A review of blended cathode materials for use in Li-ion batteries
NASA Astrophysics Data System (ADS)
Chikkannanavar, Satishkumar B.; Bernardi, Dawn M.; Liu, Lingyun
2014-02-01
Several commercial automotive battery suppliers have developed lithium ion cells which use cathodes that consist of a mixture of two different active materials. This approach is intended to take advantage of the unique properties of each material and optimize the performance of the battery with respect to the automotive operating requirements. Certain cathode materials have high coulombic capacity and good cycling characteristics, but are costly and exhibit poor thermal stability (e.g., LiNixCo1-x-yAlyO2). Alternately, other cathode materials exhibit good thermal stability, high voltage and high rate capability, but have low capacity (e.g., LiMn2O4). By blending two cathode materials the shortcomings of the parent materials could be minimized and the resultant blend can be tailored to have a higher energy or power density coupled with enhanced stability and lower cost. In this review, we survey the developing field of blended cathode materials from a new perspective. Targeting a range of cathode materials, we survey the advances in the field in the current review. Limitations, such as capacity decay due to metal dissolution are also discussed, as well as how the appropriate balance of characteristics of the blended materials can be optimized for hybrid- and electric-vehicle applications.
Development program on a cold cathode electron gun
NASA Technical Reports Server (NTRS)
Spindt, C. A.; Holland, C. E.
1985-01-01
During this phase of the cathode development program, SRI improved the multiple electron beam exposure system used to print hole patterns for the cathode arrays, studied anisotropic etch processes, conducted cathode investigations using an emission microscope, reviewed possible alternate materials for cathode fabrication, studied cathode storage techniques, conducted high power operation experiments, and demonstrated high-current-density operation with small arrays of tips.
High-performing LiMgxCuyCo₁-x-yO₂ cathode material for lithium rechargeable batteries.
Nithya, Chandrasekaran; Thirunakaran, Ramasamy; Sivashanmugam, Arumugam; Gopukumar, Sukumaran
2012-08-01
Sustainable power requirements of multifarious portable electronic applications demand the development of high energy and high power density cathode materials for lithium ion batteries. This paper reports a method for rapid synthesis of a cobalt based layered cathode material doped with mixed dopants Cu and Mg. The cathode material exhibits ordered layered structure and delivers discharge capacity of ∼200 mA h g(-1) at 0.2C rate with high capacity retention of 88% over the investigated 100 cycles.
Cathode refunctionalization as a lithium ion battery recycling alternative
NASA Astrophysics Data System (ADS)
Ganter, Matthew J.; Landi, Brian J.; Babbitt, Callie W.; Anctil, Annick; Gaustad, Gabrielle
2014-06-01
An approach to battery end-of-life (EOL) management is developed involving cathode refunctionalization, which enables remanufacturing of the cathode from EOL materials to regain the electrochemical performance. To date, the optimal end-of-life management of cathode materials is based on economic value and environmental impact which can influence the methods and stage of recycling. Traditional recycling methods can recover high value metal elements (e.g. Li, Co, Ni), but still require synthesis of new cathode from a mix of virgin and recovered materials. Lithium iron phosphate (LiFePO4) has been selected for study as a representative cathode material due to recent mass adoption and limited economic recycling drivers due to the low inherent cost of iron. Refunctionalization of EOL LiFePO4 cathode was demonstrated through electrochemical and chemical lithiation methods where the re-lithiated LiFePO4 regained the original capacity of 150-155 mAh g-1. The environmental impact of the new recycling technique was determined by comparing the embodied energy of cathode material originating from virgin, recycled, and refunctionalized materials. The results demonstrate that the LiFePO4 refunctionalization process, through chemical lithiation, decreases the embodied energy by 50% compared to cathode production from virgin materials.
Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam
2017-01-01
Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608
NASA Astrophysics Data System (ADS)
Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam
2017-04-01
Undesired electrode-electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.
Process for Low Cost Domestic Production of LIB Cathode Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurston, Anthony
The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASF’s battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASF’s already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111,more » 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEM’s and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.« less
A study of cathode erosion in high power arcjets
NASA Astrophysics Data System (ADS)
Harris, William Jackson, III
Cathode erosion continues to be one of the predominant technology concerns for high power arcjets. This study will show that cathode erosion in these devices is significantly affected by several mitigating factors, including propellant composition, propellant flowrate, current level, cathode material, and power supply current ripple. In a series of 50-hour and 100-hour long duration experiments, using a water-cooled 30 kilowatt laboratory arcjet, variations in the steady-state cathode erosion rate were characterized for each of these factors using nitrogen propellant at a fixed arc current of 250 Amperes. A complementary series of measurements was made using hydrogen propellant at an arc current of 100 Amperes. The cold cathode erosion rate was also differentiated from the steady-state cathode erosion rate in a series of multi-start cathode erosion experiments. Results of these measurements are presented, along with an analysis of the significant effects of current ripple on arcjet cathode erosion. As part of this study, over a dozen refractory cathode materials were evaluated to measure their resistance to arcjet cathode erosion. Among the materials tested were W-ThO2(1%, 2%, 4%), poly and mono-crystalline W, W-LaB6, W-La2O3, W-BaO2, W-BaCaAl2O4, W-Y2O3, and ZrB2. Based on these measurements, several critical material properties were identified, such work function, density, porosity, melting point, and evaporation rate. While the majority of the materials failed to outperform traditional W-ThO2, these experimental results are used to develop a parametric model of the arcjet cathode physics. The results of this model, and the results of a finite-element thermal analysis of the arcjet cathode, are presented to better explain the relative performance of the materials tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wangda; Dolocan, Andrei; Oh, Pilgun
Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less
Li, Wangda; Dolocan, Andrei; Oh, Pilgun; ...
2017-04-26
Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less
Xu, Jiantie; Ma, Jianmin; Fan, Qinghua; Guo, Shaojun; Dou, Shixue
2017-07-01
Recent advances and achievements in emerging Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries with promising cathode materials open up new opportunities for the development of high-performance lithium-ion battery alternatives. In this review, we focus on an overview of recent important progress in the design of advanced cathode materials and battery models for developing high-performance Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries. We start with a brief introduction to explain why Li-X batteries are important for future renewable energy devices. Then, we summarize the existing drawbacks, major progress and emerging challenges in the development of cathode materials for Li-O 2 (S) batteries. In terms of the emerging Li-X (Se, Te, I 2 , Br 2 ) batteries, we systematically summarize their advantages/disadvantages and recent progress. Specifically, we review the electrochemical performance of Li-Se (Te) batteries using carbonate-/ether-based electrolytes, made with different electrode fabrication techniques, and of Li-I 2 (Br 2 ) batteries with various cell designs (e.g., dual electrolyte, all-organic electrolyte, with/without cathode-flow mode, and fuel cell/solar cell integration). Finally, the perspective on and challenges for the development of cathode materials for the promising Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berdichevsky, Gene
Commercial Li-ion batteries typically use Ni- and Co-based intercalation cathodes. As the demand for improved performance from batteries increases, these cathode materials will no longer be able to provide the desired energy storage characteristics since they are currently approaching their theoretical limits. Conversion cathode materials are prime candidates for improvement of Li-ion batteries. On both a volumetric and gravimetric basis they have higher theoretical capacity than intercalation cathode materials. Metal fluoride (MFx) cathodes offer higher specific energy density and dramatically higher volumetric energy density. Challenges associated with metal fluoride cathodes were addressed through nanostructured material design and synthesis. A majormore » goal of this project was to develop and demonstrate Li-ion cells based on Si-comprising anodes and metal fluoride (MFx) comprising cathodes. Pairing the high-capacity MFx cathode with a high-capacity anode, such as an alloying Si anode, allows for the highest possible energy density on a cell level. After facing and overcoming multiple material synthesis and electrochemical instability challenges, we succeeded in fabrication of MFx half cells with cycle stability in excess of 500 cycles (to 20% or smaller degradation) and full cells with MFx-based cathodes and Si-based anodes with cycle stability in excess of 200 cycles (to 20% or smaller degradation).« less
Wu, Feng; Li, Ning; Su, Yuefeng; Zhang, Linjing; Bao, Liying; Wang, Jing; Chen, Lai; Zheng, Yu; Dai, Liqin; Peng, Jingyuan; Chen, Shi
2014-06-11
Lack of high-performance cathode materials has become a technological bottleneck for the commercial development of advanced Li-ion batteries. We have proposed a biomimetic design and versatile synthesis of ultrathin spinel membrane-encapsulated layered lithium-rich cathode, a modification by nanocoating. The ultrathin spinel membrane is attributed to the superior high reversible capacity (over 290 mAh g(-1)), outstanding rate capability, and excellent cycling ability of this cathode, and even the stubborn illnesses of the layered lithium-rich cathode, such as voltage decay and thermal instability, are found to be relieved as well. This cathode is feasible to construct high-energy and high-power Li-ion batteries.
McCloskey, Bryan D; Burke, Colin M; Nichols, Jessica E; Renfrew, Sara E
2015-08-18
The Li-air battery has received significant attention over the past decade given its high theoretical specific energy compared to competing energy storage technologies. Yet, numerous scientific challenges remain unsolved in the pursuit of attaining a battery with modest Coulombic efficiency and high capacity. In this Feature Article, we provide our current perspective on challenges facing the development of nonaqueous Li-O2 battery cathodes. We initially present a review on our understanding of electrochemical processes occurring at the nonaqueous Li-O2 cathode. Electrolyte and cathode instabilities and Li2O2 conductivity limitations are then discussed, and suggestions for future materials research development to alleviate these issues are provided.
A closed loop process for recycling spent lithium ion batteries
NASA Astrophysics Data System (ADS)
Gratz, Eric; Sa, Qina; Apelian, Diran; Wang, Yan
2014-09-01
As lithium ion (Li-ion) batteries continue to increase their market share, recycling Li-ion batteries will become mandatory due to limited resources. We have previously demonstrated a new low temperature methodology to separate and synthesize cathode materials from mixed cathode materials. In this study we take used Li-ion batteries from a recycling source and recover active cathode materials, copper, steel, etc. To accomplish this the batteries are shredded and processed to separate the steel, copper and cathode materials; the cathode materials are then leached into solution; the concentrations of nickel, manganese and cobalt ions are adjusted so NixMnyCoz(OH)2 is precipitated. The precipitated product can then be reacted with lithium carbonate to form LiNixMnyCozO2. The results show that the developed recycling process is practical with high recovery efficiencies (∼90%), and 1 ton of Li-ion batteries has the potential to generate 5013 profit margin based on materials balance.
Exploring Lithium Deficiency in Layered Oxide Cathode for Li-Ion Battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Sung-Jin; Uddin, Md-Jamal; Alaboina, Pankaj K.
Abstract or short description: The ever-growing demand for high capacity cathode materials is on the rise since the futuristic applications are knocking on the door. Conventional approach to developing such cathode relies on the lithium-excess materials to operate the cathode at high voltage and extract more lithium-ion. Yet, they fail to satiate the needs because of their unresolved issues upon cycling such as, for lithium manganese-rich layered oxides – their voltage fading, and for as nickel-based layered oxides – the structural transition. Here, in contrast, lithium-deficient ratio is demonstrated as a new approach to attain high capacity at high voltagemore » for layered oxide cathodes. Rapid and cost effective lithiation of a porous hydroxide precursor with lithium deficient ratio acted as a driving force to partially convert the layered material to spinel phase yielding in a multiphase structure (MPS) cathode material. Upon cycling, MPS revealed structural stability at high voltage and high temperature and resulted in fast lithium-ion diffusion by providing a distinctive SEI chemistry – MPS displayed minimum lithium loss in SEI and formed a thinner SEI. MPS thus offer high energy and high power applications and provides a new perspective compared to the conventional layered cathode materials denying the focus for lithium excess material.« less
Alaboina, Pankaj Kumar; Uddin, Md-Jamal; Cho, Sung-Jin
2017-10-26
Nanotechnology-driven development of cathode materials is an essential part to revolutionize the evolution of the next generation lithium ion batteries. With the progress of nanoprocess and nanoscale surface modification investigations on cathode materials in recent years, the advanced battery technology future seems very promising - Thanks to nanotechnology. In this review, an overview of promising nanoscale surface deposition methods and their significance in surface functionalization on cathodes is extensively summarized. Surface modified cathodes are provided with a protective layer to overcome the electrochemical performance limitations related to side reactions with electrolytes, reduce self-discharge reactions, improve thermal and structural stability, and further enhance the overall battery performance. The review addresses the importance of nanoscale surface modification on battery cathodes and concludes with a comparison of the different nanoprocess techniques discussed to provide a direction in the race to build advanced lithium-ion batteries.
Durability and performance optimization of cathode materials for fuel cells
NASA Astrophysics Data System (ADS)
Colon-Mercado, Hector Rafael
The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and understanding the mechanisms of ORR. However, a relatively small number of publications are related to the durability of Pt alloys in the PEMFC environment. In the second part of this dissertation an ADT is developed for the evaluation of PEMFC cathode catalysts in a time and cost effective way.
Robust Low-Cost Cathode for Commercial Applications
NASA Technical Reports Server (NTRS)
Patterson, Michael J.
2007-01-01
Under funding from the NASA Commercial Technology Office, a cathode assembly was designed, developed, fabricated, and tested for use in plasma sources for ground-based materials processing applications. The cathode development activity relied on the large prior NASA investment and successful development of high-current, high-efficiency, long-life hollow cathodes for use on the International Space Station Plasma Contactor System. The hollow cathode was designed and fabricated based on known engineering criteria and manufacturing processes for compatibility with the requirements of the plasma source. The transfer of NASA GRC-developed hollow cathode technology for use as an electron emitter in the commercial plasma source is anticipated to yield a significant increase in process control, while eliminating the present issues of electron emitter lifetime and contamination.
Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo
2017-12-13
Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.
Recent Progress in Advanced Materials for Lithium Ion Batteries
Chen, Jiajun
2013-01-01
The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as phosphates and silicates as cathode materials, will also be discussed. PMID:28809300
An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications
NASA Technical Reports Server (NTRS)
Hagh, Nader; Skandan, Ganesh
2012-01-01
At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation of the composite. High columbic efficiency (greater than 99%) upon cycling may indicate the formation of a stable SEI (solid-electrolyte interface) layer, which can contribute to long cycle life. The innovation in the current program, when further developed, will enable the system to maintain high energy and power densities at low temperatures, improve efficiency, and further stabilize and enhance the safety of the cell.
Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes.
Wang, Gang; Yu, Minghao; Wang, Jungang; Li, Debao; Tan, Deming; Löffler, Markus; Zhuang, Xiaodong; Müllen, Klaus; Feng, Xinliang
2018-05-01
Developing high-power cathodes is crucial to construct next-generation quick-charge batteries for electric transportation and grid applications. However, this mainly relies on nanoengineering strategies at the expense of low scalability and high battery cost. Another option is provided herein to build high-power cathodes by exploiting inexpensive bulk graphite as the active electrode material, where anion intercalation is involved. With the assistance of a strong alginate binder, the disintegration problem of graphite cathodes due to the large volume variation of >130% is well suppressed, making it possible to investigate the intrinsic electrochemical behavior and to elucidate the charge storage kinetics of graphite cathodes. Ultrahigh power capability up to 42.9 kW kg -1 at the energy density of >300 Wh kg -1 (based on graphite mass) and long cycling life over 10 000 cycles are achieved, much higher than those of conventional cathode materials for Li-ion batteries. A self-activating and capacitive anion intercalation into graphite is discovered for the first time, making graphite a new intrinsic intercalation-pseudocapacitance cathode material. The finding highlights the kinetical difference of anion intercalation (as cathode) from cation intercalation (as anode) into graphitic carbon materials, and new high-power energy storage devices will be inspired. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Operation and Applications of the Boron Cathodic Arc Ion Source
NASA Astrophysics Data System (ADS)
Williams, J. M.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.; Freeman, J. H.
2008-11-01
The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.
Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries
NASA Astrophysics Data System (ADS)
Zhu, Xiaobo; Lin, Tongen; Manning, Eric; Zhang, Yuancheng; Yu, Mengmeng; Zuo, Bin; Wang, Lianzhou
2018-06-01
The ever-growing market of electrochemical energy storage impels the advances on cost-effective and environmentally friendly battery chemistries. Lithium-ion batteries (LIBs) are currently the most critical energy storage devices for a variety of applications, while sodium-ion batteries (SIBs) are expected to complement LIBs in large-scale applications. In respect to their constituent components, the cathode part is the most significant sector regarding weight fraction and cost. Therefore, the development of cathode materials based on Earth's abundant elements (Fe and Mn) largely determines the prospects of the batteries. Herein, we offer a comprehensive review of the up-to-date advances on Fe- and Mn-based cathode materials for LIBs and SIBs, highlighting some promising candidates, such as Li- and Mn-rich layered oxides, LiNi0.5Mn1.5O4, LiFe1-xMnxPO4, NaxFeyMn1-yO2, Na4MnFe2(PO4)(P2O7), and Prussian blue analogs. Also, challenges and prospects are discussed to direct the possible development of cost-effective and high-performance cathode materials for future rechargeable batteries.
Apparatus and method for treating a cathode material provided on a thin-film substrate
Hanson, Eric J.; Kooyer, Richard L.
2001-01-01
An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.
Apparatus and method for treating a cathode material provided on a thin-film substrate
Hanson, Eric J.; Kooyer, Richard L.
2003-01-01
An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.
Raza, Rizwan; Abbas, Ghazanfar; Liu, Qinghua; Patel, Imran; Zhu, Bin
2012-06-01
Nanocomposite based cathode materials compatible for low temperature solid oxide fuel cells (LTSOFCs) are being developed. In pursuit of compatible cathode, this research aims to synthesis and investigation nanocomposite La0.3Sr0.2Mn0.1Zn0.4 oxide-Sm0.2Ce0.8O1.9 (LSMZ-SDC) based system. The material was synthesized through wet chemical method and investigated for oxide-ceria composite based electrolyte LTSOFCs. Electrical property was studied by AC electrochemical impedance spectroscopy (EIS). The microstructure, thermal properties, and elemental analysis of the samples were characterized by TGA/DSC, XRD, SEM, respectively. The AC conductivity of cathode was obtained for 2.4 Scm(-1) at 550 degrees C in air. This cathode is compatible with ceria-based composite electrolytes and has improved the stability of the material in SOFC cathode environment.
NASA Astrophysics Data System (ADS)
Guo, Sheng-Ping; Li, Jia-Chuang; Xu, Qian-Ting; Ma, Ze; Xue, Huai-Guo
2017-09-01
In the past several years, many efforts have been made to develop polyanion-type cathode materials for sodium ion batteries by chemists and material scientists. These materials are one of the main types of promising cathodes though the studies are still in their infancy. This paper reviews almost all the important advances of polyanion-type cathodes on their syntheses, crystal structures, morphologies, electrochemical performance and Na redox mechanisms. It specifically focuses on their crystal chemistry and electrochemical behaviors. The contents are divided into several categories according to their chemical compositions. After introduction of the synthetic methods, phosphates (ortho-, pyro- and fluoro-), silicates, sulfates, and mixed anions type cathodes are summarized and discussed successively.
Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; ...
2017-01-05
The price of the cathode active materials in lithium ion batteries is a key cost driver and thus significantly impacts consumer adoption of devices that utilize large energy storage contents (e.g. electric vehicles). A process model has been developed and used to study the production process of a common lithium-ion cathode material, lithiated nickel manganese cobalt oxide, using the co-precipitation method. The process was simulated for a plant producing 6500 kg day –1. The results indicate that the process will consume approximately 4 kWh kg NMC –1 of energy, 15 L kg NMC –1 of process water, and cost $23more » to produce a kg of Li-NMC333. The calculations were extended to compare the production cost using two co-precipitation reactions (with Na 2CO 3 and NaOH), and similar cathode active materials such as lithium manganese oxide and lithium nickel cobalt aluminum oxide. Finally, a combination of cost saving opportunities show the possibility to reduce the cost of the cathode material by 19%.« less
Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries.
Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Shan, Hui; Fan, Linlin; Wu, Chunxia; Li, Dejun; Lu, Shigang
2017-03-29
Development of alternative cathode materials is of highly desirable for sustainable and cost-efficient lithium-ion batteries (LIBs) in energy storage fields. In this study, for the first time, we report tunable nitrogen-doped graphene with active functional groups for cathode utilization of LIBs. When employed as cathode materials, the functionalized graphene frameworks with a nitrogen content of 9.26 at% retain a reversible capacity of 344 mAh g -1 after 200 cycles at a current density of 50 mA g -1 . More surprisingly, when conducted at a high current density of 1 A g -1 , this cathode delivers a high reversible capacity of 146 mAh g -1 after 1000 cycles. Our current research demonstrates the effective significance of nitrogen doping on enhancing cathode performance of functionalized graphene for LIBs.
Calcium intercalation into layered fluorinated sodium iron phosphate
NASA Astrophysics Data System (ADS)
Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; Liao, Chen; Fister, Timothy T.; Ingram, Brian J.
2017-11-01
The energy density and cost of battery systems, relative to the current state-of-the art, can be improved by developing alternative chemistries utilizing multivalent working ions such as calcium. Many challenges must be overcome, such as the identification of cathode materials with high energy density and an electrolyte with a wide electrochemical stability window that can plate and strip calcium metal, before market implementation. Herein, the feasibility and cycling performance of Ca2+ intercalation into a desodiated layered Na2FePO4F host is described. This is the first demonstration of Ca2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca2+ intercalation. Although substantial effort is expected in order to develop a high energy density cathode material, this study demonstrates the feasibility of Ca2+ intercalation into multiple host structures types, thereby extending opportunities for development of Ca insertion host structures, suggesting such a cathode material can be identified and developed.
Thermal activated ("thermal") battery technology. Part IIIa: FeS 2 cathode material
NASA Astrophysics Data System (ADS)
Masset, Patrick J.; Guidotti, Ronald A.
This article presents an overview of the pyrite FeS 2 used as cathode material in thermally activated ("thermal") batteries. A large emphasis was placed on the physicochemical properties and electrochemical performance of the pyrite FeS 2, including the discharge mechanisms, self-discharge phenomena, and recent developments.
A novel cobalt-free layered GdBaFe 2O 5+ δ cathode for proton conducting solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Ding, Hanping; Xue, Xingjian
While cobalt-containing perovskite-type cathode materials facilitate the activation of oxygen reduction, they also suffer from problems like poor chemical stability in CO 2 and high thermal expansion coefficients. In this research, a cobalt-free layered GdBaFe 2O 5+ δ (GBF) perovskite was developed as a cathode material for protonic ceramic membrane fuel cells (PCMFCs) based on proton conducting electrolyte of stable BaZr 0.1Ce 0.7Y 0.2O 3- δ (BZCY7). The button cells of Ni-BZCY7|BZCY7|GBF were fabricated and characterized using complex impedance technique from 600 to 700 °C. An open-circuit potential of 1.007 V, maximum power density of 417 mW cm -2, and a low electrode polarization resistance of 0.18 Ω cm 2 were achieved at 700 °C. The results indicate that layered GBF perovskite is a good candidate for cobalt-free cathode material, while the developed Ni-BZCY7|BZCY7|GBF cell is a promising functional material system for solid oxide fuel cells.
Long lifetime hollow cathodes for 30-cm mercury ion thrusters
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Kerslake, W. R.
1976-01-01
An experimental investigation of hollow cathodes for 30-cm Hg bombardment thrusters was carried out. Both main and neutralizer cathode configurations were tested with both rolled foil inserts coated with low work function material and impregnated porous tungsten inserts. Temperature measurements of an impregnated insert at various positions in the cathode were made. These, along with the cathode thermal profile are presented. A theory for rolled foil and impregnated insert operation and lifetime in hollow cathodes is developed. Several endurance tests, as long as 18000 hours at emission currents of up to 12 amps were attained with no degradation in performance.
NASA Astrophysics Data System (ADS)
Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.
2014-06-01
The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.
Mancini, Marilena; Gabrielli, Giulio; Kinyanjui, Michael; Kaiser, Ute; Wohlfahrt‐Mehrens, Margret
2016-01-01
Abstract We report Co‐free, Li‐rich Li1+xNi0.5Mn1.5O4 (0
Porous graphene nanocages for battery applications
Amine, Khalil; Lu, Jun; Du, Peng; Wen, Jianguo; Curtiss, Larry A.
2017-03-07
An active material composition includes a porous graphene nanocage and a source material. The source material may be a sulfur material. The source material may be an anodic material. A lithium-sulfur battery is provided that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode of the lithium-sulfur battery includes a porous graphene nanocage and a sulfur material and at least a portion of the sulfur material is entrapped within the porous graphene nanocage. Also provided is a lithium-air battery that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode includes a porous graphene nanocage and where the cathode may be free of a cathodic metal catalyst.
Mixed Conducting Electrodes for Better AMTEC Cells
NASA Technical Reports Server (NTRS)
Ryan, Margaret; Williams, Roger; Homer, Margie; Lara. Liana
2003-01-01
Electrode materials that exhibit mixed conductivity (that is, both electronic and ionic conductivity) have been investigated in a continuing effort to improve the performance of the alkali metal thermal-to-electric converter (AMTEC). These electrode materials are intended primarily for use on the cathode side of the sodium-ion-conducting solid electrolyte of a sodium-based AMTEC cell. They may also prove useful in sodium-sulfur batteries, which are under study for use in electric vehicles. An understanding of the roles played by the two types of conduction in the cathode of a sodium-based AMTEC cell is prerequisite to understanding the advantages afforded by these materials. In a sodium-based AMTEC cell, the anode face of an anode/solid-electrolyte/cathode sandwich is exposed to Na vapor at a suitable pressure. Upon making contact with the solid electrolyte on the anode side, Na atoms oxidize to form Na+ ions and electrons. Na+ ions then travel through the electrolyte to the cathode. Na+ ions leave the electrolyte at the cathode/electrolyte interface and are reduced by electrons that have been conducted through an external electrical load from the anode to the cathode. Once the Na+ ions have been reduced to Na atoms, they travel through the cathode to vaporize into a volume where the Na vapor pressure is much lower than it is on the anode side. Thus, the cathode design is subject to competing requirements to be thin enough to allow transport of sodium to the low-pressure side, yet thick enough to afford adequate electronic conductivity. The concept underlying the development of the present mixed conducting electrode materials is the following: The constraint on the thickness of the cathode can be eased by incorporating Na+ -ionconducting material to facilitate transport of sodium through the cathode in ionic form. At the same time, by virtue of the electronically conducting material mixed with the ionically conducting material, reduction of Na+ ions to Na atoms can take place throughout the thickness of the cathode. The net effect is to reduce the diffusion and flow resistance to sodium through the electrode while reducing the electronic resistance by providing shorter conduction paths for electrons. Reduced resistance to both sodium transport and electronic conductivity results in an increase in electric power output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Jennifer B.; Gaines, Linda; Barnes, Matthew
2014-01-01
This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new ormore » updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.« less
Hu, Enyuan; Wang, Xuelong; Yu, Xiqian; ...
2018-01-19
The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers’ demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today’s market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safetymore » issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. Finally, in many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution.« less
Composite Cathodes for Dual-Rate Li-Ion Batteries
NASA Technical Reports Server (NTRS)
Whitacre, Jay; West, William; Bugga, Ratnakumar
2008-01-01
Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions. The electrochemically active ingredients of the present developmental composite cathode materials are: carbon-coated LiFePO4, which has a specific charge capacity of about 160 mA h/g and has been used as a high-discharge-rate cathode material and Li[Li(0.17)Mn(0.58)Ni(0.25)]O2, which has a specific charge capacity of about 240 mA h/g and has been used as a high-energy-density cathode material. In preparation for fabricating the composite material cathode described, these electrochemically active ingredients are incorporated into two sub-composites: a mixture comprising 10 weight percent of poly(vinylidine fluoride); 10 weight percent of carbon and 80 weight percent of carbon coated LiFePO4; and, a mixture comprising 10 weight percent of PVDF, and 80 weight percent of Li[Li(0.17)Mn(0.58)Ni(0.25)]O2. In the fabrication process, these mixtures are spray-deposited onto an aluminum current collector. Electrochemical tests performed thus far have shown that better charge/discharge performance is obtained when either 1) each mixture is sprayed on a separate area of the current collector or (2) the mixtures are deposited sequentially (in contradistinction to simultaneously) on the same current-collector area so that the resulting composite cathode material consists of two different sub-composite layers.
Long lifetime hollow cathodes for 30-cm mercury ion thrusters
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Kerslake, W. R.
1976-01-01
An experimental investigation of hollow cathodes for 30-cm Hg bombardment thrusters was carried out. Both main and neutralizer cathode configurations were tested with both rolled foil inserts coated with low work function material and impregnated porous tungsten inserts. Temperature measurements of an impregnated insert at various positions in the cathode were made. These, along with the cathode thermal profile are presented. A theory for rolled foil and impregnated insert operation and lifetime in hollow cathodes is developed. Several endurance tests, as long as 18,000 hours at emission currents of up to 12 amps were attained with no degradation in performance.
High Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries
2015-04-24
As a result, two major approaches have been taken to increase electrode- electrolyte interfacial area while minimizing lithium diffusion lengths...Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries Siu on Tung, Krista L. Hawthorne, Yi Ding, James Mainero, and Levi T. Thompson...Automotive Research Development and Engineering Center, Warren, MI 48387, USA Keywords: nanostructured materials, lithium ion batteries, cathode
Li, Linsen; Meng, Fei; Jin, Song
2012-11-14
The increasing demands from large-scale energy applications call for the development of lithium-ion battery (LIB) electrode materials with high energy density. Earth abundant conversion cathode material iron trifluoride (FeF(3)) has a high theoretical capacity (712 mAh g(-1)) and the potential to double the energy density of the current cathode material based on lithium cobalt oxide. Such promise has not been fulfilled due to the nonoptimal material properties and poor kinetics of the electrochemical conversion reactions. Here, we report for the first time a high-capacity LIB cathode that is based on networks of FeF(3) nanowires (NWs) made via an inexpensive and scalable synthesis. The FeF(3) NW cathode yielded a discharge capacity as high as 543 mAh g(-1) at the first cycle and retained a capacity of 223 mAh g(-1) after 50 cycles at room temperature under the current of 50 mA g(-1). Moreover, high-resolution transmission electron microscopy revealed the existence of continuous networks of Fe in the lithiated FeF(3) NWs after discharging, which is likely an important factor for the observed improved electrochemical performance. The loss of active material (FeF(3)) caused by the increasingly ineffective reconversion process during charging was found to be a major factor responsible for the capacity loss upon cycling. With the advantages of low cost, large quantity, and ease of processing, these FeF(3) NWs are not only promising battery cathode materials but also provide a convenient platform for fundamental studies and further improving conversion cathodes in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov
2014-06-16
The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V andmore » later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.« less
2013 Estorm - Invited Paper - Cathode Materials Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, Claus; Mohanty, Debasish; Li, Jianlin
2014-01-01
The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403 431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead acid with a lead oxide cathode and a terminal voltage of 2.1more » V and later the NiCd with a nickel(III) oxide hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783 789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.« less
Cathode material for lithium batteries
Park, Sang-Ho; Amine, Khalil
2013-07-23
A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.
Cathode material for lithium batteries
Park, Sang-Ho; Amine, Khalil
2015-01-13
A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.
Diagnostics of cathode material loss in cutting plasma torch
NASA Astrophysics Data System (ADS)
Gruber, J.; Šonský, J.; Hlína, J.
2014-07-01
A cutting plasma torch was observed in several ways by a high-speed camera with a focus on the cathode area. In the first experiment, the plasma arc between the nozzle tip and anode was recorded in a series of duty cycles ranging from new unworn cathodes to cathode failure due to wear and material loss. In the second experiment, we used a specially modified nozzle to observe the inside area between the cathode and the nozzle exit through a fused silica window. Finally, using tilted view, we observed a pool of molten hafnium at the cathode tip during the plasma torch operation. The process of cathode material melting, droplet formation, their expulsion and rate of cathode material loss was examined.
High Current Density, Long Life Cathodes for High Power RF Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ives, Robert Lawrence; Collins, George; Falce, Lou
2014-01-22
This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for themore » technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.« less
Nanostructured MnO2-Based Cathodes for Li-Ion/Polymer Cells
NASA Technical Reports Server (NTRS)
Skandan, Ganesh; Singhal, Amit
2005-01-01
Nanostructured MnO2-based cathodes for Li-ion/polymer electrochemical cells have been investigated in a continuing effort to develop safe, high-energy-density, reliable, low-toxicity, rechargeable batteries for a variety of applications in NASA programs and in mass-produced commercial electronic equipment. Whereas the energy densities of state-of-the-art lithium-ion/polymer batteries range from 150 to 175 W h/kg, the goal of this effort is to increase the typical energy density to about 250 W h/kg. It is also expected that an incidental benefit of this effort will be increases in power densities because the distances over which Li ions must diffuse through nanostructured cathode materials are smaller than those through solid bulk cathode materials.
DARPA Advanced High Current Density Cathodes for Defense Applications: Development Phase
1993-03-01
Project Number 01-0624-07-0857 Report Number SAIC-93/1018 March 1, 1993 Science Apphcations Internatia Corporation An Employee-Owned Company OTIC a...Density Cathodes for Defense Applications: Development Phase FINAL REPORT Contract Number N00014-90-C-2118 Project Number 01-0624-07-0857 Report...of a typical Si-TaSi2 boule used for the eutectic advanced cathode materials in this project . The seed for the boule is at right in the photograph. v
NASA Astrophysics Data System (ADS)
Kaufmann, H. T. C.; Cunha, M. D.; Benilov, M. S.; Hartmann, W.; Wenzel, N.
2017-10-01
A model of cathode spots in high-current vacuum arcs is developed with account of all the potentially relevant mechanisms: the bombardment of the cathode surface by ions coming from a pre-existing plasma cloud; vaporization of the cathode material in the spot, its ionization, and the interaction of the produced plasma with the cathode; the Joule heat generation in the cathode body; melting of the cathode material and motion of the melt under the effect of the plasma pressure and the Lorentz force and related phenomena. After the spot has been ignited by the action of the cloud (which takes a few nanoseconds), the metal in the spot is melted and accelerated toward the periphery of the spot, with the main driving force being the pressure due to incident ions. Electron emission cooling and convective heat transfer are dominant mechanisms of cooling in the spot, limiting the maximum temperature of the cathode to approximately 4700-4800 K. A crater is formed on the cathode surface in this way. After the plasma cloud has been extinguished, a liquid-metal jet is formed and a droplet is ejected. No explosions have been observed. The modeling results conform to estimates of different mechanisms of cathode erosion derived from the experimental data on the net and ion erosion of copper cathodes.
High-Capacity, High-Voltage Composite Oxide Cathode Materials
NASA Technical Reports Server (NTRS)
Hagh, Nader M.
2015-01-01
This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.
Kim, Junyoung; Sengodan, Sivaprakash; Kwon, Goeun; Ding, Dong; Shin, Jeeyoung; Liu, Meilin; Kim, Guntae
2014-10-01
We report on an excellent anode-supported H(+) -SOFC material system using a triple conducting (H(+) /O(2-) /e(-) ) oxide (TCO) as a cathode material for H(+) -SOFCs. Generally, mixed ionic (O(2-) ) and electronic conductors (MIECs) have been selected as the cathode material of H(+) -SOFCs. In an H(+) -SOFC system, however, MIEC cathodes limit the electrochemically active sites to the interface between the proton conducting electrolyte and the cathode. New approaches to the tailoring of cathode materials for H(+) -SOFCs should therefore be considered. TCOs can effectively extend the electrochemically active sites from the interface between the cathode and the electrolyte to the entire surface of the cathode. The electrochemical performance of NBSCF/BZCYYb/BZCYYb-NiO shows excellent long term stability for 500 h at 1023 K with high power density of 1.61 W cm(-2) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage
Farmer, Joseph C.; Kaschmitter, James; Pierce, Steve
2017-06-06
A method for producing a multi-layer bipolar coated cell according to one embodiment includes applying a first active cathode material above a substrate to form a first cathode; applying a first solid-phase ionically-conductive electrolyte material above the first cathode to form a first electrode separation layer; applying a first active anode material above the first electrode separation layer to form a first anode; applying an electrically conductive barrier layer above the first anode; applying a second active cathode material above the anode material to form a second cathode; applying a second solid-phase ionically-conductive electrolyte material above the second cathode to form a second electrode separation layer; applying a second active anode material above the second electrode separation layer to form a second anode; and applying a metal material above the second anode to form a metal coating section. In another embodiment, the anode is formed prior to the cathode. Cells are also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Enyuan; Wang, Xuelong; Yu, Xiqian
The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers’ demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today’s market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safetymore » issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. Finally, in many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution.« less
Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects.
Zhitomirsky, I
2002-03-29
Electrodeposition of ceramic materials can be performed by electrophoretic (EPD) or electrolytic (ELD) deposition. Electrophoretic deposition is achieved via motion of charged particles towards an electrode under an applied electric field. Electrolytic deposition produces colloidal particles in cathodic reactions for subsequent deposition. Various electrochemical strategies and deposition mechanisms have been developed for electrodeposition of ceramic and organoceramic films, and are discussed in the present article. Electrode-position of ceramic and organoceramic materials includes mass transport, accumulation of particles near the electrode and their coagulation to form a cathodic deposit. Various types of interparticle forces that govern colloidal stability in the absence and presence of processing additives are discussed. Novel theoretical contributions towards an interpretation of particle coagulation near the electrode surface are reviewed. Background information is given on the methods of particle charging, stabilization of colloids in aqueous and non-aqueous media, electrophoretic mobility of ceramic particles and polyelectrolytes, and electrode reactions. This review also covers recent developments in the electrodeposition of ceramic and organoceramic materials.
Surface Modification Technique of Cathode Materials for
NASA Astrophysics Data System (ADS)
Jia, Yongzhong; Han, Jinduo; Jing, Yan; Jin, Shan; Qi, Taiyuan
Cathode materials for Li-ion battery LiMn2O4 and LiCo0.1Mn1.9O4 were prepared by soft chemical method. Carbon, which was made by decomposing organic compounds, was used as modifying agent. Cathode material matrix was mixed with water solution that had contained organic compound such as cane sugar, soluble amylum, levulose et al. These mixture were reacted at 150 200 °C for 0.5 4 h in a Teflon-lined autoclave to get a series of homogeneously C-coated cathode materials. The new products were analyzed by X-ray diffraction (XRD) and infrared (IR). Morphology of cathode materials was characterized by scanning electron microscope (SEM) and transition electron microscope (TEM). The new homogeneously C-coated products that were used as cathode materials of lithium-ion battery had good electrochemical stability and cycle performance. This technique has free-pollution, low cost, simpleness and easiness to realize the industrialization of the cathode materials for Li-ion battery.
NASA Astrophysics Data System (ADS)
Syrový, T.; Kazda, T.; Syrová, L.; Vondrák, J.; Kubáč, L.; Sedlaříková, M.
2016-03-01
The presented study is focused on the development of LiFePO4 based cathode for thin and flexible screen printed secondary lithium based accumulators. An ink formulation was developed for the screen printing technique, which enabled mass production of accumulator's cathode for Smart Label and Smart Textile applications. The screen printed cathode was compared with an electrode prepared by the bar coating technique using an ink formulation based on the standard approach of ink composition. Obtained LiFePO4 cathode layers were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and galvanostatic charge/discharge measurements at different loads. The discharge capacity, capacity retention and stability at a high C rate of the LiFePO4 cathode were improved when Super P and PVDF were replaced by conductive polymers PEDOT:PSS. The achieved capacity during cycling at various C rates was approximately the same at the beginning and at the end, and it was about 151 mAh/g for cycling under 1C. The obtained results of this novelty electrode layer exceed the parameters of several electrode layers based on LiFePO4 published in literature in terms of capacity, cycling stability and overcomes them in terms of simplicity/industrial process ability of cathode layer fabrication and electrode material preparation.
NASA Astrophysics Data System (ADS)
Liu, Bingchuan; Brückner, Cristian; Lei, Yu; Cheng, Yue; Santoro, Carlo; Li, Baikun
2014-07-01
This study focused on the development of novel cathode material based on the pyrolysis of [meso-tetrakis(2-thienyl)porphyrinato]Co(II) (CoTTP) for use in single chamber microbial fuel cells (SCMFCs) to treat wastewater containing methanol. The cathodes produced at two loadings (0.5 and 1.0 mg cm-2) were examined in batch mode SCMFCs treating methanol of different concentrations (ranging from 0.005 to 0.04 M) over a 900 h operational period. Methanol was completely removed in SCMFCs, and the cycle duration was prolonged at high methanol concentrations, indicating methanol was used as fuel in SCMFCs. Methanol had more poisoning effects to the traditional platinum (Pt) cathodes than to the CoTTP cathodes. Specifically, power generations from SCMFCs with Pt cathodes gradually decreased over time, while the ones with CoTTP cathodes remained stable, even at the highest methanol concentration (0.04 M). Cathode linear sweep voltammetry (LSVs) indicated that the electrocatalytic activity of the Pt cathode was suppressed by methanol. Higher CoTTP loadings had similar open circuit potential (OCP) but higher electrocatalytic activity than lower loadings. This study demonstrated that methanol can be co-digested with wastewater and converted to power in MFCs, and a novel cathode CoTTP catalyst exhibits higher tolerance towards methanol compared with traditional Pt catalyst.
Hollow Cathode Studies for the Next Generation Ion Engines in JAXA
NASA Astrophysics Data System (ADS)
Ohkawa, Yasushi; Hayakawa, Yukio; Yoshida, Hideki; Miyazaki, Katsuhiro; Kitamura, Shoji; Kajiwara, Kenichi
The current status of experimental studies of hollow cathodes for the next-generation ion engines in the Aerospace Research and Development Directorate, JAXA is described. One of the topics on the hollow cathode studies is a life test of a discharge cathode. The keeper disk, orifice plate, and cathode tube of this discharge cathode are made of "high density graphite," which possesses much higher tolerance to ion impingement compared with conventional metal materials. The life test had started in March 2006 and the cumulative operation time reached 15,600 hours in April 2008. No severe degradation has been found both in the operation voltages and electrodes so far, and the test is favorably in progress. In addition to the life test of the discharge cathode, some experiments for design optimization of neutralizer cathodes have been performed. A life test of the neutralizer cathode is being started in June 2008.
Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram
2016-03-01
In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Development program on a cold cathode electron gun
NASA Technical Reports Server (NTRS)
Spindt, C. A.
1979-01-01
A prototype electron gun with a field emitter cathode capable of producing 95 mA in a 1/4 mm diameter beam at 12 kV was produced. Achievement of this goal required supporting studies in cathode fabrication, cathode performance, gun design, cathode mounting and gun fabrication. A series of empirical investigations advanced fabrication technology: More stable emitters were produced and multiple cone failure caused by chain reaction discharges were reduced. The cathode is capable of producing well over 95 mA, but a substantial collector development effort was required to demonstrate emission levels in the 100 mA region. Space charge problems made these levels difficult to achieve. Recommendations are made for future process and materials investigation. Electron gun designs were modeled and tested. A pair of two-electrode gun structures were fabricated and tested; one gun was delivered to NASA. Cathodes were pretested up to 100 mA at SRI and delivered to NASA for test in the gun structure.
Cathode for aluminum producing electrolytic cell
Brown, Craig W.
2004-04-13
A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.
Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries
NASA Astrophysics Data System (ADS)
Li, Xuelei; Zhang, Jin; Song, Dawei; Song, Jishun; Zhang, Lianqi
2017-03-01
A new green recycling process (named as direct regeneration process) of cathode material mixture from scrapped LiFePO4 batteries is designed for the first time. Through this direct regeneration process, high purity cathode material mixture (LiFePO4 + acetylene black), anode material mixture (graphite + acetylene black) and other by-products (shell, Al foil, Cu foil and electrolyte solvent, etc.) are recycled from scrapped LiFePO4 batteries with high yield. Subsequently, recycled cathode material mixture without acid leaching is further directly regenerated with Li2CO3. Direct regeneration procedure of recycled cathode material mixture from 600 to 800 °C is investigated in detail. Cathode material mixture regenerated at 650 °C display excellent physical, chemical and electrochemical performances, which meet the reuse requirement for middle-end Li-ion batteries. The results indicate the green direct regeneration process with low-cost and high added-value is feasible.
Diamond-Coated Carbon Nanotubes for Efficient Field Emission
NASA Technical Reports Server (NTRS)
Dimitrijevic, Stevan; Withers, James C.
2005-01-01
Field-emission cathodes containing arrays of carbon nanotubes coated with diamond or diamondlike carbon (DLC) are undergoing development. Multiwalled carbon nanotubes have been shown to perform well as electron field emitters. The idea underlying the present development is that by coating carbon nanotubes with wideband- gap materials like diamond or DLC, one could reduce effective work functions, thereby reducing threshold electric-field levels for field emission of electrons and, hence, improving cathode performance. To demonstrate feasibility, experimental cathodes were fabricated by (1) covering metal bases with carbon nanotubes bound to the bases by an electrically conductive binder and (2) coating the nanotubes, variously, with diamond or DLC by plasma-assisted chemical vapor deposition. In tests, the threshold electric-field levels for emission of electrons were reduced by as much as 40 percent, relative to those of uncoated- nanotube cathodes. Coating with diamond or DLC could also make field emission-cathodes operate more stably by helping to prevent evaporation of carbon from nanotubes in the event of overheating of the cathodes. Cathodes of this type are expected to be useful principally as electron sources for cathode-ray tubes and flat-panel displays.
Li- and Mn-Rich Cathode Materials: Challenges to Commercialization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Myeong, Seungjun; Cho, Woongrae
2016-12-14
The lithium- and manganese-rich (LMR) layered structure cathode exhibit one of the highest specific energy (~900 Wh kg-1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progresses and understandings on the application of LMR cathode materials from practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full cell operation are systematically analysed. These factors include the first cycle capacity loss, voltage fade, powder tap density,more » electrode density of LMR based cathode etc. New approaches to minimize the detrimental effect of these factors are highlighted in this work. We also provided the perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while always keeping practical considerations in mind.« less
Non-isothermal electrochemical model for lithium-ion cells with composite cathodes
NASA Astrophysics Data System (ADS)
Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang
2015-06-01
Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.
Li, Zheng-Yao; Wang, Huibo; Chen, Dongfeng; Sun, Kai; Yang, Wenyun; Yang, Jinbo; Liu, Xiangfeng; Han, Songbai
2018-04-09
The development of advanced cathode materials is still a great interest for sodium-ion batteries. The feasible commercialization of sodium-ion batteries relies on the design and exploitation of suitable electrode materials. This study offers a new insight into material design to exploit high-performance P2-type cathode materials for sodium-ion batteries. The incorporation of Mg 2+ into intrinsic Na + vacancies in Na-ion layers can lead to a high-performance P2-type cathode material for sodium-ion batteries. The materials prepared by the coprecipitation approach show a well-defined morphology of secondary football-like hierarchical structures. Neutron power diffraction and refinement results demonstrate that the incorporation of Mg 2+ into intrinsic vacancies can enlarge the space for Na-ion diffusion, which can increase the d-spacing of the (0 0 2) peak and the size of slabs but reduce the chemical bond length to result in an enhanced rate capability and cycling stability. The incorporation of Mg 2+ into available vacancies and a unique morphology make Na 0.7 Mg 0.05 Mn 0.8 Ni 0.1 Co 0.1 O 2 a promising cathode, which can be charged and discharged at an ultra-high current density of 2000 mA g -1 with an excellent specific capacity of 60 mAh g -1 . This work provides a new insight into the design of electrode materials for sodium-ion batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries
NASA Astrophysics Data System (ADS)
Howard, Wilmont F.; Spotnitz, Robert M.
Lithium metal phosphates (olivines) are emerging as long-lived, safe cathode materials in Li-ion batteries. Nano-LiFePO 4 already appears in high-power applications, and LiMnPO 4 development is underway. Current and emerging Fe- and Mn-based intercalants, however, are low-energy producers compared to Ni and Co compounds. LiNiPO 4, a high voltage olivine, has the potential for superior energy output (>10.7 Wh in 18650 batteries), compared with commercial Li(Co,Ni)O 2 derivatives (up to 9.9 Wh). Speculative Co and Ni olivine cathode materials charged to above 4.5 V will require significant advances in electrolyte compositions and nanotechnology before commercialization. The major drivers toward 5 V battery chemistries are the inherent abuse tolerance of phosphates and the economic benefit of LiNiPO 4: it can produce 34% greater energy per dollar of cell material cost than LiAl 0.05Co 0.15Ni 0.8O 2, today's "standard" cathode intercalant in Li-ion batteries.
A Class of Organopolysulfides As Liquid Cathode Materials for High-Energy-Density Lithium Batteries.
Bhargav, Amruth; Bell, Michaela Elaine; Karty, Jonathan; Cui, Yi; Fu, Yongzhu
2018-06-27
Sulfur-based cathodes are promising to enable high-energy-density lithium-sulfur batteries; however, elemental sulfur as active material faces several challenges, including undesirable volume change (∼80%) when completely reduced and high dependence on liquid electrolyte wherein an electrolyte/sulfur ratio >10 μL mg -1 is required for high material utilization. These limit the attainable energy densities of these batteries. Herein, we introduce a new class of phenyl polysulfides C 6 H 5 S x C 6 H 5 (4 ≤ x ≤ 6) as liquid cathode materials synthesized in a facile and scalable route to mitigate these setbacks. These polysulfides possess sufficiently high theoretical specific capacities, specific energies, and energy densities. Spectroscopic techniques verify their chemical composition and computation shows that the volume change when reduced is about 37%. Lithium half-cell testing shows that phenyl hexasulfide (C 6 H 5 S 6 C 6 H 5 ) can provide a specific capacity of 650 mAh g -1 and capacity retention of 80% through 500 cycles at 1 C rate along with superlative performance up to 10 C. Furthermore, 1302 Wh kg -1 and 1720 Wh L -1 are achievable at a low electrolyte/active material ratio, i.e., 3 μL mg -1 . This work adds new members to the cathode family for Li-S batteries, reduces the gap between the theoretical and practical energy densities of batteries, and provides a new direction for the development of alternative high-capacity cathode materials.
Yang, Yue; Xu, Shengming; He, Yinghe
2017-06-01
A novel process for extracting transition metals, recovering lithium and regenerating cathode materials based on facile co-extraction and co-precipitation processes has been developed. 100% manganese, 99% cobalt and 85% nickel are co-extracted and separated from lithium by D2EHPA in kerosene. Then, Li is recovered from the raffinate as Li 2 CO 3 with the purity of 99.2% by precipitation method. Finally, organic load phase is stripped with 0.5M H 2 SO 4 , and the cathode material LiNi 1/3 Co 1/3 Mn 1/3 O 2 is directly regenerated from stripping liquor without separating metal individually by co-precipitation method. The regenerative cathode material LiNi 1/3 Co 1/3 Mn 1/3 O 2 is miro spherical morphology without any impurities, which can meet with LiNi 1/3 Co 1/3 Mn 1/3 O 2 production standard of China and exhibits good electrochemical performance. Moreover, a waste battery management model is introduced to guarantee the material supply for spent battery recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell
Wei, Tao; Huang, Yun-Hui; Zeng, Rui; Yuan, Li-Xia; Hu, Xian-Luo; Zhang, Wu-Xing; Jiang, Long; Yang, Jun-You; Zhang, Zhao-Liang
2013-01-01
A cobalt-based thermoelectric compound Ca3Co2O6 (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (σ) and interfacial shearing stress (τ) with the electrolyte show that CCO matches well with several commonly-used IT electrolytes. Maximum power density as high as 1.47 W cm−2 is attained at 800°C, and an additional thermoelectric voltage of 11.7 mV is detected. The superior electrochemical performance, thermoelectric effect, and comparable thermal and mechanical behaviors with the electrolytes make CCO to be a promising cathode material for SOFC. PMID:23350032
Zhang, Linjing; Li, Ning; Wu, Borong; ...
2015-01-14
High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li 1.2Ni 0.13Mn 0.54Co 0.13O 2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li+ intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability,more » and high discharge capacities, achieving around 70% (175 mAh g–1) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.« less
Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chang-Lin, E-mail: CLChiang@itri.org.tw; Li, Chia-Hung; Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan
2016-01-15
The present study concerns with the secondary electron emission coefficient, γ, of the cathode materials used in the newly developed flat electron emission lamp (FEEL) devices, which essentially integrates the concept of using cathode for fluorescent lamp and anode for cathode ray tube (CRT) to obtain uniform planar lighting. Three different cathode materials, namely fluorine-doped tin oxide (FTO), aluminum oxide coated FTO (Al{sub 2}O{sub 3}/FTO) and magnesium oxide coated FTO (MgO/FTO) were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the workingmore » gases. The results indicate that the MgO/FTO bilayer cathode exhibited a relatively larger effective secondary electron emission coefficient, resulting in significant reduction of breakdown voltage to about 3kV and allowing the device to be operated at the lower pressure to generate the higher lighting efficiency.« less
Zhang, Linjing; Li, Ning; Wu, Borong; Xu, Hongliang; Wang, Lei; Yang, Xiao-Qing; Wu, Feng
2015-01-14
High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li(1.2)Ni(0.13)Mn(0.54)Co(0.13)O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li(+) intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achieving around 70% (175 mAh g(-1)) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.
NASA Astrophysics Data System (ADS)
Han, Jinhyup; Hwang, Soo Min; Go, Wooseok; Senthilkumar, S. T.; Jeon, Donghoon; Kim, Youngsik
2018-01-01
Cell design and optimization of the components, including active materials and passive components, play an important role in constructing robust, high-performance rechargeable batteries. Seawater batteries, which utilize earth-abundant and natural seawater as the active material in an open-structured cathode, require a new platform for building and testing the cells other than typical Li-ion coin-type or pouch-type cells. Herein, we present new findings based on our optimized cell. Engineering the cathode components-improving the wettability of cathode current collector and seawater catholyte flow-improves the battery performance (voltage efficiency). Optimizing the cell component and design is the key to identifying the electrochemical processes and reactions of active materials. Hence, the outcome of this research can provide a systematic study of potentially active materials used in seawater batteries and their effectiveness on the electrochemical performance.
Wang, Yuqi; Yu, Yajuan; Huang, Kai; Chen, Bo; Deng, Wensheng; Yao, Ying
2017-01-01
A promising Li-rich high-capacity cathode material (xLi 2 MnO 3 ·(1-x)LiMn 0.5 Ni 0.5 O 2 ) has received much attention with regard to improving the performance of lithium-ion batteries in electric vehicles. This study presents an environmental impact evaluation of a lithium-ion battery with Li-rich materials used in an electric vehicle throughout the life cycle of the battery. A comparison between this cathode material and a Li-ion cathode material containing cobalt was compiled in this study. The battery use stage was found to play a large role in the total environmental impact and high greenhouse gas emissions. During battery production, cathode material manufacturing has the highest environmental impact due to its complex processing and variety of raw materials. Compared to the cathode with cobalt, the Li-rich material generates fewer impacts in terms of human health and ecosystem quality. Through the life cycle assessment (LCA) results and sensitivity analysis, we found that the electricity mix and energy efficiency significantly influence the environmental impacts of both battery production and battery use. This paper also provides a detailed life cycle inventory, including firsthand data on lithium-ion batteries with Li-rich cathode materials.
Three-Dimensional Fibrous Network of Na0.21 MnO2 for Aqueous Sodium-Ion Hybrid Supercapacitors.
Karikalan, Natarajan; Karuppiah, Chelladurai; Chen, Shen-Ming; Velmurugan, Murugan; Gnanaprakasam, Periyasami
2017-02-16
Sodium-ion hybrid supercapacitors are potential energy-storage devices and have recently received enormous interest. However, the development of cathode materials and the use of nonaqueous electrolyte remain a great challenge. Hence, aqueous Na-ion hybrid supercapacitors based on a three-dimensional network of NaMnO 2 were developed. The cathode material was synthesized by the electro-oxidation of potassium manganese hexacyanoferrate nanocubes. The oxidized compound was confirmed to be Na 0.21 MnO 2 by various physical characterization methods. Manganese dioxide is a well-characterized material for aqueous asymmetric pseudocapacitors, but its usage at high operating voltages is limited due to the electrochemical stability of water. Nevertheless, high-potential and high-performance aqueous supercapacitors exhibiting a cell potential of 2.7 V were developed. Further, the practical applicability of an asymmetric supercapacitor based on NaMnO 2 (cathode) and reduced graphene oxide (anode) was demonstrated by powering a 2.1 V red LED. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Detailed Modeling of Physical Processes in Electron Sources for Accelerator Applications
NASA Astrophysics Data System (ADS)
Chubenko, Oksana; Afanasev, Andrei
2017-01-01
At present, electron sources are essential in a wide range of applications - from common technical use to exploring the nature of matter. Depending on the application requirements, different methods and materials are used to generate electrons. State-of-the-art accelerator applications set a number of often-conflicting requirements for electron sources (e.g., quantum efficiency vs. polarization, current density vs. lifetime, etc). Development of advanced electron sources includes modeling and design of cathodes, material growth, fabrication of cathodes, and cathode testing. The detailed simulation and modeling of physical processes is required in order to shed light on the exact mechanisms of electron emission and to develop new-generation electron sources with optimized efficiency. The purpose of the present work is to study physical processes in advanced electron sources and develop scientific tools, which could be used to predict electron emission from novel nano-structured materials. In particular, the area of interest includes bulk/superlattice gallium arsenide (bulk/SL GaAs) photo-emitters and nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) photo/field-emitters. Work supported by The George Washington University and Euclid TechLabs LLC.
Fuel cell electrode interconnect contact material encapsulation and method
Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.
2016-05-31
A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.
NASA Astrophysics Data System (ADS)
Zhang, Yao; Zhang, Wansen; Shen, Shuiyun; Yan, Xiaohui; Wu, Aiming; Yin, Jiewei; Zhang, Junliang
2018-03-01
Although lithium-rich layered composite cathode materials can meet the requirements of high discharge capacities and energy densities of lithium-ion batteries (LIBs), the drawbacks of encountering structural reconstruction, sharp voltage decay during cycling as well as low packing density still exist, which retard their further commercial development. This paper presents a novel approach to construct hollow porous bowl-shaped Li1.2Mn0.54Ni0.13Co0.13O2 (denoted as HPB-LMNCO) particles, which involves bowl-shaped carbonaceous particles as the predominant template and polyvinylpyrrolidone as an assistant soft template. One crucial step during the synthetic process is the controlled growth of metal ions with specific molar ratios in the bowl-shaped carbonaceous particles, and the key control parameter is the heating rate to ensure the prepared particles own the desired hollow porous bowl-shaped morphology. Of particular note is the desirable architecture which not only inherits the merits of hollow structures but also facilitates the tight particles packing. Owing to these advantages, utilizing this HPB-LMNCO as a cathode material manifests impressive rate capability and exceptional cycling stability at high rates with capacity retention of above 82% over 100 cycles. These results reveal that structural design of cathode materials play a pivotal role in developing high-performance LIBs.
Experimental Development of Low-emittance Field-emission Electron Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lueangaranwong, A.; Buzzard, C.; Divan, R.
2016-10-10
Field emission electron sources are capable of extreme brightness when excited by static or time-dependent electro- magnetic fields. We are currently developing a cathode test stand operating in DC mode with possibility to trigger the emission using ultra-short (~ 100-fs) laser pulses. This contribution describes the status of an experiment to investigate field-emission using cathodes under development at NIU in collaboration with the Argonne’s Center for Nanoscale Materials.
High-Capacity Cathode Material with High Voltage for Li-Ion Batteries
Shi, Ji -Lei; Xiao, Dong -Dong; Ge, Mingyuan; ...
2018-01-15
Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-richmore » cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.« less
Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries
Lin, Feng; Xin, Huolin L.; Nordlund, Dennis; ...
2016-01-11
Controlling surface and interfacial properties of battery materials is key to improving performance in rechargeable Li-ion devices. Surface reconstruction from a layered to a rock salt structure in metal oxide cathode materials is commonly observed and results in poor high-voltage cycling performance, impeding attempts to improve energy density. Hierarchically structured LiNi 0.4Mn 0.4Co 0.2O 2 (NMC-442) spherical powders, made by spray pyrolysis, exhibit local elemental distribution gradients that deviate from the global NMC-442 composition; specifically, they are Ni-rich and Mn-poor at particle surfaces. These materials demonstrate improved Coulombic efficiencies, discharge capacities, and high-voltage capacity retention in lithium half-cell configurations. Themore » subject powders show superior resistance against surface reconstruction due to the tailored surface chemistry, compared to conventional NMC-442 materials. This paves the way towards the development of a new generation of robust and stable high-energy NMC cathodes for Li-ion batteries.« less
NASA Astrophysics Data System (ADS)
Choi, YongMan; Lin, M. C.; Liu, Meilin
The search for clean and renewable sources of energy represents one of the most vital challenges facing us today. Solid oxide fuel cells (SOFCs) are among the most promising technologies for a clean and secure energy future due to their high energy efficiency and excellent fuel flexibility (e.g., direct utilization of hydrocarbons or renewable fuels). To make SOFCs economically competitive, however, development of new materials for low-temperature operation is essential. Here we report our results on a computational study to achieve rational design of SOFC cathodes with fast oxygen reduction kinetics and rapid ionic transport. Results suggest that surface catalytic properties are strongly correlated with the bulk transport properties in several material systems with the formula of La 0.5Sr 0.5BO 2.75 (where B = Cr, Mn, Fe, or Co). The predictions seem to agree qualitatively with available experimental results on these materials. This computational screening technique may guide us to search for high-efficiency cathode materials for a new generation of SOFCs.
High-Capacity Cathode Material with High Voltage for Li-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Ji -Lei; Xiao, Dong -Dong; Ge, Mingyuan
Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-richmore » cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.« less
Xu, Gui -Liang; Amine, Rachid; Xu, Yue -Feng; ...
2017-06-08
Cathode materials are critical to the energy density, power density and safety of sodium-ion batteries (SIBs). Herein, we performed a comprehensive study to elucidate and exemplify the interplay mechanism between phase structures, interfacial microstrain and electrochemical properties of layered-structured Na xNi 1/3Co 1/3Mn 1/3O 2 cathode materials for high voltage SIBs. The electrochemical test results showed that Na xNi 1/3Co 1/3Mn 1/3O 2 with an intergrowth P2/O3/O1 structure demonstrates better electrochemical performance and better thermal stability than Na xNi 1/3Co 1/3Mn 1/3O 2 with P2/O3 binary-phase integration and Na xNi 1/3Co 1/3Mn 1/3O 2 where only the P phase ismore » dominant. This result is caused by the distinct interfacial microstrain development during the synthesis and cycling of the P2/O3/O1 phase. In operando high energy X-ray diffraction further revealed that the intergrowth P2/O1/O3 cathode can inhibit the irreversible P2–O2 phase transformation and simultaneously improve the structure stability of the O3 and O1 phases during cycling. Here, we believe that interfacial microstrain can serve as an indispensable bridge to guide future design and synthesis of high performance SIB cathode materials and other high energy battery materials.« less
Billy, Emmanuel; Joulié, Marion; Laucournet, Richard; Boulineau, Adrien; De Vito, Eric; Meyer, Daniel
2018-05-04
The sustainability through the energy and environmental costs involve the development of new cathode materials, considering the material abundance, the toxicity, and the end of life. Currently, some synthesis methods of new cathode materials and a large majority of recycling processes are based on the use of acidic solutions. This study addresses the mechanistic and limiting aspects on the dissolution of the layered LiNi 1/3 Mn 1/3 Co 1/3 O 2 oxide in acidic solution. The results show a dissolution of the active cathode material in two steps, which leads to the formation of a well-defined core-shell structure inducing an enrichment in manganese on the particle surface. The crucial role of lithium extraction is discussed and considered as the source of a "self-regulating" dissolution process. The delithiation involves a cumulative charge compensation by the cationic and anionic redox reactions. The electrons generated from the compensation of charge conduct to the dissolution by the protons. The delithiation and its implications on the side reactions, by the modification of the potential, explain the structural and compositional evolutions observed toward a composite material MnO 2 ·Li x MO 2 (M = Ni, Mn, and Co). The study shows a clear way to produce new cathode materials and recover transition metals from Li-ion batteries by hydrometallurgical processes.
Wang, Hongsen; Rus, Eric; Sakuraba, Takahito; Kikuchi, Jun; Kiya, Yasuyuki; Abruña, Héctor D
2014-07-01
A three-electrode differential electrochemical mass spectrometry (DEMS) cell has been developed to study the oxidative decomposition of electrolytes at high voltage cathode materials of Li-ion batteries. In this DEMS cell, the working electrode used was the same as the cathode electrode in real Li-ion batteries, i.e., a lithium metal oxide deposited on a porous aluminum foil current collector. A charged LiCoO2 or LiMn2O4 was used as the reference electrode, because of their insensitivity to air, when compared to lithium. A lithium sheet was used as the counter electrode. This DEMS cell closely approaches real Li-ion battery conditions, and thus the results obtained can be readily correlated with reactions occurring in real Li-ion batteries. Using DEMS, the oxidative stability of three electrolytes (1 M LiPF6 in EC/DEC, EC/DMC, and PC) at three cathode materials including LiCoO2, LiMn2O4, and LiNi(0.5)Mn(1.5)O4 were studied. We found that 1 M LiPF6 + EC/DMC electrolyte is quite stable up to 5.0 V, when LiNi(0.5)Mn(1.5)O4 is used as the cathode material. The EC/DMC solvent mixture was found to be the most stable for the three cathode materials, while EC/DEC was the least stable. The oxidative decomposition of the EC/DEC mixture solvent could be readily observed under operating conditions in our cell even at potentials as low as 4.4 V in 1 M LiPF6 + EC/DEC electrolyte on a LiCoO2 cathode, as indicated by CO2 and O2 evolution. The features of this DEMS cell to unveil solvent and electrolyte decomposition pathways are also described.
Zeng, Xianlai; Li, Jinhui
2014-04-30
Because of the increasing number of electric vehicles, there is an urgent need for effective recycling technologies to recapture the significant amount of valuable metals contained in spent lithium-ion batteries (LiBs). Previous studies have indicated, however, that Al and cathode materials were quite difficult to separate due to the strong binding force supplied by the polyvinylidene fluoride (PVDF), which was employed to bind cathode materials and Al foil. This research devoted to seek a new method of melting the PVDF binder with heated ionic liquid (IL) to separate Al foil and cathode materials from the spent high-power LiBs. Theoretical analysis based on Fourier's law was adopted to determine the heat transfer mechanism of cathode material and to examine the relationship between heating temperature and retention time. All the experimental and theoretic results show that peel-off rate of cathode materials from Al foil could reach 99% when major process parameters were controlled at 180°C heating temperature, 300 rpm agitator rotation, and 25 min retention time. The results further imply that the application of IL for recycling Al foil and cathode materials from spent high-power LiBs is highly efficient, regardless of the application source of the LiBs or the types of cathode material. This study endeavors to make a contribution to an environmentally sound and economically viable solution to the challenge of spent LiB recycling. Copyright © 2014 Elsevier B.V. All rights reserved.
Hu, Enyuan; Wang, Xuelong; Yu, Xiqian; Yang, Xiao-Qing
2018-02-20
The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers' demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today's market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safety issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. In many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution. For example, hard X-ray spectroscopy can yield the bulk information and soft X-ray spectroscopy can give the surface information; X-ray based imaging techniques can obtain spatial resolution of tens of nanometers, and electron-based microcopy can go to angstroms. In addition to challenges associated with different spatial resolution, the dynamic nature of structural changes during high rate cycling and heating requires characterization tools to have the capability of collecting high quality data in a time-resolved fashion. Thanks to the advancement in synchrotron based techniques and high-resolution electron microscopy, high temporal and spatial resolutions can now be achieved. In this Account, we focus on the recent works studying kinetic and thermal properties of layer-structured cathode materials, especially the structural changes during high rate cycling and the thermal stability during heating. Advanced characterization techniques relating to the rate capability and thermal stability will be introduced. The different structure evolution behavior of cathode materials cycled at high rate will be compared with that cycled at low rate. Different response of individual transition metals and the inhomogeneity in chemical distribution will be discussed. For the thermal stability, the relationship between structural changes and oxygen release will be emphatically pointed out. In all these studies being reviewed, advanced characterization techniques are critically applied to reveal complexities at multiscale in layer-structured cathode materials.
Modular cathode assemblies and methods of using the same for electrochemical reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedmeyer, Stanley G.; Barnes, Laurel A.; Williamson, Mark A.
Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may bemore » supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.« less
Modular cathode assemblies and methods of using the same for electrochemical reduction
Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L
2014-12-02
Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.
NASA Astrophysics Data System (ADS)
Yang, Lufeng; Li, Xiang; Ma, Xuetian; Xiong, Shan; Liu, Pan; Tang, Yuanzhi; Cheng, Shuang; Hu, Yan-Yan; Liu, Meilin; Chen, Hailong
2018-03-01
Sodium-ion batteries (SIBs) are an emerging electrochemical energy storage technology that has high promise for electrical grid level energy storage. High capacity, long cycle life, and low cost cathode materials are very much desired for the development of high performance SIB systems. Sodium manganese oxides with different compositions and crystal structures have attracted much attention because of their high capacity and low cost. Here we report our investigations into a group of promising lithium doped sodium manganese oxide cathode materials with exceptionally high initial capacity of ∼223 mAh g-1 and excellent capacity retentions, attributed primarily to the absence of phase transformation in a wide potential range of electrochemical cycling, as confirmed by in-operando X-ray diffraction (XRD), Rietveld refinement, and high-resolution 7Li solid-state NMR characterizations. The systematic study of structural evolution and the correlation with the electrochemical behavior of the doped cathode materials provides new insights into rational design of high-performance intercalation compounds by tailoring the composition and the crystal structure evolution in electrochemical cycling.
Shen, ShouYu; Hong, YuHao; Zhu, FuChun; Cao, ZhenMing; Li, YuYang; Ke, FuSheng; Fan, JingJing; Zhou, LiLi; Wu, LiNa; Dai, Peng; Cai, MingZhi; Huang, Ling; Zhou, ZhiYou; Li, JunTao; Wu, QiHui; Sun, ShiGang
2018-04-18
Owing to high specific capacity of ∼250 mA h g -1 , lithium-rich layered oxide cathode materials (Li 1+ x Ni y Co z Mn (3- x-2 y-3 z)/4 O 2 ) have been considered as one of the most promising candidates for the next-generation cathode materials of lithium ion batteries. However, the commercialization of this kind of cathode materials seriously restricted by voltage decay upon cycling though Li-rich materials with high cobalt content have been widely studied and show good capacity. This research successfully suppresses voltage decay upon cycling while maintaining high specific capacity with low Co/Ni ratio in Li-rich cathode materials. Online continuous flow differential electrochemical mass spectrometry (OEMS) and in situ X-ray diffraction (XRD) techniques have been applied to investigate the structure transformation of Li-rich layered oxide materials during charge-discharge process. The results of OEMS revealed that low Co/Ni ratio lithium-rich layered oxide cathode materials released no lattice oxygen at the first charge process, which will lead to the suppression of the voltage decay upon cycling. The in situ XRD results displayed the structure transition of lithium-rich layered oxide cathode materials during the charge-discharge process. The Li 1.13 Ni 0.275 Mn 0.580 O 2 cathode material exhibited a high initial medium discharge voltage of 3.710 and a 3.586 V medium discharge voltage with the lower voltage decay of 0.124 V after 100 cycles.
NASA Astrophysics Data System (ADS)
Park, Jang-Hoon; Kim, Ju-Myung; Lee, Chang Kee; Lee, Sang-Young
2014-10-01
Understanding and control of interfacial phenomena between electrode material and liquid electrolytes are of major scientific importance for boosting development of high-performance lithium ion batteries with reliable electrochemical/safety attributes. Here, as an innovative surface engineering approach to address the interfacial issues, a new concept of mixed ion/electron-conductive soft nanomatter-based conformal surface modification of the cathode material is presented. The soft nanomatter is comprised of an electron conductive carbonaceous (C) substance embedded in an ion conductive polyimide (PI) nanothin compliant film. In addition to its structural uniqueness, the newly proposed surface modification benefits from a simple fabrication process. The PI/carbon soft nanomatter is directly synthesized on LiCoO2 surface via one-pot thermal treatment of polyamic acid (=PI precursor) and sucrose (=carbon source) mixture, where the LiCoO2 powders are chosen as a model system to explore the feasibility of this surface engineering strategy. The resulting PI/carbon coating layer facilitates electronic conduction and also suppresses unwanted side reactions arising from the cathode material-liquid electrolyte interface. These synergistic coating effects of the multifunctional PI/carbon soft nanomatter significantly improve high-voltage cell performance and also mitigate interfacial exothermic reaction between cathode material and liquid electrolyte.
Kim, Dong-Min; Kim, Youngjin; Arumugam, Durairaj; Woo, Sang Won; Jo, Yong Nam; Park, Min-Sik; Kim, Young-Jun; Choi, Nam-Soon; Lee, Kyu Tae
2016-04-06
Thanks to the advantages of low cost and good safety, magnesium metal batteries get the limelight as substituent for lithium ion batteries. However, the energy density of state-of-the-art magnesium batteries is not high enough because of their low operating potential; thus, it is necessary to improve the energy density by developing new high-voltage cathode materials. In this study, nanosized Berlin green Fe2(CN)6 and Prussian blue Na(0.69)Fe2(CN)6 are compared as high-voltage cathode materials for magnesium batteries. Interestingly, while Mg(2+) ions cannot be intercalated in Fe2(CN)6, Na(0.69)Fe2(CN)6 shows reversible intercalation and deintercalation of Mg(2+) ions, although they have the same crystal structure except for the presence of Na(+) ions. This phenomenon is attributed to the fact that Mg(2+) ions are more stable in Na(+)-containing Na(0.69)Fe2(CN)6 than in Na(+)-free Fe2(CN)6, indicating Na(+) ions in Na(0.69)Fe2(CN)6 plays a crucial role in stabilizing Mg(2+) ions. Na(0.69)Fe2(CN)6 delivers reversible capacity of approximately 70 mA h g(-1) at 3.0 V vs Mg/Mg(2+) and shows stable cycle performance over 35 cycles. Therefore, Prussian blue analogues are promising structures for high-voltage cathode materials in Mg batteries. Furthermore, this co-intercalation effect suggests new avenues for the development of cathode materials in hybrid magnesium batteries that use both Mg(2+) and Na(+) ions as charge carriers.
The cathode material for a plasma-arc heater
NASA Astrophysics Data System (ADS)
Yelyutin, A. V.; Berlin, I. K.; Averyanov, V. V.; Kadyshevskii, V. S.; Savchenko, A. A.; Putintseva, R. G.
1983-11-01
The cathode of a plasma arc heater experiences a large thermal load. The temperature of its working surface, which is in contact with the plasma, reaches high values, as a result of which the electrode material is subject to erosion. Refractory metals are usually employed for the cathode material, but because of the severe erosion do not usually have a long working life. The most important electrophysical characteristic of the electrode is the electron work function. The use of materials with a low electron work function allows a decrease in the heat flow to the cathode, and this leads to an increase in its erosion resistance and working life. The electroerosion of certain materials employed for the cathode in an electric arc plasma generator in the process of reduction smelting of refractory metals was studied.
Falce, Louis R [San Jose, CA; Ives, R Lawrence [Saratoga, CA
2009-06-09
A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.
Development of a high-performance composite cathode for LT-SOFC
NASA Astrophysics Data System (ADS)
Lee, Byung Wook
Solid Oxide Fuel Cell (SOFC) has drawn considerable attention for decades due to its high efficiency and low pollution, which is made possible since chemical energy is directly converted to electrical energy through the system without combustion. However, successful commercialization of SOFC has been delayed due to its high production cost mainly related with using high cost of interconnecting materials and the other structural components required for high temperature operation. This is the reason that intermediate (IT) or low temperature (LT)-SOFC operating at 600~800°C or 650°C and below, respectively, is of particular significance because it allows the wider selection of cheaper materials such as stainless steel for interconnects and the other structural components. Also, extended lifetime and system reliability are expected due to less thermal stress through the system with reduced temperature. More rapid start-up/shut-down procedure is another advantage of lowering the operating temperatures. As a result, commercialization of SOFC will be more viable. However, there exists performance drop with reduced operating temperature due to increased polarization resistances from the electrode electrochemical reactions and decreased electrolyte conductivity. Since ohmic polarization of the electrolyte can be significantly reduced with state-of-the art thin film technology and cathode polarization has more drastic effect on total SOFC electrochemical performance than anode polarization as temperature decreases, development of the cathode with high performance operating at IT or LT range is thus essential. On the other hand, chemical stability of the cathode and its chemical compatibility with the electrolyte should also be considered for cathode development since instability and incompatibility of the cathode will also cause substantial performance loss. Based on requirements of the cathode mentioned above, in this study, several chemico-physical approaches were carried out to develop a high-performance composite cathode, in particular, for LT-SOFC operating 650°C and below since stability and compatibility of the materials in interest are secured at low temperatures. First, a nano-sized pyrochlore bismuth ruthenate (Bi2Ru 2O7 or BRO7 shortly), one of the promising cathode materials, was successfully synthesized using glycine-nitrate combustion (GNC) route. Stoichiometric Bi2Ru2O7 without any impurity phase was achieved with considerably improved processing condition, leading to the crystallite size of ~24nm in diameter. Even though the resulting powder tends to agglomerate, resulting in overall 200~400nm size range, it still showed better quality than the one prepared by solid state (SS) reaction route followed by extra milling steps such as vibro-milling and sonication for further particle size reduction. Glycine-to-nitrate (G/N) ratio was found to play a critical role in determining the reaction temperature and reaction duration, thus phase purity and particle morphology (particle size, shape, and agglomeration etc). Composite cathodes of such prepared BRO7 (GNC BRO7) combined with SS erbia-stabilized bismuth oxide, Bi1.6Er0.4O3 or ESB, showed better electrochemical performance than vibro-milled BRO7 (VM BRO7)-SS ESB. ASR values of 0.123Ocm2 at 700°C and 4.59cOm 2 at 500°C, respectively, were achieved, which follows well the trend of particle size effect on performance of composite cathodes. Additionally, the number of processing steps (thus time) was reduced by GNC route. Several issues in regard to synthesis process and characteristics of BRO7 material itself will be addressed in this dissertation. Secondly, a unique in-situ composite cathode synthesis was successfully developed and applied for BRO7-ESB composite cathodes to improve percolation and to reduce agglomeration of each phase inside the cathode so that the effective triple phase boundary (TPB) length was extended. To disperse and stabilize ESB powder in de-ionized (DI) water, zeta potential profile of ESB powder in DI water as a function of pH was first achieved. The effect of a dispersant (ammonium citrate dibasic) on the stability of ESB powder dispersed in DI water was also investigated. Knowledge of BRO7 wet chemical synthesis from previous study was utilized for final product of in-situ BRO7-ESB composite cathodes. Such prepared composite particles were characterized and the electrochemical performance of in-situ BRO7-ESB composite cathodes was examined as well. Performance enhancement was observed so that ASR values of 0.097Ocm2 and 3.58Ocm2 were achieved at 700°C and 500°C, respectively, which were 19% and 22% improvement, respectively compared to those of conventionally mixed composite cathodes of BRO7-ESB. Finally, a highly controlled nanostructured BRO7-ESB composite cathode was developed by infiltration of BRO7 onto ESB scaffolds to maximize the effective TPB length, to improve the connectivity of ESB phase inside the cathode for better oxygen-ion diffusion, and to minimize delamination between the electrolyte and cathode layers. ESB scaffolds were first established by adding a graphite pore-former and controlling heat treatment condition. Nano-sized BRO7 particles were successfully created on the surface of previously formed ESB scaffold by infiltration of concentrated (Bi, Ru) nitrate solution followed by the optimized heat treatment. Such prepared composite cathodes exhibited superior electrochemical performance to conventionally made BRO7-ESB composite cathodes and even better than GNC BRO7-SS ESB developed in this dissertation, e.g. 0.073Ocm2 at 700°C and 1.82Ocm2 at 500°C, respectively. This cathode system was revealed to be highly competitive among all the reported composite cathodes consisting of the same or different materials prepared by various processing techniques. It was demonstrated that the extended TPB length from continuous network of BRO7 nanoparticles and better connectivity of ESB scaffolds enabled the outstanding performance. Moreover, de-lamination of cathode from the electrolyte was prevented thanks to improved adhesion between ESB scaffolds and ESB electrolyte. Dissociative adsorption of oxygen gas were proposed to be the dominant rate-determining process for the overall oxygen reduction reaction at low temperatures (500-600°C) whereas all of the constituting sub-reactions such as oxygen gas dissociative adsorption, oxygen ion diffusion towards TPB region, and oxygen ion incorporation were found to play roles competitively in the overall reaction at relatively high operating temperature (650-700°C) based on analysis of impedance spectra.
Anderson, Travis M.; Pratt, Harry D.
2016-03-15
Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.
Pyrite cathode material for a thermal battery
NASA Astrophysics Data System (ADS)
Pemsler, J. P.; Litchfield, J. K.
1991-02-01
The present invention relates in general to a synthetic cathode material for a molten salt battery and, more particularly, to a process of providing and using synthetic pyrite for use as a cathode in a thermal battery. These batteries, which have been successfully used in a number of military applications, include iron disulfide cathode material obtained as benefacted or from natural occurring pyrite deposits, or as a byproduct of flotation concentrate from the processing of base or noble metal ores.
Mixed polyanion glass cathodes: Glass-state conversion reactions
Kercher, Andrew K.; Kolopus, James A.; Carroll, Kyler; ...
2015-11-10
Mixed polyanion (MP) glasses can undergo glass-state conversion (GSC) reactions to provide an alternate class of high-capacity cathode materials. GSC reactions have been demonstrated in phosphate/vanadate glasses with Ag, Co, Cu, Fe, and Ni cations. These MP glasses provided high capacity and good high power performance, but suffer from moderate voltages, large voltage hysteresis, and significant capacity fade with cycling. Details of the GSC reaction have been revealed by x-ray absorption spectroscopy, electron microscopy, and energy dispersive x-ray spectroscopy of ex situ cathodes at key states of charge. Using the Open Quantum Materials Database (OQMD), a computational thermodynamic model hasmore » been developed to predict the near-equilibrium voltages of glass-state conversion reactions in MP glasses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Gui-Liang; Liu, Jianzhao; Amine, Rachid
2017-02-09
In the search for a transformative new energy storage system, the rechargeable Li/sulfur battery is considered as one of the promising candidates due to its much higher energy density and lower cost than state-of-the-art lithium-ion batteries. However, the insulating nature of sulfur and the dissolution of intermediary polysulfides into the electrolyte significantly hinder its practical application. Very recently, selenium and selenium-sulfur systems have received considerable attention as cathode materials for rechargeable batteries owing to the high electronic conductivity (20 orders of magnitude higher than sulfur) and high volumetric capacity (3254 mAh/cm3 ) of selenium. In this perspective, we present anmore » overview of the implications of employing selenium and selenium-sulfur systems with different structures and compositions as electroactive materials for rechargeable lithium batteries. We also show how the cathode structures, electrolytes, and electrode-electrolyte interfaces affect the electrochemistry of Se and Se-S based cathodes. Furthermore, suggestions are provided on paths for future development of these cathodes.« less
Electrochemical performance of La2O3/Li2O/TiO2 nano-particle coated cathode material LiFePO4.
Wang, Hong; Yang, Chi; Liu, Shu-Xin
2014-09-01
Cathode material, LiFePO4 was modified by coating with a thin layer of La2O3/Li2O/TiO2 nano-particles for improving its performance for lithium ion batteries. The morphology and structure of the modified cathode material were characterized by powder X-ray diffraction, scanning electron microcopy and AES. The performance of the battery with the modified cathode material, including cycling stability, C-rate discharge was examined. The results show that the battery composed of the coated cathode materials can discharge at a large current density and show stable cycling performance in the range from 2.5 to 4.0 V. The rate of Li ion diffusion increases in the battery with the La2O3/Li2O/TiO2-coated LiFePO4 as a cathode and the coating layer may acts as a faster ion conductor (La(2/3-x)Li(3x)TiO3).
1988-02-12
experimentally , a pulsed power system com- prising separate anode and cathode pulsers was designed and assembled. A double diode was developed to produce...be closed. To initiate this assessment, Mission Research Corporation (MRC) performed a two-year primarily experimental investigation of non - neutral...through from the cathode nad to be designed . Experimentation with several materials and setups produced a workable design , using nylon stocking hose
Chae, Changju; Kim, Jinmin; Kim, Ju Young; Ji, Seulgi; Lee, Sun Sook; Kang, Yongku; Choi, Youngmin; Suk, Jungdon; Jeong, Sunho
2018-02-07
Recently, the achievement of newly designed carbon-sulfur composite materials has attracted a tremendous amount of attention as high-performance cathode materials for lithium-sulfur batteries. To date, sulfur materials have been generally synthesized by a sublimation technique in sealed containers. This is a well-developed technique for the synthesizing of well-ordered sulfur materials, but it is limited when used to scale up synthetic procedures for practical applications. In this study, we suggest an easily scalable, room-temperature/ambient-pressure chemical pathway for the synthesis of highly functioning cathode materials using electrostatically assembled, amine-terminated carbon materials. It is demonstrated that stable cycling performance outcomes are achievable with a capacity of 730 mAhg -1 at a current density of 1 C with good cycling stability by a virtue of the characteristic chemical/physical properties (a high conductivity for efficient charge conduction and the presence of a number of amine groups that can interact with sulfur atoms during electrochemical reactions) of composite materials. The critical roles of conductive carbon moieties and amine functional groups inside composite materials are clarified with combinatorial analyses by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.
CAM-7/LTO Cells for Lithium-Ion Batteries with Rapid Charging Capability at Low Temperature
2012-04-06
TIAX’s high energy, high power CAM-7 cathode material, high rate capability lithium titanate (LTO) anode material, and a nitrile-cosolvent...employing TIAX’s high energy, high power CAM-7 cathode material, high rate capability lithium titanate (LTO) anode material, and a nitrile- cosolvent...electrolyte formulation. CAM-7 provides the highest energy content and rate capability of any market- ready cathode material. Commercially available
Application of vitreous and graphitic large-area carbon surfaces as field-emission cathodes
NASA Astrophysics Data System (ADS)
Hunt, Charles E.; Wang, Yu
2005-09-01
Numerous carbon bulk or thin-film materials have been used as field-emission cathodes. Most of these can be made into large-area and high-current field-emission cathodes without the use of complex IC fabrication techniques. Some of these exhibit low-extraction field, low work-function, high ruggedness, chemical stability, uniform emission, and low-cost manufacturability. A comparison of all of these materials is presented. Two viable cathode materials, reticulated vitreous carbon (RVC) and graphite paste are examined here and compared.
Life test results for an ensemble of CO2 lasers
NASA Technical Reports Server (NTRS)
Peruso, C. J.; Degnan, J. J.; Hochuli, U. E.
1978-01-01
The effects of cathode material, cathode operating temperature, anode configuration, window materials, and hydrogen additives on laser lifetime are determined. Internally oxidized copper and silber-copper alloy cathodes were tested. The cathode operating temperature was raised in some tubes through the use of thermal insulation. Lasers incorporating thermally insulated silver copper oxide cathodes clearly yielded the longest lifetimes-typically in excess of 22,000 hours. The use of platinum sheet versus platinum pin anodes had no observable effect on laser lifetime. Similarly, the choice of germanium, cadmium telluride, or zinc selenide as the optical window material appears to have no impact on lifetime.
Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries
NASA Astrophysics Data System (ADS)
Zhao-Karger, Zhirong; Lin, Xiu-Mei; Bonatto Minella, Christian; Wang, Di; Diemant, Thomas; Behm, R. Jürgen; Fichtner, Maximilian
2016-08-01
Magnesium (Mg) is an attractive metallic anode material for next-generation batteries owing to its inherent dendrite-free electrodeposition, high capacity and low cost. Here we report a new class of Mg batteries based on both elemental selenium (Se) and selenium-sulfur solid solution (SeS2) cathode materials. Elemental Se confined into a mesoporous carbon was used as a cathode material. Coupling the Se cathode with a metallic Mg anode in a non-nucleophilic electrolyte, the Se cathode delivered a high initial volumetric discharge capacity of 1689 mA h cm-3 and a reversible capacity of 480 mA h cm-3 was retained after 50 cycles at a high current density of 2 C. The mechanistic insights into the electrochemical conversion in Mg-Se batteries were investigated by microscopic and spectroscopic methods. The structural transformation of cyclic Se8 into chainlike Sen upon battery cycling was revealed by ex-situ Raman spectroscopy. In addition, the promising battery performance with a SeS2 cathode envisages the perspective of a series of SeSn cathode materials combining the benefits of both selenium and sulfur for high energy Mg batteries.
Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage
NASA Astrophysics Data System (ADS)
Manthiram, Arumugam
2011-03-01
Electrical energy storage has emerged as a topic of national and global importance with respect to establishing a cleaner environment and reducing the dependence on foreign oil. Batteries are the prime candidates for electrical energy storage. They are the most viable near-term option for vehicle applications and the efficient utilization of intermittent energy sources like solar and wind. Lithium-ion batteries are attractive for these applications as they offer much higher energy density than other rechargeable battery systems. However, the adoption of lithium-ion battery technology for vehicle and stationary storage applications is hampered by high cost, safety concerns, and limitations in energy, power, and cycle life, which are in turn linked to severe materials challenges. This presentation, after providing an overview of the current status, will focus on the physics and chemistry of new materials that can address these challenges. Specifically, it will focus on the design and development of (i) high-capacity, high-voltage layered oxide cathodes, (ii) high-voltage, high-power spinel oxide cathodes, (iii) high-capacity silicate cathodes, and (iv) nano-engineered, high-capacity alloy anodes. With high-voltage cathodes, a critical issue is the instability of the electrolyte in contact with the highly oxidized cathode surface and the formation of solid-electrolyte interfacial (SEI) layers that degrade the performance. Accordingly, surface modification of cathodes with nanostructured materials and self-surface segregation during the synthesis process to suppress SEI layer formation and enhance the energy, power, and cycle life will be emphasized. With the high-capacity alloy anodes, a critical issue is the huge volume change occurring during the charge-discharge process and the consequent poor cycle life. Dispersion of the active alloy nanoparticles in an inactive metal oxide-carbon matrix to mitigate this problem and realize long cycle life will be presented.
NASA Astrophysics Data System (ADS)
Simakov, Evgenya I.; Andrews, Heather L.; Herman, Matthew J.; Hubbard, Kevin M.; Weis, Eric
2017-03-01
Demonstration of a stand-alone practical dielectric laser accelerator (DLA) requires innovation in two major critical components: high-current ultra-low-emittance cathodes and efficient laser accelerator structures. LANL develops two technologies that in our opinion are applicable to the novel DLA architectures: diamond field emitter array (DFEA) cathodes and additive manufacturing of photonic band-gap (PBG) structures. This paper discusses the results of testing of DFEA cathodes in the field-emission regime and the possibilities for their operation in the photoemission regime, and compares their emission characteristics to the specific needs of DLAs. We also describe recent advances in additive manufacturing of dielectric woodpile structures using a Nanoscribe direct laser-writing device capable of maskless lithography and additive manufacturing, and the development of novel infrared dielectric materials compatible with additive manufacturing.
2014-12-10
AFRL-OSR-VA-TR-2014-0359 Fundamental Materials Studies for Advanced High Power Microwave and Terahertz John Booske UNIVERSITY OF WISCONSIN SYSTEM...12-2014 Final Technical Performance Report October 1, 2011 - September 30, 2014 Fundamental Materials Studies for Advanced High Power Microwave and...emission-barrier scandate cathodes and identify related, alternative cathode materials systems for advanced vacuum electronic cathodes for high power THz
; copolymers for a number of systematic studies in the field of organic photovoltaics (OPV). He became a Staff nitroxide radical groups for application as organic radical cathode materials, the development of materials been developing covalent organic frameworks for gas storage and separation applications. Research
Effect of secondary electron emission on subnanosecond breakdown in high-voltage pulse discharge
NASA Astrophysics Data System (ADS)
Schweigert, I. V.; Alexandrov, A. L.; Gugin, P.; Lavrukhin, M.; Bokhan, P. A.; Zakrevsky, Dm E.
2017-11-01
The subnanosecond breakdown in open discharge may be applied for producing superfast high power switches. Such fast breakdown in high-voltage pulse discharge in helium was explored both in experiment and in kinetic simulations. The kinetic model of electron avalanche development was developed using PIC-MCC technique. The model simulates motion of electrons, ions and fast helium atoms, appearing due to ions scattering. It was shown that the mechanism responsible for ultra-fast breakdown development is the electron emission from cathode. The photoemission and emission by ions or fast atoms impact is the main reason of current growth at the early stage of breakdown, but at the final stage, when the voltage on discharge gap drops, the secondary electron emission (SEE) is responsible for subnanosecond time scale of current growth. It was also found that the characteristic time of the current growth τS depends on the SEE yield of the cathode material. Three types of cathode material (titanium, SiC, and CuAlMg-alloy) were tested. It is shown that in discharge with SiC and CuAlMg-alloy cathodes (which have enhanced SEE) the current can increase with a subnanosecond characteristic time as small as τS = 0.4 ns, for the pulse voltage amplitude of 5- 12 kV..
Liu, Qiannan; Hu, Zhe; Chen, Mingzhe; Gu, Qinfen; Dou, Yuhai; Sun, Ziqi; Chou, Shulei; Dou, Shi Xue
2017-02-01
The tunnel-structured Na 0.44 MnO 2 is considered as a promising cathode material for sodium-ion batteries because of its unique three-dimensional crystal structure. Multiangular rod-shaped Na 0.44 MnO 2 have been first synthesized via a reverse microemulsion method and investigated as high-rate and long-life cathode materials for Na-ion batteries. The microstructure and composition of prepared Na 0.44 MnO 2 is highly related to the sintering temperature. This structure with suitable size increases the contact area between the material and the electrolyte and guarantees fast sodium-ion diffusion. The rods prepared at 850 °C maintain specific capacity of 72.8 mA h g -1 and capacity retention of 99.6% after 2000 cycles at a high current density of 1000 mA g -1 . The as-designed multiangular Na 0.44 MnO 2 provides new insight into the development of tunnel-type electrode materials and their application in rechargeable sodium-ion batteries.
Luo, Dong; Fang, Shaohua; Tamiya, Yu; Yang, Li; Hirano, Shin-Ichi
2016-08-01
High-voltage layered lithium transition-metal oxides are very promising cathodes for high-energy Li-ion batteries. However, these materials often suffer from a fast degradation of cycling stability due to structural evolutions. It seriously impedes the large-scale application of layered lithium transition-metal oxides. In this work, an ultralong life LiMn1/3 Co1/3 Ni1/3 O2 microspherical cathode is prepared by constructing an Mn-rich surface. Its capacity retention ratio at 700 mA g(-1) is as large as 92.9% after 600 cycles. The energy dispersive X-ray maps of electrodes after numerous cycles demonstrate that the ultralong life of the as-prepared cathode is attributed to the mitigation of TM-ions segregation. Additionally, it is discovered that layered lithium transition-metal oxide cathodes with an Mn-rich surface can mitigate the segregation of TM ions and the corrosion of active materials. This study provides a new strategy to counter the segregation of TM ions in layered lithium transition-metal oxides and will help to the design and development of high-energy cathodes with ultralong life. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo
2018-04-01
Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.
Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu; Ding, Dong; Wei, Tao
The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminantsmore » using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO 2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions has been studied. It is found that SrO readily segregated/enriched on the LSCF surface. More severe contamination conditions cause more SrO on surface. Novel catalyst coatings through particle depositions (PrOx) or continuous thin films (PNM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized PNM (dense film and particles) infiltration process, under clean air and realistic operating conditions (3% H 2O, 5% CO 2 and direct Crofer contact). Both performance and durability of single cells with PNM coating has been enhanced compared with those without coating. Raman analysis of cathodes surface indicated that the intensity of SrCrO 4 was significantly decreased.« less
Fei, Hailong; Wu, Xiaomin; Li, Huan; Wei, Mingdeng
2014-02-01
A simple and versatile method for preparation of novel sodium intercalated (NH4)2V6O16 is developed via a simple hydrothermal route. It is found that ammonium sodium vanadium bronze displays higher discharge capacity and better rate cyclic stability than ammonium vanadium bronze as lithium-ion battery cathode material because of smaller charge transfer resistance, which would favor superior discharge capacity and rate performance. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xingbo
2016-11-14
New unique hetero-structured cathode has been developed in this project. La 2NiO 4+δ (LNO) as a surface catalyst with interstitial oxygen defects was introduced onto the state-of-the-art (La 0.6Sr 0.4) 0.95Co 0.2Fe 0.8O 3-δ (LSCF) cathode to enhance the surface-limited ORR kinetics on SOFC cathode. Furthermore, the hetero-structured cathode surface maintains high activity under electrode polarization with much less negative effects from surface cation segregation of Sr, which is known to cause degradation issues for conventional LSCF and LSC cathodes, thus improving the cathode long-term stability. The interface chemistry distribution and oxygen transport properties have been studied to prove themore » enhancement of power out and stability of LNO-infiltrated LSCF cathode. The further investigation demonstrates that CeO 2 & La 2-xNiO 4+δ (x=0-0.2) co-infiltration is a simple and cost-effective method to improve both performance and stability of LSCF cathode by limiting nano-particles growth/delamination and further improve the surface stability. For the first time, a physical model is proposed to illustrate how unique interstitial species on hetero-structured cathode surface work to regulate the exchange rate of the incorporation reaction. Meanwhile, fundamental investigation of the surface oxygen exchange and bulk oxygen transport properties under over-potential conditions across cathode materials have been carried out in this project, which were discussed and compared to the Nernst equation that is generally applied to treat any oxide electrodes under equilibrium.« less
Niu, Xiao-Qing; Wang, Xiu-Li; Xie, Dong; Wang, Dong-Huang; Zhang, Yi-Di; Li, Yi; Yu, Ting; Tu, Jiang-Ping
2015-08-05
Tailored sulfur cathode is vital for the development of a high performance lithium-sulfur (Li-S) battery. A surface modification on the sulfur/carbon composite would be an efficient strategy to enhance the cycling stability. Herein, we report a nickel hydroxide-modified sulfur/conductive carbon black composite (Ni(OH)2@S/CCB) as the cathode material for the Li-S battery through the thermal treatment and chemical precipitation method. In this composite, the sublimed sulfur is stored in the CCB, followed by a surface modification of Ni(OH)2 nanoparticles with size of 1-2 nm. As a cathode for the Li-S battery, the as-prepared Ni(OH)2@S/CCB electrode exhibits better cycle stability and higher rate discharge capacity, compared with the bare S/CCB electrode. The improved performance is largely due to the introduction of Ni(OH)2 surface modification, which can effectively suppress the "shuttle effect" of polysulfides, resulting in enhanced cycling life and higher capacity.
2011-03-04
efficiency of cathode and anode materials in PEMFC (Proton Exchange Membrane Fuel Cells) 5a. CONTRACT NUMBER FA23861014012 5b. GRANT NUMBER 5c. PROGRAM...Rev. 8-98) Prescribed by ANSI Std Z39-18 Theoretical studies in enhancing the efficiency of cathode and anode materials in PEMFC (Proton Exchange
Niemöller, Arvid; Jakes, Peter; Eurich, Svitlana; Paulus, Anja; Kungl, Hans; Eichel, Rüdiger-A; Granwehr, Josef
2018-01-07
Despite the multitude of analytical methods available to characterize battery cathode materials, identifying the factors responsible for material aging is still challenging. We present the first investigation of transient redox processes in a spinel cathode during electrochemical cycling of a lithium ion battery by in operando electron paramagnetic resonance (EPR). The battery contains a LiNi 0.5 Mn 1.5 O 4 (LNMO) spinel cathode, which is a material whose magnetic interactions are well understood. The evolution of the EPR signal in combination with electrochemical measurements shows the impact of Mn 3+ on the Li + motion inside the spinel. Moreover, state of charge dependent linewidth variations confirm the formation of a solid solution for slow cycling, which is taken over by mixed models of solid solution and two-phase formation for fast cycling due to kinetic restrictions and overpotentials. Long-term measurements for 480 h showed the stability of the investigated LNMO, but also small amounts of cathode degradation products became visible. The results point out how local, exchange mediated magnetic interactions in cathode materials are linked with battery performance and can be used for material characterization.
NASA Astrophysics Data System (ADS)
Niemöller, Arvid; Jakes, Peter; Eurich, Svitlana; Paulus, Anja; Kungl, Hans; Eichel, Rüdiger-A.; Granwehr, Josef
2018-01-01
Despite the multitude of analytical methods available to characterize battery cathode materials, identifying the factors responsible for material aging is still challenging. We present the first investigation of transient redox processes in a spinel cathode during electrochemical cycling of a lithium ion battery by in operando electron paramagnetic resonance (EPR). The battery contains a LiNi0.5Mn1.5O4 (LNMO) spinel cathode, which is a material whose magnetic interactions are well understood. The evolution of the EPR signal in combination with electrochemical measurements shows the impact of Mn3+ on the Li+ motion inside the spinel. Moreover, state of charge dependent linewidth variations confirm the formation of a solid solution for slow cycling, which is taken over by mixed models of solid solution and two-phase formation for fast cycling due to kinetic restrictions and overpotentials. Long-term measurements for 480 h showed the stability of the investigated LNMO, but also small amounts of cathode degradation products became visible. The results point out how local, exchange mediated magnetic interactions in cathode materials are linked with battery performance and can be used for material characterization.
Method of fabricating a monolithic core for a solid oxide fuela cell
Zwick, S.A.; Ackerman, J.P.
1983-10-12
A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002 to 0.01 cm thick; and the cathode and anode materials are only 0.002 to 0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.
Method of fabricating a monolithic core for a solid oxide fuel cell
Zwick, Stanley A.; Ackerman, John P.
1985-01-01
A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002-0.01 cm thick; and the cathode and anode materials are only 0.002-0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.
NASA Astrophysics Data System (ADS)
Xu, Shenzhen
Metal oxide materials are ubiquitous in nature and in our daily lives. For example, the Earth's mantle layer that makes up about 80% of our Earth's volume is composed of metal oxide materials, the cathode materials in the lithium-ion batteries that provide power for most of our mobile electronic devices are composed of metal oxides, the chemical components of the passivation layers on many kinds of metal materials that protect the metal from further corrosion are metal oxides. This thesis is composed of two major topics about the metal oxide materials in nature. The first topic is about our computational study of the iron chemistry in the Earth's lower mantle metal oxide materials, i.e. the bridgmanite (Fe-bearing MgSiO3 where iron is the substitution impurity element) and the ferropericlase (Fe-bearing MgO where iron is the substitution impurity element). The second topic is about our multiscale modeling works for understanding the nanoscale kinetic and thermodynamic properties of the metal oxide cathode interfaces in Li-ion batteries, including the intrinsic cathode interfaces (intergrowth of multiple types of cathode materials, compositional gradient cathode materials, etc.), the cathode/coating interface systems and the cathode/electrolyte interface systems. This thesis uses models based on density functional theory quantum mechanical calculations to explore the underlying physics behind several types of metal oxide materials existing in the interior of the Earth or used in the applications of lithium-ion batteries. The exploration of this physics can help us better understand the geochemical and seismic properties of our Earth and inspire us to engineer the next generation of electrochemical technologies.
La0.8Sr0.2Fe0.8Cu0.2O3-δ as “cobalt-free” cathode for La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte
NASA Astrophysics Data System (ADS)
Zurlo, Francesca; Di Bartolomeo, Elisabetta; D'Epifanio, Alessandra; Felice, Valeria; Natali Sora, Isabella; Tortora, Luca; Licoccia, Silvia
2014-12-01
A "cobalt-free" cathode material with stoichiometric composition La0.8Sr0.2Fe0.8Cu0.2O3-δ (LSFCu) was specifically developed for use with La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte in intermediate temperature solid oxide fuel cell (IT-SOFC) systems. The chemical stability of LSFCu in contact with LSGM electrolyte was investigated by structural and morphological analysis. The electrochemical properties of LSFCu dense pellets were investigated in the temperature range 600-750 °C by electrochemical impedance spectroscopy (EIS). LSFCu|LSGM|LSFCu symmetrical cells were prepared and area specific resistance (ASR) values, directly depending on the rate limiting step of the oxygen reduction reaction, were evaluated. Fuel cells were prepared using LSFCu as cathode material on a LSGM pellet and electrochemical tests were performed in the 700-800 °C temperature range and compared to similar fuel cells prepared by using commercial La0.6Sr0.4Fe0.8Co0.2O3-δ (LSFCo) as a cathode. The maximum current density and power density recorded for LSFCu and LSFCo were similar. This fact demonstrates that Cu can be used as Co substitute in perovskite cathode materials.
Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes
NASA Astrophysics Data System (ADS)
Chen, Zhongxue; Cao, Liufei; Chen, Liang; Zhou, Haihui; Zheng, Chunman; Xie, Kai; Kuang, Yafei
2015-12-01
Polyanionic compounds are regarded as one of the most promising cathode materials for the next generation lithium-ion batteries due to their abundant resource and thermal stability. LiFeBO3 has a relatively higher capacity than olivine LiFePO4, however, moisture sensitivity and low conductivity hinder its further development. Here, we design and synthesize mesoporous LiFeBO3/C (LFB/C) hollow spheres to enhance its structural stability and electric conductivity, two LiFeBO3/C electrodes with different carbon content are prepared and tested. The experimental results show that mesoporous LiFeBO3/C hollow spheres with higher carbon content exhibit superior lithium storage capacity, cycling stability and rate capability. Particularly, the LFB/C electrode with higher carbon content demonstrates good structural stability, which can maintain its original crystal structure and Li storage properties even after three months of air exposure at room temperature. The exceptional structural stability and electrochemical performance may justify their potential use as high-performance cathode materials for advanced lithium-ion batteries. In addition, the synthesis strategy demonstrated herein is simple and versatile for the fabrication of other polyanionic cathode materials with mesoporous hollow spherical structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X -Q; Xing, X K; Daroux, M
The object of this project is to develop new electrolyte and cathode materials for rechargeable lithium batteries, especially for lithium ion and lithium polymer batteries. Enhancing performance, reducing cost, and replacing toxic materials by environmentally benign materials, are strategic goals of DOE in lithium battery research. This proposed project will address these goals on two important material studies, namely the new electrolytes and new cathode materials. For the new electrolyte materials, aza based anion receptors as additives, organic lithium salts and plasticizers which have been developed by BNL team under Energy Research programs of DOE, will be evaluated by Gouldmore » for potential use in commercial battery cells. All of these three types of compounds are aimed to enhance the conductivity and lithium transference number of lithium battery electrolytes and reduce the use of toxic salts in these electrolytes. BNL group will be working closely with Gould to further develop these compounds for commercialization. For the cathode material studies, BNL efforts wi U be focused on developing new superior characterization methclds, especially in situ techniques utilize the unique user facility of DOE at BNL, namely the National Synchrotrons Light Source (NSLS). In situ x-ray absorption and x-ray diftlaction spectroscopy will be used to study the relationship between performance and the electronic and structural characteristics of intercalation compounds such as LiNi0 2, LiCo0 2, and LiMn 20 4 spinel. The study will be focused on LiMn 20 4 spinel materials. Gould team will contribute their expertise in choosing the most promising compounds, providing overall performance requirements, and will use the results of this study to guide their procedure for quality control. The knowledge gained through this project will not only benefit Gould and BNL, but will be very valuable to the scientific community in battery research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Linqin; Rahman, Muhammad Mominur; Zhang, Yan
Coating the surfaces of active materials has become an effective and indispensable path towards the stable operation of practical rechargeable batteries. Improving the affordability of coating processes can bring enormous manufacturing advantages to battery applications. Here in this paper, we report a cheap, simple and efficient method to create conformal coating layers on the primary particles of sodium layered oxide materials for improving battery performance. Mimicking the cathode–electrolyte interfacial reaction in practical cells, we create conformal coating layers via the spontaneous reaction between the oxidative cathode surfaces and a cocktail of reductive organic solvents. The conformal coating layers consist ofmore » metal–organic compounds with reduced transition metal cations, i.e., artificial cathode–electrolyte interphases (CEIs). The cells containing these coated cathode materials deliver much improved cycle life while maintaining reasonably high reversible capacity and rate capability. Furthermore, the structural stability and water resistance are enhanced, which can practically help simplify the storage protocol of cathode powders prior to battery manufacturing. The surfaces of most oxide cathode materials (e.g., lithium cathodes and sodium cathodes) are highly oxidative, and thus we expect that the present method, with tailored experimental parameters, can be readily applied to most battery systems.« less
Mu, Linqin; Rahman, Muhammad Mominur; Zhang, Yan; ...
2018-01-09
Coating the surfaces of active materials has become an effective and indispensable path towards the stable operation of practical rechargeable batteries. Improving the affordability of coating processes can bring enormous manufacturing advantages to battery applications. Here in this paper, we report a cheap, simple and efficient method to create conformal coating layers on the primary particles of sodium layered oxide materials for improving battery performance. Mimicking the cathode–electrolyte interfacial reaction in practical cells, we create conformal coating layers via the spontaneous reaction between the oxidative cathode surfaces and a cocktail of reductive organic solvents. The conformal coating layers consist ofmore » metal–organic compounds with reduced transition metal cations, i.e., artificial cathode–electrolyte interphases (CEIs). The cells containing these coated cathode materials deliver much improved cycle life while maintaining reasonably high reversible capacity and rate capability. Furthermore, the structural stability and water resistance are enhanced, which can practically help simplify the storage protocol of cathode powders prior to battery manufacturing. The surfaces of most oxide cathode materials (e.g., lithium cathodes and sodium cathodes) are highly oxidative, and thus we expect that the present method, with tailored experimental parameters, can be readily applied to most battery systems.« less
Chemical vapor infiltration of TiB{sub 2} fibrous composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besmann, T.M.
1997-04-01
This program is designed to develop a Hall-Heroult aluminum smelting cathode with substantially improved properties. The carbon cathodes in current use require significant anode-to-cathode spacing in order to prevent shorting, causing significant electrical inefficiencies. This is due to the non-wettability of carbon by aluminum which causes instability in the cathodic aluminum pad. It is suggested that a fiber reinforced-TiB{sub 2} matrix composite would have the requisite wettability, strength, strain-to-failure, cost, and lifetime to solve this problem. The approach selected to fabricate such a cathode material is chemical vapor infiltration (CVI). This process produces high purity matrix TiB{sub 2} without damagingmore » the relatively fragile fibers. The program is designed to evaluate potential fiber reinforcements, fabricate test specimens, and scale the process to provide demonstration components.« less
Antipov, Evgeny V; Khasanova, Nellie R; Fedotov, Stanislav S
2015-01-01
To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4) (n-) and F(-)] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications.
NASA Astrophysics Data System (ADS)
Masset, Patrick J.; Guidotti, Ronald A.
This article presents an overview of cathode materials (except the pyrite FeS 2) used or envisaged in thermally activated ("thermal") batteries. The physicochemical properties and electrochemical performance of different cathode families (oxides, sulfides) are reviewed, including discharge mechanisms, when known.
Solid oxide fuel cell having monolithic core
Ackerman, John P.; Young, John E.
1984-01-01
A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.
Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping
2017-12-01
Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO 2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm -2 ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Challenges and approaches for high-voltage spinel lithium-ion batteries.
Kim, Jung-Hyun; Pieczonka, Nicholas P W; Yang, Li
2014-07-21
Lithium-ion (Li-ion) batteries have been developed for electric vehicle (EV) applications, owing to their high energy density. Recent research and development efforts have been devoted to finding the next generation of cathode materials for Li-ion batteries to extend the driving distance of EVs and lower their cost. LiNi(0.5)Mn(1.5)O(4) (LNMO) high-voltage spinel is a promising candidate for a next-generation cathode material based on its high operating voltage (4.75 V vs. Li), potentially low material cost, and excellent rate capability. Over the last decade, much research effort has focused on achieving a fundamental understanding of the structure-property relationship in LNMO materials. Recent studies, however, demonstrated that the most critical barrier for the commercialization of high-voltage spinel Li-ion batteries is electrolyte decomposition and concurrent degradative reactions at electrode/electrolyte interfaces, which results in poor cycle life for LNMO/graphite full cells. Despite scattered reports addressing these processes in high-voltage spinel full cells, they have not been consolidated into a systematic review article. With this perspective, emphasis is placed herein on describing the challenges and the various approaches to mitigate electrolyte decomposition and other degradative reactions in high-voltage spinel cathodes in full cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cathodes and electrolytes for rechargeable magnesium batteries and methods of manufacture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumta, Prashant N.; Saha, Partha; Datta, Moni Kanchan
The invention relates to Chevrel-phase materials and methods of preparing these materials utilizing a precursor approach. The Chevrel-phase materials are useful in assembling electrodes, e.g., cathodes, for use in electrochemical cells, such as rechargeable batteries. The Chevrel-phase materials have a general formula of Mo 6Z 8 and the precursors have a general formula of M xMo 6Z 8. The cathode containing the Chevrel-phase material in accordance with the invention can be combined with a magnesium-containing anode and an electrolyte.
Yan, Pengfei; Zheng, Jianming; Xiao, Jie; ...
2015-06-08
Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li 0.2Ni 0.2Mn 0.6O 2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processingmore » history, cycling induced structural degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.« less
Compact Rare Earth Emitter Hollow Cathode
NASA Technical Reports Server (NTRS)
Watkins, Ronald; Goebel, Dan; Hofer, Richard
2010-01-01
A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this configuration with possibly an even longer emitter life. This cathode is specifically designed to integrate on the centerline of a high-power Hall thruster, thus eliminating the asymmetries in the plasma discharge common to cathodes previously mounted externally to the thruster s magnetic circuit. An alternative configuration for the cathode uses an external propellant feed. This diverts a fraction of the total cathode flow to an external feed, which can improve the cathode coupling efficiency at lower total mass flow rates. This can improve the overall thruster efficiency, thereby decreasing the required propellant loads for different missions. Depending on the particular mission, reductions in propellant loads can lead to mission enabling capabilities by allowing launch vehicle step-down, greater payload capability, or by extending the life of a spacecraft.
Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; ...
2014-11-18
Through a systematic study of lithium molybdenum trioxide (Li 2MoO 3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO 2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li 2MoO 3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O asmore » controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.« less
Jin, Yi-Chun; Duh, Jenq-Gong
2016-02-17
This study is aimed to explore the effect of fluoride doping and the associated structural transformation on lithium-rich layered cathode materials. The polymeric fluoride source is first adopted for synthesizing lithium intercalated oxide through a newly developed organic precipitation process. A heterostructured spinel/layered composite cathode material is obtained after appreciable fluorination and a superior rate capability is successfully achieved. The fluoride dopant amount and the surface spinel phase are evidenced and systematically examined by various structural spectroscopy and electrochemical analysis. It appears the reversible Ni(2+/4+) redox couple at high voltage regime around 4.8 V because of the formation of spinel LiNi1/2Mn3/2O4 phase. The mechanism of "layer to spinel" phase transformation is discussed in detail.
Super high energy density of Li3V2(PO4)3 as cathode materials for lithium ion batteries
NASA Astrophysics Data System (ADS)
Noerochim, Lukman; Amin, Mochammad Karim Al; Susanti, Diah; Triwibowo, Joko
2018-04-01
Lithium ion batteries have many advantages such as high energy density, no memory effect, long time cycleability and friendly environment. One type of cathode material that can be developed is Li3V2(PO4)3. In this study has been carried out the synthesis of Li3V2(PO4)3 with a hydrothermal temperature variation of 140, 160 and 180 °C and calcination temperature at 800 °C. SEM images show that the morphology of Li3V2(PO4)3 has irregular flakes with a size between 1-10 µm. CV results show redox reaction occurs in the range between 3 V to 4.8 V with the highest specific discharge capacity of 136 mAh/g for specimen with temperature hydrothermal and calcination are 180 °C and 800 °C. This result demonstrates that Li3V2(PO4)3 has a great potential as cathode material for lithium ion battery.
NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Olson, PhD
2004-07-21
This project involved the synthesis of nanowire ã-MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing ã-MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ionmore » batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the ã-MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the ã-MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into ã-MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the ã-MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for creating high-power lithium-ion battery cathode needed for advanced EV and HEVs. Several technical advancements will still be required to meet this goal, and are likely topics for future SBIR feasibility studies.« less
A New Electron Source for Laboratory Simulation of the Space Environment
NASA Technical Reports Server (NTRS)
Krause, Linda Habash; Everding, Daniel; Bonner, Mathew; Swan, Brian
2012-01-01
We have developed a new collimated electron source called the Photoelectron Beam Generator (PEBG) for laboratory and spaceflight applications. This technology is needed to replace traditional cathodes because of serious fundamental weaknesses with the present state of the art. Filament cathodes suffer from numerous practical problems, even if expertly designed, including the dependence of electron emission on filament temperature, short lifetimes (approx 100 hours), and relatively high power (approx 10s of W). Other types of cathodes have solved some of these problems, but they are plagued with other difficult problems, such as the Spindt cathode's extreme sensitivity to molecular oxygen. None to date have been able to meet the demand of long lifetime, robust packaging, and precision energy and flux control. This new cathode design avoids many common pitfalls of traditional cathodes. Specifically, there are no fragile parts, no sensitivity to oxygen, no intrinsic emission dependencies on device temperature, and no vacuum requirements for protecting the source from contamination or damage. Recent advances in high-brightness Light Emitting Diodes (LEDs) have provided the key enabling technology for this new electron source. The LEDs are used to photoeject electrons off a target material of a low work-function, and these photoelectrons are subsequently focused into a laminar beam using electrostatic lenses. The PEBG works by illuminating a target material and steering photoelectrons into a laminar beam using electrostatic lenses
Cao, Xuecheng; Sun, Zhihui; Zheng, Xiangjun; Jin, Chao; Tian, Jinhua; Li, Xiaowei; Yang, Ruizhi
2018-02-09
Carbon is usually used as cathode material for Li-O 2 batteries. However, the discharge product, such as Li 2 O 2 and LiO 2 , could react with carbon to form an insulating lithium carbonate layer, resulting in cathode passivation and capacity fading. To solve this problem, the development of non-carbon cathodes is highly desirable. Herein, we successfully synthesized MnCo 2 O 4 (MCO) nanoparticles anchored on porous MoO 2 nanosheets that are grown on Ni foam (current collector) (MCO/MoO 2 @Ni), acting as a carbon- and binder-free cathode for Li-O 2 batteries, in an attempt to improve the electrical conductivity, electrocatalytic activity, and durability. This MCO/MoO 2 @Ni electrode delivers excellent cyclability (more than 400 cycles) and rate performance (voltage gap of 0.75 V at 5000 mA g -1 ). Notably, the battery with this electrode exhibits a high energy efficiency (higher than 85 %). The advanced electrochemical performance of MCO/MoO 2 @Ni can be attributed to its high electrical conductivity, excellent stability, and outstanding electrocatalytic activity. This work offers a new strategy to fabricate high-performance Li-O 2 batteries with non-carbon cathode materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Layered P2-Na 2/3 Co 1/2 Ti 1/2 O 2 as a high-performance cathode material for sodium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabi, Noha; Doubaji, Siham; Hashimoto, Kazuki
Layered oxides are regarded as promising cathode materials for sodium-ion batteries. We present Na2/3Co1/2Ti1/2O2 as a potential new cathode material for sodium-ion batteries. The crystal features and morphology of the pristine powder were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cathode material is evaluated in galvanostatic charge-discharge and galvanostatic intermittent titration tests, as well as ex-situ X-ray diffraction analysis. Synthesized by a high-temperature solid state reaction, Na2/3Co1/2Ti1/2O2 crystallizes in P2-type structure with P6(3)/mmc space group. The material presents reversible electrochemical behavior and delivers a specific discharge capacity of 100 mAh g(-1) when tested in Na halfmore » cells between 2.0 and 4.2 V (vs. Na+/Na), with capacity retention of 98% after 50 cycles. Furthermore, the electrochemical cycling of this titanium-containing material evidenced a reduction of the potential jumps recorded in the NaxCoO2 parent phase, revealing a positive impact of Ti substitution for Co. The ex-situ XRD measurements confirmed the reversibility and stability of the material. No structural changes were observed in the XRD patterns, and the P2-type structure was stable during the charge/discharge process between 2.0 and 4.2 V vs. Na+/Na. These outcomes will contribute to the progress of developing low cost electrode materials for sodium-ion batteries. (C) 2017 Elsevier B.V. All rights reserved.« less
Coating of porous carbon for use in lithium air batteries
Amine, Khalil; Lu, Jun; Du, Peng; Lei, Yu; Elam, Jeffrey W
2015-04-14
A cathode includes a carbon material having a surface, the surface having a first thin layer of an inert material and a first catalyst overlaying the first thin layer, the first catalyst including metal or metal oxide nanoparticles, wherein the cathode is configured for use as the cathode of a lithium-air battery.
Challenges and prospects of lithium-sulfur batteries.
Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
2013-05-21
Electrical energy storage is one of the most critical needs of 21st century society. Applications that depend on electrical energy storage include portable electronics, electric vehicles, and devices for renewable energy storage from solar and wind. Lithium-ion (Li-ion) batteries have the highest energy density among the rechargeable battery chemistries. As a result, Li-ion batteries have proven successful in the portable electronics market and will play a significant role in large-scale energy storage. Over the past two decades, Li-ion batteries based on insertion cathodes have reached a cathode capacity of ∼250 mA h g(-1) and an energy density of ∼800 W h kg(-1), which do not meet the requirement of ∼500 km between charges for all-electric vehicles. With a goal of increasing energy density, researchers are pursuing alternative cathode materials such as sulfur and O2 that can offer capacities that exceed those of conventional insertion cathodes, such as LiCoO2 and LiMn2O4, by an order of magnitude (>1500 mA h g(-1)). Sulfur, one of the most abundant elements on earth, is an electrochemically active material that can accept up to two electrons per atom at ∼2.1 V vs Li/Li(+). As a result, sulfur cathode materials have a high theoretical capacity of 1675 mA h g(-1), and lithium-sulfur (Li-S) batteries have a theoretical energy density of ∼2600 W h kg(-1). Unlike conventional insertion cathode materials, sulfur undergoes a series of compositional and structural changes during cycling, which involve soluble polysulfides and insoluble sulfides. As a result, researchers have struggled with the maintenance of a stable electrode structure, full utilization of the active material, and sufficient cycle life with good system efficiency. Although researchers have made significant progress on rechargeable Li-S batteries in the last decade, these cycle life and efficiency problems prevent their use in commercial cells. To overcome these persistent problems, researchers will need new sulfur composite cathodes with favorable properties and performance and new Li-S cell configurations. In this Account, we first focus on the development of novel composite cathode materials including sulfur-carbon and sulfur-polymer composites, describing the design principles, structure and properties, and electrochemical performances of these new materials. We then cover new cell configurations with carbon interlayers and Li/dissolved polysulfide cells, emphasizing the potential of these approaches to advance capacity retention and system efficiency. Finally, we provide a brief survey of efficient electrolytes. The Account summarizes improvements that could bring Li-S technology closer to mass commercialization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Gui -Liang; Amine, Rachid; Xu, Yue -Feng
Cathode materials are critical to the energy density, power density and safety of sodium-ion batteries (SIBs). Herein, we performed a comprehensive study to elucidate and exemplify the interplay mechanism between phase structures, interfacial microstrain and electrochemical properties of layered-structured Na xNi 1/3Co 1/3Mn 1/3O 2 cathode materials for high voltage SIBs. The electrochemical test results showed that Na xNi 1/3Co 1/3Mn 1/3O 2 with an intergrowth P2/O3/O1 structure demonstrates better electrochemical performance and better thermal stability than Na xNi 1/3Co 1/3Mn 1/3O 2 with P2/O3 binary-phase integration and Na xNi 1/3Co 1/3Mn 1/3O 2 where only the P phase ismore » dominant. This result is caused by the distinct interfacial microstrain development during the synthesis and cycling of the P2/O3/O1 phase. In operando high energy X-ray diffraction further revealed that the intergrowth P2/O1/O3 cathode can inhibit the irreversible P2–O2 phase transformation and simultaneously improve the structure stability of the O3 and O1 phases during cycling. Here, we believe that interfacial microstrain can serve as an indispensable bridge to guide future design and synthesis of high performance SIB cathode materials and other high energy battery materials.« less
Butler, Caitlyn S; Nerenberg, Robert
2010-05-01
Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.
Advanced Electrode Materials for High Energy Next Generation Li ion Batteries
NASA Astrophysics Data System (ADS)
Hayner, Cary Michael
Lithium ion batteries are becoming an increasingly ubiquitous part of modern society. Since their commercial introduction by Sony in 1991, lithium-ion batteries have grown to be the most popular form of electrical energy storage for portable applications. Today, lithium-ion batteries power everything from cellphones and electric vehicles to e-cigarettes, satellites, and electric aircraft. Despite the commercialization of lithium-ion batteries over twenty years ago, it remains the most active field of energy storage research for its potential improvement over current technology. In order to capitalize on these opportunities, new materials with higher energy density and storage capacities must be developed. Unfortunately, most next-generation materials suffer from rapid capacity degradation or severe loss of capacity when rapidly discharged. In this dissertation, the development of novel anode and cathode materials for advanced high-energy and high-power lithium-ion batteries is reported. In particular, the application of graphene-based materials to stabilize active material is emphasized. Graphene, a unique two-dimensional material composed of atomically thin carbon sheets, has shown potential to address unsatisfactory rate capability, limited cycling performance and abrupt failure of these next-generation materials. This dissertation covers four major subjects: development of silicon-graphene composites, impact of carbon vacancies on graphene high-rate performance, iron fluoride-graphene composites, and ternary iron-manganese fluoride synthesis. Silicon is considered the most likely material to replace graphite as the anode active material for lithium-ion batteries due to its ability to alloy with large amounts of lithium, leading to significantly higher specific capacities than the graphite standard. However, Si also expands in size over 300% upon lithiation, leading to particle fracture and isolation from conductive support, resulting in cell failure within a few charge-discharge cycles. To stabilize silicon materials, composites of silicon nanoparticles were dispersed between graphene sheets and supported by a 3-D network of graphite formed by reconstituted regions of graphene stacks. These free-standing, self-supported composites exhibited excellent Li-ion storage capacities higher than 2200 mAh/g and good cycling stability. In order to improve the advantages graphene can provide as a 3-D scaffold, carbon vacancies were introduced into the basal planes via an acid-oxidation treatment. These vacancies markedly enhance the rate performance of graphene materials as well as silicon-graphene composites. Silicon-graphene composites containing carbon vacancies achieved high accessible storage capacities at fast charge/discharge rates that rival supercapacitor performance while maintaining good cycling stability. Optimal carbon vacancy size and density were determined. Graphene composites were also formed with iron trifluoride (FeF 3), a high-energy cathode material with ability to store up to 712 mAh/g capacity, over 3X more than current state-of-the-art cathode materials. A facile route that combines co-assembly and photothermal reduction was developed to synthesize free-standing, flexible FeF3/graphene papers. The papers contained a uniform dispersion of FeF3 nanoparticles (< 40 nm) and open ion diffusion channels in the porous, conducting network of graphene sheets that resulted in a flexible paper cathode with high charge storage capacity, rate, and cycling performance, without the need for other carbon additives or binder. Free-standing FeF3/graphene composites showed a high storage capacity of >400 mAh/g and improved cycling performance compared to bare FeF3 particles. Lastly, novel ternary iron-manganese fluoride (FexMn 1-xF2) cathode materials were synthesized via a convenient, bottom-up solution-phase synthesis which allowed control of particle size, shape, and surface morphology. The synthesized materials exhibited nanoscale features with average particle size of 20-40 nm. These ternary metal composites exhibited key, desirable properties for next-generation Li-ion battery cathode materials. The described process constituted a translatable route to large-scale production of ternary metal fluoride nanoparticles.
NASA Astrophysics Data System (ADS)
Longo, Roberto; Kong, Fantai; Kc, Santosh; Yeon, Dong-Hee; Yoon, Jaegu; Park, Jin-Hwan; Doo, Seok-Kwang; Cho, Kyeongjae; MSL Team; SAIT Team
2015-03-01
Current Li-ion batteries use layered oxides as cathode materials, specially LiCoO2 or LiNi1 - y - xCoyMnxO2(NCM), and graphite as anode. Co layered oxides suffer from the high cost and toxicity of cobalt, together with certain instability at high operational temperatures. To overcome these difficulties, the synthesis of novel materials composed of layered oxides with different sets of Transition Metals (TM) has become the most successful way to solve the particular drawbacks of every single-oxide family. Although layered materials can deliver larger capacity than other families of cathode materials, the energy density has yet to be increased in order to match the expectations deposited on the NCM oxides. To acquire a high capacity, they need to be cycled at high operational voltages, resulting in voltage and capacity fading over a large number of cycles. In this work, we examine the phase diagram of the Li-Ni-Co-Mn-O system and the effect of TM ordering on the electronic properties of NCM cathode materials, using density-functional theory. Our findings will provide conceptual guidance in the experimental search for the mechanisms driving the voltage and capacity fading of the NCM family of cathode materials, in an attempt to solve such structural instability problems and, thus, improving the performance of the NCM cathode materials. This work was supported by Samsung GRO project.
Performance evaluation of Mn and Fe doped SrCo0.9Nb0.1O3-δ cathode for IT-SOFC application
NASA Astrophysics Data System (ADS)
Bele, Lokesh; Lenka, R. K.; Patro, P. K.; Muhmood, L.; Mahata, T.; Sinha, P. K.
2018-02-01
Cathode materials of Mn and Fe doped SrCo0.9Nb0.1O3-δ, are synthesized by solid state route for intermediate temperature fuel cell applications. Phase pure material is obtained after calcining the precursors at 1100 °C. Phase compatibility is observed between this novel cathode material with gadolinia doped ceria (GDC) electrolyte material as reflected in the diffraction pattern. The state of art YSZ electrolyte is not compatible with this cathode material. Average thermal expansion coefficient of the material varies between 17 to 22 X 10-6 K-1 on doping, from room temperature to 800 °C. Increase in thermal expansion coefficient is observed with Mn and Fe doping associated with the loss of oxygen from the crystal. The electrical conductivity of the cathode material decreases with Fe and Mn doping. Mn doped samples show lowest conductivity. From the symmetric cell measurement lower area specific resistance (0.16 Ω-cm2) is obtained for un-doped samples, at 850 °C. From the initial results it can be inferred that Mn/Fe doping improves neither the thermal expansion co-efficient nor the electrochemical activity.
Yao, Ying; Wu, Feng
2017-09-20
An Li-O 2 battery requires the oxygen-breathing cathode to be highly electronically conductive, rapidly oxygen diffusive, structurally stable, and often times electrocatalytically active. Catalyst-decorated porous carbonaceous materials are the chosen air cathode in this regard. Alternatively, biomass-derived carbonaceous materials possess great ability to remove heavy and toxic metal ions from waste, forming a metal-adsorbed porous carbonaceous material. The similar structure between the air cathode and the metal-adsorbed biomass-derived carbon nicely bridges these two irrelevant areas. In this study, we investigated the electrochemical activity of a biochar material Ag-ESB directly synthesized from ethanol sludge residue in a rechargeable aprotic Li-O 2 battery. Ag ions were adsorbed from sewage and became Ag nanoparticles with uniform coverage on the biochar surface. The as-prepared material exhibits good electrochemical behavior in battery testing, especially toward the battery efficiency and cyclability. This study provides the possibility of synthetically efficient cathode material by reusing "waste" such as biofuel sludge residue. It is an economically and environmentally friendly approach both for an energy-storage system and for waste recycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Ying; Wu, Feng
An Li–O 2 battery requires the oxygen-breathing cathode to be highly electronically conductive, rapidly oxygen diffusive, structurally stable, and often times electrocatalytically active. Catalyst-decorated porous carbonaceous materials are the chosen air cathode in this regard. Alternatively, biomass-derived carbonaceous materials possess great ability to remove heavy and toxic metal ions from waste, forming a metal-adsorbed porous carbonaceous material. The similar structure between the air cathode and the metal-adsorbed biomass-derived carbon nicely bridges these two irrelevant areas. In this study, we investigated the electrochemical activity of a biochar material Ag-ESB directly synthesized from ethanol sludge residue in a rechargeable aprotic Li–O 2more » battery. Ag ions were adsorbed from sewage and became Ag nanoparticles with uniform coverage on the biochar surface. The as-prepared material exhibits good electrochemical behavior in battery testing, especially toward the battery efficiency and cyclability. This study provides the possibility of synthetically efficient cathode material by reusing “waste” such as biofuel sludge residue. It is an economically and environmentally friendly approach both for an energy-storage system and for waste recycling.« less
Chromium (V) compounds as cathode material in electrochemical power sources
Delnick, F.M.; Guidotti, R.A.; McCarthy, D.K.
A cathode for use in a thermal battery, comprising a chromium (V) compound. The preferred materials for this use are Ca/sub 5/(CrO/sub 4/)/sub 3/Cl, Ca/sub 5/(CrO/sub 4/)OH, and Cr/sub 2/O/sub 5/. The chromium (V) compound can be employed as a cathode material in ambient temperature batteries when blended with a suitably conductive filler, preferably carbon black.
Chromium (V) compounds as cathode material in electrochemical power sources
Delnick, Frank M.; Guidotti, Ronald A.; McCarthy, David K.
1985-01-01
A cathode for use in a thermal battery, comprising a chromium (V) compound. The preferred materials for this use are Ca.sub.5 (CrO.sub.4).sub.3 Cl, Ca.sub.5 (CrO.sub.4).sub.3 OH, and Cr.sub.2 O.sub.5. The chromium (V) compound can be employed as a cathode material in ambient temperature batteries when blended with a suitably conductive filler, preferably carbon black.
Thermal abuse performance of high-power 18650 Li-ion cells
NASA Astrophysics Data System (ADS)
Roth, E. P.; Doughty, D. H.
High-power 18650 Li-ion cells have been developed for hybrid electric vehicle applications as part of the DOE Advanced Technology Development (ATD) program. The thermal abuse response of two advanced chemistries (Gen1 and Gen2) were measured and compared with commercial Sony 18650 cells. Gen1 cells consisted of an MCMB graphite based anode and a LiNi 0.85Co 0.15O 2 cathode material while the Gen2 cells consisted of a MAG10 anode graphite and a LiNi 0.80Co 0.15 Al 0.05O 2 cathode. Accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC) were used to measure the thermal response and properties of the cells and cell materials up to 400 °C. The MCMB graphite was found to result in increased thermal stability of the cells due to more effective solid electrolyte interface (SEI) formation. The Al stabilized cathodes were seen to have higher peak reaction temperatures that also gave improved cell thermal response. The effects of accelerated aging on cell properties were also determined. Aging resulted in improved cell thermal stability with the anodes showing a rapid reduction in exothermic reactions while the cathodes only showed reduced reactions after more extended aging.
Device for providing high-intensity ion or electron beam
McClanahan, Edwin D.; Moss, Ronald W.
1977-01-01
A thin film of a low-thermionic-work-function material is maintained on the cathode of a device for producing a high-current, low-pressure gas discharge by means of sputter deposition from an auxiliary electrode. The auxiliary electrode includes a surface with a low-work-function material, such as thorium, uranium, plutonium or one of the rare earth elements, facing the cathode but at a disposition and electrical potential so as to extract ions from the gas discharge and sputter the low-work-function material onto the cathode. By continuously replenishing the cathode film, high thermionic emissions and ion plasmas can be realized and maintained over extended operating periods.
Molten carbonate fuel cell cathode with mixed oxide coating
Hilmi, Abdelkader; Yuh, Chao-Yi
2013-05-07
A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.
Organic photosensitive cells having a reciprocal-carrier exciton blocking layer
Rand, Barry P [Princeton, NJ; Forrest, Stephen R [Princeton, NJ; Thompson, Mark E [Anaheim Hills, CA
2007-06-12
A photosensitive cell includes an anode and a cathode; a donor-type organic material and an acceptor-type organic material forming a donor-acceptor junction connected between the anode and the cathode; and an exciton blocking layer connected between the acceptor-type organic material of the donor-acceptor junction and the cathode, the blocking layer consisting essentially of a material that has a hole mobility of at least 10.sup.-7 cm.sup.2/V-sec or higher, where a HOMO of the blocking layer is higher than or equal to a HOMO of the acceptor-type material.
New Cathode Material for High Energy-Density Batteries,
Semiconductive metal halides are under investigation as cathode materials for ambient-temperature lithium cells. N-type cadmium fluoride and zinc...fluoride were further characterized as electrodes limited by cathodic passivation in a lithium perchlorate-propylene carbonate electrolyte. The...discharge of cadmium fluoride occurred without passivation, however, in a tetramethylammonium hexafluorophosphate solution in the same solvent. The result
Magnetically attached sputter targets
Makowiecki, D.M.; McKernan, M.A.
1994-02-15
An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.
Magnetically attached sputter targets
Makowiecki, Daniel M.; McKernan, Mark A.
1994-01-01
An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly.
Composite cathode materials development for intermediate temperature solid oxide fuel cell systems
NASA Astrophysics Data System (ADS)
Qin, Ya
Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have about twice the exchange current density of composite SSC-LSGMC/LSGMC interfaces at 700°C. In this research effort, it has been found that: (1) the glycine-nitrate combustion process is favorable to produce perovskite-type oxide powders with good phase purity and negligible intermediate or contaminant phases; (2) The electrochemical performance for both the SSC-LSGMC and LSCF-LSGMC composite electrode materials on LSGMC confirm their potential for use in intermediate temperature SOFC applications; (3) The composite LSCF-LSGMC electrode exhibited much higher current density than the composite SSC-LSGMC electrode in the current dc polarization measurements; and (4) Primary market study results showed promising commercialization feasibility of these new materials sets, provided production is scaled up (with dramatic cost reductions).
Ground Vehicle Power and Mobility Overview
2007-05-30
Program Li-Ion Phosphate (LFP) Cathode Materials Large Format Li-Ion Prismatic Cells and Modules with Integrated Liquid Cooling Integrated Prototype...using porous graphitic material3 4 5 8 5 6 60 W-hr/kg 80-120 W/kg Low Cycle Life LFP cathode Safer Less energetic materials ~ ~ Power Cell 85-120...Thermal Runaway Study Zebra Battery NaNiCl2 (FY08 ATO) Advanced Lead Acid LiFePO4 Cathode Prismatic Lithium-ion batteries and Integrated Liquid Cooling
Early stage sustainability evaluation of new, nanoscale cathode materials for Li-ion batteries.
Hischier, Roland; Kwon, Nam Hee; Brog, Jean-Pierre; Fromm, Katharina M
2018-05-07
We present results of early stage sustainability evaluation of two development strategies for new, nano-scale cathode materials for Li-ion batteries: (i) a new production pathway of existing material (LiCoO2), and (ii) a new nanomaterial (LiMnPO4). Nano-LiCoO2 was synthesized via a single source precursor route at lower temperature with a shorter reaction time, resulting in a smaller grain size and, thereby, a better diffusivity for Li-ions. Nano-LiMnPO4 was synthesized via a wet chemical method. The sustainability potential of these materials has then been investigated (at the laboratory and pilot production scales). The results show that the environmental impact of nano-LiMnPO4 is lower compared to the other examined nanomaterial by several factors, and this regardless of the indicator for the comparison. In contrast to commercial cathode materials, this new material shows, particularly on an energy and capacity basis, results in the same order of magnitude as those of lithium manganese oxide (LiMn2O4), and only slightly higher values than those for lithium iron phosphate (LiFePO4); values that are clearly lower than those for high-temperature LiCoO2. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Architectures and criteria for the design of high efficiency organic photovoltaic cells
Rand, Barry; Forrest, Stephen R; Burk, Diana Pendergrast
2015-03-24
An organic photovoltaic cell includes an anode and a cathode, and a plurality of organic semiconductor layers between the anode and the cathode. At least one of the anode and the cathode is transparent. Each two adjacent layers of the plurality of organic semiconductor layers are in direct contact. The plurality of organic semiconductor layers includes an intermediate layer consisting essentially of a photoconductive material, and two sets of at least three layers. A first set of at least three layers is between the intermediate layer and the anode. Each layer of the first set consists essentially of a different organic semiconductor material having a higher LUMO and a higher HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the cathode. A second set of at least three layers is between the intermediate layer and the cathode. Each layer of the second set consists essentially of a different organic semiconductor material having a lower LUMO and a lower HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the anode.
Kim, Jeonghyun; Song, Taeseup; Park, Hyunjung; Yuh, Junhan; Paik, Ungyu
2014-10-01
The Li2MnSiO4 is a promising candidate as a cathode for lithium ion batteries due to its large theoretical capacity of 330 mA h g(-1) and high thermal stability. However, the problems related to low electronic conductivity and large irreversible capacity at the first cycle limits its practical use as a Li-ion cathode material. We have developed a carbon coated Li2MnSiO4-graphene composite electrode to overcome these problems. Our designed electrode exhibits high reversible capacity of 301 mA h g(-1), with a high initial coulombic efficiency, and a discharge capacity at current rate of 0.5 C, that is double value of carbon coated Li2MnSiO4-carbon black composite electrode. These significant improvements are attributed to fast electron transport along the graphene sheet.
Jahn–Teller Assisted Na Diffusion for High Performance Na Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xin; Wang, Yan; Wu, Di
2016-08-30
Na energy storage technology is strategically attractive for large scale applications such as grid energy storage. Here, we show in this paper that there is a clear relation between the Jahn$-$Teller activity of a transition metal ion at the end of charge and the mobility of Na in a cathode material. This is particularly important as mobility at the end of charge limits the capacity of current materials. Consequently, by using this classical piece of physics in the battery world, it is possible to create higher capacity Na-cathode materials. Even more exciting is that the ideal element to impart thismore » effect on cathodes is Fe, which is the least expensive of the transition metal oxides and can therefore enable low cost cathode materials.« less
Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; ...
2015-12-07
Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of themore » cathodes is one of the most critical factors in thermal runaway and related safety problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherkouk, Charaf; Nestler, Tina
Lithium cobalt oxide (LiCoO{sub 2}) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO{sub 2} is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO{sub 2}. Electrochemical andmore » structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented.« less
Emission current control system for multiple hollow cathode devices
NASA Technical Reports Server (NTRS)
Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)
1988-01-01
An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.
Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries
NASA Astrophysics Data System (ADS)
Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu
2016-01-01
Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g-1 at a current density of 100 mA g-1. When they were cycled at a limited capacity of 800 mAh g-1 at current densities of 200 or 400 mA g-1, these cathodes showed stable charge voltages of ˜3.65 or 3.90 V, corresponding to energy efficiencies of ˜71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.
Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
Yu, Seung-Ho; Feng, Xinran; Zhang, Na; Seok, Jeesoo; Abruña, Héctor D
2018-02-20
The need/desire to lower the consumption of fossil fuels and its environmental consequences has reached unprecedented levels in recent years. A global effort has been undertaken to develop advanced renewable energy generation and especially energy storage technologies, as they would enable a dramatic increase in the effective and efficient use of renewable (and often intermittent) energy sources. The development of electrical energy storage (EES) technologies with high energy and power densities, long life, low cost, and safe use represents a challenge from both the fundamental science and technological application points of view. While the advent and broad deployment of lithium-ion batteries (LIBs) has dramatically changed the EES landscape, their performance metrics need to be greatly enhanced to keep pace with the ever-increasing demands imposed by modern consumer electronics and especially the emerging automotive markets. Current battery technologies are mostly based on the use of a transition metal oxide cathode (e.g., LiCoO 2 , LiFePO 4 , or LiNiMnCoO 2 ) and a graphite anode, both of which depend on intercalation/insertion of lithium ions for operation. While the cathode material currently limits the battery capacity and overall energy density, there is a great deal of interest in the development of high-capacity cathode materials as well as anode materials. Conversion reaction materials have been identified/proposed as potentially high-energy-density alternatives to intercalation-based materials. However, conversion reaction materials react during lithiation to form entirely new products, often with dramatically changed structure and chemistry, by reaction mechanisms that are still not completely understood. This makes it difficult to clearly distinguish the limitations imposed by the mechanism and practical losses from initial particle morphology, synthetic approaches, and electrode preparations. Transition metal compounds such as transition metal oxides, sulfides, fluorides, phosphides, and nitrides can undergo conversion reactions yielding materials with high theoretical capacity (generally from 500 to 1500 mA h g -1 ). In particular, a number of transition metal oxides and sulfides have shown excellent electrochemical properties as high-capacity anode materials. In addition, some transition metal fluorides have shown great potential as cathode materials for Li rechargeable batteries. In this Account we present mechanistic studies, with emphasis on the use of operando methods, of selected examples of conversion-type materials as both potentially high-energy-density anodes and cathodes in EES applications. We also include examples of the conceptually similar conversion-type reactions involving chalcogens and halogens, with emphasis on the Li-S system. In this case we focus on the problems arising from the low electrical conductivities of elemental sulfur and Li 2 S and the "redox shuttle" phenomena of polysulfides. In addition to mechanistic insights from the use of operando methods, we also cover several key strategies in electrode materials design such as controlling the size, morphology, composition, and architecture.
Synthesis and characterization of cathode materials for lithium ion-rechargeable batteries
NASA Astrophysics Data System (ADS)
Nieto Ramos, Santander
Lithium intercalation materials are of special interest for cathodes in rechargeable lihium-ion batteries, because they are capable of reversibly intercalating lithium ions without altering the main unit. We developed a novel solution-based route for the synthesis of these lithium intercalates oxides. The first part of this work was devoted to the optimization of chemical solution process parameters in order to correlate their electrochemical properties. It was found that the lattice parameters and the crystallite size increase, whereas the lattice strain decreases with the increase in calcinations temperature. Powders annealed at 700°C for 15 h yielded best electrochemical performance. The electrochemical performance of substituted Li1.2Mn2O 4, Li1.2Mn1.8O4, Li1.2Cr 0.05Mn1.95O4, and Li1.2Cr0.05 Mn1.75O4 spinel electrodes in lithium cell has been studied. The electrochemical data showed that the Li and Cr dopant effect improves the cycleablility of spinel LiMn2O4 electrodes. The second part of this dissertation was devoted to improve the rate capabilities of these cathode materials by growing nano-size cathode particles and also by cation co-doping. Though the discharge capacity of these nano-crystalline cathodes was equivalent to their microcrystalline counterpart, these exhibited capacity fading in the 4V range. Through a combined X-ray diffraction, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses, we correlated the observed capacity fading with the onset of Jahn-Teller (J-T) distortion toward the end of the discharge in the cut-off limit between 4.2 and 3.2V. It was postulated that J-T distortion is the dominant fading mechanism of these nano-crystalline cathodes then by increasing the average oxidation state of the Mn ion in a virgin lithium manganate cathode, the onset of such distortion towards the end of the discharge could be delayed, and therefore, the cycleability of these cathodes could be improved. By synthesizing lithium and aluminum ion co-doped lithium manganate particles, we could increase the average oxidation state of Mn ions in the virgin electrodes. Indeed, the cycleability of these co-doped cathodes was dramatically improved which supports our population. The third part of this thesis was devoted to synthesis and electrochemical properties of layered compounds. Lithium nickel oxides derivatives are promising positive materials for the next generation of lithium-ion batteries. Partial substitution of certain cations for nickel in this family of oxides which satisfies the demanding requirements for rechargeable battery applications. In this part the interest is focused on the effect of simultaneous cobalt as well as aluminum doping was studied to understand their effect on the phase formation behavior and electrochemical properties of solution derived lithium nickel oxide cathode materials for rechargeable batteries. (Abstract shortened by UMI.)
Microanalysis of extended-test xenon hollow cathodes
NASA Technical Reports Server (NTRS)
Verhey, Timothy R.; Patterson, Michael J.
1991-01-01
Four hollow cathode electron sources were analyzed via boroscopy, scanning electron microscopy, energy dispersive x ray analysis, and x ray diffraction analysis. These techniques were used to develop a preliminary understanding of the chemistry of the devices that arise from contamination due to inadequate feed-system integrity and improper insert activation. Two hollow cathodes were operated in an ion thruster simulator at an emission current of 23.0 A for approximately 500 hrs. The two tests differed in propellant-feed systems, discharge power supplies, and activation procedures. Tungsten deposition and barium tungstate formation on the internal cathode surfaces occurred during the first test, which were believed to result from oxygen contamination of the propellant feed-system. Consequently, the test facility was upgraded to reduce contamination, and the test was repeated. The second hollow cathode was found to have experienced significantly less tungsten deposition. A second pair of cathodes examined were the discharge and the neutralizer hollow cathodes used in a life-test of a 30-cm ring-cusp ion thruster at a 5.5 kW power level. The cathodes' test history was documented and the post-test microanalyses are described. The most significant change resulting from the life-test was substantial tungsten deposition on the internal cathode surfaces, as well as removal of material from the insert surface. In addition, barium tungstate and molybdate were found on insert surfaces. As a result of the cathode examinations, procedures and approaches were proposed for improved discharge ignition and cathode longevity.
Electrorefiner system for recovering purified metal from impure nuclear feed material
Berger, John F.; Williamson, Mark A.; Wiedmeyer, Stanley G.; Willit, James L.; Barnes, Laurel A.; Blaskovitz, Robert J.
2015-10-06
An electrorefiner system according to a non-limiting embodiment of the present invention may include a vessel configured to maintain a molten salt electrolyte and configured to receive a plurality of alternately arranged cathode and anode assemblies. The anode assemblies are configured to hold an impure nuclear feed material. Upon application of the power system, the impure nuclear feed material is anodically dissolved and a purified metal is deposited on the cathode rods of the cathode assemblies. A scraper is configured to dislodge the purified metal deposited on the cathode rods. A conveyor system is disposed at a bottom of the vessel and configured to remove the dislodged purified metal from the vessel.
Solid oxide fuel cell having monolithic cross flow core and manifolding
Poeppel, Roger B.; Dusek, Joseph T.
1984-01-01
This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another.
Solid oxide fuel cell having monolithic cross flow core and manifolding
Poeppel, R.B.; Dusek, J.T.
1983-10-12
This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageways and the oxidant passageways are disposed transverse to one another.
Yuan, Shuang; Liu, Yong-Bing; Xu, Dan; Ma, De-Long; Wang, Sai; Yang, Xiao-Hong; Cao, Zhan-Yi; Zhang, Xin-Bo
2015-03-01
Pure single-crystalline Na 1.1 V 3 O 7.9 nanobelts are successfully synthesized for the first time via a facile yet effective strategy. When used as cathode materials for Na-ion batteries, the novel nanobelts exhibit excellent electrochemical performance. Given the ease and effectiveness of the synthesis route as well as the very promising electrochemical performance, the results obtained may be extended to other next-generation cathode materials for Na-ion batteries.
Xi, Kai; Cao, Shuai; Peng, Xiaoyu; Ducati, Caterina; Kumar, R Vasant; Cheetham, Anthony K
2013-03-18
This paper presents a novel method and rationale for utilizing carbonized MOFs for sulphur loading to fabricate cathode structures for lithium-sulphur batteries. Unique carbon materials with differing hierarchical pore structures were synthesized from four types of zinc-containing metal-organic frameworks (MOFs). It is found that cathode materials made from MOFs-derived carbons with higher mesopore (2-50 nm) volumes exhibit increased initial discharge capacities, whereas carbons with higher micropore (<2 nm) volumes lead to cathode materials with better cycle stability.
Xing, Weibing; Buettner-Garrett, Josh
2017-04-18
This disclosure relates generally to cathode materials for electrochemical energy cells, more particularly to metal/air electrochemical energy cell cathode materials containing silver vanadium oxide and methods of making and using the same. The metal/air electrochemical energy cell can be a lithium/air electrochemical energy cell. Moreover the silver vanadium oxide can be a catalyst for one or more of oxidation and reduction processes of the electrochemical energy cell.
Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts
Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne
2014-08-12
Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.
Cold cathodes for sealed off CO2 lasers
NASA Technical Reports Server (NTRS)
Hochuli, U. E.; Sciacca, T. P.; Hurt, C. R.
1973-01-01
Experimental results of a group of theoretically selected cold cathode materials are presented. These tests indicate Ag-CuO, Cu, and Pt-Cu as three new cold cathode materials for sealed-off CO2 lasers. The power output of a test laser with an Ag-CuO cathode and a gas volume of only 50 cu cm varied from 0.72 W to 1.1 W at 3000 hours and still yields 0.88 W after 8000 hours. Gas discharge tubes with Cu cathodes and a volume of 25 cu cm yield lifetimes in excess of 10,000 hours. Gas analysis results, obtained from a similar tube over a period of 3000 hours, look most promising. A Pt-Cu alloy cathode shows an extremely promising V-I characteristic over a period of 2800 hours.
Recent progress in degradation and stabilization of organic solar cells
NASA Astrophysics Data System (ADS)
Cao, Huanqi; He, Weidong; Mao, Yiwu; Lin, Xiao; Ishikawa, Ken; Dickerson, James H.; Hess, Wayne P.
2014-10-01
Stability is of paramount importance in organic semiconductor devices, especially in organic solar cells (OSCs). Serious degradation in air limits wide applications of these flexible, light-weight and low-cost power-generation devices. Studying the stability of organic solar cells will help us understand degradation mechanisms and further improve the stability of these devices. There are many investigations into the efficiency and stability of OSCs. The efficiency and stability of devices even of the same photoactive materials are scattered in different papers. In particular, the extrinsic degradation that mainly occurs near the interface between the organic layer and the cathode is a major stability concern. In the past few years, researchers have developed many new cathodes and cathode buffer layers, some of which have astonishingly improved the stability of OSCs. In this review article, we discuss the recent developments of these materials and summarize recent progresses in the study of the degradation/stability of OSCs, with emphasis on the extrinsic degradation/stability that is related to the intrusion of oxygen and water. The review provides detailed insight into the current status of research on the stability of OSCs and seeks to facilitate the development of highly-efficient OSCs with enhanced stability.
Microplasma device architectures with various diamond nanostructures
NASA Astrophysics Data System (ADS)
Kunuku, Srinivasu; Jothiramalingam Sankaran, Kamatchi; Leou, Keh-Chyang; Lin, I.-Nan
2017-02-01
Diamond nanostructures (DNSs) were fabricated from three different morphological diamonds, microcrystalline diamond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond (UNCD) films, using a reactive ion etching method. The plasma illumination (PI) behavior of microplasma devices using the DNSs and the diamond films as cathode were investigated. The Paschen curve approach revealed that the secondary electron emission coefficient (γ value) of diamond materials is similar irrespective of the microstructure (MCD, NCD, and UNCD) and geometry of the materials (DNSs and diamond films). The diamond materials show markedly larger γ-coefficient than conventional metallic cathode materials such as Mo that resulted in markedly better PI behavior for the corresponding microplasma devices. Moreover, the PI behavior, i.e. the voltage dependence of plasma current density (J pl-V), plasma density (n e-V), and the robustness of the devices, varied markedly with the microstructure and geometry of the cathode materials that was closely correlated to the electron field emission (EFE) properties of the cathode materials. The UNCD nanopillars, possessing good EFE properties, resulted in superior PI behavior, whereas the MCD diamond films with insufficient EFE properties led to inferior PI behavior. Consequently, enhancement of plasma characteristics is the collective effects of EFE behavior and secondary electron emission characteristics of diamond-based cathode materials.
Pushing the Limits: 3D Layer-by-Layer-Assembled Composites for Cathodes with 160 C Discharge Rates.
Mo, Runwei; Tung, Siu On; Lei, Zhengyu; Zhao, Guangyu; Sun, Kening; Kotov, Nicholas A
2015-05-26
Deficiencies of cathode materials severely limit cycling performance and discharge rates of Li batteries. The key problem is that cathode materials must combine multiple properties: high lithium ion intercalation capacity, electrical/ionic conductivity, porosity, and mechanical toughness. Some materials revealed promising characteristics in a subset of these properties, but attaining the entire set of often contrarian characteristics requires new methods of materials engineering. In this paper, we report high surface area 3D composite from reduced graphene oxide loaded with LiFePO4 (LFP) nanoparticles made by layer-by-layer assembly (LBL). High electrical conductivity of the LBL composite is combined with high ionic conductivity, toughness, and low impedance. As a result of such materials properties, reversible lithium storage capacity and Coulombic efficiency were as high as 148 mA h g(-1) and 99%, respectively, after 100 cycles at 1 C. Moreover, these composites enabled unusually high reversible charge-discharge rates up to 160 C with a storage capacity of 56 mA h g(-1), exceeding those of known LFP-based cathodes, some of them by several times while retaining high content of active cathode material. The study demonstrates that LBL-assembled composites enable resolution of difficult materials engineering tasks.
Chen, Zhaoyong; Yan, Xiaoyan; Xu, Ming; Cao, Kaifeng; Zhu, Huali; Li, Lingjun; Duan, Junfei
2017-09-13
In the family of high-performance cathode materials for lithium-ion batteries, lithium-rich layered oxides come out in front because of a high reversible capacity exceeding 250 mAh g -1 . However, the long-term energy retention and high energy densities for lithium-rich layered oxide cathode materials require a stable structure with large surface areas. Here we propose a "bubble template" reaction to build "honeycomb-like" hollow microsphere architecture for a Li 1.2 Mn 0.52 Ni 0.2 Co 0.08 O 2 cathode material. Our material is designed with ca. 8-μm-sized secondary particles with hollow and highly exposed porous structures that promise a large flexible volume to achieve superior structure stability and high rate capability. Our preliminary electrochemical experiments show a high capacity of 287 mAh g -1 at 0.1 C and a capacity retention of 96% after 100 cycles at 1.0 C. Furthermore, the rate capability is superior without any other modifications, reaching 197 mAh g -1 at 3.0 C with a capacity retention of 94% after 100 cycles. This approach may shed light on a new material engineering for high-performance cathode materials.
NASA Astrophysics Data System (ADS)
Ding, Liming; Wang, Lixi; Ding, Dong; Zhang, Shihua; Ding, Xifeng; Yuan, Guoliang
2017-06-01
Solid oxide fuel cells (SOFCs) offer great promise for the most efficient and cost-effective conversion to electricity of a wide variety of fuels. The cathode materials with high electro-catalytic activity for oxygen reduction reaction is vital to the development of commercially-viable SOFCs to be operated at reduced temperatures. In present study, cobalt-based perovskite oxides SrxCo0.7Nb0.1Fe0.2O3-δ (SCNF, x = 0.95 and 1) were comparatively investigated as promising cathode materials for intermediate-temperature SOFCs. The SCNF compounds with a slight Sr deficiency (S0.95CNF) exhibited single phase of primitive cubic structure with Pm-3m symmetry. A small Sr deficiency is demonstrated to greatly enhance the electrochemical performance of stoichiometric SCNF cathode due to significantly increased oxygen vacancy. The polarization resistance of S0.95CNF at 700 °C was 0.11 Ω cm2, only about 61% of SCNF. The rate limiting step for oxygen reduction reaction (ORR) is demonstrated to be oxygen ion transfer within the bulk electrode and/or from electrode to electrolyte through the triple phase boundary. Full cells with the SCNF cathode present good performance and stable output at reduced temperatures, indicating the great potential for enhanced performance of Co-based cathodes with A-site deficiency.
Synthesis of LiNiO2 cathode materials with homogeneous Al doping at the atomic level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zengcai; Zhen, Honghe; Kim, Yoongu
2011-01-01
Aluminum doped LiNiO2 cathode materials are synthesized by using Raney nickel as the starting material. The structure and composition are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with elemental mapping. The lithium deficiency is analyzed by Rieveld refinement. The initial capacity and retention of capacity are correlated to the lithium deficiency of the resulting cathode material. Using strong oxidant of Li2O2 in the synthesis results in materials with improved electrochemical cyclability. The improvement is related to the diminishing of lithium deficiency in strong oxidizing synthesis conditions.
Rechargeable lithium/polymer cathode batteries
NASA Astrophysics Data System (ADS)
Osaka, Tetsuya; Nakajima, Toshiki; Shiota, Koh; Owens, Boone B.
1989-06-01
Polypyrrole (PPy) and polyaniline (PAn) were investigated for cathode materials of rechargeable lithium batteries. PPy films prepared with PF6(-) anion and/or platinum substrate precoated with nitrile butadiene rubber (NBR) were excellent cathode materials because of rough and/or highly oriented film structure. PAn films were successfully prepared from non-aqueous propylene carbonate solution containing aniline, CF3COOH and lithium perchlorate. Its acidity strongly affects the anion doping-undoping behavior. The PAn cathode prepared in high acidic solution (e.g., 4:1 ratio of acid:aniline) gives the excellent battery performance.
Cathode for molten carbonate fuel cell
Kaun, Thomas D.; Mrazek, Franklin C.
1990-01-01
A porous sintered cathode for a molten carbonate fuel cell and method of making same, the cathode including a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell, the cathode having a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.
Cells having cathodes containing polycarbon disulfide materials
Okamoto, Yoshi; Skotheim, Terje A.; Lee, Hung S.
1995-08-15
The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS.sub.x).sub.n, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode.
Bond layer for a solid oxide fuel cell, and related processes and devices
Wu, Jian; Striker, Todd-Michael; Renou, Stephane; Gaunt, Simon William
2017-03-21
An electrically-conductive layer of material having a composition comprising lanthanum and strontium is described. The material is characterized by a microstructure having bimodal porosity. Another concept in this disclosure relates to a solid oxide fuel cell attached to at least one cathode interconnect by a cathode bond layer. The bond layer includes a microstructure having bimodal porosity. A fuel cell stack which incorporates at least one of the cathode bond layers is also described herein, along with related processes for forming the cathode bond layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakovleva, Marina
2012-12-31
FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety,more » cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.« less
High current density cathode for electrorefining in molten electrolyte
Li, Shelly X.
2010-06-29
A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.
Li, Junzhe; Luo, Shaohua; Ding, Xueyong; Wang, Qing; He, Ping
2018-04-04
In the efforts toward the rapidly increasing demands for high-power application, cathode materials with three-dimensional (3D) architectures have been proposed. Here, we report the construction of the 3D LiAlO 2 -LiMnPO 4 /C cathode materials for lithium-ion batteries in an innovation way. The as-prepared 3D active materials LiMnPO 4 /C and the honeycomb-like Li-ion conductor LiAlO 2 framework are used as working electrode directly without additional usage of polymeric binder. The electrochemical performance has been improved significantly due to the special designed core-shell architectures of LiMnPO 4 /C@LiAlO 2 . The 3D binder-free electrode exhibits high rate capability as well as superior cycling stability with a capability of ∼105 mAh g -1 and 98.4% capacity retention after 100 cycles at a high discharge rate of 10 C. Such synthesis method adopted in our work can be further extended to other promising candidates and would also inspire new avenues of development of 3D materials for lithium-ion batteries.
Carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries.
NuLi, Yanna; Chen, Qiang; Wang, Weikun; Wang, Ying; Yang, Jun; Wang, Jiulin
2014-01-01
We report the formation of carbyne polysulfide by coheating carbon containing carbyne moieties and elemental sulfur. The product is proved to have a sp2 hybrid carbon skeleton with polysulfide attached on it. The electrochemical performance of carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries is firstly investigated. The material exhibits a high discharge capacity of 327.7 mAh g(-1) at 3.9 mA g(-1). These studies show that carbyne polysulfide is a promising candidate as cathode material for rechargeable Mg batteries if the capacity retention can be significantly improved.
A Novel Cathode Material for Cathodic Dehalogenation of 1,1-Dibromo Cyclopropane Derivatives.
Gütz, Christoph; Selt, Maximilian; Bänziger, Markus; Bucher, Christoph; Römelt, Christina; Hecken, Nadine; Gallou, Fabrice; Galvão, Tomás R; Waldvogel, Siegfried R
2015-09-28
Leaded bronze turned out to be an excellent cathode material for the dehalogenation reaction of cyclopropanes without affecting the strained molecular entity. With this particular alloy, beneficial properties of lead cathodes are conserved, whereas the corrosion of cathode is efficiently suppressed. The solvent in the electrolyte determines whether a complete debromination reaction is achieved or if the process can be selectively stopped at the monobromo cyclopropane intermediate. The electroorganic conversion tolerates a variety of functional groups and can be conducted at rather complex substrates like cyclosporine A. This approach allows the sustainable preparation of cyclopropane derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Jicheng; Gao, Rui; Sun, Limei; Li, Zhengyao; Zhang, Heng; Hu, Zhongbo; Liu, Xiangfeng
2016-09-14
Recently, spinel-layered integrated Li-rich cathode materials have attracted great interest due to the large enhancement of their electrochemical performances. However, the modification mechanism and the effect of the integrated spinel phase on Li-rich layered cathode materials are still not very clear. Herein, we have successfully synthesized the spinel-layered integrated Li-rich cathode material using a facile non-stoichiometric strategy (NS-LNCMO). The rate capability (84 mA h g -1 vs. 28 mA h g -1 , 10 C), cycling stability (92.4% vs. 80.5%, 0.2 C), low temperature electrochemical capability (96.5 mA h g -1 vs. 59 mA h g -1 , -20 °C), initial coulomb efficiency (92% vs. 79%) and voltage fading (2.77 V vs. 3.02 V, 200 cycles@1 C) of spinel-layered integrated Li-rich cathode materials have been significantly improved compared with a pure Li-rich phase cathode. Some new insights into the effect of the integrated spinel phase on a layered Li-rich cathode have been proposed through a comparison of the structure evolution of the integrated and Li-rich only materials before and after cycling. The Li-ion diffusion coefficient of NS-LNCMO has been enlarged by about 3 times and almost does not change even after 100 cycles indicating an enhanced structure stability. The integration of the spinel phase not only enhances the structure stability of the layered Li-rich phase during charging-discharging but also expands the interslab spacing of the Li-ion diffusion layer, and elongates TM-O covalent bond lengths, which lowers the activation barrier of Li + -transportation, and alleviates the structure strain during the cycling procedure.
Zhang, Wenbo; Richter, Felix H; Culver, Sean P; Leichtweiss, Thomas; Lozano, Juan G; Dietrich, Christian; Bruce, Peter G; Zeier, Wolfgang G; Janek, Jürgen
2018-06-20
All-solid-state batteries (ASSBs) show great potential for providing high power and energy densities with enhanced battery safety. While new solid electrolytes (SEs) have been developed with high enough ionic conductivities, SSBs with long operational life are still rarely reported. Therefore, on the way to high-performance and long-life ASSBs, a better understanding of the complex degradation mechanisms, occurring at the electrode/electrolyte interfaces is pivotal. While the lithium metal/solid electrolyte interface is receiving considerable attention due to the quest for high energy density, the interface between the active material and solid electrolyte particles within the composite cathode is arguably the most difficult to solve and study. In this work, multiple characterization methods are combined to better understand the processes that occur at the LiCoO 2 cathode and the Li 10 GeP 2 S 12 solid electrolyte interface. Indium and Li 4 Ti 5 O 12 are used as anode materials to avoid the instability problems associated with Li-metal anodes. Capacity fading and increased impedances are observed during long-term cycling. Postmortem analysis with scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy show that electrochemically driven mechanical failure and degradation at the cathode/solid electrolyte interface contribute to the increase in internal resistance and the resulting capacity fading. These results suggest that the development of electrochemically more stable SEs and the engineering of cathode/SE interfaces are crucial for achieving reliable SSB performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Sooyeon; Jo, Eunmi; Chung, Kyung Yoon
Ni-rich lithium transition metal oxides have received significant attention due to their high capacities and rate capabilities determined via theoretical calculations. Although the structural properties of these materials are strongly correlated with the electrochemical performance, their structural stability during the high-rate electrochemical reactions has not been fully evaluated yet. In this work, transmission electron microscopy is used to investigate the crystallographic and electronic structural modifications of Ni-based cathode materials at a high charge/discharge rate of 10 C. It is found that the high-rate electrochemical reactions induce structural inhomogeneity near the surface of Ni-rich cathode materials, which limits Li transport andmore » reduces their capacities. Furthermore, this study establishes a correlation between the high-rate electrochemical performance of the Ni-based materials and their structural evolution, which can provide profound insights for designing novel cathode materials having both high energy and power densities.« less
Hwang, Sooyeon; Jo, Eunmi; Chung, Kyung Yoon; ...
2017-11-08
Ni-rich lithium transition metal oxides have received significant attention due to their high capacities and rate capabilities determined via theoretical calculations. Although the structural properties of these materials are strongly correlated with the electrochemical performance, their structural stability during the high-rate electrochemical reactions has not been fully evaluated yet. In this work, transmission electron microscopy is used to investigate the crystallographic and electronic structural modifications of Ni-based cathode materials at a high charge/discharge rate of 10 C. It is found that the high-rate electrochemical reactions induce structural inhomogeneity near the surface of Ni-rich cathode materials, which limits Li transport andmore » reduces their capacities. Furthermore, this study establishes a correlation between the high-rate electrochemical performance of the Ni-based materials and their structural evolution, which can provide profound insights for designing novel cathode materials having both high energy and power densities.« less
Cathode for a hall-heroult type electrolytic cell for producing aluminum
Brown, Craig W.
2004-04-13
A method of producing aluminum from alumina in an electrolytic cell including using a cathode comprised of a base material having low electrical conductivity and wettable with molten aluminum to form a reaction layer having a high electrical conductivity on said base layer and a cathode bar extending from said reaction layer through said base material to conduct electrical current from said reaction layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xihua; Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190; Beijing Engineering Research Center of Process Pollution Control, Beijing 100190
Highlights: • A simple process to recycle cathode scraps intended for lithium-ion batteries. • Complete separation of the cathode material from the aluminum foil is achieved. • The recovered aluminum foil is highly pure. • LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} is directly resynthesized from the separated cathode material. - Abstract: To solve the recycling challenge for aqueous binder based lithium-ion batteries (LIBs), a novel process for recycling and resynthesizing LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} from the cathode scraps generated during manufacturing process is proposed in this study. Trifluoroacetic acid (TFA) is employed to separate the cathode material from the aluminummore » foil. The effects of TFA concentration, liquid/solid (L/S) ratio, reaction temperature and time on the separation efficiencies of the cathode material and aluminum foil are investigated systematically. The cathode material can be separated completely under the optimal experimental condition of 15 vol.% TFA solution, L/S ratio of 8.0 mL g{sup −1}, reacting at 40 °C for 180 min along with appropriate agitation. LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} is successfully resynthesized from the separated cathode material by solid state reaction method. Several kinds of characterizations are performed to verify the typical properties of the resynthesized LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} powder. Electrochemical tests show that the initial charge and discharge capacities of the resynthesized LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} are 201 mAh g{sup −1} and 155.4 mAh g{sup −1} (2.8–4.5 V, 0.1 C), respectively. The discharge capacity remains at 129 mAh g{sup −1} even after 30 cycles with a capacity retention ratio of 83.01%.« less
Xu, Ming; Fei, Linfeng; Zhang, Weibing; Li, Tao; Lu, Wei; Zhang, Nian; Lai, Yanqing; Zhang, Zhian; Fang, Jing; Zhang, Kai; Li, Jie; Huang, Haitao
2017-03-08
High-performance Li-rich layered oxide (LRLO) cathode material is appealing for next-generation Li-ion batteries owing to its high specific capacity (>300 mAh g -1 ). Despite intense studies in the past decade, the low initial Coulombic efficiency and unsatisfactory cycling stability of LRLO still remain as great challenges for its practical applications. Here, we report a rational design of the orthogonally arranged {010}-oriented LRLO nanoplates with built-in anisotropic Li + ion transport tunnels. Such a novel structure enables fast Li + ion intercalation and deintercalation kinetics and enhances structural stability of LRLO. Theoretical calculations and experimental characterizations demonstrate the successful synthesis of target cathode material that delivers an initial discharge capacity as high as 303 mAh g -1 with an initial Coulombic efficiency of 93%. After 200 cycles at 1.0 C rate, an excellent capacity retention of 92% can be attained. Our method reported here opens a door to the development of high-performance Ni-Co-Mn-based cathode materials for high-energy density Li-ion batteries.
Truong, Quang Duc; Devaraju, Murukanahally Kempaiah; Ganbe, Yoshiyuki; Tomai, Takaaki; Honma, Itaru
2014-01-01
Lithium-ion batteries offer promising opportunities for novel energy storage systems and future application in hybrid electric vehicles or electric vehicles. Cathode materials with high energy density are required for practical application. Herein, high-voltage LiCoPO4 cathode materials with different shapes and well-developed facets such as nanorods and nanoplates with exposed {010} facets have been synthesized by a one-pot supercritical fluid (SCF) processing. The effect of different amines and their roles on the morphology-control has been investigated in detail. It was found that amine having long alkyl chain such as hexamethylenediamine played important roles to manipulate the shape of the nanocrystals by selective adsorption on the specific {010} facets. More importantly, the nanorods and nanoplates showed better electrochemical performance than that of nanoparticles which was attributed to their unique crystallographic orientation with short Li ion diffusion path. The present study emphasizes the importance of crystallographic orientation in improving the electrochemical performance of the high voltage LiCoPO4 cathode materials for Li-ion batteries. PMID:24496051
NASA Astrophysics Data System (ADS)
Luo, Rui; Wu, Feng; Xie, Man; Ying, Yao; Zhou, Jiahui; Huang, Yongxin; Ye, Yusheng; Li, Li; Chen, RenJie
2018-04-01
Layered transition metal oxides are considered to be promising candidates as cathode materials for sodium-ion batteries. Herein, a facile solid-state reaction is developed to synthesize hexagons plate-like Na0.67Ni0.25Mn0.75O2+δ (denoted as P2-NNM) material with habit plane formed. The structure of this layered oxide is characterized by XRD, HR-TEM and SAED. The layered material delivers a high reversible capacity of 91.8 mAh g-1 at 0.2 C with a capacity retention of 94.4 % after 280 cycles, superior rate capability and long cycle life (84.2 % capacity retention after 1000 cycle). Ni2+ is an active ion and Ni doping alleviates the Jahn-Teller distortion, and Mn3+/Mn4+ coexist as Mn4+ is desired from the stability perspective. Particularly, CV and XPS results confirm these results. Moreover, the electrode exhibits a quasi-solid-solution reaction during the sodium extraction and insertion. This contribution demonstrates that P2-NNM is a promising cathode electrode for rechargeable long-life sodium-ion batteries.
Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J
2014-01-01
The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.
Field Emission Cathode and Vacuum Microelectronic Microwave Amplifier Development
1993-03-31
the crushed material with additional yttria-stabilized zirconia powder to yield a pressable material of appropriate overall composition. This mixture...sensitivity of the system to oxygen content, a dedicated effort is planned to study the effect of residual oxygen in the zirconia powder on composite growth
Corrosion testing of candidates for the alkaline fuel cell cathode
NASA Technical Reports Server (NTRS)
Singer, Joseph; Fielder, William L.
1990-01-01
Current/voltage data have been obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consist of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to evaluate fully this approach to corrosion screening.
Advanced rechargeable sodium batteries with novel cathodes
NASA Technical Reports Server (NTRS)
Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.
1989-01-01
Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Researchers at JPL are evaluating various new cathode materials for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far studies have focused on alternate metal chlorides such as CuCl2 and organic cathode materials such as tetracyanoethylene (TCNE).
Advanced rechargeable sodium batteries with novel cathodes
NASA Technical Reports Server (NTRS)
Di Stefano, S.; Ratnakumar, B. V.; Bankston, C. P.
1990-01-01
Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 W h/kg theoretical). Energy densities in excess of 180 W h/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Various new cathode materials are presently being evaluated for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far, the studies have focussed on alternative metal chlorides such as CuCl2 and organic cathode materials such as TCNE.
Zhang, Yu; Huang, Yanshan; Yang, Guanhui; Bu, Fanxing; Li, Ke; Shakir, Imran; Xu, Yuxi
2017-05-10
Polymer cathode materials are promising alternatives to inorganic counterparts for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) due to their high theoretical capacity, adjustable molecular structure, and strong adaptability to different counterions in batteries, etc. However, they suffer from poor practical capacity and low rate capability because of their intrinsically poor conductivity. Herein, we report the synthesis of self-assembled graphene/poly(anthraquinonyl sufide) (PAQS) composite aerogel (GPA) with efficient integration of a three-dimensional (3D) graphene framework with electroactive PAQS particles via a novel dispersion-assembly strategy which can be used as a free-standing flexible cathode upon mechanical pressing. The entire GPA cathode can deliver the highest capacity of 156 mAh g -1 at 0.1 C (1 C = 225 mAh g -1 ) with an ultrahigh utilization (94.9%) of PAQS and exhibits an excellent rate performance with 102 mAh g -1 at 20 C in LIBs. Furthermore, the flexible GPA film was also tested as cathode for SIBs and demonstrated a high-rate capability with 72 mAh g -1 at 5 C and an ultralong cycling stability (71.4% capacity retention after 1000 cycles at 0.5 C) which has rarely been achieved before. Such excellent electrochemical performance of GPA as cathode for both LIBs and SIBs could be ascribed to the fast redox kinetics and electron transportation within GPA, resulting from the interconnected conductive framework of graphene and the intimate interaction between graphene and PAQS through an efficient wrapping structure. This approach opens a universal way to develop cathode materials for powerful batteries with different metal-based counter electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, Adam J.; Bartlett, Bart M., E-mail: bartmb@umich.edu
2016-10-15
With high elemental abundance, large volumetric capacity, and dendrite-free metal deposition, magnesium metal anodes offer promise in beyond-lithium-ion batteries. However, the increased charge density associated with the divalent magnesium-ion (Mg{sup 2+}), relative to lithium-ion (Li{sup +}) hinders the ion-insertion and extraction processes within many materials and structures known for lithium-ion cathodes. As a result, many recent investigations incorporate known amounts of water within the electrolyte to provide temporary solvation of the Mg{sup 2+}, improving diffusion kinetics. Unfortunately with the addition of water, compatibility with magnesium metal anodes disappears due to forming an ion-insulating passivating layer. In this short review, recentmore » advances in solid state cathode materials for rechargeable magnesium-ion batteries are highlighted, with a focus on cathode materials that do not require water contaminated electrolyte solutions for ion insertion and extraction processes. - Graphical abstract: In this short review, we present candidate materials for reversible Mg-battery cathodes that are compatible with magnesium metal in water-free electrolytes. The data suggest that soft, polarizable anions are required for reversible cycling.« less
Electroactive materials for rechargeable batteries
Wu, Huiming; Amine, Khalil; Abouimrane, Ali
2015-04-21
An as-prepared cathode for a secondary battery, the cathode including an alkaline source material including an alkali metal oxide, an alkali metal sulfide, an alkali metal salt, or a combination of any two or more thereof.
Solid oxide fuel cell having monolithic core
Ackerman, J.P.; Young, J.E.
1983-10-12
A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.
Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD
NASA Technical Reports Server (NTRS)
Haase, John R.; Wolinksy, Jason J.; Bailey, Paul S.; George, Jeffrey A.; Go, David B.
2015-01-01
Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbon-based nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials.
Chemically synthesized boron carbon oxynitride as a new cold cathode material
NASA Astrophysics Data System (ADS)
Banerjee, Diptonil; Maity, Supratim; Chattopadhyay, K. K.
2015-11-01
Synthesis of boron carbon oxynitride (BCNO) nanosheets at different temperature from amorphous to crystalline regime has been reported. The synthesis was done by a simple molten salt process using sodium borohydride and urea as precursors. Transmission electron microscopic study confirms the formation of sheet-like structure of the as-synthesized material. The performances of the as-synthesized BCNO nanosheets as cold cathode materials have been studied for the first time in the high vacuum electron field emission set up. It has been seen that the material gives considerable field emission current with turn on field as low as 2.95 V/μm with good stability and thus a new cold cathode material can be postulated.
Carbon nanotube: nanodiamond Li-ion battery cathodes with increased thermal conductivity
NASA Astrophysics Data System (ADS)
Salgado, Ruben; Lee, Eungiee; Shevchenko, Elena V.; Balandin, Alexander A.
2016-10-01
Prevention of excess heat accumulation within the Li-ion battery cells is a critical design consideration for electronic and photonic device applications. Many existing approaches for heat removal from batteries increase substantially the complexity and overall weight of the battery. Some of us have previously shown a possibility of effective passive thermal management of Li-ion batteries via improvement of thermal conductivity of cathode and anode material1. In this presentation, we report the results of our investigation of the thermal conductivity of various Li-ion cathodes with incorporated carbon nanotubes and nanodiamonds in different layered structures. The cathodes were synthesized using the filtration method, which can be utilized for synthesis of commercial electrode-active materials. The thermal measurements were conducted with the "laser flash" technique. It has been established that the cathode with the carbon nanotubes-LiCo2 and carbon nanotube layered structure possesses the highest in-plane thermal conductivity of 206 W/mK at room temperature. The cathode containing nanodiamonds on carbon nanotubes structure revealed one of the highest cross-plane thermal conductivity values. The in-plane thermal conductivity is up to two orders-of-magnitude greater than that in conventional cathodes based on amorphous carbon. The obtained results demonstrate a potential of carbon nanotube incorporation in cathode materials for the effective thermal management of Li-ion high-powered density batteries.
NASA Astrophysics Data System (ADS)
Shellikeri, A.; Yturriaga, S.; Zheng, J. S.; Cao, W.; Hagen, M.; Read, J. A.; Jow, T. R.; Zheng, J. P.
2018-07-01
Energy storage devices, which can combine the advantages of lithium-ion battery with that of electric double layer capacitor, are of prime interest. Recently, composite cathodes, which combine a battery material with capacitor material, have shown promise in enhancing life cycle and energy/power performances. Lithium-ion capacitor (LIC), with unique charge storage mechanism of combining a pre-lithiated battery anode with a capacitor cathode, is one such device which has the potential to synergistically incorporate the composite cathode to enhance capacity and cycle life. We report here a hybrid LIC consisting of a lithium iron phosphate (LiFePO4-LFP)/Activated Carbon composite cathode in combination with a hard carbon anode, by integrating the cycle life and capacity enhancing strategies of a dry method of electrode fabrication, anode pre-lithiation and a 3:1 anode to cathode capacity ratio, demonstrating a long cycle life, while elaborating on the charge sharing between the faradaic and non-faradaic mechanism in the battery and capacitor materials, respectively in the composite cathode. An excellent cell capacity retention of 94% (1000 cycles at 1C) and 92% (100,000 cycles at 60C) were demonstrated, while retaining 78% (over 6000 cycles at 2.7C) and 67% (over 70,000 cycles at 43C) of the LFP capacity in the composite cathode.
One-Pot Synthesis of Lithium-Rich Cathode Material with Hierarchical Morphology.
Luo, Kun; Roberts, Matthew R; Hao, Rong; Guerrini, Niccoló; Liberti, Emanuela; Allen, Christopher S; Kirkland, Angus I; Bruce, Peter G
2016-12-14
Lithium-rich transition metal oxides, Li 1+x TM 1-x O 2 (TM, transition metal), have attracted much attention as potential candidate cathode materials for next generation lithium ion batteries because their high theoretical capacity. Here we present the synthesis of Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 using a facile one-pot resorcinol-formaldehyde method. Structural characterization indicates that the material adopts a hierarchical porous morphology consisting of uniformly distributed small pores and disordered large pore structures. The material exhibits excellent electrochemical cycling stability and a good retention of capacity at high rates. The material has been shown to be both advantageous in terms of gravimetric and volumetric capacities over state of the art commercial cathode materials.
A New Lamination and doping Concepts for Enhanced Li – S Battery Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumta, Prashant N.; Datta, Moni K.; Velikokhatnyi, Oleg
Lithium ion batteries (LIBs) clearly dominated the area of high-energy storage systems for the past decade with significant research and development activity focused on the development of cathode and anode materials to maximize the specific energy storage, stability, and cycle life of the batteries. However, with the increasing demand in the EV industry for low cost, low weight, and high-energy storage batteries to meet the EV everywhere grand challenge, the current focus of research has shifted towards the development of lithium sulfur batteries (LSB) owing to the high theoretical specific capacity exhibited by sulfur compared to other cathode materials currentlymore » available. Li–S battery shows a theoretical capacity of 1675 mAh/g corresponding to the formation of Li2S which makes sulfur a promising electrode to replace the layered transition metal oxides (~150 mAh/g) and LiFePO4 (~170 mAh/g) hitherto deployed in present LIB systems. Moreover, the abundance of sulfur in the earth’s crust makes it a more economical and highly attractive proposition compared to currently existing cathodes. Despite advantages of sulfur, the existing Li-S battery technology display poor cyclability, low coulombic efficiency (CE) and very low cycle life due to the following issues: 1. Polysulfide (PS) dissolution; 2. Sluggish kinetics of PS to Li2S conversion; 3. High PS diffusivity in the electrolyte; 4. Insulating nature or poor conductivity of sulfur/Li2S; 5. Volumetric expansion/contraction of sulfur; 6. Shuttling of PS along with Li+. These issues result in loss of sulfur causing mechanical disintegration, surface passivation of both anode and cathode, thereby decreasing the specific capacity and columbic efficiency (CE). Present generation sulfur cathodes also show low specific storage capacity, very poor charging rates and low loading densities. Research is needed to overcome the issues impeding Li-S battery technology development.« less
Xu, Yun; Zhao, Mingyang; Khalid, Syed; ...
2017-05-09
The high voltage cathode material, LiMn 1.6Ni 0.4O 4, was prepared by a polymer-assisted method. The novelty of this paper is the substitution of Ni with Mn, which already exists in the crystal structure instead of other isovalent metal ion dopants which would result in capacity loss. The electrochemical performance testing including stability and rate capability was evaluated. The temperature was found to impose a change on the valence and structure of the cathode materials. Specifically, manganese tends to be reduced at a high temperature of 800 °C and leads to structural changes. The manganese substituted LiMn 1.5Ni 0.5O 4more » (LMN) has proved to be a good candidate material for Li-ion battery cathodes displaying good rate capability and capacity retention. Finally, the cathode materials processed at 550 °C showed a stable performance with negligible capacity loss for 400 cycles.« less
NASA Astrophysics Data System (ADS)
Eremin, Roman; Zolotarev, Pavel; Bobrikov, Ivan
2018-04-01
Here we present results of density functional theory (DFT) study of delithiated structures of layered LiNiO2 (LNO, Li12Ni12O24 model) cathode material and its doped analogue LiNi0.833Co0.083Al0.083O2 (N10C1A1, Li12Ni10CoAlO24 model). The paper is aimed at independent elucidation of doping and dispersion interaction effects on the structural stability of cathode materials studied. For this purpose, the LNO and N10C1A1 configurational spaces consisting of 87 and 4512 crystallographically independent configurations (obtained starting from 2×2×1 supercell of R-3m structure of LNO) are optimized within a number of DFT models. Based on a comparison of the calculated dependencies for the lattice parameters with the results of in situ neutron diffraction experiments, the most pronounced effect of cathode material stabilization is due to the dispersion interaction. In turn, the doping effect is found to affect cathode structure behavior at the latest stages of delithiation only.
An electrogenerative process for the recovery of gold from cyanide solutions.
Yap, C Y; Mohamed, N
2007-04-01
Traditional methods for the recovery of gold from electronic scrap by hydrometallurgy were cyanidation followed by adsorption on activated carbon or cementation onto zinc dust and by electrowinning. In our studies, a static batch electrochemical reactor operating in an electrogenerative mode was used in gold recovery from cyanide solutions. A spontaneous chemical reaction will take place in the reactor and generate an external flow of current. In this present work, a static batch cell with an improved design using three-dimensional cathodes namely porous graphite and reticulated vitreous carbon (RVC) and two-dimensional cathode materials, copper and stainless steel plates were coupled with a zinc anode. The electrogenerative system was demonstrated and the performance of the system using various cathode materials for gold recovery was evaluated. The system resulted in more than 90% gold being recovered within 3h of operation. Activated RVC serves as a superior cathode material having the highest recovery rate with more than 99% of gold being recovered in 1h of operation. The morphology of gold deposits on various cathode materials was also investigated.
Graphene: A Cathode Material of Choice for Aluminium-ion Battery.
Das, Shyamal
2018-03-22
The pairing of an aluminum anode with a cathode of high energy and power densities determines the future of aluminum-ion battery technology. The arising natural question is - "Is there any suitable cathode material which is capable of storing sufficiently large amount of trivalent aluminum-ions at relatively higher operating potential?". The wonder material "graphene" emerges to be a befitting answer. Graphene footprint in research arena of aluminum-ion battery could be seen merely three years ago. However, the research progress in this front is tremendous and applauding. Outperforming all other known cathode materials, graphene made several remarkable breakthroughs in offering extraordinary energy density, power density, cycle life, thermal stability, safety and flexibility. The future of Al-graphene couple is indeed brighter, if utmost emphasis is drawn right away to surmount the inherent technological challenges. This minireview comprehensively highlights the electrochemical performances, advantages and challenges of graphene as cathode in aluminum-ion battery in conjugation with chloroaluminate based electrolytes. Additionally, the complex mechanism of charge storage in graphene is also elaborated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Xu, XiaoLong; Qi, CongYu; Hao, ZhenDong; Wang, Hao; Jiu, JinTing; Liu, JingBing; Yan, Hui; Suganuma, Katsuaki
2018-03-01
The requirement of energy-storage equipment needs to develop the lithium ion battery (LIB) with high electrochemical performance. The surface modification of commercial LiFePO4 (LFP) by utilizing zeolitic imidazolate frameworks-8 (ZIF-8) offers new possibilities for commercial LFP with high electrochemical performances. In this work, the carbonized ZIF-8 (CZIF-8) was coated on the surface of LFP particles by the in situ growth and carbonization of ZIF-8. Transmission electron microscopy indicates that there is an approximate 10 nm coating layer with metal zinc and graphite-like carbon on the surface of LFP/CZIF-8 sample. The N2 adsorption and desorption isotherm suggests that the coating layer has uniform and simple connecting mesopores. As cathode material, LFP/CZIF-8 cathode-active material delivers a discharge specific capacity of 159.3 mAh g-1 at 0.1C and a discharge specific energy of 141.7 mWh g-1 after 200 cycles at 5.0C (the retention rate is approximate 99%). These results are attributed to the synergy improvement of the conductivity, the lithium ion diffusion coefficient, and the degree of freedom for volume change of LFP/CZIF-8 cathode. This work will contribute to the improvement of the cathode materials of commercial LIB.[Figure not available: see fulltext.
Cells having cathodes containing polycarbon disulfide materials
Okamoto, Y.; Skotheim, T.A.; Lee, H.S.
1995-08-15
The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS{sub x}){sub n}, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode. 5 figs.
“Ni-Less” Cathodes for High Energy Density, Intermediate Temperature Na-NiCl 2 Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Hee-Jung; Lu, Xiaochuan; Bonnett, Jeffery F.
Among various battery technologies being considered for stationary energy storage applications, sodium-metal halide (Na-MH) batteries have become one of the most attractive candidates because of the abundance of raw materials, long cycle life, high energy density, and superior safety. However, one of issues limiting its practical application is the relatively expensive nickel (Ni) used in the cathode. In the present work, we focus on of efforts to develop new Ni-based cathodes, and demonstrate that a much higher specific energy density of 405 Wh/kg (23% higher than state-of-the-art Na-MH batteries) can be achieved at an operating temperature of 190oC. Furthermore, 15%more » less Ni is used in the new cathode than that in conventional Na-NiCl2 batteries. Long-term cycling tests also show stable electrochemical performance for over 300 cycles with excellent capacity retention (~100%). The results in this work indicate that these advances can significantly reduce the raw material cost associated with Ni (a 31% reduction) and promote practical applications of Na-MH battery technologies in stationary energy storage systems.« less
Is alpha-V 2O 5 a cathode material for Mg insertion batteries?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sa, Niya; Wang, Hao; Proffit, Danielle L.
When designing a high energy density battery, one of the critical features is a high voltage, high capacity cathode material. In the development of Mg batteries, oxide cathodes that can reversibly intercalate Mg, while at the same time being compatible with an electrolyte that can deposit Mg reversibly are rare. Herein, we report the compatibility of Mg anodes with a-V 2O 5 by employing magnesium bis(trifluoromethane sulfonyl)imide in diglyme electrolytes at very low water levels. Electrolytes that contain a high water level do not reversibly deposit Mg, but interestingly these electrolytes appear to enable much higher capacities for an a-Vmore » 2O 5 cathode. Solid state NMR indicates that the major source of the higher capacity in high water content electrolytes originates from reversible proton insertion. In contrast, we found that lowering the water level of the magnesium bis(trifluoromethane sulfonyl)imide in diglyme electrolyte is critical to achieve reversible Mg deposition and direct evidence for reversible Mg intercalation is shown. Findings we report here elucidate the role of proton intercalation in water-containing electrolytes and clarify numerous conflicting reports of Mg insertion into a-V 2O 5.« less
2009-03-31
cathodes consist of an array of carbon fibers pyrolytically bonded to a carbon substrate. The fibers then receive a CsI coating using either a...the oil side of the vacuum interface along the cathode shank. Current transformers provide current measurements of the cathode current, again
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Sooyeon; Bak, Seong -Min; Kim, Seung Min
2015-08-11
In this work, we investigate the structural modifications occurring at the bulk, subsurface, and surface scales of Li xNi yMn zCo 1-y-zO₂ (NMC; y, z = 0.8, 0.1 and 0.4, 0.3, respectively) cathode materials during the initial charge/discharge. Various analytical tools, such as X-ray diffraction, selected-area electron diffraction, electron energy-loss spectroscopy, and high-resolution electron microscopy, are used to examine the structural properties of the NMC cathode materials at the three different scales. Cut-off voltages of 4.3 and 4.8 V are applied during the electrochemical tests as the normal and extreme conditions, respectively. The high-Ni-content NMC cathode materials exhibit unusual behaviors,more » which is deviate from the general redox reactions during the charge or discharge. The transition metal (TM) ions in the high-Ni-content NMC cathode materials, which are mostly Ni ions, are reduced at 4.8 V, even though TMs are usually oxidized to maintain charge neutrality upon the removal of Li. It was found that any changes in the crystallographic and electronic structures are mostly reversible down to the sub-surface scale, despite the unexpected reduction of Ni ions. However, after the discharge, traces of the phase transitions remain at the edges of the NMC cathode materials at the scale of a few nanometers (i.e., surface scale). This study demonstrates that the structural modifications in NMC cathode materials are induced by charge as well as discharge at multiple length scales. These changes are nearly reversible after the first cycle, except at the edges of the samples, which should be avoided because these highly localized changes can initiate battery degradation.« less
Nonlinear Conductivities and Electrochemical Performances of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Electrodes
Su, Xin; Ha, Seonbaek; Ishwait, Manar B.; ...
2016-01-01
There is increasing research attention on optimizing the carbon black nanoparticles’ structure and loading procedure for improving conductivities and thus, electrochemical performances of cathodes in lithium-ion batteries. Recently, LiNi 0.5Co 0.2Mn 0.3O 2 (NCM523) has been actively investigated due to its larger specific capacity and lower cost compared to conventional cathode materials. Presented here is a high energy density NCM523 cathode obtained by reducing the carbon content using the state-of-the-art carbon nanoparticles developed at Cabot Corporation. It is the first time that the nonlinear conductivity of NCM523 electrodes has been discovered, which is significantly impacted by the dispersion and surface crystalline quality of carbon black nanoparticles, especially when the loading of carbon black is only 1 wt%. The nonlinear conductivity of the cathodes can dramatically affect their electrochemical performances at high rates (more » $$\\geqq$$3C), which is close to the tunneling saturated current. In addition, there is no discernable difference in terms of the rate and cycle performance of the NCM523 electrodes, when reducing the loading of novel carbon black nanoparticles from 5 wt% to 1 wt% in the cathode. Therefore, the energy density of the electrode can be increased by 9% by using existing commercially available electrode materials.« less
Development of potassium ion conducting hollow glass fibers. [potassium sulfur battery
NASA Technical Reports Server (NTRS)
Tsang, F. Y.
1974-01-01
Potassium ion conducting glasses, chemically resistant to potassium, potassium sulfide and sulfur, were made and their possible utility as the membrane material for a potassium/sulfur battery was evaluated. At least one satisfactory candidate was found. It possesses an electrical resistance which makes it usable as a membrane in the form of a fine hollow fiber. It's chemical and electrochemical resistances are excellent. The other aspects of the possible potassium sulfur battery utilizing such fine hollow fibers, including the header (or tube sheet) and a cathode current collector were studied. Several cathode materials were found to be satisfactory. None of the tube sheet materials studied possessed all the desired properties. Multi-fiber cells had very limited life-time due to physical failure of fibers at the fiber/tube sheet junctions.
NASA Astrophysics Data System (ADS)
Chang, Caiyun; Huang, Zhipeng; Tian, Runsai; Jiang, Xinyu; Li, Chunsheng; Feng, Jijun
2017-10-01
Tuning whole/partial surface modification on cathode material with oxide material is a sought-after method to enhance the electrochemical performance in power storage field. Herein, nano-SiO2 targeted partial surface modified high voltage cathode material Li2CoPO4F has been successfully fabricated via a facile self-assembly process in silica dispersion at ambient temperature. With the aid of polar -OH groups attracted on the surface of SiO2 micelles, the nano-SiO2 preferentially nestle up along the borders and boundaries of Li2CoPO4F particles, where protection should be deployed with emphasis against the undesirable interactions between materials and electrolytes. Compared with pristine Li2CoPO4F, the SiO2 selectively modified Li2CoPO4F cathode materials, especially LCPF-3S, exhibit desirable electrochemical performances with higher discharge capacity, more outstanding cycle stability and favorable rate capability without any additional carbon involved. The greatly enhanced electrochemical properties can be attributed to the improved lithium-ion diffusion kinetics and structure tolerance during repeated lithiation/delithiation process. Such findings reveal a great potential of nano-SiO2 modified Li2CoPO4F as high energy cathode material for lithium ion batteries.
Developments in the Material Fabrication and Performance of LiMn2O4 dCld Cathode Material
2016-06-13
Lithium manganese spinel; Lithium rechargeable batteries , Lithium - ion battery ...requirements. Lithium and lithium - ion battery systems are highly sought after for rechargeable applications due to their high energy density (Wh/L...further optimization, the robust LixMn2O4-dCld spinel materials will be promising active materials for future integration into lithium - ion batteries
Generation of multicomponent ion beams by a vacuum arc ion source with compound cathode.
Savkin, K P; Yushkov, Yu G; Nikolaev, A G; Oks, E M; Yushkov, G Yu
2010-02-01
This paper presents the results of time-of-flight mass spectrometry studies of the elemental and mass-to-charge state compositions of metal ion beams produced by a vacuum arc ion source with compound cathode (WC-Co(0.5), Cu-Cr(0.25), Ti-Cu(0.1)). We found that the ion beam composition agrees well with the stoichiometric composition of the cathode material from which the beam is derived, and the maximum ion charge state of the different plasma components is determined by the ionization capability of electrons within the cathode spot plasma, which is common to all components. The beam mass-to-charge state spectrum from a compound cathode features a greater fraction of multiply charged ions for those materials with lower electron temperature in the vacuum arc cathode spot, and a smaller fraction for those with higher electron temperature within the spot. We propose a potential diagram method for determination of attainable ion charge states for all components of the compound cathodes.
Exfoliation and reassembly of cobalt oxide nanosheets into a reversible lithium-ion battery cathode.
Compton, Owen C; Abouimrane, Ali; An, Zhi; Palmeri, Marc J; Brinson, L Catherine; Amine, Khalil; Nguyen, SonBinh T
2012-04-10
An exfoliation-reassembly-activation (ERA) approach to lithium-ion battery cathode fabrication is introduced, demonstrating that inactive HCoO(2) powder can be converted into a reversible Li(1-x) H(x) CoO(2) thin-film cathode. This strategy circumvents the inherent difficulties often associated with the powder processing of the layered solids typically employed as cathode materials. The delamination of HCoO(2) via a combination of chemical and mechanical exfoliation generates a highly processable aqueous dispersion of [CoO(2) ](-) nanosheets that is critical to the ERA approach. Following vacuum-assisted self-assembly to yield a thin-film cathode and ion exchange to activate this material, the generated cathodes exhibit excellent cyclability and discharge capacities approaching that of low-temperature-prepared LiCoO(2) (~83 mAh g(-1) ), with this good electrochemical performance attributable to the high degree of order in the reassembled cathode. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbyne Polysulfide as a Novel Cathode Material for Rechargeable Magnesium Batteries
NuLi, Yanna; Chen, Qiang; Wang, Weikun; Wang, Ying; Yang, Jun; Wang, Jiulin
2014-01-01
We report the formation of carbyne polysulfide by coheating carbon containing carbyne moieties and elemental sulfur. The product is proved to have a sp2 hybrid carbon skeleton with polysulfide attached on it. The electrochemical performance of carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries is firstly investigated. The material exhibits a high discharge capacity of 327.7 mAh g−1 at 3.9 mA g−1. These studies show that carbyne polysulfide is a promising candidate as cathode material for rechargeable Mg batteries if the capacity retention can be significantly improved. PMID:24587704
NASA Astrophysics Data System (ADS)
Xiqian, Yu; Enyuan, Hu; Seongmin, Bak; Yong-Ning, Zhou; Xiao-Qing, Yang
2016-01-01
Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yun; Zhao, Mingyang; Khalid, Syed
The high voltage cathode material, LiMn 1.6Ni 0.4O 4, was prepared by a polymer-assisted method. The novelty of this paper is the substitution of Ni with Mn, which already exists in the crystal structure instead of other isovalent metal ion dopants which would result in capacity loss. The electrochemical performance testing including stability and rate capability was evaluated. The temperature was found to impose a change on the valence and structure of the cathode materials. Specifically, manganese tends to be reduced at a high temperature of 800 °C and leads to structural changes. The manganese substituted LiMn 1.5Ni 0.5O 4more » (LMN) has proved to be a good candidate material for Li-ion battery cathodes displaying good rate capability and capacity retention. Finally, the cathode materials processed at 550 °C showed a stable performance with negligible capacity loss for 400 cycles.« less
Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.; ...
2017-10-17
Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.
Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less
Han, Binghong; Paulauskas, Tadas; Key, Baris; Peebles, Cameron; Park, Joong Sun; Klie, Robert F; Vaughey, John T; Dogan, Fulya
2017-05-03
Surface coating of cathode materials with Al 2 O 3 has been shown to be a promising method for cathode stabilization and improved cycling performance at high operating voltages. However, a detailed understanding on how coating process and cathode composition change the chemical composition, morphology, and distribution of coating within the cathode interface and bulk lattice is still missing. In this study, we use a wet-chemical method to synthesize a series of Al 2 O 3 -coated LiNi 0.5 Co 0.2 Mn 0.3 O 2 and LiCoO 2 cathodes treated under various annealing temperatures and a combination of structural characterization techniques to understand the composition, homogeneity, and morphology of the coating layer and the bulk cathode. Nuclear magnetic resonance and electron microscopy results reveal that the nature of the interface is highly dependent on the annealing temperature and cathode composition. For Al 2 O 3 -coated LiNi 0.5 Co 0.2 Mn 0.3 O 2 , higher annealing temperature leads to more homogeneous and more closely attached coating on cathode materials, corresponding to better electrochemical performance. Lower Al 2 O 3 coating content is found to be helpful to further improve the initial capacity and cyclability, which can greatly outperform the pristine cathode material. For Al 2 O 3 -coated LiCoO 2 , the incorporation of Al into the cathode lattice is observed after annealing at high temperatures, implying the transformation from "surface coatings" to "dopants", which is not observed for LiNi 0.5 Co 0.2 Mn 0.3 O 2 . As a result, Al 2 O 3 -coated LiCoO 2 annealed at higher temperature shows similar initial capacity but lower retention compared to that annealed at a lower temperature, due to the intercalation of surface alumina into the bulk layered structure forming a solid solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Binghong; Paulauskas, Tadas; Key, Baris
Here, surface coating of cathode materials with Al 2O 3 has been shown to be a promising method for cathode stabilization and improved cycling performance at high operating voltages. However, a detailed understanding on how coating process and cathode composition changes the chemical composition, morphology and distribution of coating within cathode interface and bulk lattice, is still missing. In this study, we use a wet-chemical method to synthesize a series of Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2 and LiCoO 2 cathodes treated under various annealing temperatures and a combination of structural characterization techniques to understand the composition, homogeneitymore » and morphology of coating layer and the bulk cathode. Nuclear magnetic resonance and electron microscopy results reveal that the nature of the interface is highly depended on the annealing temperature and cathode composition. For Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2, higher annealing temperature leads to more homogeneous and more closely attached coating on cathode materials, corresponding to better electrochemical performance. Lower Al 2O 3 coating content is found to be helpful to further improve the initial capacity and cyclability, which can greatly outperform the pristine cathode material. For Al 2O 3-coated LiCoO 2, the incorporation of Al into the cathode lattice is observed after annealing at high temperatures, implying the transformation from “surface coatings” to “dopants”, which is not observed for LiNi 0.5Co 0.2Mn 0.3O 2. As a result, Al 2O 3-coated LiCoO 2 annealed at higher temperature shows similar initial capacity but lower retention compared to that annealed at a lower temperature, due to the intercalation of surface alumina into the bulk layered structure forming a solid solution.« less
Han, Binghong; Paulauskas, Tadas; Key, Baris; ...
2017-04-07
Here, surface coating of cathode materials with Al 2O 3 has been shown to be a promising method for cathode stabilization and improved cycling performance at high operating voltages. However, a detailed understanding on how coating process and cathode composition changes the chemical composition, morphology and distribution of coating within cathode interface and bulk lattice, is still missing. In this study, we use a wet-chemical method to synthesize a series of Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2 and LiCoO 2 cathodes treated under various annealing temperatures and a combination of structural characterization techniques to understand the composition, homogeneitymore » and morphology of coating layer and the bulk cathode. Nuclear magnetic resonance and electron microscopy results reveal that the nature of the interface is highly depended on the annealing temperature and cathode composition. For Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2, higher annealing temperature leads to more homogeneous and more closely attached coating on cathode materials, corresponding to better electrochemical performance. Lower Al 2O 3 coating content is found to be helpful to further improve the initial capacity and cyclability, which can greatly outperform the pristine cathode material. For Al 2O 3-coated LiCoO 2, the incorporation of Al into the cathode lattice is observed after annealing at high temperatures, implying the transformation from “surface coatings” to “dopants”, which is not observed for LiNi 0.5Co 0.2Mn 0.3O 2. As a result, Al 2O 3-coated LiCoO 2 annealed at higher temperature shows similar initial capacity but lower retention compared to that annealed at a lower temperature, due to the intercalation of surface alumina into the bulk layered structure forming a solid solution.« less
Sun, Guiyan; Lai, Shaobo; Kong, Xiangbang; Chen, Zhiqiang; Li, Kun; Zhou, Rong; Wang, Jing; Zhao, Jinbao
2018-05-16
A blend cathode has been prepared by mixing both LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM523) of high energy density and high specific capacity and LiFe 0.15 Mn 0.85 PO 4 /C (LFMP/C) of excellent thermal stability via a low-speed ball-milling method. The lithium ion batteries using the blend cathode with LFMP/C of optimum percent exhibit better capacity retention after 100 cycles than those using only single NCM523 or LFMP/C. Both theoretical simulation and experimental rate performances demonstrate that the electrochemical property of blend cathode materials is predictable and economical. In addition, the thermal behaviors of blend cathodes are studied by using differential scanning calorimetry analysis. The thermal stability of blend cathode materials behaves better than that of the bare NCM523 accompanied with an electrolyte. It is found that the outstanding rate and thermal performance of the blend cathode is due to the prominent synergistic effect between NCM523 and LFMP/C, and 10% LFMP/C in the blend cathode materials is the most adaptable as considering both electrochemical and thermal properties simultaneously.
Cathode degradation and erosion in high pressure arc discharges
NASA Technical Reports Server (NTRS)
Hardy, T. L.; Nakanishi, S.
1984-01-01
The various processes which control cathode erosion and degradation were identified and evaluated. A direct current arc discharge was established between electrodes in a pressure-controlled gas flow environment. The cathode holder was designed for easy testing of various cathode materials. The anode was a water cooled copper collector electrode. The arc was powered by a dc power supply with current and voltage regulated cross-over control. Nitrogen and argon were used as propellants and the materials used were two percent thoriated tungsten, barium oxide impregnated porous tungsten, pure tungsten and lanthanum hexaboride. The configurations used were cylindrical solid rods, wire bundles supported by hollow molybdenum tubes, cylindrical hollow tubes, and hollow cathodes of the type used in ion thrusters. The results of the mass loss tests in nitrogen indicated that pure tungsten eroded at a rate more than 10 times faster than the rates of the impregnated tungsten materials. It was found that oxygen impurities of less than 0.5 percent in the nitrogen increased the mass loss rate by a factor of 4 over high purity nitrogen. At power levels less than 1 kW, cathode size and current level did not significantly affect the mass loss rate. The hollow cathode was found to be operable in argon and in nitrogen only at pressures below 400 and 200 torr, respectively.
Zhu, Yinlong; Zhou, Wei; Chen, Yubo; Shao, Zongping
2016-07-25
The Aurivillius oxide Bi2 Sr2 Nb2 MnO12-δ (BSNM) was used as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). To the best of our knowledge, the BSNM oxide is the only alkaline-earth-containing cathode material with complete CO2 tolerance that has been reported thus far. BSNM not only shows favorable activity in the oxygen reduction reaction (ORR) at intermediate temperatures but also exhibits a low thermal expansion coefficient, excellent structural stability, and good chemical compatibility with the electrolyte. These features highlight the potential of the new BSNM material as a highly promising cathode material for IT-SOFCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NUCLEAR REACTOR AND THERMIONIC FUEL ELEMENT THEREFOR
Rasor, N.S.; Hirsch, R.L.
1963-12-01
The patent relates to the direct conversion of fission heat to electricity by use of thermionic plasma diodes having fissionable material cathodes, said diodes arranged to form a critical mass in a nuclear reactor. The patent describes a fuel element comprising a plurality of diodes each having a fissionable material cathode, an anode around said cathode, and an ionizable gas therebetween. Provision is made for flowing the gas and current serially through the diodes. (AEC)
Thin film passivation of laser generated 3D micro patterns in lithium manganese oxide cathodes
NASA Astrophysics Data System (ADS)
Pröll, J.; Kohler, R.; Bruns, M.; Oberst, V.; Weidler, P. G.; Heißler, S.; Kübel, C.; Scherer, T.; Prang, R.; Seifert, H. J.; Pfleging, W.
2013-03-01
The increasing need for long-life lithium-ion batteries requires the further development of electrode materials. Especially on the cathode side new materials or material composites are needed to increase the cycle lifetime. On the one hand, spinel-type lithium manganese oxide is a promising candidate to be used as cathode material due to its non-toxicity, low cost and good thermal stability. On the other hand, the spinel structure suffers from change in the oxidation state of manganese during cycling which is also accompanied by loss of active material into the liquid electrolyte. The general trend is to enhance the active surface area of the cathode in order to increase lithium-ion mobility through the electrode/electrolyte interface, while an enhanced surface area will also promote chemical degradation. In this work, laser microstructuring of lithium manganese oxide thin films was applied in a first step to increase the active surface area. This was done by using 248 nm excimer laser radiation and chromium/quartz mask imaging techniques. In a second step, high power diode laser-annealing operating at a wavelength of 940 nm was used for forming a cubic spinel-like battery phase. This was verified by means of Raman spectroscopy and cyclic voltammetric measurements. In a last step, the laser patterned thin films were coated with indium tin oxide (ITO) layers with a thickness of 10 nm to 50 nm. The influence of the 3D surface topography as well as the ITO thickness on the electrochemical performance was studied by cyclic voltammetry. Post-mortem studies were carried out by using scanning electron microscopy and focused ion beam analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Binghong; Key, Baris; Lapidus, Saul H.
Surface alumina coatings have been shown to be an effective way to improve the stability and cyclability of cathode materials. However, a detailed understanding of the relationship between the surface coatings and the bulk layered oxides is needed to better define the critical cathode–electrolyte interface. In this work, we systematically studied the effect of the composition of Ni-rich LiNi xMn yCo 1–x–yO 2 (NMC) on the surface alumina coatings. Changing cathode composition from LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) to LiNi 0.6Mn 0.2Co 0.2O 2 (NMC622) and LiNi 0.8Mn 0.1Co 0.1O 2 (NMC811) was found to facilitate the diffusion ofmore » surface alumina into the bulk after high-temperature annealing. By use of a variety of spectroscopic techniques, Al was seen to have a high bulk compatibility with higher Ni/Co content, and low bulk compatibility was associated with Mn in the transition metal layer. It was also noted that the cathode composition affected the observed morphology and surface chemistry of the coated material, which has an effect on electrochemical cycling. The presence of a high surface Li concentration and strong alumina diffusion into the bulk led to a smoother surface coating on NMC811 with no excess alumina aggregated on the surface. Structural characterization of pristine NMC particles also suggests surface Co segregation, which may act to mediate the diffusion of the Al from the surface to the bulk. The diffusion of Al into the bulk was found to be detrimental to the protection function of surface coatings leading to poor overall cyclability, indicating the importance of compatibility between surface coatings and bulk oxides on the electrochemical performance of coated cathode materials.In conclusion, these results are important in developing a better coating method for synthesis of next-generation cathode materials for lithium-ion batteries.« less
Han, Binghong; Key, Baris; Lapidus, Saul H.; ...
2017-11-01
Surface alumina coatings have been shown to be an effective way to improve the stability and cyclability of cathode materials. However, a detailed understanding of the relationship between the surface coatings and the bulk layered oxides is needed to better define the critical cathode–electrolyte interface. In this work, we systematically studied the effect of the composition of Ni-rich LiNi xMn yCo 1–x–yO 2 (NMC) on the surface alumina coatings. Changing cathode composition from LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) to LiNi 0.6Mn 0.2Co 0.2O 2 (NMC622) and LiNi 0.8Mn 0.1Co 0.1O 2 (NMC811) was found to facilitate the diffusion ofmore » surface alumina into the bulk after high-temperature annealing. By use of a variety of spectroscopic techniques, Al was seen to have a high bulk compatibility with higher Ni/Co content, and low bulk compatibility was associated with Mn in the transition metal layer. It was also noted that the cathode composition affected the observed morphology and surface chemistry of the coated material, which has an effect on electrochemical cycling. The presence of a high surface Li concentration and strong alumina diffusion into the bulk led to a smoother surface coating on NMC811 with no excess alumina aggregated on the surface. Structural characterization of pristine NMC particles also suggests surface Co segregation, which may act to mediate the diffusion of the Al from the surface to the bulk. The diffusion of Al into the bulk was found to be detrimental to the protection function of surface coatings leading to poor overall cyclability, indicating the importance of compatibility between surface coatings and bulk oxides on the electrochemical performance of coated cathode materials.In conclusion, these results are important in developing a better coating method for synthesis of next-generation cathode materials for lithium-ion batteries.« less
Corrosion-resistant catalyst supports for phosphoric acid fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosek, J.A.; Cropley, C.C.; LaConti, A.B.
High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-areamore » alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.« less
Kim, Yongseon
2012-05-01
Li(Ni(0.8)Co(0.1)Mn(0.1))O(2) (NCM811) was synthesized using alkali chlorides as a flux and the performance as a cathode material for lithium ion batteries was examined. Primary particles of the powder were segregated and grown separately in the presence of liquid state fluxes, which induced each particle to be composed of one primary particle with well-developed facet planes, not the shape of agglomerates as appears with commercial NCMs. The new NCM showed far less gas emission during high temperature storage at charged states, and higher volumetric capacity thanks to its high bulk density. The material is expected to provide optimal performances for pouch type lithium ion batteries, which require high volumetric capacity and are vulnerable to deformation caused by gas generation from the electrode materials.
Miniature Lightweight Ion Pump
NASA Technical Reports Server (NTRS)
Sinha, Mahadeva P.
2010-01-01
This design offers a larger surface area for pumping of active gases and reduces the mass of the pump by eliminating the additional vacuum enclosure. There are three main components to this ion pump: the cathode and anode pumping elements assembly, the vacuum enclosure (made completely of titanium and used as the cathode and maintained at ground potential) containing the assembly, and the external magnet. These components are generally put in a noble diode (or differential) configuration of the ion pump technology. In the present state of the art, there are two cathodes, one made of titanium and the other of tantalum. The anodes are made up of an array of stainless steel cylinders positioned between the two cathodes. All the elements of the pump are in a vacuum enclosure. After the reduction of pressure in this enclosure to a few microns, a voltage is applied between the cathode and the anode elements. Electrons generated by the ionization are accelerated toward the anodes that are confined in the anode space by the axial magnetic field. For the generation of the axial field along the anode elements, the magnet is designed in a C-configuration and is fabricated from rare earth magnetic materials (Nd-B-Fe or Sm-Co) possessing high energy product values, and the yoke is fabricated from the high permeability material (Hiperco-50A composed of Fe-Co-V). The electrons in this region collide with the gas molecules and generate their positive ions. These ions are accelerated into the cathode and eject cathode material (Ti). The neutral atoms deposit on the anode surfaces. Because of the chemical activity of Ti, the atoms combine with chemically active gas molecules (e.g. N2, O2, etc.) and remove them. New layers of Ti are continually deposited, and the pumping of active gases is thus accomplished. Pumping of the inert gases is accomplished by their burial several atomic layers deep into the cathode. However, they tend to re-emit if the entrapping lattice atoms are sputtered away. For stable pumping of inert gases, one side of the cathode is made of Ta. Impaction on Ta produces energetic, neutral atoms that pump the inert gases on the anode structure at the peripheral areas of the cathodes (between anode rings). For inert gases stability, a post design has been implemented. Here, posts of cathode material (Ti) are mounted on the cathode. These protrude into the initial part of the anode elements. Materials sputtered from the posts condense on the anode assembly and on the cathode plane at higher rates than in the normal diodes due to enhanced sputtering at glancing angles from geometrical considerations. This increases pumping by burial. This post design has enhanced pumping rates for both active and inert gases, compared with conventional designs.
Semi-solid electrodes having high rate capability
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison
2016-06-07
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solidmore » cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.« less
Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media.
Lacasa, Engracia; Cañizares, Pablo; Llanos, Javier; Rodrigo, Manuel A
2012-04-30
In this work, the effect of the cathode material (conductive diamond, stainless steel, silicon carbide, graphite or lead) and the current density (150-1400 A m(-2)) on the removal of nitrates from aqueous solutions is studied by electrolysis in non-divided electrochemical cells equipped with conductive diamond anodes, using sodium sulphate as the electrolyte. The results show that the cathode material very strongly influences both the process performance and the product distribution. The main products obtained are gaseous nitrogen (NO, N(2)O and NO(2)) and ammonium ions. Nitrate removal follows first order kinetics, which indicates that the electrolysis process is controlled by mass transfer. Furthermore, the stainless steel and graphite cathodes show a great selectivity towards the production of ammonium ions, whereas the silicon carbide cathode leads to the highest formation of gaseous nitrogen, which production is promoted at low current densities. Copyright © 2012 Elsevier B.V. All rights reserved.
Nitrate-Melt Synthesized HT-LiCoO2 as a Superior Cathode-Material for Lithium-Ion Batteries
Sathiya, Mariyappan; Prakash, Annigere S.; Ramesha, Kannadka; Shukla, Ashok K.
2009-01-01
An electrochemically-active high-temperature form of LiCoO2 (HT-LiCoO2) is prepared by thermally decomposing its constituent metal-nitrates at 700 ºC. The synthetic conditions have been optimized to achieve improved performance with the HT-LiCoO2 cathode in Li-ion batteries. For this purpose, the synthesized materials have been characterized by powder X-ray diffraction, scanning electron microscopy, and galvanostatic charge-discharge cycling. Cathodes comprising HT-LiCoO2 exhibit a specific capacity of 140 mAhg-1 with good capacity-retention over several charge-discharge cycles in the voltage range between 3.5 V and 4.2 V, and can sustain improved rate capability in contrast to a cathode constituting LiCoO2 prepared by conventional ceramic method. The nitrate-melt-decomposition method is also found effective for synthesizing Mg-/Al- doped HT-LiCoO2; these also are investigated as cathode materials for Li-ion batteries.
Dissolution and characterization of HEV NiMH batteries.
Larsson, Kristian; Ekberg, Christian; Ødegaard-Jensen, Arvid
2013-03-01
Metal recovery is an essential part of the recycling of hybrid electric vehicle battery waste and the first step in a hydrometallurgical treatment is dissolution of the solid material. The properties of separated battery electrode materials were investigated. Focus was put on both the solid waste and then the dissolution behaviour. The cathode contains metallic nickel that remains undissolved when utilizing non-oxidizing conditions such as hydrochloric or sulphuric acid in combination with a low oxygen atmosphere. In these conditions the cathode active electrode material is fully dissolved. Not dissolving the nickel metal saves up to 37% of the acid consumption for the cathode electrode material. In the commonly used case of oxidizing conditions the nickel metal dissolves and a cobalt-rich phase remains undissolved from the cathode active material. For the anode material a complete and rapid dissolution can be achieved at mild conditions with hydrochloric, nitric or sulphuric acid. Optimal parameters for all cases of dissolution was pH 1 with a reaction time of approximately ≥ 20,000 s. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hwang, Sooyeon; Kim, Se Young; Chung, Kyung Yoon; Stach, Eric A.; Kim, Seung Min; Chang, Wonyoung
2016-09-01
We take advantage of scanning transmission electron microscopy and electron energy loss spectroscopy to investigate the changes in near-surface electronic structure and quantify the degree of local degradation of Ni-based cathode materials with the layered structure (LiNi0.8Mn0.1Co0.1O2 and LiNi0.4Mn0.3Co0.3O2) after 20 cycles of delithiation and lithiation. Reduction of transition metals occurs in the near-surface region of cathode materials: Mn is the major element to be reduced in the case of relatively Mn-rich composition, while reduction of Ni ions is dominant in Ni-rich materials. The valences of Ni and Mn ions are complementary, i.e., when one is reduced, the other is oxidized in order to maintain charge neutrality. The depth of degradation zone is found to be much deeper in Ni-rich materials. This comparative analysis provides important insights needed for the devising of new cathode materials with high capacity as well as long lifetime.
Rotating cathode device for molten salt bath
NASA Astrophysics Data System (ADS)
1983-11-01
The invention relates to a rotating cathode device for molten salt baths used to prepare metallic titanium or aluminum and the like by electrolysis of molten salts. The rotating cathode device is described. It is a cyclindrical cathode mounted on a rotating spindle, made of a lightweight material and mounted in such a way as to avoid thermal strain between the rotational shaft and the cylindrical cathode. At least one of the upper and lower ends of the cylindrical cathode are closed by a cap and a seal consisting of an inorganic fiber composite in the area between the cap and the cathode.
Electromagnetic radiation detector
Benson, Jay L.; Hansen, Gordon J.
1976-01-01
An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.
Advanced electric propulsion and space plasma contactor research
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1986-01-01
A series of experiments performed on an 8 cm dia. ring cusp magnetic field ion thruster are described. The results show the effects of anode and cathode position and size, ring cusp axial location and discharge chamber length on plasma ion energy cost and extracted ion fraction. Thruster performance is shown to be improved substantially when optimum values of these parameters are used. Investigations into the basic plasma phenomena associated with the process of plasma contacting are described. The results show the process of electron collection from a background plasma to a hollow cathode plasma contactor exhibits a higher impedance than the process of electron emission from the hollow cathode. The importance of having cold ions present to facilitate the plasma contacting process is shown. Results of experiments into the behavior of hollow cathodes operating at high interelectrode pressures (up to approx. 100 Torr) on nitrogen and ammonia are presented. They suggest that diffuse emission from the insert of a hollow cathode can be sustained at high interelectrode pressures if the cathode is made of non-conducting material and the cathode internal pressure is reduced by evacuating the cathode interior. A theoretical model of discharge chamber operation developed for inert gas thrusters is extended so it can be used to evaluste the performance of mercury ion thrusters. Predictions of the model are compared to experimental results obtained on two 30 cm dia. thrusters.
High-Energy-Density, Low-Temperature Li/CFx Primary Cells
NASA Technical Reports Server (NTRS)
Whitacre, Jay; Bugga, Ratnakumar; Smart, Marshall; Prakash, G.; Yazami, Rachid
2007-01-01
High-energy-density primary (nonrechargeable) electrochemical cells capable of relatively high discharge currents at temperatures as low as -40 C have been developed through modification of the chemistry of commercial Li/CFx cells and batteries. The commercial Li/CFx units are not suitable for high-current and low-temperature applications because they are current limited and their maximum discharge rates decrease with decreasing temperature. The term "Li/CFx" refers to an anode made of lithium and a cathode made of a fluorinated carbonaceous material (typically graphite). In commercial cells, x typically ranges from 1.05 to 1.1. This cell composition makes it possible to attain specific energies up to 800 Wh/kg, but in order to prevent cell polarization and the consequent large loss of cell capacity, it is typically necessary to keep discharge currents below C/50 (where C is numerically equal to the current that, flowing during a charge or discharge time of one hour, would integrate to the nominal charge or discharge capacity of a cell). This limitation has been attributed to the low electronic conductivity of CFx for x approx. 1. To some extent, the limitation might be overcome by making cathodes thinner, and some battery manufacturers have obtained promising results using thin cathode structures in spiral configurations. The present approach includes not only making cathodes relatively thin [.2 mils (.0.051 mm)] but also using sub-fluorinated CFx cathode materials (x < 1) in conjunction with electrolytes formulated for use at low temperatures. The reason for choosing sub-fluorinated CFx cathode materials is that their electronic conductivities are high, relative to those for which x > 1. It was known from recent prior research that cells containing sub-fluorinated CFx cathodes (x between 0.33 and 0.66) are capable of retaining substantial portions of their nominal low-current specific energies when discharged at rates as high as 5C at room temperature. However, until experimental cells were fabricated following the present approach and tested, it was not known whether or to what extent low-temperature performance would be improved.
Kim, Young-Sung; Jeoung, Tae-Hoon; Nam, Sung-Pill; Lee, Seung-Hwan; Kim, Jea-Chul; Lee, Sung-Gap
2015-03-01
LiFePO4/C composite powder as cathode material and graphite powder as anode material for Li-ion batteries were synthesized by using the sol-gel method. An electrochemical improvement of LiFePO4 materials has been achieved by adding polyvinyl alcohol as a carbon source into as-prepared materials. The samples were characterized by elemental analysis (EA), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-EM). The chemical composition of LiFePO4/C powders was in a good agreement with that of the starting solution. The capacity loss after 500 cycles of LiFePO4/C cell is 11.1% in room temperature. These superior electrochemical properties show that LiFePO4/C composite materials are promising candidates as cathode materials.
Lithium-Polymer battery based on polybithiophene as cathode material
NASA Astrophysics Data System (ADS)
Chen, J.; Wang, J.; Wang, C.; Too, C. O.; Wallace, G. G.
Stainless-steel mesh electrodes coated with polybithiophene, obtained by electrochemical polymerization (constant potential and constant current), have been investigated as cathode materials in a lithium-polybithiophene rechargeable battery by cyclic voltammetry, electrochemical impedance spectroscopy and long-term charge-discharge cycling process. The effects of different growth methods on the surface morphology of the films and the charge-discharge capacity are discussed in detail. The results show that polybithiophene-hexafluorophosphate is a very promising cathode material for manufacturing lithium-polymer rechargeable batteries with a highly stable discharge capacity of 81.67 mAh g -1 after 50 cycles.
Ionic Conductivity and its Role in Oxidation Reactions
NASA Astrophysics Data System (ADS)
Tamimi, Mazin Abdulla
In the field of solid oxide fuel cells (SOFCs), a substantial portion of research is focused on the ability of some oxide materials to conduct oxygen anions through their structure. For electrolytes, the benefits of improving bulk transport of ions are obvious: decrease the resistive losses of the electrolyte, and device efficiency goes up and higher power densities are possible. Even for cathode materials, better bulk ion transport leads to an increase in the oxygen exchange rate at the cathode surface, and the oxygen reduction reaction at the cathode surface is the rate limiting step for SOFC operation at intermediate temperatures (500-700ºC). As operation in this regime is a key step towards lowering the manufacturing cost and increasing the lifetime of devices, much effort is spent searching for new, more conductive materials, and analyzing existing materials to discover the structure-activity relationships that influence ionic conductivity. In the first part of this work, an overview is given of the neutron powder diffraction (NPD) techniques that are used to probe the structure of the materials in later parts. In the second part, NPD was used to analyze the structures of perovskite-type cathode materials, and show that increases in bulk conductivity led to increases in the surface oxygen exchange rate of these materials. In the final part, the methods used for SOFC cathode design were applied towards the design of oxide catalysts used for certain hydrocarbon partial oxidation reactions. The reactions studied follow the Mars van Krevelen mechanism, where oxygen atoms in the catalyst are consumed as part of the reaction and are subsequently replenished by oxygen in the gas phase. Similar to SOFC cathode operation, these processes include an oxygen reduction step, so it was hypothesized that increasing the ionic conductivity of the catalysts would improve their performance, just as it does for SOFC cathode materials. While the results are preliminary, the combination of a reference catalyst for the oxidative coupling of methane with a support with very high oxygen conductivity demonstrated a small increase in performance at low temperatures.
Ren, Dong; Shen, Yun; Yang, Yao; Shen, Luxi; Levin, Barnaby D A; Yu, Yingchao; Muller, David A; Abruña, Héctor D
2017-10-18
Ni-rich LiNi x Mn y Co 1-x-y O 2 (x > 0.5) (NMC) materials have attracted a great deal of interest as promising cathode candidates for Li-ion batteries due to their low cost and high energy density. However, several issues, including sensitivity to moisture, difficulty in reproducibly preparing well-controlled morphology particles and, poor cyclability, have hindered their large scale deployment; especially for electric vehicle (EV) applications. In this work, we have developed a uniform, highly stable, high-energy density, Ni-rich LiNi 0.6 Mn 0.2 Co 0.2 O 2 cathode material by systematically optimizing synthesis parameters, including pH, stirring rate, and calcination temperature. The particles exhibit a spherical morphology and uniform size distribution, with a well-defined structure and homogeneous transition-metal distribution, owing to the well-controlled synthesis parameters. The material exhibited superior electrochemical properties, when compared to a commercial sample, with an initial discharge capacity of 205 mAh/g at 0.1 C. It also exhibited a remarkable rate capability with discharge capacities of 157 mAh/g and 137 mAh/g at 10 and 20 C, respectively, as well as high tolerance to air and moisture. In order to demonstrate incorporation into a commercial scale EV, a large-scale 4.7 Ah LiNi 0.6 Mn 0.2 Co 0.2 O 2 Al-full pouch cell with a high cathode loading of 21.6 mg/cm 2 , paired with a graphite anode, was fabricated. It exhibited exceptional cyclability with a capacity retention of 96% after 500 cycles at room temperature. This material, which was obtained by a fully optimized scalable synthesis, delivered combined performance metrics that are among the best for NMC materials reported to date.
Improved materials and processes of dispenser cathodes
NASA Astrophysics Data System (ADS)
Longo, R. T.; Sundquist, W. F.; Adler, E. A.
1984-08-01
Several process variables affecting the final electron emission properties of impregnated dispenser cathodes were investigated. In particular, the influence of billet porosity, impregnant composition and purity, and osmium-ruthenium coating were studied. Work function and cathode evaporation data were used to evaluate cathode performance and to formulate a model of cathode activation and emission. Results showed that sorted tungsten powder can be reproducibly fabricated into cathode billets. Billet porosity was observed to have the least effect on cathode performance. Use of the 4:1:1 aluminate mixture resulted in lower work functions than did use of the 5:3:2 mixture. Under similar drawout conditions, the coated cathodes showed superior emission relative to uncoated cathodes. In actual Pierce gun structures under accelerated life test, the influence of impregnated sulfur is clearly shown to reduce cathode performance.
Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.
Cheng, Fangyi; Chen, Jun
2012-03-21
Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).
2009-01-01
Synthesis and electrochemical properties characterization of SnO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries Ping Yang...electrochemical properties characterization of SnO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER...electrochemical reaction. References 1. N Yabuuchi, T Ohzuku, “Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium - ion batteries ”, J
Nickel hydroxide positive electrode for alkaline rechargeable battery
Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean
2018-04-03
Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.
Nickel hydroxide positive electrode for alkaline rechargeable battery
Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean
2018-02-20
Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.
Tai, Zhixin; Subramaniyam, Chandrasekar M; Chou, Shu-Lei; Chen, Lingna; Liu, Hua-Kun; Dou, Shi-Xue
2017-09-01
The most promising cathode materials, including LiCoO 2 (layered), LiMn 2 O 4 (spinel), and LiFePO 4 (olivine), have been the focus of intense research to develop rechargeable lithium-ion batteries (LIBs) for portable electronic devices. Sluggish lithium diffusion, however, and unsatisfactory long-term cycling performance still limit the development of present LIBs for several applications, such as plug-in/hybrid electric vehicles. Motivated by the success of graphene and novel 2D materials with unique physical and chemical properties, herein, a simple shear-assisted mechanical exfoliation method to synthesize few-layered nanosheets of LiCoO 2 , LiMn 2 O 4 , and LiFePO 4 is used. Importantly, these as-prepared nanosheets with preferred orientations and optimized stable structures exhibit excellent C-rate capability and long-term cycling performance with much reduced volume expansion during cycling. In particular, the zero-strain insertion phenomenon could be achieved in 2-3 such layers of LiCoO 2 electrode materials, which could open up a new way to the further development of next-generation long-life and high-rate batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Dianxin; Ning, Ping; Qu, Guangfei; Huang, Xi; Liu, Yuhuan; Zhang, Jian
2017-05-01
The methane fermentation study assisted with cathodic micro-voltage was carried out to investigate the electric field effects on the fermentation of hydrothermally pretreated lignocellulose substrate. It was illustrated that a 0.25V cathode voltage and hydrothermal pretreatment could improve the biogas production, biogas quality and lignocellulose degradation ratio significantly. The cumulative biogas productions in the fermentation of hydrothermally pretreated cow dungs at 50°C, 150°C and 200°C with a 0.25V cathode voltage were observed in a total of 6640mL, 9218mL and 9456mL respectively over a detention time of 33 days. In comparison with the fermentation pretreated at 200°C without any voltage, nearly doubled of cumulative biogas production was obtained in the process of cathode-assisted fermentation. It was also observed that the daily methane content greater than or equal to 70% in the biogas generated with cathode voltage were clearly greater than that without voltages. Furthermore, the fermentation applied with a 0.25V cathode voltage had resulted into significant increases of 12.64% and 9.44% in lignin and cellulose degradation ratio relative to voltage free fermentation. And in the process of fermentation applied with cathode voltage, the final lignocellulose degradation ratio increased with the hydrothermal pretreatment temperature. Thus, the hydrothermal pretreatment and assisting fermentation with low cathode voltage can effectively promote the lignocellulose degradation. All results revealed that cathodic micro-voltage combined with hydrothermal pretreatment can remarkably improve the fermentation of lignocellulosic materials, indicating that a more effective fermentation technology can be developed by applying with cathodic micro-voltage.
NASA Astrophysics Data System (ADS)
Gonzalez-Fernandez, V.; Grützmacher, K.; Pérez, C.; de la Rosa, M. I.
2017-11-01
Doppler-free two photon optogalvanic spectroscopy was employed in extensive studies to measure the electric field strength in the cathode fall region of a hollow cathode discharge (HCD), operated in pure hydrogen, via the Stark splitting of the 2S level of atomic hydrogen. The high quality measurements, based on an improved cathode design and laser spectroscopic set-up, reveal clear differences in the recorded spectra obtained for different cathode material (stainless steel and tungsten) at otherwise identical discharge conditions. It is well known, that the sputtering rate of tungsten is about four orders of magnitude less compared to stainless steel; hence the hydrogen plasma in front of the stainless steel cathode is much more contaminated by iron compared to tungsten. This study is focussed on analyzing the distortion of the spectra, i.e. the corresponding local electric field strength, depending on cathode material and laser power. We refer the more pronounced distortion of the spectra in case of a stainless steel cathode to the related large contamination of the hydrogen plasma due to atomic iron which is also expanding into the central discharge. Spectra recorded for different laser power, i.e. different spectral irradiance, allow verifying spectroscopic conditions, where the distortion of the spectra becomes quite negligible even for stainless steel cathode.
Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C
2013-12-01
In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m2 was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.
Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C
2013-12-01
In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m(2) was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.
Solid oxide fuel cell with single material for electrodes and interconnect
McPheeters, Charles C.; Nelson, Paul A.; Dees, Dennis W.
1994-01-01
A solid oxide fuel cell having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed therebetween, and the anode, cathode and interconnect elements are comprised of substantially one material.
Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae
2016-01-12
Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.
Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes
Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae
2014-01-28
Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.
Ultra high vacuum test setup for electron gun
NASA Astrophysics Data System (ADS)
Pandiyar, M. L.; Prasad, M.; Jain, S. K.; Kumar, R.; Hannurkar, P. R.
2008-05-01
Ultra High Vacuum (UHV) test setup for electron gun testing has been developed. The development of next generation light sources and accelerators require development of klystron as a radio frequency power source, and in turn electron gun. This UHV electron gun test setup can be used to test the electron guns ranging from high average current, quasi-continuous wave to high peak current, single pulse etc. An electron gun has been designed, fabricated, assembled and tested for insulation up to 80 kV under the programme to develop high power klystron for future accelerators. Further testing includes the electron emission parameters characterization of the cathode, as it determines the development of a reliable and efficient electron gun with high electron emission current and high life time as well. This needs a clean ultra high vacuum to study these parameters particularly at high emission current. The cathode emission current, work function and vapour pressure of cathode surface material at high temperature studies will further help in design and development of high power electron gun The UHV electron gun test setup consists of Turbo Molecular Pump (TMP), Sputter Ion Pump (SIP), pressure gauge, high voltage and cathode power supplies, current measurement device, solenoid magnet and its power supply, residual gas analyser etc. The ultimate vacuum less than 2×10-9 mbar was achieved. This paper describes the UHV test setup for electron gun testing.
APPARATUS FOR PRODUCING IONS OF VAPORIZABLE MATERIALS
Wright, B.T.
1958-01-28
a uniform and copious supply of ions. The source comprises a hollow arc- block and means for establishing a magnetic field through the arc-block. Vaporization of the material to be ionized is produced by an electric heated filament. The arc producing structure within the arc-block consists of a cathode disposed between a pair of collimating electrodes along with an anode adjacent each collimating electrode on the side opposite the cathode. A positive potential applied to the anodes and collimating electrodes, with respect to the cathode, and the magnetic field act to accelerate the electrons from the cathode through a slit in each collimating clectrode towards the respective anode. In this manner a pair of collinear arc discharges are produced in the gas region which can be tapped for an abundant supply of ions of the material being analyzed.
Zhang, Xingyuan; Wang, Jian-Gan; Liu, Huanyan; Liu, Hongzhen; Wei, Bingqing
2017-01-18
Three-dimensional V₂O₅ hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V₂O₅ materials are composed of microspheres 2-3 μm in diameter and with a distinct hollow interior. The as-synthesized V₂O₅ hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g -1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V₂O₅ cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V₂O₅ hollow material as a high-performance cathode for lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Zöhrer, Siegfried; Anders, André; Franz, Robert
2018-05-01
Cathodic arcs have been utilized in various applications including the deposition of thin films and coatings, ion implantation, and high current switching. Despite substantial progress in recent decades, the physical mechanisms responsible for the observed plasma properties are still a matter of dispute, particularly for multi-element cathodes, which can play an essential role in applications. The analysis of plasma properties is complicated by the generally occurring neutral background of metal atoms, which perturbs initial ion properties. By using a time-resolved method in combination with pulsed arcs and a comprehensive Nb‑Al cathode model system, we investigate the influence of cathode composition on the plasma, while making the influence of neutrals visible for the observed time frame. The results visualize ion detections of 600 μs plasma pulses, extracted 0.27 m from the cathode, resolved in mass-per-charge, energy-per-charge and time. Ion properties are found to be strongly dependent on the cathode material in a way that cannot be deduced by simple linear extrapolation. Subsequently, current hypotheses in cathodic arc physics applying to multi-element cathodes, like the so-called ‘velocity rule’ or the ‘cohesive energy rule’, are tested for early and late stages of the pulse. Apart from their fundamental character, the findings could be useful in optimizing or designing plasma properties for applications, by actively utilizing effects on ion distributions caused by composite cathode materials and charge exchange with neutrals.
NASA Astrophysics Data System (ADS)
Duan, Jianguo; Hu, Guorong; Cao, Yanbing; Tan, Chaopu; Wu, Ceng; Du, Ke; Peng, Zhongdong
2016-09-01
LiNi1-x-yCoxAlyO2 is a commonly used Ni-rich cathode material because of its relatively low cost, excellent rate capability and high gravimetric energy density. Surface modification is an efficient way to overcome the shortcomings of Ni-rich cathodes such as poor cycling stability and poor thermal stability. A high-powered concentration-gradient cathode material with an average composition of LiNi0.815Co0.15Al0.035O2 (LGNCAO) has been successfully synthesized by using spherical concentration-gradient Ni0.815Co0.15Al0.035(OH)2 (GNCA)as the starting material. An efficient design of the Al3+ precipitation method is developed, which enables obtaining spherical GNCA with ∼10 μm particle size and high tap density. In LGNCAO, the nickel and cobalt concentration decreases gradually whereas the aluminum concentration increases from the centre to the outer layer of each particle. Electrochemical performance and storage properties of LGNCAO have been investigated comparatively. The LGNCAO displays better electrochemical performance and improved storage stability than LNCAO.
Organic light emitting device architecture for reducing the number of organic materials
D'Andrade, Brian [Westampton, NJ; Esler, James [Levittown, PA
2011-10-18
An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.
Aluminum reduction cell electrode
Payne, J.R.
1983-09-20
The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.
Aluminum reduction cell electrode
Payne, John R.
1983-09-20
The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces.
Oh, Soo Jung; Lee, Jun Kyu; Yoon, Woo Young
2014-09-01
The principal drawback of lithium-sulfur batteries is the dissolution of long-chain lithium polysulfides into the electrolyte, which limits cycling performance. To overcome this problem, we focused on the development of a novel cathode as well as anode material and designed Nafion-coated NiCrAl/S as a cathode and lithium powder as an anode. Nafion-coated NiCrAl/S cathode was synthesized using a two-step dip-coating technique. The lithium-powder anode was used instead of a lithium-foil anode to prohibit dendrite growth and to improve on the electrochemical behaviors. The cells showed an initial discharge capacity of about 900 mA g(-1) and a final discharge capacity of 772 mA g(-1) after 100 cycles at 0.1 C-rate. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) demonstrate that using the Nafion-coated NiCrAl/S cathode can suppress the dissolution of long-chain lithium polysulfides. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sodium-Rich Ferric Pyrophosphate Cathode for Stationary Room-Temperature Sodium-Ion Batteries.
Shen, Bolei; Xu, Maowen; Niu, Yubin; Han, Jin; Lu, Shiyu; Jiang, Jian; Li, Yi; Dai, Chunlong; Hu, Linyu; Li, Changming
2018-01-10
In this article, carbon-coated Na 3.64 Fe 2.18 (P 2 O 7 ) 2 nanoparticles (∼10 nm) were successfully synthesized via a facile sol-gel method and employed as cathode materials for sodium-ion batteries. The results show that the carbon-coated Na 3.64 Fe 2.18 (P 2 O 7 ) 2 cathode delivers a high reversible capacity of 99 mAh g -1 at 0.2 C, outstanding cycling life retention of 96%, and high Coulomb efficiency of almost 100% even after 1000 cycles at 10 C. Furthermore, the electrochemical performances of full batteries consisting of carbon-coated Na 3.64 Fe 2.18 (P 2 O 7 ) 2 nanoparticles as the cathode and commercialized hard carbon as the anode are tested. The full batteries exhibit a reversible capacity of 86 mAh g -1 at 0.5 C and capacity retention of 80% after 100 cycles. Therefore, the above-mentioned cathode is a potential candidate for developing inexpensive sodium-ion batteries in large-scale energy storage with long life.
A Spinel-integrated P2-type Layered Composite: High-rate Cathode for Sodium-ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Yan, Pengfei; Kan, Wang Hay
2016-01-14
Sodium-ion batteries (SIB) are being intensively investigated, owing to the natural abundance and low cost of Na resources. However, the SIBs still suffer from poor rate capability due to the large ionic radius of Na+ ion and the significant kinetic barrier to Na+-ion transport. Here, we present an Fd-3m spinel-integrated P2-type layered composite (P2 + Fd-3m) material as a high-rate cathode for SIBs. The P2 + Fd-3m composite material Na0.50Ni1/6Co1/6Mn2/3O2 shows significantly enhanced discharge capacity, energy density, and rate capability as compared to the pure P2-type counterpart. The composite delivers a high capacity of 85 mA h g-1 when dischargingmore » at a very high current density of 1500 mA g-1 (10C rate) between 2.0 and 4.5 V, validating it as a promising cathode candidate for high-power SIBs. The superior performance is ascribed to the improved kinetics in the presence of the integrated-spinel phase, which facilitates fast electron transport to coordinate with the timely Na+-ion insertion/extraction. The findings of this work also shed light on the importance of developing lattice doping, surface coating, and electrolyte additives to further improve the structural and interfacial stability of P2-type cathode materials and fully realize their practical applications in sodium-ion batteries.« less
NASA Astrophysics Data System (ADS)
Zhang, Jian; Luan, Yanping; Lyu, Zhiyang; Wang, Liangjun; Xu, Leilei; Yuan, Kaidi; Pan, Feng; Lai, Min; Liu, Zhaolin; Chen, Wei
2015-09-01
A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery cathode. Here, we report a controllable approach to synthesize hierarchical porous δ-MnO2 nanoboxes by using Prussian blue analogues as the precursors. The obtained products possess hierarchical pore size and an extremely large surface area (249.3 m2 g-1), which would favour oxygen transportation and provide more catalytically active sites to promote ORR and OER as the Li-O2 battery cathode. The battery shows enhanced discharge capacity (4368 mA h g-1@0.08 mA cm-2), reduced overpotential (270 mV), improved rate performance and excellent cycle stability (248 cycles@500 mA h g-1 and 112 cycles@1000 mA h g-1), in comparison with the battery with a VX-72 carbon cathode. The superb performance of the hierarchical porous δ-MnO2 nanoboxes, together with a convenient fabrication method, presents an alternative to develop advanced cathode catalysts for the Li-O2 battery.A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery cathode. Here, we report a controllable approach to synthesize hierarchical porous δ-MnO2 nanoboxes by using Prussian blue analogues as the precursors. The obtained products possess hierarchical pore size and an extremely large surface area (249.3 m2 g-1), which would favour oxygen transportation and provide more catalytically active sites to promote ORR and OER as the Li-O2 battery cathode. The battery shows enhanced discharge capacity (4368 mA h g-1@0.08 mA cm-2), reduced overpotential (270 mV), improved rate performance and excellent cycle stability (248 cycles@500 mA h g-1 and 112 cycles@1000 mA h g-1), in comparison with the battery with a VX-72 carbon cathode. The superb performance of the hierarchical porous δ-MnO2 nanoboxes, together with a convenient fabrication method, presents an alternative to develop advanced cathode catalysts for the Li-O2 battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02983j
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Booske, John H.; Morgan, Dane
2010-02-01
Microwave, x-ray, and radio-frequency radiation sources require a cathode emitting electrons into vacuum. Thermionic B-type dispenser cathodes consist of BaxOz coatings on tungsten (W), where the surface coatings lower the W work function and enhance electron emission. The new and promising class of scandate cathodes modifies the B-type surface through inclusion of Sc, and their superior emissive properties are also believed to stem from the formation of a low work function surface alloy. In order to better understand these cathode systems, density-functional theory (DFT)-based ab initio modeling is used to explore the stability and work function of BaxScyOz on W(001) monolayer-type surface structures. It is demonstrated how surface depolarization effects can be calculated easily using ab initio calculations and fitted to an analytic depolarization equation. This approach enables the rapid extraction of the complete depolarization curve (work function versus coverage relation) from relatively few DFT calculations, useful for understanding and characterizing the emitting properties of novel cathode materials. It is generally believed that the B-type cathode has some concentration of Ba-O dimers on the W surface, although their structure is not known. Calculations suggest that tilted Ba-O dimers are the stable dimer surface configuration and can explain the observed work function reduction corresponding to various dimer coverages. Tilted Ba-O dimers represent a new surface coating structure not previously proposed for the activated B-type cathode. The thermodynamically stable phase of Ba and O on the W surface was identified to be the Ba0.25O configuration, possessing a significantly lower Φ value than any of the Ba-O dimer configurations investigated. The identification of a more stable Ba0.25O phase implies that if Ba-O dimers cover the surface of emitting B-type cathodes, then a nonequilibrium steady state must dominate the emitting surface. The identification of a stable and low work function Ba0.25Sc0.25O structure suggests that addition of Sc to the B-type cathode surface could form this alloy structure under operating conditions, leading to improved cathode performance and stability. Detailed comparison to previous experimental results of BaxScyOz on W surface coatings are made to both validate the modeling and aid in interpretation of experimental data. The studies presented here demonstrate that ab initio methods are powerful for understanding the fundamental physics of electron emitting materials systems and can potentially aid in the development of improved cathodes.
Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries.
Guo, Juchen; Xu, Yunhua; Wang, Chunsheng
2011-10-12
The commercialization of lithium-sulfur batteries is hindered by low cycle stability and low efficiency, which are induced by sulfur active material loss and polysulfide shuttle reaction through dissolution into electrolyte. In this study, sulfur-impregnated disordered carbon nanotubes are synthesized as cathode material for the lithium-sulfur battery. The obtained sulfur-carbon tube cathodes demonstrate superior cyclability and Coulombic efficiency. More importantly, the electrochemical characterization indicates a new stabilization mechanism of sulfur in carbon induced by heat treatment.
Design and Processing of Structural Composite Batteries
2007-09-01
The woven fabric, e is 72wt% LiFePO4 , 8wt% acetylene lack, and 20wt% poly(ethylene oxide) 200k as a binder. Acetylene black ensures electrical will...2.1.3 Cathode The composite cathode material utilizes LiFePO4 chemistry. The composition of the cathode material film deposited onto the metal substrat... LiFePO4 chemistry (over a 2.8-4.0V range (8)) including stainless steel and titanium. Stainless steel was evaluated in this udy due to its high
The electrochemical reduction processes of solid compounds in high temperature molten salts.
Xiao, Wei; Wang, Dihua
2014-05-21
Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.
New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses
NASA Astrophysics Data System (ADS)
Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard
2014-11-01
V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods.
New high capacity cathode materials for rechargeable Li-ion batteries: vanadate-borate glasses.
Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard
2014-11-19
V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO(2) glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO(2) glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods.
New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses
Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard
2014-01-01
V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 – LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 – LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods. PMID:25408200
Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Harris, J.; Kesler, O.
2010-01-01
Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.
NASA Astrophysics Data System (ADS)
Jiang, Xi; Zhang, Tianran; Lee, Jim Yang
2017-12-01
Na3V2(PO4)3 (NVP) is an extensively researched cathode material for the sodium-ion batteries (NIBs). Size reduction and nanocarbon coating are often used to improve its rate performance. These are strategies that have been proven highly effective for LiFePO4 (LFP), a phosphate-based cathode material which is nowadays popular with the lithium-ion batteries. Nanocarbon coating is undoubtedly useful since NVP encounters similar external electron transport barriers as LFP. The effect of size reduction, however, remains debatable since in theory, the 3D NASICON framework of NVP is more efficient for solid state ionic diffusion than is LFP. We have undertaken the measurements of the electrochemical performance of NVP particles of different sizes, electrode compositions, active material loadings and processing conditions, for the purpose of identifying the most significant factors which determine the rate performance of NVP as a NIB cathode material.
NiF2/NaF:CaF2/Ca Solid-State High-Temperature Battery Cells
NASA Technical Reports Server (NTRS)
West, William; Whitacre, Jay; DelCastillo, Linda
2009-01-01
Experiments and theoretical study have demonstrated the promise of all-solid-state, high-temperature electrochemical battery cells based on NiF2 as the active cathode material, CaF2 doped with NaF as the electrolyte material, and Ca as the active anode material. These and other all-solid-state cells have been investigated in a continuing effort to develop batteries for instruments that must operate in environments much hotter than can be withstood by ordinary commercially available batteries. Batteries of this type are needed for exploration of Venus (where the mean surface temperature is about 450 C), and could be used on Earth for such applications as measuring physical and chemical conditions in geothermal wells and oil wells. All-solid-state high-temperature power cells are sought as alternatives to other high-temperature power cells based, variously, on molten anodes and cathodes or molten eutectic salt electrolytes. Among the all-solid-state predecessors of the present NiF2/NaF:CaF2/Ca cells are those described in "Solid-State High-Temperature Power Cells" (NPO-44396), NASA Tech Briefs, Vol. 32, No. 5 (May 2008), page 40. In those cells, the active cathode material is FeS2, the electrolyte material is a crystalline solid solution of equimolar amounts of Li3PO4 and LiSiO4, and the active anode material is Li contained within an alloy that remains solid in the intended high operational temperature range.
Shakoor, Rana A; Park, Chan Sun; Raja, Arsalan A; Shin, Jaeho; Kahraman, Ramazan
2016-02-07
The development of secondary batteries based on abundant and cheap elements is vital. Among various alternatives to conventional lithium-ion batteries, sodium-ion batteries (SIBs) are promising due to the abundant resources and low cost of sodium. While there are many challenges associated with the SIB system, cathode is an important factor in determining the electrochemical performance of this battery system. Accordingly, ongoing research in the field of SIBs is inclined towards the development of safe, cost effective cathode materials having improved performance. In particular, pyrophosphate cathodes have recently demonstrated decent electrochemical performance and thermal stability. Herein, we report the synthesis, electrochemical properties, and thermal behavior of a novel Na2Fe0.5Mn0.5P2O7 cathode for SIBs. The material was synthesized through a solid state process. The structural analysis reveals that the mixed substitution of manganese and iron has resulted in a triclinic crystal structure (P1[combining macron] space group). Galvanostatic charge/discharge measurements indicate that Na2Fe0.5Mn0.5P2O7 is electrochemically active with a reversible capacity of ∼80 mA h g(-1) at a C/20 rate with an average redox potential of 3.2 V. (vs. Na/Na(+)). It is noticed that 84% of initial capacity is preserved over 90 cycles showing promising cyclability. It is also noticed that the rate capability of Na2Fe0.5Mn0.5P2O7 is better than Na2MnP2O7. Ex situ and CV analyses indicate that Na2Fe0.5Mn0.5P2O7 undergoes a single phase reaction rather than a biphasic reaction due to different Na coordination environment and different Na site occupancy when compared to other pyrophosphate materials (Na2FeP2O7 and Na2MnP2O7). Thermogravimetric analysis (25-550 °C) confirms good thermal stability of Na2Fe0.5Mn0.5P2O7 with only 2% weight loss. Owing to promising electrochemical properties and decent thermal stability, Na2Fe0.5Mn0.5P2O7, can be an attractive cathode for SIBs.
NASA Astrophysics Data System (ADS)
Ryan, D. M.
1980-03-01
The feasibility of building thermal batteries with cells composed of an anode of LiAl alloy, a cathode of a heavy metal chloride, and a NaAlCl4 electrolyte has been demonstrated. During the further investigation of this system some interesting problems have developed and had to be studied. The particle size growth of the catholyte developed into a major storage problem. MoCl5 was found to form a volatile catholyte which is not suited for thermal battery use. As a result of this problem other catholyte materials were experimented with. CuCl2 is the most successful alternate to MoCl5. Some alternate binder materials have been investigated: kaolin clay, Illinois Mineral Amorphous Silica, and magnesia. Some alternate electrolytes have been investigated including NaAlCl4 (containing 52 m/o AlCl3), LiAlCl4 and KCl-LiCl. This work indicates that each material has unique properties which lend themselves to a particular application. Among the alternate cathode materials experimented with are CrCl3, a number of heavy metal oxides, fluorocarbon, TiS2, TiS3, and sulfur. Some alternate process investigated have been freon blending, adding materials to the anode, cell and battery desiccation and filling batteries with an inert atmosphere.
Field Emission Cold Cathode Devices Based on Eutectic Systems
1981-07-01
8217RADC-TR-811-170 ’,Final Technical Report July 1981 FIELD EMISSION COLD CATHODE DEVICES BASED ON EUTECTIC SYSTEMS Fulmer Research Institute Ltd...and identify by block numrber) Field Emission Eutectic Systems Cold Cathode Rod Eutectics Electron Emitter Array Directionally Solidified Eutectics...Identify by block number) A survey has been made of the performance as field emission cold cathodes of selected refractory materials fabricated as
Intense Electrochemical Oxidation on Graphitized Carbon Electrodes in the Presence of Ozone
NASA Astrophysics Data System (ADS)
Klochikhin, V. L.; Potapova, G. F.; Putilov, A. V.
2018-06-01
A new intense oxidation process for water treatment in which oxidation with ozone is coupled to electrochemical processes is described, and the results from its application to water purification are presented along with the discussion of its practical implementation. The use of graphitized carbon materials for this process is explained and tested experimentally. The use of glassy carbon for the anode enables us to achieve very high (up to 25 vol %) concentrations of ozone in the generated ozone-oxygen mixture. The material used for the cathode—graphitized carbon cloth (GCC) reinforced with Ni allows different electrocatalytic processes to proceed on its developed surface, and combines the high sorption capacity of this cathode and potentialcontrolled selectivity of cathodic electrochemical processes.
Development of new intercalated cathode materials for use in sodium batteries
NASA Technical Reports Server (NTRS)
Mehrotra, G. M.; Worrell, W. L.
1981-01-01
Potassium thiochromite, sodium thiochromite, and Ti 0.5V 0.5S 2 prepared and used in cycling studies. In addition, some electrochemical studies with polymer electrolyte (PEO-NaSCN) cells were also attempted.
Solid oxide fuel cell with single material for electrodes and interconnect
McPheeters, C.C.; Nelson, P.A.; Dees, D.W.
1994-07-19
A solid oxide fuel cell is described having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed there between, and the anode, cathode and interconnect elements are comprised of substantially one material. 9 figs.
Xie, Man; Luo, Rui; Lu, Jun; Chen, Renjie; Wu, Feng; Wang, Xiaoming; Zhan, Chun; Wu, Huiming; Albishri, Hassan M; Al-Bogami, Abdullah S; El-Hady, Deia Abd; Amine, Khalil
2014-10-08
Research on sodium batteries has made a comeback because of concern regarding the limited resources and cost of lithium for Li-ion batteries. From the standpoint of electrochemistry and economics, Mn- or Fe-based layered transition metal oxides should be the most suitable cathode candidates for affordable sodium batteries. Herein, this paper reports a novel cathode material, layered Na1+x(Fey/2Niy/2Mn1-y)1-xO2 (x = 0.1-0.5), synthesized through a facile coprecipitation process combined with subsequent calcination. For such cathode material calcined at 800 °C for 20 h, the Na/Na1+x(Fey/2Niy/2Mn1-y)1-xO2 (x = 0.4) electrode exhibited a good capacity of 99.1 mAh g(-1) (cycled at 1.5-4.0 V) and capacity retention over 87% after 50 cycles. Optimization of this material would make layered transition metal oxides a strong candidate for the Na-ion battery cathode.
Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Ya; Yu, Xi -Qian; Yin, Ya -Xia
Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g -1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less
Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries
You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; ...
2014-10-27
Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g -1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less
Long-Life/Low-Power Ion-Gun Cathode
NASA Technical Reports Server (NTRS)
Fitzgerald, D. J.
1982-01-01
New cathode has form of hollow tube through which gas enters region of high electron density, produced by electric discharge with auxiliary electrode referred to as "keeper." Ion-gun cathode emits electrons that bombard gas in chamber. Ions accelerated out of source are used to dope semiconductor material.
Advanced Nanofiber-Based Lithium-Ion Battery Cathodes
NASA Astrophysics Data System (ADS)
Toprakci, Ozan
Among various energy storage technologies, rechargeable lithium-ion batteries have been considered as effective solution to the increasing need for high-energy density electrochemical power sources. Rechargeable lithium-ion batteries offer energy densities 2 - 3 times and power densities 5 - 6 times higher than conventional Ni-Cd and Ni-MH batteries, and as a result, they weigh less and take less space for a given energy delivery. However, the use of lithium-ion batteries in many large applications such as electric vehicles and storage devices for future power grids is hindered by the poor thermal stability, relatively high toxicity, and high cost of lithium cobalt oxide (LiCoO2) powders, which are currently used as the cathode material in commercial lithium-ion batteries. Recently, lithium iron phosphate (LiFePO 4) powders have become a favorable cathode material for lithium-ion batteries because of their low cost, high discharge potential (around 3.4 V versus Li/Li+), large specific capacity (170 mAh g -1), good thermal stability, and high abundance with the environmentally benign and safe nature. As a result, there is a huge demand for the production of high-performance LiFePO4. However, LiFePO4 also has its own limitation such as low conductivity (˜10-9 S cm -1), which results in poor rate capability. To address this problem, various approaches can be used such as decreasing particle size of LiFePO 4, doping LiFePO4 with metal ions or coating LiFePO 4 surface with carboneous materials. Formation of conductive layer on LiFePO4 and decreasing particle size are promising approaches due to their superior contribution to electrical conductivity and electrochemical performance of LiFePO4. Although different approaches can be used for surface coating and particle size decrement, electrospinning can be potentially considered as an efficient, simple and inexpensive way. In this study, LiFePO 4/carbon and carbon nanotube- and graphene-loaded electrospun LiFePO 4/carbon composite nanofibers were synthesized by using a combination of sol-gel and electrospinning. During the material preparation, polyacrylonitrile (PAN) was used as an electrospinning media and a carbon source. LiFePO 4 precursor materials and/or conductive materials (carbon nanotubes and graphene) and PAN were dissolved in N,N-dimethylformamide separately and they were mixed before electrospinning. LiFePO4 precursor/PAN fibers were heat treated, during which LiFePO4 precursor transformed to energy-storage LiFePO4 material and PAN was converted to carbon. The surface morphology, microstructure and electrochemical performance of the materials were analyzed. Compared with conventional powder based positive electrodes, the novel LiFePO4/C composite nanofiber cathodes possess better electrochemical performance. Furthermore, the newly developed LiFePO 4/C composite nanofibers are easy to fabricate, highly controllable, and can be used in practical Lithium-ion battery applications. In addition to LiFePO4, more recent efforts have been directed to mixed form of layered lithiummetal oxides (Li-Ni-Mn-Co). Nickel and manganese are of importance because of their lower cost, safety and higher abundance in nature. These new cathodes offer noticeable improvement in the capacity and cycling behavior. In these cathodes, LiNi1/3Co1/3Mn 1/3O2 attracted significant interest because of its good electrochemical properties such as high capacity, prolonged cycling life, and so on. On the other hand, it has some disadvantages such as instability at high voltages and high current densities. To overcome these problems, synthesis of layered Li-rich composite materials such as xLi2MnO3˙(1-x)LiCo 1/3Ni1/3Mn1/3O2 can be a promising approach. In this study, various xLi2MnO3˙(1-x)LiCo 1/3Ni1/3Mn1/3O2 (x=0.1, 0.2, 0.3, 0.4, 0.5) composite cathode materials were prepared by a one-step sol-gel route. Morphology, microstructure and electrochemical behavior of these cathode materials were evaluated. The resultant cathode material shows good electrochemical performance. Relatively low cost and simple preparation route make new xLi2MnO3˙(1-x)LiMn1/3Ni 1/3Co1/3O2 composite materials possible to use as potential cathode candidate for lithium-ion batteries.
2016-12-22
importance. Among advanced energy storage devices, lithium - ion batteries are remarkable systems due to their high energy density, high power density...and well cycled performance with considerable reliability. Lithium - ion batteries have been playing an important role in various application fields...Li0.24Mn0.55Co0.14Ni0.07]O2 cathode material for lithium ion batteries . Solid State Ionics, 2013. 233: p. 12-19. DISTRIBUTION A. Approved for public release
Deng, Chao; Zhang, Sen
2014-06-25
Tailoring materials into nanostructure offers unprecedented opportunities in the utilization of their functional properties. High-purity Na7V4(P2O7)4(PO4) with 1D nanostructure is prepared as a cathode material for rechargeable Na-ion batteries. An efficient synthetic approach is developed by carefully controlling the crystal growth in the molten sodium phosphate. Based on the XRD, XPS, TG, and morphological characterization, a molten-salt assisted mechanism for nanoarchitecture formation is revealed. The prepared Na7V4(P2O7)4(PO4) nanorod has rectangle sides and preferential [001] growth orientation. GITT evaluation indicates that the sodium de/intercalation of Na7V4(P2O7)4(PO4) nanorod involves V(3+)/V(4+) redox reaction and Na5V(3.5+)4(P2O7)4(PO4) as intermediate phase, which results in two pairs of potential plateaus at the equilibrium potentials of 3.8713 V (V(3+)/V(3.5+)) and 3.8879 V (V(3.5+)/V(4+)), respectively. The unique nanoarchitecture of the phase-pure Na7V4(P2O7)4(PO4) facilitates its reversible sodium de/intercalation, which is beneficial to the high-rate capability and the cycling stability. The Na7V4(P2O7)4(PO4) cathode delivers 80% of the capacity (obtained at C/20) at the 10 C rate and 95% of the initial capacity after 200 cycles. Therefore, it is feasible to design and fabricate an advanced rechargeable sodium-ion battery by employment of 1D nanostructured Na7V4(P2O7)4(PO4) as the cathode material.
Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.
Lin, Yi; Moitoso, Brandon; Martinez-Martinez, Chalynette; Walsh, Evan D; Lacey, Steven D; Kim, Jae-Woo; Dai, Liming; Hu, Liangbing; Connell, John W
2017-05-10
Lithium-oxygen (Li-O 2 ) batteries have the highest theoretical energy density of all the Li-based energy storage systems, but many challenges prevent them from practical use. A major obstacle is the sluggish performance of the air cathode, where both oxygen reduction (discharge) and oxygen evolution (charge) reactions occur. Recently, there have been significant advances in the development of graphene-based air cathode materials with a large surface area and catalytically active for both oxygen reduction and evolution reactions, especially with additional catalysts or dopants. However, most studies reported so far have examined air cathodes with a limited areal mass loading rarely exceeding 1 mg/cm 2 . Despite the high gravimetric capacity values achieved, the actual (areal) capacities of those batteries were far from sufficient for practical applications. Here, we present the fabrication, performance, and mechanistic investigations of high-mass-loading (up to 10 mg/cm 2 ) graphene-based air electrodes for high-performance Li-O 2 batteries. Such air electrodes could be easily prepared within minutes under solvent-free and binder-free conditions by compression-molding holey graphene materials because of their unique dry compressibility associated with in-plane holes on the graphene sheet. Li-O 2 batteries with high air cathode mass loadings thus prepared exhibited excellent gravimetric capacity as well as ultrahigh areal capacity (as high as ∼40 mAh/cm 2 ). The batteries were also cycled at a high curtailing areal capacity (2 mAh/cm 2 ) and showed a better cycling stability for ultrathick cathodes than their thinner counterparts. Detailed post-mortem analyses of the electrodes clearly revealed the battery failure mechanisms under both primary and secondary modes, arising from the oxygen diffusion blockage and the catalytic site deactivation, respectively. These results strongly suggest that the dry-pressed holey graphene electrodes are a highly viable architectural platform for high-capacity, high-performance air cathodes in Li-O 2 batteries of practical significance.
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Lee, Yueh-Lin; Booske, John H.; Morgan, Dane; Turek, Ladislav; Kirshner, Mark; Kowalczyk, Richard; Wilsen, Craig
2009-05-01
Scandate cathodes (BaxScyOz on W) are important thermionic electron emission materials whose emission mechanism remains unclear. Ab initio modeling is used to investigate the surface properties of both scandate and traditional B-type (Ba-O on W) cathodes. We demonstrate that the Ba-O dipole surface structure believed to be present in active B-type cathodes is not thermodynamically stable, suggesting that a nonequilibrium steady state dominates the active cathode's surface structure. We identify a stable, low work function BaxScyOz surface structure, which may be responsible for some scandate cathode properties and demonstrate that multicomponent surface coatings can lower cathode work functions.
Effect of current ripple on cathode erosion in 30 kWe class arcjets
NASA Technical Reports Server (NTRS)
Harris, William J.; O'Hair, Edgar A.; Hatfield, Lynn L.; Kristiansen, M.; Grimes, Montgomery D.
1991-01-01
An investigation was conducted to study the effect of current ripple on cathode erosion in 30 kWe class arcjets to determine the change in the cathode erosion rate for high (11 percent) and low (4 percent) current ripple. The measurements were conducted using a copper-tungsten cathode material to accelerate the cathode erosion process. It is shown that the high ripple erosion rate was initially higher than the low ripple erosion rate, but decreased asymptotically with time to a level less than half that of the low ripple value. Results suggest that high ripple extends the cathode lifetime for long duration operation, and improves arc stability by increasing the cathode attachment area.
Ab initio study of perovskite type oxide materials for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Lee, Yueh-Lin
2011-12-01
Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen exchange rates, and key OR energetics of the SOFC cathode perovskites, can be described by a single descriptor, either the bulk O p-band or the bulk oxygen vacancy formation energy. These simple descriptors will further enable first-principles optimization/design of new SOFC cathodes.
Relativistic electron beam device
Freeman, J.R.; Poukey, J.W.; Shope, S.L.; Yonas, G.
1975-07-01
A design is given for an electron beam device for irradiating spherical hydrogen isotope bearing targets. The accelerator, which includes hollow cathodes facing each other, injects an anode plasma between the cathodes and produces an approximately 10 nanosecond, megajoule pulse between the anode plasma and the cathodes. Targets may be repetitively positioned within the plasma between the cathodes, and accelerator diode arrangement permits materials to survive operation in a fusion power source. (auth)
Ma, Yulin; Zhou, Yan; Du, Chunyu; ...
2017-02-15
Surface degradation on cycled lithium-ion battery cathode particles is governed not only by intrinsic thermodynamic properties of the material but also, oftentimes more predominantly, by the side reactions with the electrolytic solution. A superior electrolyte inhibits these undesired side reactions on the cathode and at the electrolyte interface, which consequently minimizes the deterioration of the cathode surface. The present study investigates a new boron-based anion receptor, tris(2,2,2-trifluoroethyl)borate (TTFEB), as an electrolyte additive in cells containing a lithium- and manganese-rich layered oxide cathode, Li 1.16Ni 0.2Co 0.1Mn 0.54O 2. Our electrochemical studies demonstrate that the cycling performance and Coulombic efficiency aremore » significantly improved because of the additive, in particular, under elevated temperature conditions. Spectroscopic analyses revealed that the addition of 0.5 wt % TTFEB is capable of reducing the content of lithium-containing inorganic species within the cathode-electrolyte interphase layer and minimizing the reduction of tetravalent Mn4+ at the cathode surface. Furthermore, our work introduces a novel additive highly effective in improving lithium-ion battery performance, highlights the importance in preserving the surface properties of cathode materials, and provides new insights on the working mechanism of electrolyte additives.« less
Activated graphene as a cathode material for Li-ion hybrid supercapacitors.
Stoller, Meryl D; Murali, Shanthi; Quarles, Neil; Zhu, Yanwu; Potts, Jeffrey R; Zhu, Xianjun; Ha, Hyung-Wook; Ruoff, Rodney S
2012-03-14
Chemically activated graphene ('activated microwave expanded graphite oxide', a-MEGO) was used as a cathode material for Li-ion hybrid supercapacitors. The performance of a-MEGO was first verified with Li-ion electrolyte in a symmetrical supercapacitor cell. Hybrid supercapacitors were then constructed with a-MEGO as the cathode and with either graphite or Li(4)Ti(5)O(12) (LTO) for the anode materials. The results show that the activated graphene material works well in a symmetrical cell with the Li-ion electrolyte with specific capacitances as high as 182 F g(-1). In a full a-MEGO/graphite hybrid cell, specific capacitances as high as 266 F g(-1) for the active materials at operating potentials of 4 V yielded gravimetric energy densities for a packaged cell of 53.2 W h kg(-1).
Brannon, Paul J.; Cowgill, Donald F.
1990-01-01
A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable.
Brannon, P.J.; Cowgill, D.F.
1990-12-18
A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable. 10 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Mark A.; Coker, Eric Nicholas; Griego, James J. M.
High-temperature X-ray diffraction with concurrent gas chromatography (GC) was used to study cobalt disulfide cathode pellets disassembled from thermal batteries. When CoS 2 cathode materials were analyzed in an air environment, oxidation of the K(Br, Cl) salt phase in the cathode led to the formation of K 2SO 4 that subsequently reacted with the pyrite-type CoS 2 phase leading to cathode decomposition between ~260 and 450 °C. Here, independent thermal analysis experiments, i.e. simultaneous thermogravimetric analysis/differential scanning calorimetry/mass spectrometry (MS), augmented the diffraction results and support the overall picture of CoS 2 decomposition. Both gas analysis measurements (i.e. GC andmore » MS) from the independent experiments confirmed the formation of SO 2 off-gas species during breakdown of the CoS 2. In contrast, characterization of the same cathode material under inert conditions showed the presence of CoS 2 throughout the entire temperature range of analysis.« less
Molecular dynamics simulations of Li transport between cathode crystals
NASA Astrophysics Data System (ADS)
Garofalini, S. H.
The molecular dynamics (MD) computer simulation technique has been used to study the effect of an amorphous intergranular film (IGF) present in a polycrystalline cathode on Li transport. The solid electrolyte is a model lithium silicate glass while the cathode is a nanocrystalline vanadia with an amorphous V 2O 5 IGF separating the crystals. Thin (˜1 to a few nanometer thick) IGFs are known to be present in most polycrystalline oxide materials. However, the role of such a film on Li transport in oxide cathodes has not been addressed. Current scanning probe microscopy (SPM) studies have shown that the orientation of the layered nanocrystalline vanadia crystals near the cathode/solid electrolyte interface is not optimized for Li ion transport. While the precise structure of the material between the crystals has not been identified, initially it can be initially considered as likely to be a thin non-crystalline (amorphous) film. This is based on the ubiquitous presence of such a structure in other polycrystalline oxides. Also, and with more relevance to the materials used in thin film batteries, an amorphous film can be expected to form between nanocrystals that crystallized from an amorphous matrix, as would be the case in a deposited thin film cathode. Consistent with simulations of Li transport in amorphous vanadia, the current simulations show that Li ions diffuse more rapidly into the amorphous intergranular thin film than into the layered vanadia with the (0 0 1) planes parallel to the cathode/electrolyte interface.
NASA Astrophysics Data System (ADS)
Abdelkader, A. M.; Cooper, A. J.; Dryfe, R. A. W.; Kinloch, I. A.
2015-04-01
Since the beginning of the `graphene era' post-2004, there has been significant interest in developing a high purity, high yield, and scalable fabrication route toward graphene materials for both primary research purposes and industrial production. One suitable approach to graphene production lies in the realm of electrochemical exfoliation, in which a potential difference is applied between a graphite anode/cathode in the presence of an electrolyte-containing medium. Herein we review various works on the electrochemical fabrication of graphene materials specifically through the use of electrochemical intercalation and exfoliation of a graphite source electrode, focusing on the quality and purity of products formed. We categorise the most significant works in terms of anodic and cathodic control, highlighting the merits of the respective approaches, as well as indicating the challenges associated with both procedures.
Guo, Shaohua; Yu, Haijun; Jian, Zelang; Liu, Pan; Zhu, Yanbei; Guo, Xianwei; Chen, Mingwei; Ishida, Masayoshi; Zhou, Haoshen
2014-08-01
A layered sodium manganese oxide material (NaMn3 O5 ) is introduced as a novel cathode materials for sodium-ion batteries. Structural characterizations reveal a typical Birnessite structure with lamellar stacking of the synthetic nanosheets. Electrochemical tests reveal a particularly large discharge capacity of 219 mAh g(-1) in the voltage rang of 1.5-4.7 V vs. Na/Na(+) . With an average potential of 2.75 V versus sodium metal, layered NaMn3 O5 exhibits a high energy density of 602 Wh kg(-1) , and also presents good rate capability. Furthermore, the diffusion coefficient of sodium ions in the layered NaMn3 O5 electrode is investigated by using the galvanostatic intermittent titration technique. The results greatly contribute to the development of room-temperature sodium-ion batteries based on earth-abundant elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Huaping; Xu, Yunhua; Bazan, Guillermo C
2013-02-05
Tetrakis(1-imidazolyl)borate (BIm4) based zwitterionic and/or related molecules for the fabrication of PLEDs is provided. Device performances with these materials approaches that of devices with Ba/Al cathodes for which the cathode contact is ohmic. Methods of producing such materials, and electron injection layers and devices containing these materials are also provided.
Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy
2013-01-01
A multi-nuclear solid-state NMR approach is employed to investigate the lithium–air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by 17O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. 13C ssNMR provides evidence for carbonate formation on the surface of the carbon cathode, the carbonate being removed at high charging voltages in the first cycle, but accumulating in later cycles. Small amounts of lithium hydroxide and formate are also detected in discharged cathodes and while the hydroxide formation is reversible, the formate persists and accumulates in the cathode upon further cycling. The results indicate that the rechargeability of the battery is limited by both the electrolyte and the carbon cathode stability. The utility of ssNMR spectroscopy in directly detecting product formation and decomposition within the battery is demonstrated, a necessary step in the assessment of new electrolytes, catalysts, and cathode materials for the development of a viable lithium–oxygen battery. PMID:24489976
A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron
Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi
2016-01-01
Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun. PMID:27609247
A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron.
Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi
2016-09-09
Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun.
Comments on cathode contaminants and the LBNL test stand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieniosek, F.; Baca, D.; Greenway, W.
This report collects information on cathode contaminants we have gathered in the process of operating the LBNL DARHT cathode test stand. Information on contaminants is compiled from several sources. The attachment, ''Practical Aspects of Modern Dispenser Cathodes'', is from Heat Wave Corp. (TB-134) and was originally published in Microwave Journal, September 1979. Cathode contamination depends on both material choices and residual gases. Table 1 of TB-134 lists materials that can poison dispenser cathodes. These include reactive residual gases or vapors such as oxygen, water vapor, benzene, chlorine, fluorine, sulfur, silicon, and most metals other than molybdenum, rhenium, tungsten, and copper.more » The metals interact with the cathode surface through their vapor pressure. A paper by Nexsen and Turner, J. Appl. Phys. 68, 298-303 (1990) shows the threshold effects of some common residual gases or vapors on cathode performance. The book by Walter H. Kohl, Handbook of Materials and Techniques for Vacuum Devices, also contains useful information on cathodes and poisoning agents. A plot of the vapor pressures and poisoning effect of certain metals (from Kohl) is shown below. Note that the vapor pressure of zinc is 1.1 x 10{sup -8} Torr at 400 K = 127 C, and 2.7 x 10{sup -5} at 500 K = 227 C. By contrast iron reaches a vapor pressure 1 x 10{sup -8} between 800 and 900 C. Therefore it is important to eliminate any brass parts that could exceed a temperature of 100 C. Many structural components of the cathode assembly contain steel. At 500-600 C in an oxygen atmosphere chromium oxide may outgas from the steel. [Cho, et.al., J. Vac. Sci. Technol. A 19, p. 998 (2001)]. Steel may also contain silicon, and sulfur at low concentrations. Therefore use of steel should be limited or avoided at high temperature near the cathode. Materials that should be avoided in the vicinity of the cathode include brass, silver, zinc, non-OFHC copper, silicates, and sulfur-containing lubricants such molybdenum disulfide. Macor is an aluminosilicate-based insulator that is not stable at high temperature. Macor near the cathode should be replaced by a high-temperature insulator such as alumina ceramic. Other insulating materials that contain silicates, such as fiber insulating sleeves, should be avoided. Copper that is not OFHC contains oxygen and other impurities and should be avoided. Lubricating screw coatings should be chosen carefully to have no sulfur content. Common sources of contamination that can cause low emission include water, saliva, silicates such as glass dust, etc. Cathodes should be handled in near clean-room conditions to minimize the amount of water vapor on the cathode surface from breathing, etc. Cathodes should also be stored in such as a way as to avoid contact with materials such as glass dust and water vapor. Attached are plots of SEM data for several test pieces that were taken from the LBNL test stand after activation of the 311x scandate DARHT cathode. Several copper pieces in the anode region were tested, showing the presence of zinc. Two stainless steel nuts coated with a contaminant were also tested. The SEM data indicates the presence of zinc and some sulfur. The zinc has been traced to a brass piece, and the sulfur to the possible use of molybdenum disulfide lubricant on a nut in the system. Finally a swipe of contaminant on the vacuum vessel wall analyzed by a commercial testing laboratory shows again the presence of zinc. In order to improve system cleanliness, we have implemented the following modifications to the test stand: replaced the brass piece with copper-tungsten; replaced Macor insulators with alumina ceramic; used boron nitride lubricant; replaced copper beam stop with OFHC copper; and replaced steel pieces near the cathode where possible with copper or copper-tungsten. A clean fire of high-temperature components and a high-current filament test have shown no evidence to date for contaminants since the modifications.« less
4D multiple-cathode ultrafast electron microscopy
Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H.
2014-01-01
Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging. PMID:25006261
4D multiple-cathode ultrafast electron microscopy.
Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H
2014-07-22
Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging.
Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries.
Kichambare, Padmakar; Rodrigues, Stanley; Kumar, Jitendra
2012-01-01
The composite of nitrogen-doped carbon (N-C) blend with lithium aluminum germanium phosphate (LAGP) was studied as cathode material in a solid-state lithium-oxygen cell. Composite electrodes exhibit high electrochemical activity toward oxygen reduction. Compared to the cell capacity of N-C blend cathode, N-C/LAGP composite cathode exhibits six times higher discharge cell capacity. A significant enhancement in cell capacity is attributed to higher electrocatalytic activity and fast lithium ion conduction ability of LAGP in the cathode. © 2011 American Chemical Society
High rate, long cycle life battery electrode materials with an open framework structure
Wessells, Colin; Huggins, Robert; Cui, Yi; Pasta, Mauro
2015-02-10
A battery includes a cathode, an anode, and an aqueous electrolyte disposed between the cathode and the anode and including a cation A. At least one of the cathode and the anode includes an electrode material having an open framework crystal structure into which the cation A is reversibly inserted during operation of the battery. The battery has a reference specific capacity when cycled at a reference rate, and at least 75% of the reference specific capacity is retained when the battery is cycled at 10 times the reference rate.
Elastomeric binders for electrodes. [in secondary lithium cells
NASA Technical Reports Server (NTRS)
Yen, S. P. S.; Shen, D. H.; Somoano, R. B.
1983-01-01
The poor mechanical integrity of the cathode represents an important problem which affects the performance of ambient temperature secondary lithium cells. Repeated charge of a TiS2 cathode may give rise to stresses which disturb the electrode structure and can contribute to capacity loss. An investigation indicates that the use of an inelastic binder material, such as Teflon, aggravates the problem, and can lead to electrode disruption and poor TiS2 particle-particle contact. The feasibility of a use of elastomers as TiS2 binder materials has, therefore, been explored. It was found that elastomeric binders provide an effective approach for simplifying rechargeable cathode fabrication. A pronounced improvement in the mechanical integrity of the cathode structure contributes to a prolonged cycle life.
Low temperature sodium-beta battery
Farmer, Joseph C
2013-11-19
A battery that will operate at ambient temperature or lower includes an enclosure, a current collector within the enclosure, an anode that will operate at ambient temperature or lower within the enclosure, a cathode that will operate at ambient temperature or lower within the enclosure, and a separator and electrolyte within the enclosure between the anode and the cathode. The anode is a sodium eutectic anode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower. The cathode is a low melting ion liquid cathode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower.
New Aqueous Binders for Lithium-ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, Andrew N.; Krumdick, Gregory K.; Trask, Stephen E.
2016-12-22
This final report summarizes the research effort of the CRADA between PPG Industries and Argonne National Laboratory (CRADA # C1400501 and Amendment 1 - ACK 85C11, Rev. 1), and completes the requirements of Task #5 in the CRADA. The results from Argonne represent a combined effort between the MERF and CAMP Facility (Materials Engineering Research Facility and the Cell Analysis, Modeling and Prototyping Facility). The key points of this report can be briefly summarized as: The multicomponent aqueous binder for NCM cathodes developed by PPG shows promising results when used on the CAMP Facility’s pilot-scale coater; NCM523 cathode electrodes exposedmore » to water exhibit a voltage anomaly in the first two formation cycles that appears to have little effect on the material capacity, but needs to be explored further; the experimental LFP electrode produced by PPG does cycle electrochemically, but with reduced capacity and an uncharacteristic voltage profile; there is no obvious correlation between the pH and zeta-potential of materials that are commonly used in the lithium-ion battery; lithium ions are more readily dissolved out of NCM523 by water than the transition metals (by two orders of magnitude), and suggests that the plating bath may need to be spiked with a lithium salt; the approach of creating sub-micron size NCM523 particles via ball milling results in a cathode material with poor electrochemical performance.« less
NASA Astrophysics Data System (ADS)
Wang, Gaojun; Chen, Linfeng; Mathur, Gyanesh N.; Varadan, Vijay K.
2011-04-01
Improving soldier portable power systems is very important for saving soldiers' lives and having a strategic advantage in a war. This paper reports our work on synthesizing lithium vanadium oxides (Li1+xV3O8) and developing their applications as the cathode (positive) materials in lithium-ion batteries for soldier portable power systems. Two synthesizing methods, solid-state reaction method and sol-gel method, are used in synthesizing lithium vanadium oxides, and the chemical reaction conditions are determined mainly based on thermogravimetric and differential thermogravimetric (TG-DTG) analysis. The synthesized lithium vanadium oxides are used as the active positive materials in the cathodes of prototype lithium-ion batteries. By using the new solid-state reaction technique proposed in this paper, lithium vanadium oxides can be synthesized at a lower temperature and in a shorter time, and the synthesized lithium vanadium oxide powders exhibit good crystal structures and good electrochemical properties. In the sol-gel method, different lithium source materials are used, and it is found that lithium nitrate (LiNO3) is better than lithium carbonate (Li2CO3) and lithium hydroxide (LiOH). The lithium vanadium oxides synthesized in this work have high specific charge and discharge capacities, which are helpful for reducing the sizes and weights, or increasing the power capacities, of soldier portable power systems.
Meng, Wei; Pigliapochi, Roberta; Bayley, Paul M.; ...
2017-06-05
V 6O 13 is a promising Li-ion battery cathode material for use in the high temperature oil field environment. The material exhibits a high capacity, and the voltage profile contains several plateaus associated with a series of complex structural transformations, which are not fully understood. The underlying mechanisms are central to understanding and improving the performance of V 6O 13-based rechargeable batteries. In this study, we present in situ X-ray diffraction data that highlight an asymmetric six-step discharge and five step charge process, due to a phase that is only formed on discharge. The LixV 6O 13 unit cell expandsmore » sequentially in c, b, and a directions during discharge and reversibly contracts back during charge. The process is associated with change of Li ion positions as well as charge ordering in LixV 6O 13. Density functional theory calculations give further insight into the electronic structures and preferred Li positions in the different structures formed upon cycling, particularly at high lithium contents, where no prior structural data are available. Lastly, the results shed light into the high specific capacity of V 6O 13 and are likely to aid in the development of this material for use as a cathode for secondary lithium batteries.« less
3D Reticular Li1.2Ni0.2Mn0.6O2 Cathode Material for Lithium-Ion Batteries.
Li, Li; Wang, Lecai; Zhang, Xiaoxiao; Xue, Qing; Wei, Lei; Wu, Feng; Chen, Renjie
2017-01-18
In this study, a hard-templating route was developed to synthesize a 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 cathode material using ordered mesoporous silica as the hard template. The synthesized 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 microparticles consisted of two interlaced 3D nanonetworks and a mesopore channel system. When used as the cathode material in a lithium-ion battery, the as-synthesized 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 exhibited remarkably enhanced electrochemical performance, namely, superior rate capability and better cycling stability than those of its bulk counterpart. Specifically, a high discharge capacity of 195.6 mA h g -1 at 1 C with 95.6% capacity retention after 50 cycles was achieved with the 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 . A high discharge capacity of 135.7 mA h g -1 even at a high current of 1000 mA g -1 was also obtained. This excellent electrochemical performance of the 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 is attributed to its designed structure, which provided nanoscale lithium pathways, large specific surface area, good thermal and mechanical stability, and easy access to the material center.
NASA Astrophysics Data System (ADS)
Ri, Gum-Chol; Choe, Song-Hyok; Yu, Chol-Jun
2018-02-01
Natural abundance of sodium and its similar behavior to lithium triggered recent extensive studies of cost-effective sodium-ion batteries (SIBs) for large-scale energy storage systems. A challenge is to develop electrode materials with a high electrode potential, specific capacity and a good rate capability. In this work we propose mixed eldfellite compounds Nax(Fe1/2M1/2) (SO4)2 (x = 0-2, M = Mn, Co, Ni) as a new family of high electrode potential cathodes of SIBs and present their material properties predicted by first-principles calculations. The structural optimizations show that these materials have significantly small volume expansion rates below 5% upon Na insertion/desertion with negative Na binding energies. Through the electronic structure calculations, we find band insulating properties and hole (and/or electron) polaron hoping as a possible mechanism for the charge transfer. Especially we confirm the high electrode voltages over 4 V with reasonably high specific capacities. We also investigate the sodium ion mobility by estimating plausible diffusion pathways and calculating the corresponding activation barriers, demonstrating the reasonably fast migrations of sodium ions during the operation. Our calculation results indicate that these mixed eldfellite compounds can be suitable materials for high performance SIB cathodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Ji Won; Kalathil, Abdul Kareem; Yim, Chul Jin
Li-rich Li{sub 1.2}Ni{sub 0.17}Co{sub 0.17}Mn{sub 0.5}O{sub 2} cathode materials were synthesized by electrospinning technique with different polymers, and their structural, morphological, and electrochemical performances were investigated. It was found that the electrospinning process leads to the formation of a fiber and flower-like morphology, by using different polymers and heat treatment conditions. The nanostructured morphology provided these materials with high initial discharge capacity. The cycling stability was improved with agglomerated nano-particles, as compared with porous materials. - Highlights: • Fiber and flower-like Li-rich cathode was synthesized by simple electrospinning. • Polymer dependent morphology and electrochemical performance was investigated. • Well-organized porousmore » structure facilitates the diffusion of lithium ions. • Technique could be applicable to other cathode materials as well.« less
BiVO4 Fern Architectures: A Competitive Anode for Lithium-Ion Batteries.
Dubal, Deepak P; Patil, Deepak R; Patil, Santosh S; Munirathnam, N R; Gomez-Romero, Pedro
2017-09-21
The development of high-performance anode materials for lithium-ion batteries (LIBs) is currently subject to much interest. In this study, BiVO 4 fern architectures are introduced as a new anode material for LIBs. The BiVO 4 fern shows an excellent reversible capacity of 769 mAh g -1 (ultrahigh volumetric capacity of 3984 mAh cm -3 ) at 0.12 A g -1 with large capacity retention. A LIB full cell is then assembled with a BiVO 4 fern anode and LiFePO 4 (LFP, commercial) as cathode material. The device can achieve a capacity of 140 mAh g -1 at 1C rate, that is, 81 % of the capacity of the cathode and maintained to 104 mAh g -1 at a high rate of 8C, which makes BiVO 4 a promising candidate as a high-energy anode material for LIBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of cathode material on the electrorefining of U in LiCl-KCl molten salts
NASA Astrophysics Data System (ADS)
Lee, Chang Hwa; Kim, Tack-Jin; Park, Sungbin; Lee, Sung-Jai; Paek, Seung-Woo; Ahn, Do-Hee; Cho, Sung-Ki
2017-05-01
The influence of cathode materials on the U electrorefining process is examined using electrochemical measurements and SEM-EDX observations. Stainless steel (STS), Mo, and W electrodes exhibit similar U reduction/oxidation behavior in 500 °C LiCl-KCl-UCl3 molten salts, as revealed by the cyclic voltammograms. However, slight shifts are observed in the cathodic and anodic peak potentials at the STS electrode, which are related to the fast reduction/oxidation kinetics associated with this electrode. The U deposits on the Mo and W electrodes consist of uniform dendritic chains of U in rhomboidal-shaped crystals, whereas several U dendrites protruding from the surface are observed for the STS electrode. EDX mapping of the electrode surfaces reveals that simple scraping of the U dendrites from W electrodes pretreated in dilute HCl solutions to dissolve the residual salt, results in clear removal of the U deposits, whereas a thick U deposit layer strongly adheres to the STS electrode surface even after treatment. This result is expected to contribute to the development of an effective and continuous U recovery process using electrorefining.
Charge-transfer modified embedded atom method dynamic charge potential for Li-Co-O system
NASA Astrophysics Data System (ADS)
Kong, Fantai; Longo, Roberto C.; Liang, Chaoping; Nie, Yifan; Zheng, Yongping; Zhang, Chenxi; Cho, Kyeongjae
2017-11-01
To overcome the limitation of conventional fixed charge potential methods for the study of Li-ion battery cathode materials, a dynamic charge potential method, charge-transfer modified embedded atom method (CT-MEAM), has been developed and applied to the Li-Co-O ternary system. The accuracy of the potential has been tested and validated by reproducing a variety of structural and electrochemical properties of LiCoO2. A detailed analysis on the local charge distribution confirmed the capability of this potential for dynamic charge modeling. The transferability of the potential is also demonstrated by its reliability in describing Li-rich Li2CoO2 and Li-deficient LiCo2O4 compounds, including their phase stability, equilibrium volume, charge states and cathode voltages. These results demonstrate that the CT-MEAM dynamic charge potential could help to overcome the challenge of modeling complex ternary transition metal oxides. This work can promote molecular dynamics studies of Li ion cathode materials and other important transition metal oxides systems that involve complex electrochemical and catalytic reactions.
Charge-transfer modified embedded atom method dynamic charge potential for Li-Co-O system.
Kong, Fantai; Longo, Roberto C; Liang, Chaoping; Nie, Yifan; Zheng, Yongping; Zhang, Chenxi; Cho, Kyeongjae
2017-11-29
To overcome the limitation of conventional fixed charge potential methods for the study of Li-ion battery cathode materials, a dynamic charge potential method, charge-transfer modified embedded atom method (CT-MEAM), has been developed and applied to the Li-Co-O ternary system. The accuracy of the potential has been tested and validated by reproducing a variety of structural and electrochemical properties of LiCoO 2 . A detailed analysis on the local charge distribution confirmed the capability of this potential for dynamic charge modeling. The transferability of the potential is also demonstrated by its reliability in describing Li-rich Li 2 CoO 2 and Li-deficient LiCo 2 O 4 compounds, including their phase stability, equilibrium volume, charge states and cathode voltages. These results demonstrate that the CT-MEAM dynamic charge potential could help to overcome the challenge of modeling complex ternary transition metal oxides. This work can promote molecular dynamics studies of Li ion cathode materials and other important transition metal oxides systems that involve complex electrochemical and catalytic reactions.
NASA Astrophysics Data System (ADS)
Lan, Xiwei; Xin, Yue; Wang, Libin; Hu, Xianluo
2018-03-01
Li-rich layered oxides (LLOs) have been developed as a high-capacity cathode material for Li-ion batteries, but the structural complexity and unique initial charging behavior lead to several problems including large initial capacity loss, capacity and voltage fading, poor cyclability, and inferior rate capability. Since the surface conditions are critical to electrochemical performance and the drawbacks, nanoscale surface modification for improving LLO's properties is a general strategy. This review mainly summarizes the surface modification of LLOs and classifies them into three types of surface pre-treatment, surface gradient doping, and surface coating. Surface pre-treatment usually introduces removal of Li2O for lower irreversible capacity while surface doping is aimed to stabilize the structure during electrochemical cycling. Surface coating layers with different properties, protective layers to suppress the interface side reaction, coating layers related to structural transformation, and electronic/ionic conductive layers for better rate capability, can avoid the shortcomings of LLOs. In addition to surface modification for performance enhancement, other strategies can also be investigated to achieve high-performance LLO-based cathode materials.
Kuklja, M M; Kotomin, E A; Merkle, R; Mastrikov, Yu A; Maier, J
2013-04-21
Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980's as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot's cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.
2010-12-01
and conventional Li-ion cells is the cathode material. Lithium iron phosphate ( LiFePO4 ) is a cathode material with many desirable characteristics: low... LiFePO4 , coated with conductive materials. The high surface area of the nanoparticles allows excellent interpenetration of the conductive materials...above--the A123 LiFePO4 -based nanoenabled battery, the Ioxus nanoenabled supercapacitor, and our custom-designed control circuit--were assembled into a
Sustainability Impact of Nanomaterial Enhanced Lithium Ion Batteries
NASA Astrophysics Data System (ADS)
Ganter, Matthew
Energy storage devices are becoming an integral part of sustainable energy technology adoption, particularly, in alternative transportation (electric vehicles) and renewable energy technologies (solar and wind which are intermittent). The most prevalent technology exhibiting near-term impact are lithium ion batteries, especially in portable consumer electronics and initial electric vehicle models like the Chevy Volt and Nissan Leaf. However, new technologies need to consider the full life-cycle impacts from material production and use phase performance to the end-of-life management (EOL). This dissertation investigates the impacts of nanomaterials in lithium ion batteries throughout the life cycle and develops strategies to improve each step in the process. The embodied energy of laser vaporization synthesis and purification of carbon nanotubes (CNTs) was calculated to determine the environmental impact of the novel nanomaterial at beginning of life. CNTs were integrated into lithium ion battery electrodes as conductive additives, current collectors, and active material supports to increase power, energy, and thermal stability in the use phase. A method was developed to uniformly distribute CNT conductive additives in composites. Cathode composites with CNT additives had significant rate improvements (3x the capacity at a 10C rate) and higher thermal stability (40% reduction in exothermic energy released upon overcharge). Similar trends were also measured with CNTs in anode composites. Advanced free-standing anodes incorporating CNTs with high capacity silicon and germanium were measured to have high capacities where surface area reduction improved coulombic efficiencies and thermal stability. A thermal stability plot was developed that compares the safety of traditional composites with free-standing electrodes, relating the results to thermal conductivity and surface area effects. The EOL management of nanomaterials in lithium ion batteries was studied and a novel recycling technique, referred to as refunctionalization , for lithium ion cathode materials was developed. Refunctionalization is the treatment of active materials in order to regain electrochemical performance at EOL which eliminates the need to recycle to the elemental level and can lead to greater environmental and economic savings. The lithium ion capacity of EOL lithium iron phosphate (LiFePO4) nanomaterial cathode was regained through chemical and electrochemical re-lithiation techniques. The embodied energy of refunctionalized LiFePO4 was calculated to be 50% less than cathode synthesized from virgin materials. Overall, these results contribute to an improved understanding of the life cycle impacts for nanomaterials in batteries. The CNT embodied energy calculation established the first life cycle inventory for laser vaporization CNTs, whereas the novel refunctionalization strategies established a new EOL pathway to recover cathodes at a higher value state than traditional recycling. At the same time, CNT enhanced battery electrodes increased power and energy in the use phase while demonstrating the unique ability to engineer electrodes to control thermal stability, which enables better performing and safer batteries.
Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL
2011-05-31
Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.
LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky
2002-03-31
This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves asmore » the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is LSCF < PSCF < SSCF < YSCF < LSM. The button cell results agree with this ordering indicating that this is an important tool for use in developing our understanding of electrode behavior in fuel cells.« less
Future materials requirements for the high-energy-intensity production of aluminum
NASA Astrophysics Data System (ADS)
Welch, B. J.; Hyland, M. M.; James, B. J.
2001-02-01
Like all metallurgical industries, aluminum smelting has been under pressure from two fronts—to give maximum return on investment to the shareholders and to comply with environmental regulations by reducing greenhouse emissions. The smelting process has advanced by improving efficiency and productivity while continuing to seek new ways to extend the cell life. Materials selection (particularly the use of more graphitized cathodic electrodes) has enabled lower energy consumption, while optimization of the process and controlling in a narrow band has enabled increases in productivity and operations at higher current densities. These changes have, in turn, severely stressed the materials used for cell construction, and new problems are emerging that are resulting in a reduction of cell life. The target for aluminum electro-winning has been to develop an oxygen-evolving electrode, rather than one that evolves substantial amounts of carbon dioxide. Such an electrode, when combined with suitable wettable cathode material developments, would reduce operating costs by eliminating the need for frequent electrode change and would enable more productive cell designs and reduce plant size. The materials specifications for developing these are, however, an extreme challenge. Those specifications include minimized corrosion rate of any electrode into the electrolyte, maintaining an electronically conducting oxidized surface that is of low electrical resistance, meeting the metal purity targets, and enabling variable operating current densities. Although the materials specifications can readily be written, the processing and production of the materials is the challenge.
Ye, Hualin; Ma, Lu; Zhou, Yu; Wang, Lu; Han, Na; Zhao, Feipeng; Deng, Jun; Wu, Tianpin; Li, Yanguang; Lu, Jun
2017-12-12
Many problems associated with Li-S and Na-S batteries essentially root in the generation of their soluble polysulfide intermediates. While conventional wisdom mainly focuses on trapping polysulfides at the cathode using various functional materials, few strategies are available at present to fully resolve or circumvent this long-standing issue. In this study, we propose the concept of sulfur-equivalent cathode materials, and demonstrate the great potential of amorphous MoS 3 as such a material for room-temperature Li-S and Na-S batteries. In Li-S batteries, MoS 3 exhibits sulfur-like behavior with large reversible specific capacity, excellent cycle life, and the possibility to achieve high areal capacity. Most remarkably, it is also fully cyclable in the carbonate electrolyte under a relatively high temperature of 55 °C. MoS 3 can also be used as the cathode material of even more challenging Na-S batteries to enable decent capacity and good cycle life. Operando X-ray absorption spectroscopy (XAS) experiments are carried out to track the structural evolution of MoS 3 It largely preserves its chain-like structure during repetitive battery cycling without generating any free polysulfide intermediates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yahong; Hu, Enyuan; Yang, Feifei
Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. Here, our study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li 2Ru 0.5Mn 0.5O 3 cathode particles at the meso to nano scale. We performed combined X-ray spectroscopy, diffraction and microscopy experiments to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine lengthmore » scale morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. It also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yahong; Hu, Enyuan; Yang, Feifei
Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. This study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li 2Ru 0.5Mn 0.5O 3 cathode particles at the meso to nano scale. Combined X-ray spectroscopy, diffraction and microscopy experiments are performed to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine length scalemore » morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. In conclusion, it also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yu; Bai, Ying; Bi, Xuanxuan
2016-03-04
Rechargeable lithium-ion batteries with high energy and high power density are required in the application of electric vehicles and portable electronics. Herein, we introduce a type of spherical Li-rich cathode material, Li1.2Ni0.2Mn0.6O2, assembled from uniform nanocubes by a facile polyvinylpyrrolidone (PVP)-assisted hydrothermal method. The material with a hierarchical nano-/microstructure exhibits stable high-rate performance. Furthermore, the precipitant (i.e., urea) and the structure-directing agent (i.e., PVP) effectively activated the Li2MnO3 components in the microscale material to achieve a high specific capacity of 298.5 mAh g-1 in the first cycle. This Li-rich cathode material still delivered 243 mAh g-1 at 0.1 C aftermore » 200 cycles and the capacity retentions at 0.5, 1, 2, and 5mC were 94.4, 78.7, 76.3, and 67.8 % after 150 cycles, respectively. The results make this Li-rich nano-/microstructure a promising cathode material for long-life and high-performance lithium-ion batteries.« less
Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material
Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.
1996-01-01
An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.
Ye, Hualin; Ma, Lu; Zhou, Yu; Wang, Lu; Han, Na; Zhao, Feipeng; Deng, Jun; Wu, Tianpin; Li, Yanguang; Lu, Jun
2017-01-01
Many problems associated with Li–S and Na–S batteries essentially root in the generation of their soluble polysulfide intermediates. While conventional wisdom mainly focuses on trapping polysulfides at the cathode using various functional materials, few strategies are available at present to fully resolve or circumvent this long-standing issue. In this study, we propose the concept of sulfur-equivalent cathode materials, and demonstrate the great potential of amorphous MoS3 as such a material for room-temperature Li–S and Na–S batteries. In Li–S batteries, MoS3 exhibits sulfur-like behavior with large reversible specific capacity, excellent cycle life, and the possibility to achieve high areal capacity. Most remarkably, it is also fully cyclable in the carbonate electrolyte under a relatively high temperature of 55 °C. MoS3 can also be used as the cathode material of even more challenging Na–S batteries to enable decent capacity and good cycle life. Operando X-ray absorption spectroscopy (XAS) experiments are carried out to track the structural evolution of MoS3. It largely preserves its chain-like structure during repetitive battery cycling without generating any free polysulfide intermediates. PMID:29180431
Xu, Yahong; Hu, Enyuan; Yang, Feifei; ...
2016-08-17
Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. This study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li 2Ru 0.5Mn 0.5O 3 cathode particles at the meso to nano scale. Combined X-ray spectroscopy, diffraction and microscopy experiments are performed to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine length scalemore » morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. In conclusion, it also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability.« less
Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material
Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.
1996-09-24
An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.
Brushett, Fikile R; Thorum, Matthew S; Lioutas, Nicholas S; Naughton, Matthew S; Tornow, Claire; Jhong, Huei-Ru Molly; Gewirth, Andrew A; Kenis, Paul J A
2010-09-08
The performance of a novel carbon-supported copper complex of 3,5-diamino-1,2,4-triazole (Cu-tri/C) is investigated as a cathode material using an alkaline microfluidic H(2)/O(2) fuel cell. The absolute Cu-tri/C cathode performance is comparable to that of a Pt/C cathode. Furthermore, at a commercially relevant potential, the measured mass activity of an unoptimized Cu-tri/C-based cathode was significantly greater than that of similar Pt/C- and Ag/C-based cathodes. Accelerated cathode durability studies suggested multiple degradation regimes at various time scales. Further enhancements in performance and durability may be realized by optimizing catalyst and electrode preparation procedures.
A review of recent developments in rechargeable lithium-sulfur batteries.
Kang, Weimin; Deng, Nanping; Ju, Jingge; Li, Quanxiang; Wu, Dayong; Ma, Xiaomin; Li, Lei; Naebe, Minoo; Cheng, Bowen
2016-09-22
The research and development of advanced energy-storage systems must meet a large number of requirements, including high energy density, natural abundance of the raw material, low cost and environmental friendliness, and particularly reasonable safety. As the demands of high-performance batteries are continuously increasing, with large-scale energy storage systems and electric mobility equipment, lithium-sulfur batteries have become an attractive candidate for the new generation of high-performance batteries due to their high theoretical capacity (1675 mA h g -1 ) and energy density (2600 Wh kg -1 ). However, rapid capacity attenuation with poor cycle and rate performances make the batteries far from ideal with respect to real commercial applications. Outstanding breakthroughs and achievements have been made to alleviate these problems in the past ten years. This paper presents an overview of recent advances in lithium-sulfur battery research. We cover the research and development to date on various components of lithium-sulfur batteries, including cathodes, binders, separators, electrolytes, anodes, collectors, and some novel cell configurations. The current trends in materials selection for batteries are reviewed and various choices of cathode, binder, electrolyte, separator, anode, and collector materials are discussed. The current challenges associated with the use of batteries and their materials selection are listed and future perspectives for this class of battery are also discussed.
High performance, high durability non-precious metal fuel cell catalysts
Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.
2016-03-15
This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.
Li, Maofan; Liu, Jiajie; Liu, Tongchao; Zhang, Mingjian; Pan, Feng
2018-02-01
A carbonyl-bridged single molecular precursor LiTM(acac) 3 [transition metal (TM) = cobalt/manganese/nickel (Co/Mn/Ni), acac = acetylacetone], featuring a one-dimensional chain structure, was designed and applied to achieve the layered oxide cathode materials: LiTMO 2 (TM = Ni/Mn/Co, NMC). As examples, layered oxides, primary LiCoO 2 , binary LiNi 0.8 Co 0.2 O 2 and ternary LiNi 0.5 Mn 0.3 Co 0.2 O 2 were successfully prepared to be used as cathode materials. When they are applied to lithium-ion batteries (LIBs), all exhibit good electrochemical performance because of their unique morphology and great uniformity of element distribution. This versatile precursor is predicted to accommodate many other metal cations, such as aluminum (Al 3+ ), iron (Fe 2+ ), and sodium (Na + ), because of the flexibility of organic ligand, which not only facilitates the doping-modification of the NMC system, but also enables synthesis of Na-ion layered oxides. This opens a new direction of research for the synthesis of high-performance layered oxide cathode materials for LIBs.
Development of μ-PIC with resistive electrodes using sputtered carbon
NASA Astrophysics Data System (ADS)
Yamane, Fumiya; Ochi, Atsuhiko; Homma, Yasuhiro; Yamauchi, Satoru; Nagasaka, Noriko; Hasegawa, Hiroaki; Kawamoto, Tatsuo; Kataoka, Yosuke; Masubuchi, Tatsuya
2018-02-01
The Micro Pixel Chamber (μ-PIC) has been developed for a hadron-collider experiment. The main purpose is detecting Minimum Ionizing Particles (MIP) under high-rate Highly Ionizing Particles (HIP) environment. In such an environment, sufficient gain to detect MIP is needed, but continuous sparks will be caused by high-rate HIP. To reduce sparks, cathodes are made of resistive material. In this report, sputtered carbon was used as a new resistive cathode. Gas gain >104 was achieved using an 55Fe source. This value is sufficient to detect MIP without GEM or other floating structures. Also, thanks to production improvement, pixels are well aligned in the entire detection area.
Low resistance, low-inductance power connectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coteus, Paul W.; Ferencz, Andrew; Hall, Shawn Anthony
An electrical connector includes an anode assembly for conducting an electrical supply current from a source to a destination, the anode assembly includes an anode formed into a first shape from sheet metal or other sheet-like conducting material. A cathode assembly conducts an electrical return current from the destination to the source, the cathode assembly includes a cathode formed into a second shape from sheet metal or other sheet-like conducting material. An insulator prevents electrical conduction between the anode and the cathode. The first and second shapes are such as to provide a conformity of one to the other, withmore » the insulator therebetween having a predetermined relatively thin thickness. A predetermined low-resistance path for the supply current is provided by the anode, a predetermined low-resistance path for the return current is provided by the cathode, and the proximity of the anode to the cathode along these paths provides a predetermined low self-inductance of the connector, where the proximity is afforded by the conformity of the first and second shapes.« less
NASA Astrophysics Data System (ADS)
Miguel-Pérez, Verónica; Martínez-Amesti, Ana; Nó, María Luisa; Larrañaga, Aitor; Arriortua, María Isabel
2013-12-01
Spinel oxides with the general formula of (Mn,B)3O4 (B = Co, Fe) were used as barrier materials between the cathode and the metallic interconnect to reduce the rate of cathode degradation by Cr poisoning. The effect of doping at the B position was investigated terms of microstructure and electrical conductivity to determine its behaviour and effectiveness as a protective layer in contact with three metallic materials (Crofer 22 APU, SS430 and Conicro 4023 W 188). The analysis showed that the use of these materials considerably decreased the reactivity and diffusion of Cr between the cathode and the metallic interconnects. The protective layer doped with Fe at the B position exhibited the least amount of reactivity with the interconnector and cathode materials. The worst results were observed for SS430 cells coated with a protective layer perhaps due to their low Cr content. The Crofer 22 APU and Conicro 4023 W 188 samples exhibited very similar conductivity results in the presence of the MnCo1.9Fe0.1O4 protective coating. As a result, these two material combinations are a promising option for use as bipolar plates in SOFC.
NASA Astrophysics Data System (ADS)
He, Xin; Wang, Jun; Jia, Haiping; Kloepsch, Richard; Liu, Haidong; Beltrop, Kolja; Li, Jie
2015-10-01
Mn-based Mn2O3 anode and LiMn2O4 cathode materials are prepared by a solvothermal method combined with post annealing process. Environmentally friendly ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate as both structure-directing agent and fluorine source is used to prepare hollow polyhedron MnF2 precursor. Both target materials Mn2O3 anode and LiMn2O4 cathode have the morphology of the MnF2 precursor. The Mn2O3 anode using carboxymethyl cellulose as binder could deliver slight better electrochemical performance than the one using poly (vinyldifluoride) as binder. The former has an initial charge capacity of 800 mAh g-1 at a current density of 101.8 mA g-1, and exhibits no obvious capacity decay for 150 cycles at 101.8 mA g-1. The LiMn2O4 cathode material prepared with molten salt assistant could display much better electrochemical performance than the one prepared without molten salt assistance. In particular, it has an initial discharge capacity of 117.5 mAh g-1 at a current density of 0.5C and good rate capability. In the field of lithium ion batteries, both the Mn2O3 anode and LiMn2O4 cathode materials could exhibit enhanced electrochemical performance due to the well formed morphology based on the ionic liquid-assisted solvothermal method.
NASA Astrophysics Data System (ADS)
Zhou, Qunfei
First-principles calculations based on quantum mechanics have been proved to be powerful for accurately regenerating experimental results, uncovering underlying myths of experimental phenomena, and accelerating the design of innovative materials. This work has been motivated by the demand to design next-generation thermionic emitting cathodes and techniques to allow for synthesis of photo-responsive polymers on complex surfaces with controlled thickness and patterns. For Os-coated tungsten thermionic dispenser cathodes, we used first-principles methods to explore the bulk and surface properties of W-Os alloys in order to explain the previously observed experimental phenomena that thermionic emission varies significantly with W-Os alloy composition. Meanwhile, we have developed a new quantum mechanical approach to quantitatively predict the thermionic emission current density from materials perspective without any semi-empirical approximations or complicated analytical models, which leads to better understanding of thermionic emission mechanism. The methods from this work could be used to accelerate the design of next-generation thermionic cathodes. For photoresponsive materials, we designed a novel type of azobenzene-containing monomer for light-mediated ring-opening metathesis polymerization (ROMP) toward the fabrication of patterned, photo-responsive polymers by controlling ring strain energy (RSE) of the monomer that drives ROMP. This allows for unprecedented remote, noninvasive, instantaneous spatial and temporal control of photo-responsive polymer deposition on complex surfaces.This work on the above two different materials systems showed the power of quantum mechanical calculations on predicting, understanding and discovering the structures and properties of both known and unknown materials in a fast, efficient and reliable way.
Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping
2016-01-01
Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfidemore » shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).« less
Calcium intercalation into layered fluorinated sodium iron phosphate
Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; ...
2017-10-09
Here, the energy density and cost of battery systems could be improved by moving to alternative battery chemistries such as Ca-ion. However, in order to switch chemistries many problems need to be solved including the identification of cathode materials with high energy density, and electrolytes that can plate and strip calcium metal. Herein, the feasibility and cycling performance of Ca 2+ intercalation into a desodiated layered Na 2FePO 4F host is described. This is the first demonstration of Ca 2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca 2+ intercalation. Althoughmore » substantial effort is still needed to identify a high energy density cathode material, this study and others demonstrate the feasibility of Ca 2+ intercalation into multiple materials making it more probable that such a cathode material can be found.« less
Calcium intercalation into layered fluorinated sodium iron phosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipson, Albert L.; Kim, Soojeong; Pan, Baofei
Here, the energy density and cost of battery systems could be improved by moving to alternative battery chemistries such as Ca-ion. However, in order to switch chemistries many problems need to be solved including the identification of cathode materials with high energy density, and electrolytes that can plate and strip calcium metal. Herein, the feasibility and cycling performance of Ca 2+ intercalation into a desodiated layered Na 2FePO 4F host is described. This is the first demonstration of Ca 2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca 2+ intercalation. Althoughmore » substantial effort is still needed to identify a high energy density cathode material, this study and others demonstrate the feasibility of Ca 2+ intercalation into multiple materials making it more probable that such a cathode material can be found.« less
NASA Astrophysics Data System (ADS)
Križan, Gregor; Križan, Janez; Dominko, Robert; Gaberšček, Miran
2017-09-01
In this work a novel pulse combustion reactor method for preparation of Li-ion cathode materials is introduced. Its advantages and potential challenges are demonstrated on two widely studied cathode materials, LiFePO4/C and Li-rich NMC. By exploiting the nature of efficiency of pulse combustion we have successfully established a slightly reductive or oxidative environment necessary for synthesis. As a whole, the proposed method is fast, environmentally friendly and easy to scale. An important advantage of the proposed method is that it preferentially yields small-sized powders (in the nanometric range) at a fast production rate of 2 s. A potential disadvantage is the relatively high degree of disorder of synthesized active material which however can be removed using a post-annealing step. This additional step allows a further tuning of materials morphology as shown and commented in some detail.
Serially connected solid oxide fuel cells having monolithic cores
Herceg, Joseph E.
1987-01-01
A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick. Between 2 and 50 cell segments may be connected in series.
Hydrothermal vanadium manganese oxides: Anode and cathode materials for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Simões, Mário; Surace, Yuri; Yoon, Songhak; Battaglia, Corsin; Pokrant, Simone; Weidenkaff, Anke
2015-09-01
Vanadium manganese oxides with Mn content up to 33 at% were synthesized by a low temperature hydrothermal route allowing for the preparation of both anodic and cathodic materials for Li-ion batteries. Low amounts of manganese (below 13 at%) lead to the formation of elongated particles of layered hydrated vanadium oxides with manganese and water intercalated between the V2O5 slabs, while for higher Mn content of 33 at%, monoclinic MnV2O6 is formed. Former materials are suitable for high energy cathodes while the latter one is an anodic compound. The material containing 10 at% Mn has the composition Mn0.2V2O5·0.9H2O and shows the best cathodic activity with 20% capacity improvement over V2O5·0.5H2O. Lithiated MnV2O6 with Li5MnV2O6 composition prepared electrochemically was evaluated for the first time as anode in a full-cell against Mn0.2V2O5·0.9H2O cathode. An initial capacity ca. 300 A h kg-1 was measured with this battery corresponding to more than 500 Wh kg-1. These results confirm the prospect of using Li5MnV2O6 anodes in lithium-ion batteries as well as high-capacity layered hydrated vanadium oxides cathodes such as V2O5·0.5H2O and Mn0.2V2O5·0.9H2O.
Kim, Jeong-Min; Jin, Bong-Soo; Koo, Hoe-Jin; Choi, Jae-Man; Kim, Hyun-Soo
2013-05-01
The Li[Ni0.7Co0.1Mn0.2]O2 cathode material synthesized using a co-precipitation method was investigated as a function of various pH level in terms of its microstructure and electrochemical properties. From the XRD pattern analysis, the Li[Ni0.7Co0.1Mn0.2]O2 cathode material prepared in this study are found to well coincide with typically hexagonal alpha-NaFeO2 structure. The primary particle size was about 100-300 nm at all compositions while secondary particle size increased as pH level increased from 10.34 microm (pH 10.3) to 14 microm (pH 12.5). The initial discharge capacity increased up to 165 mAh/g (0.1 C) at pH 11, and then decreased down to 144 mAh/g with further increasing pH level. The capacity retention of the cathode (pH 11) showed 90% at 0.2 C and 15% at 5 C respectively compared with the discharge capacity at 0.1 C. The capacity retention of the cathode (pH 10.3) performed 94% of the initial capacity after 22 cycles at 0.5 C charge/discharge test. Therefore, it is thought to be that pH 10.3 is optimized condition of the Li[Ni0.7Co0.1Mn0.2]O2 cathode material in this study because pH 10.3 shows better cycle performance than other conditions.
Advanced composite applications for sub-micron biologically derived microstructures
NASA Technical Reports Server (NTRS)
Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas
1991-01-01
A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.
Zhang, Yiyong; Peng, Yueying; Wang, Yunhui; Li, Jiyang; Li, He; Zeng, Jing; Wang, Jing; Hwang, Bing Joe; Zhao, Jinbao
2017-09-12
The lithium-sulfur battery, which offers a high energy density and is environmental friendly, is a promising next generation of rechargeable energy storage system. However, despite these attractive attributes, the commercialization of lithium-sulfur battery is primarily hindered by the parasitic reactions between the Li metal anode and dissolved polysulfide species from the cathode during the cycling process. Herein, we synthesize the sulfur-rich carbon polysulfide polymer and demonstrate that it is a promising cathode material for high performance lithium-sulfur battery. The electrochemical studies reveal that the carbon polysulfide polymer exhibits superb reversibility and cycle stability. This is due to that the well-designed structure of the carbon polysulfide polymer has several advantages, especially, the strong chemical interaction between sulfur and the carbon framework (C-S bonds) inhibits the shuttle effect and the π electrons of the carbon polysulfide compound enhance the transfer of electrons and Li + . Furthermore, as-prepared carbon polysulfide polymer-graphene hybrid cathode achieves outstanding cycle stability and relatively high capacity. This work highlights the potential promise of the carbon polysulfide polymer as the cathode material for high performance lithium-sulfur battery.
Economic and environmental characterization of an evolving Li-ion battery waste stream.
Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W; Bailey, Chelsea; Ganter, Matthew J; Landi, Brian J
2014-03-15
While disposal bans of lithium-ion batteries are gaining in popularity, the infrastructure required to recycle these batteries has not yet fully emerged and the economic motivation for this type of recycling system has not yet been quantified comprehensively. This study combines economic modeling and fundamental material characterization methods to quantify economic trade-offs for lithium ion batteries at their end-of-life. Results show that as chemistries transition from lithium-cobalt based cathodes to less costly chemistries, battery recovery value decreases along with the initial value of the raw materials used. For example, manganese-spinel and iron phosphate cathode batteries have potential material values 73% and 79% less than cobalt cathode batteries, respectively. A majority of the potentially recoverable value resides in the base metals contained in the cathode; this increases disassembly cost and time as this is the last portion of the battery taken apart. A great deal of compositional variability exists, even within the same cathode chemistry, due to differences between manufacturers with coefficient of variation up to 37% for some base metals. Cathode changes over time will result in a heavily co-mingled waste stream, further complicating waste management and recycling processes. These results aim to inform disposal, collection, and take-back policies being proposed currently that affect waste management infrastructure as well as guide future deployment of novel recycling techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.
Synthesis of lithium nickel cobalt manganese oxide cathode materials by infrared induction heating
NASA Astrophysics Data System (ADS)
Hsieh, Chien-Te; Chen, Yu-Fu; Pai, Chun-Ting; Mo, Chung-Yu
2014-12-01
This study adopts an in-situ infrared (IR) sintering incorporated with carbonization technique to synthesize carbon-coated LiNi1/3Co1/3Mn1/3O2 (LNCM) cathode materials for Li-ion batteries. Compared with electric resistance heating, the in-situ IR sintering is capable of rapidly producing highly-crystalline LNCM powders at 900 °C within a short period, i.e., 3 h in this case. Glucose additive is employed to serve a carbon precursor, which is carbonized and coated over the surface of LNCM crystals during the IR sintering process. The electrochemical performance of LNCM cathodes is well examined by charge-discharge cycling at 0.1-5C. An appropriate carbon coating is capable of raising discharge capacity (i.e., 181.5 mAh g-1 at 0.1C), rate capability (i.e., 75.0 mAh g-1 at 5C), and cycling stability (i.e., capacity retention: 94.2% at 1C after 50 cycles) of LNCM cathodes. This enhanced performance can be ascribed to the carbon coating onto the external surface of LNCM powders, creating an outer circuit of charge-transfer pathway and preventing cathode corrosion from direct contact to the electrolyte. Accordingly, the in-situ IR sintering technique offers a potential feasibility for synthesizing cathode materials commercially in large scale.
The feasibility and application of PPy in cathodic polarization antifouling.
Jia, Meng-Yang; Zhang, Zhi-Ming; Yu, Liang-Min; Wang, Jia; Zheng, Tong-Tong
2018-04-01
Cathodic polarization antifouling deserves attention because of its environmentally friendly nature and good sustainability. It has been proven that cathodic voltages applied on metal substrates exhibit outstanding antifouling effects. However, most metals immersed in marine environment are protected by insulated anticorrosive coatings, restricting the cathodic polarization applied on metals. This study developed a conducting polypyrrole (PPy)/acrylic resin coating (σ = 0.18 Scm -1 ), which can be applied in cathodic polarization antifouling. The good stability and electro-activity of PPy in the negative polarity zone in alkalescent NaCl solution were verified by linear sweep voltammetry (LSV), chronoamperometry (CA), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), demonstrating the feasibility of PPy as cathodic polarization material. Furthermore, the antifouling effects of PPy/acrylicresin coating on 24-h old Escherichia coli bacteria (E. coli) which formed on PPy/acrylic resin-coated plastic plate were measured under different cathodic potentials and treatment time, characterized by fluorescent microscope. The results suggest that at cathodic potential around -0.5 V (vs. saturated calomel electrode (SCE)), there was little trace of attached bacteria on the substrate after 20 min of treatment. PPy/acrylicresin-coated substrates were also subjected to repeated cycles of biofilm formation and electrochemical removal, where high removal efficiencies were maintained throughout the total polarization process. Under these conditions, the generation of hydrogen peroxide is believed to be responsible for the antifouling effects because of causing oxidative damage to cells, suggesting the potential of the proposed technology for application on insulated surfaces in various industrial settings. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shaigan, Nima; Qu, Wei; Ivey, Douglas G.; Chen, Weixing
Ferritic stainless steels have become the standard material for solid oxide fuel cell (SOFC) interconnect applications. The use of commercially available ferritic stainless steels, not specifically designed for interconnect application, however, presents serious issues leading to premature degradation of the fuel cell stack, particularly on the cathode side. These problems include rapidly increasing contact resistance and volatilization of Cr from the oxide scales, resulting in cathode chromium poisoning and cell malfunction. To overcome these issues, a variety of conductive/protective coatings, surface treatments and modifications as well as alloy development have been suggested and studied over the past several years. This paper critically reviews the attempts performed thus far to mitigate the issues associated with the use of ferritic stainless steels on the cathode side. Different approaches are categorized and summarized and examples for each case are provided. Finally, directions and recommendations for the future studies are presented.
A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions
NASA Technical Reports Server (NTRS)
Reid, Concha; Bennett, William
2009-01-01
NASA's Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair lunar lander and the Extravehicular Activities (EVA) advanced lunar surface spacesuit. These customers require safe, reliable energy storage systems with extremely high specific energy as compared to today's state-of-the-art batteries. Based on customer requirements, the specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery level at 0 degrees Celsius (degrees Celcius) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation over 0 to 30 degrees C, and 200 cycles are targeted. The team, consisting of members from NASA Glenn Research Center, Johnson Space Center, and Jet Propulsion laboratory, surveyed the literature, compiled information on recent materials developments, and consulted with other battery experts in the community to identify advanced battery materials that might be capable of achieving the desired results with further development. A variety of electrode materials were considered, including layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. lithium-sulfur systems were also considered. Hypothetical cell constructs that combined compatible anode and cathode materials with suitable electrolytes, separators, current collectors, headers, and cell enclosures were modeled. While some of these advanced materials are projected to obtain the desired electrical performance, there are risks that also factored into the decision making process. The risks include uncertainties due to issues such as safety of a system containing some of these materials, ease of scaling-up of large batches of raw materials, adaptability of the materials to processing using established or reasonable cost manufacturing techniques, manufacturability of the materials in dimensions required for integration into battery cells of practical capacities, low Technology Readiness levels (TRl), and the ability to achieve the desired performance by the customer need dates. The advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide (lithium NMC) cathode with a silicon-based composite anode was selected as the technology that can offer the best combination of safety, specific energy, energy density, and likelihood of success. Tasks over the next three years will focus on development of electrode materials, compatible electrolytes, and separator materials, and integration of promising components to assess their combined performance in working cells. Cells of the chosen chemistry will be developed to TRl 6 by 2014 and will then be transferred to the customers for infusion into their mission paths.
Electroactive materials for rechargeable batteries
Wu, Huiming; Amine, Khalil; Abouimrane, Ali
2016-10-25
A secondary battery including a cathode having a primary cathode active material and an alkaline source material selected from the group consisting of Li.sub.2O, Li.sub.2O.sub.2, Li.sub.2S, LiF, LiCl, Li.sub.2Br, Na.sub.2O, Na.sub.2O.sub.2, Na.sub.2S, NaF, NaCl, and a mixture of any two or more thereof; an anode having an anode active material; an electrolyte; and a separator.
Theory, Investigation and Stability of Cathode Electrocatalytic Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Dong; Liu, Mingfei; Lai, Samson
2012-09-30
The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details andmore » stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.« less
Materials characterization of impregnated W and W-Ir cathodes after oxygen poisoning
NASA Astrophysics Data System (ADS)
Polk, James E.; Capece, Angela M.
2015-05-01
Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten-iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W-Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W-Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W-Ir. However, the W-Ir emitter exhibited less erosion and redeposition at the upstream end than the pure W emitter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin-Chao; Hu, Enyuan; Pan, Yang
Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na 0.66Co xMn 0.66–xTi 0.34O 2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na+ and vacancy ordering. An interesting structure change of Na 0.66Co xMn 0.66–xTi 0.34O 2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na 0.66Co 0.22Mn 0.44Ti 0.34O 2 with a P2-type layered structure delivers a reversible capacity of 120more » mAh g -1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g -1 can still be obtained, indicating a promising rate capability. The low valence Co 2+ substitution results in the formation of average Mn 3.7+ valence state in Na 0.66Co 0.22Mn 0.44Ti 0.34O 2, effectively suppressing the Mn3+-induced Jahn–Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na 0.66Co 0.22Mn 0.44Ti 0.34O 2 during charge/discharge is contributed by Co 2.2+/Co 3+ and Mn 3.3+/Mn 4+ redox couples. This is the first time that the highly reversible Co 2+/Co 3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.« less
Wang, Qin-Chao; Hu, Enyuan; Pan, Yang; ...
2017-07-06
Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na 0.66Co xMn 0.66–xTi 0.34O 2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na+ and vacancy ordering. An interesting structure change of Na 0.66Co xMn 0.66–xTi 0.34O 2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na 0.66Co 0.22Mn 0.44Ti 0.34O 2 with a P2-type layered structure delivers a reversible capacity of 120more » mAh g -1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g -1 can still be obtained, indicating a promising rate capability. The low valence Co 2+ substitution results in the formation of average Mn 3.7+ valence state in Na 0.66Co 0.22Mn 0.44Ti 0.34O 2, effectively suppressing the Mn3+-induced Jahn–Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na 0.66Co 0.22Mn 0.44Ti 0.34O 2 during charge/discharge is contributed by Co 2.2+/Co 3+ and Mn 3.3+/Mn 4+ redox couples. This is the first time that the highly reversible Co 2+/Co 3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.« less
Wang, Qin-Chao; Hu, Enyuan; Pan, Yang; Xiao, Na; Hong, Fan; Fu, Zheng-Wen; Wu, Xiao-Jing; Bak, Seong-Min; Yang, Xiao-Qing; Zhou, Yong-Ning
2017-11-01
Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na + and vacancy ordering. An interesting structure change of Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 with a P2-type layered structure delivers a reversible capacity of 120 mAh g -1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g -1 can still be obtained, indicating a promising rate capability. The low valence Co 2+ substitution results in the formation of average Mn 3.7+ valence state in Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 , effectively suppressing the Mn 3+ -induced Jahn-Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 during charge/discharge is contributed by Co 2.2+ /Co 3+ and Mn 3.3+ /Mn 4+ redox couples. This is the first time that the highly reversible Co 2+ /Co 3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.
Advances in ambient temperature secondary lithium cells
NASA Technical Reports Server (NTRS)
Subbarao, S.; Shen, D. H.; Deligiannis, F.; Huang, C-K.; Halpert, G.
1989-01-01
The Jet Propulsion Laboratory is involved in a Research and Development program sponsored by NASA/OAST on the development of ambient temperature secondary lithium cells for future space applications. Some of the projected applications are planetary spacecraft, planetary rovers, and astronaut equipment. The main objective is to develop secondary lithium cells with greater than 100 Wh/kg specific energy while delivering 1000 cycles at 50 percent Depth of Discharge (DOD). To realize these ambitious goals, the work was initially focused on several important basic issues related to the cell chemistry, selection of cathode materials and electrolytes, and component development. The performance potential of Li-TiS2, Li-MoS3, Li-V6O13 and Li-NbSe3 electrochemical systems was examined. Among these four, the Li-TiS2 system was found to be the most promising system in terms of realizable specific energy and cycle life. Some of the major advancements made so far in the development of Li-TiS2 cells are in the areas of cathode processing technology, mixed solvent electrolytes, and cell assembly. Methods were developed for the fabrication of large size high performance TiS2 cathodes. Among the various electrolytes examined, 1.5M LiAsF6/EC + 2-MeTHF mixed solvent electrolyte was found to be more stable towards lithium. Experimental cells activated with this electrolyte exhibited more than 300 cycles at 100 percent Depth of Discharge. Work is in progress in other areas such as selection of lithium alloys as candidate anode materials, optimization of cell design, and development of 5 Ah cells. The advances made at the Jet Propulsion Laboratory on the development of secondary lithium cells are summarized.
Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell.
Walter, Xavier Alexis; Greenman, John; Ieropoulos, Ioannis
2018-04-19
The recently developed self-stratifying membraneless microbial fuel cell (SSM-MFC) has been shown as a promising concept for urine treatment. The first prototypes employed cathodes made of activated carbon (AC) and polytetrafluoroethylene (PTFE) mixture. Here, we explored the possibility to substitute PTFE with either polyvinyl-alcohol (PVA) or PlastiDip (CPD; i.e. synthetic rubber) as binder for AC-based cathode in SSM-MFC. Sintered activated carbon (SAC) was also tested due to its ease of manufacturing and the fact that no stainless steel collector is needed. Results indicate that the SSM-MFC having PTFE cathodes were the most powerful measuring 1617 μW (11 W·m -3 or 101 mW·m -2 ). SSM-MFC with PVA and CPD as binders were producing on average the same level of power (1226 ± 90 μW), which was 24% less than the SSM-MFC having PTFE-based cathodes. When balancing the power by the cost and environmental impact, results clearly show that PVA was the best alternative. Power wise, the SAC cathodes were shown being the less performing (≈1070 μW). Nonetheless, the lower power of SAC was balanced by its inexpensiveness. Overall results indicate that (i) PTFE is yet the best binder to employ, and (ii) SAC and PVA-based cathodes are promising alternatives that would benefit from further improvements. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Truong, Quang Duc; Devaraju, Murukanahally Kempaiah; Tomai, Takaaki; Honma, Itaru
2013-10-23
LiCoPO4 cathode materials have been synthesized by a sol-gel route. X-ray diffraction analysis confirmed that LiCoPO4 was well-crystallized in an orthorhombic structure in the Pmna space group. From the high-resolution transmission electron microscopy (HR-TEM) image, the lattice fringes of {001} and {100} are well-resolved. The HR-TEM image and selected area electron diffraction pattern reveal the highly crystalline nature of LiCoPO4 having an ordered olivine structure. The atom-by-atom structure of LiCoPO4 olivine has been observed, for the first time, using high-angle annular dark-field (HAADF) and annual bright-field scanning transmission electron microscopy. We observed the bright contrast in Li columns in the HAADF images and strong contrast in the ABF images, directly indicating the antisite exchange defects in which Co atoms partly occupy the Li sites. The LiCoPO4 cathode materials delivered an initial discharge capacity of 117 mAh/g at a C/10 rate with moderate cyclic performance. The discharge profile of LiCoPO4 shows a plateau at 4.75 V, revealing its importance as a potentially high-voltage cathode. The direct visualization of atom-by-atom structure in this work represents important information for the understanding of the structure of the active cathode materials for Li-ion batteries.
Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing
Gay, E.C.
1995-10-03
An electrochemical method is described for separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500 C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode. 3 figs.
Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing
Gay, Eddie C.
1995-01-01
An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.
Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Yang, Zhenguo; Xia, Guanguang; Singh, Prabhakar; Stevenson, Jeffry W.
In this work, simulated cathode/interconnect structures were used to investigate the effects of different contact materials on the contact resistance between a strontium doped lanthanum ferrite cathode and a Crofer22 APU interconnect. Among the materials studied, Pt, which has a prohibitive cost for the application, demonstrated the best performance as a contact paste. For the relatively cost-effective perovskites, the contact ASR was found to depend on their electrical conductivity, scale growth on the metallic interconnect, and interactions between the contact material and the metallic interconnect or particularly the scale grown on the interconnect. Manganites appeared to promote manganese-containing spinel interlayer formation that helped minimize the increase of contact ASR. Chromium from the interconnects reacted with strontium in the perovskites to form SrCrO 4. An improved performance was achieved by application of a thermally grown (Mn,Co) 3O 4 spinel protection layer on Crofer22 APU that dramatically minimized the contact resistance between the cathodes and interconnects.
NASA Astrophysics Data System (ADS)
Bolea, E.; Laborda, F.; Castillo, J. R.; Sturgeon, R. E.
2004-04-01
Simultaneous measurements of As, Sb, Se, Sn and Ge were performed by inductively coupled plasma atomic emission spectrometry following their electrochemical hydride generation. An electrochemical hydride generator based on a concentric arrangement with a porous cathode, working in a continuous flow mode was used. The effects of sample flow rate, applied current and electrolytic solution concentration on response were studied and their influence on the mechanisms of hydride generation discussed. Four materials, particulate lead, reticulated vitreous carbon (RVC), silver and amalgamated silver were tested as cathode materials. The best results were achieved with particulate lead and RVC cathodes, wherein generation efficiencies higher than 80% were estimated for most of the analytes. In general, limits of detection between 0.1 and 3.6 ng ml -1 and a precision better than 5% were achieved using a lead cathode. The analysis of a marine sediment reference material (PACS-2, NRC) showed good agreement with the certified values for As and Se.
Batteries: Overview of Battery Cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doeff, Marca M
2010-07-12
The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however,more » alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writing, a very active field.« less
High voltage pulse ignition of mercury discharge hollow cathodes
NASA Technical Reports Server (NTRS)
Wintucky, E. G.
1973-01-01
A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability.
Photoelectron linear accelerator for producing a low emittance polarized electron beam
Yu, David U.; Clendenin, James E.; Kirby, Robert E.
2004-06-01
A photoelectron linear accelerator for producing a low emittance polarized electric beam. The accelerator includes a tube having an inner wall, the inner tube wall being coated by a getter material. A portable, or demountable, cathode plug is mounted within said tube, the surface of said cathode having a semiconductor material formed thereon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xiangyi; Lu, Jun; Sohm, Evan
The present study aims to explore a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. In this study, highly ionized Fe plasma produced by arc discharge uniformly deposit on porous carbon substrate and form atomic clusters by the Pulsed Arc Plasma Deposition technique. The as-prepared FeOx/C material was tested as a cathode material in rechargeable Li-O2 battery under different current rates. The results show a significantly improvement of the battery performance in both cycle life and reaction rate. Furthermore, XRD and SEM results show that the as-prepared cathode material has the ability to stabilizemore » cathode and reduce side reactions, and current rate is a critical factor of the nucleation of the discharge products.« less
Vacuum arc plasma thrusters with inductive energy storage driver
NASA Technical Reports Server (NTRS)
Schein, Jochen (Inventor); Gerhan, Andrew N. (Inventor); Woo, Robyn L. (Inventor); Au, Michael Y. (Inventor); Krishnan, Mahadevan (Inventor)
2004-01-01
An apparatus for producing a vacuum arc plasma source device using a low mass, compact inductive energy storage circuit powered by a low voltage DC supply acts as a vacuum arc plasma thruster. An inductor is charged through a switch, subsequently the switch is opened and a voltage spike of Ldi/dt is produced initiating plasma across a resistive path separating anode and cathode. The plasma is subsequently maintained by energy stored in the inductor. Plasma is produced from cathode material, which allows for any electrically conductive material to be used. A planar structure, a tubular structure, and a coaxial structure allow for consumption of cathode material feed and thereby long lifetime of the thruster for long durations of time.
Evaporation Source for Deposition of Protective Layers inside Tubes
NASA Astrophysics Data System (ADS)
Musa, Geavit; Mustata, Ion; Dinescu, Gheorghe; Bajeu, George; Raiciu, Elena
1992-09-01
A heated cathode arc can be ignited in vacuum in the vapours of the anode material due to the accelerated electron beam from the cathode. A small assembly, consisting of an electron gun as the cathode and a refractory metal crucible, containing the material to be evaporated, as the anode, can be moved along the axis of the tube whose inside wall is to be covered with a protective layer. The vacuum arc ignited between the electrodes in the vapours of the evaporating anode material ensures a high deposition rate with low thermal energy transport to the tube wall. This new method can be used for the deposition of various metal layers inside different kinds of tubes (metallic, glass, ceramics or plastics).
Cairns, E.J.; Kyle, M.; Shimotake, H.
1973-02-13
A secondary electrochemical power-producing cell includes an anode containing lithium, an electrolyte containing lithium ions, and a cathode containing sulfur. The cathode comprises plates of a porous substrate material impregnated with sulfur alternating with layers (which may also comprise porous substrate plates) containing electrolyte.
Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croy, Jason R.; Park, Joong Sun; Shin, Youngho
Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich “layered-layered-spinel” material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (≳200 mAh/g) and good energy densities (>700 Wh/kg) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials.
Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes
Croy, Jason R.; Park, Joong Sun; Shin, Youngho; ...
2016-10-13
Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich “layered-layered-spinel” material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (≳200 mAh/g) and good energy densities (>700 Wh/kg) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials.
Binder-Free V 2 O 5 Cathode for Greener Rechargeable Aluminum Battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huali; Bai, Ying; Chen, Shi
This letter reports on the investigation of a binder-free cathode material to be used in rechargeable aluminum batteries. This cathode is synthesized by directly depositing V2O5 on a Ni foam current collector. Rechargeable aluminum coin cells fabricated using the as-synthesized binder-free cathode delivered an initial discharge capacity of 239 mAh/g, which is much higher than that of batteries fabricated using a cathode composed of V2O5 nanowires and binder. An obvious discharge voltage plateau appeared at 0.6 V in the discharge curves of the Ni–V2O5 cathode, which is slightly higher than that of the V2O5 nanowire cathodes with common binders. Thismore » improvement is attributed to reduced electrochemical polarization.« less
Secondary battery material and synthesis method
Liu, Hongjian; Kepler, Keith Douglas; Wang, Yu
2013-10-22
A composite Li.sub.1+xMn.sub.2-x-yM.sub.yO.sub.4 cathode material stabilized by treatment with a second transition metal oxide phase that is highly suitable for use in high power and energy density Li-ion cells and batteries. A method for treating a Li.sub.1+xMn.sub.2-x-yM.sub.yO.sub.4 cathode material utilizing a dry mixing and firing process.
Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté; Nagy, Balázs; László, Krisztina
2017-07-01
Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source. This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m -3 . At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m -3 and 18.8 g COD m -3 h -1 , respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450-600 to 350-370 Ω. Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Haag, Thomas W.; Raquet, John F.
1989-01-01
Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Haag, Thomas W.; Raquet, John F.
1989-01-01
Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.
Commercial materials as cathode for hydrogen production in microbial electrolysis cell.
Farhangi, Sara; Ebrahimi, Sirous; Niasar, Mojtaba Shariati
2014-10-01
The use of commercial electrodes as cathodes in a single-chamber microbial electrolysis cell has been investigated. The cell was operated in sequencing batch mode and the performance of the electrodes was compared with carbon cloth containing 0.5 mg Pt cm(-2). Overall H2 recovery [Formula: see text] was 66.7 ± 1.4, 58.7 ± 1.1 and 55.5 ± 1.5 % for Pt/CC, Ni and Ti mesh electrodes, respectively. Columbic efficiencies of the three cathodes were in the same range (74.8 ± 1.5, 77.6 ± 1.7 and 75.7 ± 1.2 % for Pt/CC, Ni and Ti mesh electrodes, respectively). A similar performance for the three cathodes under near-neutral pH and ambient temperature was obtained. The commercial electrodes are much cheaper than carbon cloth containing Pt. Low cost and good performance of these electrodes suggest they are suitable cathode materials for large scale application.
Observation of Li Diffusion in Cathode Sheets of Li-ion Battery by μ+SR
NASA Astrophysics Data System (ADS)
Umegaki, Izumi; Kawauchi, Shigehiro; Nozaki, Hiroshi; Sawada, Hiroshi; Nakano, Hiroyuki; Harada, Masashi; Cottrell, Stephen P.; Coomer, Fiona C.; Telling, Mark; Sugiyama, Jun
In order to know the change in Li diffusion during the operation of Li-ion batteries, we have initiated to measure Li diffusion not only in a powder sample but also in a cathode sheet with μ+SR. As the first step, we have measured μ+SR spectra on a cathode sheet, in which a mixture of a cathode material Li(Ni, Co)O2, a binder, and conducting additives is coated on an Al foil. The zero-field μ+SR spectrum exhibited a typical Kubo-Toyabe (KT) type relaxation at 100 K. By subtracting the contribution of the muons stopped in the Al foil, we found that Li+ ion starts to diffuse above 100 K in the Li(Ni, Co)O2. A self diffusion coefficient (DLi) at 300 K was estimated as 10-11 (cm2/s), which comparable with DLi (300 K) in the cathode materials previously reported. This leads to the future "in operando" measurements of DLi in Li-ion batteries.
Monitoring of CoS 2 reactions using high-temperature XRD coupled with gas chromatography (GC)
Rodriguez, Mark A.; Coker, Eric Nicholas; Griego, James J. M.; ...
2016-04-18
High-temperature X-ray diffraction with concurrent gas chromatography (GC) was used to study cobalt disulfide cathode pellets disassembled from thermal batteries. When CoS 2 cathode materials were analyzed in an air environment, oxidation of the K(Br, Cl) salt phase in the cathode led to the formation of K 2SO 4 that subsequently reacted with the pyrite-type CoS 2 phase leading to cathode decomposition between ~260 and 450 °C. Here, independent thermal analysis experiments, i.e. simultaneous thermogravimetric analysis/differential scanning calorimetry/mass spectrometry (MS), augmented the diffraction results and support the overall picture of CoS 2 decomposition. Both gas analysis measurements (i.e. GC andmore » MS) from the independent experiments confirmed the formation of SO 2 off-gas species during breakdown of the CoS 2. In contrast, characterization of the same cathode material under inert conditions showed the presence of CoS 2 throughout the entire temperature range of analysis.« less
A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Bennett, William R.
2010-01-01
NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success.
Advances in ambient temperature secondary lithium cells
NASA Technical Reports Server (NTRS)
Subbarao, S.; Shen, D. H.; Deligiannis, F.; Huang, C-K.; Halpert, G.
1989-01-01
The goal is to develop secondary lithium cells with a 100 Wh/kg specific energy capable of 1000 cycles at 50 percent DOD. The approach towards meeting this goal initially focused on several basic issues related to the cell chemistry, selection of cathode materials and electrolytes and component development. The performance potential of Li-TiS2, Li-MoS3, Li-V6O13 and Li-NbSe3 electrochemical systems was examined. Among these four, the Li-TiS2 system was found to be the most promising system in terms of achievable specific energy and cycle life. Major advancements to date in the development of Li-TiS2 cells are in the areas of cathode processing technology, mixed solvent electrolytes, and cell assembly. A summary is given of these advances.
Copper Chloride Cathode For Liquid-Sodium Cell
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V.; Distefano, Salvador; Nagasubramanian, Ganesan; Bankston, Clyde P.
1990-01-01
Rechargeable liquid-sodium cell with copper chloride cathode offers substantial increase in energy density over cells made with other cathode materials. Unit has theoretical maximum energy density of 1135 W.h/kg. Generates electricity by electrochemical reaction of molten sodium and solid copper chloride immersed in molten electrolyte, sodium tetrachloroaluminate at temperature of equal to or greater than 200 degrees C. Wall of alumina tube separates molten electrolyte from molten sodium anode. Copper chloride cathode embedded in pores of sintered nickel cylinder or directly sintered.
Collier, M A; Lowe, J E; Rendano, V T
1985-01-01
Materials fatigue and gross biocompatability of an implantable bone growth stimulator (BGS) were assessed in a 6-month trial using 6 ponies. The forelegs of each pony were implanted with a BGS; the right leg implant had the cathode and cathode lead preconnected by the manufacturer, and the left leg implant was connected at surgery. Evaluation was by radiographic and clinical examination at the beginning and end of the experimental period. Six of the 12 cathode leads (50%) and 7 of the 12 cathodes (58%) were broken at 6 months. All of the implanted preconnected cathode and insulated cathode leads and 33.3% of the surgically connected cathodes and insulated cathode leads were connected at the titanium connector socket at 6 months. This BGS may exhibit wire fatigue greater than 50% of the time when used in the distal extremity of the horse.
Improved Rare-Earth Emitter Hollow Cathode
NASA Technical Reports Server (NTRS)
Goebel, Dan M.
2011-01-01
An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out the back. This configuration replaces the previous sheathed heater design that limited the cycling-life of the cathode.
Liu, Hanshuo; Bugnet, Matthieu; Tessaro, Matteo Z; Harris, Kristopher J; Dunham, Mark J R; Jiang, Meng; Goward, Gillian R; Botton, Gianluigi A
2016-10-26
Layered lithium transition metal oxides are one of the most important types of cathode materials in lithium-ion batteries (LIBs) that possess high capacity and relatively low cost. Nevertheless, these layered cathode materials suffer structural changes during electrochemical cycling that could adversely affect the battery performance. Clear explanations of the cathode degradation process and its initiation, however, are still under debate and not yet fully understood. We herein systematically investigate the chemical evolution and structural transformation of the LiNi x Mn y Co 1-x-y O 2 (NMC) cathode material in order to understand the battery performance deterioration driven by the cathode degradation upon cycling. Using high-resolution electron energy loss spectroscopy (HR-EELS) we clarify the role of transition metals in the charge compensation mechanism, particularly the controversial Ni 2+ (active) and Co 3+ (stable) ions, at different states-of-charge (SOC) under 4.6 V operation voltage. The cathode evolution is studied in detail from the first-charge to long-term cycling using complementary diagnostic tools. With the bulk sensitive 7 Li nuclear magnetic resonance (NMR) measurements, we show that the local ordering of transition metal and Li layers (R3[combining macron]m structure) is well retained in the bulk material upon cycling. In complement to the bulk measurements, we locally probe the valence state distribution of cations and the surface structure of NMC particles using EELS and scanning transmission electron microscopy (STEM). The results reveal that the surface evolution of NMC is initiated in the first-charging step with a surface reduction layer formed at the particle surface. The NMC surface undergoes phase transformation from the layered structure to a poor electronic and ionic conducting transition-metal oxide rock-salt phase (R3[combining macron]m → Fm3[combining macron]m), accompanied by irreversible lithium and oxygen loss. In addition to the electrochemical cycling effect, electrolyte exposure also shows non-negligible influence on cathode surface degradation. These chemical and structural changes of the NMC cathode could contribute to the first-cycle coulombic inefficiency, restrict the charge transfer characteristics and ultimately impact the cell capacity.
Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process.
Gao, Wenfang; Zhang, Xihua; Zheng, Xiaohong; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi
2017-02-07
A closed-loop process to recover lithium carbonate from cathode scrap of lithium-ion battery (LIB) is developed. Lithium could be selectively leached into solution using formic acid while aluminum remained as the metallic form, and most of the other metals from the cathode scrap could be precipitated out. This phenomenon clearly demonstrates that formic acid can be used for lithium recovery from cathode scrap, as both leaching and separation reagent. By investigating the effects of different parameters including temperature, formic acid concentration, H 2 O 2 amount, and solid to liquid ratio, the leaching rate of Li can reach 99.93% with minor Al loss into the solution. Subsequently, the leaching kinetics was evaluated and the controlling step as well as the apparent activation energy could be determined. After further separation of the remaining Ni, Co, and Mn from the leachate, Li 2 CO 3 with the purity of 99.90% could be obtained. The final solution after lithium carbonate extraction can be further processed for sodium formate preparation, and Ni, Co, and Mn precipitates are ready for precursor preparation for cathode materials. As a result, the global recovery rates of Al, Li, Ni, Co, and Mn in this process were found to be 95.46%, 98.22%, 99.96%, 99.96%, and 99.95% respectively, achieving effective resources recycling from cathode scrap of spent LIB.
Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil
2013-05-21
Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of batteries, the microstructure of the coating layers and the mechanism of action are not fully understood. Therefore, researchers will need to further investigate the surface coating strategy during the development of new lithium ion batteries.
Mou, Jirong; Deng, Yunlong; Song, Zhicui; Zheng, Qiaoji; Lam, Kwok Ho; Lin, Dunmin
2018-05-22
High-voltage LiNi0.5Mn1.5O4 is a promising cathode candidate for lithium-ion batteries (LIBs) due to its considerable energy density and power density, but the material generally undergoes serious capacity fading caused by side reactions between the active material and organic electrolyte. In this work, Li+-conductive Li2SnO3 was coated on the surface of LiNi0.5Mn1.5O4 to protect the cathode against the attack of HF, mitigate the dissolution of Mn ions during cycling and improve the Li+ diffusion coefficient of the materials. Remarkable improvement in cycling stability and rate performance has been achieved in Li2SnO3-coated LiNi0.5Mn1.5O4. The 1.0 wt% Li2SnO3-coated LiNi0.5Mn1.5O4 cathode exhibits excellent cycling stability with a capacity retention of 88.2% after 150 cycles at 0.1 C and rate capability at high discharge rates of 5 C and 10 C, presenting discharge capacities of 119.5 and 112.2 mAh g-1, respectively. In particular, a significant improvement in cycling stability at 55 °C is obtained after the coating of 1.0 wt% Li2SnO3, giving a capacity retention of 86.8% after 150 cycles at 1 C and 55 °C. The present study provides a significant insight into the effective protection of Li-conductive coating materials for a high-voltage LiNi0.5Mn1.5O4 cathode material.
Wei, Chenxi; Xia, Sihao; Huang, Hai; Mao, Yuwei; Pianetta, Piero; Liu, Yijin
2018-06-11
Functional materials and devices are usually morphologically complex and chemically heterogeneous. Their structures are often designed to be hierarchical because of the desired functionalities, which usually require many different components to work together in a coherent manner. The lithium ion battery, as an energy storage device, is a very typical example of this kind of structure. In a lithium ion battery, the cathode, anode, and separator are soaked in a liquid electrolyte, facilitating the back and forward shuttling of the lithium ions for energy storage and release. The desired performance of a lithium ion battery has many different aspects that need to be engineered and balanced depending on the targeted applications. In most cases, the cathode material has become the limiting factor for further improvements and, thus, has attracted intense attention from the research community. While the improvement in the overall performance of the lithium ion battery is the ultimate goal of the research in this field, understanding the relationship between the microscopic properties and the macroscopic behaviors of the materials/devices can inform the design of better battery chemistries for practical applications. As a result, it is of great fundamental and practical importance to investigate the electrode materials using experimental probes that can provide good chemical sensitivity and sufficient spatial resolution, ideally, under operating conditions. With this motivation, our group has been focusing on the development of the nanoscale full-field X-ray spectro-microscopy, which has now become a well-recognized tool for imaging battery electrode materials at the particle level. With nanoscale spatial resolution, this technique can effectively and efficiently tackle the intrinsically complicated mesoscale chemistry. It allows us to monitor the particles' morphological and chemical evolution upon battery operation, providing valuable insights that can be incorporated into the design of new battery chemistries. In this Account, we review a series of our recent studies of battery electrode materials using nanoscale full-field X-ray spectro-microscopy. The materials that are the subjects of our studies, including layer-structured and spinel-structured oxide cathodes, are technically very important as they not only play an important role in today's devices but also possess promising potential for future developments. We discuss how the subparticle level compositional and state-of-charge heterogeneity can be visualized and linked to the bulk performance through systematic quantification of the imaging data. Subsequently, we highlight recent ex situ and in situ observations of the cathode particles' response to different reaction conditions, including the spontaneously adjusted reaction pathways and the morphological changes for the mechanical strain release. The important role of surface chemistry in the system is also discussed. While the microscopic investigation at the particle level provides useful insights, the degree to which this represents the overall properties of the battery is always a question for further generalizing the conclusions. In order to address this concern, we finally discuss a high throughput experimental approach, in which a large number of cathode particles are scanned. We discuss a case study that demonstrates the identification and analysis of functionally important minority phases in an operating battery cell through big data mining methods. With an emphasis on the data/information mining aspect of the nanoscale X-ray spectro-microscopic study of battery cathode particles, we anticipate that this Account will attract more research to this field.
NASA Astrophysics Data System (ADS)
Shen, Laifa; Yu, Yan
2017-11-01
Using cheap organic material as the cathode and abundant sodium as the charge carrier is attractive for sustainable battery technologies. Now, highly reversible four-sodium storage in a nano-sized disodium rhodizonate organic cathode is achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Y. S.; Stevenson, Jeffry W.; Choi, Jung-Pyung
2013-01-01
A generic solid oxide fuel cell (SOFC) test fixture was developed to evaluate candidate materials under realistic conditions. A commerical 50 mm x 50 mm NiO-YSZ anode supported thin YSZ electrolyte cell with lanthanum strontium manganite (LSM) cathode was tested to evaluate the stability of candidate materials. The cell was tested in two stages at 800oC: stage I of low (~3% H2O) humidity and stage II of high (~30% H2O) humidity hydrogen fuel at constant voltage or constant current mode. Part I of the work was published earlier with information of the generic test fixture design, materials, cell performance, andmore » optical post-mortem analysis. In part II, detailed microstructure and interfacial characterizations are reported regarding the SOFC candidate materials: (Mn,Co)-spinel conductive coating, alumina coating for sealing area, ferritic stainless steel interconnect, refractory sealing glass, and their interactions with each other. Overall, the (Mn,Co)-spinel coating was very effective in minimizing Cr migration. No Cr was identified in the cathode after 1720h at 800oC. Aluminization of metallic interconnect also proved to be chemically compatible with alkaline-earth silicate sealing glass. The details of interfacial reaction and microstructure development are discussed.« less
Li, Yu; Bai, Ying; Bi, Xuanxuan; Qian, Ji; Ma, Lu; Tian, Jun; Wu, Chuan; Wu, Feng; Lu, Jun; Amine, Khalil
2016-04-07
Rechargeable lithium-ion batteries with high energy and high power density are required in the application of electric vehicles and portable electronics. Herein, we introduce a type of spherical Li-rich cathode material, Li1.2Ni0.2Mn0.6O2, assembled from uniform nanocubes by a facile polyvinylpyrrolidone (PVP)-assisted hydrothermal method. The material with a hierarchical nano-/microstructure exhibits stable high-rate performance. Furthermore, the precipitant (i.e., urea) and the structure-directing agent (i.e., PVP) effectively activated the Li2 MnO3 components in the microscale material to achieve a high specific capacity of 298.5 mAh g(-1) in the first cycle. This Li-rich cathode material still delivered 243 mAh g(-1) at 0.1 C after 200 cycles and the capacity retentions at 0.5, 1, 2, and 5 C were 94.4, 78.7, 76.3, and 67.8% after 150 cycles, respectively. The results make this Li-rich nano-/microstructure a promising cathode material for long-life and high-performance lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Xihua; Xie, Yongbing; Cao, Hongbin; Nawaz, Faheem; Zhang, Yi
2014-09-01
To solve the recycling challenge for aqueous binder based lithium-ion batteries (LIBs), a novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps generated during manufacturing process is proposed in this study. Trifluoroacetic acid (TFA) is employed to separate the cathode material from the aluminum foil. The effects of TFA concentration, liquid/solid (L/S) ratio, reaction temperature and time on the separation efficiencies of the cathode material and aluminum foil are investigated systematically. The cathode material can be separated completely under the optimal experimental condition of 15vol.% TFA solution, L/S ratio of 8.0 mL g(-1), reacting at 40°C for 180 min along with appropriate agitation. LiNi1/3Co1/3Mn1/3O2 is successfully resynthesized from the separated cathode material by solid state reaction method. Several kinds of characterizations are performed to verify the typical properties of the resynthesized LiNi1/3Co1/3Mn1/3O2 powder. Electrochemical tests show that the initial charge and discharge capacities of the resynthesized LiNi1/3Co1/3Mn1/3O2 are 201 mAh g(-)(1) and 155.4 mAh g(-1) (2.8-4.5 V, 0.1C), respectively. The discharge capacity remains at 129 mAh g(-1) even after 30 cycles with a capacity retention ratio of 83.01%. Copyright © 2014 Elsevier Ltd. All rights reserved.
Qiu, Haifa; Du, Tengfei; Wu, Junfeng; Wang, Yonglong; Liu, Jian; Ye, Shihai; Liu, Sheng
2018-05-22
Although intensive studies have been conducted on layered transition metal oxide(TMO)-based cathode materials and metal oxide-based anode materials for Li-ion batteries, their precursors generally follow different or even complex synthesis routes. To share one route for preparing precursors of the cathode and anode materials, herein, we demonstrate a facile co-precipitation method to fabricate Ni-rich hydroxide precursors of Ni0.8Co0.1Mn0.1(OH)2. Ni-rich layered oxide of LiNi0.8Co0.1Mn0.1O2 is obtained by lithiation of the precursor in air. An NiO-based anode material is prepared by calcining the precursor or multi-walled carbon nanotubes (MWCNTs) incorporated precursors. The pre-addition of ammonia solution can simplify the co-precipitation procedures and the use of an air atmosphere can also make the heat treatment facile. LiNi0.8Co0.1Mn0.1O2 as the cathode material delivers a reversible capacity of 194 mA h g-1 at 40 mA g-1 and a notable cycling retention of 88.8% after 100 cycles at 200 mA g-1. This noticeable performance of the cathode arises from a decent particle morphology and high crystallinity of the layered oxides. As the anode material, the MWCNTs-incorporated oxides deliver a much higher reversible capacity of 811.1 mA h g-1 after 200 cycles compared to the pristine oxides without MWCNTs. The improvement on electrochemical performance can be attributed to synergistic effects from MWCNTs incorporation, including reinforced electronic conductivity, rich meso-pores and an alleviated volume effect. This facile and sharing method may offer an integrated and economical approach for commercial production of Ni-rich electrode materials for Li-ion batteries.
NASA Astrophysics Data System (ADS)
Kurimoto, Naoya; Omoda, Ryo; Mizumo, Tomonobu; Ito, Seitaro; Aihara, Yuichi; Itoh, Takahito
2018-02-01
Quinoid compounds are important candidates of organic active materials for lithium-ion batteries. However, its high solubility to organic electrolyte solutions and low redox potential are known as their major drawbacks. To circumvent these issues, we have designed and synthesized a tandem-tetracyanoquinonedimethane type cathode-active material, 11,11,12,12,13,13,14,14-octacyano-1,4,5,8-anthradiquinotetramethane (OCNAQ), that has four redox sites per molecule, high redox potential and suppressed solubility to electrolyte solution. Synthesized OCNAQ has been found to have two-step redox reactions by cyclic voltammetry, and each step consists of two-electron reactions. During charge-discharge tests using selected organic cathode-active materials with a lithium metal anode, the cell voltages obtained from OCNAQ are higher than those for 11,11-dicyanoanthraquinone methide (AQM) as expected, due to the strong electron-withdrawing effect of the cyano groups. Unfortunately, even with the use of the organic active material, the issue of dissolution to the electrolyte solution cannot be suppressed completely; however, appropriate choice of the electrolyte solutions, glyme-based electrolyte solutions in this study, give considerable improvement of the cycle retention (98% and 56% at 10 and 100 cycles at 0.5C, respectively). The specific capacity and energy density obtained in this study are 206 mAh g-1 and 554 mWh g-1 with respect to the cathode active material.
Hameed, A Shahul; Reddy, M V; Nagarathinam, M; Runčevski, Tomče; Dinnebier, Robert E; Adams, Stefan; Chowdari, B V R; Vittal, Jagadese J
2015-11-23
Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.
Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.
2015-01-01
Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity. PMID:26593096
NASA Astrophysics Data System (ADS)
Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E.; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.
2015-11-01
Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.
Aluminum reduction cell electrode
Goodnow, Warren H.; Payne, John R.
1982-01-01
The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB.sub.2, for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints.
Bakierska, Monika; Świętosławski, Michał; Dziembaj, Roman; Molenda, Marcin
2016-01-01
In this work, nanostructured LiMn2O4 (LMO) and LiMn2O3.99S0.01 (LMOS1) spinel cathode materials were comprehensively investigated in terms of electrochemical properties. For this purpose, electrochemical impedance spectroscopy (EIS) measurements as a function of state of charge (SOC) were conducted on a representative charge and discharge cycle. The changes in the electrochemical performance of the stoichiometric and sulphur-substituted lithium manganese oxide spinels were examined, and suggested explanations for the observed dependencies were given. A strong influence of sulphur introduction into the spinel structure on the chemical stability and electrochemical characteristic was observed. It was demonstrated that the significant improvement in coulombic efficiency and capacity retention of lithium cell with LMOS1 active material arises from a more stable solid electrolyte interphase (SEI) layer. Based on EIS studies, the Li ion diffusion coefficients in the cathodes were estimated, and the influence of sulphur on Li+ diffusivity in the spinel structure was established. The obtained results support the assumption that sulphur substitution is an effective way to promote chemical stability and the electrochemical performance of LiMn2O4 cathode material. PMID:28773819
Dry Pressed Holey Graphene Composites for Li-air Battery Cathodes
NASA Astrophysics Data System (ADS)
Lacey, Steven; Lin, Yi; Hu, Liangbing
Graphene is considered an ``omnipotent'' material due to its unique structural characteristics and chemical properties. By heating graphene powder in an open-ended tube furnace, a novel compressible carbon material, holey graphene (hG), can be created with controlled porosity and be further decorated with nanosized catalysts to increase electrocatalytic activity. All hG-based materials were characterized using various microscopic and spectroscopic techniques to obtain morphological, topographical, and chemical information as well as to identify any disordered/crystalline phases. In this work, an additive-free dry press method was employed to press the hG composite materials into high mass loading mixed, sandwich, and double-decker Li-air cathode architectures using a hydraulic press. The sandwich and double-decker (i.e. Big Mac) cathode architectures are the first of its kind and can be discharged for more than 200 hours at a current density of 0.2 mA/cm2. The scalable, binderless, and solventless dry press method and unique Li-air cathode architectures presented here greatly advance electrode fabrication possibilities and could promote future energy storage advancements. Support appreciated from the NASA Internships Fellowships Scholarships (NIFS) Program.
Synthesis and investigation of novel cathode materials for sodium ion batteries
NASA Astrophysics Data System (ADS)
Sawicki, Monica
Environmental pollution and eventual depletion of fossil fuels and lithium has increased the need for research towards alternative electrical energy storage systems. In this context, research in sodium ion batteries (NIBs) has become more prevalent since the price in lithium has increased due to its demand and reserve location. Sodium is an abundant resource that is low cost, and safe; plus its chemical properties are similar to that of Li which makes the transition into using Na chemistry for ion battery systems feasible. In this study, we report the effects of processing conditions on the electrochemical properties of Na-ion batteries made of the NaCrO2 cathode. NaCrO2 is synthesized via solid state reactions. The as-synthesized powder is then subjected to high-energy ball milling under different conditions which reduces particle size drastically and causes significant degradation of the specific capacity for NaCrO2. X-ray diffraction reveals that lattice distortion has taken place during high-energy ball milling and in turn affects the electrochemical performance of the cathode material. This study shows that a balance between reducing particle size and maintaining the layered structure is essential to obtain high specific capacity for the NaCrO2 cathode. In light of the requirements for grid scale energy storage: ultra-long cycle life (> 20,000 cycles and calendar life of 15 to 20 years), high round trip efficiency (> 90%), low cost, sufficient power capability, and safety; the need for a suitable cathode materials with excellent capacity retention such as Na2MnFe(CN)6 and K2MnFe(CN)6 will be investigated. Prussian blue (A[FeIIIFeII (CN)6]•xH2O, A=Na+ or K+ ) and its analogues have been investigated as an alkali ion host for use as a cathode material. Their structure (FCC) provides large ionic channels along the direction enabling facile insertion and extraction of alkali ions. This material is also capable of more than one Na ion insertion per unit formula which holds great promise in increasing the energy density of the NIB. The electrochemical performance of the cathode material will be analyzed using cyclic voltammetry, and galvanostatic charge/discharge investigation.
NASA Astrophysics Data System (ADS)
Örnek, Ahmet
2017-07-01
Nanoscale and NiO-coated LiCoPO4 cathode materials were prepared for the first time by a newly designed three-step synthesis route, which is a combined technique including advantages of the Stöber, hydrothermal and microwave synthesis methods. Using this extraordinary technique, LiCoPO4 particles are coated with a thin NiO layer with a perfect core-shell morphology and the technique's positive contribution to electrochemistry is elucidated in detail. The samples are interpreted using opto-analytical techniques and galvanostatic charge-discharge tests. The high-resolution transmission electron microscopy analysis proves that this well-elaborated technique makes it possible to achieve a continuous NiO surface coverage of 8-10 nm, a result that contributes towards solving the chronic electrochemical problems of 4.8 V cathode material. Our data reveal that NiO-coated LiCoPO4 cathode demonstrates superior cycle stability and specific capacity at relatively low rates. The 2.5% wt. NiO-coated cathode exhibits the best electrochemical property, which reaches a discharge capacity of 159 mAh g-1 at 0.l C current rate and shows almost 85% capacity retention after 80 charge-discharge cycles. It therefore achieves partial success in improving the electrochemical properties of the LiCoPO4 cathode material, which is especially crucial for energy storage to be applied in electric vehicles and plug-in hybrid electric applications.
Laccase/AuAg Hybrid Glucose Microfludic Fuel Cell
NASA Astrophysics Data System (ADS)
López-González, B.; Cuevas-Muñiz, F. M.; Guerra-Balcázar, M.; Déctor, A.; Arjona, N.; Ledesma-García, J.; Arriaga, L. G.
2013-12-01
In this work a hybrid microfluidic fuel cell was fabricated and evaluated with a AuAg/C bimetallic material for the anode and an enzymatic cathode. The cathodic catalyst was prepared adsorbing laccase and ABTS on Vulcan carbon (Lac-ABTS/C). This material was characterized by FTIR-ATR, the results shows the presence of absorption bands corresponding to the amide bounds. The electrochemical evaluation for the materials consisted in cyclic voltammetry (CV). The glucose electrooxidation reaction in AuAg/C occurs around - 0.3 V vs. NHE. Both electrocatalytic materials were placed in a microfluidic fuel cell. The fuel cell was fed with PBS pH 5 oxygen saturated solution in the cathodic compartment and 5 mM glucose + 0.3 M KOH in the anodic side. Several polarization curves were performed and the maximum power density obtained was 0.3 mWcm-2 .
Alkaline and non-aqueous proton-conducting pouch-cell batteries
Young, Kwo-hsiung; Nei, Jean; Meng, Tiejun
2018-01-02
Provided are sealed pouch-cell batteries that are alkaline batteries or non-aqueous proton-conducing batteries. A pouch cell includes a flexible housing such as is used for pouch cell construction where the housing is in the form of a pouch, a cathode comprising a cathode active material suitable for use in an alkaline battery, an anode comprising an anode active material suitable for use in an alkaline battery, an electrolyte that is optionally an alkaline or proton-conducting electrolyte, and wherein the pouch does not include or require a safety vent or other gas absorbing or releasing system as the anode active material and the cathode active material do not increase the internal atmospheric pressure any more than 2 psig during cycling. The batteries provided function contrary to the art recognized belief that such battery systems were impossible due to unacceptable gas production during cycling.
Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun
2015-03-02
Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells.
Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun
2015-01-01
Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells. PMID:25728910
NASA Astrophysics Data System (ADS)
McLafferty, Jason
Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from "spent fuel," i.e., the material remaining after discharge of hydrogen. In this thesis, some research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this thesis, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described.
Aravindan, Vanchiappan; Mhamane, Dattakumar; Ling, Wong Chui; Ogale, Satishchandra; Madhavi, Srinivasan
2013-12-01
One HEC of a material: The use of trigol-reduced graphene oxide nanosheets as cathode material in hybrid lithium-ion electrochemical capacitors (Li-HECs) results in an energy density of 45 Wh kg(-1) ; much enhanced when compared to similar devices. The mass loading of the active materials is optimized, and the devices show good cycling performance. Li-HECs employing these materials outperform other supercapacitors, making them attractive for use in power sources. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sa, Niya; Kinnibrugh, Tiffany L.; Wang, Hao
Functional multivalent intercalation cathodes represent one of the largest hurdles in the development of Mg batteries. While there are many reports of Mg cathodes, many times the evidence of intercalation chemistry is only circumstantial. In this work, direct evidence of Mg intercalation into a bilayer structure of V2O5·nH2O xerogel is confirmed, and the nature of the Mg intercalated species is reported. The interlayer spacing of V2O5·nH2O contracts upon Mg intercalation and expands for Mg deintercalation due to the strong electrostatic interaction between the divalent cation and the cathode. A combination of NMR, pair distribution function (PDF) analysis, and X-ray absorptionmore » near edge spectroscopy (XANES) confirmed reversible Mg insertion into the V2O5·nH2O material, and structural evolution of Mg intercalation leads to the formation of multiple new phases. Structures of V2O5·nH2O with Mg intercalation were further supported by the first principle simulations. A solvent cointercalated Mg in V2O5·nH2O is observed for the first time, and the 25Mg magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy was used to elucidate the structure obtained upon electrochemical cycling. Specifically, existence of a well-defined Mg–O environment is revealed for the Mg intercalated structures. Information reported here reveals the fundamental Mg ion intercalation mechanism in a bilayer structure of V2O5·nH2O material and provides insightful design metrics for future Mg cathodes.« less
Jia, Tao; Sun, Chen; Xu, Rongguo; Chen, Zhiming; Yin, Qingwu; Jin, Yaocheng; Yip, Hin-Lap; Huang, Fei; Cao, Yong
2017-10-18
A series of naphthalene diimide (NDI) based n-type conjugated polymers with amino-functionalized side groups and backbones were synthesized and used as cathode interlayers (CILs) in polymer and perovskite solar cells. Because of controllable amine side groups, all the resulting polymers exhibited distinct electronic properties such as oxidation potential of side chains, charge carrier mobilities, self-doping behaviors, and interfacial dipoles. The influences of the chemical variation of amine groups on the cathode interfacial effects were further investigated in both polymer and perovskite solar cells. We found that the decreased electron-donating property and enhanced steric hindrance of amine side groups substantially weaken the capacities of altering the work function of the cathode and trap passivation of the perovskite film, which induced ineffective interfacial modifications and declining device performance. Moreover, with further improvement of the backbone design through the incorporation of a rigid acetylene spacer, the resulting polymers substantially exhibited an enhanced electron-transporting property. Upon use as CILs, high power conversion efficiencies (PCEs) of 10.1% and 15.2% were, respectively, achieved in polymer and perovskite solar cells. Importantly, these newly developed n-type polymers were allowed to be processed over a broad thickness range of CILs in photovoltaic devices, and a prominent PCE of over 8% for polymer solar cells and 13.5% for perovskite solar cells can be achieved with the thick interlayers over 100 nm, which is beneficial for roll-to-roll coating processes. Our findings contribute toward a better understanding of the structure-performance relationship between CIL material design and solar cell performance, and provide important insights and guidelines for the design of high-performance n-type CIL materials for organic and perovskite optoelectronic devices.
Jain, Anubhav; Hautier, Geoffroy; Ong, Shyue Ping; Dacek, Stephen; Ceder, Gerbrand
2015-02-28
High voltage and high thermal safety are desirable characteristics of cathode materials, but difficult to achieve simultaneously. This work uses high-throughput density functional theory computations to evaluate the link between voltage and safety (as estimated by thermodynamic O2 release temperatures) for over 1400 cathode materials. Our study indicates that a strong inverse relationship exists between voltage and safety: just over half the variance in O2 release temperature can be explained by voltage alone. We examine the effect of polyanion group, redox couple, and ratio of oxygen to counter-cation on both voltage and safety. As expected, our data demonstrates that polyanion groups improve safety when comparing compounds with similar voltages. However, a counterintuitive result of our study is that polyanion groups produce either no benefit or reduce safety when comparing compounds with the same redox couple. Using our data set, we tabulate voltages and oxidation potentials for over 105 combinations of redox couple/anion, which can be used towards the design and rationalization of new cathode materials. Overall, only a few compounds in our study, representing limited redox couple/polyanion combinations, exhibit both high voltage and high safety. We discuss these compounds in more detail as well as the opportunities for designing safe, high-voltage cathodes.
Numerical modeling of materials processing applications of a pulsed cold cathode electron gun
NASA Astrophysics Data System (ADS)
Etcheverry, J. I.; Martínez, O. E.; Mingolo, N.
1998-04-01
A numerical study of the application of a pulsed cold cathode electron gun to materials processing is performed. A simple semiempirical model of the discharge is used, together with backscattering and energy deposition profiles obtained by a Monte Carlo technique, in order to evaluate the energy source term inside the material. The numerical computation of the heat equation with the calculated source term is performed in order to obtain useful information on melting and vaporization thresholds, melted radius and depth, and on the dependence of these variables on processing parameters such as operating pressure, initial voltage of the discharge and cathode-sample distance. Numerical results for stainless steel are presented, which demonstrate the need for several modifications of the experimental design in order to achieve a better efficiency.
A hollow cathode ion source for production of primary ions for the BNL electron beam ion source.
Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John
2014-02-01
A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.
NASA Astrophysics Data System (ADS)
Li, Yonghu; Chang, Xingping; Xu, Qunjie; Lai, Chunyan; Liu, Xinnuan; Yuan, Xiaolei; Liu, Haimei; Min, Yulin
2018-02-01
In an attempt to overcome the irreversible capacity loss occurred during the first cycle and stabilize the surface structure, an alumina coating layer has been triumphantly prepared on the surface of 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 cathode material with different amounts (1, 2, and 3 wt%) through a simple hydrolysis reaction, followed by an annealing process. The results reveal that the coated materials have a higher crystallinity and the particles are evenly distributed. As a cathode material for lithium-ion batteries, the 2-wt% coated sample delivers initial discharge specific capacity of 211.7 mAh g-1 at a rate of 1 C between 2.0 and 4.8 V with an initial columbic efficiency of 73.2%. Meanwhile, it exhibits the highest discharge specific capacity of 206.2 mAh g-1 with 97.4% capacity retention after 100 cycles at and much elevated rate capability compared to uncoated material. The excellent cycling stability and more superior rate property can be ascribed to alumina coating layer, which has a surface stabilization effect on these cathode materials, lessening the dissolution of metal ions. The electrochemical impedance and cyclic voltammetry studies indicate that coated by alumina improved the kinetic performance for lithium-rich layered materials, showing a prospect for practical lithium battery application.
Serially connected solid oxide fuel cells having monolithic cores
Herceg, J.E.
1985-05-20
Disclosed is a solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output. The cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick. Between 2 and 50 cell segments may be connected in series.
Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun
2016-09-21
Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.
Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young
2014-04-08
As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young
2014-04-01
As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.
Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young
2014-01-01
As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries. PMID:24710575
Interfacial reactions in lithium batteries
NASA Astrophysics Data System (ADS)
Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; Amine, Khalil
2017-08-01
The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented.
Yang, Li; Zhou, Huang; Qin, Xin; Guo, Xiaodong; Cui, Guanwei; Asiri, Abdullah M; Sun, Xuping
2018-02-22
Co(hydro)oxides show unsatisfactory catalytic activity for the hydrogen evolution reaction (HER) in alkaline media, and it is thus highly desirable but still remains a challenge to design and develop Co(hydro)oxide derived materials as superb hydrogen-evolving catalysts using a facile, rapid and less energy-intensive method. Here, we propose a cathodic electrochemical activation strategy toward greatly boosted HER activity of a Co 3 O 4 nanoarray via room-temperature cathodic polarization in sodium hypophosphite solution. After activation, the overpotential significantly decreases from 260 to 73 mV to drive a geometrical catalytic current density of 10 mA cm -2 in 1.0 M KOH. Notably, this activated electrode also shows strong long-term electrochemical durability with the retention of its catalytic activity at 100 mA cm -2 for at least 40 h.
A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)
Anders, André
2014-09-02
In this study, high power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in thismore » review, an overview is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.« less
Transparent amorphous oxide semiconductors for organic electronics: Application to inverted OLEDs
Hosono, Hideo; Toda, Yoshitake; Kamiya, Toshio; Watanabe, Satoru
2017-01-01
Efficient electron transfer between a cathode and an active organic layer is one key to realizing high-performance organic devices, which require electron injection/transport materials with very low work functions. We developed two wide-bandgap amorphous (a-) oxide semiconductors, a-calcium aluminate electride (a-C12A7:e) and a-zinc silicate (a-ZSO). A-ZSO exhibits a low work function of 3.5 eV and high electron mobility of 1 cm2/(V · s); furthermore, it also forms an ohmic contact with not only conventional cathode materials but also anode materials. A-C12A7:e has an exceptionally low work function of 3.0 eV and is used to enhance the electron injection property from a-ZSO to an emission layer. The inverted electron-only and organic light-emitting diode (OLED) devices fabricated with these two materials exhibit excellent performance compared with the normal type with LiF/Al. This approach provides a solution to the problem of fabricating oxide thin-film transistor-driven OLEDs with both large size and high stability. PMID:28028243
Sun, Li; Kong, Weibang; Li, Mengya; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan
2016-02-19
Cross-stacked carbon nanotube (CNT) film is proposed as an additional built-in current collector and adsorption layer in sulfur cathodes for advanced lithium sulfur (Li-S) batteries. On one hand, the CNT film with high conductivity, microstructural rough surface, high flexibility and mechanical durability retains stable and direct electronic contact with the sulfur cathode materials, therefore decreasing internal resistivity and suppressing polarization of the cathode. On the other hand, the highly porous structure and the high surface area of the CNT film provide abundant adsorption points to support and confine sulfur cathode materials, alleviate their aggregation and promote high sulfur utilization. Moreover, the lightweight and compact structure of the CNT film adds no extra weight or volume to the sulfur cathode, benefitting the improvement of energy densities. Based on these characteristics, the sulfur cathode with a 100-layer cross-stacked CNT film presents excellent rate performances with capacities of 986, 922 and 874 mAh g(-1) at cycling rates of 0.2C, 0.5C and 1C for sulfur loading of 60 wt%, corresponding to an improvement of 52%, 109% and 146% compared to that without a CNT film. Promising cycling performances are also demonstrated, offering great potential for scaled-up production of sulfur cathodes for Li-S batteries.
Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries
NASA Astrophysics Data System (ADS)
Luo, Chao
To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful. Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries. To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit exceptional electrochemical performance owing to the high conductivity of carbon and effective restriction of polysulfides and polyselenides in carbon matrix, which avoids shuttle reaction.
Hollow Cathode Assembly Development for the HERMeS Hall Thruster
NASA Technical Reports Server (NTRS)
Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.
2016-01-01
To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and review of integration requirements. This presentation will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model Barium Oxide (BaO) hollow cathode is being performed as part of the development plan. Specifically this test is to identify potential impacts cathode emitter life during operation in the HERMeS thruster. The cathode was operated with a magnetic field-equipped anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 743 hours at the time of this report. Observed voltage changes are attributed to keeper surface condition changes during testing. Cathode behavior during characterization sweeps exhibited stable behavior, including cathode temperature. The details of the cathode assembly operation of the wear-test will be presented.
Silicon oxide based high capacity anode materials for lithium ion batteries
Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet
2017-03-21
Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.
Eashwar, M; Subramanian, G; Palanichamy, S; Rajagopal, G; Madhu, S; Kamaraj, P
2009-01-01
Type-316 stainless steel (SS) was investigated as the cathode in galvanic couples in full-strength seawater from the Gulf of Mannar on the southeast coast of India. Tests were devised to examine the impact of SS cathodes on anode materials with or without the accrual of marine biofilms. Biofilmed SS cathodes significantly enhanced the rate of corrosion of nickel, causing noble shifts in the couple potentials. With mild steel and zinc as the anodes, calcareous deposits developed quite rapidly on the SS cathodes and led to a significant reduction of bacterial numbers. The calcareous deposits also caused substantial reduction of galvanic corrosion rates for mild steel, whereas there was no difference for zinc. The deposits were identified by XRD as essentially carbonates, oxides and hydroxides of calcium and magnesium. Potentiodynamic polarization performed on the actual couples after disconnection and equilibration provided reasonable interpretations of the galvanic corrosion trends. Data from this work suggest that a potential of about -0.70 V vs. saturated calomel electrode (SCE) should provide optimum protection of SS in warmer, full-strength seawater that supports the precipitation of calcareous deposits. The criterion commonly recommended for temperate conditions of lower water temperature and estuarine waters of lower alkalinity is -1.0 V (SCE).
Use of a Polyacetylene Cathode in Primary Lithium-Thionyl Chloride Cells.
1983-10-01
BUJREAU OF STANDAFRfA1.-, A 70 o 0 :0 .0 0 S S 0. 5, * ...- 7. * E~1 ~ C -TR-83-281 USE OF A POLYACETYLENE CATHODE IN PRIMARY LITHIUM -THIONYL CHLORIDE...CELLS ,.710 c-- -IGEO-CENTERS, INC. C. t 2G’ X=. 2. . ~t ~ ~* ~.4 . . ~. t ~ GC-TR-83-281 USE OF A POLYACETYLENE CATHODE IN PRIMARY LITHIUM -THIONYL...cathode material in a lithium /thionyl chloride (Li/SOCl 2) battery. S?The objective of the project was three-fold: -. (1) To characterize and
Recycling Of Cis Photovoltaic Waste
Drinkard, Jr., William F.; Long, Mark O.; Goozner; Robert E.
1998-07-14
A method for extracting and reclaiming metals from scrap CIS photovoltaic cells and associated photovoltaic manufacturing waste by leaching the waste with dilute nitric acid, skimming any plastic material from the top of the leaching solution, separating glass substrate from the leachate, electrolyzing the leachate to plate a copper and selenium metal mixture onto a first cathode, replacing the cathode with a second cathode, re-electrolyzing the leachate to plate cadmium onto the second cathode, separating the copper from selenium, and evaporating the depleted leachate to yield a zinc and indium containing solid.
Mangalith: a new lithium pacemaker battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerbier, G.; Lehmann, G.
1980-01-01
An original lithium battery system is being developed for pacemaker application. The material used, lithium-manganese dioxide, industrially available at the present time for a variety of electronic applications, has been modified and adapted for pacemaker power requirements. The utilization of a different modification of manganese dioxide offers performance advantages. The cell technology is described and performance comparisons between this new cathode material and the industrial counterpart are reported. 7 refs.
Aluminum reduction cell electrode
Goodnow, W.H.; Payne, J.R.
1982-09-14
The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.
John B. Goodenough, Cathode Materials, and Rechargeable Lithium-ion
cathode materials for the lithium-ion rechargeable battery that is ubiquitous in todayÂs portable conductors has enabled realization of the rechargeable lithium-ion battery used in cellular telephones and Goodenough, the rechargeable lithium ion battery, and related research is available in electronic documents
Zerrouki, A; Salar-García, M J; Ortiz-Martínez, V M; Guendouz, S; Ilikti, H; de Los Ríos, A P; Hernández-Fernández, F J; Kameche, M
2018-03-05
Microbial fuel cells (MFCs) are a promising technology that generates electricity from several biodegradable substrates and wastes. The main drawback of these devices is the need of using a catalyst for the oxygen reduction reaction at the cathode, which makes the process relatively expensive. In this work, two low cost materials are tested as catalysts in MFCs. A novel iron complex based on the ligand n-phenyledenparaethoxy aniline has been synthesized and its performance as catalyst in single chamber MFCs containing ionic liquids has been compared with a commercial inorganic material such as Raney nickel. The results show that both materials are suitable for bioenergy production and wastewater treatment in the systems. Raney nickel cathodes allow MFCs to reach a maximum power output of 160 mW.m -3 anode , while the iron complex offers lower values. Regarding the wastewater treatment capacity, MFCs working with Raney nickel-based cathodes reach higher values of chemical oxygen demand removal (76%) compared with the performance displayed by the cathodes based on Fe-complex (56%).
NASA Astrophysics Data System (ADS)
Huang, Shouguo; Feng, Shuangjiu; Lu, Qiliang; Li, Yide; Wang, Hong; Wang, Chunchang
2014-04-01
Sr0.9Ce0.1Co0.9Nb0.1O3-δ (SCCN) has been synthesized using solid state reaction, and investigated as a new cathode material for intermediate temperature solid oxide fuel cells (ITSOFCs). SCCN material exhibits sufficiently high electronic conductivity and excellent chemical compatibility with SDC electrolyte. Highly charged Ce4+ and Nb5+ successfully stabilize the perovskite structure to avoid order-disorder phase transition. The electrical conductivity reaches a high value of 516 S cm-1 at 300 °C in air. The area specific resistances of the SCCN-50 wt.% Ce0.8Sm0.2O1.9 (SDC) cathode are as low as 0.027, 0.049, and 0.094 Ω cm2 at 700, 650, and 600 °C, respectively, with the corresponding peak power densities of 1074, 905, and 589 mW cm-2. A relatively low thermal expansion coefficient of SCCN-SDC is 14.3 × 10-6 K-1 in air. All these results imply that SCCN holds tremendous promise as a cathode material for ITSOFCs.
NASA Astrophysics Data System (ADS)
Huang, Zan; Luo, Peifang; Wang, Daxiang
2017-03-01
Core-shell structured LiFePO4/C1 cathode material is synthesized via a rapid microwave irradiation route using ethylene diamine tetraacetic acid (EDTA) as the novel carbon source. XRD results reveal that all the patterns can be indexed as the olivine-type structured LiFePO4 with the space group of Pnma. TEM images show that the obtained carbon is an amorphous layer with a thickness of about 3-4 nm. When the LiFePO4/C1 used as cathode material for lithium-ion battery, it delivers an initial discharge capacity of 163.1 mAh g-1 at 0.1 C which is about 96% of the theoretical capacity. Moreover, it also shows excellent rate performance and good cycle stability due to the enhanced electronic conductivity as proved by the electrochemical impedance spectroscopy (EIS). Thus, this carbon decorated LiFePO4 composite synthesized via the rapid microwave irradiation method is a promising cathode material for high-performance lithium-ion battery.
Functionalized NbS2 as cathode for Li- and Na-ion batteries
NASA Astrophysics Data System (ADS)
Zhu, Jiajie; Alshareef, Husam N.; Schwingenschlögl, Udo
2017-07-01
Cathodes of Li- and Na-ion batteries usually have capacities <200 mAh/g, significantly less than the anodes. Two-dimensional materials can overcome this limitation but suffer from low voltages. In this context, we investigate NbS2 functionalized by O, F, and Cl as a cathode material by first-principles calculations, considering both the conversion and intercalation mechanisms. NbS2O2 shows a higher voltage than NbS2 for both Li and Na, but the voltage decreases drastically for increasing ion coverage. Even higher voltages and favorable dependences on the ion coverage are achieved by F and Cl functionalization. We obtain NbS2F2 and NbS2Cl2 energy densities of 1223 mW h/g and 823 mW h/g for lithiation and 1086 mW h/g and 835 mW h/g for sodiation, respectively. These values are higher than those for most state-of-the-art cathode materials ( ˜600 mW h/g). In addition, low diffusion barriers enable high cycling rates.
NASA Astrophysics Data System (ADS)
Gracia, Ismael; Ben Youcef, Hicham; Judez, Xabier; Oteo, Uxue; Zhang, Heng; Li, Chunmei; Rodriguez-Martinez, Lide M.; Armand, Michel
2018-06-01
Inverse vulcanization copolymers (p(S-DVB)) from the radical polymerization of elemental sulfur and divinylbenzene (DVB) have been studied as cathode active materials in poly(ethylene oxide) (PEO)-based all-solid-state Li-S cells. The Li-S cell comprising the optimized p(S-DVB) cathode (80:20 w/w S/DVB ratio) and lithium bis(fluorosulfonyl)imide/PEO (LiFSI/PEO) electrolyte shows high specific capacity (ca. 800 mAh g-1) and high Coulombic efficiency for 50 cycles. Most importantly, polysulfide (PS) shuttle is highly mitigated due to the strong interactions of PS species with polymer backbone in p(S-DVB). This is demonstrated by the stable cycling of the p(S-DVB)-based cell using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/PEO electrolyte, where successful charging cannot be achieved even at the first cycle with plain elemental S-based cathode material due to the severe PS shuttle phenomenon. These results suggest that inverse vulcanization copolymers are promising alternatives to elemental sulfur for enhancing the electrochemical performance of PEO-based all-solid-state Li-S cells.
Hollow Cathode Assembly Development for the HERMeS Hall Thruster
NASA Technical Reports Server (NTRS)
Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.
2016-01-01
To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and assessment of system implementation concerns. This paper will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model barium-oxide-based (BaO) hollow cathode is being performed as part of the development plan. The cathode was operated with an anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 740 hours at the time of this report. Cathode operation (i.e. discharge voltage and orifice temperature) was repeatable during period variation of discharge current and flow rate. The details of the cathode assembly operation during the wear-test will be presented.
Ramírez-Pereda, Blenda; Álvarez-Gallegos, Alberto; Rangel-Peraza, Jesús Gabriel; Bustos-Terrones, Yaneth A
2018-05-01
In this study, a micro-scale parallel plate reactor was built to electrochemically generate hydrogen peroxide (H 2 O 2 ) and to develop the Fenton reaction in situ, for the treatment of toxic organic pollutants. Two types of carbon materials were compared and used as cathodes: unidirectional carbon fiber (CF) and reticulated vitreous carbon (RVC). As anode, a stainless steel mesh was used. The results of H 2 O 2 were experimentally compared by means of electrogeneration process. RVC cathode with dimensions of 2.5 × 1 × 5 cm (170 mA and variable voltage V = 2.0-2.7) and 180 min produced 5.3 mM H 2 O 2 , with an H 2 O 2 production efficiency of 54%. Unidirectional carbon fiber cathode produced 7.5 mM of H 2 O 2 (96% of H 2 O 2 production efficiency) when a voltage of 1.8 V was applied during 180 min to a total area of 480 cm 2 of this material. Acid Orange 7 (AO7) was degraded to a concentration of 0.16 mM during the first 40 min of the process, which represented 95% of the initial concentration. Electrolysis process removed nearly 100% of the AO7 using both cathodes at the end of these experiments (180 min). Copyright © 2018 Elsevier Ltd. All rights reserved.
Zirconia coating stabilized super-iron alkaline cathodes
NASA Astrophysics Data System (ADS)
Yu, Xingwen; Licht, Stuart
A low-level zirconia coating significantly stabilizes high energy alkaline super-iron cathodes, and improves the energy storage capacity of super-iron batteries. Zirconia coating is derived from ZrCl 4 in an organic medium through the conversion of ZrCl 4 to ZrO 2. In alkaline battery system, ZrO 2 provides an intact shield for the cathode materials and the hydroxide shuttle through the coating sustains alkaline cathode redox chemistry. Most super-iron cathodes are solid-state stable, such as K 2FeO 4 and Cs 2FeO 4, but tend to be passivated in alkaline electrolyte due to the formation of Fe(III) over layer. Zirconia coating effectively enhances the stability of these super-iron cathodes. However, for solid-state unstable super-iron cathode (e.g. BaFeO 4), only a little stabilization effect of zirconia coating is observed.
Sodium-metal chloride batteries
NASA Technical Reports Server (NTRS)
Ratnakumar, B. V.; Attia, A. I.; Halpert, G.
1992-01-01
It was concluded that rapid development in the technology of sodium metal chloride batteries has been achieved in the last decade mainly due to the: expertise available with sodium sulfur system; safety; and flexibility in design and fabrication. Long cycle lives of over 1000 and high energy densities of approx. 100 Wh/kg have been demonstrated in both Na/FeCl2 and Na/NiCl2 cells. Optimization of porous cathode and solid electrolyte geometries are essential for further enhancing the battery performance. Fundamental studies confirm the capabilities of these systems. Nickel dichloride emerges as the candidate cathode material for high power density applications such as electric vehicle and space.
Feedback model of secondary electron emission in DC gas discharge plasmas
NASA Astrophysics Data System (ADS)
Saravanan, ARUMUGAM; Prince, ALEX; Suraj, Kumar SINHA
2018-01-01
Feedback is said to exist in any amplifier when the fraction of output power in fed back as an input. Similarly, in gaseous discharge ions that incident on the cathode act as a natural feedback element to stabilize and self sustain the discharge. The present investigation is intended to emphasize the feedback nature of ions that emits secondary electrons (SEs) from the cathode surface in DC gas discharges. The average number of SEs emitted per incident ion and non ionic species (energetic neutrals, metastables and photons) which results from ion is defined as effective secondary electron emission coefficient (ESEEC,{γ }{{E}}). In this study, we derive an analytic expression that corroborates the relation between {γ }{{E}} and power influx by ion to the cathode based on the feedback theory of an amplifier. In addition, experimentally, we confirmed the typical positive feedback nature of SEE from the cathode in argon DC glow discharges. The experiment is done for three different cathode material of same dimension (tungsten (W), copper (Cu) and brass) under identical discharge conditions (pressure: 0.45 mbar, cathode bias: -600 V, discharge gab: 15 cm and operating gas: argon). Further, we found that the {γ }{{E}} value of these cathode material controls the amount of feedback power given by ions. The difference in feedback leads different final output i.e the power carried by ion at cathode ({P}{{i}}{\\prime }{| }{{C}}). The experimentally obtained value of {P}{{i}}{\\prime }{| }{{C}} is 4.28 W, 6.87 W and 9.26 W respectively for W, Cu and brass. In addition, the present investigation reveals that the amount of feedback power in a DC gas discharges not only affect the fraction of power fed back to the cathode but also the entire characteristics of the discharge.
NASA Astrophysics Data System (ADS)
Sowińska, Agnieszka; Czarnowska, Elżbieta; Tarnowski, Michał; Witkowska, Justyna; Wierzchoń, Tadeusz
2018-04-01
Significant efforts are being made towards developing novel antithrombotic materials. The purpose of the presented study was to characterize two variants of nitrided surface layers produced on alloy Ti-6Al-4V in different areas of low-temperature plasma - at the plasma potential (TiNp) or at the cathode potential (TiNc). The layers were characterized in terms of their microstructure, surface topography and wettability, and platelet response to the environment of different pH. The produced layers were of the TiN + Ti2N + αTiN-type, but the layer produced at the plasma potential was thinner, smoother and had lower surface free energy compared with that produced at the cathode potential. Biological evaluation demonstrated more fibrinogen buildup, less platelet adhesion and aggregation, and fewer strongly activated platelets on the TiNp surface compared with those parameters on the TiNc surface and on the titanium alloy in its initial state. Interestingly, both surface types were significantly resistant to fibrinogen adsorption and platelet adhesion in the environment of lower pH. In conclusion, the nitrided surface layer produced at the plasma potential is a promising material and this basic information is critical for further development of hemocompatible materials.
Development of a Stochastically-driven, Forward Predictive Performance Model for PEMFCs
NASA Astrophysics Data System (ADS)
Harvey, David Benjamin Paul
A one-dimensional multi-scale coupled, transient, and mechanistic performance model for a PEMFC membrane electrode assembly has been developed. The model explicitly includes each of the 5 layers within a membrane electrode assembly and solves for the transport of charge, heat, mass, species, dissolved water, and liquid water. Key features of the model include the use of a multi-step implementation of the HOR reaction on the anode, agglomerate catalyst sub-models for both the anode and cathode catalyst layers, a unique approach that links the composition of the catalyst layer to key properties within the agglomerate model and the implementation of a stochastic input-based approach for component material properties. The model employs a new methodology for validation using statistically varying input parameters and statistically-based experimental performance data; this model represents the first stochastic input driven unit cell performance model. The stochastic input driven performance model was used to identify optimal ionomer content within the cathode catalyst layer, demonstrate the role of material variation in potential low performing MEA materials, provide explanation for the performance of low-Pt loaded MEAs, and investigate the validity of transient-sweep experimental diagnostic methods.
Atmospheric pressure arc discharge with ablating graphite anode
NASA Astrophysics Data System (ADS)
Nemchinsky, V. A.; Raitses, Y.
2015-06-01
The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322-6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.
Confined Sulfur in 3 D MXene/Reduced Graphene Oxide Hybrid Nanosheets for Lithium-Sulfur Battery.
Bao, Weizhai; Xie, Xiuqiang; Xu, Jing; Guo, Xin; Song, Jianjun; Wu, Wenjian; Su, Dawei; Wang, Guoxiu
2017-09-12
Three-dimensional metal carbide MXene/reduced graphene oxide hybrid nanosheets are prepared and applied as a cathode host material for lithium-sulfur batteries. The composite cathodes are obtained through a facile and effective two-step liquid-phase impregnation method. Owing to the unique 3 D layer structure and functional 2 D surfaces of MXene and reduced graphene oxide nanosheets for effective trapping of sulfur and lithium polysulfides, the MXene/reduced graphene oxide/sulfur composite cathodes deliver a high initial capacity of 1144.2 mAh g -1 at 0.5 C and a high level of capacity retention of 878.4 mAh g -1 after 300 cycles. It is demonstrated that hybrid metal carbide MXene/reduced graphene oxide nanosheets could be a promising cathode host material for lithium-sulfur batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electro-catalytic oxidation device for removing carbon from a fuel reformate
Liu, Di-Jia [Naperville, IL
2010-02-23
An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.
APPARATUS FOR PRODUCING IONS OF VAPORIZABLE MATERIALS
Starr, C.
1957-11-19
This patent relates to electronic discharge devices used as ion sources, and in particular describes an ion source for application in a calutron. The source utilizes two cathodes disposed at opposite ends of a longitudinal opening in an arc block fed with vaporized material. A magnetic field is provided parallel to the length of the arc block opening. The electrons from the cathodes are directed through slits in collimating electrodes into the arc block parallel to the magnetic field and cause an arc discharge to occur between the cathodes, as the arc block and collimating electrodes are at a positive potential with respect to the cathode. The ions are withdrawn by suitable electrodes disposed opposite the arc block opening. When such an ion source is used in a calutron, an arc discharge of increased length may be utilized, thereby increasing the efficiency and economy of operation.