System (ADS)
Stone, S.; Parker, M. S.; Howe, B.; Lazowska, E.
2015-12-01
Rapid advances in technology are transforming nearly every field from "data-poor" to "data-rich." The ability to extract knowledge from this abundance of data is the cornerstone of 21st century discovery. At the University of Washington eScience Institute, our mission is to engage researchers across disciplines in developing and applying advanced computational methods and tools to real world problems in data-intensive discovery. Our research team consists of individuals with diverse backgrounds in domain sciences such as astronomy, oceanography and geology, with complementary expertise in advanced statistical and computational techniques such as data management, visualization, and machine learning. Two key elements are necessary to foster careers in data science: individuals with cross-disciplinary training in both method and domain sciences, and career paths emphasizing alternative metrics for advancement. We see persistent and deep-rooted challenges for the career paths of people whose skills, activities and work patterns don't fit neatly into the traditional roles and success metrics of academia. To address these challenges the eScience Institute has developed training programs and established new career opportunities for data-intensive research in academia. Our graduate students and post-docs have mentors in both a methodology and an application field. They also participate in coursework and tutorials to advance technical skill and foster community. Professional Data Scientist positions were created to support research independence while encouraging the development and adoption of domain-specific tools and techniques. The eScience Institute also supports the appointment of faculty who are innovators in developing and applying data science methodologies to advance their field of discovery. Our ultimate goal is to create a supportive environment for data science in academia and to establish global recognition for data-intensive discovery across all fields.
Advanced Doubling Adding Method for Radiative Transfer in Planetary Atmospheres
NASA Astrophysics Data System (ADS)
Liu, Quanhua; Weng, Fuzhong
2006-12-01
The doubling adding method (DA) is one of the most accurate tools for detailed multiple-scattering calculations. The principle of the method goes back to the nineteenth century in a problem dealing with reflection and transmission by glass plates. Since then the doubling adding method has been widely used as a reference tool for other radiative transfer models. The method has never been used in operational applications owing to tremendous demand on computational resources from the model. This study derives an analytical expression replacing the most complicated thermal source terms in the doubling adding method. The new development is called the advanced doubling adding (ADA) method. Thanks also to the efficiency of matrix and vector manipulations in FORTRAN 90/95, the advanced doubling adding method is about 60 times faster than the doubling adding method. The radiance (i.e., forward) computation code of ADA is easily translated into tangent linear and adjoint codes for radiance gradient calculations. The simplicity in forward and Jacobian computation codes is very useful for operational applications and for the consistency between the forward and adjoint calculations in satellite data assimilation.
Elliott, Naomi; Begley, Cecily; Kleinpell, Ruth; Higgins, Agnes
2014-05-01
To report a secondary analysis of data collected from the case study phase of a national study of advanced practitioners and to develop leadership outcome-indicators appropriate for advanced practitioners. In many countries, advanced practitioners in nursing and midwifery have responsibility as leaders for health care development, but without having leadership outcome measures available they are unable to demonstrate the results of their activities. In Ireland, a sequential mixed method research study was used to develop a validated tool for the evaluation of clinical specialists and advanced practitioners. Despite strong evidence of leadership activities, few leadership-specific outcomes were generated from the primary analysis. Secondary analysis of a multiple case study data set. Data set comprised 23 case studies of advanced practitioner/clinical specialists from 13 sites across each region in Ireland from all divisions of the Nursing Board Register. Data were collected 2008-2010. Data sources included non-participant observation (n = 92 hours) of advanced practitioners in practice, interviews with clinicians (n = 21), patients (n = 20) and directors of nursing/midwifery (n = 13) and documents. Analysis focused on leadership outcome-indicator development in line with the National Health Service's Good Indicators Guide. The four categories of leadership outcomes for advanced practitioner developed were as follows: (i) capacity and capability building of multidisciplinary team; (ii) measure of esteem; (iii) new initiatives for clinical practice and healthcare delivery; and (iv) clinical practice based on evidence. The proposed set of leadership outcome-indicators derived from a secondary analysis captures the complexity of leadership in practice. They add to existing clinical outcomes measuring advanced practice. © 2013 John Wiley & Sons Ltd.
Advanced Capabilities for Wind Tunnel Testing in the 21st Century
NASA Technical Reports Server (NTRS)
Kegelman, Jerome T.; Danehy, Paul M.; Schwartz, Richard J.
2010-01-01
Wind tunnel testing methods and test technologies for the 21st century using advanced capabilities are presented. These capabilities are necessary to capture more accurate and high quality test results by eliminating the uncertainties in testing and to facilitate verification of computational tools for design. This paper discusses near term developments underway in ground testing capabilities, which will enhance the quality of information of both the test article and airstream flow details. Also discussed is a selection of new capability investments that have been made to accommodate such developments. Examples include advanced experimental methods for measuring the test gas itself; using efficient experiment methodologies, including quality assurance strategies within the test; and increasing test result information density by using extensive optical visualization together with computed flow field results. These points could be made for both major investments in existing tunnel capabilities or for entirely new capabilities.
Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience.
Paninski, L; Cunningham, J P
2018-06-01
Modern large-scale multineuronal recording methodologies, including multielectrode arrays, calcium imaging, and optogenetic techniques, produce single-neuron resolution data of a magnitude and precision that were the realm of science fiction twenty years ago. The major bottlenecks in systems and circuit neuroscience no longer lie in simply collecting data from large neural populations, but also in understanding this data: developing novel scientific questions, with corresponding analysis techniques and experimental designs to fully harness these new capabilities and meaningfully interrogate these questions. Advances in methods for signal processing, network analysis, dimensionality reduction, and optimal control-developed in lockstep with advances in experimental neurotechnology-promise major breakthroughs in multiple fundamental neuroscience problems. These trends are clear in a broad array of subfields of modern neuroscience; this review focuses on recent advances in methods for analyzing neural time-series data with single-neuronal precision. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.
2003-01-01
Aerospace vehicles are designed to be durable and damage tolerant. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. However, both durability and damage tolerance design methodologies must address the deleterious effects of changes in material properties and the initiation and growth of microstructural damage that may occur during the service lifetime of the vehicle. Durability and damage tolerance design and certification requirements are addressed for commercial transport aircraft and NASA manned spacecraft systems. The state-of-the-art in advanced design and analysis methods is illustrated by discussing the results of several recently completed NASA technology development programs. These programs include the NASA Advanced Subsonic Technology Program demonstrating technologies for large transport aircraft and the X-33 hypersonic test vehicle demonstrating technologies for a single-stage-to-orbit space launch vehicle.
Methods for Evaluating Mammography Imaging Techniques
1999-06-01
Distribution Unlimited 12b. DIS5TRIBUTION CODE 13. ABSTRACT (Maximum 200 words) This Department of Defense Breast Cancer Research Program Career...Development Award is enabling Dr. Rütter to develop bio’statistical methods for breast cancer research. Dr. Rutter is focusing on methods for...evaluating the accuracy of breast cancer screening. This four year program includes advanced training in the epidemiology of breast cancer , training in
Advances in High-Fidelity Multi-Physics Simulation Techniques
2008-01-01
predictor - corrector method is used to advance the solution in time. 33 x (m) y (m ) 0 1 2 3.00001 0 1 2 3 4 5 40 x 50 Grid 3 Figure 17: Typical...Unclassified c . THIS PAGE Unclassified 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 60 Datta Gaitonde 19b. TELEPHONE...advanced parallel computing platforms. The motivation to develop high-fidelity algorithms derives from considerations in various areas of current
Optics for coherent X-ray applications.
Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya
2014-09-01
Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.
Study and characterization of a MEMS micromirror device
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
2004-08-01
In this paper, advances in our study and characterization of a MEMS micromirror device are presented. The micromirror device, of 510 mm characteristic length, operates in a dynamic mode with a maximum displacement on the order of 10 mm along its principal optical axis and oscillation frequencies of up to 1.3 kHz. Developments are carried on by analytical, computational, and experimental methods. Analytical and computational nonlinear geometrical models are developed in order to determine the optimal loading-displacement operational characteristics of the micromirror. Due to the operational mode of the micromirror, the experimental characterization of its loading-displacement transfer function requires utilization of advanced optical metrology methods. Optoelectronic holography (OEH) methodologies based on multiple wavelengths that we are developing to perform such characterization are described. It is shown that the analytical, computational, and experimental approach is effective in our developments.
Zhou, Ruo-Nan; Hu, Zan-Min
2007-01-01
The technique of chromosome microdissection and microcloning has been developed for more than 20 years. As a bridge between cytogenetics and molecular genetics, it leads to a number of applications: chromosome painting probe isolation, genetic linkage map and physical map construction, and expressed sequence tags generation. During those 20 years, this technique has not only been benefited from other technological advances but also cross-fertilized with other techniques. Today, it becomes a practicality with extensive uses. The purpose of this article is to review the development of this technique and its application in the field of genomic research. Moreover, a new method of generating ESTs of specific chromosomes developed by our lab is introduced. By using this method, the technique of chromosome microdissection and microcloning would be more valuable in the advancement of genomic research. PMID:18645627
Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2000-01-01
The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.
Advances in medical image computing.
Tolxdorff, T; Deserno, T M; Handels, H; Meinzer, H-P
2009-01-01
Medical image computing has become a key technology in high-tech applications in medicine and an ubiquitous part of modern imaging systems and the related processes of clinical diagnosis and intervention. Over the past years significant progress has been made in the field, both on methodological and on application level. Despite this progress there are still big challenges to meet in order to establish image processing routinely in health care. In this issue, selected contributions of the German Conference on Medical Image Processing (BVM) are assembled to present latest advances in the field of medical image computing. The winners of scientific awards of the German Conference on Medical Image Processing (BVM) 2008 were invited to submit a manuscript on their latest developments and results for possible publication in Methods of Information in Medicine. Finally, seven excellent papers were selected to describe important aspects of recent advances in the field of medical image processing. The selected papers give an impression of the breadth and heterogeneity of new developments. New methods for improved image segmentation, non-linear image registration and modeling of organs are presented together with applications of image analysis methods in different medical disciplines. Furthermore, state-of-the-art tools and techniques to support the development and evaluation of medical image processing systems in practice are described. The selected articles describe different aspects of the intense development in medical image computing. The image processing methods presented enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.
Ambient intercomparison of direct and indirect methods for ambient nitrogen dioxide
AbstractRecent advances in measurement techniques for nitrogen dioxide (NO2), along with known interferences in the current Federal Reference Method (FRM) have created the need for NO2 measurement method research within EPA’s Office of Research and Development. Current meth...
78 FR 23961 - Request for Steering Committee Nominations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
... development of a methods research agenda and coordination of methods research in support of using electronic... surveillance, and methods research and application for scientific professionals. 3. IMEDS-Evaluation: Applies... transparent way to create exciting new research projects to advance regulatory science. The Foundation acts as...
Recent progress in tissue optical clearing
Zhu, Dan; Larin, Kirill V; Luo, Qingming; Tuchin, Valery V
2013-01-01
Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This paper gives a review of recent developments in tissue optical clearing techniques. The physical, molecular and physiological mechanisms of tissue optical clearing are overviewed and discussed. Various methods for enhancing penetration of optical-clearing agents into tissue, such as physical methods, chemical-penetration enhancers and combination of physical and chemical methods are introduced. Combining the tissue optical clearing technique with advanced microscopy image or labeling technique, applications for 3D microstructure of whole tissues such as brain and central nervous system with unprecedented resolution are demonstrated. Moreover, the difference in diffusion and/or clearing ability of selected agents in healthy versus pathological tissues can provide a highly sensitive indicator of the tissue health/pathology condition. Finally, recent advances in optical clearing of soft or hard tissue for in vivo imaging and phototherapy are introduced. PMID:24348874
A Selective Overview of Variable Selection in High Dimensional Feature Space
Fan, Jianqing
2010-01-01
High dimensional statistical problems arise from diverse fields of scientific research and technological development. Variable selection plays a pivotal role in contemporary statistical learning and scientific discoveries. The traditional idea of best subset selection methods, which can be regarded as a specific form of penalized likelihood, is computationally too expensive for many modern statistical applications. Other forms of penalized likelihood methods have been successfully developed over the last decade to cope with high dimensionality. They have been widely applied for simultaneously selecting important variables and estimating their effects in high dimensional statistical inference. In this article, we present a brief account of the recent developments of theory, methods, and implementations for high dimensional variable selection. What limits of the dimensionality such methods can handle, what the role of penalty functions is, and what the statistical properties are rapidly drive the advances of the field. The properties of non-concave penalized likelihood and its roles in high dimensional statistical modeling are emphasized. We also review some recent advances in ultra-high dimensional variable selection, with emphasis on independence screening and two-scale methods. PMID:21572976
5th Conference on Aerospace Materials, Processes, and Environmental Technology
NASA Technical Reports Server (NTRS)
Cook, M. B. (Editor); Stanley, D. Cross (Editor)
2003-01-01
Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.
Propeller flow visualization techniques
NASA Technical Reports Server (NTRS)
Stefko, G. L.; Paulovich, F. J.; Greissing, J. P.; Walker, E. D.
1982-01-01
Propeller flow visualization techniques were tested. The actual operating blade shape as it determines the actual propeller performance and noise was established. The ability to photographically determine the advanced propeller blade tip deflections, local flow field conditions, and gain insight into aeroelastic instability is demonstrated. The analytical prediction methods which are being developed can be compared with experimental data. These comparisons contribute to the verification of these improved methods and give improved capability for designing future advanced propellers with enhanced performance and noise characteristics.
Advanced information society(5)
NASA Astrophysics Data System (ADS)
Tanizawa, Ippei
Based on the advancement of information network technology information communication forms informationalized society giving significant impact on business activities and life style in it. The information network has been backed up technologically by development of computer technology and has got great contribution by enhanced computer technology and communication equipments. Information is transferred by digital and analog methods. Technical development which has brought out multifunctioned modems of communication equipments in analog mode, and construction of advanced information communication network which has come out by joint work of computer and communication under digital technique, are described. The trend in institutional matter and standardization of electrical communication is also described showing some examples of value-added network (VAN).
On the prediction of far field computational aeroacoustics of advanced propellers
NASA Technical Reports Server (NTRS)
Jaeger, Stephen M.; Korkan, Kenneth D.
1990-01-01
A numerical method for determining the acoustic far field generated by a high-speed subsonic aircraft propeller was developed. The approach used in this method was to generate the entire three-dimensional pressure field about the propeller (using an Euler flowfield solver) and then to apply a solution of the wave equation on a cylindrical surface enveloping the propeller. The method is applied to generate the three-dimensional flowfield between two blades of an advanced propeller. The results are compared with experimental data obtained in a wind-tunnel test at a Mach number of 0.6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.
There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less
Computational methods to extract meaning from text and advance theories of human cognition.
McNamara, Danielle S
2011-01-01
Over the past two decades, researchers have made great advances in the area of computational methods for extracting meaning from text. This research has to a large extent been spurred by the development of latent semantic analysis (LSA), a method for extracting and representing the meaning of words using statistical computations applied to large corpora of text. Since the advent of LSA, researchers have developed and tested alternative statistical methods designed to detect and analyze meaning in text corpora. This research exemplifies how statistical models of semantics play an important role in our understanding of cognition and contribute to the field of cognitive science. Importantly, these models afford large-scale representations of human knowledge and allow researchers to explore various questions regarding knowledge, discourse processing, text comprehension, and language. This topic includes the latest progress by the leading researchers in the endeavor to go beyond LSA. Copyright © 2010 Cognitive Science Society, Inc.
Advances in molecular serotyping and subtyping of Escherichia coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fratamico, Pina M.; DebRoy, Chitrita; Liu, Yanhong
Escherichia coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and H- serotyping for differentiating and characterizing E. coli have been used for many years; however, these methods are generally time consuming and not always accurate. Advances in next generation sequencing technologies have made it possible to develop genetic-based subtypingmore » and molecular serotyping methods for E. coli, which are more discriminatory compared to phenotypic typing methods. Furthermore, whole genome sequencing (WGS) of E. coli is replacing established subtyping methods such as pulsedfield gel electrophoresis, providing a major advancement in the ability to investigate food-borne disease outbreaks and for trace-back to sources. Furthermore, a variety of sequence analysis tools and bioinformatic pipelines are being developed to analyze the vast amount of data generated by WGS and to obtain specific information such as O- and H-group determination and the presence of virulence genes and other genetic markers.« less
Advances in molecular serotyping and subtyping of Escherichia coli
Fratamico, Pina M.; DebRoy, Chitrita; Liu, Yanhong; ...
2016-05-03
Escherichia coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and H- serotyping for differentiating and characterizing E. coli have been used for many years; however, these methods are generally time consuming and not always accurate. Advances in next generation sequencing technologies have made it possible to develop genetic-based subtypingmore » and molecular serotyping methods for E. coli, which are more discriminatory compared to phenotypic typing methods. Furthermore, whole genome sequencing (WGS) of E. coli is replacing established subtyping methods such as pulsedfield gel electrophoresis, providing a major advancement in the ability to investigate food-borne disease outbreaks and for trace-back to sources. Furthermore, a variety of sequence analysis tools and bioinformatic pipelines are being developed to analyze the vast amount of data generated by WGS and to obtain specific information such as O- and H-group determination and the presence of virulence genes and other genetic markers.« less
Non-invasive neural stimulation
NASA Astrophysics Data System (ADS)
Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas
2017-05-01
Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.
Fish genome manipulation and directional breeding.
Ye, Ding; Zhu, ZuoYan; Sun, YongHua
2015-02-01
Aquaculture is one of the fastest developing agricultural industries worldwide. One of the most important factors for sustainable aquaculture is the development of high performing culture strains. Genome manipulation offers a powerful method to achieve rapid and directional breeding in fish. We review the history of fish breeding methods based on classical genome manipulation, including polyploidy breeding and nuclear transfer. Then, we discuss the advances and applications of fish directional breeding based on transgenic technology and recently developed genome editing technologies. These methods offer increased efficiency, precision and predictability in genetic improvement over traditional methods.
Contact Thermocouple Methodology and Evaluation for Temperature Measurement in the Laboratory
NASA Technical Reports Server (NTRS)
Brewer, Ethan J.; Pawlik, Ralph J.; Krause, David L.
2013-01-01
Laboratory testing of advanced aerospace components very often requires highly accurate temperature measurement and control devices, as well as methods to precisely analyze and predict the performance of such components. Analysis of test articles depends on accurate measurements of temperature across the specimen. Where possible, this task is accomplished using many thermocouples welded directly to the test specimen, which can produce results with great precision. However, it is known that thermocouple spot welds can initiate deleterious cracks in some materials, prohibiting the use of welded thermocouples. Such is the case for the nickel-based superalloy MarM-247, which is used in the high temperature, high pressure heater heads for the Advanced Stirling Converter component of the Advanced Stirling Radioisotope Generator space power system. To overcome this limitation, a method was developed that uses small diameter contact thermocouples to measure the temperature of heater head test articles with the same level of accuracy as welded thermocouples. This paper includes a brief introduction and a background describing the circumstances that compelled the development of the contact thermocouple measurement method. Next, the paper describes studies performed on contact thermocouple readings to determine the accuracy of results. It continues on to describe in detail the developed measurement method and the evaluation of results produced. A further study that evaluates the performance of different measurement output devices is also described. Finally, a brief conclusion and summary of results is provided.
Recent advances in quantitative high throughput and high content data analysis.
Moutsatsos, Ioannis K; Parker, Christian N
2016-01-01
High throughput screening has become a basic technique with which to explore biological systems. Advances in technology, including increased screening capacity, as well as methods that generate multiparametric readouts, are driving the need for improvements in the analysis of data sets derived from such screens. This article covers the recent advances in the analysis of high throughput screening data sets from arrayed samples, as well as the recent advances in the analysis of cell-by-cell data sets derived from image or flow cytometry application. Screening multiple genomic reagents targeting any given gene creates additional challenges and so methods that prioritize individual gene targets have been developed. The article reviews many of the open source data analysis methods that are now available and which are helping to define a consensus on the best practices to use when analyzing screening data. As data sets become larger, and more complex, the need for easily accessible data analysis tools will continue to grow. The presentation of such complex data sets, to facilitate quality control monitoring and interpretation of the results will require the development of novel visualizations. In addition, advanced statistical and machine learning algorithms that can help identify patterns, correlations and the best features in massive data sets will be required. The ease of use for these tools will be important, as they will need to be used iteratively by laboratory scientists to improve the outcomes of complex analyses.
COREPA-M: A MULTI-DIMENSIONAL FORMULATION OF COREPA
Recently, the COmmon REactivity PAttern (COREPA) approach was developed as a probabilistic classification method which was formalized specifically to advance mechanistic QSAR development by addressing the impact of molecular flexibility on stereoelectronic properties of chemicals...
Introductory Guide to the Statistics of Molecular Genetics
ERIC Educational Resources Information Center
Eley, Thalia C.; Rijsdijk, Fruhling
2005-01-01
Background: This introductory guide presents the main two analytical approaches used by molecular geneticists: linkage and association. Methods: Traditional linkage and association methods are described, along with more recent advances in methodologies such as those using a variance components approach. Results: New methods are being developed all…
Work toward a standardized version of a mobile tracer correlation measurement method is discussed. The method used for assessment of methane emissions from 15 landfills in 56 field deployments from 2009 to 2013. This general area source measurement method uses advances in instrum...
Advanced composites characterization with x-ray technologies
NASA Astrophysics Data System (ADS)
Baaklini, George Y.
1993-12-01
Recognizing the critical need to advance new composites for the aeronautics and aerospace industries, we are focussing on advanced test methods that are vital to successful modeling and manufacturing of future generations of high temperature and durable composite materials. These newly developed composites are necessary to reduce propulsion cost and weight, to improve performance and reliability, and to address longer-term national strategic thrusts for sustaining global preeminence in high speed air transport and in high performance military aircraft.
LTN Inlets and Nozzles Branch Overview; NASA GE - Methods Development Review
NASA Technical Reports Server (NTRS)
Long-Davis, Mary Jo
2017-01-01
LTNInlets and Nozzles Branch Overview to be presented to GE during method review meeting. Presentation outlines the capabilities, facilities and tools used by the LTN Branch to conduct its mission of developing design and analysis tools and technologies for inlets and nozzles used on advanced vehicle concepts ranging from subsonic to hypersonic speeds.
This is an editorial in ET&C describing the newer pathway-specific test methods for EDCs and their effect on ecotoxicology. Work conducted to support the development and application of these types of assays promises to be an important catalyst to advance the field of ecotoxicolo...
Frantz, Terrill L
2012-01-01
This paper introduces the contemporary perspectives and techniques of social network analysis (SNA) and agent-based modeling (ABM) and advocates applying them to advance various aspects of complementary and alternative medicine (CAM). SNA and ABM are invaluable methods for representing, analyzing and projecting complex, relational, social phenomena; they provide both an insightful vantage point and a set of analytic tools that can be useful in a wide range of contexts. Applying these methods in the CAM context can aid the ongoing advances in the CAM field, in both its scientific aspects and in developing broader acceptance in associated stakeholder communities. Copyright © 2012 S. Karger AG, Basel.
How do particle physicists learn the programming concepts they need?
NASA Astrophysics Data System (ADS)
Kluth, S.; Pia, M. G.; Schoerner-Sadenius, T.; Steinbach, P.
2015-12-01
The ability to read, use and develop code efficiently and successfully is a key ingredient in modern particle physics. We report the experience of a training program, identified as “Advanced Programming Concepts”, that introduces software concepts, methods and techniques to work effectively on a daily basis in a HEP experiment or other programming intensive fields. This paper illustrates the principles, motivations and methods that shape the “Advanced Computing Concepts” training program, the knowledge base that it conveys, an analysis of the feedback received so far, and the integration of these concepts in the software development process of the experiments as well as its applicability to a wider audience.
Review of manual control methods for handheld maneuverable instruments.
Fan, Chunman; Dodou, Dimitra; Breedveld, Paul
2013-06-01
By the introduction of new technologies, surgical procedures have been varying from free access in open surgery towards limited access in minimal access surgery. Improving access to difficult-to-reach anatomic sites, e.g. in neurosurgery or percutaneous interventions, needs advanced maneuverable instrumentation. Advances in maneuverable technology require the development of dedicated methods enabling surgeons to stay in direct, manual control of these complex instruments. This article gives an overview of the state-of-the-art in the development of manual control methods for handheld maneuverable instruments. It categorizes the manual control methods in three levels: a) number of steerable segments, b) number of Degrees Of Freedom (DOF), and c) coupling between control motion of the handle and steering motion of the tip. The literature research was completed by using Web of Science, Scopus and PubMed. The study shows that in controlling single steerable segments, direct as well as indirect control methods have been developed, whereas in controlling multiple steerable segments, a gradual shift can be noticed from parallel and serial control to integrated control. The development of multi-segmented maneuverable instruments is still at an early stage, and an intuitive and effective method to control them has to become a primary focus in the domain of minimal access surgery.
NASA Astrophysics Data System (ADS)
Lu, J.-C.; Liao, W.-H.; Tung, Y.-C.
2012-07-01
Polydimethylsiloxane (PDMS) microfluidic device is one of the most essential techniques that advance microfluidics research in recent decades. PDMS is broadly exploited to construct microfluidic devices due to its unique and advantageous material properties. To realize more functionalities, PDMS microfluidic devices with multi-layer architectures, especially those with sandwiched membranes, have been developed for various applications. However, existing alignment methods for device fabrication are mainly based on manual observations, which are time consuming, inaccurate and inconsistent. This paper develops a magnet-assisted alignment method to enhance device-level alignment accuracy and precision without complicated fabrication processes. In the developed alignment method, magnets are embedded into PDMS layers at the corners of the device. The paired magnets are arranged in symmetric positions at each PDMS layer, and the magnetic attraction force automatically pulls the PDMS layers into the aligned position during assembly. This paper also applies the method to construct a practical microfluidic device, a tunable chaotic micromixer. The results demonstrate the successful operation of the device without failure, which suggests the accurate alignment and reliable bonding achieved by the method. Consequently, the fabrication method developed in this paper is promising to be exploited to construct various membrane-sandwiched PDMS microfluidic devices with more integrated functionalities to advance microfluidics research.
de Jong, Bouke; Siewers, Verena; Nielsen, Jens
2012-08-01
Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels. Copyright © 2011 Elsevier Ltd. All rights reserved.
Store Separation Lessons Learned During the Last 30 Years
2010-01-01
the same time period the Influence Function Method (IFM) was also developed5. This method allowed for a straight STORE SEPARATION LESSONS LEARNED...developed at Grumman under an Air Force contract. The Influence Function Method (IFM)5,6,7 was used to determine the effect of the aircraft flowfield on...A Chimera Grid Scheme,” Advances in Grid Generation, ASME, June 1983. 5. Meyer, R., Cenko, A., and Yaros, S., “An Influence Function Method for
Self-calibrating models for dynamic monitoring and diagnosis
NASA Technical Reports Server (NTRS)
Kuipers, Benjamin
1994-01-01
The present goal in qualitative reasoning is to develop methods for automatically building qualitative and semiquantitative models of dynamic systems and to use them for monitoring and fault diagnosis. The qualitative approach to modeling provides a guarantee of coverage while our semiquantitative methods support convergence toward a numerical model as observations are accumulated. We have developed and applied methods for automatic creation of qualitative models, developed two methods for obtaining tractable results on problems that were previously intractable for qualitative simulation, and developed more powerful methods for learning semiquantitative models from observations and deriving semiquantitative predictions from them. With these advances, qualitative reasoning comes significantly closer to realizing its aims as a practical engineering method.
Pearson, Brooke; Mills, Alexander; Tucker, Madeline; Gao, Siyue; McLandsborough, Lynne; He, Lili
2018-06-01
Bacterial foodborne illness continues to be a pressing issue in our food supply. Rapid detection methods are needed for perishable foods due to their short shelf lives and significant contribution to foodborne illness. Previously, a sensitive and reliable surface-enhanced Raman spectroscopy (SERS) sandwich assay based on 3-mercaptophenylboronic acid (3-MBPA) as a capturer and indicator molecule was developed for rapid bacteria detection. In this study, we explored the advantages and constraints of this assay over the conventional aerobic plate count (APC) method and further developed methods for detection in real environmental and food matrices. The SERS sandwich assay was able to detect environmental bacteria in pond water and on spinach leaves at higher levels than the APC method. In addition, the SERS assay appeared to have higher sensitivity to quantify bacteria in the stationary phase. On the other hand, the APC method was more sensitive to cell viability. Finally, a method to detect bacteria in a challenging high-sugar juice matrix was developed to enhance bacteria capture. This study advanced the SERS technique for real applications in environment and food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advanced Productivity Analysis Methods for Air Traffic Control Operations.
DOT National Transportation Integrated Search
1976-12-01
This report gives a description of the Air Traffic Control (ATC) productivity analysis methods developed, implemented, and refined by the Stanford Research Institute (SRI) under the sponsorship of FAA and TSC. Two models are included in the productiv...
Planner-Based Control of Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott
2005-01-01
The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.
Han, Yuling; Clement, T Prabhakar
2018-01-01
The Deepwater Horizon (DWH) accident, one of the largest oil spills in U.S. history, contaminated several beaches located along the Gulf of Mexico (GOM) shoreline. The residues from the spill still continue to be deposited on some of these beaches. Methods to track and monitor the fate of these residues require approaches that can differentiate the DWH residues from other types of petroleum residues. This is because, historically, the crude oil released from sources such as natural seeps and anthropogenic discharges have also deposited other types of petroleum residues on GOM beaches. Therefore, identifying the origin of these residues is critical for developing effective management strategies for monitoring the long-term environmental impacts of the DWH oil spill. Advanced fingerprinting methods that are currently used for identifying the source of oil spill residues require detailed laboratory studies, which can be cost-prohibitive. Also, most agencies typically use untrained workers or volunteers to conduct shoreline monitoring surveys and these worker will not have access to advanced laboratory facilities. Furthermore, it is impractical to routinely fingerprint large volumes of samples that are collected after a major oil spill event, such as the DWH spill. In this study, we propose a simple field testing protocol that can identify DWH oil spill residues based on their unique physical characteristics. The robustness of the method is demonstrated by testing a variety of oil spill samples, and the results are verified by characterizing the samples using advanced chemical fingerprinting methods. The verification data show that the method yields results that are consistent with the results derived from advanced fingerprinting methods. The proposed protocol is a reliable, cost-effective, practical field approach for differentiating DWH residues from other types of petroleum residues.
Han, Yuling
2018-01-01
The Deepwater Horizon (DWH) accident, one of the largest oil spills in U.S. history, contaminated several beaches located along the Gulf of Mexico (GOM) shoreline. The residues from the spill still continue to be deposited on some of these beaches. Methods to track and monitor the fate of these residues require approaches that can differentiate the DWH residues from other types of petroleum residues. This is because, historically, the crude oil released from sources such as natural seeps and anthropogenic discharges have also deposited other types of petroleum residues on GOM beaches. Therefore, identifying the origin of these residues is critical for developing effective management strategies for monitoring the long-term environmental impacts of the DWH oil spill. Advanced fingerprinting methods that are currently used for identifying the source of oil spill residues require detailed laboratory studies, which can be cost-prohibitive. Also, most agencies typically use untrained workers or volunteers to conduct shoreline monitoring surveys and these worker will not have access to advanced laboratory facilities. Furthermore, it is impractical to routinely fingerprint large volumes of samples that are collected after a major oil spill event, such as the DWH spill. In this study, we propose a simple field testing protocol that can identify DWH oil spill residues based on their unique physical characteristics. The robustness of the method is demonstrated by testing a variety of oil spill samples, and the results are verified by characterizing the samples using advanced chemical fingerprinting methods. The verification data show that the method yields results that are consistent with the results derived from advanced fingerprinting methods. The proposed protocol is a reliable, cost-effective, practical field approach for differentiating DWH residues from other types of petroleum residues. PMID:29329313
NASA Technical Reports Server (NTRS)
Snead, C. J.; McCubbin, F. M.; Nakamura-Messenger, K.; Righter, K.
2018-01-01
The Astromaterials Acquisition and Curation office at NASA Johnson Space Center has established an Advanced Curation program that is tasked with developing procedures, technologies, and data sets necessary for the curation of future astromaterials collections as envisioned by NASA exploration goals. One particular objective of the Advanced Curation program is the development of new methods for the collection, storage, handling and characterization of small (less than 100 micrometer) particles. Astromaterials Curation currently maintains four small particle collections: Cosmic Dust that has been collected in Earth's stratosphere by ER2 and WB-57 aircraft, Comet 81P/Wild 2 dust returned by NASA's Stardust spacecraft, interstellar dust that was returned by Stardust, and asteroid Itokawa particles that were returned by the JAXA's Hayabusa spacecraft. NASA Curation is currently preparing for the anticipated return of two new astromaterials collections - asteroid Ryugu regolith to be collected by Hayabusa2 spacecraft in 2021 (samples will be provided by JAXA as part of an international agreement), and asteroid Bennu regolith to be collected by the OSIRIS-REx spacecraft and returned in 2023. A substantial portion of these returned samples are expected to consist of small particle components, and mission requirements necessitate the development of new processing tools and methods in order to maximize the scientific yield from these valuable acquisitions. Here we describe initial progress towards the development of applicable sample handling methods for the successful curation of future small particle collections.
Grid Standards and Codes | Grid Modernization | NREL
simulations that take advantage of advanced concepts such as hardware-in-the-loop testing. Such methods of methods and solutions. Projects Accelerating Systems Integration Standards Sharp increases in goal of this project is to develop streamlined and accurate methods for New York utilities to determine
Advancing Explosives Detection Capabilities: Vapor Detection
Atkinson, David
2018-05-11
A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.
Advancing Explosives Detection Capabilities: Vapor Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atkinson, David
2012-10-15
A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.
7 CFR 1781.21 - Borrower accounting methods, management, reporting, and audits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Borrower accounting methods, management, reporting... DEVELOPMENT (RCD) LOANS AND WATERSHED (WS) LOANS AND ADVANCES § 1781.21 Borrower accounting methods, management, reporting, and audits. These activities will be handled in accordance with the provisions of...
Automatic age-related macular degeneration detection and staging
NASA Astrophysics Data System (ADS)
van Grinsven, Mark J. J. P.; Lechanteur, Yara T. E.; van de Ven, Johannes P. H.; van Ginneken, Bram; Theelen, Thomas; Sánchez, Clara I.
2013-03-01
Age-related macular degeneration (AMD) is a degenerative disorder of the central part of the retina, which mainly affects older people and leads to permanent loss of vision in advanced stages of the disease. AMD grading of non-advanced AMD patients allows risk assessment for the development of advanced AMD and enables timely treatment of patients, to prevent vision loss. AMD grading is currently performed manually on color fundus images, which is time consuming and expensive. In this paper, we propose a supervised classification method to distinguish patients at high risk to develop advanced AMD from low risk patients and provide an exact AMD stage determination. The method is based on the analysis of the number and size of drusen on color fundus images, as drusen are the early characteristics of AMD. An automatic drusen detection algorithm is used to detect all drusen. A weighted histogram of the detected drusen is constructed to summarize the drusen extension and size and fed into a random forest classifier in order to separate low risk from high risk patients and to allow exact AMD stage determination. Experiments showed that the proposed method achieved similar performance as human observers in distinguishing low risk from high risk AMD patients, obtaining areas under the Receiver Operating Characteristic curve of 0.929 and 0.934. A weighted kappa agreement of 0.641 and 0.622 versus two observers were obtained for AMD stage evaluation. Our method allows for quick and reliable AMD staging at low costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.
2006-03-16
The Hazardous Materials Response Unit (HMRU) and the Counterterrorism and Forensic Science Research Unit (CTFSRU), Laboratory Division, Federal Bureau of Investigation (FBI) have been mandated to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a portable, hand-held, hazardous materials acoustic inspection device (HAZAID) that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as wellmore » as container sizes and materials, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The HAZAID prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the HAZAID prototype. High bandwidth ultrasonic transducers combined with the advanced pulse compression technique allowed researchers to 1) impart large amounts of energy, 2) obtain high signal-to-noise ratios, and 3) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of this feasibility study demonstrated that the HAZAID experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.« less
Center of Excellence for Hypersonics Research
2012-01-25
detailed simulations of actual combustor configurations, and ultimately for the optimization of hypersonic air - breathing propulsion system flow paths... vehicle development programs. The Center engaged leading experts in experimental and computational analysis of hypersonic flows to provide research...advanced hypersonic vehicles and space access systems will require significant advances in the design methods and ground testing techniques to ensure
Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations
NASA Technical Reports Server (NTRS)
Merrill, Walter; Garg, Sanjay
1995-01-01
The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular the Integrated Method for Propulsion and Airframe Controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.
Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations
NASA Technical Reports Server (NTRS)
Merrill, Walter; Garg, Sanjay
1996-01-01
The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular, the integrated method for propulsion and airframe controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.
DOT National Transportation Integrated Search
2006-02-06
for which there is advance warning. With advance warning, evacuations can be planned and managed using procedures and systems that have been developed as a result of extensive and methodical pre-planning. This approach, however, does not adequately s...
Ayoib, Adilah; Hashim, Uda; Gopinath, Subash C B; Md Arshad, M K
2017-11-01
This review covers a developmental progression on early to modern taxonomy at cellular level following the advent of electron microscopy and the advancement in deoxyribonucleic acid (DNA) extraction for expatiation of biological classification at DNA level. Here, we discuss the fundamental values of conventional chemical methods of DNA extraction using liquid/liquid extraction (LLE) followed by development of solid-phase extraction (SPE) methods, as well as recent advances in microfluidics device-based system for DNA extraction on-chip. We also discuss the importance of DNA extraction as well as the advantages over conventional chemical methods, and how Lab-on-a-Chip (LOC) system plays a crucial role for the future achievements.
Gong, Xing-Chu; Chen, Teng; Qu, Hai-Bin
2017-03-01
Quality by design (QbD) concept is an advanced pharmaceutical quality control concept. The application of QbD concept in the research and development of pharmaceutical processes of traditional Chinese medicines (TCM) mainly contains five parts, including the definition of critical processes and their evaluation criteria, the determination of critical process parameters and critical material attributes, the establishment of quantitative models, the development of design space, as well as the application and continuous improvement of control strategy. In this work, recent research advances in QbD concept implementation methods in the secondary development of Chinese patent medicines were reviewed, and five promising fields of the implementation of QbD concept were pointed out, including the research and development of TCM new drugs and Chinese medicine granules for formulation, modeling of pharmaceutical processes, development of control strategy based on industrial big data, strengthening the research of process amplification rules, and the development of new pharmaceutical equipment.. Copyright© by the Chinese Pharmaceutical Association.
Magrane, Diane; Helitzer, Deborah; Morahan, Page; Chang, Shine; Gleason, Katharine; Cardinali, Gina; Wu, Chih-Chieh
2012-12-01
Surprisingly little research is available to explain the well-documented organizational and societal influences on persistent inequities in advancement of women faculty. The Systems of Career Influences Model is a framework for exploring factors influencing women's progression to advanced academic rank, executive positions, and informal leadership roles in academic medicine. The model situates faculty as agents within a complex adaptive system consisting of a trajectory of career advancement with opportunities for formal professional development programming; a dynamic system of influences of organizational policies, practices, and culture; and a dynamic system of individual choices and decisions. These systems of influence may promote or inhibit career advancement. Within this system, women weigh competing influences to make career advancement decisions, and leaders of academic health centers prioritize limited resources to support the school's mission. The Systems of Career Influences Model proved useful to identify key research questions. We used the model to probe how research in academic career development might be applied to content and methods of formal professional development programs. We generated a series of questions and hypotheses about how professional development programs might influence professional development of health science faculty members. Using the model as a guide, we developed a study using a quantitative and qualitative design. These analyses should provide insight into what works in recruiting and supporting productive men and women faculty in academic medical centers.
Treatment Methods for Kidney Failure: Peritoneal Dialysis
... Process Research Training & Career Development Funded Grants & Grant History Research Resources Research at NIDDK Technology Advancement & Transfer Meetings & Workshops Health Information Diabetes Digestive ...
How can a competency framework for advanced practice support care?
Stanford, Pamela Elizabeth
2016-11-10
Aim To explore whether perception of nurse practitioners in relation to whether a competency framework for advanced practice can support their work. Method A qualitative cross-sectional design was used, embedded in an interpretative paradigm of research. A non-probability sample of eight experienced nurse practitioners took part in focus groups and answered questionnaires. A mixture of phenomenological and grounded theory approaches were used to collect the data. Findings Four major themes were identified: competency frameworks can identify individual strengths and weaknesses, they can be used to set clear goals and targets, they can improve how practice is organised, and they have the potential to limit practice in terms of narrowing boundaries. The study also found competency frameworks could provide an structure to guide the development and evaluation of educational programmes. Conclusion Competency frameworks can be used so to target the development of new advanced nurse practitioners. They can address workforce development and governance by ensuring nurse practitioners have the competencies to provide safe, autonomous practice. Competency frameworks have been shown to ensure consistency in clinical practice skills underpinned with nurse practitioners' theoretical knowledge. They provide a clear development structure for career development and advanced practice. However, internationally, there is still a lack of definition of advanced practice and its core competencies.
Advanced soft computing diagnosis method for tumour grading.
Papageorgiou, E I; Spyridonos, P P; Stylios, C D; Ravazoula, P; Groumpos, P P; Nikiforidis, G N
2006-01-01
To develop an advanced diagnostic method for urinary bladder tumour grading. A novel soft computing modelling methodology based on the augmentation of fuzzy cognitive maps (FCMs) with the unsupervised active Hebbian learning (AHL) algorithm is applied. One hundred and twenty-eight cases of urinary bladder cancer were retrieved from the archives of the Department of Histopathology, University Hospital of Patras, Greece. All tumours had been characterized according to the classical World Health Organization (WHO) grading system. To design the FCM model for tumour grading, three experts histopathologists defined the main histopathological features (concepts) and their impact on grade characterization. The resulted FCM model consisted of nine concepts. Eight concepts represented the main histopathological features for tumour grading. The ninth concept represented the tumour grade. To increase the classification ability of the FCM model, the AHL algorithm was applied to adjust the weights of the FCM. The proposed FCM grading model achieved a classification accuracy of 72.5%, 74.42% and 95.55% for tumours of grades I, II and III, respectively. An advanced computerized method to support tumour grade diagnosis decision was proposed and developed. The novelty of the method is based on employing the soft computing method of FCMs to represent specialized knowledge on histopathology and on augmenting FCMs ability using an unsupervised learning algorithm, the AHL. The proposed method performs with reasonably high accuracy compared to other existing methods and at the same time meets the physicians' requirements for transparency and explicability.
Advances in visual representation of molecular potentials.
Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen
2010-06-01
The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.
Aeroelastic stability and response of rotating structures
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.
1993-01-01
A summary of the work performed during the progress period is presented. Analysis methods for predicting loads and instabilities of wind turbines were developed. Three new areas of research to aid the Advanced Turboprop Project (ATP) were initiated and developed. These three areas of research are aeroelastic analysis methods for cascades including blade and disk flexibility; stall flutter analysis; and computational aeroelasticity.
Rogers, Richard S; Abernathy, Michael; Richardson, Douglas D; Rouse, Jason C; Sperry, Justin B; Swann, Patrick; Wypych, Jette; Yu, Christopher; Zang, Li; Deshpande, Rohini
2017-11-30
Today, we are experiencing unprecedented growth and innovation within the pharmaceutical industry. Established protein therapeutic modalities, such as recombinant human proteins, monoclonal antibodies (mAbs), and fusion proteins, are being used to treat previously unmet medical needs. Novel therapies such as bispecific T cell engagers (BiTEs), chimeric antigen T cell receptors (CARTs), siRNA, and gene therapies are paving the path towards increasingly personalized medicine. This advancement of new indications and therapeutic modalities is paralleled by development of new analytical technologies and methods that provide enhanced information content in a more efficient manner. Recently, a liquid chromatography-mass spectrometry (LC-MS) multi-attribute method (MAM) has been developed and designed for improved simultaneous detection, identification, quantitation, and quality control (monitoring) of molecular attributes (Rogers et al. MAbs 7(5):881-90, 2015). Based on peptide mapping principles, this powerful tool represents a true advancement in testing methodology that can be utilized not only during product characterization, formulation development, stability testing, and development of the manufacturing process, but also as a platform quality control method in dispositioning clinical materials for both innovative biotherapeutics and biosimilars.
NASA Technical Reports Server (NTRS)
Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi
2013-01-01
An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.
Technology base for microgravity horticulture
NASA Technical Reports Server (NTRS)
Sauer, R. L.; Magnuson, J. W.; Scruby, R. R.; Scheld, H. W.
1987-01-01
Advanced microgravity plant biology research and life support system development for the spacecraft environment are critically hampered by the lack of a technology base. This inadequacy stems primarily from the fact that microgravity results in a lack of convective currents and phase separation as compared to the one gravity environment. A program plan is being initiated to develop this technology base. This program will provide an iterative flight development effort that will be closely integrated with both basic science investigations and advanced life support system development efforts incorporating biological processes. The critical considerations include optimum illumination methods, root aeration, root and shoot support, and heat rejection and gas exchange in the plant canopy.
Advances in Bioprinting Technologies for Craniofacial Reconstruction.
Visscher, Dafydd O; Farré-Guasch, Elisabet; Helder, Marco N; Gibbs, Susan; Forouzanfar, Tymour; van Zuijlen, Paul P; Wolff, Jan
2016-09-01
Recent developments in craniofacial reconstruction have shown important advances in both the materials and methods used. While autogenous tissue is still considered to be the gold standard for these reconstructions, the harvesting procedure remains tedious and in many cases causes significant donor site morbidity. These limitations have subsequently led to the development of less invasive techniques such as 3D bioprinting that could offer possibilities to manufacture patient-tailored bioactive tissue constructs for craniofacial reconstruction. Here, we discuss the current technological and (pre)clinical advances of 3D bioprinting for use in craniofacial reconstruction and highlight the challenges that need to be addressed in the coming years. Copyright © 2016 Elsevier Ltd. All rights reserved.
Baldelli, Sara; Marrubini, Giorgio; Cattaneo, Dario; Clementi, Emilio; Cerea, Matteo
2017-10-01
The application of Quality by Design (QbD) principles in clinical laboratories can help to develop an analytical method through a systematic approach, providing a significant advance over the traditional heuristic and empirical methodology. In this work, we applied for the first time the QbD concept in the development of a method for drug quantification in human plasma using elvitegravir as the test molecule. The goal of the study was to develop a fast and inexpensive quantification method, with precision and accuracy as requested by the European Medicines Agency guidelines on bioanalytical method validation. The method was divided into operative units, and for each unit critical variables affecting the results were identified. A risk analysis was performed to select critical process parameters that should be introduced in the design of experiments (DoEs). Different DoEs were used depending on the phase of advancement of the study. Protein precipitation and high-performance liquid chromatography-tandem mass spectrometry were selected as the techniques to be investigated. For every operative unit (sample preparation, chromatographic conditions, and detector settings), a model based on factors affecting the responses was developed and optimized. The obtained method was validated and clinically applied with success. To the best of our knowledge, this is the first investigation thoroughly addressing the application of QbD to the analysis of a drug in a biological matrix applied in a clinical laboratory. The extensive optimization process generated a robust method compliant with its intended use. The performance of the method is continuously monitored using control charts.
Koopman operator theory: Past, present, and future
NASA Astrophysics Data System (ADS)
Brunton, Steven; Kaiser, Eurika; Kutz, Nathan
2017-11-01
Koopman operator theory has emerged as a dominant method to represent nonlinear dynamics in terms of an infinite-dimensional linear operator. The Koopman operator acts on the space of all possible measurement functions of the system state, advancing these measurements with the flow of the dynamics. A linear representation of nonlinear dynamics has tremendous potential to enable the prediction, estimation, and control of nonlinear systems with standard textbook methods developed for linear systems. Dynamic mode decomposition has become the leading data-driven method to approximate the Koopman operator, although there are still open questions and challenges around how to obtain accurate approximations for strongly nonlinear systems. This talk will provide an introductory overview of modern Koopman operator theory, reviewing the basics and describing recent theoretical and algorithmic developments. Particular emphasis will be placed on the use of data-driven Koopman theory to characterize and control high-dimensional fluid dynamic systems. This talk will also address key advances in the rapidly growing fields of machine learning and data science that are likely to drive future developments.
Suzuki, Shigeru
2014-01-01
The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan’s Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and “MsMsFilter,” an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32–71 times larger than those observed in conventional LC/MS. PMID:26819891
Status Report on NEAMS System Analysis Module Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, R.; Fanning, T. H.; Sumner, T.
2015-12-01
Under the Reactor Product Line (RPL) of DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, an advanced SFR System Analysis Module (SAM) is being developed at Argonne National Laboratory. The goal of the SAM development is to provide fast-running, improved-fidelity, whole-plant transient analyses capabilities. SAM utilizes an object-oriented application framework MOOSE), and its underlying meshing and finite-element library libMesh, as well as linear and non-linear solvers PETSc, to leverage modern advanced software environments and numerical methods. It also incorporates advances in physical and empirical models and seeks closure models based on information from high-fidelity simulations and experiments. This reportmore » provides an update on the SAM development, and summarizes the activities performed in FY15 and the first quarter of FY16. The tasks include: (1) implement the support of 2nd-order finite elements in SAM components for improved accuracy and computational efficiency; (2) improve the conjugate heat transfer modeling and develop pseudo 3-D full-core reactor heat transfer capabilities; (3) perform verification and validation tests as well as demonstration simulations; (4) develop the coupling requirements for SAS4A/SASSYS-1 and SAM integration.« less
Barcaro, Umberto; Paoli, Marco
2015-01-01
This paper, which is limited to the art of painting, aims to support the idea that a substantial insertion of concepts and methods drawn on dream psychology and dream neuroscience can contribute to the advancements of Neuroesthetics. The historical and scientific reasons are discussed that have determined the so far poor role played by the dream phenomenon in the developments of Neuroesthetics. In the light of recent advancements in psychophysiological research, a method of analyzing artistic products is proposed that is based on the recognition of precise features proper of the dreaming experience. Four examples are given for application of this method, regarding works by Giorgione, Leonardo da Vinci, Vermeer, and Millais, respectively. PMID:26157373
Advances in high throughput DNA sequence data compression.
Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz
2016-06-01
Advances in high throughput sequencing technologies and reduction in cost of sequencing have led to exponential growth in high throughput DNA sequence data. This growth has posed challenges such as storage, retrieval, and transmission of sequencing data. Data compression is used to cope with these challenges. Various methods have been developed to compress genomic and sequencing data. In this article, we present a comprehensive review of compression methods for genome and reads compression. Algorithms are categorized as referential or reference free. Experimental results and comparative analysis of various methods for data compression are presented. Finally, key challenges and research directions in DNA sequence data compression are highlighted.
NASA Technical Reports Server (NTRS)
Ziemke, Robert A.
1990-01-01
The objective of the High Resolution, High Frame Rate Video Technology (HHVT) development effort is to provide technology advancements to remove constraints on the amount of high speed, detailed optical data recorded and transmitted for microgravity science and application experiments. These advancements will enable the development of video systems capable of high resolution, high frame rate video data recording, processing, and transmission. Techniques such as multichannel image scan, video parameter tradeoff, and the use of dual recording media were identified as methods of making the most efficient use of the near-term technology.
Advances in graphene-related technologies: synthesis, devices and outlook.
Frazier, R M; Hough, W L; Chopra, N; Hathcock, K W
2012-06-01
Graphene has been the subject of many scientific investigations since exfoliation methods facilitated isolation of the two-dimensional material. During this time, new synthesis methods have been developed which have opened technological opportunities previously hindered by synthetic constraints. An update on the recent advances in graphene-based technologies, including synthesis and applications into electrical, mechanical and thermal uses will be covered. A special focus on the patent space and commercial landscape will be given in an effort to identify current trends and future commercialization of graphene-related technologies.
Recent advances on the encoding and selection methods of DNA-encoded chemical library.
Shi, Bingbing; Zhou, Yu; Huang, Yiran; Zhang, Jianfu; Li, Xiaoyu
2017-02-01
DNA-encoded chemical library (DEL) has emerged as a powerful and versatile tool for ligand discovery in chemical biology research and in drug discovery. Encoding and selection methods are two of the most important technological aspects of DEL that can dictate the performance and utilities of DELs. In this digest, we have summarized recent advances on the encoding and selection strategies of DEL and also discussed the latest developments on DNA-encoded dynamic library, a new frontier in DEL research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optics for coherent X-ray applications
Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya
2014-01-01
Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986
Liu, Jian; Cheng, Yuhu; Wang, Xuesong; Zhang, Lin; Liu, Hui
2017-08-17
It is urgent to diagnose colorectal cancer in the early stage. Some feature genes which are important to colorectal cancer development have been identified. However, for the early stage of colorectal cancer, less is known about the identity of specific cancer genes that are associated with advanced clinical stage. In this paper, we conducted a feature extraction method named Optimal Mean based Block Robust Feature Extraction method (OMBRFE) to identify feature genes associated with advanced colorectal cancer in clinical stage by using the integrated colorectal cancer data. Firstly, based on the optimal mean and L 2,1 -norm, a novel feature extraction method called Optimal Mean based Robust Feature Extraction method (OMRFE) is proposed to identify feature genes. Then the OMBRFE method which introduces the block ideology into OMRFE method is put forward to process the colorectal cancer integrated data which includes multiple genomic data: copy number alterations, somatic mutations, methylation expression alteration, as well as gene expression changes. Experimental results demonstrate that the OMBRFE is more effective than previous methods in identifying the feature genes. Moreover, genes identified by OMBRFE are verified to be closely associated with advanced colorectal cancer in clinical stage.
The advanced software development workstation project
NASA Technical Reports Server (NTRS)
Fridge, Ernest M., III; Pitman, Charles L.
1991-01-01
The Advanced Software Development Workstation (ASDW) task is researching and developing the technologies required to support Computer Aided Software Engineering (CASE) with the emphasis on those advanced methods, tools, and processes that will be of benefit to support all NASA programs. Immediate goals are to provide research and prototype tools that will increase productivity, in the near term, in projects such as the Software Support Environment (SSE), the Space Station Control Center (SSCC), and the Flight Analysis and Design System (FADS) which will be used to support the Space Shuttle and Space Station Freedom. Goals also include providing technology for development, evolution, maintenance, and operations. The technologies under research and development in the ASDW project are targeted to provide productivity enhancements during the software life cycle phase of enterprise and information system modeling, requirements generation and analysis, system design and coding, and system use and maintenance. On-line user's guides will assist users in operating the developed information system with knowledge base expert assistance.
Prediction of Peaks of Seasonal Influenza in Military Health-Care Data
Buczak, Anna L.; Baugher, Benjamin; Guven, Erhan; Moniz, Linda; Babin, Steven M.; Chretien, Jean-Paul
2016-01-01
Influenza is a highly contagious disease that causes seasonal epidemics with significant morbidity and mortality. The ability to predict influenza peak several weeks in advance would allow for timely preventive public health planning and interventions to be used to mitigate these outbreaks. Because influenza may also impact the operational readiness of active duty personnel, the US military places a high priority on surveillance and preparedness for seasonal outbreaks. A method for creating models for predicting peak influenza visits per total health-care visits (ie, activity) weeks in advance has been developed using advanced data mining techniques on disparate epidemiological and environmental data. The model results are presented and compared with those of other popular data mining classifiers. By rigorously testing the model on data not used in its development, it is shown that this technique can predict the week of highest influenza activity for a specific region with overall better accuracy than other methods examined in this article. PMID:27127415
Derakhshanfar, Soroosh; Mbeleck, Rene; Xu, Kaige; Zhang, Xingying; Zhong, Wen; Xing, Malcolm
2018-06-01
3D printing, an additive manufacturing based technology for precise 3D construction, is currently widely employed to enhance applicability and function of cell laden scaffolds. Research on novel compatible biomaterials for bioprinting exhibiting fast crosslinking properties is an essential prerequisite toward advancing 3D printing applications in tissue engineering. Printability to improve fabrication process and cell encapsulation are two of the main factors to be considered in development of 3D bioprinting. Other important factors include but are not limited to printing fidelity, stability, crosslinking time, biocompatibility, cell encapsulation and proliferation, shear-thinning properties, and mechanical properties such as mechanical strength and elasticity. In this review, we recite recent promising advances in bioink development as well as bioprinting methods. Also, an effort has been made to include studies with diverse types of crosslinking methods such as photo, chemical and ultraviolet (UV). We also propose the challenges and future outlook of 3D bioprinting application in medical sciences and discuss the high performance bioinks.
Advanced superposition methods for high speed turbopump vibration analysis
NASA Technical Reports Server (NTRS)
Nielson, C. E.; Campany, A. D.
1981-01-01
The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.
NASA Handbook for Spacecraft Structural Dynamics Testing
NASA Technical Reports Server (NTRS)
Kern, Dennis L.; Scharton, Terry D.
2005-01-01
Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook are solicited from the spacecraft structural dynamics testing community.
NASA Handbook for Spacecraft Structural Dynamics Testing
NASA Technical Reports Server (NTRS)
Kern, Dennis L.; Scharton, Terry D.
2004-01-01
Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook is solicited from the spacecraft structural dynamics testing community.
Towards establishing a human fecal contamination index in microbial source tracking
There have been significant advances in development of PCR-based methods to detect source associated DNA sequences (markers), but method evaluation has focused on performance with individual challenge samples. Little attention has been given to integration of multiple samples fro...
Advances in Chemical Mixtures Risk Methods
This presentation is an overview of emerging issues for dose addition in chemical mixtures risk assessment. It is intended to give the participants a perspective of recent developments in methods for dose addition. The workshop abstract is as follows:This problems-based, half-day...
DOT National Transportation Integrated Search
2014-01-01
A comprehensive field detection method is proposed that is aimed at developing advanced capability for : reliable monitoring, inspection and life estimation of bridge infrastructure. The goal is to utilize Motion-Sensing Radio Transponders (RFIDS) on...
Recent technological advances have driven rapid development of DNA-based methods designed to facilitate detection and monitoring of invasive species in aquatic environments. These tools promise to significantly alleviate difficulties associated with traditional monitoring approac...
NASA Technical Reports Server (NTRS)
Funaro, Gregory V.; Alexander, Reginald A.
2015-01-01
The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of Prioritization by Similarity to Ideal Solution (TOPSIS), and other multi-criteria decision-making methods. These methods can be labor-intensive, often contain cognitive or parochial bias, and do not consider the competing prioritization between mission architectures. Strategic Decision-Making (SDM) processes cannot be properly understood unless the context of the technology is understood. This makes assessing technological change particularly challenging due to the relationships "between incumbent technology and the incumbent (innovation) system in relation to the emerging technology and the emerging innovation system." The central idea in technology dynamics is to consider all activities that contribute to the development, diffusion, and use of innovations as system functions. Bergek defines system functions within a TIS to address what is actually happening and has a direct influence on the ultimate performance of the system and technology development. ACO uses similar metrics and is expanding these metrics to account for the structure and context of the technology. At NASA technology and strategy is strongly interrelated. NASA's Strategic Space Technology Investment Plan (SSTIP) prioritizes those technologies essential to the pursuit of NASA's missions and national interests. The SSTIP is strongly coupled with NASA's Technology Roadmaps to provide investment guidance during the next four years, within a twenty-year horizon. This paper discusses the methods ACO is currently developing to better perform technology assessments while taking into consideration Strategic Alignment, Technology Forecasting, and Long Term Planning.
Numerical Methods for Forward and Inverse Problems in Discontinuous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartier, Timothy P.
The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise tomore » medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.« less
Emerging technologies for pediatric and adult trauma care.
Moulton, Steven L; Haley-Andrews, Stephanie; Mulligan, Jane
2010-06-01
Current Emergency Medical Service protocols rely on provider-directed care for evaluation, management and triage of injured patients from the field to a trauma center. New methods to quickly diagnose, support and coordinate the movement of trauma patients from the field to the most appropriate trauma center are in development. These methods will enhance trauma care and promote trauma system development. Recent advances in machine learning, statistical methods, device integration and wireless communication are giving rise to new methods for vital sign data analysis and a new generation of transport monitors. These monitors will collect and synchronize exponentially growing amounts of vital sign data with electronic patient care information. The application of advanced statistical methods to these complex clinical data sets has the potential to reveal many important physiological relationships and treatment effects. Several emerging technologies are converging to yield a new generation of smart sensors and tightly integrated transport monitors. These technologies will assist prehospital providers in quickly identifying and triaging the most severely injured children and adults to the most appropriate trauma centers. They will enable the development of real-time clinical support systems of increasing complexity, able to provide timelier, more cost-effective, autonomous care.
NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch
NASA Technical Reports Server (NTRS)
Gilligan, Eric
2014-01-01
Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.
Kozlowski, Steve W J; Chao, Georgia T
2018-01-01
Psychologists have studied small-group and team effectiveness for decades, and although there has been considerable progress, there remain significant challenges. Meta-analyses and systematic research have provided solid evidence for core team cognitive, motivational, affective, and behavioral processes that contribute to team effectiveness and empirical support for interventions that enhance team processes (e.g., team design, composition, training, and leadership); there has been substantial evidence for a science of team effectiveness. Nonetheless, there have also been concerns that team processes, which are inherently dynamic, have primarily been assessed as static constructs. Team-level processes and outcomes are multilevel phenomena that emerge, bottom-up from the interactions among team members over time, under the shifting demands of a work context. Thus, theoretical development that appropriately conceptualizes the multiple levels, process dynamics, and emergence of team phenomena over time are essential to advance understanding. Moreover, these conceptual advances necessitate innovative research methodologies to better capture team process dynamics. We explicate this foundation and then describe 2 promising streams of scientific inquiry-team interaction sensors and computational modeling-that are advancing new, unobtrusive measurement techniques and process-oriented research methods focused on understanding the dynamics of cohesion and cognition in teamwork. These are distinct lines of research, each endeavoring to advance the science, but doing so through the development of very different methodologies. We close by discussing the near-term research challenges and the potential long-term evolution of these innovative methods, with an eye toward the future for process-oriented theory and research on team effectiveness. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Recent advances and future prospects for Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B
2010-01-01
The history of Monte Carlo methods is closely linked to that of computers: The first known Monte Carlo program was written in 1947 for the ENIAC; a pre-release of the first Fortran compiler was used for Monte Carlo In 1957; Monte Carlo codes were adapted to vector computers in the 1980s, clusters and parallel computers in the 1990s, and teraflop systems in the 2000s. Recent advances include hierarchical parallelism, combining threaded calculations on multicore processors with message-passing among different nodes. With the advances In computmg, Monte Carlo codes have evolved with new capabilities and new ways of use. Production codesmore » such as MCNP, MVP, MONK, TRIPOLI and SCALE are now 20-30 years old (or more) and are very rich in advanced featUres. The former 'method of last resort' has now become the first choice for many applications. Calculations are now routinely performed on office computers, not just on supercomputers. Current research and development efforts are investigating the use of Monte Carlo methods on FPGAs. GPUs, and many-core processors. Other far-reaching research is exploring ways to adapt Monte Carlo methods to future exaflop systems that may have 1M or more concurrent computational processes.« less
ERIC Educational Resources Information Center
Quattrucci, Joseph G.
2018-01-01
A new method for teaching advanced laboratories at the undergraduate level is presented. The intent of this approach is to get students more engaged in the lab experience and apply critical thinking skills to solve problems. The structure of the lab is problem-based and provides students with a research-like experience. Students read the current…
Rapid Analysis and Manufacturing Propulsion Technology (RAMPT)
NASA Technical Reports Server (NTRS)
Fikes, John C.
2018-01-01
NASA's strategic plan calls for the development of enabling technologies, improved production methods, and advanced design and analysis tools related to the agency's objectives to expand human presence in the solar system. NASA seeks to advance exploration, science, innovation, benefits to humanity, and international collaboration, as well as facilitate and utilize U.S. commercial capabilities to deliver cargo and crew to space.
SSAGES: Software Suite for Advanced General Ensemble Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidky, Hythem; Colón, Yamil J.; Helfferich, Julian
Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods, and that facilitates implementation of new techniquesmore » as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract meaningful free energy and transition path data from all-atom and coarse grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite.« less
SSAGES: Software Suite for Advanced General Ensemble Simulations.
Sidky, Hythem; Colón, Yamil J; Helfferich, Julian; Sikora, Benjamin J; Bezik, Cody; Chu, Weiwei; Giberti, Federico; Guo, Ashley Z; Jiang, Xikai; Lequieu, Joshua; Li, Jiyuan; Moller, Joshua; Quevillon, Michael J; Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Rathee, Vikramjit S; Reid, Daniel R; Sevgen, Emre; Thapar, Vikram; Webb, Michael A; Whitmer, Jonathan K; de Pablo, Juan J
2018-01-28
Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques-including adaptive biasing force, string methods, and forward flux sampling-that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.
SSAGES: Software Suite for Advanced General Ensemble Simulations
NASA Astrophysics Data System (ADS)
Sidky, Hythem; Colón, Yamil J.; Helfferich, Julian; Sikora, Benjamin J.; Bezik, Cody; Chu, Weiwei; Giberti, Federico; Guo, Ashley Z.; Jiang, Xikai; Lequieu, Joshua; Li, Jiyuan; Moller, Joshua; Quevillon, Michael J.; Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Rathee, Vikramjit S.; Reid, Daniel R.; Sevgen, Emre; Thapar, Vikram; Webb, Michael A.; Whitmer, Jonathan K.; de Pablo, Juan J.
2018-01-01
Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.
ERIC Educational Resources Information Center
Herba, Catherine; Phillips, Mary
2004-01-01
Background: Intact emotion processing is critical for normal emotional development. Recent advances in neuroimaging have facilitated the examination of brain development, and have allowed for the exploration of the relationships between the development of emotion processing abilities, and that of associated neural systems. Methods: A literature…
Intelligent model-based diagnostics for vehicle health management
NASA Astrophysics Data System (ADS)
Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki
2003-08-01
The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.
Republished review: Gene therapy for ocular diseases.
Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao
2011-07-01
The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.
Gene therapy for ocular diseases.
Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao
2011-05-01
The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.
NASA Astrophysics Data System (ADS)
Liu, Qiong; Wang, Wen-xi; Zhu, Ke-ren; Zhang, Chao-yong; Rao, Yun-qing
2014-11-01
Mixed-model assembly line sequencing is significant in reducing the production time and overall cost of production. To improve production efficiency, a mathematical model aiming simultaneously to minimize overtime, idle time and total set-up costs is developed. To obtain high-quality and stable solutions, an advanced scatter search approach is proposed. In the proposed algorithm, a new diversification generation method based on a genetic algorithm is presented to generate a set of potentially diverse and high-quality initial solutions. Many methods, including reference set update, subset generation, solution combination and improvement methods, are designed to maintain the diversification of populations and to obtain high-quality ideal solutions. The proposed model and algorithm are applied and validated in a case company. The results indicate that the proposed advanced scatter search approach is significant for mixed-model assembly line sequencing in this company.
Cost estimating methods for advanced space systems
NASA Technical Reports Server (NTRS)
Cyr, Kelley
1988-01-01
Parametric cost estimating methods for space systems in the conceptual design phase are developed. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance, and time. The relationship between weight and cost is examined in detail. A theoretical model of cost is developed and tested statistically against a historical data base of major research and development programs. It is concluded that the technique presented is sound, but that it must be refined in order to produce acceptable cost estimates.
Domain decomposition and matching for time-domain analysis of motions of ships advancing in head sea
NASA Astrophysics Data System (ADS)
Tang, Kai; Zhu, Ren-chuan; Miao, Guo-ping; Fan, Ju
2014-08-01
A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surface, and the Rankine source method is applied to the inner domain while the transient Green function method is used in the outer domain. Two initial boundary value problems are matched on the control surface. The corresponding numerical codes are developed, and the added masses, wave exciting forces and ship motions advancing in head sea for Series 60 ship and S175 containership, are presented and verified. A good agreement has been obtained when the numerical results are compared with the experimental data and other references. It shows that the present method is more efficient because of the panel discretization only in the inner domain during the numerical calculation, and good numerical stability is proved to avoid divergence problem regarding ships with flare.
[Device-aided therapies in advanced Parkinson's disease].
Timofeeva, A A
Advanced stages of Parkinson's disease (PD) is a consequence of the severe neurodegenerative process and are characterized by the development of motor fluctuations and dyskinesia, aggravation of non-motor symptoms. Treatment with peroral and transdermal drugs can't provide an adequate control of PD symptoms and quality-of-life of the patients at this stage of disease. Currently, three device-aided therapies: deep brain stimulation (DBS), intrajejunal infusion of duodopa, subcutaneous infusion of apomorphine can be used in treatment of patients with advanced stages of PD. Timely administration of device-aided therapies and right choice of the method determine, to a large extent, the efficacy and safety of their use. Despite the high efficacy of all three methods with respect to the fluctuation of separate symptoms, each method has its own peculiarities. The authors reviewed the data on the expediency of using each method according to the severity of motor and non-motor symptoms, patient's age, PD duration, concomitant pathology and social support of the patients.
Advanced ballistic range technology
NASA Technical Reports Server (NTRS)
Yates, Leslie A.
1994-01-01
The research conducted supported two facilities at NASA Ames Research Center: the Hypervelocity Free-Flight Aerodynamic Facility and the 16-Inch Shock Tunnel. During the grant period, a computerized film-reading system was developed, and five- and six-degree-of-freedom parameter-identification routines were written and successfully implemented. Studies of flow separation were conducted, and methods to extract phase shift information from finite-fringe interferograms were developed. Methods for constructing optical images from Computational Fluid Dynamics solutions were also developed, and these methods were used for one-to-one comparisons of experiment and computations.
Joint Contracture Orthosis (JCO)
NASA Technical Reports Server (NTRS)
Lunsford, Thomas R.; Parsons, Ken; Krouskop, Thomas; McGee, Kevin
1997-01-01
The purpose of this project was to develop an advanced orthosis which is effective in reducing upper and lower limb contractures in significantly less time than currently required with conventional methods. The team that developed the JCO consisted of an engineer, orthotist, therapist, and physician.
Developing Knowledge Intensive Ideas in Engineering Education: The Application of Camp Methodology
ERIC Educational Resources Information Center
Lassen, Astrid Heidemann; Nielsen, Suna Lowe
2011-01-01
Background: Globalization, technological advancement, environmental problems, etc. challenge organizations not just to consider cost-effectiveness, but also to develop new ideas in order to build competitive advantages. Hence, methods to deliberately enhance creativity and facilitate its processes of development must also play a central role in…
How Stuttering Develops: The Multifactorial Dynamic Pathways Theory
ERIC Educational Resources Information Center
Smith, Anne; Weber, Christine
2017-01-01
Purpose: We advanced a multifactorial, dynamic account of the complex, nonlinear interactions of motor, linguistic, and emotional factors contributing to the development of stuttering. Our purpose here is to update our account as the multifactorial dynamic pathways theory. Method: We review evidence related to how stuttering develops, including…
An Affirmative Approach to Vocabulary Development.
ERIC Educational Resources Information Center
Shioji, Jean
Methods for second language vocabulary development in the intermediate and advanced level English classroom are described. Rather than require students to memorize lists of words, the teacher should give students a better understanding of the process of vocabulary development by showing them how to refine their use of new lexical items and implant…
e-Learning Success Model: An Information Systems Perspective
ERIC Educational Resources Information Center
Lee-Post, Anita
2009-01-01
This paper reports the observations made and experience gained from developing and delivering an online quantitative methods course for Business undergraduates. Inspired by issues and challenges experienced in developing the online course, a model is advanced to address the question of how to guide the design, development, and delivery of…
ERIC Educational Resources Information Center
Kowalski, Bruce R.
1980-01-01
Outlines recent advances in the development of the field of chemometrics, defined as the application of mathematical and statistical methods to chemical measurements. Emphasizes applications in the field. Cites 288 references. (CS)
Solution of plane cascade flow using improved surface singularity methods
NASA Technical Reports Server (NTRS)
Mcfarland, E. R.
1981-01-01
A solution method has been developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those found in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.
Methods for genetic modification of megakaryocytes and platelets.
Pendaries, Caroline; Watson, Stephen P; Spalton, Jennifer C
2007-09-01
During recent decades there have been major advances in the fields of thrombosis and haemostasis, in part through development of powerful molecular and genetic technologies. Nevertheless, genetic modification of megakaryocytes and generation of mutant platelets in vitro remains a highly specialized area of research. Developments are hampered by the low frequency of megakaryocytes and their progenitors, a poor efficiency of transfection and a lack of understanding with regard to the mechanism by which megakaryocytes release platelets. Current methods used in the generation of genetically modified megakaryocytes and platelets include mutant mouse models, cell line studies and use of viruses to transform primary megakaryocytes or haematopoietic precursor cells. This review summarizes the advantages, limitations and technical challenges of such methods, with a particular focus on recent successes and advances in this rapidly progressing field including the potential for use in gene therapy for treatment of patients with platelet disorders.
NASA Astrophysics Data System (ADS)
Wang, Tianmin; Gao, Fei; Hu, Wangyu; Lai, Wensheng; Lu, Guang-Hong; Zu, Xiaotao
2009-09-01
The Ninth International Conference on Computer Simulation of Radiation Effects in Solids (COSIRES 2008) was hosted by Beihang University in Beijing, China from 12 to 17 October 2008. Started in 1992 in Berlin, Germany, this conference series has been held biennially in Santa Barbara, CA, USA (1994); Guildford, UK (1996); Okayama, Japan (1998); State College, PA, USA (2000); Dresden, Germany (2002); Helsinki Finland (2004); and Richland, WA USA (2006). The COSIRES conferences are the foremost international forum on the theory, development and application of advanced computer simulation methods and algorithms to achieve fundamental understanding and predictive modeling of the interaction of energetic particles and clusters with solids. As can be noticed in the proceedings of the COSIRES conferences, these computer simulation methods and algorithms have been proven to be very useful for the study of fundamental radiation effect processes, which are not easily accessible by experimental methods owing to small time and length scales. Moreover, with advance in computing power, they have remarkably been developed in the different scales ranging from meso to atomistic, and even down to electronic levels, as well as coupling of the different scales. They are now becoming increasingly applicable for materials processing and performance prediction in advance engineering and energy-production technologies.
NASA Astrophysics Data System (ADS)
Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.
2006-05-01
Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, handheld, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.
Barch, Deanna M
A key tenet of modern psychiatry is that psychiatric disorders arise from abnormalities in brain circuits that support human behavior. Our ability to examine hypotheses around circuit-level abnormalities in psychiatric disorders has been made possible by advances in human neuroimaging technologies. These advances have provided the basis for recent efforts to develop a more complex understanding of the function of brain circuits in health and of their relationship to behavior-providing, in turn, a foundation for our understanding of how disruptions in such circuits contribute to the development of psychiatric disorders. This review focuses on the use of resting-state functional connectivity MRI to assess brain circuits, on the advances generated by the Human Connectome Project, and on how these advances potentially contribute to understanding neural circuit dysfunction in psychopathology. The review gives particular attention to the methods developed by the Human Connectome Project that may be especially relevant to studies of psychopathology; it outlines some of the key findings about what constitutes a brain region; and it highlights new information about the nature and stability of brain circuits. Some of the Human Connectome Project's new findings particularly relevant to psychopathology-about neural circuits and their relationships to behavior-are also presented. The review ends by discussing the extension of Human Connectome Project methods across the lifespan and into manifest illness. Potential treatment implications are also considered.
A mean curvature model for capillary flows in asymmetric containers and conduits
NASA Astrophysics Data System (ADS)
Chen, Yongkang; Tavan, Noël; Weislogel, Mark M.
2012-08-01
Capillarity-driven flows resulting from critical geometric wetting criterion are observed to yield significant shifts of the bulk fluid from one side of the container to the other during "zero gravity" experiments. For wetting fluids, such bulk shift flows consist of advancing and receding menisci sometimes separated by secondary capillary flows such as rivulet-like flows along gaps. Here we study the mean curvature of an advancing meniscus in hopes of approximating a critical boundary condition for fluid dynamics solutions. It is found that the bulk shift flows behave as if the bulk menisci are either "connected" or "disconnected." For the connected case, an analytic method is developed to calculate the mean curvature of the advancing meniscus in an asymptotic sense. In contrast, for the disconnected case the method to calculate the mean curvature of the advancing and receding menisci uses a well-established procedure. Both disconnected and connected bulk shifts can occur as the first tier flow of more complex compound capillary flows. Preliminary comparisons between the analytic method and the results of drop tower experiments are encouraging.
Air-bridged Ohmic contact on vertically aligned si nanowire arrays: application to molecule sensors.
Han, Hee; Kim, Jungkil; Shin, Ho Sun; Song, Jae Yong; Lee, Woo
2012-05-02
A simple, cost-effective, and highly reliable method for constructing an air-bridged electrical contact on large arrays of vertically aligned nanowires was developed. The present method may open up new opportunities for developing advanced nanowire-based devices for energy harvest and storage, power generation, and sensing applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of Metal Matrix Composites for NASA's Advanced Propulsion Systems
NASA Technical Reports Server (NTRS)
Lee, J.; Elam, S.
2001-01-01
The state-of-the-art development of several Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The goal is to provide an overview of NASA-Marshall Space Flight Center's on-going activities in MMC components for advanced liquid rocket engines such as the X-33 vehicle's Aerospike engine and X-34's Fastrac engine. The focus will be on lightweight, low cost, and environmental compatibility with oxygen and hydrogen of key MMC materials, within each of NASA's new propulsion application, that will provide a high payoff for NASA's Reusable Launch Vehicles and space access vehicles. In order to fabricate structures from MMC, effective joining methods must be developed to join MMC to the same or to different monolithic alloys. Therefore, a qualitative assessment of MMC's welding and joining techniques will be outlined.
NASA Technical Reports Server (NTRS)
Mcfarland, E. R.
1981-01-01
A solution method was developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.
TomoBank: a tomographic data repository for computational x-ray science
De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.; ...
2018-02-08
There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less
Optical Biopsy: A New Frontier in Endoscopic Detection and Diagnosis
WANG, THOMAS D.; VAN DAM, JACQUES
2007-01-01
Endoscopic diagnosis currently relies on the ability of the operator to visualize abnormal patterns in the image created by light reflected from the mucosal surface of the gastrointestinal tract. Advances in fiber optics, light sources, detectors, and molecular biology have led to the development of several novel methods for tissue evaluation in situ. The term “optical biopsy” refers to methods that use the properties of light to enable the operator to make an instant diagnosis at endoscopy, previously possible only by using histological or cytological analysis. Promising imaging techniques include fluorescence endoscopy, optical coherence tomography, confocal microendoscopy, and molecular imaging. Point detection schemes under development include light scattering and Raman spectroscopy. Such advanced diagnostic methods go beyond standard endoscopic techniques by offering improved image resolution, contrast, and tissue penetration and providing biochemical and molecular information about mucosal disease. This review describes the basic biophysics of light-tissue interactions, assesses the strengths and weaknesses of each method, and examines clinical and preclinical evidence for each approach. PMID:15354274
Mission Systems Open Architecture Science and Technology (MOAST) program
NASA Astrophysics Data System (ADS)
Littlejohn, Kenneth; Rajabian-Schwart, Vahid; Kovach, Nicholas; Satterthwaite, Charles P.
2017-04-01
The Mission Systems Open Architecture Science and Technology (MOAST) program is an AFRL effort that is developing and demonstrating Open System Architecture (OSA) component prototypes, along with methods and tools, to strategically evolve current OSA standards and technical approaches, promote affordable capability evolution, reduce integration risk, and address emerging challenges [1]. Within the context of open architectures, the program is conducting advanced research and concept development in the following areas: (1) Evolution of standards; (2) Cyber-Resiliency; (3) Emerging Concepts and Technologies; (4) Risk Reduction Studies and Experimentation; and (5) Advanced Technology Demonstrations. Current research includes the development of methods, tools, and techniques to characterize the performance of OMS data interconnection methods for representative mission system applications. Of particular interest are the OMS Critical Abstraction Layer (CAL), the Avionics Service Bus (ASB), and the Bulk Data Transfer interconnects, as well as to develop and demonstrate cybersecurity countermeasures techniques to detect and mitigate cyberattacks against open architecture based mission systems and ensure continued mission operations. Focus is on cybersecurity techniques that augment traditional cybersecurity controls and those currently defined within the Open Mission System and UCI standards. AFRL is also developing code generation tools and simulation tools to support evaluation and experimentation of OSA-compliant implementations.
Proposed Project Selection Method for Human Support Research and Technology Development (HSR&TD)
NASA Technical Reports Server (NTRS)
Jones, Harry
2005-01-01
The purpose of HSR&TD is to deliver human support technologies to the Exploration Systems Mission Directorate (ESMD) that will be selected for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are acceptable. HSR&TD must select an may of technology development projects, guide them, and either terminate or continue them, so as to maximize the resulting number of usable advanced human support technologies. This paper proposes an effective project scoring methodology to support managing the HSR&TD project portfolio. Researchers strongly disagree as to what are the best technology project selection methods, or even if there are any proven ones. Technology development is risky and outstanding achievements are rare and unpredictable. There is no simple formula for success. Organizations that are satisfied with their project selection approach typically use a mix of financial, strategic, and scoring methods in an open, established, explicit, formal process. This approach helps to build consensus and develop management insight. It encourages better project proposals by clarifying the desired project attributes. We propose a project scoring technique based on a method previously used in a federal laboratory and supported by recent research. Projects are ranked by their perceived relevance, risk, and return - a new 3 R's. Relevance is the degree to which the project objective supports the HSR&TD goal of developing usable advanced human support technologies. Risk is the estimated probability that the project will achieve its specific objective. Return is the reduction in mission life cycle cost obtained if the project is successful. If the project objective technology performs a new function with no current cost, its return is the estimated cash value of performing the new function. The proposed project selection scoring method includes definitions of the criteria, a project evaluation questionnaire, and a scoring formula.
Intelligent Engine Systems: Thermal Management and Advanced Cooling
NASA Technical Reports Server (NTRS)
Bergholz, Robert
2008-01-01
The objective is to provide turbine-cooling technologies to meet Propulsion 21 goals related to engine fuel burn, emissions, safety, and reliability. Specifically, the GE Aviation (GEA) Advanced Turbine Cooling and Thermal Management program seeks to develop advanced cooling and flow distribution methods for HP turbines, while achieving a substantial reduction in total cooling flow and assuring acceptable turbine component safety and reliability. Enhanced cooling techniques, such as fluidic devices, controlled-vortex cooling, and directed impingement jets, offer the opportunity to incorporate both active and passive schemes. Coolant heat transfer enhancement also can be achieved from advanced designs that incorporate multi-disciplinary optimization of external film and internal cooling passage geometry.
State of the art of sonic boom modeling
NASA Astrophysics Data System (ADS)
Plotkin, Kenneth J.
2002-01-01
Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.
State of the art of sonic boom modeling.
Plotkin, Kenneth J
2002-01-01
Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.
78 FR 23960 - Annual Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
... Medical Evidence Development and Surveillance (IMEDS) Program, methods for using observational electronic... research projects to advance regulatory science. The Foundation acts as a neutral third party to establish...
A stakeholder-driven agenda for advancing the science and practice of scale-up and spread in health.
Norton, Wynne E; McCannon, C Joseph; Schall, Marie W; Mittman, Brian S
2012-12-06
Although significant advances have been made in implementation science, comparatively less attention has been paid to broader scale-up and spread of effective health programs at the regional, national, or international level. To address this gap in research, practice and policy attention, representatives from key stakeholder groups launched an initiative to identify gaps and stimulate additional interest and activity in scale-up and spread of effective health programs. We describe the background and motivation for this initiative and the content, process, and outcomes of two main phases comprising the core of the initiative: a state-of-the-art conference to develop recommendations for advancing scale-up and spread and a follow-up activity to operationalize and prioritize the recommendations. The conference was held in Washington, D.C. during July 2010 and attended by 100 representatives from research, practice, policy, public health, healthcare, and international health communities; the follow-up activity was conducted remotely the following year. Conference attendees identified and prioritized five recommendations (and corresponding sub-recommendations) for advancing scale-up and spread in health: increase awareness, facilitate information exchange, develop new methods, apply new approaches for evaluation, and expand capacity. In the follow-up activity, 'develop new methods' was rated as most important recommendation; expanding capacity was rated as least important, although differences were relatively minor. Based on the results of these efforts, we discuss priority activities that are needed to advance research, practice and policy to accelerate the scale-up and spread of effective health programs.
Establishing advanced practice for medical imaging in New Zealand
Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen
2014-01-01
IntroductionThis article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). MethodsThe study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. ResultsFindings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. ConclusionsThe authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ. PMID:26229631
Establishing advanced practice for medical imaging in New Zealand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yielder, Jill, E-mail: j.yielder@auckland.ac.nz; Young, Adrienne; Park, Shelley
Introduction: This article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). Methods: The study sought to support the development of profiles and criteria that couldmore » be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. Results: Findings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. Conclusions: The authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ.« less
Flexible Regenerative Nanoelectronics for Advanced Peripheral Neural Interfaces
2017-10-01
these materials will be developed based on 3D printing . Page 4 Task 3. Construct nerve guidance scaffolds comprising of embedded mesh electrodes with...Develop photo mask patterning methods. 1-9 In progress 50% Subtask 2.2.2. Develop 3D printing patterning methods. 9-18 9/1/2017 Milestone(s...research into patterning techniques, we found that 10% gelatin methacrylate (GelMA) base gel was the best for performing 3D printing of the gels
Potential impacts of advanced technologies on the ATC capacity of high-density terminal areas
NASA Technical Reports Server (NTRS)
Simpson, R. W.; Odoni, A. R.; Salas-Roche, F.
1986-01-01
Advanced technologies for airborne systems (automatic flight control, flight displays, navigation) and for ground ATC systems (digital communications, improved surveillance and tracking, automated decision-making) create the possibility of advanced ATC operations and procedures which can bring increased capacity for runway systems. A systematic analysis is carried out to identify certain such advanced ATC operations, and then to evaluate the potential benefits occurring over time at typical US high-density airports (Denver and Boston). The study is divided into three parts: (1) A Critical Examination of Factors Which Determine Operational Capacity of Runway Systems at Major Airports, is an intensive review of current US separation criteria and terminal area ATC operations. It identifies 11 new methods to increase the capacity of landings and takeoffs for runway systems; (2) Development of Risk Based Separation Criteria is the development of a rational structure for establishing reduced ATC separation criteria which meet a consistent Target Level of Safety using advanced technology and operational procedures; and (3) Estimation of Capacity Benefits from Advanced Terminal Area Operations - Denver and Boston, provides an estimate of the overall annual improvement in runway capacity which might be expected at Denver and Boston from using some of the advanced ATC procedures developed in Part 1. Whereas Boston achieved a substantial 37% increase, Denver only achieved a 4.7% increase in its overall annual capacity.
Future experimental needs to support applied aerodynamics - A transonic perspective
NASA Technical Reports Server (NTRS)
Gloss, Blair B.
1992-01-01
Advancements in facilities, test techniques, and instrumentation are needed to provide data required for the development of advanced aircraft and to verify computational methods. An industry survey of major users of wind tunnel facilities at Langley Research Center (LaRC) was recently carried out to determine future facility requirements, test techniques, and instrumentation requirements; results from this survey are reflected in this paper. In addition, areas related to transonic testing at LaRC which are either currently being developed or are recognized as needing improvements are discussed.
New technology of underground structures the framework of restrained urban conditions
NASA Astrophysics Data System (ADS)
Pleshko, Mikhail; Pankratenko, Alexander; Revyakin, Alexey; Shchekina, Ekaterina; Kholodova, Svetlana
2018-03-01
In the paper was indicated the essentiality of large-scale underground space development and high-rise construction of cities in Russia. The basic elements of transport facilities construction effective technology without traffic restriction are developed. Unlike the well-known solutions, it offers the inclusion of an advanced lining in the construction that strengthens the soil mass. The fundamental principles of methods for determining stress in advanced support and monitoring of underground construction, providing the application of pressure sensors, strain sensors and displacement sensors are considered.
Advanced microprocessor based power protection system using artificial neural network techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z.; Kalam, A.; Zayegh, A.
This paper describes an intelligent embedded microprocessor based system for fault classification in power system protection system using advanced 32-bit microprocessor technology. The paper demonstrates the development of protective relay to provide overcurrent protection schemes for fault detection. It also describes a method for power fault classification in three-phase system based on the use of neural network technology. The proposed design is implemented and tested on a single line three phase power system in power laboratory. Both the hardware and software development are described in detail.
Ground truth spectrometry and imagery of eruption clouds to maximize utility of satellite imagery
NASA Technical Reports Server (NTRS)
Rose, William I.
1993-01-01
Field experiments with thermal imaging infrared radiometers were performed and a laboratory system was designed for controlled study of simulated ash clouds. Using AVHRR (Advanced Very High Resolution Radiometer) thermal infrared bands 4 and 5, a radiative transfer method was developed to retrieve particle sizes, optical depth and particle mass involcanic clouds. A model was developed for measuring the same parameters using TIMS (Thermal Infrared Multispectral Scanner), MODIS (Moderate Resolution Imaging Spectrometer), and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). Related publications are attached.
Flow chemistry syntheses of natural products.
Pastre, Julio C; Browne, Duncan L; Ley, Steven V
2013-12-07
The development and application of continuous flow chemistry methods for synthesis is a rapidly growing area of research. In particular, natural products provide demanding challenges to this developing technology. This review highlights successes in the area with an emphasis on new opportunities and technological advances.
CAROLINA CENTER FOR COMPUTATIONAL TOXICOLOGY
The Center will advance the field of computational toxicology through the development of new methods and tools, as well as through collaborative efforts. In each Project, new computer-based models will be developed and published that represent the state-of-the-art. The tools p...
2007 NASA Seal/Secondary Air System Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Hendricks, Robert C.; Delgado, Irebert
2008-01-01
The 2007 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA's new Orion project aimed at developing a new spacecraft that will fare astronauts to the International Space Station, the Moon, Mars, and beyond; (ii) Overview of NASA's fundamental aeronautics technology project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA's turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakage as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Turbine seal development topics covered include a method for fast-acting HPT blade tip clearance control, noncontacting low-leakage seals, intershaft seals, and a review of engine seal performance requirements for current and future Army engine platforms.
2008 NASA Seal/Secondary Air System Workshop
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert R. (Editor)
2009-01-01
The 2008 NASA Seal/Secondary Air System Workshop covered the following topics: (i) Overview of NASA s new Orion project aimed at developing a new spacecraft that will fare astronauts to the International Space Station, the Moon, Mars, and beyond; (ii) Overview of NASA s fundamental aeronautics technology project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakage as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Turbine seal development topics covered include a method for fast-acting HPT blade tip clearance control, noncontacting low-leakage seals, intershaft seals, and a review of engine seal performance requirements for current and future Army engine platforms.
NASA Astrophysics Data System (ADS)
Fein, Howard
1999-03-01
Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of aerodynamic control and airfoil structures for advanced aircraft has always required advanced instrumentation for data collection in either actual flight test or wind-tunnel simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data on the ground in a noninvasive environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced exotic metal control structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of exotic metal structures for high stress applications. Advanced Titanium alloy is a significant example of these sorts of materials which has found continually increased use in advanced aerodynamic, undersea, and other highly mobil platforms. Aircraft applications in particular must consider environments where extremes in vibration and impulsive mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of structures made with such advanced materials. Holographic techniques are nondestructive, real- time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as operational parameters of structural components fabricated from advanced and exotic materials. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects. Deriving such information can be crucial to the determination of mechanical configurations and designs, as well as critical operational parameters of structural components fabricated from advanced and exotic materials.
Study of metallic structural design concepts for an arrow wing supersonic cruise configuration
NASA Technical Reports Server (NTRS)
Turner, M. J.; Grande, D. L.
1977-01-01
A structural design study was made, to assess the relative merits of various metallic structural concepts and materials for an advanced supersonic aircraft cruising at Mach 2.7. Preliminary studies were made to ensure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, select structural concepts and materials, and define an efficient structural arrangement. An advanced computerized structural design system was used, in conjunction with a relatively large, complex finite element model, for detailed analysis and sizing of structural members to satisfy strength and flutter criteria. A baseline aircraft design was developed for assessment of current technology. Criteria, analysis methods, and results are presented. The effect on design methods of using the computerized structural design system was appraised, and recommendations are presented concerning further development of design tools, development of materials and structural concepts, and research on basic technology.
Molecular sieving using nanofilters: past, present and future.
Han, Jongyoon; Fu, Jianping; Schoch, Reto B
2008-01-01
Filtration of molecules by nanometer-sized structures is ubiquitous in our everyday life, but our understanding of such molecular filtration processes is far less than desired. Until recently, one of the main reasons was the lack of experimental methods that can help provide detailed, microscopic pictures of molecule-nanostructure interactions. Several innovations in experimental methods, such as nuclear track-etched membranes developed in the 70s, and more recent development of nanofluidic molecular filters, played pivotal roles in advancing our understanding. With the ability to make truly molecular-scale filters and pores with well-defined sizes, shapes, and surface properties, now we are well positioned to engineer better functionality in molecular sieving, separation and other membrane applications. Reviewing past theoretical developments (often scattered across different fields) and connecting them to the most recent advances in the field would be essential to get a full, unified view on this important engineering question.
Optics of high-performance electron microscopes*
Rose, H H
2008-01-01
During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described. PMID:27877933
Optimizing Aspect-Oriented Mechanisms for Embedded Applications
NASA Astrophysics Data System (ADS)
Hundt, Christine; Stöhr, Daniel; Glesner, Sabine
As applications for small embedded mobile devices are getting larger and more complex, it becomes inevitable to adopt more advanced software engineering methods from the field of desktop application development. Aspect-oriented programming (AOP) is a promising approach due to its advanced modularization capabilities. However, existing AOP languages tend to add a substantial overhead in both execution time and code size which restricts their practicality for small devices with limited resources. In this paper, we present optimizations for aspect-oriented mechanisms at the level of the virtual machine. Our experiments show that these optimizations yield a considerable performance gain along with a reduction of the code size. Thus, our optimizations establish the base for using advanced aspect-oriented modularization techniques for developing Java applications on small embedded devices.
Advanced EUS Guided Tissue Acquisition Methods for Pancreatic Cancer
Kandel, Pujan; Wallace, Michael B.
2018-01-01
Pancreas cancer is a lethal cancer as the majority patients are diagnosed at an advanced incurable stage. Despite improvements in diagnostic modalities and management strategies, including surgery and chemotherapies, the outcome of pancreas cancer remains poor. Endoscopic ultrasound (EUS) is an important imaging tool for pancreas cancer. For decades, resected pancreas cancer and other cancer specimens have been used to identify tissue biomarkers or genomics for precision therapy; however, only 20% of patients undergo surgery, and thus, this framework is not useful for unresectable pancreas cancer. With advancements in needle technologies, tumor specimens can be obtained at the time of tissue diagnosis. Tumor tissue can be used for development of personalized cancer treatment, such as performing whole exome sequencing and global genomic profiling of pancreas cancer, development of tissue biomarkers, and targeted mutational assays for precise chemotherapy treatment. In this review, we discuss the recent advances in tissue acquisition of pancreas cancer. PMID:29463004
An advanced terrain modeler for an autonomous planetary rover
NASA Technical Reports Server (NTRS)
Hunter, E. L.
1980-01-01
A roving vehicle capable of autonomously exploring the surface of an alien world is under development and an advanced terrain modeler to characterize the possible paths of the rover as hazardous or safe is presented. This advanced terrain modeler has several improvements over the Troiani modeler that include: a crosspath analysis, better determination of hazards on slopes, and methods for dealing with missing returns at the extremities of the sensor field. The results from a package of programs to simulate the roving vehicle are then examined and compared to results from the Troiani modeler.
Tissue vascularization through 3D printing: Will technology bring us flow?
Paulsen, S J; Miller, J S
2015-05-01
Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.
Portfolio Assessment as a Method of Enhancing Preschool Reading Development and Teacher Instruction
ERIC Educational Resources Information Center
Esliker, Regina
2010-01-01
Technological advances offer new ways and approaches to teaching and learning and have affected traditional methods of instruction and student assessment. Portfolio assessment is one way to document a student's progress over time and has been the subject of considerable research. This mixed method study explored the extent to which portfolio…
Design and Effects of Scenario Educational Software.
ERIC Educational Resources Information Center
Keegan, Mark
1993-01-01
Describes the development of educational computer software called scenario software that was designed to incorporate advances in cognitive, affective, and physiological research. Instructional methods are outlined; the need to change from didactic methods to discovery learning is explained; and scenario software design features are discussed. (24…
Hydrological flow predictions in ungauged and sparsely gauged watersheds use regionalization or classification of hydrologically similar watersheds to develop empirical relationships between hydrologic, climatic, and watershed variables. The watershed classifications may be based...
Inter-Disciplinary Collaboration in Support of the Post-Standby TREAT Mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark; Baker, Benjamin; Ortensi, Javier
Although analysis methods have advanced significantly in the last two decades, high fidelity multi- physics methods for reactors systems have been under development for only a few years and are not presently mature nor deployed. Furthermore, very few methods provide the ability to simulate rapid transients in three dimensions. Data for validation of advanced time-dependent multi- physics is sparse; at TREAT, historical data were not collected for the purpose of validating three-dimensional methods, let alone multi-physics simulations. Existing data continues to be collected to attempt to simulate the behavior of experiments and calibration transients, but it will be insufficient formore » the complete validation of analysis methods used for TREAT transient simulations. Hence, a 2018 restart will most likely occur without the direct application of advanced modeling and simulation methods. At present, the current INL modeling and simulation team plans to work with TREAT operations staff in performing reactor simulations with MAMMOTH, in parallel with the software packages currently being used in preparation for core restart (e.g., MCNP5, RELAP5, ABAQUS). The TREAT team has also requested specific measurements to be performed during startup testing, currently scheduled to run from February to August of 2018. These startup measurements will be crucial in validating the new analysis methods in preparation for ultimate application for TREAT operations and experiment design. This document describes the collaboration between modeling and simulation staff and restart, operations, instrumentation and experiment development teams to be able to effectively interact and achieve successful validation work during restart testing.« less
Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials.
Giridharagopal, Rajiv; Cox, Phillip A; Ginger, David S
2016-09-20
From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to study materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of cantilever motion and photocarrier generation to provide robust, nanoscale measurements of materials physics that are correlated with device operation. We predict that the multidimensional data sets made possible by these types of methods will become increasingly important as advances in data science expand capabilities and opportunities for image correlation and discovery.
Flow Pattern Phenomena in Two-Phase Flow in Microchannels
NASA Astrophysics Data System (ADS)
Keska, Jerry K.; Simon, William E.
2004-02-01
Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results including evaluation of data acquisition techniques and their validity for application in flow pattern determination.
New Methods of Low-Field Magnetic Resonance Imaging for Application to Traumatic Brain Injury
2013-02-01
magnet based ), the development of novel high-speed parallel imaging detection systems, and work on advanced adaptive reconstruction methods ...signal many times within the acquisition time . We present here a new method for 3D OMRI based on b-SSFP at a constant field of 6.5 mT that provides up...developing injury-sensitive MRI based on the detection of free radicals associat- ed with injury using the Overhauser effect and subsequently imaging that
Current status and biotechnological advances in genetic engineering of ornamental plants.
Azadi, Pejman; Bagheri, Hedayat; Nalousi, Ayoub Molaahmad; Nazari, Farzad; Chandler, Stephen F
2016-11-01
Cut flower markets are developing in many countries as the international demand for cut flowers is rapidly growing. Developing new varieties with modified characteristics is an important aim in floriculture. Production of transgenic ornamental plants can shorten the time required in the conventional breeding of a cultivar. Biotechnology tools in combination with conventional breeding methods have been used by cut flower breeders to change flower color, plant architecture, post-harvest traits, and disease resistance. In this review, we describe advances in genetic engineering that have led to the development of new cut flower varieties. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Brady, Tye; Bailey, Erik; Crain, Timothy; Paschall, Stephen
2011-01-01
NASA has embarked on a multiyear technology development effort to develop a safe and precise lunar landing capability. The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is investigating a range of landing hazard detection methods while developing a hazard avoidance capability to best field test the proper set of relevant autonomous GNC technologies. Ultimately, the advancement of these technologies through the ALHAT Project will provide an ALHAT System capable of enabling next generation lunar lander vehicles to globally land precisely and safely regardless of lighting condition. This paper provides an overview of the ALHAT System and describes recent validation experiments that have advanced the highly capable GNC architecture.
Advanced Motion Compensation Methods for Intravital Optical Microscopy
Vinegoni, Claudio; Lee, Sungon; Feruglio, Paolo Fumene; Weissleder, Ralph
2013-01-01
Intravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the micro-dynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions. PMID:24273405
NASA Technical Reports Server (NTRS)
Ray, R. J.; Hicks, J. W.; Alexander, R. I.
1988-01-01
The X-29A advanced technology demonstrator has shown the practicality and advantages of the capability to compute and display, in real time, aeroperformance flight results. This capability includes the calculation of the in-flight measured drag polar, lift curve, and aircraft specific excess power. From these elements many other types of aeroperformance measurements can be computed and analyzed. The technique can be used to give an immediate postmaneuver assessment of data quality and maneuver technique, thus increasing the productivity of a flight program. A key element of this new method was the concurrent development of a real-time in-flight net thrust algorithm, based on the simplified gross thrust method. This net thrust algorithm allows for the direct calculation of total aircraft drag.
Jones, Louise; Candy, Bridget; Davis, Sarah; Elliott, Margaret; Gola, Anna; Harrington, Jane; Kupeli, Nuriye; Lord, Kathryn; Moore, Kirsten; Scott, Sharon; Vickerstaff, Victoria; Omar, Rumana Z; King, Michael; Leavey, Gerard; Nazareth, Irwin; Sampson, Elizabeth L
2015-01-01
Background: The prevalence of dementia is rising worldwide and many people will die with the disease. Symptoms towards the end of life may be inadequately managed and informal and professional carers poorly supported. There are few evidence-based interventions to improve end-of-life care in advanced dementia. Aim: To develop an integrated, whole systems, evidence-based intervention that is pragmatic and feasible to improve end-of-life care for people with advanced dementia and support those close to them. Design: A realist-based approach in which qualitative and quantitative data assisted the development of statements. These were incorporated into the RAND/UCLA appropriateness method to achieve consensus on intervention components. Components were mapped to underlying theory of whole systems change and the intervention described in a detailed manual. Setting/participants: Data were collected from people with dementia, carers and health and social care professionals in England, from expert opinion and existing literature. Professional stakeholders in all four countries of the United Kingdom contributed to the RAND/UCLA appropriateness method process. Results: A total of 29 statements were agreed and mapped to individual, group, organisational and economic/political levels of healthcare systems. The resulting main intervention components are as follows: (1) influencing local service organisation through facilitation of integrated multi-disciplinary care, (2) providing training and support for formal and informal carers and (3) influencing local healthcare commissioning and priorities of service providers. Conclusion: Use of in-depth data, consensus methods and theoretical understanding of the intervention components produced an evidence-based intervention for further testing in end-of-life care in advanced dementia. PMID:26354388
A review of polymeric membranes and processes for potable water reuse
Warsinger, David M.; Chakraborty, Sudip; Tow, Emily W.; Plumlee, Megan H.; Bellona, Christopher; Loutatidou, Savvina; Karimi, Leila; Mikelonis, Anne M.; Achilli, Andrea; Ghassemi, Abbas; Padhye, Lokesh P.; Snyder, Shane A.; Curcio, Stefano; Vecitis, Chad; Arafat, Hassan A.; Lienhard, John H.
2018-01-01
Conventional water resources in many regions are insufficient to meet the water needs of growing populations, thus reuse is gaining acceptance as a method of water supply augmentation. Recent advancements in membrane technology have allowed for the reclamation of municipal wastewater for the production of drinking water, i.e., potable reuse. Although public perception can be a challenge, potable reuse is often the least energy-intensive method of providing additional drinking water to water stressed regions. A variety of membranes have been developed that can remove water contaminants ranging from particles and pathogens to dissolved organic compounds and salts. Typically, potable reuse treatment plants use polymeric membranes for microfiltration or ultrafiltration in conjunction with reverse osmosis and, in some cases, nanofiltration. Membrane properties, including pore size, wettability, surface charge, roughness, thermal resistance, chemical stability, permeability, thickness and mechanical strength, vary between membranes and applications. Advancements in membrane technology including new membrane materials, coatings, and manufacturing methods, as well as emerging membrane processes such as membrane bioreactors, electrodialysis, and forward osmosis have been developed to improve selectivity, energy consumption, fouling resistance, and/or capital cost. The purpose of this review is to provide a comprehensive summary of the role of polymeric membranes in the treatment of wastewater to potable water quality and highlight recent advancements in separation processes. Beyond membranes themselves, this review covers the background and history of potable reuse, and commonly used potable reuse process chains, pretreatment steps, and advanced oxidation processes. Key trends in membrane technology include novel configurations, materials and fouling prevention techniques. Challenges still facing membrane-based potable reuse applications, including chemical and biological contaminant removal, membrane fouling, and public perception, are highlighted as areas in need of further research and development. PMID:29937599
Recent Inventions and Trends in Algal Biofuels Research.
Karemore, Ankush; Nayak, Manoranjan; Sen, Ramkrishna
2016-01-01
In recent times, when energy crisis compounded by global warming and climate change is receiving worldwide attention, the emergence of algae, as a better feedstock for third-generation biofuels than energy crops or plants, holds great promise. As compared to conventional biofuels feedstocks, algae offer several advantages and can alone produce a significant amount of biofuels sustainably in a shorter period to fulfill the rising demand for energy. Towards commercialisation, there have been numerous efforts put for- ward for the development of algae-derived biofuel. This article reviews and summarizes the recent inventions and the current trends that are reported and captured in relevant patents pertaining to the novel methods of algae biomass cultivation and processing for biofuels and value-added products. In addition, the recent advancement in techniques and technologies for microalgal biofuel production has been highlighted. Various steps involved in the production of algal biofuels have been considered in this article. Moreover, the work that advances to improve the efficiency and cost-effectiveness of the processes for the manufacture of biofuels has been presented. Our survey was conducted in the patent databases: WIPO, Spacenet and USPTO. There are still some technological bottlenecks that could be overcome by designing advanced photobioreactor and raceway ponds, developing new and low cost technologies for biomass cultivation, harvesting, drying and extraction. Recent advancement in algae biofuels methods is directed toward developing efficient and integrated systems to produce biofuels by overcoming the current challenges. However, further research effort is required to scale-up and improve the efficiency of these methods in the upstream and downstream technologies to make the cost of biofuels competitive with petroleum fuels.
ERIC Educational Resources Information Center
Ojanen, Tiina; Little, Todd D.
2010-01-01
This special section was inspired by the recent increased interest and methodological advances in the assessment of context-specificity in child and adolescent social development. While the effects of groups, situations, and social relationships on cognitive, affective and behavioral development have long been acknowledged in theoretical…
Annual Research Review: What is Resilience within the Social Ecology of Human Development?
ERIC Educational Resources Information Center
Ungar, Michael; Ghazinour, Mehdi; Richter, Jorg
2013-01-01
Background: The development of Bronfenbrenner's bio-social-ecological systems model of human development parallels advances made to the theory of resilience that progressively moved from a more individual (micro) focus on traits to a multisystemic understanding of person-environment reciprocal processes. Methods: This review uses…
Developments in Cylindrical Shell Stability Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Starnes, James H., Jr.
1998-01-01
Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.
Advancing Models and Data for Characterizing Exposures to Chemicals in Consumer Products
EPA’s Office of Research and Development (ORD) is leading several efforts to develop data and methods for estimating population chemical exposures related to the use of consumer products. New curated chemical, ingredient, and product use information are being collected fro...
Recent Advances in the Development of an Improved, Human Anthrax Vaccine
1988-03-01
ology of toxin and capsule production and mode component of gram-negative endotoxin, trehalose of action, the improved methods developed for...im- for their safety and efficacy in potentiating immu- munoprophylaxis ot inhalation anthrax. - Abstr. nity to anthrax. Ann. Meeting. Am. Soc
A Government/Industry Summary of the Design Analysis Methods for Vibrations (DAMVIBS) Program
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G. (Compiler)
1993-01-01
The NASA Langley Research Center in 1984 initiated a rotorcraft structural dynamics program, designated DAMVIBS (Design Analysis Methods for VIBrationS), with the objective of establishing the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. An assessment of the program showed that the DAMVIBS Program has resulted in notable technical achievements and major changes in industrial design practice, all of which have significantly advanced the industry's capability to use and rely on finite-element-based dynamics analyses during the design process.
Advances in yeast genome engineering.
David, Florian; Siewers, Verena
2015-02-01
Genome engineering based on homologous recombination has been applied to yeast for many years. However, the growing importance of yeast as a cell factory in metabolic engineering and chassis in synthetic biology demands methods for fast and efficient introduction of multiple targeted changes such as gene knockouts and introduction of multistep metabolic pathways. In this review, we summarize recent improvements of existing genome engineering methods, the development of novel techniques, for example for advanced genome redesign and evolution, and the importance of endonucleases as genome engineering tools. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drryl P. Butt; Brian Jaques
Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ≤ X ≤ 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.
[Statistical analysis of German radiologic periodicals: developmental trends in the last 10 years].
Golder, W
1999-09-01
To identify which statistical tests are applied in German radiological publications, to what extent their use has changed during the last decade, and which factors might be responsible for this development. The major articles published in "ROFO" and "DER RADIOLOGE" during 1988, 1993 and 1998 were reviewed for statistical content. The contributions were classified by principal focus and radiological subspecialty. The methods used were assigned to descriptive, basal and advanced statistics. Sample size, significance level and power were established. The use of experts' assistance was monitored. Finally, we calculated the so-called cumulative accessibility of the publications. 525 contributions were found to be eligible. In 1988, 87% used descriptive statistics only, 12.5% basal, and 0.5% advanced statistics. The corresponding figures in 1993 and 1998 are 62 and 49%, 32 and 41%, and 6 and 10%, respectively. Statistical techniques were most likely to be used in research on musculoskeletal imaging and articles dedicated to MRI. Six basic categories of statistical methods account for the complete statistical analysis appearing in 90% of the articles. ROC analysis is the single most common advanced technique. Authors make increasingly use of statistical experts' opinion and programs. During the last decade, the use of statistical methods in German radiological journals has fundamentally improved, both quantitatively and qualitatively. Presently, advanced techniques account for 20% of the pertinent statistical tests. This development seems to be promoted by the increasing availability of statistical analysis software.
Carrin, G
2004-01-01
In this paper, we analyse the major health financing methods and the contribution they can make to improving access to health care among all of a country's population groups. Risk-sharing in health financing is proposed as a powerful method to achieve this improvement. The larger the degree of risk-sharing in a health financing system, the less people will have to bear the financial consequences of their own health risks, and the more they are likely to have access to needed care. Ideally countries should attempt to introduce 'advanced' risk-sharing aiming at equal access among individuals to an adequate package of health services. There are two major ways to implement advanced risk-sharing: general tax revenue may be main source of financing health services, or else social health insurance may be established. An important finding is that about 60% of the world's countries still need to pursue efforts towards the introduction of advanced risk-sharing. We further focus on the potential of social health insurance as an advanced risk-sharing method. In fact, there is recent interest in developing countries such as Côte d'Ivoire, Indonesia, Iran and Kenya in this particular health financing mechanism. Compared to health financing via general tax revenue, social health insurance spreads the immediate burden of financing among various groups, including the workers, the self-employed, enterprises and Government. Time and tedious discussions between these groups may be needed, however, before a consensus is reached, not only on the relative burden of financing but also on ways to achieve overall population coverage. It is suggested that action-research be used to test the adequacy of initial social health insurance policies.
Nomi, Yuri; Annaka, Hironori; Sato, Shinji; Ueta, Etsuko; Ohkura, Tsuyoshi; Yamamoto, Kazuhiro; Homma, Seiichi; Suzuki, Emiko; Otsuka, Yuzuru
2016-11-09
The aim of this study was to develop a simple and sensitive method to analyze several advanced glycation end products (AGEs) simultaneously using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and to apply this method to the quantitation of AGEs in brown-colored foods. The developed method enabled to separate and quantitate simultaneously seven AGEs, and was applied to the determination of free AGEs contained in various kinds of soy sauce and beer. The major AGEs in soy sauce and beer were N ε -carboxymethyllysine (CML), N ε -carboxyethyllysine (CEL), and N δ -(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1). Using the developed LC-MS/MS method, recovery test on soy sauce and beer samples showed the recovery values of 85.3-103.9% for CML, 95.9-107.4% for CEL, and 69.5-123.2% for MG-H1. In particular, it is the first report that free CML, CEL, and MG-H1 were present in beer. Furthermore, long-term storage and heating process of soy sauce increased CML and MG-H1.
Molecular Tools To Study Preharvest Food Safety Challenges.
Kumar, Deepak; Thakur, Siddhartha
2018-02-01
Preharvest food safety research and activities have advanced over time with the recognition of the importance and complicated nature of the preharvest phase of food production. In developed nations, implementation of preharvest food safety procedures along with strict monitoring and containment at various postharvest stages such as slaughter, processing, storage, and distribution have remarkably reduced the burden of foodborne pathogens in humans. Early detection and adequate surveillance of pathogens at the preharvest stage is of the utmost importance to ensure a safe meat supply. There is an urgent need to develop rapid, cost-effective, and point-of-care diagnostics which could be used at the preharvest stage and would complement postmortem and other quality checks performed at the postharvest stage. With newer methods and technologies, more efforts need to be directed toward developing rapid, sensitive, and specific methods for detection or screening of foodborne pathogens at the preharvest stage. In this review, we will discuss the molecular methods available for detection and molecular typing of bacterial foodborne pathogens at the farm. Such methods include conventional techniques such as endpoint PCR, real-time PCR, DNA microarray, and more advanced techniques such as matrix-assisted layer desorption ionization-time of flight mass spectrometry and whole-genome sequencing.
Ultra-high Resolution Coherent X-ray Imaging of Nano-Materials
NASA Astrophysics Data System (ADS)
Shapiro, David
A revolution is underway in the field of x-ray microscopy driven by the develop of experimental, theoretical and computational means of producing a complete description of coherent imaging systems from x-ray diffraction data. The methods being developed not only allow for full quantification and removal of all optical aberrations but also extension of the numerical aperture to the diffraction limit. One such method under intensive development is x-ray ptychography. This is a scanned probe method that reconstructs a scattering object and its illumination from coherent diffraction data. Within the first few years of development at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, this method has already achieved the highest resolution x-ray images ever recorded in two, three and four dimensions. With the ability of x-rays to penetrate significantly more matter than electrons, their short wavelength and their sensitivity to chemical and magnetic states of matter, x-ray ptychography is set to revolutionize how we see the nano-scale world. In this presentation I will briefly describe the technical framework for how various methods work and will give a detailed account of a practical implementation at the ALS along with various scientific applications. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Developments in hydrogenation technology for fine-chemical and pharmaceutical applications.
Machado, R M; Heier, K R; Broekhuis, R R
2001-11-01
The continuous innovation in hydrogenation technology is testimony to its growing importance in the manufacture of specialty and fine chemicals. New developments in equipment, process intensification and catalysis represent major themes that have undergone recent advances. Developments in chiral catalysis, methods to support and fix homogeneous catalysts, novel reactor and mixing technology, high-throughput screening, supercritical processing, spectroscopic and electrochemical online process monitoring, monolithic and structured catalysts, and sonochemical activation methods illustrate the scope and breadth of evolving technology applied to hydrogenation.
Recent Advances in Clinical Natural Language Processing in Support of Semantic Analysis.
Velupillai, S; Mowery, D; South, B R; Kvist, M; Dalianis, H
2015-08-13
We present a review of recent advances in clinical Natural Language Processing (NLP), with a focus on semantic analysis and key subtasks that support such analysis. We conducted a literature review of clinical NLP research from 2008 to 2014, emphasizing recent publications (2012-2014), based on PubMed and ACL proceedings as well as relevant referenced publications from the included papers. Significant articles published within this time-span were included and are discussed from the perspective of semantic analysis. Three key clinical NLP subtasks that enable such analysis were identified: 1) developing more efficient methods for corpus creation (annotation and de-identification), 2) generating building blocks for extracting meaning (morphological, syntactic, and semantic subtasks), and 3) leveraging NLP for clinical utility (NLP applications and infrastructure for clinical use cases). Finally, we provide a reflection upon most recent developments and potential areas of future NLP development and applications. There has been an increase of advances within key NLP subtasks that support semantic analysis. Performance of NLP semantic analysis is, in many cases, close to that of agreement between humans. The creation and release of corpora annotated with complex semantic information models has greatly supported the development of new tools and approaches. Research on non-English languages is continuously growing. NLP methods have sometimes been successfully employed in real-world clinical tasks. However, there is still a gap between the development of advanced resources and their utilization in clinical settings. A plethora of new clinical use cases are emerging due to established health care initiatives and additional patient-generated sources through the extensive use of social media and other devices.
The creation of chiral chromatography techniques significantly advanced the development of methods for the analysis of individual enantiomers of chiral compounds. These techniques are being employed at the US EPA for human exposure and ecological research studies with indoor samp...
Tools and Methods for Teaching Informatics at School: An Advanced Logo Course.
ERIC Educational Resources Information Center
Nikolov, Rumen
1992-01-01
Describes a course in educational informatics for preservice teachers and students in educational software development that emphasizes the use of LOGO, and summarizes course modules that cover tools and methods for teaching informatics, informatics curriculum design, introducing the basic notions of informatics, integrating informatics into the…
Advancing Systematic Review Workshop (December 2015)
EPA hosted an event to examine the systematic review process for development and applications of methods for different types of evidence (epidemiology, animal toxicology, and mechanistic). The presentations are also available.
Advanced image based methods for structural integrity monitoring: Review and prospects
NASA Astrophysics Data System (ADS)
Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.
2018-02-01
There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.
Biotechnology developments in the livestock sector in developing countries.
Onteru, Suneel; Ampaire, Agatha; Rothschild, Max
2010-01-01
Global meat and milk consumption is exponentially increasing due to population growth, urbanization and changes in lifestyle in the developing world. This is an excellent opportunity for developing countries to improve the livestock sector by using technological advances. Biotechnology is one of the avenues for improved production in the "Livestock revolution". Biotechnology developments applied to livestock health, nutrition, breeding and reproduction are improving with a reasonable pace in developing countries. Simple bio-techniques such as artificial insemination have been well implemented in many parts of the developing world. However, advanced technologies including transgenic plant vaccines, marker assisted selection, solid state fermentation for the production of fibrolytic enzymes, transgenic fodders, embryo transfer and animal cloning are confined largely to research organizations. Some developing countries such as Taiwan, China and Brazil have considered the commercialization of biotechnology in the livestock sector. Organized livestock production systems, proper record management, capacity building, objective oriented research to improve farmer's income, collaborations with the developed world, knowledge of the sociology of an area and research on new methods to educate farmers and policy makers need to be improved for the creation and implementation of biotechnology advances in the livestock sector in the developing world.
NASA Technical Reports Server (NTRS)
Hammond, Monica S.; Good, James E.; Gilley, Scott D.; Howard, Richard W.
2006-01-01
NASA's human exploration initiative poses great opportunity and risk for manned and robotic missions to the Moon, Mars, and beyond. Engineers and scientists at the Marshall Space Flight Center (MSFC) are developing technologies for in situ fabrication capabilities during lunar and Martian surface operations utilizing provisioned and locally refined materials. Current fabrication technologies must be advanced to support the special demands and applications of the space exploration initiative such as power, weight and volume constraints. In Situ Fabrication and Repair (ISFR) will advance state-of-the-art technologies in support of habitat structure development, tools, and mechanical part fabrication. The repair and replacement of space mission components, such as life support items or crew exercise equipment, fall within the ISFR scope. This paper will address current fabrication technologies relative to meeting ISFR targeted capabilities, near-term advancement goals, and systematic evaluation of various fabrication methods.
Bryce, Richard A
2011-04-01
The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.
Stimulating innovations in the measurement of parenting constructs.
Mâsse, Louise C; Watts, Allison W
2013-08-01
Parents can play a crucial role in the development of children's behaviors associated with dietary habits, physical activity, and sedentary lifestyles. Many parenting practices and/or styles measures have been developed; however, there is little agreement as to how the influence of parenting should be measured. More importantly, our ability to relate parenting practices and/or styles to children's behaviors depends on its accurate assessment. While there is a need to standardize our assessment to further advance knowledge in this area, this article will discuss areas that may stimulate advances in the measurement of parenting constructs. Because self-report measures are important for the assessment of parenting, this article discusses whether solutions to improve self-report measures may lie in: (1) Improving the questions asked; (2) improving the methods used to correct for social desirability or measurement errors; (3) changing our measurement paradigm to assess implicit parenting behaviors; (4) changing how self-report is collected by taking advantage of ecological momentary assessment methods; (5) using better psychometric methods to validate parenting measures or alternatively using advances in psychometric methods, such as item banking and computerized adaptive testing, to solve common administration issues (i.e., response burden and comparability of results across studies); and (6) employing novel technologies to collect data such as portable technologies, gaming, and virtual reality simulation. This article will briefly discuss the potential of technologies to measure parenting constructs.
Stimulating Innovations in the Measurement of Parenting Constructs
Watts, Allison W.
2013-01-01
Abstract Parents can play a crucial role in the development of children's behaviors associated with dietary habits, physical activity, and sedentary lifestyles. Many parenting practices and/or styles measures have been developed; however, there is little agreement as to how the influence of parenting should be measured. More importantly, our ability to relate parenting practices and/or styles to children's behaviors depends on its accurate assessment. While there is a need to standardize our assessment to further advance knowledge in this area, this article will discuss areas that may stimulate advances in the measurement of parenting constructs. Because self-report measures are important for the assessment of parenting, this article discusses whether solutions to improve self-report measures may lie in: (1) Improving the questions asked; (2) improving the methods used to correct for social desirability or measurement errors; (3) changing our measurement paradigm to assess implicit parenting behaviors; (4) changing how self-report is collected by taking advantage of ecological momentary assessment methods; (5) using better psychometric methods to validate parenting measures or alternatively using advances in psychometric methods, such as item banking and computerized adaptive testing, to solve common administration issues (i.e., response burden and comparability of results across studies); and (6) employing novel technologies to collect data such as portable technologies, gaming, and virtual reality simulation. This article will briefly discuss the potential of technologies to measure parenting constructs. PMID:23944924
Image analysis and modeling in medical image computing. Recent developments and advances.
Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T
2012-01-01
Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body. Hence, model-based image computing methods are important tools to improve medical diagnostics and patient treatment in future.
Probabilistic boundary element method
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Raveendra, S. T.
1989-01-01
The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.
Lamar, Melissa; Zhou, Xiaohong Joe; Charlton, Rebecca A.; Dean, Douglas; Little, Deborah; Deoni, Sean C
2013-01-01
Human brain imaging has seen many advances in the quantification of white matter in vivo. For example, these advances have revealed the association between white matter damage and vascular disease as well as their impact on risk for and development of dementia and depression in an aging population. Current neuroimaging methods to quantify white matter damage provide a foundation for understanding such age-related neuropathology; however, these methods are not as adept at determining the underlying microstructural abnormalities signaling at risk tissue or driving white matter damage in the aging brain. This review will begin with a brief overview of the use of diffusion tensor imaging (DTI) in understanding white matter alterations in aging before focusing in more detail on select advances in both diffusion-based methods and multi-component relaxometry techniques for imaging white matter microstructural integrity within myelin sheaths and the axons they encase. While DTI greatly extended the field of white matter interrogation, these more recent technological advances will add clarity to the underlying microstructural mechanisms that contribute to white matter damage. More specifically, the methods highlighted in this review may prove more sensitive (and specific) for determining the contribution of myelin versus axonal integrity to the aging of white matter in brain. PMID:24080382
Contact angle measurement with a smartphone
NASA Astrophysics Data System (ADS)
Chen, H.; Muros-Cobos, Jesus L.; Amirfazli, A.
2018-03-01
In this study, a smartphone-based contact angle measurement instrument was developed. Compared with the traditional measurement instruments, this instrument has the advantage of simplicity, compact size, and portability. An automatic contact point detection algorithm was developed to allow the instrument to correctly detect the drop contact points. Two different contact angle calculation methods, Young-Laplace and polynomial fitting methods, were implemented in this instrument. The performance of this instrument was tested first with ideal synthetic drop profiles. It was shown that the accuracy of the new system with ideal synthetic drop profiles can reach 0.01% with both Young-Laplace and polynomial fitting methods. Conducting experiments to measure both static and dynamic (advancing and receding) contact angles with the developed instrument, we found that the smartphone-based instrument can provide accurate and practical measurement results as the traditional commercial instruments. The successful demonstration of use of a smartphone (mobile phone) to conduct contact angle measurement is a significant advancement in the field as it breaks the dominate mold of use of a computer and a bench bound setup for such systems since their appearance in 1980s.
Contact angle measurement with a smartphone.
Chen, H; Muros-Cobos, Jesus L; Amirfazli, A
2018-03-01
In this study, a smartphone-based contact angle measurement instrument was developed. Compared with the traditional measurement instruments, this instrument has the advantage of simplicity, compact size, and portability. An automatic contact point detection algorithm was developed to allow the instrument to correctly detect the drop contact points. Two different contact angle calculation methods, Young-Laplace and polynomial fitting methods, were implemented in this instrument. The performance of this instrument was tested first with ideal synthetic drop profiles. It was shown that the accuracy of the new system with ideal synthetic drop profiles can reach 0.01% with both Young-Laplace and polynomial fitting methods. Conducting experiments to measure both static and dynamic (advancing and receding) contact angles with the developed instrument, we found that the smartphone-based instrument can provide accurate and practical measurement results as the traditional commercial instruments. The successful demonstration of use of a smartphone (mobile phone) to conduct contact angle measurement is a significant advancement in the field as it breaks the dominate mold of use of a computer and a bench bound setup for such systems since their appearance in 1980s.
The Vortex Lattice Method for the Rotor-Vortex Interaction Problem
NASA Technical Reports Server (NTRS)
Padakannaya, R.
1974-01-01
The rotor blade-vortex interaction problem and the resulting impulsive airloads which generate undesirable noise levels are discussed. A numerical lifting surface method to predict unsteady aerodynamic forces induced on a finite aspect ratio rectangular wing by a straight, free vortex placed at an arbitrary angle in a subsonic incompressible free stream is developed first. Using a rigid wake assumption, the wake vortices are assumed to move downsteam with the free steam velocity. Unsteady load distributions are obtained which compare favorably with the results of planar lifting surface theory. The vortex lattice method has been extended to a single bladed rotor operating at high advance ratios and encountering a free vortex from a fixed wing upstream of the rotor. The predicted unsteady load distributions on the model rotor blade are generally in agreement with the experimental results. This method has also been extended to full scale rotor flight cases in which vortex induced loads near the tip of a rotor blade were indicated. In both the model and the full scale rotor blade airload calculations a flat planar wake was assumed which is a good approximation at large advance ratios because the downwash is small in comparison to the free stream at large advance ratios. The large fluctuations in the measured airloads near the tip of the rotor blade on the advance side is predicted closely by the vortex lattice method.
Advanced Extra-Vehicular Activity Pressure Garment Requirements Development
NASA Technical Reports Server (NTRS)
Ross, Amy; Aitchison, Lindsay; Rhodes, Richard
2015-01-01
The NASA Johnson Space Center advanced pressure garment technology development team is addressing requirements development for exploration missions. Lessons learned from the Z-2 high fidelity prototype development have reiterated that clear low-level requirements and verification methods reduce risk to the government, improve efficiency in pressure garment design efforts, and enable the government to be a smart buyer. The expectation is to provide requirements at the specification level that are validated so that their impact on pressure garment design is understood. Additionally, the team will provide defined verification protocols for the requirements. However, in reviewing exploration space suit high level requirements there are several gaps in the team's ability to define and verify related lower level requirements. This paper addresses the efforts in requirement areas such as mobility/fit/comfort and environmental protection (dust, radiation, plasma, secondary impacts) to determine the method by which the requirements can be defined and use of those methods for verification. Gaps exist at various stages. In some cases component level work is underway, but no system level effort has begun; in other cases no effort has been initiated to close the gap. Status of on-going efforts and potential approaches to open gaps are discussed.
Stamatakis, Katherine A; Norton, Wynne E; Stirman, Shannon W; Melvin, Cathy; Brownson, Ross C
2013-03-12
Dissemination and implementation (D&I) research is a relatively young discipline, underscoring the importance of training and career development in building and sustaining the field. As such, D&I research faces several challenges in designing formal training programs and guidance for career development. A cohort of early-stage investigators (ESI) recently involved in an implementation research training program provided a resource for formative data in identifying needs and solutions around career development. Responses outlined fellows' perspectives on the perceived usefulness and importance of, as well as barriers to, developing practice linkages, acquiring additional methods training, academic advancement, and identifying institutional supports. Mentorship was a cross-cutting issue and was further discussed in terms of ways it could foster career advancement in the context of D&I research. Advancing an emerging field while simultaneously developing an academic career offers a unique challenge to ESIs in D&I research. This article summarizes findings from the formative data that outlines some directions for ESIs and provides linkages to the literature and other resources on key points.
2009-04-01
active military personnel and veterans, are affected by three major blinding diseases of the retina and optic nerve: diabetic retinopathy , age-related...disease is detected early. New advanced detection methods are available, but are only interpretable by very experienced specialists. The goal of this...consist of several steps [1-3]: feature detection ; transform model estimation; optimization function design; and optimization strategies. We do not
2017-08-01
of metallic additive manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics...manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics methods will accelerate that...geometries, we develop a methodology that couples experimental data and modelling to convert the scan paths into spatially resolved local thermal histories
2011-09-01
project research addresses our long-term goal to develop an analytical suite of the Advanced Laser Fluorescence (ALF) methods and instruments to improve...demonstrated ALF utility as an integrated tool for aquatic research and observations. The ALF integration into the major oceanographic programs is...currently in progress, including the California Current Ecosystem Long Term Ecological Research (CCE LTER, NSF) and California Cooperative Oceanic
Technological advances that enhance teaching using animals, and the application of the Three Rs.
Davies, Alexander S
2004-06-01
The inventions that have progressively contributed to education have never offered opportunities as vast as in the digital era, even though this is still scarcely 25 years old. In this time, digital handling of data led first to text processing, then to bitmap and vector graphics, and now, to digital sound and movies. As these advanced, the storage methods became larger, faster, easier and cheaper. The advancement of technology has been so rapid that the standard of most teaching aids now available is well below what can currently be achieved. We are confronted with an unprecedented opportunity for applying the principles of reduction, refinement and replacement of animals in education. Not only are the visual teaching aids improved by digitising, but all aspects of their development, including the ease, higher speed, and low cost of creation, editing, copying, distribution and access, are improved, as well. Several examples will be given, including access to interactive panoramic movies, animated sequences to explain difficult concepts, on-line tutorials and image databases using digital photography, radiography and other diagnostic methods, as well as the production of desktop movies. The speed of technical advance brings its own problems, but the challenges and possibilities for developing viable alternatives to the use of animals in teaching are vast.
Developing knowledge intensive ideas in engineering education: the application of camp methodology
NASA Astrophysics Data System (ADS)
Heidemann Lassen, Astrid; Løwe Nielsen, Suna
2011-11-01
Background: Globalization, technological advancement, environmental problems, etc. challenge organizations not just to consider cost-effectiveness, but also to develop new ideas in order to build competitive advantages. Hence, methods to deliberately enhance creativity and facilitate its processes of development must also play a central role in engineering education. However, so far the engineering education literature provides little attention to the important discussion of how to develop knowledge intensive ideas based on creativity methods and concepts. Purpose: The purpose of this article is to investigate how to design creative camps from which knowledge intensive ideas can unfold. Design/method/sample: A framework on integration of creativity and knowledge intensity is first developed, and then tested through the planning, execution and evaluation of a specialized creativity camp with focus on supply chain management. Detailed documentation of the learning processes of the participating 49 engineering and business students is developed through repeated interviews during the process as well as a survey. Results: The research illustrates the process of development of ideas, and how the participants through interdisciplinary collaboration, cognitive flexibility and joint ownership develop highly innovative and knowledge-intensive ideas, with direct relevance for the four companies whose problems they address. Conclusions: The article demonstrates how the creativity camp methodology holds the potential of combining advanced academic knowledge and creativity, to produce knowledge intensive ideas, when the design is based on ideas of experiential learning as well as creativity principles. This makes the method a highly relevant learning approach for engineering students in the search for skills to both develop and implement innovative ideas.
Rotorcraft Brownout: Advanced Understanding, Control and Mitigation
2008-12-31
the Gauss Seidel iterative method . The overall steps of SIMPLER algorithm can be summarized as: 1. Guess velocity field, 2. Calculate the momentum...techniques and numerical methods , and the team will begin to develop a methodology that is capable of integrating these solutions and highlighting...rotorcraft design optimization techniques will then be undertaken using the validated computational methods . 15. SUBJECT TERMS Rotorcraft
Clementi, Massimo; Bagnarelli, Patrizia
2015-10-01
In the last two decades, development of quantitative molecular methods has characterized the evolution of clinical virology more than any other methodological advancement. Using these methods, a great deal of studies has addressed efficiently in vivo the role of viral load, viral replication activity, and viral transcriptional profiles as correlates of disease outcome and progression, and has highlighted the physio-pathology of important virus diseases of humans. Furthermore, these studies have contributed to a better understanding of virus-host interactions and have sharply revolutionized the research strategies in basic and medical virology. In addition and importantly from a medical point of view, quantitative methods have provided a rationale for the therapeutic intervention and therapy monitoring in medically important viral diseases. Despite the advances in technology and the development of three generations of molecular methods within the last two decades (competitive PCR, real-time PCR, and digital PCR), great challenges still remain for viral testing related not only to standardization, accuracy, and precision, but also to selection of the best molecular targets for clinical use and to the identification of thresholds for risk stratification and therapeutic decisions. Future research directions, novel methods and technical improvements could be important to address these challenges.
A Review of Significant Advances in Neutron Imaging from Conception to the Present
NASA Astrophysics Data System (ADS)
Brenizer, J. S.
This review summarizes the history of neutron imaging with a focus on the significant events and technical advancements in neutron imaging methods, from the first radiograph to more recent imaging methods. A timeline is presented to illustrate the key accomplishments that advanced the neutron imaging technique. Only three years after the discovery of the neutron by English physicist James Chadwick in 1932, neutron imaging began with the work of Hartmut Kallmann and Ernst Kuhn in Berlin, Germany, from 1935-1944. Kallmann and Kuhn were awarded a joint US Patent issued in January 1940. Little progress was made until the mid-1950's when Thewlis utilized a neutron beam from the BEPO reactor at Harwell, marking the beginning of the application of neutron imaging to practical applications. As the film method was improved, imaging moved from a qualitative to a quantitative technique, with applications in industry and in nuclear fuels. Standards were developed to aid in the quantification of the neutron images and the facility's capabilities. The introduction of dynamic neutron imaging (initially called real-time neutron radiography and neutron television) in the late 1970's opened the door to new opportunities and new challenges. As the electronic imaging matured, the introduction of the CCD imaging devices and solid-state light intensifiers helped address some of these challenges. Development of improved imaging devices for the medical community has had a major impact on neutron imaging. Additionally, amorphous silicon sensors provided improvements in temporal resolution, while providing a reasonably large imaging area. The development of new neutron imaging sensors and the development of new neutron imaging techniques in the past decade has advanced the technique's ability to provide insight and understanding of problems that other non-destructive techniques could not provide. This rapid increase in capability and application would not have been possible without the advances in computer processing speed and increased memory storage. For example, images with enhanced contrast are created by using the reflection, refraction, diffraction and ultra small angle scattering interactions. It is somewhat ironic that, like the first development of neutron images, the technique remains limited by the availability of high-intensity neutron sources, both in the facility cost and portability.
Biomedical surface analysis: Evolution and future directions (Review)
Castner, David G.
2017-01-01
This review describes some of the major advances made in biomedical surface analysis over the past 30–40 years. Starting from a single technique analysis of homogeneous surfaces, it has been developed into a complementary, multitechnique approach for obtaining detailed, comprehensive information about a wide range of surfaces and interfaces of interest to the biomedical community. Significant advances have been made in each surface analysis technique, as well as how the techniques are combined to provide detailed information about biological surfaces and interfaces. The driving force for these advances has been that the surface of a biomaterial is the interface between the biological environment and the biomaterial, and so, the state-of-the-art in instrumentation, experimental protocols, and data analysis methods need to be developed so that the detailed surface structure and composition of biomedical devices can be determined and related to their biological performance. Examples of these advances, as well as areas for future developments, are described for immobilized proteins, complex biomedical surfaces, nanoparticles, and 2D/3D imaging of biological materials. PMID:28438024
NASA Technical Reports Server (NTRS)
Halford, Gary R.
1993-01-01
The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940's. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches were identified as being combinations of thirteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made. The need for high-temperature, fatigue-life prediction methods followed immediately on the heels of the development of large, costly, high-technology industrial and aerospace equipment immediately following the second world war. Major advances were made in the design and manufacture of high-temperature, high-pressure boilers and steam turbines, nuclear reactors, high-temperature forming dies, high-performance poppet valves, aeronautical gas turbine engines, reusable rocket engines, etc. These advances could no longer be accomplished simply by trial and error using the 'build-em and bust-em' approach. Development lead times were too great and costs too prohibitive to retain such an approach. Analytic assessments of anticipated performance, cost, and durability were introduced to cut costs and shorten lead times. The analytic tools were quite primitive at first and out of necessity evolved in parallel with hardware development. After forty years more descriptive, more accurate, and more efficient analytic tools are being developed. These include thermal-structural finite element and boundary element analyses, advanced constitutive stress-strain-temperature-time relations, and creep-fatigue-environmental models for crack initiation and propagation. The high-temperature durability methods that have evolved for calculating high-temperature fatigue crack initiation lives of structural engineering materials are addressed. Only a few of the methods were refined to the point of being directly useable in design. Recently, two of the methods were transcribed into computer software for use with personal computers.
NASA Astrophysics Data System (ADS)
Halford, Gary R.
1993-10-01
The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940's. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches were identified as being combinations of thirteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made. The need for high-temperature, fatigue-life prediction methods followed immediately on the heels of the development of large, costly, high-technology industrial and aerospace equipment immediately following the second world war. Major advances were made in the design and manufacture of high-temperature, high-pressure boilers and steam turbines, nuclear reactors, high-temperature forming dies, high-performance poppet valves, aeronautical gas turbine engines, reusable rocket engines, etc. These advances could no longer be accomplished simply by trial and error using the 'build-em and bust-em' approach. Development lead times were too great and costs too prohibitive to retain such an approach. Analytic assessments of anticipated performance, cost, and durability were introduced to cut costs and shorten lead times. The analytic tools were quite primitive at first and out of necessity evolved in parallel with hardware development. After forty years more descriptive, more accurate, and more efficient analytic tools are being developed. These include thermal-structural finite element and boundary element analyses, advanced constitutive stress-strain-temperature-time relations, and creep-fatigue-environmental models for crack initiation and propagation. The high-temperature durability methods that have evolved for calculating high-temperature fatigue crack initiation lives of structural engineering materials are addressed. Only a few of the methods were refined to the point of being directly useable in design.
Molecular Dynamics Studies of Proton Transport in Hydrogenase and Hydrogenase Mimics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginovska-Pangovska, Bojana; Raugei, Simone; Shaw, Wendy J.
2016-08-02
Protons are used throughout the biological world for a number of functions, from charge balance to energy carriers. Metalloenzymes use protons as energy carriers and control proton movement both temporally and spatially. Despite the interest and need for controlled proton movement in other systems, the scientific community has not been able to develop extensive general rules for developing synthetic proton pathways. In part this is due to the challenging nature of studying these large and complex molecules experimentally, although experiments have gleaned extensive critical insight. While computational methods are also challenging because of the large size of the molecules, theymore » have been critical in advancing our knowledge of proton movement through pathways, but even further, they have advanced our knowledge in how protonation and proton movement is correlated with large and small scale molecular motions and electron movement. These studies often complement experimental studies but provide insight and depth simply not possible in many cases in the absence of theory. In this chapter, we will discuss advances and methods used in understanding proton movement in hydrogenases.« less
Advances in the use of observed spatial patterns of catchment hydrological response
NASA Astrophysics Data System (ADS)
Grayson, Rodger B.; Blöschl, Günter; Western, Andrew W.; McMahon, Thomas A.
Over the past two decades there have been repeated calls for the collection of new data for use in developing hydrological science. The last few years have begun to bear fruit from the seeds sown by these calls, through increases in the availability and utility of remote sensing data, as well as the execution of campaigns in research catchments aimed at providing new data for advancing hydrological understanding and predictive capability. In this paper we discuss some philosophical considerations related to model complexity, data availability and predictive performance, highlighting the potential of observed patterns in moving the science and practice of catchment hydrology forward. We then review advances that have arisen from recent work on spatial patterns, including in the characterisation of spatial structure and heterogeneity, and the use of patterns for developing, calibrating and testing distributed hydrological models. We illustrate progress via examples using observed patterns of snow cover, runoff occurrence and soil moisture. Methods for the comparison of patterns are presented, illustrating how they can be used to assess hydrologically important characteristics of model performance. These methods include point-to-point comparisons, spatial relationships between errors and landscape parameters, transects, and optimal local alignment. It is argued that the progress made to date augers well for future developments, but there is scope for improvements in several areas. These include better quantitative methods for pattern comparisons, better use of pattern information in data assimilation and modelling, and a call for improved archiving of data from field studies to assist in comparative studies for generalising results and developing fundamental understanding.
NASA Astrophysics Data System (ADS)
Lotfy, Hayam M.; Mohamed, Dalia; Elshahed, Mona S.
2018-01-01
In the presented work several spectrophotometric methods were performed for the quantification of canagliflozin (CGZ) and metformin hydrochloride (MTF) simultaneously in their binary mixture. Two of these methods; response correlation (RC) and advanced balance point-spectrum subtraction (ABP-SS) were developed and introduced for the first time in this work, where the latter method (ABP-SS) was performed on both the zero order and the first derivative spectra of the drugs. Besides, two recently established methods; advanced amplitude modulation (AAM) and advanced absorbance subtraction (AAS) were also accomplished. All the proposed methods were validated in accordance to the ICH guidelines, where all methods were proved to be accurate and precise. Additionally, the linearity range, limit of detection and limit of quantification were determined and the selectivity was examined through the analysis of laboratory prepared mixtures and the combined dosage form of the drugs. The proposed methods were capable of determining the two drugs in the ratio present in the pharmaceutical formulation CGZ:MTF (1:17) without the requirement of any preliminary separation, further dilution or standard spiking. The results obtained by the proposed methods were in compliance with the reported chromatographic method when compared statistically, proving the absence of any significant difference in accuracy and precision between the proposed and reported methods.
A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less
A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses
Hu, Rui
2016-11-19
An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less
Flight Weight Design Nickel-Hydrogen Cells Using Lightweight Nickel Fiber Electrodes
NASA Technical Reports Server (NTRS)
Britton, Doris L.; Willis, Bob; Pickett, David F.
2003-01-01
The goal of this program is to develop a lightweight nickel electrode for advanced aerospace nickel-hydrogen cells and batteries with improved specific energy and specific volume. The lightweight nickel electrode will improve the specific energy of a nickel-hydrogen cell by >50%. These near-term advanced batteries will reduce power system mass and volume, while decreasing the cost, thus increasing mission capabilities and enabling small spacecraft missions. This development also offers a cost savings over the traditional sinter development methods for fabrication. The technology has been transferred to Eagle-Picher, a major aerospace battery manufacturer, who has scaled up the process developed at NASA GRC and fabricated electrodes for incorporation into flight-weight nickel-hydrogen cells.
NASA Technical Reports Server (NTRS)
Wallace, John F.; Zdankiewicz, Edward M.; Schmidt, Robert N.
1991-01-01
The development of advanced materials and structures for long-term use in space is described with specific reference given to applications to the Space Station Freedom and the lunar base. A flight-testing program is described which incorporates experiments regarding the passive effects of space travel such as material degradation with active materials experiments such as the Materials Exposure Flight Experiment. Also described is a research and development program for materials such as organic coatings and polymeric composites, and a simulation laboratory is described which permits the analysis of materials in the laboratory. The methods of investigation indicate that the NASA Center for the Commercial Development of Space facilitates the understanding of material degradation in space.
Chen, Yun; Nielsen, Jens
2013-12-01
Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.
NSWC-NADC interactive communication links for AN/UYS-1 loadtape creation and retrieval
NASA Astrophysics Data System (ADS)
Greathouse, D. M.
1984-09-01
This report contains an alternative method of communication (interactive vs. remote batch) with the Naval Air Development Center for the creation and retrieval of AN/UYS-1 Advanced Signal Processor (ASP) operational software loadtapes. Operational software for the Digital Acoustic Sensor Simulator (DASS) program is developed and maintained at the Naval Air Development Center (NADC). The Facility for Automated Software Production (FASP), an NADC-resident software generation facility, provides the support tools necessary for data base creation, software development and maintenance, and loadtape generation. Once a loadtape file is generated at NADC, it must be retrieved via telephone transmission and placed in a format suitable for loading into the AN/UYS-1 Advanced Signal Processor (ASP).
Research and Development Project Summaries, October 1991
1991-10-01
delivery methods, training cost reduction, demonstration of technology’ effectiveness, and the reduction of acquisition risk . The majority of the work...demonstrations, risk reduction developments, and cost-effectiveness investigations in simulator and training technologzv. This advanced development program is a...systems. The program is organized around specific demonstration tasks that target critical technical risks that confront future weapons system
ERIC Educational Resources Information Center
Haydar, Tarik F.
2005-01-01
Studies on human patients and animal models of disease have shown that disruptions in prenatal and early postnatal brain development are a root cause of mental retardation. Since proper brain development is achieved by a strict spatiotemporal control of neurogenesis, cell migration, and patterning of synapses, abnormalities in one or more of these…
NASA Technical Reports Server (NTRS)
Noor, A. K. (Editor); Hayduk, R. J. (Editor)
1985-01-01
Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.
Mincholé, Ana; Martínez, Juan Pablo; Laguna, Pablo; Rodriguez, Blanca
2018-01-01
Widely developed for clinical screening, electrocardiogram (ECG) recordings capture the cardiac electrical activity from the body surface. ECG analysis can therefore be a crucial first step to help diagnose, understand and predict cardiovascular disorders responsible for 30% of deaths worldwide. Computational techniques, and more specifically machine learning techniques and computational modelling are powerful tools for classification, clustering and simulation, and they have recently been applied to address the analysis of medical data, especially ECG data. This review describes the computational methods in use for ECG analysis, with a focus on machine learning and 3D computer simulations, as well as their accuracy, clinical implications and contributions to medical advances. The first section focuses on heartbeat classification and the techniques developed to extract and classify abnormal from regular beats. The second section focuses on patient diagnosis from whole recordings, applied to different diseases. The third section presents real-time diagnosis and applications to wearable devices. The fourth section highlights the recent field of personalized ECG computer simulations and their interpretation. Finally, the discussion section outlines the challenges of ECG analysis and provides a critical assessment of the methods presented. The computational methods reported in this review are a strong asset for medical discoveries and their translation to the clinical world may lead to promising advances. PMID:29321268
[Advances of Molecular Diagnostic Techniques Application in Clinical Diagnosis.
Ying, Bin-Wu
2016-11-01
Over the past 20 years,clinical molecular diagnostic technology has made rapid development,and became the most promising field in clinical laboratory medicine.In particular,with the development of genomics,clinical molecular diagnostic methods will reveal the nature of clinical diseases in a deeper level,thus guiding the clinical diagnosis and treatments.Many molecular diagnostic projects have been routinely applied in clinical works.This paper reviews the advances on application of clinical diagnostic techniques in infectious disease,tumor and genetic disorders,including nucleic acid amplification,biochip,next-generation sequencing,and automation molecular system,and so on.
Stitching Techniques Advance Optics Manufacturing
NASA Technical Reports Server (NTRS)
2010-01-01
Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1979-01-01
A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.
Development, implementation and evaluation of satellite-aided agricultural monitoring systems
NASA Technical Reports Server (NTRS)
Cicone, R. (Principal Investigator); Crist, E.; Metzler, M.; Parris, T.
1982-01-01
Research supporting the use of remote sensing for inventory and assessment of agricultural commodities is summarized. Three task areas are described: (1) corn and soybean crop spectral/temporal signature characterization; (2) efficient area estimation technology development; and (3) advanced satellite and sensor system definition. Studies include an assessment of alternative green measures from MSS variables; the evaluation of alternative methods for identifying, labeling or classification targets in an automobile procedural context; a comparison of MSS, the advanced very high resolution radiometer and the coastal zone color scanner, as well as a critical assessment of thematic mapper dimensionally and spectral structure.
Advanced flight computer. Special study
NASA Technical Reports Server (NTRS)
Coo, Dennis
1995-01-01
This report documents a special study to define a 32-bit radiation hardened, SEU tolerant flight computer architecture, and to investigate current or near-term technologies and development efforts that contribute to the Advanced Flight Computer (AFC) design and development. An AFC processing node architecture is defined. Each node may consist of a multi-chip processor as needed. The modular, building block approach uses VLSI technology and packaging methods that demonstrate a feasible AFC module in 1998 that meets that AFC goals. The defined architecture and approach demonstrate a clear low-risk, low-cost path to the 1998 production goal, with intermediate prototypes in 1996.
Preclinical Mouse Cancer Models: A Maze of Opportunities and Challenges
Day, Chi-Ping; Merlino, Glenn; Van Dyke, Terry
2015-01-01
Significant advances have been made in developing novel therapeutics for cancer treatment, and targeted therapies have revolutionized the treatment of some cancers. Despite the promise, only about five percent of new cancer drugs are approved, and most fail due to lack of efficacy. The indication is that current preclinical methods are limited in predicting successful outcomes. Such failure exacts enormous cost, both financial and in the quality of human life. This primer explores the current status, promise and challenges of preclinical evaluation in advanced mouse cancer models and briefly addresses emerging models for early-stage preclinical development. PMID:26406370
25 Years of Self-organized Criticality: Numerical Detection Methods
NASA Astrophysics Data System (ADS)
McAteer, R. T. James; Aschwanden, Markus J.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Pruessner, Gunnar; Morales, Laura; Ireland, Jack; Abramenko, Valentyna
2016-01-01
The detection and characterization of self-organized criticality (SOC), in both real and simulated data, has undergone many significant revisions over the past 25 years. The explosive advances in the many numerical methods available for detecting, discriminating, and ultimately testing, SOC have played a critical role in developing our understanding of how systems experience and exhibit SOC. In this article, methods of detecting SOC are reviewed; from correlations to complexity to critical quantities. A description of the basic autocorrelation method leads into a detailed analysis of application-oriented methods developed in the last 25 years. In the second half of this manuscript space-based, time-based and spatial-temporal methods are reviewed and the prevalence of power laws in nature is described, with an emphasis on event detection and characterization. The search for numerical methods to clearly and unambiguously detect SOC in data often leads us outside the comfort zone of our own disciplines—the answers to these questions are often obtained by studying the advances made in other fields of study. In addition, numerical detection methods often provide the optimum link between simulations and experiments in scientific research. We seek to explore this boundary where the rubber meets the road, to review this expanding field of research of numerical detection of SOC systems over the past 25 years, and to iterate forwards so as to provide some foresight and guidance into developing breakthroughs in this subject over the next quarter of a century.
Further advances in autostereoscopic technology at Dimension Technologies Inc.
NASA Astrophysics Data System (ADS)
Eichenlaub, Jesse B.
1992-06-01
Dimension Technologies is currently one of three companies offering autostereoscopic displays for sale and one of several which are actively pursuing advances to the technology. We have devised a new autostereoscopic imaging technique which possesses several advantages over previously explored methods. We are currently manufacturing autostereoscopic displays based on this technology, as well as vigorously pursuing research and development toward more advanced displays. During the past year, DTI has made major strides in advancing its LCD based autostereoscopic display technology. DTI has developed a color product -- a stand alone 640 X 480 flat panel LCD based 3-D display capable of accepting input from IBM PC and Apple MAC computers or TV cameras, and capable of changing from 3-D mode to 2-D mode with the flip of a switch. DTI is working on development of a prototype second generation color product that will provide autostereoscopic 3-D while allowing each eye to see the full resolution of the liquid crystal display. And development is also underway on a proof-of-concept display which produces hologram-like look-around images visible from a wide viewing angle, again while allowing the observer to see the full resolution of the display from all locations. Development of a high resolution prototype display of this type has begun.
[Objective surgery -- advanced robotic devices and simulators used for surgical skill assessment].
Suhánszki, Norbert; Haidegger, Tamás
2014-12-01
Robotic assistance became a leading trend in minimally invasive surgery, which is based on the global success of laparoscopic surgery. Manual laparoscopy requires advanced skills and capabilities, which is acquired through tedious learning procedure, while da Vinci type surgical systems offer intuitive control and advanced ergonomics. Nevertheless, in either case, the key issue is to be able to assess objectively the surgeons' skills and capabilities. Robotic devices offer radically new way to collect data during surgical procedures, opening the space for new ways of skill parameterization. This may be revolutionary in MIS training, given the new and objective surgical curriculum and examination methods. The article reviews currently developed skill assessment techniques for robotic surgery and simulators, thoroughly inspecting their validation procedure and utility. In the coming years, these methods will become the mainstream of Western surgical education.
Collender, Philip A.; Kirby, Amy E.; Addiss, David G.; Freeman, Matthew C.; Remais, Justin V.
2015-01-01
Limiting the environmental transmission of soil-transmitted helminths (STH), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost effective methods to detect and quantify STH in the environment. We review the state of the art of STH quantification in soil, biosolids, water, produce, and vegetation with respect to four major methodological issues: environmental sampling; recovery of STH from environmental matrices; quantification of recovered STH; and viability assessment of STH ova. We conclude that methods for sampling and recovering STH require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment. PMID:26440788
Isolation and analysis of ginseng: advances and challenges
Wang, Chong-Zhi
2011-01-01
Ginseng occupies a prominent position in the list of best-selling natural products in the world. Because of its complex constituents, multidisciplinary techniques are needed to validate the analytical methods that support ginseng’s use worldwide. In the past decade, rapid development of technology has advanced many aspects of ginseng research. The aim of this review is to illustrate the recent advances in the isolation and analysis of ginseng, and to highlight their new applications and challenges. Emphasis is placed on recent trends and emerging techniques. The current article reviews the literature between January 2000 and September 2010. PMID:21258738
Advanced automation in space shuttle mission control
NASA Technical Reports Server (NTRS)
Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.
1991-01-01
The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.
DOT National Transportation Integrated Search
1983-12-01
This research was performed to complete and advance the status of recently developed : procedures for analysis and design of weaving sections (known as the Leisch method and-initially published in the 1979 issue of ITE Journal). The objective was to ...
Statistical control in hydrologic forecasting.
H.G. Wilm
1950-01-01
With rapidly growing development and uses of water, a correspondingly great demand has developed for advance estimates of the volumes or rates of flow which are supplied by streams. Therefore much attention is being devoted to hydrologic forecasting, and numerous methods have been tested in efforts to make increasingly reliable estimates of future supplies.
Infrared Spectroscopic Analysis of Linkage Isomerism in Metal-Thiocyanate Complexes
ERIC Educational Resources Information Center
Baer, Carl; Pike, Jay
2010-01-01
We developed an experiment suitable for an advanced inorganic chemistry laboratory that utilizes a cooperative learning environment, which allows students to develop an empirical method of determining the bonding mode of a series of unknown metal-thiocyanate complexes. Students synthesize the metal-thiocyanate complexes and obtain the FT-IR…
Deciphering the Epigenetic Code: An Overview of DNA Methylation Analysis Methods
Umer, Muhammad
2013-01-01
Abstract Significance: Methylation of cytosine in DNA is linked with gene regulation, and this has profound implications in development, normal biology, and disease conditions in many eukaryotic organisms. A wide range of methods and approaches exist for its identification, quantification, and mapping within the genome. While the earliest approaches were nonspecific and were at best useful for quantification of total methylated cytosines in the chunk of DNA, this field has seen considerable progress and development over the past decades. Recent Advances: Methods for DNA methylation analysis differ in their coverage and sensitivity, and the method of choice depends on the intended application and desired level of information. Potential results include global methyl cytosine content, degree of methylation at specific loci, or genome-wide methylation maps. Introduction of more advanced approaches to DNA methylation analysis, such as microarray platforms and massively parallel sequencing, has brought us closer to unveiling the whole methylome. Critical Issues: Sensitive quantification of DNA methylation from degraded and minute quantities of DNA and high-throughput DNA methylation mapping of single cells still remain a challenge. Future Directions: Developments in DNA sequencing technologies as well as the methods for identification and mapping of 5-hydroxymethylcytosine are expected to augment our current understanding of epigenomics. Here we present an overview of methodologies available for DNA methylation analysis with special focus on recent developments in genome-wide and high-throughput methods. While the application focus relates to cancer research, the methods are equally relevant to broader issues of epigenetics and redox science in this special forum. Antioxid. Redox Signal. 18, 1972–1986. PMID:23121567
NASA Workshop on Computational Structural Mechanics 1987, part 2
NASA Technical Reports Server (NTRS)
Sykes, Nancy P. (Editor)
1989-01-01
Advanced methods and testbed/simulator development topics are discussed. Computational Structural Mechanics (CSM) testbed architecture, engine structures simulation, applications to laminate structures, and a generic element processor are among the topics covered.
Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin
2016-11-14
For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.
NASA Technical Reports Server (NTRS)
Deepak, A.; Becher, J.
1979-01-01
Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.
Timmins, Peter; Desai, Divyakant; Chen, Wei; Wray, Patrick; Brown, Jonathan; Hanley, Sarah
2016-08-01
Approaches to characterizing and developing understanding around the mechanisms that control the release of drugs from hydrophilic matrix tablets are reviewed. While historical context is provided and direct physical characterization methods are described, recent advances including the role of percolation thresholds, the application on magnetic resonance and other spectroscopic imaging techniques are considered. The influence of polymer and dosage form characteristics are reviewed. The utility of mathematical modeling is described. Finally, how all the information derived from applying the developed mechanistic understanding from all of these tools can be brought together to develop a robust and reliable hydrophilic matrix extended-release tablet formulation is proposed.
Advanced Technology Composite Fuselage-Structural Performance
NASA Technical Reports Server (NTRS)
Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.
1997-01-01
Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.
Structure and Computation in Immunoreagent Design: From Diagnostics to Vaccines.
Gourlay, Louise; Peri, Claudio; Bolognesi, Martino; Colombo, Giorgio
2017-12-01
Novel immunological tools for efficient diagnosis and treatment of emerging infections are urgently required. Advances in the diagnostic and vaccine development fields are continuously progressing, with reverse vaccinology and structural vaccinology (SV) methods for antigen identification and structure-based antigen (re)design playing increasingly relevant roles. SV, in particular, is predicted to be the front-runner in the future development of diagnostics and vaccines targeting challenging diseases such as AIDS and cancer. We review state-of-the-art methodologies for structure-based epitope identification and antigen design, with specific applicative examples. We highlight the implications of such methods for the engineering of biomolecules with improved immunological properties, potential diagnostic and/or therapeutic uses, and discuss the perspectives of structure-based rational design for the production of advanced immunoreagents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Successful applications of computer aided drug discovery: moving drugs from concept to the clinic.
Talele, Tanaji T; Khedkar, Santosh A; Rigby, Alan C
2010-01-01
Drug discovery and development is an interdisciplinary, expensive and time-consuming process. Scientific advancements during the past two decades have changed the way pharmaceutical research generate novel bioactive molecules. Advances in computational techniques and in parallel hardware support have enabled in silico methods, and in particular structure-based drug design method, to speed up new target selection through the identification of hits to the optimization of lead compounds in the drug discovery process. This review is focused on the clinical status of experimental drugs that were discovered and/or optimized using computer-aided drug design. We have provided a historical account detailing the development of 12 small molecules (Captopril, Dorzolamide, Saquinavir, Zanamivir, Oseltamivir, Aliskiren, Boceprevir, Nolatrexed, TMI-005, LY-517717, Rupintrivir and NVP-AUY922) that are in clinical trial or have become approved for therapeutic use.
Perspective: Quantum mechanical methods in biochemistry and biophysics.
Cui, Qiang
2016-10-14
In this perspective article, I discuss several research topics relevant to quantum mechanical (QM) methods in biophysical and biochemical applications. Due to the immense complexity of biological problems, the key is to develop methods that are able to strike the proper balance of computational efficiency and accuracy for the problem of interest. Therefore, in addition to the development of novel ab initio and density functional theory based QM methods for the study of reactive events that involve complex motifs such as transition metal clusters in metalloenzymes, it is equally important to develop inexpensive QM methods and advanced classical or quantal force fields to describe different physicochemical properties of biomolecules and their behaviors in complex environments. Maintaining a solid connection of these more approximate methods with rigorous QM methods is essential to their transferability and robustness. Comparison to diverse experimental observables helps validate computational models and mechanistic hypotheses as well as driving further development of computational methodologies.
Recent advances in the microbiological diagnosis of bloodstream infections.
Florio, Walter; Morici, Paola; Ghelardi, Emilia; Barnini, Simona; Lupetti, Antonella
2018-05-01
Rapid identification (ID) and antimicrobial susceptibility testing (AST) of the causative agent(s) of bloodstream infections (BSIs) are essential for the prompt administration of an effective antimicrobial therapy, which can result in clinical and financial benefits. Immediately after blood sampling, empirical antimicrobial therapy, chosen on clinical and epidemiological data, is administered. When ID and AST results are available, the clinician decides whether to continue or streamline the antimicrobial therapy, based on the results of the in vitro antimicrobial susceptibility profile of the pathogen. The aim of the present study is to review and discuss the experimental data, advantages, and drawbacks of recently developed technological advances of culture-based and molecular methods for the diagnosis of BSI (including mass spectrometry, magnetic resonance, PCR-based methods, direct inoculation methods, and peptide nucleic acid fluorescence in situ hybridization), the understanding of which could provide new perspectives to improve and fasten the diagnosis and treatment of septic patients. Although blood culture remains the gold standard to diagnose BSIs, newly developed methods can significantly shorten the turnaround time of reliable microbial ID and AST, thus substantially improving the diagnostic yield.
NASA Astrophysics Data System (ADS)
Zohdi, T. I.
2017-07-01
A key part of emerging advanced additive manufacturing methods is the deposition of specialized particulate mixtures of materials on substrates. For example, in many cases these materials are polydisperse powder mixtures whereby one set of particles is chosen with the objective to electrically, thermally or mechanically functionalize the overall mixture material and another set of finer-scale particles serves as an interstitial filler/binder. Often, achieving controllable, precise, deposition is difficult or impossible using mechanical means alone. It is for this reason that electromagnetically-driven methods are being pursued in industry, whereby the particles are ionized and an electromagnetic field is used to guide them into place. The goal of this work is to develop a model and simulation framework to investigate the behavior of a deposition as a function of an applied electric field. The approach develops a modular discrete-element type method for the simulation of the particle dynamics, which provides researchers with a framework to construct computational tools for this growing industry.
NASA Technical Reports Server (NTRS)
Farassat, F.; Succi, G. P.
1980-01-01
A review of propeller noise prediction technology is presented which highlights the developments in the field from the successful attempt of Gutin to the current sophisticated techniques. Two methods for the predictions of the discrete frequency noise from conventional and advanced propellers in forward flight are described. These methods developed at MIT and NASA Langley Research Center are based on different time domain formulations. Brief description of the computer algorithms based on these formulations are given. The output of these two programs, which is the acoustic pressure signature, is Fourier analyzed to get the acoustic pressure spectrum. The main difference between the programs as they are coded now is that the Langley program can handle propellers with supersonic tip speed while the MIT program is for subsonic tip speed propellers. Comparisons of the calculated and measured acoustic data for a conventional and an advanced propeller show good agreement in general.
NASA Astrophysics Data System (ADS)
Wu, Changtong; Zhou, Chunyang; Wang, Erkang; Dong, Shaojun
2016-07-01
For the first time by integrating fluorescent polyT-templated CuNPs and SYBR Green I, a basic INHIBIT gate and four advanced logic circuits (2-to-1 encoder, 4-to-2 encoder, 1-to-2 decoder and 1-to-2 demultiplexer) have been conceptually realized under label-free and enzyme-free conditions. Taking advantage of the selective formation of CuNPs on ss-DNA, the implementation of these advanced logic devices were achieved without any usage of dye quenching groups or other nanomaterials like graphene oxide or AuNPs since polyA strands not only worked as an input but also acted as effective inhibitors towards polyT templates, meeting the aim of developing bio-computing with cost-effective and operationally simple methods. In short, polyT-templated CuNPs, as promising fluorescent signal reporters, are successfully applied to fabricate advanced logic devices, which may present a potential path for future development of molecular computations.For the first time by integrating fluorescent polyT-templated CuNPs and SYBR Green I, a basic INHIBIT gate and four advanced logic circuits (2-to-1 encoder, 4-to-2 encoder, 1-to-2 decoder and 1-to-2 demultiplexer) have been conceptually realized under label-free and enzyme-free conditions. Taking advantage of the selective formation of CuNPs on ss-DNA, the implementation of these advanced logic devices were achieved without any usage of dye quenching groups or other nanomaterials like graphene oxide or AuNPs since polyA strands not only worked as an input but also acted as effective inhibitors towards polyT templates, meeting the aim of developing bio-computing with cost-effective and operationally simple methods. In short, polyT-templated CuNPs, as promising fluorescent signal reporters, are successfully applied to fabricate advanced logic devices, which may present a potential path for future development of molecular computations. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr04069a
Battery Calendar Life Estimator Manual Modeling and Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jon P. Christophersen; Ira Bloom; Ed Thomas
2012-10-01
The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.
Battery Life Estimator Manual Linear Modeling and Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jon P. Christophersen; Ira Bloom; Ed Thomas
2009-08-01
The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.
Recent advances in diagnostic microbiology.
Bravo, Lulette Tricia C; Procop, Gary W
2009-07-01
The past decade has seen a surge in the development of a variety of molecular diagnostics designed to rapidly identify or characterize medically important microorganisms. We briefly review important advances in molecular microbiology, and then discuss specific assays that have been implemented in clinical microbiology laboratories throughout the country. We also discuss emerging methods and technologies that will soon be more widely used for the prompt and accurate detection of the agents of infectious diseases.
Advanced composites for windmills
NASA Astrophysics Data System (ADS)
Bourquardez, G.
A development status assessment is conducted for advanced composite construction techniques for windmill blade structures which, as in the case of composite helicopter rotors, promise greater reliability, longer service life, superior performance, and lower costs. Composites in wind turbine applications must bear aerodynamic, inertial and gravitational loads in complex interaction cycles. Attention is given to large Darrieus-type vertical axis windmills, to which composite construction methods may offer highly effective pitch-control mechanisms, especially in the 'umbrella' configuration.
Advanced software development workstation project: Engineering scripting language. Graphical editor
NASA Technical Reports Server (NTRS)
1992-01-01
Software development is widely considered to be a bottleneck in the development of complex systems, both in terms of development and in terms of maintenance of deployed systems. Cost of software development and maintenance can also be very high. One approach to reducing costs and relieving this bottleneck is increasing the reuse of software designs and software components. A method for achieving such reuse is a software parts composition system. Such a system consists of a language for modeling software parts and their interfaces, a catalog of existing parts, an editor for combining parts, and a code generator that takes a specification and generates code for that application in the target language. The Advanced Software Development Workstation is intended to be an expert system shell designed to provide the capabilities of a software part composition system.
Diagnostics and Active Control of Aircraft Interior Noise
NASA Technical Reports Server (NTRS)
Fuller, C. R.
1998-01-01
This project deals with developing advanced methods for investigating and controlling interior noise in aircraft. The work concentrates on developing and applying the techniques of Near Field Acoustic Holography (NAH) and Principal Component Analysis (PCA) to the aircraft interior noise dynamic problem. This involves investigating the current state of the art, developing new techniques and then applying them to the particular problem being studied. The knowledge gained under the first part of the project was then used to develop and apply new, advanced noise control techniques for reducing interior noise. A new fully active control approach based on the PCA was developed and implemented on a test cylinder. Finally an active-passive approach based on tunable vibration absorbers was to be developed and analytically applied to a range of test structures from simple plates to aircraft fuselages.
An overview of DARPA's advanced space technology program
NASA Astrophysics Data System (ADS)
Nicastri, E.; Dodd, J.
1993-02-01
The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.
Schulthess, Pascal; van Wijk, Rob C; Krekels, Elke H J; Yates, James W T; Spaink, Herman P; van der Graaf, Piet H
2018-04-25
To advance the systems approach in pharmacology, experimental models and computational methods need to be integrated from early drug discovery onward. Here, we propose outside-in model development, a model identification technique to understand and predict the dynamics of a system without requiring prior biological and/or pharmacological knowledge. The advanced data required could be obtained by whole vertebrate, high-throughput, low-resource dose-exposure-effect experimentation with the zebrafish larva. Combinations of these innovative techniques could improve early drug discovery. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Xuan, Jun; Cao, Xia; Cheng, Xiao
2018-05-17
Heterocyclic compounds are widely found in many natural isolates and medicinally relevant compounds, as well as some fine chemicals. The development of general and efficient methods for the construction of heterocyclic compounds is one of the most important tasks in synthetic organic chemistry. Along these lines, [3+m]-cycloaddition reactions involving in situ generated azaoxyallyl cations as the 3-atom units have emerged as a powerful method for the synthesis of nitrogen-containing heterocycles. In this feature article, we highlight recent advances in this rapidly growing area, mainly focusing on the reaction design as well as the reaction mechanism.
Introduction: Special issue on advances in topobathymetric mapping, models, and applications
Gesch, Dean B.; Brock, John C.; Parrish, Christopher E.; Rogers, Jeffrey N.; Wright, C. Wayne
2016-01-01
Detailed knowledge of near-shore topography and bathymetry is required for many geospatial data applications in the coastal environment. New data sources and processing methods are facilitating development of seamless, regional-scale topobathymetric digital elevation models. These elevation models integrate disparate multi-sensor, multi-temporal topographic and bathymetric datasets to provide a coherent base layer for coastal science applications such as wetlands mapping and monitoring, sea-level rise assessment, benthic habitat mapping, erosion monitoring, and storm impact assessment. The focus of this special issue is on recent advances in the source data, data processing and integration methods, and applications of topobathymetric datasets.
NASA Technical Reports Server (NTRS)
Consoli, Robert David; Sobieszczanski-Sobieski, Jaroslaw
1990-01-01
Advanced multidisciplinary analysis and optimization methods, namely system sensitivity analysis and non-hierarchical system decomposition, are applied to reduce the cost and improve the visibility of an automated vehicle design synthesis process. This process is inherently complex due to the large number of functional disciplines and associated interdisciplinary couplings. Recent developments in system sensitivity analysis as applied to complex non-hierarchic multidisciplinary design optimization problems enable the decomposition of these complex interactions into sub-processes that can be evaluated in parallel. The application of these techniques results in significant cost, accuracy, and visibility benefits for the entire design synthesis process.
The Heritage of Radiotracers for PET
DOE R&D Accomplishments Database
Fowler, J. S.; Wolf, A. P.
1988-05-01
The history of PET research clearly demonstrates that it is advances in chemistry coupled with a detailed examination of the biochemistry of new radiotracers which has allowed the PET method to be applied to new areas of biology and medicine. Radiotracers whose regional distribution reflects glucose metabolism, neutrotransmitter activity and enzyme activity have all required the development of rapid synthetic methods for the radiotracers themselves and the characterization of their biochemical behavior. This article traces some of the advances in the production of labeled precursors and in radiotracer synthesis and evaluation which have shaped the rapidly expanding application of PET to problems in the neurosciences, in cardiology and in oncology.
The Importance of Method Selection in Determining Product Integrity for Nutrition Research1234
Mudge, Elizabeth M; Brown, Paula N
2016-01-01
The American Herbal Products Association estimates that there as many as 3000 plant species in commerce. The FDA estimates that there are about 85,000 dietary supplement products in the marketplace. The pace of product innovation far exceeds that of analytical methods development and validation, with new ingredients, matrixes, and combinations resulting in an analytical community that has been unable to keep up. This has led to a lack of validated analytical methods for dietary supplements and to inappropriate method selection where methods do exist. Only after rigorous validation procedures to ensure that methods are fit for purpose should they be used in a routine setting to verify product authenticity and quality. By following systematic procedures and establishing performance requirements for analytical methods before method development and validation, methods can be developed that are both valid and fit for purpose. This review summarizes advances in method selection, development, and validation regarding herbal supplement analysis and provides several documented examples of inappropriate method selection and application. PMID:26980823
The Importance of Method Selection in Determining Product Integrity for Nutrition Research.
Mudge, Elizabeth M; Betz, Joseph M; Brown, Paula N
2016-03-01
The American Herbal Products Association estimates that there as many as 3000 plant species in commerce. The FDA estimates that there are about 85,000 dietary supplement products in the marketplace. The pace of product innovation far exceeds that of analytical methods development and validation, with new ingredients, matrixes, and combinations resulting in an analytical community that has been unable to keep up. This has led to a lack of validated analytical methods for dietary supplements and to inappropriate method selection where methods do exist. Only after rigorous validation procedures to ensure that methods are fit for purpose should they be used in a routine setting to verify product authenticity and quality. By following systematic procedures and establishing performance requirements for analytical methods before method development and validation, methods can be developed that are both valid and fit for purpose. This review summarizes advances in method selection, development, and validation regarding herbal supplement analysis and provides several documented examples of inappropriate method selection and application. © 2016 American Society for Nutrition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
London, Richard A; Byrne, Mark
Benign prostate hyperplasia (BPH) is a pervasive condition of enlargement of the male prostate gland which leads to several urinary difficulties ranging from hesitancy to incontinence to kidney dysfunction in severe cases. Currently the most common therapy is transurethral resection of the prostate (TURP) utilizing an electrosurgical device. Although TURP is largely successful, new BPH therapy methods are desired to reduce the cost and recovery time, improve the success rate, and reduce side effects. Recently, lasers have been introduced for this purpose. Indigo Medical Inc. is currently engaged in the development, testing, and preparation for sales of a new diodemore » laser based BPH therapy system. The development is based on laboratory experiments, animal studies, and a limited FDA-approved clinical trial in the US and in other countries. The addition of sophisticated numerical modeling, of the sort that has been highly developed at Lawrence Livermore National Laboratory, can greatly aid in the design of the system and treatment protocol. The benefits to DOE include the maintenance and advancement of numerical modeling expertise in radiation-matter interactions of the sort essential for the stockpile stewardship, inertial confinement fusion, and advanced manufacturing, and the push on advanced scientific computational methods, ultimately in areas such as 3-D transport.« less
The Impact of Advanced Greenhouse Gas Measurement Science on Policy Goals and Research Strategies
NASA Astrophysics Data System (ADS)
Abrahams, L.; Clavin, C.; McKittrick, A.
2016-12-01
In support of the Paris agreement, accurate characterizations of U.S. greenhouse gas (GHG) emissions estimates have been area of increased scientific focus. Over the last several years, the scientific community has placed significant emphasis on understanding, quantifying, and reconciling measurement and modeling methods that characterize methane emissions from petroleum and natural gas sources. This work has prompted national policy discussions and led to the improvement of regional and national methane emissions estimates. Research campaigns focusing on reconciling atmospheric measurements ("top-down") and process-based emissions estimates ("bottom-up") have sought to identify where measurement technology advances could inform policy objectives. A clear next step is development and deployment of advanced detection capabilities that could aid U.S. emissions mitigation and verification goals. The breadth of policy-relevant outcomes associated with advances in GHG measurement science are demonstrated by recent improvements in the petroleum and natural gas sector emission estimates in the EPA Greenhouse Gas Inventory, ambitious efforts to apply inverse modeling results to inform or validate national GHG inventory, and outcomes from federal GHG measurement science technology development programs. In this work, we explore the variety of policy-relevant outcomes impacted by advances in GHG measurement science, with an emphasis on improving GHG inventory estimates, identifying emissions mitigation strategies, and informing technology development requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
2017-09-03
Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developedmore » at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.« less
ERIC Educational Resources Information Center
Ercan, Orhan; Bilen, Kadir
2014-01-01
Advances in computer technologies and adoption of related methods and techniques in education have developed parallel to each other. This study focuses on the need to utilize more than one teaching method and technique in education rather than focusing on a single teaching method. By using the pre-test post-test and control group semi-experimental…
Preparation Methods: past and Potential Methods of Food Preparation for Space
NASA Technical Reports Server (NTRS)
Huber, C. S.
1985-01-01
The logical progression of development of space food systems during the Mercury, Gemini, Apollo, Skylab and Shuttle programs is outlined. The preparation methods which include no preparation to heating, cooling and freezing are reviewed. The introduction of some new and exciting technological advances is proposed, which should result in a system providing crew members with appetizing, safe, nutritious and convenient food.
Justification of Estimates for Fiscal Year 1984 Submitted to Congress.
1983-01-01
sponsoring different aspects related to unique manufacturing methods than those pursued by DARPA, and duplication of effort is prevented by direct...weapons systems. Rapid and economical methods of satisfying these requirements must significantly precede weapons systems developments to prevent... methods for obtaining accurate and efficient geodetic measurements. Also, a major advanced sensor/G&G data collection capability is being urdertaken by DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, A.
Many modern and most future accelerators rely on precise configuration of lattice and trajectory. The Integrable Optics Test Accelerator (IOTA) at Fermilab that is coming to final stages of construction will be used to test advanced approaches of control over particles dynamics. Various experiments planned at IOTA require high flexibility of lattice configuration as well as high precision of lattice and closed orbit control. Dense element placement does not allow to have ideal configuration of diagnostics and correctors for all planned experiments. To overcome this limitations advanced method of lattice an beneficial for other machines. Developed algorithm is based onmore » LOCO approach, extended with various sets of other experimental data, such as dispersion, BPM BPM phase advances, beam shape information from synchrotron light monitors, responses of closed orbit bumps to variations of focusing elements and other. Extensive modeling of corrections for a big number of random seed errors is used to illustrate benefits from developed approach.« less
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Morea, S. F.
1985-01-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Morea, S. F.
1985-01-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.
NASA Astrophysics Data System (ADS)
Marsik, S. J.; Morea, S. F.
1985-03-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.
Systems Biology-Based Platforms to Accelerate Research of Emerging Infectious Diseases.
Oh, Soo Jin; Choi, Young Ki; Shin, Ok Sarah
2018-03-01
Emerging infectious diseases (EIDs) pose a major threat to public health and security. Given the dynamic nature and significant impact of EIDs, the most effective way to prevent and protect against them is to develop vaccines in advance. Systems biology approaches provide an integrative way to understand the complex immune response to pathogens. They can lead to a greater understanding of EID pathogenesis and facilitate the evaluation of newly developed vaccine-induced immunity in a timely manner. In recent years, advances in high throughput technologies have enabled researchers to successfully apply systems biology methods to analyze immune responses to a variety of pathogens and vaccines. Despite recent advances, computational and biological challenges impede wider application of systems biology approaches. This review highlights recent advances in the fields of systems immunology and vaccinology, and presents ways that systems biology-based platforms can be applied to accelerate a deeper understanding of the molecular mechanisms of immunity against EIDs. © Copyright: Yonsei University College of Medicine 2018.
Systems Biology-Based Platforms to Accelerate Research of Emerging Infectious Diseases
2018-01-01
Emerging infectious diseases (EIDs) pose a major threat to public health and security. Given the dynamic nature and significant impact of EIDs, the most effective way to prevent and protect against them is to develop vaccines in advance. Systems biology approaches provide an integrative way to understand the complex immune response to pathogens. They can lead to a greater understanding of EID pathogenesis and facilitate the evaluation of newly developed vaccine-induced immunity in a timely manner. In recent years, advances in high throughput technologies have enabled researchers to successfully apply systems biology methods to analyze immune responses to a variety of pathogens and vaccines. Despite recent advances, computational and biological challenges impede wider application of systems biology approaches. This review highlights recent advances in the fields of systems immunology and vaccinology, and presents ways that systems biology-based platforms can be applied to accelerate a deeper understanding of the molecular mechanisms of immunity against EIDs. PMID:29436184
Ghosn, Mohamad G; Shah, Dipan J
2014-01-01
Cardiac magnetic resonance has become a well-established imaging modality and is considered the gold standard for myocardial tissue viability assessment and ventricular volumes quantification. Recent technological hardware and software advancements in magnetic resonance imaging technology have allowed the development of new methods that can improve clinical cardiovascular diagnosis and prognosis. The advent of a new generation of higher magnetic field scanners can be beneficial to various clinical applications. Also, the development of faster acquisition techniques have allowed mapping of the magnetic relaxation properties T1, T2, and T2* in the myocardium that can be used to quantify myocardial diffuse fibrosis, determine the presence of edema or inflammation, and measure iron within the myocardium, respectively. Another recent major advancement in CMR has been the introduction of three-dimension (3D) phase contrast imaging, also known as 4D flow. The following review discusses key advances in cardiac magnetic resonance technology and their potential to improve clinical cardiovascular diagnosis and outcomes.
Phylogenetic trait-based analyses of ecological networks
Rafferty, Nicole E.; Ives, Anthony R.
2013-01-01
Ecological networks of two interacting guilds of species, such as flowering plants and pollinators, are common in nature, and studying their structure can yield insights into their resilience to environmental disturbances. Here we develop analytical methods for exploring the strengths of interactions within bipartite networks consisting of two guilds of phylogenetically related species. We then apply these methods to investigate the resilience of a plant–pollinator community to anticipated climate change. The methods allow the statistical assessment of, for example, whether closely related pollinators are more likely to visit plants with similar relative frequencies, and whether closely related pollinators tend to visit closely related plants. The methods can also incorporate trait information, allowing us to identify which plant traits are likely responsible for attracting different pollinators. These questions are important for our study of 14 prairie plants and their 22 insect pollinators. Over the last 70 years, six of the plants have advanced their flowering, while eight have not. When we experimentally forced earlier flowering times, five of the six advanced-flowering species experienced higher pollinator visitation rates, whereas only one of the eight other species had more visits; this network thus appears resilient to climate change, because those species with advanced flowering have ample pollinators earlier in the season. Using the methods developed here, we show that advanced-flowering plants did not have a distinct pollinator community from the other eight species. Furthermore, pollinator phylogeny did not explain pollinator community composition; closely related pollinators were not more likely to visit the same plant species. However, differences among pollinator communities visiting different plants were explained by plant height, floral color, and symmetry. As a result, closely related plants attracted similar numbers of pollinators. By parsing out characteristics that explain why plants share pollinators, we can identify plant species that likely share a common fate in a changing climate. PMID:24358717
Phylogenetic trait-based analyses of ecological networks.
Rafferty, Nicole E; Ives, Anthony R
2013-10-01
Ecological networks of two interacting guilds of species, such as flowering plants and pollinators, are common in nature, and studying their structure can yield insights into their resilience to environmental disturbances. Here we develop analytical methods for exploring the strengths of interactions within bipartite networks consisting of two guilds of phylogenetically related species. We then apply these methods to investigate the resilience of a plant-pollinator community to anticipated climate change. The methods allow the statistical assessment of, for example, whether closely related pollinators are more likely to visit plants with similar relative frequencies, and whether closely related pollinators tend to visit closely related plants. The methods can also incorporate trait information, allowing us to identify which plant traits are likely responsible for attracting different pollinators. These questions are important for our study of 14 prairie plants and their 22 insect pollinators. Over the last 70 years, six of the plants have advanced their flowering, while eight have not. When we experimentally forced earlier flowering times, five of the six advanced-flowering species experienced higher pollinator visitation rates, whereas only one of the eight other species had more visits; this network thus appears resilient to climate change, because those species with advanced flowering have ample pollinators earlier in the season. Using the methods developed here, we show that advanced-flowering plants did not have a distinct pollinator community from the other eight species. Furthermore, pollinator phylogeny did not explain pollinator community composition; closely related pollinators were not more likely to visit the same plant species. However, differences among pollinator communities visiting different plants were explained by plant height, floral color, and symmetry. As a result, closely related plants attracted similar numbers of pollinators. By parsing out characteristics that explain why plants share pollinators, we can identify plant species that likely share a common fate in a changing climate.
GneimoSim: A Modular Internal Coordinates Molecular Dynamics Simulation Package
Larsen, Adrien B.; Wagner, Jeffrey R.; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan
2014-01-01
The Generalized Newton Euler Inverse Mass Operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this paper we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. PMID:25263538
GneimoSim: a modular internal coordinates molecular dynamics simulation package.
Larsen, Adrien B; Wagner, Jeffrey R; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan
2014-12-05
The generalized Newton-Euler inverse mass operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this article, we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, and Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. © 2014 Wiley Periodicals, Inc.
Recent advances in Lanczos-based iterative methods for nonsymmetric linear systems
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Golub, Gene H.; Nachtigal, Noel M.
1992-01-01
In recent years, there has been a true revival of the nonsymmetric Lanczos method. On the one hand, the possible breakdowns in the classical algorithm are now better understood, and so-called look-ahead variants of the Lanczos process have been developed, which remedy this problem. On the other hand, various new Lanczos-based iterative schemes for solving nonsymmetric linear systems have been proposed. This paper gives a survey of some of these recent developments.
Alcohol-related hot-spot analysis and prediction : final report.
DOT National Transportation Integrated Search
2017-05-01
This project developed methods to more accurately identify alcohol-related crash hot spots, ultimately allowing for more effective and efficient enforcement and safety campaigns. Advancements in accuracy came from improving the calculation of spatial...
Agent-Based Multicellular Modeling for Predictive Toxicology
Biological modeling is a rapidly growing field that has benefited significantly from recent technological advances, expanding traditional methods with greater computing power, parameter-determination algorithms, and the development of novel computational approaches to modeling bi...
High Performance Structures and Materials
advanced simulation and optimization methods that can be used during the early design stages of innovative Development of Simulation Model Validation Framework for RBDO Sponsored by U.S. Army TARDEC Visit Us Contact
Sediment toxicity testing has become a fundamental component of regulatory frameworks for assessing the risks posed by contaminated sediments and for development of chemical sediment quality guidelines. Over the past two decades, sediment toxicity testing methods have advanced co...
Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models
NASA Technical Reports Server (NTRS)
Marquette, Michele L.; Sognier, Marguerite A.
2013-01-01
An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.
Senior, Brent A
2008-01-01
Endoscopic skull base surgery has undergone rapid advancement in the past decade moving from pituitary surgery to suprasellar lesions and now to a myriad of lesions extending from the cribriform plate to C2 and laterally out to the infratemporal fossa and petrous apex. Evolution of several technological advances as well as advances in understanding of endoscopic anatomy and the development of surgical techniques both in resection and reconstruction have fostered this capability. Management of benign disease via endoscopic methods is largely accepted now but more data is needed before the controversy on the role of endoscopic management of malignant disease is decided. Continued advances in surgical technique, navigation systems, endoscopic imaging technology, and robotics assure continued brisk evolution in this expanding field. PMID:19434274
NASA Astrophysics Data System (ADS)
Papers are presented on local area networks; formal methods for communication protocols; computer simulation of communication systems; spread spectrum and coded communications; tropical radio propagation; VLSI for communications; strategies for increasing software productivity; multiple access communications; advanced communication satellite technologies; and spread spectrum systems. Topics discussed include Space Station communication and tracking development and design; transmission networks; modulation; data communications; computer network protocols and performance; and coding and synchronization. Consideration is given to free space optical communications systems; VSAT communication networks; network topology design; advances in adaptive filtering echo cancellation and adaptive equalization; advanced signal processing for satellite communications; the elements, design, and analysis of fiber-optic networks; and advances in digital microwave systems.
NASA Astrophysics Data System (ADS)
Szafranko, Elżbieta
2017-10-01
Assessment of variant solutions developed for a building investment project needs to be made at the stage of planning. While considering alternative solutions, the investor defines various criteria, but a direct evaluation of the degree of their fulfilment by developed variant solutions can be very difficult. In practice, there are different methods which enable the user to include a large number of parameters into an analysis, but their implementation can be challenging. Some methods require advanced mathematical computations, preceded by complicating input data processing, and the generated results may not lend themselves easily to interpretation. Hence, during her research, the author has developed a systemic approach, which involves several methods and whose goal is to compare their outcome. The final stage of the proposed method consists of graphic interpretation of results. The method has been tested on a variety of building and development projects.
May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells.
Brookhouser, Nicholas; Raman, Sreedevi; Potts, Christopher; Brafman, David A
2017-02-06
In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods.
May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells
Brookhouser, Nicholas; Raman, Sreedevi; Potts, Christopher; Brafman, David. A.
2017-01-01
In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods. PMID:28178187
NASA Astrophysics Data System (ADS)
Donnelly, William J., III
2012-06-01
PURPOSE: To present a commercially available optical modeling software tool to assist the development of optical instrumentation and systems that utilize and/or integrate with the human eye. METHODS: A commercially available flexible eye modeling system is presented, the Advanced Human Eye Model (AHEM). AHEM is a module that the engineer can use to perform rapid development and test scenarios on systems that integrate with the eye. Methods include merging modeled systems initially developed outside of AHEM and performing a series of wizard-type operations that relieve the user from requiring an optometric or ophthalmic background to produce a complete eye inclusive system. Scenarios consist of retinal imaging of targets and sources through integrated systems. Uses include, but are not limited to, optimization, telescopes, microscopes, spectacles, contact and intraocular lenses, ocular aberrations, cataract simulation and scattering, and twin eye model (binocular) systems. RESULTS: Metrics, graphical data, and exportable CAD geometry are generated from the various modeling scenarios.
Lotfy, Hayam M; Hegazy, Maha A; Rezk, Mamdouh R; Omran, Yasmin Rostom
2015-09-05
Smart spectrophotometric methods have been applied and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and prednisolone acetate (PA) without preliminary separation. Two novel methods have been developed; the first method depends upon advanced absorbance subtraction (AAS), while the other method relies on advanced amplitude modulation (AAM); in addition to the well established dual wavelength (DW), ratio difference (RD) and constant center coupled with spectrum subtraction (CC-SS) methods. Accuracy, precision and linearity ranges of these methods were determined. Moreover, selectivity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied to the assay of drugs in their pharmaceutical formulations. No interference was observed from common additives and the validity of the methods was tested. The obtained results have been statistically compared to that of official spectrophotometric methods to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.
High voltage power transistor development
NASA Technical Reports Server (NTRS)
Hower, P. L.
1981-01-01
Design considerations, fabrication procedures, and methods of evaluation for high-voltage power-transistor development are discussed. Technique improvements such as controlling the electric field at the surface and perserving lifetimes in the collector region which have advanced the state of the art in high-voltage transistors are discussed. These improvements can be applied directly to the development of 1200 volt, 200 ampere transistors.
Summary appraisals of the Nation's ground-water resources; Upper Mississippi region
Bloyd, R.M.
1975-01-01
Advances in techniques in ground-water hydrology during recent years have provided methods that the hydrologist and planner can use for planning and design of ground-water developments. Therefore, the planner can now resolve some of the development and management questions that historically have bred uncertainty when this part of the water resource was considered for development.
High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters
2017-04-22
signatures which can be used for direct, non -invasive, comparison with experimental diagnostics can be produced. This research will be directly... experimental campaign is critical to developing general design philosophies for low-power plasmoid formation, the complexity of non -linear plasma processes...advanced space propulsion. The work consists of numerical method development, physical model development, and systematic studies of the non -linear
Commercial transport aircraft composite structures
NASA Technical Reports Server (NTRS)
Mccarty, J. E.
1983-01-01
The role that analysis plays in the development, production, and substantiation of aircraft structures is discussed. The types, elements, and applications of failure that are used and needed; the current application of analysis methods to commercial aircraft advanced composite structures, along with a projection of future needs; and some personal thoughts on analysis development goals and the elements of an approach to analysis development are discussed.
NASA Technical Reports Server (NTRS)
Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.
1989-01-01
In response to the tremendous growth in the development of advanced materials, such as fiber-reinforced plastic (FRP) composite materials, a new numerical method is developed to analyze and predict the time-dependent properties of these materials. Basic concepts in viscoelasticity, laminated composites, and previous viscoelastic numerical methods are presented. A stable numerical method, called the nonlinear differential equation method (NDEM), is developed to calculate the in-plane stresses and strains over any time period for a general laminate constructed from nonlinear viscoelastic orthotropic plies. The method is implemented in an in-plane stress analysis computer program, called VCAP, to demonstrate its usefulness and to verify its accuracy. A number of actual experimental test results performed on Kevlar/epoxy composite laminates are compared to predictions calculated from the numerical method.
[Recent advances in sample preparation methods of plant hormones].
Wu, Qian; Wang, Lus; Wu, Dapeng; Duan, Chunfeng; Guan, Yafeng
2014-04-01
Plant hormones are a group of naturally occurring trace substances which play a crucial role in controlling the plant development, growth and environment response. With the development of the chromatography and mass spectroscopy technique, chromatographic analytical method has become a widely used way for plant hormone analysis. Among the steps of chromatographic analysis, sample preparation is undoubtedly the most vital one. Thus, a highly selective and efficient sample preparation method is critical for accurate identification and quantification of phytohormones. For the three major kinds of plant hormones including acidic plant hormones & basic plant hormones, brassinosteroids and plant polypeptides, the sample preparation methods are reviewed in sequence especially the recently developed methods. The review includes novel methods, devices, extractive materials and derivative reagents for sample preparation of phytohormones analysis. Especially, some related works of our group are included. At last, the future developments in this field are also prospected.
Advanced technology component derating
NASA Astrophysics Data System (ADS)
Jennings, Timothy A.
1992-02-01
A technical study performed to determine the derating criteria of advanced technology components is summarized. The study covered existing criteria from AFSC Pamphlet 800-27 and the development of new criteria based on data, literature searches, and the use of advanced technology prediction methods developed in RADC-TR-90-72. The devices that were investigated were as follows: VHSIC, ASIC, MIMIC, Microprocessor, PROM, Power Transistors, RF Pulse Transistors, RF Multi-Transistor Packages, Photo Diodes, Photo Transistors, Opto-Electronic Couplers, Injection Laser Diodes, LED, Hybrid Deposited Film Resistors, Chip Resistors, and Capacitors and SAW devices. The results of the study are additional derating criteria that extend the range of AFSC Pamphlet 800-27. These data will be transitioned from the report to AFSC Pamphlet 800-27 for use by government and contractor personnel in derating electronics systems yielding increased safety margins and improved system reliability.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.
2002-01-01
Continuing growth in regional and global air travel has resulted in increasing traffic congestion in the air and on the ground. In spite of occasional temporary downturns due to economic recessions and catastrophic events, average growth rates of air travel have remained high since the 1960s. The resulting congestion, which constrains expansion of the air transportation industry, inflicts schedule delays and decreases overall system efficiency, creating a pressing need to develop more efficient methods of air traffic management (ATM). New ATM techniques, procedures, air space automation methods, and decision support tools are being researched and developed for deployment in time frames stretching from the next few years to the year 2020 and beyond. As these methods become more advanced and increase in complexity, the requirements for information generation, sharing and transfer among the relevant entities in the ATM system increase dramatically. However, current aeronautical communications systems will be inadequate to meet the future information transfer demands created by these advanced ATM systems. Therefore, the NASA Glenn Research Center is undertaking research programs to develop communication, methods and key technologies that can meet these future requirements. As part of this process, studies, workshops, testing and experimentation, and research and analysis have established a number of research and technology development needs. The purpose of this paper is to outline the critical research and technology needs that have been identified in these activities, and explain how these needs have been determined.
NASA Astrophysics Data System (ADS)
Weisz, Elisabeth; Smith, William L.; Smith, Nadia
2013-06-01
The dual-regression (DR) method retrieves information about the Earth surface and vertical atmospheric conditions from measurements made by any high-spectral resolution infrared sounder in space. The retrieved information includes temperature and atmospheric gases (such as water vapor, ozone, and carbon species) as well as surface and cloud top parameters. The algorithm was designed to produce a high-quality product with low latency and has been demonstrated to yield accurate results in real-time environments. The speed of the retrieval is achieved through linear regression, while accuracy is achieved through a series of classification schemes and decision-making steps. These steps are necessary to account for the nonlinearity of hyperspectral retrievals. In this work, we detail the key steps that have been developed in the DR method to advance accuracy in the retrieval of nonlinear parameters, specifically cloud top pressure. The steps and their impact on retrieval results are discussed in-depth and illustrated through relevant case studies. In addition to discussing and demonstrating advances made in addressing nonlinearity in a linear geophysical retrieval method, advances toward multi-instrument geophysical analysis by applying the DR to three different operational sounders in polar orbit are also noted. For any area on the globe, the DR method achieves consistent accuracy and precision, making it potentially very valuable to both the meteorological and environmental user communities.
Lamar, Melissa; Zhou, Xiaohong Joe; Charlton, Rebecca A; Dean, Douglas; Little, Deborah; Deoni, Sean C
2014-02-01
Human brain imaging has seen many advances in the quantification of white matter in vivo. For example, these advances have revealed the association between white matter damage and vascular disease as well as their impact on risk for and development of dementia and depression in an aging population. Current neuroimaging methods to quantify white matter damage provide a foundation for understanding such age-related neuropathology; however, these methods are not as adept at determining the underlying microstructural abnormalities signaling at risk tissue or driving white matter damage in the aging brain. This review will begin with a brief overview of the use of diffusion tensor imaging (DTI) in understanding white matter alterations in aging before focusing in more detail on select advances in both diffusion-based methods and multi-component relaxometry techniques for imaging white matter microstructural integrity within myelin sheaths and the axons they encase. Although DTI greatly extended the field of white matter interrogation, these more recent technological advances will add clarity to the underlying microstructural mechanisms that contribute to white matter damage. More specifically, the methods highlighted in this review may prove more sensitive (and specific) for determining the contribution of myelin versus axonal integrity to the aging of white matter in brain. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Houts, Carrie R; Edwards, Michael C; Wirth, R J; Deal, Linda S
2016-11-01
There has been a notable increase in the advocacy of using small-sample designs as an initial quantitative assessment of item and scale performance during the scale development process. This is particularly true in the development of clinical outcome assessments (COAs), where Rasch analysis has been advanced as an appropriate statistical tool for evaluating the developing COAs using a small sample. We review the benefits such methods are purported to offer from both a practical and statistical standpoint and detail several problematic areas, including both practical and statistical theory concerns, with respect to the use of quantitative methods, including Rasch-consistent methods, with small samples. The feasibility of obtaining accurate information and the potential negative impacts of misusing large-sample statistical methods with small samples during COA development are discussed.
USDA-ARS?s Scientific Manuscript database
For the advancement of preventive strategies, it is critical to develop rapid and sensitive detection methods with nanotechnology for food safety applications. This article reports the recent development on the use of aligned silver nanorod (AgNR) arrays prepared by oblique angle deposition, as surf...
Development of advanced acreage estimation methods
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr. (Principal Investigator)
1982-01-01
The development of an accurate and efficient algorithm for analyzing the structure of MSS data, the application of the Akaiki information criterion to mixture models, and a research plan to delineate some of the technical issues and associated tasks in the area of rice scene radiation characterization are discussed. The AMOEBA clustering algorithm is refined and documented.
ERIC Educational Resources Information Center
Lindstrom, Lauren; Hirano, Kara A.; McCarthy, Colleen; Alverson, Charlotte Y.
2014-01-01
This study examined career development and early employment experiences for four young adults with intellectual and developmental disabilities. Researchers used a multiple-method, multiple case-study longitudinal design to explore career development within the context of family systems, high school and transition programs, adult services, and…
Neutron activation analysis: trends in developments and applications
NASA Astrophysics Data System (ADS)
de Goeij, J. J.; Bode, P.
1995-03-01
New developments in instrumentation for, and methodology of, Instrumental Neutron Activation Analysis (INAA) may lead to new niches for this method of elemental analysis. This paper describes the possibilities of advanced detectors, automated irradiation and counting stations, and very large sample analysis. An overview is given of some typical new fields of application.
Summary appraisals of the Nation's ground-water resources; Ohio region
Bloyd, Richard M.
1974-01-01
Rapid advance of techniques in ground-water hydrology during recent years has provided methods which the hydrologist can use for evaluating planned ground-water development. Therefore, the manager can resolve the inherent problems that historically have bred caution when this part of our total water resource was considered for development.
The US EPA’s ToxCastTM program seeks to combine advances in high-throughput screening technology with methodologies from statistics and computer science to develop high-throughput decision support tools for assessing chemical hazard and risk. To develop new methods of analysis of...
Why Subscribers Drop Cable Television: Characteristics of Three Groups.
ERIC Educational Resources Information Center
Burkum, Larry G.; Niebauer, Walter E., Jr.
It would be to the advantage of cable operators to identify, in advance, those subscribers who have a high probability of voluntarily disconnecting their service, in order to develop strategies to anticipate and address the factors that might potentially lead to disconnection. A study developed a method for identifying likely disconnecters.…
Pharmacists' self-perceptions in relation to the 'Advanced Pharmacy Practice Framework'.
Ali, A S; Fejzic, J; Grant, G D; Nissen, L M
2016-01-01
The Australian Pharmacy Practice Framework was developed by the Advanced Pharmacy Practice Steering Committee and endorsed by the Pharmacy Board of Australia in October 2012. The Steering Committee conducted a study that found practice portfolios to be the preferred method to assess and credential Advanced Pharmacy Practitioner, which is currently being piloted by the Australian Pharmacy Council. Credentialing is predicted to open to all pharmacists practising in Australia by November 2015. To explore how Australian pharmacists self-perceived being advanced in practice and how they related their level of practice to the Australian Advanced Pharmacy Practice Framework. This was an explorative, cross-sectional study with mixed methods analysis. Advanced Pharmacy Practice Framework, a review of the recent explorative study on Advanced Practice conducted by the Advanced Pharmacy Practice Framework Steering Committee and semi-structured interviews (n = 10) were utilized to create, refine and pilot the questionnaire. The questionnaire was advertised across pharmacy-organizational websites via a purposive sampling method. The target population were pharmacists currently registered in Australia. Seventy-two participants responded to the questionnaire. The participants were mostly female (56.9%) and in the 30-40 age group (26.4%). The pharmacists self-perceived their levels of practice as either entry, transition, consolidation or advanced, with the majority selecting the consolidation level (38.9%). Although nearly half (43.1%) of the participants had not seen the Framework beforehand, they defined Advanced Pharmacy Practice similarly to the definition outlined in the Framework, but also added specialization as a requirement. Pharmacists explained why they were practising at their level of practice, stating that not having more years of practice, lacking experience, or postgraduate/post-registration qualifications, and more involvement and recognition in practice were the main reasons for not considering themselves as an Advanced Pharmacy Practitioner. To be considered advanced by the Framework, pharmacists would need to fulfill at least 70% of the Advanced Practice competency standards at an advanced level. More than half of the pharmacists (64.7%) that self-perceived as being advanced managed to fulfill 70% or more of these Advanced Practice competency standards at the advanced level. However, none of the self-perceived entry level pharmacists managed to match at least 70% of the competencies at the entry level. Participants' self-perception of the term Advanced Practice was similar to the definition in the Advanced Pharmacy Practice Framework. Pharmacists working at an advanced level were largely able to demonstrate and justify their reasons for being advanced practitioners. However, pharmacists practising at the other levels of practice (entry, transition, consolidation) require further guidance regarding their advancement in practice. Copyright © 2016 Elsevier Inc. All rights reserved.
Earth Science Informatics Comes of Age
NASA Technical Reports Server (NTRS)
Jodha, Siri; Khalsa, S.; Ramachandran, Rahul
2014-01-01
The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.
Genetic engineering for skeletal regenerative medicine.
Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J
2007-01-01
The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.
Three Methods of Assessing Values for Advance Care Planning
Karel, Michele J.; Moye, Jennifer; Bank, Adam; Azar, Armin R.
2016-01-01
Advance care planning ideally includes communication about values between patients, family members, and care providers. This study examined the utility of health care values assessment tools for older adults with and without dementia. Adults aged 60 and older, with and without dementia, completed three values assessment tools—open-ended, forced-choice, and rating scale questions—and named a preferred surrogate decision maker. Responses to forced-choice items were examined at 9-month retest. Adults with and without dementia appeared equally able to respond meaningfully to questions about values regarding quality of life and health care decisions. People with dementia were generally as able as controls to respond consistently after 9 months. Although values assessment methods show promise, further item and scale development work is needed. Older adults with dementia should be included in clarifying values for advance care planning to the extent that they desire and are able. PMID:17215205
Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis
2013-09-01
During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modelingmore » and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.« less
Technical advances power neuroscience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barinaga, M.
New techniques are helping researchers study the development of nerve cells in cell cultures and in vivo. These new methods are offering insights into the brain that were not available even a couple of years ago. Among the new advances discussed are imaging technology for evaluating the thinking human brain. One area in which researchers have made recent progress is the quest for ways to create immortal cell lines from specific types of nerve cells. Other projects using genetically engineered retroviruses and tumor-inducing genes, as well as gene regulation are discussed. Recent advances in neuroscience techniques apply not only tomore » neurons, but also to whole brains as well. One example is a high-resulution electroencephalogram (EEG). Although the EEG cannot pin down the actual sites of activity as precisely as static brain imaging methods, it complements them with real-time recording that can keep up with the very rapid pace of brain activity.« less
NASA Astrophysics Data System (ADS)
Diao, Chunyuan
In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.
Quantitative Imaging in Cancer Clinical Trials
Yankeelov, Thomas E.; Mankoff, David A.; Schwartz, Lawrence H.; Lieberman, Frank S.; Buatti, John M.; Mountz, James M.; Erickson, Bradley J.; Fennessy, Fiona M.M.; Huang, Wei; Kalpathy-Cramer, Jayashree; Wahl, Richard L.; Linden, Hannah M.; Kinahan, Paul; Zhao, Binsheng; Hylton, Nola M.; Gillies, Robert J.; Clarke, Laurence; Nordstrom, Robert; Rubin, Daniel L.
2015-01-01
As anti-cancer therapies designed to target specific molecular pathways have been developed, it has become critical to develop methods to assess the response induced by such agents. While traditional, anatomic CT and MRI exams are useful in many settings, there is increasing evidence that these methods cannot answer the fundamental biological and physiological questions essential for assessment and, eventually, prediction of treatment response in the clinical trial setting, especially in the critical period soon after treatment is initiated. To optimally apply advances in quantitative imaging methods to trials of targeted cancer therapy, new infrastructure improvements are needed that incorporate these emerging techniques into the settings where they are most likely to have impact. In this review, we first elucidate the needs for therapeutic response assessment in the era of molecularly targeted therapy and describe how quantitative imaging can most effectively provide scientifically and clinically relevant data. We then describe the tools and methods required to apply quantitative imaging and provide concrete examples of work making these advances practically available for routine application in clinical trials. We conclude by proposing strategies to surmount barriers to wider incorporation of these quantitative imaging methods into clinical trials and, eventually, clinical practice. Our goal is to encourage and guide the oncology community to deploy standardized quantitative imaging techniques in clinical trials to further personalize care for cancer patients, and to provide a more efficient path for the development of improved targeted therapies. PMID:26773162
Microfabricated X-Ray Optics Technology Development for the Constellation-X Mission
NASA Technical Reports Server (NTRS)
Schattenburg, Mark L.
2003-01-01
During the period of this Cooperative Agreement, MIT developed advanced methods for applying silicon micro-stuctures for the precision assembly of foil x-ray optics in support of the Constellution-X Spectroscopy X-ray Telescope (SXT) development effort at Goddard Space Flight Center (GSFC). MIT developed improved methods for fabricating and characterizing the precision silicon micro-combs. MIT also developed and characterized assembly tools and several types of metrology tools in order to characterize and reduce the errors associated with precision assembly of foil optics. Results of this effort were published and presented to the scientific community and the GSFC SXT team.
Biondo, Patricia D; Lee, Lydia D; Davison, Sara N; Simon, Jessica E
2016-09-01
Advance care planning initiatives are being implemented across healthcare systems around the world, but how best to evaluate their implementation is unknown. To identify gaps and/or redundancies in current evaluative strategies to help healthcare systems develop future evaluative frameworks for ACP. Systematic review. Peer-reviewed and gray literature searches were conducted till February 2015 to answer: "What methods have healthcare systems used to evaluate implementation of advance care planning initiatives?" A PICOS framework was developed to identify articles describing the implementation and evaluation of a health system-level advance care planning initiative. Outcome measures were mapped onto a conceptual quality indicator framework based on the Institute of Medicine and Donabedian models of healthcare quality. A total of 46 studies met inclusion criteria for analysis. Most articles reported on single parts of a healthcare system (e.g. continuing care). The most common outcome measures pertained to document completion, followed by healthcare resource use. Patient-, family-, or healthcare provider-reported outcomes were less commonly measured. Concordance measures (e.g. dying in place of choice) were reported by only 26% of studies. The conceptual quality indicator framework identified gaps and redundancies in measurement and is presented as a potential foundation from which to develop a comprehensive advance care planning evaluation framework. Document completion is frequently used to evaluate advance care planning program implementation; capturing the quality of care appears to be more difficult. This systematic review provides health system administrators with a comprehensive summary of measures used to evaluate advance care planning and may identify gaps in evaluation within their local context. © The Author(s) 2016.
Raleigh, Mary; Allan, Helen
2017-07-01
To explore multiple perspectives on the use of physical assessment skills by advanced nurse practitioners in the UK. Physical assessment skills practices are embedded in advanced nursing practice roles in the UK. There is little evidence on how these skills are used by advanced nurse practitioners in the community. Case study. A qualitative interpretative single-embedded case study of 22 participants from South of England. A framework method analysed interview data collected by the researcher between March-August 2013. Participants included nurses, doctors, nurse educators and managers. Physical assessment skills education at universities is part of a policy shift to develop a flexible workforce in the UK. Shared physical assessment practices are less to do with role substitution and more about preparing practitioners with skills that are fit for purpose. Competence, capability and performance with physical assessment skills are an expectation of advanced nursing practice. These skills are used successfully by community advanced nurse practitioners to deliver a wide range of services in response to changing patient need. The introduction of physical assessment skills education to undergraduate professional preparation would create a firm foundation to develop these skills in postgraduate education. Physical assessment education prepares nurses with the clinical competencies to carry out healthcare reforms in the UK. Shared sets of clinical assessment competencies between disciplines have better outcomes for patients. Levels of assessment competence can depend on the professional attributes of individual practitioners. Unsupportive learning cultures can hinder professional development of advanced nursing practice. © 2016 John Wiley & Sons Ltd.
The future of time and frequency dissemination
NASA Astrophysics Data System (ADS)
Levine, Judah
1994-05-01
I will try to extrapolate the changes in the dissemination of time and frequency information that have taken place during the last 25 years to predict the future developments both in the methods of disseminating time and frequency and in the kinds of customers we will be asked to serve. Two important developments are likely to play pivotal roles in driving the evolution of dissemination. The first is the commercial availability of very high quality clocks -- devices whose performance may eventually rival that of the current generation of primary frequency standards. The widespread use of these devices may blur the traditional distinction between client and server, and may replace it with a more symmetrical interchange of data among peers. The second is the increasing demand for digital time and frequency information driven by the increasing sophistication of everything from traffic lights to electric power meters. The needs of these individual users may not tax the state of the art of primary frequency standards in principle, but their large numbers and wide geographical distribution present a technological challenge that is difficult to meet at a reasonable price using existing methods. Some of these problems may be solved (or at least addressed) using developments in communications and consumer electronics such as the increasing use of fiber-optic telephone circuits and the increasing bandwidth and sophistication of the cable network used to transmit television pictures. To be useful, these advances in hardware must stimulate parallel advances in software algorithms and methods. These advances are more difficult to predict with great confidence, but the developments of the last few years will be examined to provide some indications of the future.
NASA Astrophysics Data System (ADS)
Filip, Jan; Kašlík, Josef; Medřík, Ivo; Petala, Eleni; Zbořil, Radek; Slunský, Jan; Černík, Miroslav; Stavělová, Monika
2014-05-01
Zero-valent iron nanoparticles are commonly used in modern water treatment technologies. Compared to conventionally-used macroscopic iron or iron microparticles, the using of nanoparticles has the advantages given mainly by their generally large specific surface area (it drives their high reactivity and/or sorption capacity), small dimensions (it allows their migration e.g. in ground water), and particular physical and chemical properties. Following the applications of zero-valent iron particles in various pilot tests, there arose several critical suggestions for improvements of used nanomaterials and for development of new generation of reactive nanomaterials. In the presentation, the methods of zero-valent iron nanoparticles synthesis will be summarized with a special attention paid to the thermally-induced solid-state reaction allowing preparation of zero-valent iron nanoparticles in an industrial scale. Moreover, the method of thermal reduction of iron-oxide precursors enables to finely tune the critical parameters (mainly particle size and morphology, specific surface area, surface chemistry of nanoparticles etc.) of resulting zero-valet iron nanoparticles. The most important trends of advanced nanoparticles development will be discussed: (i) surface modification of nanomaterilas, (ii) development of nanocomposites and (iii) development of materials for combined reductive-sorption technologies. Laboratory testing of zero-valent iron nanoparticles reactivity and migration will be presented and compared with the field observations: the advanced zero-valent iron nanoparticles were used for groundwater treatment at the locality contaminated by chlorinated hydrocarbons (VC, DCE, TCE and PCE) and reacted nanoparticles were extracted from the sediments for their fate assessment. The authors gratefully acknowledge the support by the Technology Agency of the Czech Republic "Competence Centres" (project No. TE01020218) and the EU FP7 (project NANOREM).
The future of time and frequency dissemination
NASA Technical Reports Server (NTRS)
Levine, Judah
1994-01-01
I will try to extrapolate the changes in the dissemination of time and frequency information that have taken place during the last 25 years to predict the future developments both in the methods of disseminating time and frequency and in the kinds of customers we will be asked to serve. Two important developments are likely to play pivotal roles in driving the evolution of dissemination. The first is the commercial availability of very high quality clocks -- devices whose performance may eventually rival that of the current generation of primary frequency standards. The widespread use of these devices may blur the traditional distinction between client and server, and may replace it with a more symmetrical interchange of data among peers. The second is the increasing demand for digital time and frequency information driven by the increasing sophistication of everything from traffic lights to electric power meters. The needs of these individual users may not tax the state of the art of primary frequency standards in principle, but their large numbers and wide geographical distribution present a technological challenge that is difficult to meet at a reasonable price using existing methods. Some of these problems may be solved (or at least addressed) using developments in communications and consumer electronics such as the increasing use of fiber-optic telephone circuits and the increasing bandwidth and sophistication of the cable network used to transmit television pictures. To be useful, these advances in hardware must stimulate parallel advances in software algorithms and methods. These advances are more difficult to predict with great confidence, but the developments of the last few years will be examined to provide some indications of the future.
A smoothed residual based goodness-of-fit statistic for nest-survival models
Rodney X. Sturdivant; Jay J. Rotella; Robin E. Russell
2008-01-01
Estimating nest success and identifying important factors related to nest-survival rates is an essential goal for many wildlife researchers interested in understanding avian population dynamics. Advances in statistical methods have led to a number of estimation methods and approaches to modeling this problem. Recently developed models allow researchers to include a...
Oak regeneration potential increased by shelterwood treatments
Richard C. Schlesinger; Ivan L. Sander; Kenneth R. Davidson
1993-01-01
In much of the Central Hardwood Forest Region, oak species are not regenerating well, even though large oak trees are common within the existing forests. The shelterwood method has been suggested as a potential tool for establishing and developing advanced regeneration where it is lacking. The 10-yr results from a study of several variants of the shelterwood method...
Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giridharagopal, Rajiv; Cox, Phillip A.; Ginger, David S.
From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to studymore » materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of cantilever motion and photocarrier generation to provide robust, nanoscale measurements of materials physics that are correlated with device operation. We predict that the multidimensional data sets made possible by these types of methods will become increasingly important as advances in data science expand capabilities and opportunities for image correlation and discovery.« less
Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials
Giridharagopal, Rajiv; Cox, Phillip A.; Ginger, David S.
2016-08-30
From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to studymore » materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of cantilever motion and photocarrier generation to provide robust, nanoscale measurements of materials physics that are correlated with device operation. We predict that the multidimensional data sets made possible by these types of methods will become increasingly important as advances in data science expand capabilities and opportunities for image correlation and discovery.« less
Language games: Advanced R & R packages: Book Review
Hraber, Peter Thomas
2016-03-23
Readers who wrangle answers from data by extended refinement of available computational tools have many options and resources available. Inevitably, they will develop their own methods tailored to the problem at hand.Two new books have recently been published, each of which is useful addition to the library for a scientist who programs with data. The two books reviewed are both written by H. Wickham. The titles are ''Advanced R'' and ''R Packages'', both published in 2015.
Language games: Advanced R & R packages: Book Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hraber, Peter Thomas
Readers who wrangle answers from data by extended refinement of available computational tools have many options and resources available. Inevitably, they will develop their own methods tailored to the problem at hand.Two new books have recently been published, each of which is useful addition to the library for a scientist who programs with data. The two books reviewed are both written by H. Wickham. The titles are ''Advanced R'' and ''R Packages'', both published in 2015.
Dakota Uncertainty Quantification Methods Applied to the CFD code Nek5000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delchini, Marc-Olivier; Popov, Emilian L.; Pointer, William David
This report presents the state of advancement of a Nuclear Energy Advanced Modeling and Simulation (NEAMS) project to characterize the uncertainty of the computational fluid dynamics (CFD) code Nek5000 using the Dakota package for flows encountered in the nuclear engineering industry. Nek5000 is a high-order spectral element CFD code developed at Argonne National Laboratory for high-resolution spectral-filtered large eddy simulations (LESs) and unsteady Reynolds-averaged Navier-Stokes (URANS) simulations.
Advanced techniques for the storage and use of very large, heterogeneous spatial databases
NASA Technical Reports Server (NTRS)
Peuquet, Donna J.
1987-01-01
Progress is reported in the development of a prototype knowledge-based geographic information system. The overall purpose of this project is to investigate and demonstrate the use of advanced methods in order to greatly improve the capabilities of geographic information system technology in the handling of large, multi-source collections of spatial data in an efficient manner, and to make these collections of data more accessible and usable for the Earth scientist.
Recent Advances and Current Trends in Metamaterial-by-Design
NASA Astrophysics Data System (ADS)
Anselmi, N.; Gottardi, G.
2018-02-01
Thanks to their potential applications in several engineering areas, metamaterials gained much of attentions among different research communities, leading to the development of several analysis and synthesis tools. In this context, the metamaterial-by-design (MbD) paradigm has been recently introduced as a powerful tool for the design of complex metamaterials-based structures. In this work a review of the state-of-art, as well as the recent advancements of MbD-based methods are presented.
Li, Jun; Jiang, Bin; Song, Hongwei; ...
2015-04-17
Here, we survey the recent advances in theoretical understanding of quantum state resolved dynamics, using the title reactions as examples. It is shown that the progress was made possible by major developments in two areas. First, an accurate analytical representation of many high-level ab initio points over a large configuration space can now be made with high fidelity and the necessary permutation symmetry. The resulting full-dimensional global potential energy surfaces enable dynamical calculations using either quasi-classical trajectory or more importantly quantum mechanical methods. The second advance is the development of accurate and efficient quantum dynamical methods, which are necessary formore » providing a reliable treatment of quantum effects in reaction dynamics such as tunneling, resonances, and zero-point energy. The powerful combination of the two advances has allowed us to achieve a quantitatively accurate characterization of the reaction dynamics, which unveiled rich dynamical features such as steric steering, strong mode specificity, and bond selectivity. The dependence of reactivity on reactant modes can be rationalized by the recently proposed sudden vector projection model, which attributes the mode specificity and bond selectivity to the coupling of reactant modes with the reaction coordinate at the relevant transition state. The deeper insights provided by these theoretical studies have advanced our understanding of reaction dynamics to a new level.« less
Development of Advanced Life Cycle Costing Methods for Technology Benefit/Cost/Risk Assessment
NASA Technical Reports Server (NTRS)
Yackovetsky, Robert (Technical Monitor)
2002-01-01
The overall objective of this three-year grant is to provide NASA Langley's System Analysis Branch with improved affordability tools and methods based on probabilistic cost assessment techniques. In order to accomplish this objective, the Aerospace Systems Design Laboratory (ASDL) needs to pursue more detailed affordability, technology impact, and risk prediction methods and to demonstrate them on variety of advanced commercial transports. The affordability assessment, which is a cornerstone of ASDL methods, relies on the Aircraft Life Cycle Cost Analysis (ALCCA) program originally developed by NASA Ames Research Center and enhanced by ASDL. This grant proposed to improve ALCCA in support of the project objective by updating the research, design, test, and evaluation cost module, as well as the engine development cost module. Investigations into enhancements to ALCCA include improved engine development cost, process based costing, supportability cost, and system reliability with airline loss of revenue for system downtime. A probabilistic, stand-alone version of ALCCA/FLOPS will also be developed under this grant in order to capture the uncertainty involved in technology assessments. FLOPS (FLight Optimization System program) is an aircraft synthesis and sizing code developed by NASA Langley Research Center. This probabilistic version of the coupled program will be used within a Technology Impact Forecasting (TIF) method to determine what types of technologies would have to be infused in a system in order to meet customer requirements. A probabilistic analysis of the CER's (cost estimating relationships) within ALCCA will also be carried out under this contract in order to gain some insight as to the most influential costs and the impact that code fidelity could have on future RDS (Robust Design Simulation) studies.
Epidemiology and Diagnosis of Helicobacter pylori infection.
Mentis, Andreas; Lehours, Philippe; Mégraud, Francis
2015-09-01
During the period reviewed, prevalence studies were essentially performed in less economically advanced countries and a high prevalence was found. The traditional risk factors for Helicobacter pylori positivity were mostly found. Transmission studied by molecular typing showed a familial transmission. The eventual role of water transmission was explored in several studies with controversial results. Concerning diagnosis, most of the invasive and noninvasive methods used for the diagnosis of H. pylori infection are long standing with efficient performance. The most interesting recent improvements in H. pylori diagnosis include advances in endoscopy, developments in molecular methods, and the introduction of omics-based techniques. Interpretation of old or newer method should take into account the pretest probability and the prevalence of H. pylori in the population under investigation. © 2015 John Wiley & Sons Ltd.
Collender, Philip A; Kirby, Amy E; Addiss, David G; Freeman, Matthew C; Remais, Justin V
2015-12-01
Limiting the environmental transmission of soil-transmitted helminths (STHs), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost-effective methods to detect and quantify STHs in the environment. We review the state-of-the-art of STH quantification in soil, biosolids, water, produce, and vegetation with regard to four major methodological issues: environmental sampling; recovery of STHs from environmental matrices; quantification of recovered STHs; and viability assessment of STH ova. We conclude that methods for sampling and recovering STHs require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Artificial intelligence, physiological genomics, and precision medicine.
Williams, Anna Marie; Liu, Yong; Regner, Kevin R; Jotterand, Fabrice; Liu, Pengyuan; Liang, Mingyu
2018-04-01
Big data are a major driver in the development of precision medicine. Efficient analysis methods are needed to transform big data into clinically-actionable knowledge. To accomplish this, many researchers are turning toward machine learning (ML), an approach of artificial intelligence (AI) that utilizes modern algorithms to give computers the ability to learn. Much of the effort to advance ML for precision medicine has been focused on the development and implementation of algorithms and the generation of ever larger quantities of genomic sequence data and electronic health records. However, relevance and accuracy of the data are as important as quantity of data in the advancement of ML for precision medicine. For common diseases, physiological genomic readouts in disease-applicable tissues may be an effective surrogate to measure the effect of genetic and environmental factors and their interactions that underlie disease development and progression. Disease-applicable tissue may be difficult to obtain, but there are important exceptions such as kidney needle biopsy specimens. As AI continues to advance, new analytical approaches, including those that go beyond data correlation, need to be developed and ethical issues of AI need to be addressed. Physiological genomic readouts in disease-relevant tissues, combined with advanced AI, can be a powerful approach for precision medicine for common diseases.
Investigation of mechanistic deterioration modeling for bridge design and management.
DOT National Transportation Integrated Search
2017-04-01
The ongoing deterioration of highway bridges in Colorado dictates that an effective method for allocating limited management resources be developed. In order to predict bridge deterioration in advance, mechanistic models that analyze the physical pro...
Experiences in integrating auto-translated state-chart designs for model checking
NASA Technical Reports Server (NTRS)
Pingree, P. J.; Benowitz, E. G.
2003-01-01
In the complex environment of JPL's flight missions with increasing dependency on advanced software designs, traditional software validation methods of simulation and testing are being stretched to adequately cover the needs of software development.
In Vivo Biomarkers for Targeting Colorectal Neoplasms
Hsiung, Pei-Lin; Wang, Thomas
2011-01-01
Summary Colorectal carcinoma continues to be a leading cause of cancer morbidity and mortality despite widespread adoption of screening methods. Targeted detection and therapy using recent advances in our knowledge of in vivo cancer biomarkers promise to significantly improve methods for early detection, risk stratification, and therapeutic intervention. The behavior of molecular targets in transformed tissues is being comprehensively assessed using new techniques of gene expression profiling and high throughput analyses. The identification of promising targets is stimulating the development of novel molecular probes, including significant progress in the field of activatable and peptide probes. These probes are being evaluated in small animal models of colorectal neoplasia and recently in the clinic. Furthermore, innovations in optical imaging instrumentation are resulting in the scaling down of size for endoscope compatibility. Advances in target identification, probe development, and novel instruments are progressing rapidly, and the integration of these technologies has a promising future in molecular medicine. PMID:19126961
User's manual: Subsonic/supersonic advanced panel pilot code
NASA Technical Reports Server (NTRS)
Moran, J.; Tinoco, E. N.; Johnson, F. T.
1978-01-01
Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words.
Novek, Sheila; Wilkinson, Heather
2017-01-01
Aim Developing strategies to ensure the safe participation of people with dementia in research is critical to support their wider inclusion in research and to advance knowledge in the areas of dementia policy and practice. Objectives This literature review synthesizes and critically appraises different approaches to promote the safe participation of people with dementia in qualitative research. Methods Two databases were searched for articles that discuss the methodological or ethical aspects of qualitative research involving people with dementia. We did not focus on informed consent or ethical review processes as these have been reviewed elsewhere. Findings Key issues that impact participant safety include: language, gatekeepers, the research relationship, communication, dealing with distress, knowledge dissemination, and researcher skills. Conclusion By synthesizing different approaches to safety and highlighting areas of debate, we hope to advance discussion and to contribute to the development of inclusive research methods.
Applying Structural Systems Thinking to Frame Perspectives on Social Work Innovation
Stringfellow, Erin J.
2017-01-01
Objective Innovation will be key to the success of the Grand Challenges Initiative in social work. A structural systems framework based in system dynamics could be useful for considering how to advance innovation. Method Diagrams using system dynamics conventions were developed to link common themes across concept papers written by social work faculty members and graduate students (N = 19). Results Transdisciplinary teams and ethical partnerships with communities and practitioners will be needed to responsibly develop high-quality innovative solutions. A useful next step would be to clarify to what extent factors that could “make or break” these partnerships arise from within versus outside of the field of social work and how this has changed over time. Conclusions Advancing innovation in social work will mean making decisions in a complex, ever-changing system. Principles and tools from methods that account for complexity, such as system dynamics, can help improve this decision-making process. PMID:28298877
Cardiac gene therapy: Recent advances and future directions.
Mason, Daniel; Chen, Yu-Zhe; Krishnan, Harini Venkata; Sant, Shilpa
2015-10-10
Gene therapy has the potential to serve as an adaptable platform technology for treating various diseases. Cardiovascular disease is a major cause of mortality in the developed world and genetic modification is steadily becoming a more plausible method to repair and regenerate heart tissue. Recently, new gene targets to treat cardiovascular disease have been identified and developed into therapies that have shown promise in animal models. Some of these therapies have advanced to clinical testing. Despite these recent successes, several barriers must be overcome for gene therapy to become a widely used treatment of cardiovascular diseases. In this review, we evaluate specific genetic targets that can be exploited to treat cardiovascular diseases, list the important delivery barriers for the gene carriers, assess the most promising methods of delivering the genetic information, and discuss the current status of clinical trials involving gene therapies targeted to the heart. Copyright © 2015 Elsevier B.V. All rights reserved.
Digital fabrication of textiles: an analysis of electrical networks in 3D knitted functional fabrics
NASA Astrophysics Data System (ADS)
Vallett, Richard; Knittel, Chelsea; Christe, Daniel; Castaneda, Nestor; Kara, Christina D.; Mazur, Krzysztof; Liu, Dani; Kontsos, Antonios; Kim, Youngmoo; Dion, Genevieve
2017-05-01
Digital fabrication methods are reshaping design and manufacturing processes through the adoption of pre-production visualization and analysis tools, which help minimize waste of materials and time. Despite the increasingly widespread use of digital fabrication techniques, comparatively few of these advances have benefited the design and fabrication of textiles. The development of functional fabrics such as knitted touch sensors, antennas, capacitors, and other electronic textiles could benefit from the same advances in electrical network modeling that revolutionized the design of integrated circuits. In this paper, the efficacy of using current state-of-the-art digital fabrication tools over the more common trialand- error methods currently used in textile design is demonstrated. Gaps are then identified in the current state-of-the-art tools that must be resolved to further develop and streamline the rapidly growing field of smart textiles and devices, bringing textile production into the realm of 21st century manufacturing.
European Union RACE program contributions to digital audiovisual communications and services
NASA Astrophysics Data System (ADS)
de Albuquerque, Augusto; van Noorden, Leon; Badique', Eric
1995-02-01
The European Union RACE (R&D in advanced communications technologies in Europe) and the future ACTS (advanced communications technologies and services) programs have been contributing and continue to contribute to world-wide developments in audio-visual services. The paper focuses on research progress in: (1) Image data compression. Several methods of image analysis leading to the use of encoders based on improved hybrid DCT-DPCM (MPEG or not), object oriented, hybrid region/waveform or knowledge-based coding methods are discussed. (2) Program production in the aspects of 3D imaging, data acquisition, virtual scene construction, pre-processing and sequence generation. (3) Interoperability and multimedia access systems. The diversity of material available and the introduction of interactive or near- interactive audio-visual services led to the development of prestandards for video-on-demand (VoD) and interworking of multimedia services storage systems and customer premises equipment.
Consolidation of molecular testing in clinical virology.
Scagnolari, Carolina; Turriziani, Ombretta; Monteleone, Katia; Pierangeli, Alessandra; Antonelli, Guido
2017-04-01
The development of quantitative methods for the detection of viral nucleic acids have significantly improved our ability to manage disease progression and to assess the efficacy of antiviral treatment. Moreover, major advances in molecular technologies during the last decade have allowed the identification of new host genetic markers associated with antiviral drug response but have also strongly revolutionized the way we see and perform virus diagnostics in the coming years. Areas covered: In this review, we describe the history and development of virology diagnostic methods, dedicating particular emphasis on the gradual evolution and recent advances toward the introduction of multiparametric platforms for the syndromic diagnosis. In parallel, we outline the consolidation of viral genome quantification practice in different clinical settings. Expert commentary: More rapid, accurate and affordable molecular technology can be predictable with particular emphasis on emerging techniques (next generation sequencing, digital PCR, point of care testing and syndromic diagnosis) to simplify viral diagnosis in the next future.
Chang, J; Kim, Y; Kwon, H J
2016-05-04
Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates.
NASA Technical Reports Server (NTRS)
ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.
2005-01-01
The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.
High-Resolution Methods for Diagnosing Cartilage Damage In Vivo
Novakofski, Kira D.; Pownder, Sarah L.; Koff, Matthew F.; Williams, Rebecca M.; Potter, Hollis G.; Fortier, Lisa A.
2016-01-01
Advances in current clinical modalities, including magnetic resonance imaging and computed tomography, allow for earlier diagnoses of cartilage damage that could mitigate progression to osteoarthritis. However, current imaging modalities do not detect submicrometer damage. Developments in in vivo or arthroscopic techniques, including optical coherence tomography, ultrasonography, bioelectricity including streaming potential measurement, noninvasive electroarthrography, and multiphoton microscopy can detect damage at an earlier time point, but they are limited by a lack of penetration and the ability to assess an entire joint. This article reviews current advancements in clinical and developing modalities that can aid in the early diagnosis of cartilage injury and facilitate studies of interventional therapeutics. PMID:26958316
NASA Technical Reports Server (NTRS)
Ogburn, Marilyn E.; Foster, John V.; Hoffler, Keith D.
2005-01-01
This paper reviews the use of piloted simulation at Langley Research Center as part of the NASA High-Angle-of-Attack Technology Program (HATP), which was created to provide concepts and methods for the design of advanced fighter aircraft. A major research activity within this program is the development of the design processes required to take advantage of the benefits of advanced control concepts for high-angle-of-attack agility. Fundamental methodologies associated with the effective use of piloted simulation for this research are described, particularly those relating to the test techniques, validation of the test results, and design guideline/criteria development.