Use of DNA markers in forest tree improvement research
D.B. Neale; M.E. Devey; K.D. Jermstad; M.R. Ahuja; M.C. Alosi; K.A. Marshall
1992-01-01
DNA markers are rapidly being developed for forest trees. The most important markers are restriction fragment length polymorphisms (RFLPs), polymerase chain reaction- (PCR) based markers such as random amplified polymorphic DNA (RAPD), and fingerprinting markers. DNA markers can supplement isozyme markers for monitoring tree improvement activities such as; estimating...
Microsatellite DNA library for Caiman latirostris.
Zucoloto, Rodrigo Barban; Verdade, Luciano Martins; Coutinho, Luiz Lehmann
2002-12-15
New genetic markers were characterized for the broad-snouted caiman (Caiman latirostris) by constructing libraries enriched for microsatellite DNA. Construction and characterization of these libraries are described in the present study. One microsatellite marker was developed from a (ACC-TGG)(n)enriched microsatellite DNA library, and 12 microsatellite markers were developed from a (AC-TG)(n)enriched microsatellite DNA library. These markers were tested in wild-caught animals, and these tests resulted in ten new polymorphic microsatellites for C. latirostris. Copyright 2002 Wiley-Liss, Inc.
2012-01-01
Background In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS) technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin) as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA) sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Results Twenty informative plants from a cross of RxS (disease resistant x susceptible) in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM), and are now replacing the markers previously developed by a traditional DNA fingerprinting method for marker-assisted selection in the Australian national lupin breeding program. Conclusions We demonstrated that more than 30 molecular markers linked to a target gene of agronomic trait of interest can be identified from a small portion (1/8) of one sequencing run on HiSeq2000 by applying NGS based RAD sequencing in marker development. The markers developed by the strategy described in this study are all co-dominant SNP markers, which can readily be converted into high throughput multiplex format or low-cost, simple PCR-based markers desirable for large scale marker implementation in plant breeding programs. The high density and closely linked molecular markers associated with a target trait help to overcome a major bottleneck for implementation of molecular markers on a wide range of germplasm in breeding programs. We conclude that application of NGS based RAD sequencing as DNA fingerprinting is a very rapid and cost-effective strategy for marker development in molecular plant breeding. The strategy does not require any prior genome knowledge or molecular information for the species under investigation, and it is applicable to other plant species. PMID:22805587
Yang, Huaan; Tao, Ye; Zheng, Zequn; Li, Chengdao; Sweetingham, Mark W; Howieson, John G
2012-07-17
In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS) technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin) as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA) sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Twenty informative plants from a cross of RxS (disease resistant x susceptible) in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM), and are now replacing the markers previously developed by a traditional DNA fingerprinting method for marker-assisted selection in the Australian national lupin breeding program. We demonstrated that more than 30 molecular markers linked to a target gene of agronomic trait of interest can be identified from a small portion (1/8) of one sequencing run on HiSeq2000 by applying NGS based RAD sequencing in marker development. The markers developed by the strategy described in this study are all co-dominant SNP markers, which can readily be converted into high throughput multiplex format or low-cost, simple PCR-based markers desirable for large scale marker implementation in plant breeding programs. The high density and closely linked molecular markers associated with a target trait help to overcome a major bottleneck for implementation of molecular markers on a wide range of germplasm in breeding programs. We conclude that application of NGS based RAD sequencing as DNA fingerprinting is a very rapid and cost-effective strategy for marker development in molecular plant breeding. The strategy does not require any prior genome knowledge or molecular information for the species under investigation, and it is applicable to other plant species.
Farrington, Heather L.; Edwards, Christine E.; Guan, Xin; Carr, Matthew R.; Baerwaldt, Kelly; Lance, Richard F.
2015-01-01
Invasive Asian bighead and silver carp (Hypophthalmichthys nobilis and H. molitrix) pose a substantial threat to North American aquatic ecosystems. Recently, environmental DNA (eDNA), genetic material shed by organisms into their environment that can be detected by non-invasive sampling strategies and genetic assays, has gained recognition as a tool for tracking the invasion front of these species toward the Great Lakes. The goal of this study was to develop new species-specific conventional PCR (cPCR) and quantitative (qPCR) markers for detection of these species in North American surface waters. We first generated complete mitochondrial genome sequences from 33 bighead and 29 silver carp individuals collected throughout their introduced range. These sequences were aligned with those from other common and closely related fish species from the Illinois River watershed to identify and design new species-specific markers for the detection of bighead and silver carp DNA in environmental water samples. We then tested these genetic markers in the laboratory for species-specificity and sensitivity. Newly developed markers performed well in field trials, did not have any false positive detections, and many markers had much higher detection rates and sensitivity compared to the markers currently used in eDNA surveillance programs. We also explored the use of multiple genetic markers to determine whether it would improve detection rates, results of which showed that using multiple highly sensitive markers should maximize detection rates in environmental samples. The new markers developed in this study greatly expand the number of species-specific genetic markers available to track the invasion front of bighead and silver carp and will improve the resolution of these assays. Additionally, the use of the qPCR markers developed in this study may reduce sample processing time and cost of eDNA monitoring for these species. PMID:25706532
Farrington, Heather L; Edwards, Christine E; Guan, Xin; Carr, Matthew R; Baerwaldt, Kelly; Lance, Richard F
2015-01-01
Invasive Asian bighead and silver carp (Hypophthalmichthys nobilis and H. molitrix) pose a substantial threat to North American aquatic ecosystems. Recently, environmental DNA (eDNA), genetic material shed by organisms into their environment that can be detected by non-invasive sampling strategies and genetic assays, has gained recognition as a tool for tracking the invasion front of these species toward the Great Lakes. The goal of this study was to develop new species-specific conventional PCR (cPCR) and quantitative (qPCR) markers for detection of these species in North American surface waters. We first generated complete mitochondrial genome sequences from 33 bighead and 29 silver carp individuals collected throughout their introduced range. These sequences were aligned with those from other common and closely related fish species from the Illinois River watershed to identify and design new species-specific markers for the detection of bighead and silver carp DNA in environmental water samples. We then tested these genetic markers in the laboratory for species-specificity and sensitivity. Newly developed markers performed well in field trials, did not have any false positive detections, and many markers had much higher detection rates and sensitivity compared to the markers currently used in eDNA surveillance programs. We also explored the use of multiple genetic markers to determine whether it would improve detection rates, results of which showed that using multiple highly sensitive markers should maximize detection rates in environmental samples. The new markers developed in this study greatly expand the number of species-specific genetic markers available to track the invasion front of bighead and silver carp and will improve the resolution of these assays. Additionally, the use of the qPCR markers developed in this study may reduce sample processing time and cost of eDNA monitoring for these species.
Assessing Date Palm Genetic Diversity Using Different Molecular Markers.
Atia, Mohamed A M; Sakr, Mahmoud M; Adawy, Sami S
2017-01-01
Molecular marker technologies which rely on DNA analysis provide powerful tools to assess biodiversity at different levels, i.e., among and within species. A range of different molecular marker techniques have been developed and extensively applied for detecting variability in date palm at the DNA level. Recently, the employment of gene-targeting molecular marker approaches to study biodiversity and genetic variations in many plant species has increased the attention of researchers interested in date palm to carry out phylogenetic studies using these novel marker systems. Molecular markers are good indicators of genetic distances among accessions, because DNA-based markers are neutral in the face of selection. Here we describe the employment of multidisciplinary molecular marker approaches: amplified fragment length polymorphism (AFLP), start codon targeted (SCoT) polymorphism, conserved DNA-derived polymorphism (CDDP), intron-targeted amplified polymorphism (ITAP), simple sequence repeats (SSR), and random amplified polymorphic DNA (RAPD) to assess genetic diversity in date palm.
Taylor M. Wilcox; Kellie J. Carim; Kevin S. McKelvey; Michael Young; Michael K. Schwartz
2015-01-01
Environmental DNA (eDNA) sampling is a powerful tool for detecting invasive and native aquatic species. Often, species of conservation interest co-occur with other, closely related taxa. Here, we developed qPCR (quantitative PCR) markers which distinguish westslope cutthroat trout (Oncorhynchus clarkii lewsi), Yellowstone cutthroat trout (O. clarkii bouvieri...
New DNA Markers for the Use in Cotton (Gossypium spp.) Improvement
USDA-ARS?s Scientific Manuscript database
SSR markers, also known as DNA microsatellite markers, are proving to be very useful for saturation of the large and complex upland cotton (Gossypium hirsutum genetic linkage map. Monsanto Company has invested heavily in development of cotton SSRs and has implemented molecular breeding technologies ...
USDA-ARS?s Scientific Manuscript database
Genic microsatellites or simple sequence repeat (genic-SSR) markers were developed in boxwood (Buxus taxa) for genetic diversity analysis, identification of taxa, and to facilitate breeding. cDNA libraries were developed from mRNA extracted from leaves of Buxus sempervirens ‘Vardar Valley’ and seque...
Hernández, P; Dorado, G; Ramírez, M C; Laurie, D A; Snape, J W; Martín, A
2003-01-01
Hordeum chilense is a potential source of useful genes for wheat breeding. The use of this wild species to increase genetic variation in wheat will be greatly facilitated by marker-assisted introgression. In recent years, the search for the most suitable DNA marker system for tagging H. chilense genomic regions in a wheat background has lead to the development of RAPD and SCAR markers for this species. RAPDs represent an easy way of quickly generating suitable introgression markers, but their use is limited in heterogeneous wheat genetic backgrounds. SCARs are more specific assays, suitable for automatation or multiplexing. Direct sequencing of RAPD products is a cost-effective approach that reduces labour and costs for SCAR development. The use of SSR and STS primers originally developed for wheat and barley are additional sources of genetic markers. Practical applications of the different marker approaches for obtaining derived introgression products are described.
Damodar R. Kethidi; David B. Roden; Tim R. Ladd; Peter J. Krell; Arthur Ratnakaran; Qili Feng
2003-01-01
DNA markers were identified for the molecular detection of the Asian long-horned beetle (ALB), Anoplophora glabripennis (Mot.), based on sequence charaterized amplified regions (SCARS) derived from random amplified polymorphic DNA (RAPD) fragments. A 2,740-bp DNA fragment that was present only in ALB and not in other Cerambycids was identified after...
Epigenetic approaches for the detection of fetal DNA in maternal plasma
Tsui, Dana WY; Chiu, Rossa WK
2010-01-01
The presence of fetal DNA in the plasma of pregnant women has opened up new possibilities for noninvasive prenatal diagnosis. Over the past decades, different types of fetal markers have been developed, initially based on discriminative genetic markers such as male-specific signals or paternally-inherited polymorphisms, and gradually evolved to the detection of fetal-specific transcripts or epigenetic signatures. This development has extended the coverage of the application of cell-free fetal DNA to essentially all pregnancies, regardless of the gender of the fetus or its polymorphic status. In this review, we present an overview of the development of noninvasive prenatal diagnosis through epigenetics. We introduce the basis of how fetal DNA could be detected from a large background of maternal DNA in maternal plasma based on fetal-specific DNA methylation patterns. We evaluate the methodologies involved and discuss the factors that affect the robustness of the detection. We review the progress in adopting fetal epigenetic markers for noninvasive prenatal assessment of fetal chromosomal aneuploidies and pregnancy-associated disorders. We conclude with comments on the future directions regarding the search for new fetal epigenetic markers and the clinical implementation of epigenetic approaches for noninvasive prenatal diagnosis. PMID:21327153
Fu, J J; Mei, Z Q; Tania, M; Yang, L Q; Cheng, J L; Khan, M A
2015-05-25
The sequence-characterized amplified region (SCAR) is a valuable molecular technique for the genetic identification of any species. This method is mainly derived from the molecular cloning of the amplified DNA fragments achieved from the random amplified polymorphic DNA (RAPD). In this study, we collected DNA from 10 species of Ganoderma mushroom and amplified the DNA using an improved RAPD technique. The amplified fragments were then cloned into a T-vector, and positive clones were screened, indentified, and sequenced for the development of SCAR markers. After designing PCR primers and optimizing PCR conditions, 4 SCAR markers, named LZ1-4, LZ2-2, LZ8-2, and LZ9-15, were developed, which were specific to Ganoderma gibbosum (LZ1-4 and LZ8-2), Ganoderma sinense (LZ2-2 and LZ8-2), Ganoderma tropicum (LZ8-2), and Ganoderma lucidum HG (LZ9-15). These 4 novel SCAR markers were deposited into GenBank with the accession Nos. KM391935, KM391936, KM391937, and KM391938, respectively. Thus, in this study we developed specific SCAR markers for the identification and authentication of different Ganoderma species.
Loblolly pine SSR markers for shortleaf pine genetics
C. Dana Nelson; Sedley Josserand; Craig S. Echt; Jeff Koppelman
2007-01-01
Simple sequence repeats (SSR) are highly informative DNA-based markers widely used in population genetic and linkage mapping studies. We have been developing PCR primer pairs for amplifying SSR markers for loblolly pine (Pinus taeda L.) using loblolly pine DNA and EST sequence data as starting materials. Fifty primer pairs known to reliably amplify...
Molecular markers for colorectal cancer screening
Dickinson, Brandon T.; Kisiel, John; Ahlquist, David A.; Grady, William M.
2016-01-01
Colorectal cancer (CRC), although a significant cause of morbidity and mortality worldwide, has seen a declining incidence and mortality in countries with programmatic screening. Fecal occult blood testing (FOBT) and endoscopic approaches are the predominant screening methods currently. The discovery of the adenoma→carcinoma sequence and a greater understanding of the genetic and epigenetic changes that drive the formation of CRC have contributed to innovative research to identify molecular markers for highly accurate, non-invasive screening tests for CRC. DNA, proteins, messenger RNA, and micro-RNA have all been evaluated. The observation of tumor cell exfoliation into the mucocellular layer of the colonic epithelium and proven stability of DNA in a harsh stool environment make stool DNA a particularly promising marker. The development of a clinically useful stool DNA test has required numerous technical advances, including optimization in DNA stabilization, the development of assays with high analytical sensitivity, and the identification of specific and broadly informative molecular markers. A multi-target stool DNA (MT-sDNA) test, which combines both mutant and methylated DNA markers and a fecal immunochemical test (FIT), recently performed favorably in a large cross-sectional validation study and has been approved by the US Food and Drug Administration (FDA) for the screening of asymptomatic, average risk individuals. The ultimate way in which molecular marker screening assays will be used in clinical practice will require additional studies to determine optimal screening intervals, factors affecting compliance, management of false positive results, and the use of these assays in high-risk populations, as well as other considerations. PMID:25994221
An environmental DNA marker for detecting nonnative brown trout (Salmo trutta)
K. J. Carim; T. M. Wilcox; M. Anderson; D. Lawrence; Michael Young; Kevin McKelvey; Michael Schwartz
2016-01-01
Brown trout (Salmo trutta) are widely introduced in western North America where their presence has led to declines of several native species. To assist conservation efforts aimed at early detection and eradication of this species, we developed a quantitative PCR marker to detect the presence of brown trout DNA in environmental samples. The marker strongly...
Hoshida, Hisashi; Murakami, Nobutada; Suzuki, Ayako; Tamura, Ryoko; Asakawa, Jun; Abdel-Banat, Babiker M A; Nonklang, Sanom; Nakamura, Mikiko; Akada, Rinji
2014-01-01
The cloning of DNA fragments into vectors or host genomes has traditionally been performed using Escherichia coli with restriction enzymes and DNA ligase or homologous recombination-based reactions. We report here a novel DNA cloning method that does not require DNA end processing or homologous recombination, but that ensures highly accurate cloning. The method exploits the efficient non-homologous end-joining (NHEJ) activity of the yeast Kluyveromyces marxianus and consists of a novel functional marker selection system. First, to demonstrate the applicability of NHEJ to DNA cloning, a C-terminal-truncated non-functional ura3 selection marker and the truncated region were PCR-amplified separately, mixed and directly used for the transformation. URA3(+) transformants appeared on the selection plates, indicating that the two DNA fragments were correctly joined by NHEJ to generate a functional URA3 gene that had inserted into the yeast chromosome. To develop the cloning system, the shortest URA3 C-terminal encoding sequence that could restore the function of a truncated non-functional ura3 was determined by deletion analysis, and was included in the primers to amplify target DNAs for cloning. Transformation with PCR-amplified target DNAs and C-terminal truncated ura3 produced numerous transformant colonies, in which a functional URA3 gene was generated and was integrated into the chromosome with the target DNAs. Several K. marxianus circular plasmids with different selection markers were also developed for NHEJ-based cloning and recombinant DNA construction. The one-step DNA cloning method developed here is a relatively simple and reliable procedure among the DNA cloning systems developed to date. Copyright © 2013 John Wiley & Sons, Ltd.
Minamoto, Toshifumi; Uchii, Kimiko; Takahara, Teruhiko; Kitayoshi, Takumi; Tsuji, Satsuki; Yamanaka, Hiroki; Doi, Hideyuki
2017-03-01
The recently developed environmental DNA (eDNA) analysis has been used to estimate the distribution of aquatic vertebrates by using mitochondrial DNA (mtDNA) as a genetic marker. However, mtDNA markers have certain drawbacks such as variable copy number and maternal inheritance. In this study, we investigated the potential of using nuclear DNA (ncDNA) as a more reliable genetic marker for eDNA analysis by using common carp (Cyprinus carpio). We measured the copy numbers of cytochrome b (CytB) gene region of mtDNA and internal transcribed spacer 1 (ITS1) region of ribosomal DNA of ncDNA in various carp tissues and then compared the detectability of these markers in eDNA samples. In the DNA extracted from the brain and gill tissues and intestinal contents, CytB was detected at 95.1 ± 10.7 (mean ± 1 standard error), 29.7 ± 1.59 and 24.0 ± 4.33 copies per cell, respectively, and ITS1 was detected at 1760 ± 343, 2880 ± 503 and 1910 ± 352 copies per cell, respectively. In the eDNA samples from mesocosm, pond and lake water, the copy numbers of ITS1 were about 160, 300 and 150 times higher than those of CytB, respectively. The minimum volume of pond water required for quantification was 33 and 100 mL for ITS1 and CytB, respectively. These results suggested that ITS1 is a more sensitive genetic marker for eDNA studies of C. carpio. © 2016 John Wiley & Sons Ltd.
Krak, Karol; Alvarez, Inés; Caklová, Petra; Costa, Andrea; Chrtek, Jindrich; Fehrer, Judith
2012-02-01
The development of three low-copy nuclear markers for low taxonomic level phylogenies in Asteraceae with emphasis on the subtribe Hieraciinae is reported. Marker candidates were selected by comparing a Lactuca complementary DNA (cDNA) library with public DNA sequence databases. Interspecific variation and phylogenetic signal of the selected genes were investigated for diploid taxa from the subtribe Hieraciinae and compared to a reference phylogeny. Their ability to cross-amplify was assessed for other Asteraceae tribes. All three markers had higher variation (2.1-4.5 times) than the internal transcribed spacer (ITS) in Hieraciinae. Cross-amplification was successful in at least seven other tribes of the Asteraceae. Only three cases indicating the presence of paralogs or pseudogenes were detected. The results demonstrate the potential of these markers for phylogeny reconstruction in the Hieraciinae as well as in other Asteraceae tribes, especially for very closely related species.
Identification of body fluid-specific DNA methylation markers for use in forensic science.
Park, Jong-Lyul; Kwon, Oh-Hyung; Kim, Jong Hwan; Yoo, Hyang-Sook; Lee, Han-Chul; Woo, Kwang-Man; Kim, Seon-Young; Lee, Seung-Hwan; Kim, Yong Sung
2014-11-01
DNA methylation, which occurs at the 5'-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers, but DNA methylation differences are sometimes low in saliva and vaginal secretions. Moreover, specific DNA methylation markers in four types of body fluids (blood, saliva, semen, and vaginal secretions) have not been investigated with genome-wide profiling. Here, we investigated novel DNA methylation markers for identification of body fluids for use in forensic science using the Illumina HumanMethylation 450K bead array, which contains over 450,000 CpG sites. Using methylome data from 16 samples of blood, saliva, semen, and vaginal secretions, we first selected 2986 hypermethylated or hypomethylated regions that were specific for each type of body fluid. We then selected eight CpG sites as novel, forensically relevant DNA methylation markers: cg06379435 and cg08792630 for blood, cg26107890 and cg20691722 for saliva, cg23521140 and cg17610929 for semen, and cg01774894 and cg14991487 for vaginal secretions. These eight selected markers were evaluated in 80 body fluid samples using pyrosequencing, and all showed high sensitivity and specificity for identification of the target body fluid. We suggest that these eight DNA methylation markers may be good candidates for developing an effective molecular assay for identification of body fluids in forensic science. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine
Craig S Echt; Surya Saha; Dennis L Deemer; C Dana Nelson
2011-01-01
Genomic DNA sequence databases are a potential and growing resource for simple sequence repeat (SSR) marker development in loblolly pine (Pinus taeda L.). Loblolly pine also has many expressed sequence tags (ESTs) available for microsatellite (SSR) marker development. We compared loblolly pine SSR densities in genome survey sequences (GSSs) to those in non-redundant...
Carim, Kellie J; Christianson, Kyle R; McKelvey, Kevin M; Pate, William M; Silver, Douglas B; Johnson, Brett M; Galloway, Benjamin T; Young, Michael K; Schwartz, Michael K
2016-01-01
The spread of Mysis diluviana, a small glacial relict crustacean, outside its native range has led to unintended shifts in the composition of native fish communities throughout western North America. As a result, biologists seek accurate methods of determining the presence of M. diluviana, especially at low densities or during the initial stages of an invasion. Environmental DNA (eDNA) provides one solution for detecting M. diluviana, but building eDNA markers that are both sensitive and species-specific is challenging when the distribution and taxonomy of closely related non-target taxa are poorly understood, published genetic data are sparse, and tissue samples are difficult to obtain. To address these issues, we developed a pair of independent eDNA markers to increase the likelihood of a positive detection of M. diluviana when present and reduce the probability of false positive detections from closely related non-target species. Because tissue samples of closely-related and possibly sympatric, non-target taxa could not be obtained, we used synthetic DNA sequences of closely related non-target species to test the specificity of eDNA markers. Both eDNA markers yielded positive detections from five waterbodies where M. diluviana was known to be present, and no detections in five others where this species was thought to be absent. Daytime samples from varying depths in one waterbody occupied by M. diluviana demonstrated that samples near the lake bottom produced 5 to more than 300 times as many eDNA copies as samples taken at other depths, but all samples tested positive regardless of depth.
USDA-ARS?s Scientific Manuscript database
In recent years SSR markers have been used widely for the genetic analysis. The objective of present research was to use SSR markers to develop DNA-based genetic identification and analyze genetic relationship of sugarcane cultivars grown in Pakistan either resistant or susceptible to red rot. Twent...
Todd J. Brinkman; David K. Person; Michael K. Schwartz; Kristine L. Pilgrim; Kevin E. Colson; Kris J. Hundertmark
2010-01-01
We tested a protocol for extracting DNA from fecal pellets from Sitka black-tailed deer (Odocoileus hemionus sitkensis) and evaluated genotyping performance of previously developed microsatellite markers as well as a suite of new markers designed specifically for this study. We screened 30 microsatellites, and identified 7 (23%) loci including 4 new markers, that fit...
Applicability of SCAR markers to food genomics: olive oil traceability.
Pafundo, Simona; Agrimonti, Caterina; Maestri, Elena; Marmiroli, Nelson
2007-07-25
DNA analysis with molecular markers has opened a shortcut toward a genomic comprehension of complex organisms. The availability of micro-DNA extraction methods, coupled with selective amplification of the smallest extracted fragments with molecular markers, could equally bring a breakthrough in food genomics: the identification of original components in food. Amplified fragment length polymorphisms (AFLPs) have been instrumental in plant genomics because they may allow rapid and reliable analysis of multiple and potentially polymorphic sites. Nevertheless, their direct application to the analysis of DNA extracted from food matrixes is complicated by the low quality of DNA extracted: its high degradation and the presence of inhibitors of enzymatic reactions. The conversion of an AFLP fragment to a robust and specific single-locus PCR-based marker, therefore, could extend the use of molecular markers to large-scale analysis of complex agro-food matrixes. In the present study is reported the development of sequence characterized amplified regions (SCARs) starting from AFLP profiles of monovarietal olive oils analyzed on agarose gel; one of these was used to identify differences among 56 olive cultivars. All the developed markers were purposefully amplified in olive oils to apply them to olive oil traceability.
Frías De León, María Guadalupe; Arenas López, Gabina; Taylor, Maria Lucia; Acosta Altamirano, Gustavo
2012-01-01
Sequence-characterized amplified region (SCAR) markers, generated by randomly amplified polymorphic DNA (RAPD)-PCR, were developed to detect Histoplasma capsulatum selectively in clinical and environmental samples. A 1,200-bp RAPD-PCR-specific band produced with the 1281-1283 primers was cloned, sequenced, and used to design two SCAR markers, 1281-1283220 and 1281-1283230. The specificity of these markers was confirmed by Southern hybridization. To evaluate the relevance of the SCAR markers for the diagnosis of histoplasmosis, another molecular marker (M antigen probe) was used for comparison. To validate 1281-1283220 and 1281-1283230 as new tools for the identification of H. capsulatum, the specificity and sensitivity of these markers were assessed for the detection of the pathogen in 36 clinical (17 humans, as well as 9 experimentally and 10 naturally infected nonhuman mammals) and 20 environmental (10 contaminated soil and 10 guano) samples. Although the two SCAR markers and the M antigen probe identified H. capsulatum isolates from different geographic origins in America, the 1281-1283220 SCAR marker was the most specific and detected the pathogen in all samples tested. In contrast, the 1281-1283230 SCAR marker and the M antigen probe also amplified DNA from Aspergillus niger and Cryptococcus neoformans, respectively. Both SCAR markers detected as little as 0.001 ng of H. capsulatum DNA, while the M antigen probe detected 0.5 ng of fungal DNA. The SCAR markers revealed the fungal presence better than the M antigen probe in contaminated soil and guano samples. Based on our results, the 1281-1283220 marker can be used to detect and identify H. capsulatum in samples from different sources. PMID:22189121
David E. Schreiber; Karen J. Garner; James M. Slavicek
1997-01-01
Gypsy moths originating in Asia have recently been introduced into North America, making it necessary to develop markers for distinguishing the Asian strain from the established North American population. We have identified 3 randomly amplified polymorphic DNA-polymerase chain reaction generated (RAPD-PCR) markers which are specific for either Asian or North American...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trosko, J.E.; Schultz, R.S.; Chang, C.C.
1980-01-01
The role on unrepaired DNA lesions in the production of mutations is suspected of contributing to the initiation phase of carcinogenesis. Since the molecular basis of mutagenesis is not understood in eukaryotic cells, development of new genetic markers for quantitative in vitro measurement of mutations for mammalian cells is needed. Furthermore, mammalian cells, genetically deficient for various DNA repair enzymes, will be needed to study the role of unrepaired DNA lesions in mutagenesis. The results in this report relate to preliminary attempts to characterize the diphtheria toxin resistance marker as a useful quantitative genetic marker in human cells and tomore » isolate and characterize various DNA repair-deficient Chinese hamster cells.« less
Klymus, Katy E; Marshall, Nathaniel T; Stepien, Carol A
2017-01-01
Describing and monitoring biodiversity comprise integral parts of ecosystem management. Recent research coupling metabarcoding and environmental DNA (eDNA) demonstrate that these methods can serve as important tools for surveying biodiversity, while significantly decreasing the time, expense and resources spent on traditional survey methods. The literature emphasizes the importance of genetic marker development, as the markers dictate the applicability, sensitivity and resolution ability of an eDNA assay. The present study developed two metabarcoding eDNA assays using the mtDNA 16S RNA gene with Illumina MiSeq platform to detect invertebrate fauna in the Laurentian Great Lakes and surrounding waterways, with a focus for use on invasive bivalve and gastropod species monitoring. We employed careful primer design and in vitro testing with mock communities to assess ability of the markers to amplify and sequence targeted species DNA, while retaining rank abundance information. In our mock communities, read abundances reflected the initial input abundance, with regressions having significant slopes (p<0.05) and high coefficients of determination (R2) for all comparisons. Tests on field environmental samples revealed similar ability of our markers to measure relative abundance. Due to the limited reference sequence data available for these invertebrate species, care must be taken when analyzing results and identifying sequence reads to species level. These markers extend eDNA metabarcoding research for molluscs and appear relevant to other invertebrate taxa, such as rotifers and bryozoans. Furthermore, the sphaeriid mussel assay is group-specific, exclusively amplifying bivalves in the Sphaeridae family and providing species-level identification. Our assays provide useful tools for managers and conservation scientists, facilitating early detection of invasive species as well as improving resolution of mollusc diversity.
Klymus, Katy E.; Marshall, Nathaniel T.
2017-01-01
Describing and monitoring biodiversity comprise integral parts of ecosystem management. Recent research coupling metabarcoding and environmental DNA (eDNA) demonstrate that these methods can serve as important tools for surveying biodiversity, while significantly decreasing the time, expense and resources spent on traditional survey methods. The literature emphasizes the importance of genetic marker development, as the markers dictate the applicability, sensitivity and resolution ability of an eDNA assay. The present study developed two metabarcoding eDNA assays using the mtDNA 16S RNA gene with Illumina MiSeq platform to detect invertebrate fauna in the Laurentian Great Lakes and surrounding waterways, with a focus for use on invasive bivalve and gastropod species monitoring. We employed careful primer design and in vitro testing with mock communities to assess ability of the markers to amplify and sequence targeted species DNA, while retaining rank abundance information. In our mock communities, read abundances reflected the initial input abundance, with regressions having significant slopes (p<0.05) and high coefficients of determination (R2) for all comparisons. Tests on field environmental samples revealed similar ability of our markers to measure relative abundance. Due to the limited reference sequence data available for these invertebrate species, care must be taken when analyzing results and identifying sequence reads to species level. These markers extend eDNA metabarcoding research for molluscs and appear relevant to other invertebrate taxa, such as rotifers and bryozoans. Furthermore, the sphaeriid mussel assay is group-specific, exclusively amplifying bivalves in the Sphaeridae family and providing species-level identification. Our assays provide useful tools for managers and conservation scientists, facilitating early detection of invasive species as well as improving resolution of mollusc diversity. PMID:28542313
Gugala, Natalie A; Ishida, Yasuko; Georgiadis, Nicholas J; Roca, Alfred L
2016-07-26
African elephants comprise two species, the savanna elephant (Loxodonta africana) and the forest elephant (L. cyclotis), which are distinct morphologically and genetically. Forest elephants are seriously threatened by poaching for meat and ivory, and by habitat destruction. However, microsatellite markers have thus far been developed only in African savanna elephants and Asian elephants, Elephas maximus. The application of microsatellite markers across deeply divergent lineages may produce irregular patterns such as large indels or null alleles. Thus we developed novel microsatellite markers using DNA from two African forest elephants. One hundred microsatellite loci were identified in next generation shotgun sequences from two African forest elephants, of which 53 were considered suitable for testing. Twenty-three microsatellite markers successfully amplified elephant DNA without amplifying human DNA; these were further characterized in 15 individuals from Lope National Park, Gabon. Three of the markers were monomorphic and four of them carried only two alleles. The remaining sixteen polymorphic loci carried from 3 to 8 alleles, with observed heterozygosity ranging from 0.27 to 0.87, expected heterozygosity from 0.40 to 0.86, and the Shannon diversity index from 0.73 to 1.86. Linkage disequilibrium was not detected between loci, and no locus deviated from Hardy-Weinberg equilibrium. The markers developed in this study will be useful for genetic analyses of the African forest elephant and contribute to their conservation and management.
Hendriks, Rianne J; Dijkstra, Siebren; Smit, Frank P; Vandersmissen, Johan; Van de Voorde, Hendrik; Mulders, Peter F A; van Oort, Inge M; Van Criekinge, Wim; Schalken, Jack A
2018-04-01
Noninvasive biomarkers to guide personalized treatment for castration-resistant prostate cancer (CRPC) are needed. In this study, we analyzed hypermethylation patterns of two genes (GSTP1 and APC) in plasma cell-free DNA (cfDNA) of CRPC patients. The aim of this study was to analyze the cfDNA concentrations and levels of the epigenetic markers and to assess the value of these biomarkers for prognosis. In this prospective study, patients were included before starting new treatment after developing CRPC. The blood samples were collected prior to start of the treatment and at three time points thereafter. cfDNA was extracted from 1.5 mL of plasma and before performing a methylation-specific PCR, bisulfate modification was carried out. The median levels of cfDNA, GSTP1, and APC copies in the baseline samples of CRPC patients (n = 47) were higher than in controls (n = 30). In the survival analysis, the group with baseline marker levels below median had significant less PCa-related deaths (P-values <0.02) and did not reach the median survival point. The survival distributions for the groups were statistically significant for the cfDNA concentration, GSTP1 and APC copies, as well as PSA combined with GSTP1 + APC (P-values <0.03). Furthermore, there were strong positive correlations between PSA and marker response after starting treatment (P-values <0.04). In conclusion, this study showed the kinetics of methylated cfDNA (GSTP1 and APC) in plasma of CRPC patients after starting treatment. Furthermore, the value of the markers before treatment is prognostic for overall survival. These results are promising for developing a test to guide treatment-decision-making for CRPC patients. © 2018 The Authors. The Prostate Published by Wiley Periodicals, Inc.
cpDNA microsatellite markers for Lemna minor (Araceae): Phylogeographic implications1
Wani, Gowher A.; Shah, Manzoor A.; Reshi, Zafar A.; Atangana, Alain R.; Khasa, Damase P.
2014-01-01
• Premise of the study: A lack of genetic markers impedes our understanding of the population biology of Lemna minor. Thus, the development of appropriate genetic markers for L. minor promises to be highly useful for population genetic studies and for addressing other life history questions regarding the species. • Methods and Results: For the first time, we characterized nine polymorphic and 24 monomorphic chloroplast microsatellite markers in L. minor using DNA samples of 26 individuals sampled from five populations in Kashmir and of 17 individuals from three populations in Quebec. Initially, we designed 33 primer pairs, which were tested on genomic DNA from natural populations. Nine loci provided markers with two alleles. Based on genotyping of the chloroplast DNA fragments from 43 sampled individuals, we identified one haplotype in Quebec and 11 haplotypes in Kashmir, of which one occurs in 56% of the genotypes, one in 8%, and nine in 4%, respectively. There was a maximum of two alleles per locus. • Conclusions: These new chloroplast microsatellite markers for L. minor and haplotype distribution patterns indicate a complex phylogeographic history that merits further investigation. PMID:25202636
cpDNA microsatellite markers for Lemna minor (Araceae): Phylogeographic implications.
Wani, Gowher A; Shah, Manzoor A; Reshi, Zafar A; Atangana, Alain R; Khasa, Damase P
2014-07-01
A lack of genetic markers impedes our understanding of the population biology of Lemna minor. Thus, the development of appropriate genetic markers for L. minor promises to be highly useful for population genetic studies and for addressing other life history questions regarding the species. • For the first time, we characterized nine polymorphic and 24 monomorphic chloroplast microsatellite markers in L. minor using DNA samples of 26 individuals sampled from five populations in Kashmir and of 17 individuals from three populations in Quebec. Initially, we designed 33 primer pairs, which were tested on genomic DNA from natural populations. Nine loci provided markers with two alleles. Based on genotyping of the chloroplast DNA fragments from 43 sampled individuals, we identified one haplotype in Quebec and 11 haplotypes in Kashmir, of which one occurs in 56% of the genotypes, one in 8%, and nine in 4%, respectively. There was a maximum of two alleles per locus. • These new chloroplast microsatellite markers for L. minor and haplotype distribution patterns indicate a complex phylogeographic history that merits further investigation.
Genome-Scale Screen for DNA Methylation-Based Detection Markers for Ovarian Cancer
Houshdaran, Sahar; Shen, Hui; Widschwendter, Martin; Daxenbichler, Günter; Long, Tiffany; Marth, Christian; Laird-Offringa, Ite A.; Press, Michael F.; Dubeau, Louis; Siegmund, Kimberly D.; Wu, Anna H.; Groshen, Susan; Chandavarkar, Uma; Roman, Lynda D.; Berchuck, Andrew; Pearce, Celeste L.; Laird, Peter W.
2011-01-01
Background The identification of sensitive biomarkers for the detection of ovarian cancer is of high clinical relevance for early detection and/or monitoring of disease recurrence. We developed a systematic multi-step biomarker discovery and verification strategy to identify candidate DNA methylation markers for the blood-based detection of ovarian cancer. Methodology/Principal Findings We used the Illumina Infinium platform to analyze the DNA methylation status of 27,578 CpG sites in 41 ovarian tumors. We employed a marker selection strategy that emphasized sensitivity by requiring consistency of methylation across tumors, while achieving specificity by excluding markers with methylation in control leukocyte or serum DNA. Our verification strategy involved testing the ability of identified markers to monitor disease burden in serially collected serum samples from ovarian cancer patients who had undergone surgical tumor resection compared to CA-125 levels. We identified one marker, IFFO1 promoter methylation (IFFO1-M), that is frequently methylated in ovarian tumors and that is rarely detected in the blood of normal controls. When tested in 127 serially collected sera from ovarian cancer patients, IFFO1-M showed post-resection kinetics significantly correlated with serum CA-125 measurements in six out of 16 patients. Conclusions/Significance We implemented an effective marker screening and verification strategy, leading to the identification of IFFO1-M as a blood-based candidate marker for sensitive detection of ovarian cancer. Serum levels of IFFO1-M displayed post-resection kinetics consistent with a reflection of disease burden. We anticipate that IFFO1-M and other candidate markers emerging from this marker development pipeline may provide disease detection capabilities that complement existing biomarkers. PMID:22163280
Development of core SSR markers for Gossypium germplasm characterization
USDA-ARS?s Scientific Manuscript database
A set of 105 portable DNA markers were carefully developed to provide a common basis for systematic characterization of cotton germplasm collections in the U.S. and throughout the world. The 105 PCR-based SSR markers of different origins were evenly distributed on each of the 26 cotton chromosomes ...
Analysis of DNA Methylation Status in Bodily Fluids for Early Detection of Cancer
Yokoi, Keigo; Yamashita, Keishi; Watanabe, Masahiko
2017-01-01
Epigenetic alterations by promoter DNA hypermethylation and gene silencing in cancer have been reported over the past few decades. DNA hypermethylation has great potential to serve as a screening marker, a prognostic marker, and a therapeutic surveillance marker in cancer clinics. Some bodily fluids, such as stool or urine, were obtainable without any invasion to the body. Thus, such bodily fluids were suitable samples for high throughput cancer surveillance. Analyzing the methylation status of bodily fluids around the cancer tissue may, additionally, lead to the early detection of cancer, because several genes in cancer tissues are reported to be cancer-specifically hypermethylated. Recently, several studies that analyzed the methylation status of DNA in bodily fluids were conducted, and some of the results have potential for future development and further clinical use. In fact, a stool DNA test was approved by the U.S. Food and Drug Administration (FDA) for the screening of colorectal cancer. Another promising methylation marker has been identified in various bodily fluids for several cancers. We reviewed studies that analyzed DNA methylation in bodily fluids as a less-invasive cancer screening. PMID:28358330
Borrone, James W; Kuhn, David N; Schnell, Raymond J
2004-08-01
There is currently an international effort in improving disease resistance and crop yield in Theobroma cacao L., an economically important crop of the tropics, using marker-assisted selection for breeding. We are developing molecular genetic markers focusing upon gene families involved with disease resistance. One such family is the WRKY proteins, which are plant-specific transcriptional factors associated with regulating defense responses to both abiotic and biotic stresses. Degenerate PCR primers were designed to the highly conserved DNA-binding domain and other conserved motifs of group I and group II, subgroups a-c, WRKY genes. Sixteen individual WRKY fragments were isolated from a mixture of T. cacao DNA using one pair of primers. Of the 16 WRKY loci investigated, seven contained single nucleotide polymorphisms within the intron as detected by sequence comparison of the PCR products. Four of these were successfully converted into molecular markers and mapped in an F2 population by capillary electrophoresis-single strand conformation polymorphism analysis. This is the first report of a pair of degenerate primers amplifying WRKY loci directly from genomic DNA and demonstrates a simple method for developing useful genetic markers from members of a large gene family. Copyright 2004 Springer-Verlag
Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants.
Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki
2014-09-01
In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops.
Araya, Susan; Martins, Alexandre M; Junqueira, Nilton T V; Costa, Ana Maria; Faleiro, Fábio G; Ferreira, Márcio E
2017-07-21
The Passiflora genus comprises hundreds of wild and cultivated species of passion fruit used for food, industrial, ornamental and medicinal purposes. Efforts to develop genomic tools for genetic analysis of P. edulis, the most important commercial Passiflora species, are still incipient. In spite of many recognized applications of microsatellite markers in genetics and breeding, their availability for passion fruit research remains restricted. Microsatellite markers in P. edulis are usually limited in number, show reduced polymorphism, and are mostly based on compound or imperfect repeats. Furthermore, they are confined to only a few Passiflora species. We describe the use of NGS technology to partially assemble the P. edulis genome in order to develop hundreds of new microsatellite markers. A total of 14.11 Gbp of Illumina paired-end sequence reads were analyzed to detect simple sequence repeat sites in the sour passion fruit genome. A sample of 1300 contigs containing perfect repeat microsatellite sequences was selected for PCR primer development. Panels of di- and tri-nucleotide repeat markers were then tested in P. edulis germplasm accessions for validation. DNA polymorphism was detected in 74% of the markers (PIC = 0.16 to 0.77; number of alleles/locus = 2 to 7). A core panel of highly polymorphic markers (PIC = 0.46 to 0.77) was used to cross-amplify PCR products in 79 species of Passiflora (including P. edulis), belonging to four subgenera (Astrophea, Decaloba, Distephana and Passiflora). Approximately 71% of the marker/species combinations resulted in positive amplicons in all species tested. DNA polymorphism was detected in germplasm accessions of six closely related Passiflora species (P. edulis, P. alata, P. maliformis, P. nitida, P. quadrangularis and P. setacea) and the data used for accession discrimination and species assignment. A database of P. edulis DNA sequences obtained by NGS technology was examined to identify microsatellite repeats in the sour passion fruit genome. Markers were submitted to evaluation using accessions of cultivated and wild Passiflora species. The new microsatellite markers detected high levels of DNA polymorphism in sour passion fruit and can potentially be used in genetic analysis of P. edulis and other Passiflora species.
Moon, Suyun; Lee, Hwa-Yong; Shim, Donghwan; Kim, Myungkil; Ka, Kang-Hyeon; Ryoo, Rhim; Ko, Han-Gyu; Koo, Chang-Duck; Chung, Jong-Wook; Ryu, Hojin
2017-06-01
Sixteen genomic DNA simple sequence repeat (SSR) markers of Lentinula edodes were developed from 205 SSR motifs present in 46.1-Mb long L. edodes genome sequences. The number of alleles ranged from 3-14 and the major allele frequency was distributed from 0.17-0.96. The values of observed and expected heterozygosity ranged from 0.00-0.76 and 0.07-0.90, respectively. The polymorphic information content value ranged from 0.07-0.89. A dendrogram, based on 16 SSR markers clustered by the paired hierarchical clustering' method, showed that 33 shiitake cultivars could be divided into three major groups and successfully identified. These SSR markers will contribute to the efficient breeding of this species by providing diversity in shiitake varieties. Furthermore, the genomic information covered by the markers can provide a valuable resource for genetic linkage map construction, molecular mapping, and marker-assisted selection in the shiitake mushroom.
Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma
NASA Astrophysics Data System (ADS)
Xu, Rui-Hua; Wei, Wei; Krawczyk, Michal; Wang, Wenqiu; Luo, Huiyan; Flagg, Ken; Yi, Shaohua; Shi, William; Quan, Qingli; Li, Kang; Zheng, Lianghong; Zhang, Heng; Caughey, Bennett A.; Zhao, Qi; Hou, Jiayi; Zhang, Runze; Xu, Yanxin; Cai, Huimin; Li, Gen; Hou, Rui; Zhong, Zheng; Lin, Danni; Fu, Xin; Zhu, Jie; Duan, Yaou; Yu, Meixing; Ying, Binwu; Zhang, Wengeng; Wang, Juan; Zhang, Edward; Zhang, Charlotte; Li, Oulan; Guo, Rongping; Carter, Hannah; Zhu, Jian-Kang; Hao, Xiaoke; Zhang, Kang
2017-11-01
An effective blood-based method for the diagnosis and prognosis of hepatocellular carcinoma (HCC) has not yet been developed. Circulating tumour DNA (ctDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive `liquid biopsy' for diagnosis and monitoring of cancer. Here, we identified an HCC-specific methylation marker panel by comparing HCC tissue and normal blood leukocytes and showed that methylation profiles of HCC tumour DNA and matched plasma ctDNA are highly correlated. Using cfDNA samples from a large cohort of 1,098 HCC patients and 835 normal controls, we constructed a diagnostic prediction model that showed high diagnostic specificity and sensitivity (P < 0.001) and was highly correlated with tumour burden, treatment response, and stage. Additionally, we constructed a prognostic prediction model that effectively predicted prognosis and survival (P < 0.001). Together, these findings demonstrate in a large clinical cohort the utility of ctDNA methylation markers in the diagnosis, surveillance, and prognosis of HCC.
Rapid quantification and sex determination of forensic evidence materials.
Andréasson, Hanna; Allen, Marie
2003-11-01
DNA quantification of forensic evidence is very valuable for an optimal use of the available biological material. Moreover, sex determination is of great importance as additional information in criminal investigations as well as in identification of missing persons, no suspect cases, and ancient DNA studies. While routine forensic DNA analysis based on short tandem repeat markers includes a marker for sex determination, analysis of samples containing scarce amounts of DNA is often based on mitochondrial DNA, and sex determination is not performed. In order to allow quantification and simultaneous sex determination on minute amounts of DNA, an assay based on real-time PCR analysis of a marker within the human amelogenin gene has been developed. The sex determination is based on melting curve analysis, while an externally standardized kinetic analysis allows quantification of the nuclear DNA copy number in the sample. This real-time DNA quantification assay has proven to be highly sensitive, enabling quantification of single DNA copies. Although certain limitations were apparent, the system is a rapid, cost-effective, and flexible assay for analysis of forensic casework samples.
USDA-ARS?s Scientific Manuscript database
Peanut diseases, such as leaf spot and spotted wilt caused by Tomato Spotted Wilt Virus, can significantly reduce yield and quality. Application of marker assisted plant breeding requires the development and validation of different types of DNA molecular markers. Nearly 10,000 SSR-based molecular ...
Heim, Brett C; Ivy, Jamie A; Latch, Emily K
2012-01-01
The addax (Addax nasomaculatus) is a critically endangered antelope that is currently maintained in zoos through regional, conservation breeding programs. As for many captive species, incomplete pedigree data currently impedes the ability of addax breeding programs to confidently manage the genetics of captive populations and to select appropriate animals for reintroduction. Molecular markers are often used to improve pedigree resolution, thereby improving the long-term effectiveness of genetic management. When developing a suite of molecular markers, it is important to consider the source of DNA, as the utility of markers may vary across DNA sources. In this study, we optimized a suite of microsatellite markers for use in genotyping captive addax blood samples collected on FTA cards. We amplified 66 microsatellite loci previously described in other Artiodactyls. Sixteen markers amplified a single product in addax, but only 5 of these were found to be polymorphic in a sample of 37 addax sampled from a captive herd at Fossil Rim Wildlife Center in the US. The suite of microsatellite markers developed in this study provides a new tool for the genetic management of captive addax, and demonstrates that FTA cards can be a useful means of sample storage, provided appropriate loci are used in downstream analyses. © 2011 Wiley Periodicals, Inc.
Targeted Proteomics Approach for Precision Plant Breeding.
Chawade, Aakash; Alexandersson, Erik; Bengtsson, Therese; Andreasson, Erik; Levander, Fredrik
2016-02-05
Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that enables precise quantitation of hundreds of peptides in a single run. This technique provides new opportunities for multiplexed protein biomarker measurements. For precision plant breeding, DNA-based markers have been used extensively, but the potential of protein biomarkers has not been exploited. In this work, we developed an SRM marker panel with assays for 104 potato (Solanum tuberosum) peptides selected using univariate and multivariate statistics. Thereafter, using random forest classification, the prediction markers were identified for Phytopthora infestans resistance in leaves, P. infestans resistance in tubers, and plant yield in potato leaf secretome samples. The results suggest that the marker panel has the predictive potential for three traits, two of which have no commercial DNA markers so far. Furthermore, the marker panel was also tested and found to be applicable to potato clones not used during the marker development. The proposed workflow is thus a proof-of-concept for targeted proteomics as an efficient readout in accelerated breeding for complex and agronomically important traits.
Advances in marker-assisted breeding of sugarcane
USDA-ARS?s Scientific Manuscript database
Despite the challenges posed by sugarcane, geneticists and breeders have actively sought to use DNA marker technology to enhance breeding efforts. Markers have been used to explore taxonomy, estimate genetic diversity, and to develop unique molecular fingerprints. Numerous studies have been undertak...
Genetic identification of missing persons: DNA analysis of human remains and compromised samples.
Alvarez-Cubero, M J; Saiz, M; Martinez-Gonzalez, L J; Alvarez, J C; Eisenberg, A J; Budowle, B; Lorente, J A
2012-01-01
Human identification has made great strides over the past 2 decades due to the advent of DNA typing. Forensic DNA typing provides genetic data from a variety of materials and individuals, and is applied to many important issues that confront society. Part of the success of DNA typing is the generation of DNA databases to help identify missing persons and to develop investigative leads to assist law enforcement. DNA databases house DNA profiles from convicted felons (and in some jurisdictions arrestees), forensic evidence, human remains, and direct and family reference samples of missing persons. These databases are essential tools, which are becoming quite large (for example the US Database contains 10 million profiles). The scientific, governmental and private communities continue to work together to standardize genetic markers for more effective worldwide data sharing, to develop and validate robust DNA typing kits that contain the reagents necessary to type core identity genetic markers, to develop technologies that facilitate a number of analytical processes and to develop policies to make human identity testing more effective. Indeed, DNA typing is integral to resolving a number of serious criminal and civil concerns, such as solving missing person cases and identifying victims of mass disasters and children who may have been victims of human trafficking, and provides information for historical studies. As more refined capabilities are still required, novel approaches are being sought, such as genetic testing by next-generation sequencing, mass spectrometry, chip arrays and pyrosequencing. Single nucleotide polymorphisms offer the potential to analyze severely compromised biological samples, to determine the facial phenotype of decomposed human remains and to predict the bioancestry of individuals, a new focus in analyzing this type of markers. Copyright © 2012 S. Karger AG, Basel.
Horreo, J L; Peláez, M L; Suárez, T; Fitze, P S
2018-02-01
The European common lizard (Zootoca vivipara) is a widely distributed species across Europe and Asia exhibiting two reproductive modes (oviparity/viviparity), six major lineages and several sublineages. It has been used to tackle a large variety of research questions, nevertheless, few nuclear DNA sequence markers have been developed for this species. Here we developed 79 new nuclear DNA sequence markers using a clonation protocol. These markers were amplified in several oviparous and viviparous specimens including samples of all extant clades, to test the amplification success and their diversity. 49.4% of the markers were polymorphic and of those, 51.3% amplified in all and 94.9% amplified in 5-7 of the extant Z. vivipara clades. These new markers will be very useful for the study of the population structure, population dynamics, and micro/macro evolution of Z. vivipara. Cross-species amplification in four lizard species (Psammodromus edwardsianus, Podarcis muralis, Lacerta bilineata, and Takydromus sexlineatus) was positive in several of the markers, and six makers amplified in all five species. The large genetic distance between P. edwardsianus and Z. vivipara further suggests that these markers may as well be employed in many other species.
Development of swine-specific DNA markers for biosensor-based halal authentication.
Ali, M E; Hashim, U; Kashif, M; Mustafa, S; Che Man, Y B; Abd Hamid, S B
2012-06-29
The pig (Sus scrofa) mitochondrial genome was targeted to design short (15-30 nucleotides) DNA markers that would be suitable for biosensor-based hybridization detection of target DNA. Short DNA markers are reported to survive harsh conditions in which longer ones are degraded into smaller fragments. The whole swine mitochondrial-genome was in silico digested with AluI restriction enzyme. Among 66 AluI fragments, five were selected as potential markers because of their convenient lengths, high degree of interspecies polymorphism and intraspecies conservatism. These were confirmed by NCBI blast analysis and ClustalW alignment analysis with 11 different meat-providing animal and fish species. Finally, we integrated a tetramethyl rhodamine-labeled 18-nucleotide AluI fragment into a 3-nm diameter citrate-tannate coated gold nanoparticle to develop a swine-specific hybrid nanobioprobe for the determination of pork adulteration in 2.5-h autoclaved pork-beef binary mixtures. This hybrid probe detected as low as 1% pork in deliberately contaminated autoclaved pork-beef binary mixtures and no cross-species detection was recorded, demonstrating the feasibility of this type of probe for biosensor-based detection of pork adulteration of halal and kosher foods.
DNA "nano-claw": logic-based autonomous cancer targeting and therapy.
You, Mingxu; Peng, Lu; Shao, Na; Zhang, Liqin; Qiu, Liping; Cui, Cheng; Tan, Weihong
2014-01-29
Cell types, both healthy and diseased, can be classified by inventories of their cell-surface markers. Programmable analysis of multiple markers would enable clinicians to develop a comprehensive disease profile, leading to more accurate diagnosis and intervention. As a first step to accomplish this, we have designed a DNA-based device, called "Nano-Claw". Combining the special structure-switching properties of DNA aptamers with toehold-mediated strand displacement reactions, this claw is capable of performing autonomous logic-based analysis of multiple cancer cell-surface markers and, in response, producing a diagnostic signal and/or targeted photodynamic therapy. We anticipate that this design can be widely applied in facilitating basic biomedical research, accurate disease diagnosis, and effective therapy.
Luo, Zhijing; Chen, Mingjiao; Zhao, Xiangxiang; Zhang, Dabing; Qi, Yiping; Yuan, Zheng
2016-01-01
Rapid and accurate genome-wide marker detection is essential to the marker-assisted breeding and functional genomics studies. In this work, we developed an integrated software, AgroMarker Finder (AMF: http://erp.novelbio.com/AMF), for providing graphical user interface (GUI) to facilitate the recently developed restriction-site associated DNA (RAD) sequencing data analysis in rice. By application of AMF, a total of 90,743 high-quality markers (82,878 SNPs and 7,865 InDels) were detected between rice varieties JP69 and Jiaoyuan5A. The density of the identified markers is 0.2 per Kb for SNP markers, and 0.02 per Kb for InDel markers. Sequencing validation revealed that the accuracy of genome-wide marker detection by AMF is 93%. In addition, a validated subset of 82 SNPs and 31 InDels were found to be closely linked to 117 important agronomic trait genes, providing a basis for subsequent marker-assisted selection (MAS) and variety identification. Furthermore, we selected 12 markers from 31 validated InDel markers to identify seed authenticity of variety Jiaoyuanyou69, and we also identified 10 markers closely linked to the fragrant gene BADH2 to minimize linkage drag for Wuxiang075 (BADH2 donor)/Jiachang1 recombinants selection. Therefore, this software provides an efficient approach for marker identification from RAD-seq data, and it would be a valuable tool for plant MAS and variety protection. PMID:26799713
Fan, Wei; Zong, Jie; Luo, Zhijing; Chen, Mingjiao; Zhao, Xiangxiang; Zhang, Dabing; Qi, Yiping; Yuan, Zheng
2016-01-01
Rapid and accurate genome-wide marker detection is essential to the marker-assisted breeding and functional genomics studies. In this work, we developed an integrated software, AgroMarker Finder (AMF: http://erp.novelbio.com/AMF), for providing graphical user interface (GUI) to facilitate the recently developed restriction-site associated DNA (RAD) sequencing data analysis in rice. By application of AMF, a total of 90,743 high-quality markers (82,878 SNPs and 7,865 InDels) were detected between rice varieties JP69 and Jiaoyuan5A. The density of the identified markers is 0.2 per Kb for SNP markers, and 0.02 per Kb for InDel markers. Sequencing validation revealed that the accuracy of genome-wide marker detection by AMF is 93%. In addition, a validated subset of 82 SNPs and 31 InDels were found to be closely linked to 117 important agronomic trait genes, providing a basis for subsequent marker-assisted selection (MAS) and variety identification. Furthermore, we selected 12 markers from 31 validated InDel markers to identify seed authenticity of variety Jiaoyuanyou69, and we also identified 10 markers closely linked to the fragrant gene BADH2 to minimize linkage drag for Wuxiang075 (BADH2 donor)/Jiachang1 recombinants selection. Therefore, this software provides an efficient approach for marker identification from RAD-seq data, and it would be a valuable tool for plant MAS and variety protection.
Wei, Jingli; Hu, Xiaorong; Yang, Jingjing; Yang, Wencai
2012-01-01
The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG) Release2.3 Predicted CDS (SL2.40) discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2%) of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei’s genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis. PMID:23166835
Wei, Jingli; Hu, Xiaorong; Yang, Jingjing; Yang, Wencai
2012-01-01
The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG) Release2.3 Predicted CDS (SL2.40) discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2%) of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.
Sugai, Kyoko; Setsuko, Suzuki; Uchiyama, Kentaro; Murakami, Noriaki; Kato, Hidetoshi; Yoshimaru, Hiroshi
2012-02-01
Expressed sequence tag (EST)-derived microsatellite markers were developed for Elaeocarpus photiniifolia, an endemic taxon of the Bonin Islands. Initially, a complementary DNA (cDNA) library was constructed by de novo pyrosequencing of total RNA extracted from a seedling. A total of 267 primer pairs were designed from the library. Of the 48 tested loci, 25 loci were polymorphic among 41 individuals representing the entire geographical range of the species, with the number of alleles per locus and expected heterozygosity ranging from two to 14 and 0.09 to 0.86, respectively. Most loci were transferable to a related species, E. sylvestris. The developed markers will be useful for evaluating the genetic structure of E. photiniifolia.
Dong, Lin-Lin; Chen, Zhong-Jian; Wang, Yong; Wei, Fu-Gang; Zhang, Lian-Juan; Xu, Jiang; Wei, Guang-Fei; Wang, Rui; Yang, Juan; Liu, Wei-Lin; Li, Xi-Wen; Yu, Yu-Qi; Chen, Shi-Lin
2017-01-01
DNA marker-assisted selection of medicinal plants is based on the DNA polymorphism, selects the DNA sequences related to the phenotypes such as high yields, superior quality, stress-resistance and so on according to the technologies of molecular hybridization, polymerase chain reaction and high-throughput sequencing, and assists the breeding of new cultivars. This study bred the first disease-resistant cultivar of notoginseng "Miaoxiang Kangqi 1" using the technology of DNA marker-assisted selection of medicinal plants and systematic breeding. The disease-resistant cultivar of notoginseng contained 12 special SNPs based on the analysis of Restriction-site Associated DNA Sequencing (RAD-Seq). Among the SNP (record_519688) was related to the root rot-resistant characteristics, which indicated this SNP could serve as genetic markers of disease-resistant cultivars and assist the systematic breeding. Compared to the conventional cultivated cultivars, the incidence rate of root-rot and rust-rot in notoginseng seedlings decreased by 83.6% and 71.8%, respectively. The incidence rate of root-rot respectively declined by 43.6% and 62.9% in notoginseng cultivation for 2 and 3 years compared with those of the conventional cultivated cultivars. Additionally, the potential disease-resistant groups were screened based on the relative SNP, and this model enlarged the target groups and advanced the breeding efficiency. DNA marker-assisted selection of medicinal plants accelerated the breeding and promotion of new cultivars, and guaranteed the healthy development of Chinese medicinal materials industry. Copyright© by the Chinese Pharmaceutical Association.
Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun
2016-06-04
Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to "Gopoong" and "K-1" were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information.
Clifton, D.R.; Rodriguez, R.J.
1997-01-01
A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.
Clifton, D.R.; Rodriguez, R.J.
1997-01-01
A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.
Vuataz, Laurent; Sartori, Michel; Wagner, André; Monaghan, Michael T.
2011-01-01
Aquatic larvae of many Rhithrogena mayflies (Ephemeroptera) inhabit sensitive Alpine environments. A number of species are on the IUCN Red List and many recognized species have restricted distributions and are of conservation interest. Despite their ecological and conservation importance, ambiguous morphological differences among closely related species suggest that the current taxonomy may not accurately reflect the evolutionary diversity of the group. Here we examined the species status of nearly 50% of European Rhithrogena diversity using a widespread sampling scheme of Alpine species that included 22 type localities, general mixed Yule-coalescent (GMYC) model analysis of one standard mtDNA marker and one newly developed nDNA marker, and morphological identification where possible. Using sequences from 533 individuals from 144 sampling localities, we observed significant clustering of the mitochondrial (cox1) marker into 31 GMYC species. Twenty-one of these could be identified based on the presence of topotypes (expertly identified specimens from the species' type locality) or unambiguous morphology. These results strongly suggest the presence of both cryptic diversity and taxonomic oversplitting in Rhithrogena. Significant clustering was not detected with protein-coding nuclear PEPCK, although nine GMYC species were congruent with well supported terminal clusters of nDNA. Lack of greater congruence in the two data sets may be the result of incomplete sorting of ancestral polymorphism. Bayesian phylogenetic analyses of both gene regions recovered four of the six recognized Rhithrogena species groups in our samples as monophyletic. Future development of more nuclear markers would facilitate multi-locus analysis of unresolved, closely related species pairs. The DNA taxonomy developed here lays the groundwork for a future revision of the important but cryptic Rhithrogena genus in Europe. PMID:21611178
Shimizu, Tokurou; Kitajima, Akira; Nonaka, Keisuke; Yoshioka, Terutaka; Ohta, Satoshi; Goto, Shingo; Toyoda, Atsushi; Fujiyama, Asao; Mochizuki, Takako; Nagasaki, Hideki; Kaminuma, Eli; Nakamura, Yasukazu
2016-01-01
Most indigenous citrus varieties are assumed to be natural hybrids, but their parentage has so far been determined in only a few cases because of their wide genetic diversity and the low transferability of DNA markers. Here we infer the parentage of indigenous citrus varieties using simple sequence repeat and indel markers developed from various citrus genome sequence resources. Parentage tests with 122 known hybrids using the selected DNA markers certify their transferability among those hybrids. Identity tests confirm that most variant strains are selected mutants, but we find four types of kunenbo (Citrus nobilis) and three types of tachibana (Citrus tachibana) for which we suggest different origins. Structure analysis with DNA markers that are in Hardy-Weinberg equilibrium deduce three basic taxa coinciding with the current understanding of citrus ancestors. Genotyping analysis of 101 indigenous citrus varieties with 123 selected DNA markers infers the parentages of 22 indigenous citrus varieties including Satsuma, Temple, and iyo, and single parents of 45 indigenous citrus varieties, including kunenbo, C. ichangensis, and Ichang lemon by allele-sharing and parentage tests. Genotyping analysis of chloroplast and mitochondrial genomes using 11 DNA markers classifies their cytoplasmic genotypes into 18 categories and deduces the combination of seed and pollen parents. Likelihood ratio analysis verifies the inferred parentages with significant scores. The reconstructed genealogy identifies 12 types of varieties consisting of Kishu, kunenbo, yuzu, koji, sour orange, dancy, kobeni mikan, sweet orange, tachibana, Cleopatra, willowleaf mandarin, and pummelo, which have played pivotal roles in the occurrence of these indigenous varieties. The inferred parentage of the indigenous varieties confirms their hybrid origins, as found by recent studies.
Markers of immunity and bacterial translocation in cirrhosis.
Mortensen, Christian
2015-07-01
Bacterial translocation (BT), the migration of enteric bacteria to extraintestinal sites, is related to immune stimulation and haemodynamic changes in experimental cirrhosis. These changes may be highly relevant to patients with cirrhosis, where changes in the circulation cause serious complications. The optimal surrogate marker of BT in patients with cirrhosis, however, is a matter of controversy. In the first study, we investigated the relationship between markers of inflammation, haemodynamics and prognosis in 45 patients and 12 controls. We found high-sensitive C-reactive protein to be correlated to portal hypertension, a clinically relevant haemodynamic alteration, and appeared to be associated with increased mortality. To assess the consequences of BT on immunity, we developed an assay for the detection of bacterial DNA (bDNA), a novel marker of BT. Using the assay in the second study, in 38 patients with ascites, we found no association between bDNA and immunity, in contrast to some previous findings. In the final paper, exploring one possible translocation route, we hypothesized a difference in bDNA levels between the blood from the veins draining the gut on one hand and the liver on the other. Collecting samples during the insertion of a shunt between the two vessels in 28 patients, our finding did not suggest marked differences in bDNA, but conversely to expectations, suggested marked hepatic production of two markers of inflammation. The main results of the present thesis support some concepts of current thinking on cirrhosis pathophysiology, including the relationship of markers of inflammation to haemodynamics, disease stage and prognosis. Our results also add to a growing body of evidence suggesting that bDNA is not a clinically relevant marker of BT.
Kitajima, Akira; Nonaka, Keisuke; Yoshioka, Terutaka; Ohta, Satoshi; Goto, Shingo; Toyoda, Atsushi; Fujiyama, Asao; Mochizuki, Takako; Nagasaki, Hideki; Kaminuma, Eli; Nakamura, Yasukazu
2016-01-01
Most indigenous citrus varieties are assumed to be natural hybrids, but their parentage has so far been determined in only a few cases because of their wide genetic diversity and the low transferability of DNA markers. Here we infer the parentage of indigenous citrus varieties using simple sequence repeat and indel markers developed from various citrus genome sequence resources. Parentage tests with 122 known hybrids using the selected DNA markers certify their transferability among those hybrids. Identity tests confirm that most variant strains are selected mutants, but we find four types of kunenbo (Citrus nobilis) and three types of tachibana (Citrus tachibana) for which we suggest different origins. Structure analysis with DNA markers that are in Hardy–Weinberg equilibrium deduce three basic taxa coinciding with the current understanding of citrus ancestors. Genotyping analysis of 101 indigenous citrus varieties with 123 selected DNA markers infers the parentages of 22 indigenous citrus varieties including Satsuma, Temple, and iyo, and single parents of 45 indigenous citrus varieties, including kunenbo, C. ichangensis, and Ichang lemon by allele-sharing and parentage tests. Genotyping analysis of chloroplast and mitochondrial genomes using 11 DNA markers classifies their cytoplasmic genotypes into 18 categories and deduces the combination of seed and pollen parents. Likelihood ratio analysis verifies the inferred parentages with significant scores. The reconstructed genealogy identifies 12 types of varieties consisting of Kishu, kunenbo, yuzu, koji, sour orange, dancy, kobeni mikan, sweet orange, tachibana, Cleopatra, willowleaf mandarin, and pummelo, which have played pivotal roles in the occurrence of these indigenous varieties. The inferred parentage of the indigenous varieties confirms their hybrid origins, as found by recent studies. PMID:27902727
Genomic profiling of plastid DNA variation in the Mediterranean olive tree
2011-01-01
Background Characterisation of plastid genome (or cpDNA) polymorphisms is commonly used for phylogeographic, population genetic and forensic analyses in plants, but detecting cpDNA variation is sometimes challenging, limiting the applications of such an approach. In the present study, we screened cpDNA polymorphism in the olive tree (Olea europaea L.) by sequencing the complete plastid genome of trees with a distinct cpDNA lineage. Our objective was to develop new markers for a rapid genomic profiling (by Multiplex PCRs) of cpDNA haplotypes in the Mediterranean olive tree. Results Eight complete cpDNA genomes of Olea were sequenced de novo. The nucleotide divergence between olive cpDNA lineages was low and not exceeding 0.07%. Based on these sequences, markers were developed for studying two single nucleotide substitutions and length polymorphism of 62 regions (with variable microsatellite motifs or other indels). They were then used to genotype the cpDNA variation in cultivated and wild Mediterranean olive trees (315 individuals). Forty polymorphic loci were detected on this sample, allowing the distinction of 22 haplotypes belonging to the three Mediterranean cpDNA lineages known as E1, E2 and E3. The discriminating power of cpDNA variation was particularly low for the cultivated olive tree with one predominating haplotype, but more diversity was detected in wild populations. Conclusions We propose a method for a rapid characterisation of the Mediterranean olive germplasm. The low variation in the cultivated olive tree indicated that the utility of cpDNA variation for forensic analyses is limited to rare haplotypes. In contrast, the high cpDNA variation in wild populations demonstrated that our markers may be useful for phylogeographic and populations genetic studies in O. europaea. PMID:21569271
A Platform for Combined DNA and Protein Microarrays Based on Total Internal Reflection Fluorescence
Asanov, Alexander; Zepeda, Angélica; Vaca, Luis
2012-01-01
We have developed a novel microarray technology based on total internal reflection fluorescence (TIRF) in combination with DNA and protein bioassays immobilized at the TIRF surface. Unlike conventional microarrays that exhibit reduced signal-to-background ratio, require several stages of incubation, rinsing and stringency control, and measure only end-point results, our TIRF microarray technology provides several orders of magnitude better signal-to-background ratio, performs analysis rapidly in one step, and measures the entire course of association and dissociation kinetics between target DNA and protein molecules and the bioassays. In many practical cases detection of only DNA or protein markers alone does not provide the necessary accuracy for diagnosing a disease or detecting a pathogen. Here we describe TIRF microarrays that detect DNA and protein markers simultaneously, which reduces the probabilities of false responses. Supersensitive and multiplexed TIRF DNA and protein microarray technology may provide a platform for accurate diagnosis or enhanced research studies. Our TIRF microarray system can be mounted on upright or inverted microscopes or interfaced directly with CCD cameras equipped with a single objective, facilitating the development of portable devices. As proof-of-concept we applied TIRF microarrays for detecting molecular markers from Bacillus anthracis, the pathogen responsible for anthrax. PMID:22438738
USDA-ARS?s Scientific Manuscript database
In recent years SSR markers have been used widely for genetic analysis. The objective of this study was to use an SSR-based marker system to develop the molecular fingerprints and analyze the genetic relationship of sugarcane cultivars grown in Pakistan. Twenty-one highly polymorphic SSR markers wer...
A framework linkage map of perennial ryegrass based on SSR markers
G.P. Gill; P.L. Wilcox; D.J. Whittaker; R.A. Winz; P. Bickerstaff; Craig E. Echt; J. Kent; M.O. Humphreys; K.M. Elborough; R.C. Gardner
2006-01-01
A moderate-density linkage map for Lolium perenne L. has been constructed based on 376 simple sequence repeat (SSR) markers. Approximately one third ( 124) of the SSR markers were developed from GeneThresher libraries that preferentially select genomic DNA clones from the gene-rich unmethylated portion of the genome. The remaining SSR marker loci...
A single mini-barcode test to screen for Australian mammalian predators from environmental samples
MacDonald, Anna J; Sarre, Stephen D
2017-01-01
Abstract Identification of species from trace samples is now possible through the comparison of diagnostic DNA fragments against reference DNA sequence databases. DNA detection of animals from non-invasive samples, such as predator faeces (scats) that contain traces of DNA from their species of origin, has proved to be a valuable tool for the management of elusive wildlife. However, application of this approach can be limited by the availability of appropriate genetic markers. Scat DNA is often degraded, meaning that longer DNA sequences, including standard DNA barcoding markers, are difficult to recover. Instead, targeted short diagnostic markers are required to serve as diagnostic mini-barcodes. The mitochondrial genome is a useful source of such trace DNA markers because it provides good resolution at the species level and occurs in high copy numbers per cell. We developed a mini-barcode based on a short (178 bp) fragment of the conserved 12S ribosomal ribonucleic acid mitochondrial gene sequence, with the goal of discriminating amongst the scats of large mammalian predators of Australia. We tested the sensitivity and specificity of our primers and can accurately detect and discriminate amongst quolls, cats, dogs, foxes, and devils from trace DNA samples. Our approach provides a cost-effective, time-efficient, and non-invasive tool that enables identification of all 8 medium-large mammal predators in Australia, including native and introduced species, using a single test. With modification, this approach is likely to be of broad applicability elsewhere. PMID:28810700
Konakandla, Bhanu; Park, Yoonseong; Margolies, David
2006-01-01
We developed and optimized a method using Chelex DNA extraction followed by whole genome amplification (WGA) to overcome problems conducting molecular genetic studies due to the limited amount of DNA obtainable from individual small organisms such as predatory mites. The DNA from a single mite, Phytoseiulus persimilis Athias-Henrot (Acari: Phytoseiidae), isolated in Chelex suspension was subjected to WGA. More than 1000-fold amplification of the DNA was achieved using as little as 0.03 ng genomic DNA template. The DNA obtained by the WGA was used for polymerase chain reaction followed by direct sequencing. From WGA DNA, nuclear DNA intergenic spacers ITS1 and ITS2 and a mitochondrial DNA 12S marker were tested in three different geographical populations of the predatory mite: California, the Netherlands, and Sicily. We found a total of four different alleles of the 12S in the Sicilian population, but no polymorphism was identified in the ITS marker. The combination of Chelex DNA extraction and WGA is thus shown to be a simple and robust technique for examining molecular markers for multiple loci by using individual mites. We conclude that the methods, Chelex extraction of DNA followed by WGA, provide a large quantity of DNA template that can be used for multiple PCR reactions useful for genetic studies requiring the genotypes of individual mites.
Balasubramani, Subramani Paranthaman; Murugan, Ramar; Ravikumar, Kaliamoorthy; Venkatasubramanian, Padma
2010-09-01
Tribulus terrestris L. (Zygophyllaceae) is one of the highly traded raw drugs and also used as a stimulative food additive in Europe and USA. While, Ayurvedic Pharmacopoeia of India recognizes T. terrestris as Goksura, Tribulus lanuginosus and T. subramanyamii are also traded by the same name raising issues of quality control. The nuclear ribosomal RNA genes and ITS (internal transcribed spacer) sequence were used to develop species-specific DNA markers. The species-specific markers efficiently amplified 295bp for T. terrestris (TT1F and TT1R), 300bp for T. lanuginosus (TL1F and TL1R) and 214bp for T. subramanyamii (TS1F and TS1R). These DNA markers can be used to distinguish T. terrestris from its adulterants. Copyright (c) 2010 Elsevier B.V. All rights reserved.
He, Xiwei; Liu, Peng; Zheng, Guolu; Chen, Huimei; Shi, Wei; Cui, Yibin; Ren, Hongqiang; Zhang, Xu-Xiang
2016-01-01
This study systematically evaluated five microbial and four mitochondrial DNA (mtDNA) markers, including sensitivities and specificities under PCR method, and fecal concentrations and decay rates in water under qPCR method. The microbial DNA markers were the three human-associated (BacH, HF183 and B.adolescentis) and two pig-associated (Pig-2-Bac and L.amylovorus), while the mtDNA ones were two human- (H-ND6 and H-ND5) and two pig-associated (P-CytB and P-ND5). All the mtDNA markers showed higher sensitivity (100%) than the microbial ones (84.0–88.8%) except Pig-2-Bac (100%). Specificities of the human mtDNA markers (99.1 and 98.1%) were higher than those of the human-associated microbial ones (57.0–88.8%). But this pattern was not observed in the pig-associated markers where Pig-2-Bac had 100% specificity. The reliability of H-ND6 and H-ND5 was further evidenced to identify locations of the most polluted within the Taihu Lake watershed of China. In general, the microbial DNA markers demonstrated a higher fecal concentration than the mtDNA ones; increasing temperature and sunlight exposure accelerated significantly the decay of all the DNA markers. Results of this study suggest that DNA markers H-ND6, H-ND5, and Pig-2-Bac may be among the best for fecal source tracking in water. PMID:27734941
NASA Astrophysics Data System (ADS)
He, Xiwei; Liu, Peng; Zheng, Guolu; Chen, Huimei; Shi, Wei; Cui, Yibin; Ren, Hongqiang; Zhang, Xu-Xiang
2016-10-01
This study systematically evaluated five microbial and four mitochondrial DNA (mtDNA) markers, including sensitivities and specificities under PCR method, and fecal concentrations and decay rates in water under qPCR method. The microbial DNA markers were the three human-associated (BacH, HF183 and B.adolescentis) and two pig-associated (Pig-2-Bac and L.amylovorus), while the mtDNA ones were two human- (H-ND6 and H-ND5) and two pig-associated (P-CytB and P-ND5). All the mtDNA markers showed higher sensitivity (100%) than the microbial ones (84.0-88.8%) except Pig-2-Bac (100%). Specificities of the human mtDNA markers (99.1 and 98.1%) were higher than those of the human-associated microbial ones (57.0-88.8%). But this pattern was not observed in the pig-associated markers where Pig-2-Bac had 100% specificity. The reliability of H-ND6 and H-ND5 was further evidenced to identify locations of the most polluted within the Taihu Lake watershed of China. In general, the microbial DNA markers demonstrated a higher fecal concentration than the mtDNA ones; increasing temperature and sunlight exposure accelerated significantly the decay of all the DNA markers. Results of this study suggest that DNA markers H-ND6, H-ND5, and Pig-2-Bac may be among the best for fecal source tracking in water.
Theory and modeling of particles with DNA-mediated interactions
NASA Astrophysics Data System (ADS)
Licata, Nicholas A.
2008-05-01
In recent years significant attention has been attracted to proposals which utilize DNA for nanotechnological applications. Potential applications of these ideas range from the programmable self-assembly of colloidal crystals, to biosensors and nanoparticle based drug delivery platforms. In Chapter I we introduce the system, which generically consists of colloidal particles functionalized with specially designed DNA markers. The sequence of bases on the DNA markers determines the particle type. Due to the hybridization between complementary single-stranded DNA, specific, type-dependent interactions can be introduced between particles by choosing the appropriate DNA marker sequences. In Chapter II we develop a statistical mechanical description of the aggregation and melting behavior of particles with DNA-mediated interactions. In Chapter III a model is proposed to describe the dynamical departure and diffusion of particles which form reversible key-lock connections. In Chapter IV we propose a method to self-assemble nanoparticle clusters using DNA scaffolds. A natural extension is discussed in Chapter V, the programmable self-assembly of nanoparticle clusters where the desired cluster geometry is encoded using DNA-mediated interactions. In Chapter VI we consider a nanoparticle based drug delivery platform for targeted, cell specific chemotherapy. In Chapter VII we present prospects for future research: the connection between DNA-mediated colloidal crystallization and jamming, and the inverse problem in self-assembly.
Development of Genetic Markers for Environmental DNA (eDNA) Monitoring of Sturgeon
2014-09-01
sturgeon markers were tested for specificity against a battery of 32 non-target fish species common to the Mississippi and Illinois River watersheds...techniques. Such methods, including fishing , netting, seining, and electrofishing, can often be logistically complex and require considerable outlays of... fish and amphibian community composition (Minamoto et al. 2012, Thomsen et al. 2012) and biomass estimation (Takahara et al. 2012). Sturgeon are taxa
Identification of apple cultivars on the basis of simple sequence repeat markers.
Liu, G S; Zhang, Y G; Tao, R; Fang, J G; Dai, H Y
2014-09-12
DNA markers are useful tools that play an important role in plant cultivar identification. They are usually based on polymerase chain reaction (PCR) and include simple sequence repeats (SSRs), inter-simple sequence repeats, and random amplified polymorphic DNA. However, DNA markers were not used effectively in the complete identification of plant cultivars because of the lack of known DNA fingerprints. Recently, a novel approach called the cultivar identification diagram (CID) strategy was developed to facilitate the use of DNA markers for separate plant individuals. The CID was designed whereby a polymorphic maker was generated from each PCR that directly allowed for cultivar sample separation at each step. Therefore, it could be used to identify cultivars and varieties easily with fewer primers. In this study, 60 apple cultivars, including a few main cultivars in fields and varieties from descendants (Fuji x Telamon) were examined. Of the 20 pairs of SSR primers screened, 8 pairs gave reproducible, polymorphic DNA amplification patterns. The banding patterns obtained from these 8 primers were used to construct a CID map. Each cultivar or variety in this study was distinguished from the others completely, indicating that this method can be used for efficient cultivar identification. The result contributed to studies on germplasm resources and the seedling industry in fruit trees.
Genome regions' putative association with Fusarium wilt or root-knot nematode resistance in cotton.
USDA-ARS?s Scientific Manuscript database
Around 1,300 microsatellite or SSR markers [named MUSB001 – MUSB1316 (600 informative)] were developed at the USDA-ARS, WICSRU Shafter, CA with the support of cooperators and Cotton Incorporated. These MUSB markers were developed from BAC-end DNA sequence information from a previously developed BAC ...
Molecular plant breeding: methodology and achievements.
Varshney, Rajeev K; Hoisington, Dave A; Nayak, Spurthi N; Graner, Andreas
2009-01-01
The progress made in DNA marker technology has been remarkable and exciting in recent years. DNA markers have proved valuable tools in various analyses in plant breeding, for example, early generation selection, enrichment of complex F(1)s, choice of donor parent in backcrossing, recovery of recurrent parent genotype in backcrossing, linkage block analysis and selection. Other main areas of applications of molecular markers in plant breeding include germplasm characterization/fingerprinting, determining seed purity, systematic sampling of germplasm, and phylogenetic analysis. Molecular markers, thus, have proved powerful tools in replacing the bioassays and there are now many examples available to show the efficacy of such markers. We have illustrated some basic concepts and methodology of applying molecular markers for enhancing the selection efficiency in plant breeding. Some successful examples of product developments of molecular breeding have also been presented.
DOT National Transportation Integrated Search
2017-12-01
Molecular genetic techniques provide tools that may be used to locate, monitor, and survey cryptic aquatic species. This study developed genetic markers useful in determining if the James Spinymussel (Pleurobema collina), an endangered species, can b...
Screening and Characterization of RAPD Markers in Viscerotropic Leishmania Parasites
Mkada–Driss, Imen; Talbi, Chiraz; Guerbouj, Souheila; Driss, Mehdi; Elamine, Elwaleed M.; Cupolillo, Elisa; Mukhtar, Moawia M.; Guizani, Ikram
2014-01-01
Visceral leishmaniasis (VL) is mainly due to the Leishmania donovani complex. VL is endemic in many countries worldwide including East Africa and the Mediterranean region where the epidemiology is complex. Taxonomy of these pathogens is under controversy but there is a correlation between their genetic diversity and geographical origin. With steady increase in genome knowledge, RAPD is still a useful approach to identify and characterize novel DNA markers. Our aim was to identify and characterize polymorphic DNA markers in VL Leishmania parasites in diverse geographic regions using RAPD in order to constitute a pool of PCR targets having the potential to differentiate among the VL parasites. 100 different oligonucleotide decamers having arbitrary DNA sequences were screened for reproducible amplification and a selection of 28 was used to amplify DNA from 12 L. donovani, L. archibaldi and L. infantum strains having diverse origins. A total of 155 bands were amplified of which 60.65% appeared polymorphic. 7 out of 28 primers provided monomorphic patterns. Phenetic analysis allowed clustering the parasites according to their geographical origin. Differentially amplified bands were selected, among them 22 RAPD products were successfully cloned and sequenced. Bioinformatic analysis allowed mapping of the markers and sequences and priming sites analysis. This study was complemented with Southern-blot to confirm assignment of markers to the kDNA. The bioinformatic analysis identified 16 nuclear and 3 minicircle markers. Analysis of these markers highlighted polymorphisms at RAPD priming sites with mainly 5′ end transversions, and presence of inter– and intra– taxonomic complex sequence and microsatellites variations; a bias in transitions over transversions and indels between the different sequences compared is observed, which is however less marked between L. infantum and L. donovani. The study delivers a pool of well-documented polymorphic DNA markers, to develop molecular diagnostics assays to characterize and differentiate VL causing agents. PMID:25313833
ERIC Educational Resources Information Center
King, Angela G.
2004-01-01
Nanotechnology are employed by researchers at Northwestern University to develop a method of labeling disease markers present in blood with unique DNA tags they have dubbed "bio-bar-codes". The preparation of nanoparticle and magnetic microparticle probes and a nanoparticle-based PSR-less DNA amplification scheme are involved by the DNA-BCA assay.
Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun
2016-01-01
Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to “Gopoong” and “K-1” were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information. PMID:27271615
Ritschel, Patricia Silva; Lins, Tulio Cesar de Lima; Tristan, Rodrigo Lourenço; Buso, Gláucia Salles Cortopassi; Buso, José Amauri; Ferreira, Márcio Elias
2004-01-01
Background Despite the great advances in genomic technology observed in several crop species, the availability of molecular tools such as microsatellite markers has been limited in melon (Cucumis melo L.) and cucurbit species. The development of microsatellite markers will have a major impact on genetic analysis and breeding of melon, especially on the generation of marker saturated genetic maps and implementation of marker assisted breeding programs. Genomic microsatellite enriched libraries can be an efficient alternative for marker development in such species. Results Seven hundred clones containing microsatellite sequences from a Tsp-AG/TC microsatellite enriched library were identified and one-hundred and forty-four primer pairs designed and synthesized. When 67 microsatellite markers were tested on a panel of melon and other cucurbit accessions, 65 revealed DNA polymorphisms among the melon accessions. For some cucurbit species, such as Cucumis sativus, up to 50% of the melon microsatellite markers could be readily used for DNA polymophism assessment, representing a significant reduction of marker development costs. A random sample of 25 microsatellite markers was extracted from the new microsatellite marker set and characterized on 40 accessions of melon, generating an allelic frequency database for the species. The average expected heterozygosity was 0.52, varying from 0.45 to 0.70, indicating that a small set of selected markers should be sufficient to solve questions regarding genotype identity and variety protection. Genetic distances based on microsatellite polymorphism were congruent with data obtained from RAPD marker analysis. Mapping analysis was initiated with 55 newly developed markers and most primers showed segregation according to Mendelian expectations. Linkage analysis detected linkage between 56% of the markers, distributed in nine linkage groups. Conclusions Genomic library microsatellite enrichment is an efficient procedure for marker development in melon. One-hundred and forty-four new markers were developed from Tsp-AG/TC genomic library. This is the first reported attempt of successfully using enriched library for microsatellite marker development in the species. A sample of the microsatellite markers tested proved efficient for genetic analysis of melon, including genetic distance estimates and identity tests. Linkage analysis indicated that the markers developed are dispersed throughout the genome and should be very useful for genetic analysis of melon. PMID:15149552
Jan, Catherine
2016-01-01
The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni). From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides) in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species. PMID:27688959
Jan, Catherine; Fumagalli, Luca
2016-01-01
The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni). From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides) in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species.
Undermethylated DNA as a source of microsatellites from a conifer genome.
Zhou, Y; Bui, T; Auckland, L D; Williams, C G
2002-02-01
Developing microsatellites from the large, highly duplicated conifer genome requires special tools. To improve the efficiency of developing Pinus taeda L. microsatellites, undermethylated (UM) DNA fragments were used to construct a microsatellite-enriched copy library. A methylation-sensitive restriction enzyme, McrBC, was used to enrich for UM DNA before library construction. Digested DNA fragments larger than 9 kb were then excised and digested with RsaI and used to construct nine dinucleotide and trinucleotide libraries. A total of 1016 microsatellite-positive clones were detected among 11 904 clones and 620 of these were unique. Of 245 primer sets that produced a PCR product, 113 could be developed as UM microsatellite markers and 70 were polymorphic. Inheritance and marker informativeness were tested for a random sample of 36 polymorphic markers using a three-generation outbred pedigree. Thirty-one microsatellites (86%) had single-locus inheritance despite the highly duplicated nature of the P. taeda genome. Nineteen UM microsatellites had highly informative intercross mating type configurations. Allele number and frequency were estimated for eleven UM microsatellites using a population survey. Allele numbers for these UM microsatellites ranged from 3 to 12 with an average of 5.7 alleles/locus. Frequencies for the 63 alleles were mostly in the low-common range; only 14 of the 63 were in the rare allele (q < 0.05) class. Enriching for UM DNA was an efficient method for developing polymorphic microsatellites from a large plant genome.
DNA barcodes for ecology, evolution, and conservation.
Kress, W John; García-Robledo, Carlos; Uriarte, Maria; Erickson, David L
2015-01-01
The use of DNA barcodes, which are short gene sequences taken from a standardized portion of the genome and used to identify species, is entering a new phase of application as more and more investigations employ these genetic markers to address questions relating to the ecology and evolution of natural systems. The suite of DNA barcode markers now applied to specific taxonomic groups of organisms are proving invaluable for understanding species boundaries, community ecology, functional trait evolution, trophic interactions, and the conservation of biodiversity. The application of next-generation sequencing (NGS) technology will greatly expand the versatility of DNA barcodes across the Tree of Life, habitats, and geographies as new methodologies are explored and developed. Published by Elsevier Ltd.
Dyes as bifunctional markers of DNA hybridization on surfaces and mutation detection.
García-Mendiola, Tania; Cerro, María Ramos; López-Moreno, José María; Pariente, Félix; Lorenzo, Encarnación
2016-10-01
The interaction of small molecules with DNA has found diagnostic and therapeutic applications. In this work, we propose the use of two different dyes, in particular Azure A and Safranine, as bifunctional markers of on-surface DNA hybridization and potent tools for screening of specific gene mutations directly in real DNA PCR amplicons extracted from blood cells. By combining spectroscopic and electrochemical methods we demonstrate that both dyes can interact with single and double stranded DNA to a different extent, allowing reliable hybridization detection. From these data, we have also elucidated the nature of the interaction. We conclude that the binding mode is fundamentally intercalative with an electrostatic component. The dye fluorescence allows their use as nucleic acid stains for the detection of on-surfaces DNA hybridization. Its redox activity is exploited in the development of selective electrochemical DNA biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.
Advances in plant gene-targeted and functional markers: a review
2013-01-01
Public genomic databases have provided new directions for molecular marker development and initiated a shift in the types of PCR-based techniques commonly used in plant science. Alongside commonly used arbitrarily amplified DNA markers, other methods have been developed. Targeted fingerprinting marker techniques are based on the well-established practices of arbitrarily amplified DNA methods, but employ novel methodological innovations such as the incorporation of gene or promoter elements in the primers. These markers provide good reproducibility and increased resolution by the concurrent incidence of dominant and co-dominant bands. Despite their promising features, these semi-random markers suffer from possible problems of collision and non-homology analogous to those found with randomly generated fingerprints. Transposable elements, present in abundance in plant genomes, may also be used to generate fingerprints. These markers provide increased genomic coverage by utilizing specific targeted sites and produce bands that mostly seem to be homologous. The biggest drawback with most of these techniques is that prior genomic information about retrotransposons is needed for primer design, prohibiting universal applications. Another class of recently developed methods exploits length polymorphism present in arrays of multi-copy gene families such as cytochrome P450 and β-tubulin genes to provide cross-species amplification and transferability. A specific class of marker makes use of common features of plant resistance genes to generate bands linked to a given phenotype, or to reveal genetic diversity. Conserved DNA-based strategies have limited genome coverage and may fail to reveal genetic diversity, while resistance genes may be under specific evolutionary selection. Markers may also be generated from functional and/or transcribed regions of the genome using different gene-targeting approaches coupled with the use of RNA information. Such techniques have the potential to generate phenotypically linked functional markers, especially when fingerprints are generated from the transcribed or expressed region of the genome. It is to be expected that these recently developed techniques will generate larger datasets, but their shortcomings should also be acknowledged and carefully investigated. PMID:23406322
Bridging the gap between genome analysis and precision breeding in potato.
Gebhardt, Christiane
2013-04-01
Efficiency and precision in plant breeding can be enhanced by using diagnostic DNA-based markers for the selection of superior cultivars. This technique has been applied to many crops, including potatoes. The first generation of diagnostic DNA-based markers useful in potato breeding were enabled by several developments: genetic linkage maps based on DNA polymorphisms, linkage mapping of qualitative and quantitative agronomic traits, cloning and functional analysis of genes for pathogen resistance and genes controlling plant metabolism, and association genetics in collections of tetraploid varieties and advanced breeding clones. Although these have led to significant improvements in potato genetics, the prediction of most, if not all, natural variation in agronomic traits by diagnostic markers ultimately requires the identification of the causal genes and their allelic variants. This objective will be facilitated by new genomic tools, such as genomic resequencing and comparative profiling of the proteome, transcriptome, and metabolome in combination with phenotyping genetic materials relevant for variety development. Copyright © 2012 Elsevier Ltd. All rights reserved.
U.S. initiatives to strengthen forensic science & international standards in forensic DNA.
Butler, John M
2015-09-01
A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. Published by Elsevier Ireland Ltd.
U.S. initiatives to strengthen forensic science & international standards in forensic DNA
Butler, John M.
2015-01-01
A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. PMID:26164236
Horning, Aaron M; Awe, Julius A; Wang, Chiou-Miin; Liu, Joseph; Lai, Zhao; Wang, Vickie Yao; Jadhav, Rohit R; Louie, Anna D; Lin, Chun-Lin; Kroczak, Tad; Chen, Yidong; Jin, Victor X; Abboud-Werner, Sherry L; Leach, Robin J; Hernandez, Javior; Thompson, Ian M; Saranchuk, Jeff; Drachenberg, Darrel; Chen, Chun-Liang; Mai, Sabine; Huang, Tim Hui-Ming
2015-11-01
Altered DNA methylation in CpG islands of gene promoters has been implicated in prostate cancer (PCa) progression and can be used to predict disease outcome. In this study, we determine whether methylation changes of androgen biosynthesis pathway (ABP)-related genes in patients' plasma cell-free DNA (cfDNA) can serve as prognostic markers for biochemical recurrence (BCR). Methyl-binding domain capture sequencing (MBDCap-seq) was used to identify differentially methylated regions (DMRs) in primary tumors of patients who subsequently developed BCR or not, respectively. Methylation pyrosequencing of candidate loci was validated in cfDNA samples of 86 PCa patients taken at and/or post-radical prostatectomy (RP) using univariate and multivariate prediction analyses. Putative DMRs in 13 of 30 ABP-related genes were found between tumors of BCR (n = 12) versus no evidence of disease (NED) (n = 15). In silico analysis of The Cancer Genome Atlas data confirmed increased DNA methylation of two loci-SRD5A2 and CYP11A1, which also correlated with their decreased expression, in tumors with subsequent BCR development. Their aberrant cfDNA methylation was also associated with detectable levels of PSA taken after patients' post-RP. Multivariate analysis of the change in cfDNA methylation at all of CpG sites measured along with patient's treatment history predicted if a patient will develop BCR with 77.5% overall accuracy. Overall, increased DNA methylation of SRD5A2 and CYP11A1 related to androgen biosynthesis functions may play a role in BCR after patients' RP. The correlation between aberrant cfDNA methylation and detectable PSA in post-RP further suggests their utility as predictive markers for PCa recurrence. . © 2015 Wiley Periodicals, Inc.
Chitinase enzyme activity in CSF is a powerful biomarker of Alzheimer disease.
Watabe-Rudolph, M; Song, Z; Lausser, L; Schnack, C; Begus-Nahrmann, Y; Scheithauer, M-O; Rettinger, G; Otto, M; Tumani, H; Thal, D R; Attems, J; Jellinger, K A; Kestler, H A; von Arnim, C A F; Rudolph, K L
2012-02-21
DNA damage accumulation in brain is associated with the development of Alzheimer disease (AD), but newly identified protein markers of DNA damage have not been evaluated in the diagnosis of AD and other forms of dementia. Here, we analyzed the level of novel biomarkers of DNA damage and telomere dysfunction (chitinase activity, N-acetyl-glucosaminidase activity, stathmin, and EF-1α) in CSF of 94 patients with AD, 41 patients with non-AD dementia, and 40 control patients without dementia. Enzymatic activity of chitinase (chitotriosidase activity) and stathmin protein level were significantly increased in CSF of patients with AD and non-AD dementia compared with that of no dementia control patients. As a single marker, chitinase activity was most powerful for distinguishing patients with AD from no dementia patients with an accuracy of 85.8% using a single threshold. Discrimination was even superior to clinically standard CSF markers that showed an accuracy of 78.4% (β-amyloid) and 77.6% (tau). Combined analysis of chitinase with other markers increased the accuracy to a maximum of 91%. The biomarkers of DNA damage were also increased in CSF of patients with non-AD dementia compared with no dementia patients, and the new biomarkers improved the diagnosis of non-AD dementia as well as the discrimination of AD from non-AD dementia. Taken together, the findings in this study provide experimental evidence that DNA damage markers are significantly increased in AD and non-AD dementia. The biomarkers identified outperformed the standard CSF markers for diagnosing AD and non-AD dementia in the cohort investigated.
Scarano, Simona; Ermini, Maria Laura; Spiriti, Maria Michela; Mascini, Marco; Bogani, Patrizia; Minunni, Maria
2011-08-15
Surface plasmon resonance imaging (SPRi) was used as the transduction principle for the development of optical-based sensing for transgenes detection in human cell lines. The objective was to develop a multianalyte, label-free, and real-time approach for DNA sequences that are identified as markers of transgenosis events. The strategy exploits SPRi sensing to detect the transgenic event by targeting selected marker sequences, which are present on shuttle vector backbone used to carry out the transfection of human embryonic kidney (HEK) cell lines. Here, we identified DNA sequences belonging to the Cytomegalovirus promoter and the Enhanced Green Fluorescent Protein gene. System development is discussed in terms of probe efficiency and influence of secondary structures on biorecognition reaction on sensor; moreover, optimization of PCR samples pretreatment was carried out to allow hybridization on biosensor, together with an approach to increase SPRi signals by in situ mass enhancement. Real-time PCR was also employed as reference technique for marker sequences detection on human HEK cells. We can foresee that the developed system may have potential applications in the field of antidoping research focused on the so-called gene doping.
Lee, Hwan Young; Jung, Sang-Eun; Lee, Eun Hee; Yang, Woo Ick; Shin, Kyoung-Jin
2016-09-01
The ability to predict the type of tissues or cells from molecular profiles of crime scene samples has important practical implications in forensics. A previously reported multiplex assay using DNA methylation markers could only discriminate between 4 types of body fluids: blood, saliva, semen, and the body fluid which originates from female reproductive organ. In the present study, we selected 15 menstrual blood-specific CpG marker candidates based on analysis of 12 genome-wide DNA methylation profiles of vaginal fluid and menstrual blood. The menstrual blood-specificity of the candidate markers was confirmed by comparison with HumanMethylation450 BeadChip array data obtained for 58 samples including 12 blood, 12 saliva, 12 semen, 3 vaginal fluid, and 19 skin epidermis samples. Among 15CpG marker candidates, 3 were located in the promoter region of the SLC26A10 gene, and 2 of them (cg09696411 and cg18069290) showed high menstrual blood specificity. DNA methylation at the 2CpG markers was further tested by targeted bisulfite sequencing of 461 additional samples including 49 blood, 52 saliva, 34 semen, 125 vaginal fluid, and 201 menstrual blood. Because the 2 markers showed menstrual blood-specific methylation patterns, we modified our previous multiplex methylation SNaPshot reaction to include these 2 markers. In addition, a blood marker cg01543184 with cross reactivity to semen was replaced with cg08792630, and a semen-specific unmethylation marker cg17621389 was removed. The resultant multiplex methylation SNaPshot allowed positive identification of blood, saliva, semen, vaginal fluid and menstrual blood using the 9CpG markers which show a methylation signal only in the target body fluids. Because of the complexity in cell composition, menstrual bloods produced DNA methylation profiles that vary with menstrual cycle and sample collection methods, which are expected to provide more insight into forensic menstrual blood test. Moreover, because the developed multiplex methylation SNaPshot reaction includes the 4CpG markers of which specificities have been confirmed by multiple studies, it will facilitate confirmatory tests for body fluids that are frequently observed in forensic casework. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stein, Derek; Reisner, Walter; Jiang, Zhijun; Hagerty, Nick; Wood, Charles; Chan, Jason
2009-03-01
The ability to map the binding position of sequence-specific markers, including transcription-factors, protein-nucleic acids (PNAs) or deactivated restriction enzymes, along a single DNA molecule in a nanofluidic device would be of key importance for the life-sciences. Such markers could give an indication of the active genes at particular stage in a cell's transcriptional cycle, pinpoint the location of mutations or even provide a DNA barcode that could aid in genomics applications. We have developed a setup consisting of a 5-10 nm nanopore in a 20nm thick silicon nitride film coupled to an optical tweezer setup. The translocation of DNA across the nanopore can be detected via blockades in the electrical current through the pore. By anchoring one end of the translocating DNA to an optically trapped microsphere, we hope to stretch out the molecule in the nanopore and control the translocation speed, enabling us to slowly scan across the genome and detect changes in the baseline current due to the presence of bound markers.
Robarts, Daniel W H; Wolfe, Andrea D
2014-07-01
In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR), random-amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP) to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP) markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use, highly variable marker with inherent biological significance.
Robarts, Daniel W. H.; Wolfe, Andrea D.
2014-01-01
In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR), random-amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP) to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP) markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use, highly variable marker with inherent biological significance. PMID:25202637
Akkurt, M; Çakır, A; Shidfar, M; Çelikkol, B P; Söylemezoğlu, G
2012-08-13
We used molecular markers associated with seedlessness in grapes, namely SCC8, SCF27 and VMC7f2, to improve the efficiency of seedless grapevine breeding via marker assisted selection (MAS). DNA from 372 F₁ hybrid progeny from the cross between seeded "Alphonse Lavallée" and seedless "Sultani" was amplified by PCR using three markers. After digestion of SCC8 marker amplification products by restriction enzyme BgIII, 40 individuals showed homozygous SCC8+/SCC8+ alleles at the seed development inhibitor (SdI) locus. DNA from 80 of the progeny amplified with the SCF27 marker produced bands; 174 individuals had 198-bp alleles of the VMC7f2 marker associated with seedlessness. In the second year, based on MAS, 183 F₁ hybrids were designated as seedless grapevine candidates because they were positive for a minimum of one marker. Twenty individuals were selected as genetic resources for future studies on seedless grapevine breeding because they carried alleles for the three markers associated with seedlessness. The VMC7f2 SSR marker was identified as the marker most associated with seedlessness.
Site-specific DNA excision in transgenic rice with a cell-permeable cre recombinase.
Cao, Ming-Xia; Huang, Jian-Qiu; Yao, Quan-Hong; Liu, Sheng-Jun; Wang, Cheng-Long; Wei, Zhi-Ming
2006-01-01
The removal of selected marker genes from transgenic plants is necessary to address biosafety concerns and to carry out further experiments with transgenic organisms. In the present study, the 12-amino-acid membrane translocation sequence (MTS) from the Kaposi fibroblast growth factor (FGF)-4 was used as a carrier to deliver enzymatically active Cre proteins into living plant cells, and to produce a site-specific DNA excision in transgenic rice plants. The process, which made cells permeable to Cre recombinase-mediated DNA recombination, circumvented the need to express Cre under spatiotemporal control and was proved to be a simple and efficient system to achieve marker-free transgenic plants. The ultimate aim of the present study is to develop commercial rice cultivars free from selected marker genes to hasten public acceptance of transgenic crops.
Yu, Fengli; Li, Gang; Qu, Bin; Cao, Wei
2010-11-15
A novel and ultrasensitive electrochemical approach for sequence-specific DNA detection based on signal dual-amplification with Au NPs and marker-loaded apoferritin NPs was reported. Target DNA was sandwiched between capture DNA coupled to magnetic beads and signal DNA self-assembled on Au NPs which were incorporated with marker-loaded apoferritin NPs. Subsequent electrochemical stripping analysis of the electroactive markers released from apoferritin NPs in acidic buffers provided a means to quantify the concentration of target DNA. In this means, one target signal could be transformed into multiple redox signals of the markers since a single Au NP could be loaded with dozens of apoferritin NPs, and an apoferritin NP could be loaded with thousands of markers. Under the optimum conditions, the linear range was from 2.0 × 10(-16) to 1.0 × 10(-14)M and the detection limit was 5.1 × 10(-17)M by using the cadmium as a model marker. The proposed DNA biosensor not only exhibited excellent sensitivity but also had good reproducibility and selectivity against two-base mismatched DNA. Copyright © 2010 Elsevier B.V. All rights reserved.
Sun, Hua; Wang, Hong-Tao; Kwon, Woo-Saeng; Kim, Yeon-Ju; In, Jun-Gyo; Yang, Deok-Chun
2011-11-01
Yunpoong is an important Korean ginseng (Panax ginseng C. A. Meyer) cultivar, but no molecular marker has been available to identify Yunpoong from other cultivars. In this study, we developed a single nucleotide polymorphism (SNP) marker for Yunpoong based on analysis of expressed sequence tags (ESTs) in an exon region of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene. This SNP marker had high specificity to authenticate Yunpoong in twelve different main ginseng cultivars. For application of the molecular marker, a rapid identification method was established based on the NaOH-Tris method and real-time polymerase chain reaction (PCR) in order to ensure more efficiency in the cultivar selection. The biggest feature of the NaOH-Tris method was that it made the extraction of DNA very simple and rapid in young leaf tissues. We only spent 1 min to extract DNA and directly used it to do PCR. In this report, the conventional DNA extraction method was used to develop molecular marker process, and the NaOH-Tris method was applied in screening large numbers of cultivars. Moreover, the greatest advantage of the real-time PCR compared with traditional PCR, is time saving and high efficiency. Thus, this strategy provides a rapid and reliable method for the specific identification of Yunpoong in a large number of samples. Copyright © 2011 Elsevier B.V. All rights reserved.
DNA fingerprinting of Chinese melon provides evidentiary support of seed quality appraisal.
Gao, Peng; Ma, Hongyan; Luan, Feishi; Song, Haibin
2012-01-01
Melon, Cucumis melo L. is an important vegetable crop worldwide. At present, there are phenomena of homonyms and synonyms present in the melon seed markets of China, which could cause variety authenticity issues influencing the process of melon breeding, production, marketing and other aspects. Molecular markers, especially microsatellites or simple sequence repeats (SSRs) are playing increasingly important roles for cultivar identification. The aim of this study was to construct a DNA fingerprinting database of major melon cultivars, which could provide a possibility for the establishment of a technical standard system for purity and authenticity identification of melon seeds. In this study, to develop the core set SSR markers, 470 polymorphic SSRs were selected as the candidate markers from 1219 SSRs using 20 representative melon varieties (lines). Eighteen SSR markers, evenly distributed across the genome and with the highest contents of polymorphism information (PIC) were identified as the core marker set for melon DNA fingerprinting analysis. Fingerprint codes for 471 melon varieties (lines) were established. There were 51 materials which were classified into17 groups based on sharing the same fingerprint code, while field traits survey results showed that these plants in the same group were synonyms because of the same or similar field characters. Furthermore, DNA fingerprinting quick response (QR) codes of 471 melon varieties (lines) were constructed. Due to its fast readability and large storage capacity, QR coding melon DNA fingerprinting is in favor of read convenience and commercial applications.
DNA Fingerprinting of Chinese Melon Provides Evidentiary Support of Seed Quality Appraisal
Gao, Peng; Ma, Hongyan; Luan, Feishi; Song, Haibin
2012-01-01
Melon, Cucumis melo L. is an important vegetable crop worldwide. At present, there are phenomena of homonyms and synonyms present in the melon seed markets of China, which could cause variety authenticity issues influencing the process of melon breeding, production, marketing and other aspects. Molecular markers, especially microsatellites or simple sequence repeats (SSRs) are playing increasingly important roles for cultivar identification. The aim of this study was to construct a DNA fingerprinting database of major melon cultivars, which could provide a possibility for the establishment of a technical standard system for purity and authenticity identification of melon seeds. In this study, to develop the core set SSR markers, 470 polymorphic SSRs were selected as the candidate markers from 1219 SSRs using 20 representative melon varieties (lines). Eighteen SSR markers, evenly distributed across the genome and with the highest contents of polymorphism information (PIC) were identified as the core marker set for melon DNA fingerprinting analysis. Fingerprint codes for 471 melon varieties (lines) were established. There were 51 materials which were classified into17 groups based on sharing the same fingerprint code, while field traits survey results showed that these plants in the same group were synonyms because of the same or similar field characters. Furthermore, DNA fingerprinting quick response (QR) codes of 471 melon varieties (lines) were constructed. Due to its fast readability and large storage capacity, QR coding melon DNA fingerprinting is in favor of read convenience and commercial applications. PMID:23285039
Cytomegalovirus (CMV) DNA load predicts relapsing CMV infection after solid organ transplantation.
Sia, I G; Wilson, J A; Groettum, C M; Espy, M J; Smith, T F; Paya, C V
2000-02-01
Cytomegalovirus (CMV) DNA load was analyzed as a marker for relapse of CMV infection in 24 solid organ transplant patients with CMV infection or disease who received a fixed 14-day course of intravenous ganciclovir. Viral load was measured in blood samples obtained before and at the completion of treatment. Eight (33%) of 24 patients developed relapsing CMV infection. Median pretreatment viral loads were higher in the relapsing group (80,150 copies/106 leukocytes) than in the nonrelapsing group (5500 copies/106 leukocytes; P=.007). The relapsing group also had persistent detectable viral DNA (median, 5810 copies/106 leukocytes) after treatment, whereas it was undetectable in the nonrelapsing group (P<. 0001). Primary CMV infection (seronegative recipients of seropositive organs, D+R-) was an independent marker for CMV relapse (P=.03), and these patients had higher pre- and posttreatment viral loads than did non-D+/R- patients (P<.0001 and P=.0014, respectively). CMV DNA load is a useful marker for individualizing antiviral treatment of CMV infection in solid organ transplant recipients.
Development and characterization of genomic SSR markers in Cynodon transvaalensis Burtt-Davy.
Tan, Chengcheng; Wu, Yanqi; Taliaferro, Charles M; Bell, Greg E; Martin, Dennis L; Smith, Mike W
2014-08-01
Simple sequence repeat (SSR) markers are a major molecular tool for genetic and genomic research that have been extensively developed and used in major crops. However, few are available in African bermudagrass (Cynodon transvaalensis Burtt-Davy), an economically important warm-season turfgrass species. African bermudagrass is mainly used for hybridizations with common bermudagrass [C. dactylon var. dactylon (L.) Pers.] in the development of superior interspecific hybrid turfgrass cultivars. Accordingly, the major objective of this study was to develop and characterize a large set of SSR markers. Genomic DNA of C. transvaalensis '4200TN 24-2' from an Oklahoma State University (OSU) turf nursery was extracted for construction of four SSR genomic libraries enriched with [CA](n), [GA](n), [AAG](n), and [AAT](n) as core repeat motifs. A total of 3,064 clones were sequenced at the OSU core facility. The sequences were categorized into singletons and contiguous sequences to exclude redundancy. From the two sequence categories, 1,795 SSR loci were identified. After excluding duplicate SSRs by comparison with previously developed SSR markers using a nucleotide basic local alignment tool, 1,426 unique primer pairs (PPs) were designed. Out of the 1,426 designed PPs, 981 (68.8 %) amplified alleles of the expected size in the donor DNA. Polymorphisms of the SSR PPs tested in eight C. transvaalensis plants were 93 % polymorphic with 544 markers effective in all genotypes. Inheritance of the SSRs was examined in six F(1) progeny of African parents 'T577' × 'Uganda', indicating 917 markers amplified heritable alleles. The SSR markers developed in the study are the first large set of co-dominant markers in African bermudagrass and should be highly valuable for molecular and traditional breeding research.
A set of 14 DIP-SNP markers to detect unbalanced DNA mixtures.
Liu, Zhizhen; Liu, Jinding; Wang, Jiaqi; Chen, Deqing; Liu, Zidong; Shi, Jie; Li, Zeqin; Li, Wenyan; Zhang, Gengqian; Du, Bing
2018-03-04
Unbalanced DNA mixture is still a difficult problem for forensic practice. DIP-STRs are useful markers for detection of minor DNA but they are not widespread in the human genome and having long amplicons. In this study, we proposed a novel type of genetic marker, termed DIP-SNP. DIP-SNP refers to the combination of INDEL and SNP in less than 300bp length of human genome. The multiplex PCR and SNaPshot assay were established for 14 DIP-SNP markers in a Chinese Han population from Shanxi, China. This novel compound marker allows detection of the minor DNA contributor with sensitivity from 1:50 to 1:1000 in a DNA mixture of any gender with 1 ng-10 ng DNA template. Most of the DIP-SNP markers had a relatively high probability of informative alleles with an average I value of 0.33. In all, we proposed DIP-SNP as a novel kind of genetic marker for detection of minor contributor from unbalanced DNA mixture and established the detection method by associating the multiplex PCR and SNaPshot assay. DIP-SNP polymorphisms are promising markers for forensic or clinical mixture examination because they are shorter, widespread and higher sensitive. Copyright © 2018 Elsevier Inc. All rights reserved.
Reconciling Apparent Conflicts between Mitochondrial and Nuclear Phylogenies in African Elephants
Georgiadis, Nicholas J.; David, Victor A.; Zhao, Kai; Stephens, Robert M.; Kolokotronis, Sergios-Orestis; Roca, Alfred L.
2011-01-01
Conservation strategies for African elephants would be advanced by resolution of conflicting claims that they comprise one, two, three or four taxonomic groups, and by development of genetic markers that establish more incisively the provenance of confiscated ivory. We addressed these related issues by genotyping 555 elephants from across Africa with microsatellite markers, developing a method to identify those loci most effective at geographic assignment of elephants (or their ivory), and conducting novel analyses of continent-wide datasets of mitochondrial DNA. Results showed that nuclear genetic diversity was partitioned into two clusters, corresponding to African forest elephants (99.5% Cluster-1) and African savanna elephants (99.4% Cluster-2). Hybrid individuals were rare. In a comparison of basal forest “F” and savanna “S” mtDNA clade distributions to nuclear DNA partitions, forest elephant nuclear genotypes occurred only in populations in which S clade mtDNA was absent, suggesting that nuclear partitioning corresponds to the presence or absence of S clade mtDNA. We reanalyzed African elephant mtDNA sequences from 81 locales spanning the continent and discovered that S clade mtDNA was completely absent among elephants at all 30 sampled tropical forest locales. The distribution of savanna nuclear DNA and S clade mtDNA corresponded closely to range boundaries traditionally ascribed to the savanna elephant species based on habitat and morphology. Further, a reanalysis of nuclear genetic assignment results suggested that West African elephants do not comprise a distinct third species. Finally, we show that some DNA markers will be more useful than others for determining the geographic origins of illegal ivory. These findings resolve the apparent incongruence between mtDNA and nuclear genetic patterns that has confounded the taxonomy of African elephants, affirm the limitations of using mtDNA patterns to infer elephant systematics or population structure, and strongly support the existence of two elephant species in Africa. PMID:21701575
Talaska, G; Underwood, P; Maier, A; Lewtas, J; Rothman, N; Jaeger, M
1996-01-01
Lung cancer caused by polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs and related environmental agents is a major problem in industrialized nations. The high case-fatality rate of the disease, even with the best supportive treatment, underscores the importance of primary lung cancer prevention. Development of biomarkers of exposure and effects to PAHs and related compounds is now underway and includes measurement of urinary metabolites of specific PAHs as well as detection of protein and DNA adducts as indicators of effective dose. Validation of these markers in terms of total environmental dose requires that concurrent measures of air levels and potential dermal exposure be made. In addition, the interrelationships between PAH biomarkers must be determined, particularly when levels of the marker in surrogate molecules (e.g., protein) or markers from surrogate tissues (e.g., lymphocyte DNA) are used to assess the risk to the target organ, the lung. Two approaches to biomarker studies will be reviewed in this article: the progress made using blood lymphocytes as surrogates for lung tissues and the progress made developing noninvasive markers of carcinogen-DNA adduct levels in lung-derived cells available in bronchial-alveolar lavage and in sputum. Data are presented from studies in which exfoliated urothelial cells were used as a surrogate tissue to assess exposure to human urinary bladder carcinogens in occupational groups. PMID:8933032
Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong
2015-01-01
Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. PMID:25371551
Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong; Qu, Shaohong
2015-01-01
Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. © 2015 American Society of Plant Biologists. All Rights Reserved.
Quantification of Maternal Serum Cell-Free Fetal DNA in Early-Onset Preeclampsia
Yu, Hong; Shen, Yanting; Ge, Qinyu; He, Youji; Qiao, Dongyan; Ren, Mulan; Zhang, Jianqiong
2013-01-01
The aim of this study was to determine whether the increased serum cell-free fetal DNA (cffDNA) level of gravidas developed into early-onset preeclampsia (EOPE) subsequently in the early second trimesters is related to prenatal screening markers. Serum was collected from 1011 gravidas. The level of cffDNA and prenatal screening markers were analyzed in 20 cases with EOPE and 20 controls. All fetuses were male. The maternal serum cffDNA level was assessed by amplification of the Y chromosome specific gene. Correlations between the variables were examined. (Logged) cffDNA in EOPE (median, 3.08; interquartile range, 2.93–3.68) was higher than controls (median, 1.79; interquartile range, 1.46–2.53). The increased level of (logged) cffDNA was correlated significantly with the increased human chorionic gonadotropin (HCG) level (r = 0.628, p < 0.001). Significant reciprocal correlations between cffDNA and babies’ birth weight as well as gestation weeks at delivery were noted (r = −0.516, p = 0.001; r = −0.623, p < 0.001, respectively). The sensitivity and specificity of cffDNA to discriminate between the EOPE cases and the controls were 90% and 85%, respectively. CffDNA is a potential marker for EOPE, which had a significant reciprocal correlation with babies’ birth weight and gestation weeks at delivery. Moreover, it may help in indicating the underlying hypoxic condition in the placenta. PMID:23567271
Application of epigenetic markers in molecular breeding of the swine.
Zhang, Ke; Feng, Guang-de; Zhang, Bao-yun; Xiang, Wei; Chen, Long; Yang, Fang; Chu, Ming-xing; Wang, Ping-qing
2016-07-20
Livestock phenotypes are determined by the interaction of a variety of factors, including the genome, the epigenome and the environment. Epigenetics refers to gene expression changes without DNA sequence alterations. Epigenetic markers mainly include DNA methylation, histone modifications, non-coding RNAs, and imprinting genes. More and more researches show that epigenetic markers play an important role in the traits of pigs by modulating phenotype changes via gene expression. However, the role of epigenetic markers has caught little attention in swine breeding. The mechanism that influences important traits of swine has not been analyzed in detail, and it still lacks adequate scientific basis for practical applications. From the aspects of nutrition, diseases, important economic traits and trans-generational inheritance, we summarize the research, application prospects and challenges in the field of utilizing epigenetic markers in molecular breeding of pigs, thus providing a more comprehensive theoretical basis to promote more rapid research development in this field.
Tiwari, Jagesh K; Chandel, Poonam; Singh, Bir Pal; Bhardwaj, Vinay
2014-01-01
Cytoplasm types of the potato somatic hybrids from Solanum tuberosum × Solanum etuberosum were analysed using chloroplast (cp) and mitochondrial (mt) organelle genomes-specific markers. Of the 29 markers (15 cpDNA and 14 mtDNA) amplified in the 26 genotypes, 5 cpDNA (H3, NTCP4, NTCP8, NTCP9, and ALC1/ALC3) and 13 mtDNA markers showed polymorphism. The cluster analysis based on the mtDNA markers detected higher diversity compared with the cpDNA markers. Presence of new mtDNA fragments of the markers, namely, T11-2, Nsm1, pumD, Nsm3, and Nsm4, were observed, while monomorphic loci revealed highly conserved genomic regions in the somatic hybrids. The study revealed that the somatic hybrids had diverse cytoplasm types consisting predominantly of T-, W-, and C-, with a few A- and S-type cp genomes; and α-, β-, and γ-type mt genomes. Somatic hybridization has unique potential to widen the cytoplasm types of the cultivated gene pools from wild species through introgression by breeding methods.
USDA-ARS?s Scientific Manuscript database
Extraction of DNA from tissue samples can be expensive both in time and monetary resources and can often require handling and disposal of hazardous chemicals. We have developed a high throughput protocol for extracting DNA from honey bees that is of a high enough quality and quantity to enable hundr...
Thonar, C; Erb, A; Jansa, J
2012-03-01
Quantitative real-time PCR (qPCR) is slowly becoming established as a tool to quantify abundance of different arbuscular mycorrhizal fungal (AMF) taxa in roots and in soil. Here, we describe the development and field validation of qPCR markers (i.e. primers with associated hydrolysis probes), targeting taxon-specific motifs in the nuclear large ribosomal subunit RNA genes. Design of such markers is complicated by the multinuclear and multigenomic cellular organization of these fungi and the high DNA sequence diversity within the smallest biologically relevant units (i.e. single-spore isolates). These limitations are further compounded by inefficient biomass production of these fungi, resulting in limited availability of pure genomic DNA (gDNA) of well-defined isolates for cross-specificity testing of the markers. Here we demonstrate, using a number of AMF isolates, the possibility to establish stringent qPCR running conditions allowing quantification of phylogenetically disjunctive AMF taxa. Further, we show that these markers can more generally be used to quantify abundance (i.e. number of target gene copies or amount of gDNA) of what is usually considered the level of AMF species, regardless of the isolate identities. We also illustrate the range of variation within qPCR signal strength across different AMF taxa with respect to the detected number of gene copies per unit amount of gDNA. This information is paramount for interpretation of the qPCR analyses of field samples. Finally, the field validation of these markers confirmed their potential to assess composition of field AMF communities and monitor the changes owing to agricultural practices such as soil tillage. © 2011 Blackwell Publishing Ltd.
DNA fingerprinting in botany: past, present, future
2014-01-01
Almost three decades ago Alec Jeffreys published his seminal Nature papers on the use of minisatellite probes for DNA fingerprinting of humans (Jeffreys and colleagues Nature 1985, 314:67–73 and Nature 1985, 316:76–79). The new technology was soon adopted for many other organisms including plants, and when Hilde Nybom, Kurt Weising and Alec Jeffreys first met at the very First International Conference on DNA Fingerprinting in Berne, Switzerland, in 1990, everybody was enthusiastic about the novel method that allowed us for the first time to discriminate between humans, animals, plants and fungi on the individual level using DNA markers. A newsletter coined “Fingerprint News” was launched, T-shirts were sold, and the proceedings of the Berne conference filled a first book on “DNA fingerprinting: approaches and applications”. Four more conferences were about to follow, one on each continent, and Alec Jeffreys of course was invited to all of them. Since these early days, methodologies have undergone a rapid evolution and diversification. A multitude of techniques have been developed, optimized, and eventually abandoned when novel and more efficient and/or more reliable methods appeared. Despite some overlap between the lifetimes of the different technologies, three phases can be defined that coincide with major technological advances. Whereas the first phase of DNA fingerprinting (“the past”) was dominated by restriction fragment analysis in conjunction with Southern blot hybridization, the advent of the PCR in the late 1980s gave way to the development of PCR-based single- or multi-locus profiling techniques in the second phase. Given that many routine applications of plant DNA fingerprinting still rely on PCR-based markers, we here refer to these methods as “DNA fingerprinting in the present”, and include numerous examples in the present review. The beginning of the third phase actually dates back to 2005, when several novel, highly parallel DNA sequencing strategies were developed that increased the throughput over current Sanger sequencing technology 1000-fold and more. High-speed DNA sequencing was soon also exploited for DNA fingerprinting in plants, either in terms of facilitated marker development, or directly in the sense of “genotyping-by-sequencing”. Whereas these novel approaches are applied at an ever increasing rate also in non-model species, they are still far from routine, and we therefore treat them here as “DNA fingerprinting in the future”. PMID:24386986
Stawski, Robert; Walczak, Konrad; Kosielski, Piotr; Meissner, Pawel; Budlewski, Tomasz; Padula, Gianluca; Nowak, Dariusz
2017-01-01
Objective Acute single strenuous exercise increases circulating cell free DNA (cf DNA). We tested whether three repeated bouts of exhaustive exercise induced the cf DNA response without development of tolerance in healthy men. Methods Eleven average-trained men (age 34.0±5.2 years, body mass index 26.2±3.1 kg/m2, maximal oxygen consumption—VO2max 49.6±4.5 ml/kg*min) performed three treadmill exercise tests to exhaustion at speed corresponding to 70% VO2max separated by 72 hours of resting. Blood was collected before and after each bout of exercise for determination of cell free nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) by real-time PCR, selected markers of muscle damage, and blood cell count. Results Each bout induced the increase (p<0.05) in plasma cf n-DNA: from 3.4±1.4 to 38.5±27.5, from 4.1±3.3 to 48.5±26.2, and 3.1±1.6 to 53.8±39.9 ng/mL after the first, second, and third exercise, respectively. In a congruent way, cf mt-DNA rose significantly after the second (from 229±216 to 450±228*103 GE/mL) and third bout of exercise (from 173±120 to 462±314*103 GE/mL). Pre-exercise cf mt-DNA decreased (p<0.05) by 2-times (from 355±219 before the first bout to 173±120*103 GE/mL before the third bout) over the study period and were accompanied by significant increase in white blood cells, platelets, creatine kinase, creatinine and lactate after each bout. However, the exercise induced percentage increment of cf n-DNA was always many times higher than corresponding increments of the afore-mentioned markers at any occasion. Conclusions Repeated bouts of exhaustive exercise induced remarkable increase in circulating cf n-DNA without signs of tolerance development. Baseline cf mt-DNA decreased in response to series of strenuous exercise. Since percentage increments of cf n-DNA in response to exercise were many times higher than those observed for other markers, measurement of circulating cf n-DNA could be a sensitive tool for monitoring acute exercise effects in human body. PMID:28542490
Iquebal, Mir Asif; Jaiswal, Sarika; Angadi, U.B.; Sablok, Gaurav; Arora, Vasu; Kumar, Sunil; Rai, Anil; Kumar, Dinesh
2015-01-01
DNA marker plays important role as valuable tools to increase crop productivity by finding plausible answers to genetic variations and linking the Quantitative Trait Loci (QTL) of beneficial trait. Prior approaches in development of Short Tandem Repeats (STR) markers were time consuming and inefficient. Recent methods invoking the development of STR markers using whole genomic or transcriptomics data has gained wide importance with immense potential in developing breeding and cultivator improvement approaches. Availability of whole genome sequences and in silico approaches has revolutionized bulk marker discovery. We report world’s first sugarbeet whole genome marker discovery having 145 K markers along with 5 K functional domain markers unified in common platform using MySQL, Apache and PHP in SBMDb. Embedded markers and corresponding location information can be selected for desired chromosome, location/interval and primers can be generated using Primer3 core, integrated at backend. Our analyses revealed abundance of ‘mono’ repeat (76.82%) over ‘di’ repeats (13.68%). Highest density (671.05 markers/Mb) was found in chromosome 1 and lowest density (341.27 markers/Mb) in chromosome 6. Current investigation of sugarbeet genome marker density has direct implications in increasing mapping marker density. This will enable present linkage map having marker distance of ∼2 cM, i.e. from 200 to 2.6 Kb, thus facilitating QTL/gene mapping. We also report e-PCR-based detection of 2027 polymorphic markers in panel of five genotypes. These markers can be used for DUS test of variety identification and MAS/GAS in variety improvement program. The present database presents wide source of potential markers for developing and implementing new approaches for molecular breeding required to accelerate industrious use of this crop, especially for sugar, health care products, medicines and color dye. Identified markers will also help in improvement of bioenergy trait of bioethanol and biogas production along with reaping advantage of crop efficiency in terms of low water and carbon footprint especially in era of climate change. Database URL: http://webapp.cabgrid.res.in/sbmdb/ PMID:26647370
Iquebal, Mir Asif; Jaiswal, Sarika; Angadi, U B; Sablok, Gaurav; Arora, Vasu; Kumar, Sunil; Rai, Anil; Kumar, Dinesh
2015-01-01
DNA marker plays important role as valuable tools to increase crop productivity by finding plausible answers to genetic variations and linking the Quantitative Trait Loci (QTL) of beneficial trait. Prior approaches in development of Short Tandem Repeats (STR) markers were time consuming and inefficient. Recent methods invoking the development of STR markers using whole genomic or transcriptomics data has gained wide importance with immense potential in developing breeding and cultivator improvement approaches. Availability of whole genome sequences and in silico approaches has revolutionized bulk marker discovery. We report world's first sugarbeet whole genome marker discovery having 145 K markers along with 5 K functional domain markers unified in common platform using MySQL, Apache and PHP in SBMDb. Embedded markers and corresponding location information can be selected for desired chromosome, location/interval and primers can be generated using Primer3 core, integrated at backend. Our analyses revealed abundance of 'mono' repeat (76.82%) over 'di' repeats (13.68%). Highest density (671.05 markers/Mb) was found in chromosome 1 and lowest density (341.27 markers/Mb) in chromosome 6. Current investigation of sugarbeet genome marker density has direct implications in increasing mapping marker density. This will enable present linkage map having marker distance of ∼2 cM, i.e. from 200 to 2.6 Kb, thus facilitating QTL/gene mapping. We also report e-PCR-based detection of 2027 polymorphic markers in panel of five genotypes. These markers can be used for DUS test of variety identification and MAS/GAS in variety improvement program. The present database presents wide source of potential markers for developing and implementing new approaches for molecular breeding required to accelerate industrious use of this crop, especially for sugar, health care products, medicines and color dye. Identified markers will also help in improvement of bioenergy trait of bioethanol and biogas production along with reaping advantage of crop efficiency in terms of low water and carbon footprint especially in era of climate change. Database URL: http://webapp.cabgrid.res.in/sbmdb/. © The Author(s) 2015. Published by Oxford University Press.
QUANTIFICATION OF TRANSGENIC PLANT MARKER GENE PERSISTENCE IN THE FIELD
Methods were developed to monitor persistence of genomic DNA in decaying plants in the field. As a model, we used recombinant neomycin phosphotransferase II (rNPT-II) marker genes present in genetically engineered plants. Polymerase chain reaction (PCR) primers were designed, com...
Standardized plant disease evaluations will enhance resistance gene discovery
USDA-ARS?s Scientific Manuscript database
Gene discovery and marker development using DNA-based tools require plant populations with well documented phenotypes. If dissimilar phenotype evaluation methods or data scoring techniques are employed with different crops, or at different labs for the same crops, then data mining for genetic marker...
Supramolecular gel electrophoresis of large DNA fragments.
Tazawa, Shohei; Kobayashi, Kazuhiro; Oyoshi, Takanori; Yamanaka, Masamichi
2017-10-01
Pulsed-field gel electrophoresis is a frequent technique used to separate exceptionally large DNA fragments. In a typical continuous field electrophoresis, it is challenging to separate DNA fragments larger than 20 kbp because they migrate at a comparable rate. To overcome this challenge, it is necessary to develop a novel matrix for the electrophoresis. Here, we describe the electrophoresis of large DNA fragments up to 166 kbp using a supramolecular gel matrix and a typical continuous field electrophoresis system. C 3 -symmetric tris-urea self-assembled into a supramolecular hydrogel in tris-boric acid-EDTA buffer, a typical buffer for DNA electrophoresis, and the supramolecular hydrogel was used as a matrix for electrophoresis to separate large DNA fragments. Three types of DNA marker, the λ-Hind III digest (2 to 23 kbp), Lambda DNA-Mono Cut Mix (10 to 49 kbp), and Marker 7 GT (10 to 165 kbp), were analyzed in this study. Large DNA fragments of greater than 100 kbp showed distinct mobility using a typical continuous field electrophoresis system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes.
Thompson, Michael J; Rubbi, Liudmilla; Dawson, David W; Donahue, Timothy R; Pellegrini, Matteo
2015-01-01
DNA methylation is an epigenetic mark associated with regulation of transcription and genome structure. These markers have been investigated in a variety of cancer settings for their utility in differentiating normal tissue from tumor tissue. Here, we examine the direct correlation between DNA methylation and patient survival. We find that changes in the DNA methylation of key pancreatic developmental genes are strongly associated with patient survival.
Korekar, Girish; Sharma, Ram Kumar; Kumar, Rahul; Meenu; Bisht, Naveen C; Srivastava, Ravi B; Ahuja, Paramvir Singh; Stobdan, Tsering
2012-05-01
The actinorhizal plant seabuckthorn (Hippophae rhamnoides L., Elaeagnaceae) is a wind pollinated dioecious crop. To distinguish male genotypes from female genotypes early in the vegetative growth phase, we have developed robust PCR-based marker(s). DNA bulk samples from 20 male and 20 female plants each were screened with 60 RAPD primers. Two primers, OPA-04 and OPT-06 consistently amplified female-specific (FS) polymorphic fragments of 1,164 and 868 bp, respectively, that were absent in the male samples. DNA sequence of the two markers did not exhibit significant similarity to previously characterized sequences. A sequence-characterized amplified region marker HrX1 (JQ284019) and HrX2 (JQ284020) designed for the two fragments, continued to amplify the FS allele in 120 female plants but not in 100 male plants tested in the current study. Thus, HrX1 and HrX2 are FS markers that can determine the sex of seabuckthorn plants in an early stage and expedite cultivations for industrial applications.
Characterization of (CA)n microsatellite repeats from large-insert clones.
Litt, M; Browne, D
2001-05-01
The most laborious part of developing (CA)n microsatellite repeats as genetic markers is constructing DNA clones to permit determination of sequences flanking the microsatellites. When cosmids or large-insert phage clones are used as primary sources of (CA)n repeat markers, they have traditionally been subcloned into plasmid vectors such as pUC18 or M13 mp 18/19 cloning vectors to obtain fragments of suitable size for DNA sequencing. This unit presents an alternative approach whereby a set of degenerate sequencing primers that anneal directly to (CA)n microsatellites can be used to determine sequences that are inaccessible with vector-derived primers. Because the primers anneal to the repeat and not to the vector, they can be used with subclones containing inserts of several kilobases and should, in theory, always give sequence in the regions directly flanking the repeat. Degeneracy at the 3 end of each of these primers prevents elongation of primers that have annealed out-of-register. The most laborious part of developing (CA)n microsatellite repeats as genetic markers is constructing DNA clones to permit.
SCAR marker specific to detect Magnaporthe grisea infecting finger millets (Eleusine coracana).
Gnanasing Jesumaharaja, L; Manikandan, R; Raguchander, T
2016-09-01
To determine the molecular variability and develop specific Sequence Characterized Amplified Region (SCAR) marker for the detection of Magnaporthe grisea causing blast disease in finger millet. Random amplified polymorphic DNA (RAPD) was performed with 14 isolates of M. grisea using 20 random primers. SCAR marker was developed for accurate and specific detection of M. grisea infecting only finger millets. The genetic similarity coefficient within each group and variation between the groups was observed. Among the primers, OPF-08 generated a RAPD polymorphic profile that showed common fragment of 478 bp in all the isolates. This fragment was cloned and sequenced. SCAR primers, Mg-SCAR-FP and Mg-SCAR-RP, were designed using sequence of the cloned product. The specificity of the SCAR primers was evaluated using purified DNA from M. grisea isolates from finger millets and other pathogens viz., Pyricularia oryzae, Colletotrichum gloeosporioides, Colletotrichum falcatum and Colletotrichum capcisi infecting different crops. The SCAR primers amplified only specific 460 bp fragment from DNA of M. grisea isolates and this fragment was not amplified in other pathogens tested. SCAR primers distinguish blast disease of finger millet from rice as there is no amplification in the rice blast pathogen. PCR-based SCAR marker is a convenient tool for specific and rapid detection of M. grisea in finger millets. Genetic diversity in fungal population helps in developing a suitable SCAR marker to identify the blast pathogen at the early stage of infection. © 2016 The Society for Applied Microbiology.
Identification of Amazonian trees with DNA barcodes.
Gonzalez, Mailyn Adriana; Baraloto, Christopher; Engel, Julien; Mori, Scott A; Pétronelli, Pascal; Riéra, Bernard; Roger, Aurélien; Thébaud, Christophe; Chave, Jérôme
2009-10-16
Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical forests. Based on a comprehensive census of all trees in two hectares of a tropical forest in French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH, ITS), matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers increased the identification rate of juveniles from 72% (morphology alone) to 96% (morphology and molecular) of the individuals assigned to a known tree taxon. We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical implementation of DNA-based tropical plant biodiversity programs.
Development of SCoT-Based SCAR Marker for Rapid Authentication of Taxus Media.
Hao, Juan; Jiao, Kaili; Yu, Chenliang; Guo, Hong; Zhu, Yujia; Yang, Xiao; Zhang, Siyang; Zhang, Lei; Feng, Shangguo; Song, Yaobin; Dong, Ming; Wang, Huizhong; Shen, Chenjia
2018-06-01
Taxus media is an important species in the family Taxaceae with high medicinal and commercial value. Overexploitation and illegal trade have led T. media to a severe threat of extinction. In addition, T. media and other Taxus species have similar morphological traits and are easily misidentified, particularly during the seedling stage. The purpose of this study is to develop a species-specific marker for T. media. Through a screening of 36 start codon targeted (SCoT) polymorphism primers, among 15 individuals of 4 Taxus species (T. media, T. chinensis, T. cuspidate and T. fuana), a clear species-specific DNA fragment (amplified by primer SCoT3) for T. media was identified. After isolation and sequencing, a DNA sequence with 530 bp was obtained. Based on this DNA fragment, a primer pair for the sequence-characterized amplified region marker was designed and named MHSF/MHSR. PCR analysis with primer pair MHSF/MHSR revealed a clear amplified band for all individuals of T. media but not for T. chinensis, T. cuspidate and T. fuana. Therefore, this marker can be used as a quick, efficient and reliable tool to identify T. media among other related Taxus species. The results of this study will lay an important foundation for the protection and management of T. media as a natural resource.
Woods, J P; Heinecke, E L; Goldman, W E
1998-04-01
We developed an efficient electrotransformation system for the pathogenic fungus Histoplasma capsulatum and used it to examine the effects of features of the transforming DNA on transformation efficiency and fate of the transforming DNA and to demonstrate fungal expression of two recombinant Escherichia coli genes, hph and lacZ. Linearized DNA and plasmids containing Histoplasma telomeric sequences showed the greatest transformation efficiencies, while the plasmid vector had no significant effect, nor did the derivation of the selectable URA5 marker (native Histoplasma gene or a heterologous Podospora anserina gene). Electrotransformation resulted in more frequent multimerization, other modification, or possibly chromosomal integration of transforming telomeric plasmids when saturating amounts of DNA were used, but this effect was not observed with smaller amounts of transforming DNA. We developed another selection system using a hygromycin B resistance marker from plasmid pAN7-1, consisting of the E. coli hph gene flanked by Aspergillus nidulans promoter and terminator sequences. Much of the heterologous fungal sequences could be removed without compromising function in H. capsulatum, allowing construction of a substantially smaller effective marker fragment. Transformation efficiency increased when nonselective conditions were maintained for a time after electrotransformation before selection with the protein synthesis inhibitor hygromycin B was imposed. Finally, we constructed a readily detectable and quantifiable reporter gene by fusing Histoplasma URA5 with E. coli lacZ, resulting in expression of functional beta-galactosidase in H. capsulatum. Demonstration of expression of bacterial genes as effective selectable markers and reporters, together with a highly efficient electrotransformation system, provide valuable approaches for molecular genetic analysis and manipulation of H. capsulatum, which have proven useful for examination of targeted gene disruption, regulated gene expression, and potential virulence determinants in this fungus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, B.; Hedrick, A.; Andrew, S.
1992-02-01
The defect causing Huntington disease (HD) has been mapped to 4p16.3, distal to the DNA marker D4S10. Subsequently, additional polymorphic markers closer to the HD gene have been isolated, which has led to the establishment of predictive testing programs for individuals at risk for HD. Approximately 17% of persons presenting to the Canadian collaborative study for predictive testing for HD have not received any modification of risk, in part because of limited informativeness of currently available DNA markers. Therefore, more highly polymorphic DNA markers are needed, which well further increase the accuracy and availability of predictive testing, specifically for familiesmore » with complex or incomplete pedigree structures. In addition, new markers are urgently needed in order to refine the breakpoints in the few known recombinant HD chromosomes, which could allow a more accurate localization of the HD gene within 4p16.3 and, therefore, accelerate the cloning of the disease gene. In this study, the authors present the identification and characterization of nine new polymorphic DNA markers, including three markers which detect highly informative multiallelic VNTR-like polymorphisms with PIC values of up to .84. These markers have been isolated from a cloned region of DNA which has been previously mapped approximately 1,000 kb from the 4p telomere.« less
Akdemir, Hülya; Suzerer, Veysel; Tilkat, Engin; Onay, Ahmet; Çiftçi, Yelda Ozden
2016-12-01
Determination of genetic stability of in vitro-grown plantlets is needed for safe and large-scale production of mature trees. In this study, genetic variation of long-term micropropagated mature pistachio developed through direct shoot bud regeneration using apical buds (protocol A) and in vitro-derived leaves (protocol B) was assessed via DNA-based molecular markers. Randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and amplified fragment length polymorphism (AFLP) were employed, and the obtained PIC values from RAPD (0.226), ISSR (0.220), and AFLP (0.241) showed that micropropagation of pistachio for different periods of time resulted in "reasonable polymorphism" among donor plant and its 18 clones. Mantel's test showed a consistence polymorphism level between marker systems based on similarity matrices. In conclusion, this is the first study on occurrence of genetic variability in long-term micropropagated mature pistachio plantlets. The obtained results clearly indicated that different marker approaches used in this study are reliable for assessing tissue culture-induced variations in long-term cultured pistachio plantlets.
de la Providencia, Ivan Enrique; Nadimi, Maryam; Beaudet, Denis; Morales, Gabriela Rodriguez; Hijri, Mohamed
2013-10-01
Nonself fusion and nuclear genetic exchange have been documented in arbuscular mycorrhizal fungi (AMF), particularly in Rhizophagus irregularis. However, mitochondrial transmission accompanying nonself fusion of genetically divergent isolates remains unknown. Here, we tested the hypothesis that mitochondrial DNA (mtDNA) heteroplasmy occurs in the progeny of spores, obtained by crossing genetically divergent mtDNAs in R. irregularis isolates. Three isolates of geographically distant locations were used to investigate nonself fusions and mtDNA transmission to the progeny. We sequenced two additional mtDNAs of two R. irregularis isolates and developed isolate-specific size-variable markers in intergenic regions of these isolates and those of DAOM-197198. We achieved three crossing combinations in pre-symbiotic and symbiotic phases. Progeny spores per crossing combination were genotyped using isolate-specific markers. We found evidence that nonself recognition occurs between isolates originating from different continents both in pre-symbiotic and symbiotic phases. Genotyping patterns of individual spores from the progeny clearly showed the presence of markers of the two parental mtDNA haplotypes. Our results demonstrate that mtDNA heteroplasmy occurs in the progeny of the crossed isolates. However, this heteroplasmy appears to be a transient stage because all the live progeny spores that were able to germinate showed only one mtDNA haplotype. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
DNA fingerprinting sets for four southern pines
Craig Echt; Sedley Josserand
2018-01-01
DNA markers can provide valuable genetic information for forest tree research, breeding, conservation, and restoration programs. When properly evaluated, selected sets of DNA markers can be used to efficiently get information about genetic diversity in regions, forests, or stands, or in seed lots and orchards. Selected markers also can be used to determine parentage or...
Identification of a Pi9 containing rice germplasm with a newly developed robust marker
USDA-ARS?s Scientific Manuscript database
The Pi9 gene, originating from Oryza minuta, is an effective resistance gene for controlling rice blast disease (Magnaporthe oryzae). However, currently available linked DNA markers do not accurately identify the function of Pi9, thus hindering its efficient incorporation into new cultivars through...
Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host specific markers. Here, we describe the application of a genome fragment enrichment met...
Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host specific markers. Here, we describe the application of a genome fragment enrichment met...
Association of markers of bacterial translocation with immune activation in decompensated cirrhosis.
Mortensen, Christian; Jensen, Jørgen Skov; Hobolth, Lise; Dam-Larsen, Sanne; Madsen, Bjørn S; Andersen, Ove; Møller, Søren; Bendtsen, Flemming
2014-12-01
Bacterial translocation (BT) may cause infections, in particular, spontaneous bacterial peritonitis (SBP). In the absence of overt infection, BT may further stimulate the immune system and contribute to haemodynamic alterations and complications. Bacterial DNA (bDNA) is claimed to be a promising surrogate marker for BT, although its clinical relevance has been questioned. In 38 cirrhotic patients with and without SBP, bDNA in blood and ascites were assessed by 16S rDNA quantitative PCR. Levels of lipopolysaccharide-binding protein in plasma and highly sensitive C-reactive protein, tumour necrosis factor-α, soluble urokinase plasminogen activating receptor, interleukin-6, interleukin 8, interferon-γ inducible protein-10 and vascular endothelial growth factor in plasma and ascites were measured by multiplex cytokine and ELISA assays. In patients without signs of SBP or positive cultures, we found a high frequency of bDNA but low concordance of bDNA between blood and ascites. Markers of inflammation were not significantly different between blood bDNA-positive (22%), ascites bDNA-positive (52%), and bDNA-negative patients. The 16S rDNA PCR failed to show bDNA in two out of six samples with SBP. Sequencing of positive samples did not determine the source of bDNA. bDNA as assessed by this PCR method was largely unrelated to markers of inflammation and does not seem to be of clinical value in the diagnosis of SBP. According to our results, bDNA is not a reliable marker of BT.
Yang, G; Ding, J; Wu, L R; Duan, Y D; Li, A Y; Shan, J Y; Wu, Y X
2015-03-13
DNA fingerprinting is both a popular and important technique with several advantages in plant cultivar identification. However, this technique has not been used widely and efficiently in practical plant identification because the analysis and recording of data generated from fingerprinting and genotyping are tedious and difficult. We developed a novel approach known as a cultivar identification diagram (CID) strategy that uses DNA markers to separate plant individuals in a more efficient, practical, and referable manner. A CID was manually constructed and a polymorphic marker was generated from each polymerase chain reaction for sample separation. In this study, 67 important sea buckthorn cultivars cultivated in China were successfully separated with random amplified polymorphic DNA markers using the CID analysis strategy, with only seven 11-nucleotide primers employed. The utilization of the CID of these 67 sea buckthorn cultivars was verified by identifying 2 randomly chosen groups of cultivars among the 67 cultivars. The main advantages of this identification strategy include fewer primers used and separation of all cultivars using the corresponding primers. This sea buckthorn CID was able to separate any sea buckthorn cultivars among the 67 studied, which is useful for sea buckthorn cultivar identification, cultivar-right-protection, and for the sea buckthorn nursery industry in China.
Chenal, C; Legue, F; Nourgalieva, K; Brouazin-Jousseaume, V; Durel, S; Guitton, N
2000-01-01
In human radiation protection, the shape of the dose effects curve for low doses irradiation (LDI) is assumed to be linear, extrapolated from the clinical consequences of Hiroshima and Nagasaki nuclear explosions. This extrapolation probably overestimates the risk below 200 mSv. In many circumstances, the living species and cells can develop some mechanisms of adaptation. Classical epidemiological studies will not be able to answer the question and there is a need to assess more sensitive biological markers of the effects of LDI. The researches should be focused on DNA effects (strand breaks), radioinduced expression of new genes and proteins involved in the response to oxidative stress and DNA repair mechanisms. New experimental biomolecular techniques should be developed in parallel with more conventional ones. Such studies would permit to assess new biological markers of radiosensitivity, which could be of great interest in radiation protection and radio-oncology.
Maas, Moritz; Walz, Simon; Stühler, Viktoria; Aufderklamm, Stefan; Rausch, Steffen; Bedke, Jens; Stenzl, Arnulf; Todenhöfer, Tilman
2018-05-01
Diagnosis and surveillance of non-muscle invasive bladder cancer (NMIBC) is mainly based on endoscopic bladder evaluation and urine cytology. Several assays for determining additional molecular markers (urine-, tissue- or blood-based) have been developed in recent years but have not been included in clinical guidelines so far. Areas covered: This review gives an update on different molecular markers in the urine and evaluates their role in patients with NMIBC in disease detection and surveillance. Moreover, the potential of recent approaches such as DNA methylation assays, multi-panel RNA gene expression assays and cell-free DNA analysis is assessed. Expert commentary: Most studies on various molecular urine markers have mainly focused on a potential replacement of cystoscopy. New developments in high throughput technologies and urine markers may offer further advantages as they may represent a non-invasive approach for molecular characterization of the disease. This opens new options for individualized surveillance strategies and may help to choose the best therapeutic option. The implementation of these technologies in well-designed clinical trials is essential to further promote the use of urine diagnostics in the management of patients with NMIBC.
USDA-ARS?s Scientific Manuscript database
Recessive genetic defects are currently on the minds of many cattle breeders. The relatively rapid development of diagnostic DNA tests for recessive defects appears to be a major recent technological advancement. However, the attitude of breeders and breed associations toward recessive defects seems...
Usefulness of fire ant genetics in insecticide efficacy trials
USDA-ARS?s Scientific Manuscript database
Mature fire ant colonies contain an average of 80,000 worker ants. For this study, eight fire ant workers were randomly sampled from each colony. DNA fingerprints for each individual ant were generated using 21 simple sequence repeats (SSR) markers that were developed from fire ant DNA by other lab...
Lencina, K H; Konzen, E R; Tsai, S M; Bisognin, D A
2016-12-19
Apuleia leiocarpa (Vogel) J.F. MacBride is a hardwood species native to South America, which is at serious risk of extinction. Therefore, it is of prime importance to examine the genetic diversity of this species, information required for developing conservation, sustainable management, and breeding strategies. Although scarcely used in recent years, random amplified polymorphic DNA markers are useful resources for the analysis of genetic diversity and structure of tree species. This study represents the first genetic analysis based on DNA markers in A. leiocarpa that aimed to investigate the levels of polymorphism and to select markers for the precise characterization of its genetic structure. We adapted the original DNA extraction protocol based on cetyltrimethyl ammonium bromide, and describe a simple procedure that can be used to obtain high-quality samples from leaf tissues of this tree. Eighteen primers were selected, revealing 92 bands, from which 75 were polymorphic and 61 were sufficient to represent the overall genetic structure of the population without compromising the precision of the analysis. Some fragments were conserved among individuals, which can be sequenced and used to analyze nucleotide diversity parameters through a wider set of A. leiocarpa individuals and populations. The individuals were separated into 11 distinct groups with variable levels of genetic diversity, which is important for selecting desirable genotypes and for the development of a conservation and sustainable management program. Our results are of prime importance for further investigations concerning the genetic characterization of this important, but vulnerable species.
Galbiati, Alessandro; Beauséjour, Christian; d'Adda di Fagagna, Fabrizio
2017-04-01
The DNA damage response (DDR) arrests cell cycle progression until DNA lesions, like DNA double-strand breaks (DSBs), are repaired. The presence of DSBs in cells is usually detected by indirect techniques that rely on the accumulation of proteins at DSBs, as part of the DDR. Such detection may be biased, as some factors and their modifications may not reflect physical DNA damage. The dependency on DDR markers of DSB detection tools has left questions unanswered. In particular, it is known that senescent cells display persistent DDR foci, that we and others have proposed to be persistent DSBs, resistant to endogenous DNA repair activities. Others have proposed that these peculiar DDR foci might not be sites of damaged DNA per se but instead stable chromatin modifications, termed DNA-SCARS. Here, we developed a method, named 'DNA damage in situ ligation followed by proximity ligation assay' (DI-PLA) for the detection and imaging of DSBs in cells. DI-PLA is based on the capture of free DNA ends in fixed cells in situ, by ligation to biotinylated double-stranded DNA oligonucleotides, which are next recognized by antibiotin anti-bodies. Detection is enhanced by PLA with a partner DDR marker at the DSB. We validated DI-PLA by demonstrating its ability to detect DSBs induced by various genotoxic insults in cultured cells and tissues. Most importantly, by DI-PLA, we demonstrated that both senescent cells in culture and tissues from aged mammals retain true unrepaired DSBs associated with DDR markers. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Current patents and future development underlying marker-assisted breeding in major grain crops.
Utomo, Herry S; Linscombe, Steve D
2009-01-01
Genomics and molecular markers provide new tools to assemble and mobilize important traits from different genetic backgrounds, including breeding lines and cultivars from different parts of the world and their related wild ancestors, to improve the quality and yield of the existing commercial cultivars to meet the increasing challenges of global food demand. The basic techniques of marker-assisted breeding, such as isolating DNA, amplifying DNA of interest using publicly available primers, and visualizing DNA fragments using standard polyacrylamid gel, have been described in the literature and, therefore, are available to scientists and breeders without any restrictions. A more sophisticated high-throughput system that includes proprietary chemicals and reagents, parts and equipments, software, and methods or processes, has been a subject of intensive patents and trade secrets. The high-throughput systems offer a more efficient way to discover associated QTLs for traits of economic importance. Therefore, an increasing number of patents of highly valued genes and QTLs is expected. This paper will discuss and review current patents associated with genes and QTLs utilized in marker-assisted breeding in major grain crops. The availability of molecular markers for important agronomic traits combined with more efficient marker detection systems will help reach the full benefit of MAS in the breeding effort to reassemble potential genes and recapture critical genes among the breeding lines that were lost during domestication to help boost crop production worldwide.
Bushakra, Jill M; Lewers, Kim S; Staton, Margaret E; Zhebentyayeva, Tetyana; Saski, Christopher A
2015-10-26
Due to a relatively high level of codominant inheritance and transferability within and among taxonomic groups, simple sequence repeat (SSR) markers are important elements in comparative mapping and delineation of genomic regions associated with traits of economic importance. Expressed sequence tags (ESTs) are a source of SSRs that can be used to develop markers to facilitate plant breeding and for more basic research across genera and higher plant orders. Leaf and meristem tissue from 'Heritage' red raspberry (Rubus idaeus) and 'Bristol' black raspberry (R. occidentalis) were utilized for RNA extraction. After conversion to cDNA and library construction, ESTs were sequenced, quality verified, assembled and scanned for SSRs. Primers flanking the SSRs were designed and a subset tested for amplification, polymorphism and transferability across species. ESTs containing SSRs were functionally annotated using the GenBank non-redundant (nr) database and further classified using the gene ontology database. To accelerate development of EST-SSRs in the genus Rubus (Rosaceae), 1149 and 2358 cDNA sequences were generated from red raspberry and black raspberry, respectively. The cDNA sequences were screened using rigorous filtering criteria which resulted in the identification of 121 and 257 SSR loci for red and black raspberry, respectively. Primers were designed from the surrounding sequences resulting in 131 and 288 primer pairs, respectively, as some sequences contained more than one SSR locus. Sequence analysis revealed that the SSR-containing genes span a diversity of functions and share more sequence identity with strawberry genes than with other Rosaceous species. This resource of Rubus-specific, gene-derived markers will facilitate the construction of linkage maps composed of transferable markers for studying and manipulating important traits in this economically important genus.
Lin, Juan; Gunter, Lee E; Harding, Scott A; Kopp, Richard F; McCord, Rachel P; Tsai, Chung-Jui; Tuskan, Gerald A; Smart, Lawrence B
2007-11-01
Salix matsudana Koidz. cultivar 'Tortuosa' (corkscrew willow) is characterized by extensive stem bending and curling of leaves. To investigate the genetic basis of this trait, controlled crosses were made between a corkscrew female (S. matsudana 'Tortuosa') and a straight-stemmed, wild-type male (Salix alba L. Clone 99010). Seventy-seven seedlings from this family (ID 99270) were grown in the field for phenotypic observation. Among the progeny, 39 had straight stems and leaves and 38 had bent stems and curled leaves, suggesting that a dominant allele at a single locus controls this phenotype. As a first step in characterizing the locus, we searched for amplified fragment length polymorphism (AFLP) and randomly amplified polymorphic DNA (RAPD) markers linked to the tortuosa allele using bulked segregant analysis. Samples of DNA from 10 corkscrew individuals were combined to produce a corkscrew pool, and DNA from 10 straight progeny was combined to make a wild-type pool. Sixty-four AFLP primer combinations and 640 RAPD primers were screened to identify marker bands amplified from the corkscrew parent and progeny pool, but not from the wild-type parent or progeny pool. An AFLP marker and a RAPD marker linked to and flanking the tortuosa locus were placed on a preliminary linkage map constructed based on segregation among the 77 progeny. Sectioning and analysis of shoot tips revealed that the corkscrew phenotype is associated with vascular cell collapse, smaller cell size in regions near the cambium and less developed phloem fibers than in wild-type progeny. Identification of a gene associated with this trait could lead to greater understanding of the control of normal stem development in woody plants.
Cha, Thye San; Anne-Marie, Kaben; Chuah, Tse Seng
2014-02-01
Eleusine indica is one of the most common weed species found in agricultural land worldwide. Although herbicide-glyphosate provides good control of the weed, its frequent uses has led to abundant reported cases of resistance. Hence, the development of genetic markers for quick detection of glyphosate-resistance in E. indica population is imperative for the control and management of the weed. In this study, a total of 14 specific random amplified polymorphic DNA (RAPD) markers were identified and two of the markers, namely S4R727 and S26R6976 were further sequence characterized. Sequence alignment revealed that marker S4R727 showing a 12-bp nucleotides deletion in resistant biotypes, while marker S26R6976 contained a 167-bp nucleotides insertion in the resistant biotypes. Based on these sequence differences, three pairs of new sequence characterized amplified region (SCAR) primers were developed. The specificity of these primer pairs were further validated with genomic DNA extracted from ten individual plants of one glyphosate-susceptible and five glyphosate-resistant (R2, R4, R6, R8 and R11) populations. The resulting RAPD-SCAR markers provided the basis for assessing genetic diversity between glyphosate-susceptible and -resistant E. indica biotypes, as well for the identification of genetic locus link to glyphosate-resistance event in the species.
Homozygosity mapping of Fanconi anemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gschwend, M.; Botstein, D.; Kruglyak, L.
1994-09-01
Fanconi anemia (FA) is a rare, recessive, genetically heterogeneous disease characterized by progressive insufficiency of the bone marrow and increased cellular sensitivity to DNA crosslinking agents. Complementation tests among different FA cells have indicated the presence of at least 4 FA-causing genes. One of the genes, FACC, was identified by functional complementation but appears unlikely to account for many phenotypically indistinguishable FA caes. We have begun a linkage study of FA using {open_quotes}homozygosity mapping{close_quotes}, a method that involves genotyping with DNA markers on affected individuals whose parents are related. Because FA is a rare recessive disease, it is most likelymore » that probands are homozygous by descent at the disease locus and, therefore, at nearby DNA markers. Although the probability that any given marker will be homozygous in an inbred individual is high, given markers with moderate heterozygosities, the chance that two unrelated inbred individuals will be homozygous at the same marker is considerably lower. By locating overlapping regions of homozygosity between different families we hope to identify genes that cause FA. Sixteen consanguineous non-FACC FA families from the International Fanconi Anemia Registry at Rockefeller University are under study. An efficient algorithm for data analysis was developed and incorporated into software that can quickly compute exact multipoint lod scores using all markers on an entire chromosome. At the time of this writing, 171 of 229 microsatellite markers spaced at 20 cM intervals across the genome have been analyzed.« less
Identification of Amazonian Trees with DNA Barcodes
Gonzalez, Mailyn Adriana; Baraloto, Christopher; Engel, Julien; Mori, Scott A.; Pétronelli, Pascal; Riéra, Bernard; Roger, Aurélien; Thébaud, Christophe; Chave, Jérôme
2009-01-01
Background Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical forests. Methodology/Principal Findings Based on a comprehensive census of all trees in two hectares of a tropical forest in French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH, ITS), matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers increased the identification rate of juveniles from 72% (morphology alone) to 96% (morphology and molecular) of the individuals assigned to a known tree taxon. Conclusion/Significance We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical implementation of DNA-based tropical plant biodiversity programs. PMID:19834612
Bendif, El Mahdi; Probert, Ian; Carmichael, Margaux; Romac, Sarah; Hagino, Kyoko; de Vargas, Colomban
2014-02-01
Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho-species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal-cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho-species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho-species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho-species delineation was achieved with mitochondrial markers and common intra-morpho-species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho-species, in particular in the context of environmental monitoring. © 2013 Phycological Society of America.
2013-01-01
Background Recently, Jatropha curcas L. has attracted worldwide attention for its potential as a source of biodiesel. However, most DNA markers have demonstrated high levels of genetic similarity among and within jatropha populations around the globe. Despite promising features of copia-type retrotransposons as ideal genetic tools for gene tagging, mutagenesis, and marker-assisted selection, they have not been characterized in the jatropha genome yet. Here, we examined the diversity, evolution, and genome-wide organization of copia-type retrotransposons in the Asian, African, and Mesoamerican accessions of jatropha, then introduced a retrotransposon-based marker for this biofuel crop. Results In total, 157 PCR fragments that were amplified using the degenerate primers for the reverse transcriptase (RT) domain of copia-type retroelements were sequenced and aligned to construct the neighbor-joining tree. Phylogenetic analysis demonstrated that isolated copia RT sequences were classified into ten families, which were then grouped into three lineages. An in-depth study of the jatropha genome for the RT sequences of each family led to the characterization of full consensus sequences of the jatropha copia-type families. Estimated copy numbers of target sequences were largely different among families, as was presence of genes within 5 kb flanking regions for each family. Five copia-type families were as appealing candidates for the development of DNA marker systems. A candidate marker from family Jc7 was particularly capable of detecting genetic variation among different jatropha accessions. Fluorescence in situ hybridization (FISH) to metaphase chromosomes reveals that copia-type retrotransposons are scattered across chromosomes mainly located in the distal part regions. Conclusion This is the first report on genome-wide analysis and the cytogenetic mapping of copia-type retrotransposons of jatropha, leading to the discovery of families bearing high potential as DNA markers. Distinct dynamics of individual copia-type families, feasibility of a retrotransposon-based insertion polymorphism marker system in examining genetic variability, and approaches for the development of breeding strategies in jatropha using copia-type retrotransposons are discussed. PMID:24020916
2012-01-01
Background Although modern sequencing technologies permit the ready detection of numerous DNA sequence variants in any organisms, converting such information to PCR-based genetic markers is hampered by a lack of simple, scalable tools. Onion is an example of an under-researched crop with a complex, heterozygous genome where genome-based research has previously been hindered by limited sequence resources and genetic markers. Results We report the development of generic tools for large-scale web-based PCR-based marker design in the Galaxy bioinformatics framework, and their application for development of next-generation genetics resources in a wide cross of bulb onion (Allium cepa L.). Transcriptome sequence resources were developed for the homozygous doubled-haploid bulb onion line ‘CUDH2150’ and the genetically distant Indian landrace ‘Nasik Red’, using 454™ sequencing of normalised cDNA libraries of leaf and shoot. Read mapping of ‘Nasik Red’ reads onto ‘CUDH2150’ assemblies revealed 16836 indel and SNP polymorphisms that were mined for portable PCR-based marker development. Tools for detection of restriction polymorphisms and primer set design were developed in BioPython and adapted for use in the Galaxy workflow environment, enabling large-scale and targeted assay design. Using PCR-based markers designed with these tools, a framework genetic linkage map of over 800cM spanning all chromosomes was developed in a subset of 93 F2 progeny from a very large F2 family developed from the ‘Nasik Red’ x ‘CUDH2150’ inter-cross. The utility of tools and genetic resources developed was tested by designing markers to transcription factor-like polymorphic sequences. Bin mapping these markers using a subset of 10 progeny confirmed the ability to place markers within 10 cM bins, enabling increased efficiency in marker assignment and targeted map refinement. The major genetic loci conditioning red bulb colour (R) and fructan content (Frc) were located on this map by QTL analysis. Conclusions The generic tools developed for the Galaxy environment enable rapid development of sets of PCR assays targeting sequence variants identified from Illumina and 454 sequence data. They enable non-specialist users to validate and exploit large volumes of next-generation sequence data using basic equipment. PMID:23157543
Baldwin, Samantha; Revanna, Roopashree; Thomson, Susan; Pither-Joyce, Meeghan; Wright, Kathryn; Crowhurst, Ross; Fiers, Mark; Chen, Leshi; Macknight, Richard; McCallum, John A
2012-11-19
Although modern sequencing technologies permit the ready detection of numerous DNA sequence variants in any organisms, converting such information to PCR-based genetic markers is hampered by a lack of simple, scalable tools. Onion is an example of an under-researched crop with a complex, heterozygous genome where genome-based research has previously been hindered by limited sequence resources and genetic markers. We report the development of generic tools for large-scale web-based PCR-based marker design in the Galaxy bioinformatics framework, and their application for development of next-generation genetics resources in a wide cross of bulb onion (Allium cepa L.). Transcriptome sequence resources were developed for the homozygous doubled-haploid bulb onion line 'CUDH2150' and the genetically distant Indian landrace 'Nasik Red', using 454™ sequencing of normalised cDNA libraries of leaf and shoot. Read mapping of 'Nasik Red' reads onto 'CUDH2150' assemblies revealed 16836 indel and SNP polymorphisms that were mined for portable PCR-based marker development. Tools for detection of restriction polymorphisms and primer set design were developed in BioPython and adapted for use in the Galaxy workflow environment, enabling large-scale and targeted assay design. Using PCR-based markers designed with these tools, a framework genetic linkage map of over 800cM spanning all chromosomes was developed in a subset of 93 F(2) progeny from a very large F(2) family developed from the 'Nasik Red' x 'CUDH2150' inter-cross. The utility of tools and genetic resources developed was tested by designing markers to transcription factor-like polymorphic sequences. Bin mapping these markers using a subset of 10 progeny confirmed the ability to place markers within 10 cM bins, enabling increased efficiency in marker assignment and targeted map refinement. The major genetic loci conditioning red bulb colour (R) and fructan content (Frc) were located on this map by QTL analysis. The generic tools developed for the Galaxy environment enable rapid development of sets of PCR assays targeting sequence variants identified from Illumina and 454 sequence data. They enable non-specialist users to validate and exploit large volumes of next-generation sequence data using basic equipment.
Integration of DNA marker information into breeding value predictions
USDA-ARS?s Scientific Manuscript database
Calves from seven breeds including 20 herds were genotyped with a reduced DNA marker panel for weaning weight. The marker panel used was derived using USMARC Cycle VII animals. The results from the current study suggest marker effects are not robust across breeds and that methodology exists to integ...
Nuclear and chloroplast DNA differentiation in Andean potatoes.
Sukhotu, Thitaporn; Kamijima, Osamu; Hosaka, Kazuyoshi
2004-02-01
Over 3500 accessions of Andean landraces have been known in potato, classified into 7 cultivated species ranging from 2x to 5x (Hawkes 1990). Chloroplast DNA (ctDNA), distinguished into T, W, C, S, and A types, showed extensive overlaps in their frequencies among cultivated species and between cultivated and putative ancestral wild species. In this study, 76 accessions of cultivated and 19 accessions of wild species were evaluated for ctDNA types and examined by ctDNA high-resolution markers (ctDNA microsatellites and H3 marker) and nuclear DNA restriction fragment length polymorphisms (RFLPs). ctDNA high-resolution markers identified 25 different ctDNA haplotypes. The S- and A-type ctDNAs were discriminated as unique haplotypes from 12 haplotypes having C-type ctDNA and T-type ctDNA from 10 haplotypes having W-type ctDNA. Differences among ctDNA types were strongly correlated with those of ctDNA high-resolution markers (r = 0.822). Differentiation between W-type ctDNA and C-, S-, and A-type ctDNAs was supported by nDNA RFLPs in most species except for those of recent or immediate hybrid origin. However, differentiation among C-, S-, and A-type ctDNAs was not clearly supported by nDNA RFLPs, suggesting that frequent genetic exchange occurred among them and (or) they shared the same gene pool owing to common ancestry.
Plastid DNA analysis reveals cryptic hybridization in invasive dalmatian toadflax populations
Andrew Boswell; Sharlene E. Sing; Sarah M. Ward
2016-01-01
Gene flow between Dalmatian toadflax (DT) and yellow toadflax (YT), both aggressive invaders throughout the Intermountain West, is creating hybrid populations potentially more invasive than either parent species. To determine the direction of gene flow in these hybrid populations, species-diagnostic cytoplasmic markers were developed. Markers were based on...
Using rice genome-wide association studies to identify DNA markers for marker-assisted selection
USDA-ARS?s Scientific Manuscript database
Rice association mapping panels are collections of rice (Oryza sativa L.) accessions developed for genome-wide association (GWA) studies. One of these panels, the Rice Diversity Panel 1 (RDP1) was phenotyped by various research groups for several traits of interest, and more recently, genotyped with...
Rebijith, K B; Asokan, R; Kumar, N K Krishna; Srikumar, K K; Ramamurthy, V V; Bhat, P Shivarama
2012-10-01
Rapid, accurate, and timely identification of insects as a group is important and challenging worldwide, as they outnumber all other animals in number and diversity. DNA barcoding is a method for the identification of species in a wide range of animal taxa, which uses the 5' region of the mitochondrial cytochrome c oxidase-I (CO-I). Yet another easy, accurate, and economical method of species discrimination is by developing species-specific markers, which produce specific amplicon for the species in question. The method is handy because it is not limited by life stages, sex, polymorphism, and other factors. Herein, we measured the usefulness of CO-I for the species discrimination of mirids in India viz. Helopeltis antonii Signoret, H. thievora Waterhouse, H. bradyi Waterhouse, and Pachypeltis maesarum Kirkaldy in their various life stages. Furthermore, our study showed the utility of species-specific markers in differentiating H. antonii (295) and H. bradyi (514) regardless of their life stages. Analysis of CO-I gene revealed <1% intraspecific divergence for all four species examined, whereas the interspecific distances ranged from 7 to 13%. This study showed that the DNA barcode and species-specific markers will aid the identification of mirids in India and will stand as a decisive tool in formulating integrated pest management (IPM) strategy, quick identification of invasive and cryptic species, haplotypes, biotypes, and other factors, if any.
The value of using DNA markers for beef bull selection in the seedstock sector.
Van Eenennaam, A L; van der Werf, J H J; Goddard, M E
2011-02-01
The objective of this study was to estimate the value derived from using DNA information to increase the accuracy of beef sire selection in a closed seedstock herd. Breeding objectives for commercial production systems targeting 2 diverse markets were examined using multiple-trait selection indexes developed for the Australian cattle industry. Indexes included those for both maternal (self-replacing) and terminal herds targeting either a domestic market, where steers are finished on pasture, or the export market, where steers are finished on concentrate rations in feedlots and marbling has a large value. Selection index theory was used to predict the response to conventional selection based on phenotypic performance records, and this was compared with including information from 2 hypothetical marker panels. In 1 case the marker panel explained a percentage of additive genetic variance equal to the heritability for all traits in the breeding objective and selection criteria, and in the other case to one-half of this amount. Discounted gene flow methodology was used to calculate the value derived from the use of superior bulls selected using DNA test information and performance recording over that derived from conventional selection using performance recording alone. Results were ultimately calculated as discounted returns per DNA test purchased by the seedstock operator. The DNA testing using these hypothetical marker panels increased the selection response between 29 to 158%. The value of this improvement above that obtained using traditional performance recording ranged from $89 to 565 per commercial bull, and $5,332 to 27,910 per stud bull. Assuming that the entire bull calf crop was tested to achieve these gains, the value of the genetic gain derived from DNA testing ranged from $204 to 1,119 per test. All values assumed that the benefits derived from using superior bulls were efficiently transferred along the production chain to the seedstock producer incurring the costs of genotyping. These results suggest that the development of greater-accuracy DNA tests for beef cattle selection could be beneficial from an industry-wide perspective, but the commercial viability will strongly depend on price signaling throughout the production chain.
Ikushima, Shigehito; Tateishi, Yoshiyuki; Kanai, Keiko; Shimada, Emiko; Tanaka, Misa; Ishiguro, Tatsuji; Mizutani, Satoru; Kobayashi, Osamu
2012-04-01
Yeast plays a capital role in brewing fermentation and has a direct impact on flavor and aroma. For the evaluation of competent brewing strains during quality control or development of novel strains it is standard practice to perform fermentation tests, which are costly and time-consuming. Here, we have categorized DNA markers which enable to distinguish and to screen brewing strains more efficiently than ever before. Sequence analysis at 289 loci in the genomes of six bottom fermenting Saccharomyces pastorianus strains revealed that 30 loci contained single nucleotide polymorphisms (SNPs). By determining the nucleotide sequences at the SNP-loci in 26 other S. pastorianus strains and 20 strains of the top fermenting yeast Saccharomyces cerevisiae, almost all these strains could be discriminated solely on the basis of the SNPs. By comparing the fermentative phenotypes of these strains we found that some DNA markers showed a strong association with brewing characteristics, such as the production of ethyl acetate and hydrogen sulphide (H2S). Therefore, the DNA markers we identified will facilitate quality control and the efficient development of brewing yeast strains. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Modified aging of elite athletes revealed by analysis of epigenetic age markers
Spólnicka, Magdalena; Pośpiech, Ewelina; Adamczyk, Jakub Grzegorz; Freire-Aradas, Ana; Pepłońska, Beata; Zbieć-Piekarska, Renata; Makowska, Żanetta; Pięta, Anna; Lareu, Maria Victoria; Phillips, Christopher; Płoski, Rafał; Żekanowski, Cezary
2018-01-01
Recent progress in epigenomics has led to the development of prediction systems that enable accurate age estimation from DNA methylation data. Our objective was to track responses to intense physical exercise of individual age-correlated DNA methylation markers and to infer their potential impact on the aging processes. The study showed accelerated DNA hypermethylation for two CpG sites in TRIM59 and KLF14. Both markers predicted the investigated elite athletes to be several years older than controls and this effect was more substantial in subjects involved in power sports. Accordingly, the complete 5-CpG model revealed age acceleration of elite athletes (P=1.503x10-7) and the result was more significant amongst power athletes (P=1.051x10-9). The modified methylation of TRIM59 and KLF14 in top athletes may be accounted for by the biological roles played by these genes. Their known anti-tumour and anti-inflammatory activities suggests that intense physical training has a complex influence on aging and potentially launches signalling networks that contribute to the observed lower risk of elite athletes to develop cardiovascular disease and cancer. PMID:29466246
Modified aging of elite athletes revealed by analysis of epigenetic age markers.
Spólnicka, Magdalena; Pośpiech, Ewelina; Adamczyk, Jakub Grzegorz; Freire-Aradas, Ana; Pepłońska, Beata; Zbieć-Piekarska, Renata; Makowska, Żanetta; Pięta, Anna; Lareu, Maria Victoria; Phillips, Christopher; Płoski, Rafał; Żekanowski, Cezary; Branicki, Wojciech
2018-02-15
Recent progress in epigenomics has led to the development of prediction systems that enable accurate age estimation from DNA methylation data. Our objective was to track responses to intense physical exercise of individual age-correlated DNA methylation markers and to infer their potential impact on the aging processes. The study showed accelerated DNA hypermethylation for two CpG sites in TRIM59 and KLF14 . Both markers predicted the investigated elite athletes to be several years older than controls and this effect was more substantial in subjects involved in power sports. Accordingly, the complete 5-CpG model revealed age acceleration of elite athletes ( P =1.503x10 -7 ) and the result was more significant amongst power athletes (P=1.051x10 -9 ). The modified methylation of TRIM59 and KLF14 in top athletes may be accounted for by the biological roles played by these genes. Their known anti-tumour and anti-inflammatory activities suggests that intense physical training has a complex influence on aging and potentially launches signalling networks that contribute to the observed lower risk of elite athletes to develop cardiovascular disease and cancer.
Al-Khalifah, Nasser S; Shanavaskhan, A E
2017-01-01
Ambiguity in the total number of date palm cultivars across the world is pointing toward the necessity for an enumerative study using standard morphological and molecular markers. Among molecular markers, DNA markers are more suitable and ubiquitous to most applications. They are highly polymorphic in nature, frequently occurring in genomes, easy to access, and highly reproducible. Various molecular markers such as restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), inter-simple sequence repeats (ISSR), and random amplified polymorphic DNA (RAPD) markers have been successfully used as efficient tools for analysis of genetic variation in date palm. This chapter explains a stepwise protocol for extracting total genomic DNA from date palm leaves. A user-friendly protocol for RAPD analysis and a table showing the primers used in different molecular techniques that produce polymorphisms in date palm are also provided.
Translations on USSR Science and Technology, Biomedical and Behavioral Sciences, Number 33
1978-07-05
7.6, 6.6 mM MgCl2, 6.6 mM 2-ß- mercaptoethanol, 2 y£ BamHI. Restriction was performed at 37°C for 15 min. We used, as marker DNA, EcoRI restrictor...linear DNA as function of molecular weight, plotted according to marker DNA to determine the molecular weights of DNA restrictors. Electron...according to the amp marker ; 3) reaction to agents that eliminate plasmids (acridine orange, ethidium bromide, sodium dodecylsulfate). The obtained
Blair, Matthew W; Hurtado, Natalia; Chavarro, Carolina M; Muñoz-Torres, Monica C; Giraldo, Martha C; Pedraza, Fabio; Tomkins, Jeff; Wing, Rod
2011-03-22
Sequencing of cDNA libraries for the development of expressed sequence tags (ESTs) as well as for the discovery of simple sequence repeats (SSRs) has been a common method of developing microsatellites or SSR-based markers. In this research, our objective was to further sequence and develop common bean microsatellites from leaf and root cDNA libraries derived from the Andean gene pool accession G19833 and the Mesoamerican gene pool accession DOR364, mapping parents of a commonly used reference map. The root libraries were made from high and low phosphorus treated plants. A total of 3,123 EST sequences from leaf and root cDNA libraries were screened and used for direct simple sequence repeat discovery. From these EST sequences we found 184 microsatellites; the majority containing tri-nucleotide motifs, many of which were GC rich (ACC, AGC and AGG in particular). Di-nucleotide motif microsatellites were about half as common as the tri-nucleotide motif microsatellites but most of these were AGn microsatellites with a moderate number of ATn microsatellites in root ESTs followed by few ACn and no GCn microsatellites. Out of the 184 new SSR loci, 120 new microsatellite markers were developed in the BMc (Bean Microsatellites from cDNAs) series and these were evaluated for their capacity to distinguish bean diversity in a germplasm panel of 18 genotypes. We developed a database with images of the microsatellites and their polymorphism information content (PIC), which averaged 0.310 for polymorphic markers. The present study produced information about microsatellite frequency in root and leaf tissues of two important genotypes for common bean genomics: namely G19833, the Andean genotype selected for whole genome shotgun sequencing from race Peru, and DOR364 a race Mesoamerica subgroup 2 genotype that is a small-red seeded, released variety in Central America. Both race Peru and Mesoamerica subgroup 2 (small red beans) have been understudied in comparison to race Nueva Granada and Mesoamerica subgroup 1 (black beans) both with regards to gene expression and as sources of markers. However, we found few differences between SSR type and frequency between the G19833 leaf and DOR364 root tissue-derived ESTs. Overall, our work adds to the analysis of microsatellite frequency evaluation for common bean and provides a new set of 120 BMc markers which combined with the 248 previously developed BMc markers brings the total in this series to 368 markers. Once we include BMd markers, which are derived from GenBank sequences, the current total of gene-based markers from our laboratory surpasses 500 markers. These markers are basic for studies of the transcriptome of common bean and can form anchor points for genetic mapping studies in the future.
Wilcox, Taylor M; Carim, Kellie J; McKelvey, Kevin S; Young, Michael K; Schwartz, Michael K
2015-01-01
Environmental DNA (eDNA) sampling is a powerful tool for detecting invasive and native aquatic species. Often, species of conservation interest co-occur with other, closely related taxa. Here, we developed qPCR (quantitative PCR) markers which distinguish westslope cutthroat trout (Oncorhynchus clarkii lewsi), Yellowstone cutthroat trout (O. clarkii bouvieri), and rainbow trout (O. mykiss), which are of conservation interest both as native species and as invasive species across each other's native ranges. We found that local polymorphisms within westslope cutthroat trout and rainbow trout posed a challenge to designing assays that are generally applicable across the range of these widely-distributed species. Further, poorly-resolved taxonomies of Yellowstone cutthroat trout and Bonneville cutthroat trout (O. c. utah) prevented design of an assay that distinguishes these recognized taxa. The issues of intraspecific polymorphism and unresolved taxonomy for eDNA assay design addressed in this study are likely to be general problems for closely-related taxa. Prior to field application, we recommend that future studies sample populations and test assays more broadly than has been typical of published eDNA assays to date.
Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki
2015-01-01
To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a ‘piping-leaf-type’ cultivar, ‘Yugafu’, and a ‘spiny-tip-leaf-type’ variety, ‘Yonekura’. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the ‘spiny-leaf type’ as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding. PMID:26175625
Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki
2015-06-01
To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a 'piping-leaf-type' cultivar, 'Yugafu', and a 'spiny-tip-leaf-type' variety, 'Yonekura'. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the 'spiny-leaf type' as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding.
Review of functional markers for improving cooking, eating, and the nutritional qualities of rice
Lau, Wendy C. P.; Rafii, Mohd Y.; Ismail, Mohd R.; Puteh, Adam; Latif, Mohammad A.; Ramli, Asfaliza
2015-01-01
After yield, quality is one of the most important aspects of rice breeding. Preference for rice quality varies among cultures and regions; therefore, rice breeders have to tailor the quality according to the preferences of local consumers. Rice quality assessment requires routine chemical analysis procedures. The advancement of molecular marker technology has revolutionized the strategy in breeding programs. The availability of rice genome sequences and the use of forward and reverse genetics approaches facilitate gene discovery and the deciphering of gene functions. A well-characterized gene is the basis for the development of functional markers, which play an important role in plant genotyping and, in particular, marker-assisted breeding. In addition, functional markers offer advantages that counteract the limitations of random DNA markers. Some functional markers have been applied in marker-assisted breeding programs and have successfully improved rice quality to meet local consumers’ preferences. Although functional markers offer a plethora of advantages over random genetic markers, the development and application of functional markers should be conducted with care. The decreasing cost of sequencing will enable more functional markers for rice quality improvement to be developed, and application of these markers in rice quality breeding programs is highly anticipated. PMID:26528304
Novel strategies to construct complex synthetic vectors to produce DNA molecular weight standards.
Chen, Zhe; Wu, Jianbing; Li, Xiaojuan; Ye, Chunjiang; Wenxing, He
2009-05-01
DNA molecular weight standards (DNA markers, nucleic acid ladders) are commonly used in molecular biology laboratories as references to estimate the size of various DNA samples in electrophoresis process. One method of DNA marker production is digestion of synthetic vectors harboring multiple DNA fragments of known sizes by restriction enzymes. In this article, we described three novel strategies-sequential DNA fragment ligation, screening of ligation products by polymerase chain reaction (PCR) with end primers, and "small fragment accumulation"-for constructing complex synthetic vectors and minimizing the mass differences between DNA fragments produced from restrictive digestion of synthetic vectors. The strategy could be applied to construct various complex synthetic vectors to produce any type of low-range DNA markers, usually available commercially. In addition, the strategy is useful for single-step ligation of multiple DNA fragments for construction of complex synthetic vectors and other applications in molecular biology field.
Dutta, Suhrid R.; Kar, Prasanta K.; Srivastava, Ashok K.; Sinha, Manoj K.; Shankar, Jai; Ghosh, Ananta K.
2012-01-01
The tropical tasar silkworm, Antheraea mylitta, is a semi-domesticated vanya silk-producing insect of high economic importance. To date, no molecular marker associated with cocoon and shell weights has been identified in this species. In this report, we identified a randomly amplified polymorphic DNA (RAPD) marker and examined its inheritance, and also developed a stable diagnostic sequence-characterized amplified region (SCAR) marker. Silkworms were divided into groups with high (HCSW) and low (LCSW) cocoon and shell weights, and the F2 progeny of a cross between these two groups were obtained. DNA from these silkworms was screened by PCR using 34 random primers and the resulting RAPD fragments were used for cluster analysis and discriminant function analysis (DFA). The clustering pattern in a UPGMA-based dendogram and DFA clearly distinguished the HCSW and LCSW groups. Multiple regression analysis identified five markers associated with cocoon and shell weights. The marker OPW16905 bp showed the most significant association with cocoon and shell weights, and its inheritance was confirmed in F2 progeny. Cloning and sequencing of this 905 bp fragment showed 88% identity between its 134 nucleotides and the Bmc-1/Yamato-like retroposon of A. mylitta. This marker was further converted into a diagnostic SCAR marker (SCOPW 16826 bp). The SCAR marker developed here may be useful in identifying the right parental stock of tasar silk-worms for high cocoon and shell weights in breeding programs designed to enhance the productivity of tasar silk. PMID:23271934
Development of marker-free transgenic lettuce resistant to Mirafiori lettuce big-vein virus.
Kawazu, Yoichi; Fujiyama, Ryoi; Imanishi, Shunsuke; Fukuoka, Hiroyuki; Yamaguchi, Hirotaka; Matsumoto, Satoru
2016-10-01
Lettuce big-vein disease caused by Mirafiori lettuce big-vein virus (MLBVV) is found in major lettuce production areas worldwide, but highly resistant cultivars have not yet been developed. To produce MLBVV-resistant marker-free transgenic lettuce that would have a transgene with a promoter and terminator of lettuce origin, we constructed a two T-DNA binary vector, in which the first T-DNA contained the selectable marker gene neomycin phosphotransferase II, and the second T-DNA contained the lettuce ubiquitin gene promoter and terminator and inverted repeats of the coat protein (CP) gene of MLBVV. This vector was introduced into lettuce cultivars 'Watson' and 'Fuyuhikari' by Agrobacterium tumefaciens-mediated transformation. Regenerated plants (T0 generation) that were CP gene-positive by PCR analysis were self-pollinated, and 312 T1 lines were analyzed for resistance to MLBVV. Virus-negative plants were checked for the CP gene and the marker gene, and nine lines were obtained which were marker-free and resistant to MLBVV. Southern blot analysis showed that three of the nine lines had two copies of the CP gene, whereas six lines had a single copy and were used for further analysis. Small interfering RNAs, which are indicative of RNA silencing, were detected in all six lines. MLBVV infection was inhibited in all six lines in resistance tests performed in a growth chamber and a greenhouse, resulting in a high degree of resistance to lettuce big-vein disease. Transgenic lettuce lines produced in this study could be used as resistant cultivars or parental lines for breeding.
Markers of oxidative DNA damage in human interventions with fruit and berries.
Freese, Riitta
2006-01-01
Diets rich in fruit and vegetables are associated with a decreased risk of several cancers via numerous possible mechanisms. For example, phytochemicals may decrease oxidative DNA damage and enhance DNA repair. Markers of oxidative DNA damage in human dietary intervention trials used most frequently include oxidized nucleosides such as 7-hydro-8-oxo-2'-deoxyguanosine, which can be analyzed from isolated DNA or urine. Single-cell gel electrophoresis has been widely used to measure baseline or H2O2-induced DNA strand breaks or sites of modified bases sensitive to repair enzymes recognizing oxidized purines or pyrimidines. Recently, markers of DNA repair also have been used. Few controlled human dietary interventions have investigated the specific effects of fruit or berries. There are indications that kiwifruit can decrease H2O2 sensitivity of lymphocyte DNA ex vivo and enhance DNA repair. Carefully controlled studies with flavonoid-rich fruit or berry juices found only few significant differences; less rigorously controlled studies gave more optimistic results. Data on the effects of fruit and berries on DNA damage in humans are scarce and inconclusive; adequately controlled studies with validated markers are needed. Because levels of DNA damage are usually low in young healthy volunteers, groups with an enhanced risk of DNA damage should be studied.
Molecular markers in bladder cancer: Novel research frontiers.
Sanguedolce, Francesca; Cormio, Antonella; Bufo, Pantaleo; Carrieri, Giuseppe; Cormio, Luigi
2015-01-01
Bladder cancer (BC) is a heterogeneous disease encompassing distinct biologic features that lead to extremely different clinical behaviors. In the last 20 years, great efforts have been made to predict disease outcome and response to treatment by developing risk assessment calculators based on multiple standard clinical-pathological factors, as well as by testing several molecular markers. Unfortunately, risk assessment calculators alone fail to accurately assess a single patient's prognosis and response to different treatment options. Several molecular markers easily assessable by routine immunohistochemical techniques hold promise for becoming widely available and cost-effective tools for a more reliable risk assessment, but none have yet entered routine clinical practice. Current research is therefore moving towards (i) identifying novel molecular markers; (ii) testing old and new markers in homogeneous patients' populations receiving homogeneous treatments; (iii) generating a multimarker panel that could be easily, and thus routinely, used in clinical practice; (iv) developing novel risk assessment tools, possibly combining standard clinical-pathological factors with molecular markers. This review analyses the emerging body of literature concerning novel biomarkers, ranging from genetic changes to altered expression of a huge variety of molecules, potentially involved in BC outcome and response to treatment. Findings suggest that some of these indicators, such as serum circulating tumor cells and tissue mitochondrial DNA, seem to be easily assessable and provide reliable information. Other markers, such as the phosphoinositide-3-kinase (PI3K)/AKT (serine-threonine kinase)/mTOR (mammalian target of rapamycin) pathway and epigenetic changes in DNA methylation seem to not only have prognostic/predictive value but also, most importantly, represent valuable therapeutic targets. Finally, there is increasing evidence that the development of novel risk assessment tools combining standard clinical-pathological factors with molecular markers represents a major quest in managing this poorly predictable disease.
USDA-ARS?s Scientific Manuscript database
As an initial step to explore the transcriptome genetic diversity and to discover single nucleotide polymorphic (SNP)-biomarkers for marker assisted breeding within Pima (Gossypium barbadense L.) cotton, leaves from 25 day plants of three diverse genotypes were used to develop cDNA libraries. Using ...
Perumal, Ramasamy; Nimmakayala, Padmavathi; Erattaimuthu, Saradha R; No, Eun-Gyu; Reddy, Umesh K; Prom, Louis K; Odvody, Gary N; Luster, Douglas G; Magill, Clint W
2008-01-01
Background A recent outbreak of sorghum downy mildew in Texas has led to the discovery of both metalaxyl resistance and a new pathotype in the causal organism, Peronosclerospora sorghi. These observations and the difficulty in resolving among phylogenetically related downy mildew pathogens dramatically point out the need for simply scored markers in order to differentiate among isolates and species, and to study the population structure within these obligate oomycetes. Here we present the initial results from the use of a biotin capture method to discover, clone and develop PCR primers that permit the use of simple sequence repeats (microsatellites) to detect differences at the DNA level. Results Among the 55 primers pairs designed from clones from pathotype 3 of P. sorghi, 36 flanked microsatellite loci containing simple repeats, including 28 (55%) with dinucleotide repeats and 6 (11%) with trinucleotide repeats. A total of 22 microsatellites with CA/AC or GT/TG repeats were the most abundant (40%) and GA/AG or CT/TC types contribute 15% in our collection. When used to amplify DNA from 19 isolates from P. sorghi, as well as from 5 related species that cause downy mildew on other hosts, the number of different bands detected for each SSR primer pair using a LI-COR- DNA Analyzer ranged from two to eight. Successful cross-amplification for 12 primer pairs studied in detail using DNA from downy mildews that attack maize (P. maydis & P. philippinensis), sugar cane (P. sacchari), pearl millet (Sclerospora graminicola) and rose (Peronospora sparsa) indicate that the flanking regions are conserved in all these species. A total of 15 SSR amplicons unique to P. philippinensis (one of the potential threats to US maize production) were detected, and these have potential for development of diagnostic tests. A total of 260 alleles were obtained using 54 microsatellites primer combinations, with an average of 4.8 polymorphic markers per SSR across 34 Peronosclerospora, Peronospora and Sclerospora spp isolates studied. Cluster analysis by UPGMA as well as principal coordinate analysis (PCA) grouped the 34 isolates into three distinct groups (all 19 isolates of Peronosclerospora sorghi in cluster I, five isolates of P. maydis and three isolates of P. sacchari in cluster II and five isolates of Sclerospora graminicola in cluster III). Conclusion To our knowledge, this is the first attempt to extensively develop SSR markers from Peronosclerospora genomic DNA. The newly developed SSR markers can be readily used to distinguish isolates within several species of the oomycetes that cause downy mildew diseases. Also, microsatellite fragments likely include retrotransposon regions of DNA and these sequences can serve as useful genetic markers for strain identification, due to their degree of variability and their widespread occurrence among sorghum, maize, sugarcane, pearl millet and rose downy mildew isolates. PMID:19040756
Mortensen, Christian; Karlsen, Stine; Grønbæk, Henning; Nielsen, Dennis T; Frevert, Susanne; Clemmesen, Jens O; Møller, Søren; Jensen, Jørgen S; Bendtsen, Flemming
2013-10-01
Bacterial translocation (BT) with immune activation may lead to hemodynamical alterations and poor outcomes in patients with cirrhosis. We investigated bacterial DNA (bDNA), a marker of BT, and its relation to portal pressure and markers of inflammation in the portal and hepatic veins in patients with cirrhosis undergoing TIPS insertion. We analysed plasma for bDNA and markers of inflammation in 28 patients [median portal pressure gradient 15 (11-19) mmHg] during TIPS treatment for refractory ascites (n = 19) or acute variceal bleeding (n = 9). Advanced cirrhosis was present in the majority [Child-Pugh class (A/B/C): 1/14/13], and most often caused by alcohol (n = 21). bDNA was detectable in one or both samples in 16 of 28 patients (57%). bDNA was present in 39% of the samples from the portal vein vs 43% of the samples in the hepatic vein (P = 0.126). Antibiotics had no effect on bDNA or markers of inflammation. Markers of inflammation did not differ between the hepatic and portal veins with the exceptions of soluble urokinase plasminogen activating receptor (suPAR) and vascular endothelial growth factor (VEGF), both higher in the hepatic vein (P = 0.031 and 0.003 respectively). No transhepatic gradient of bDNA was evident, suggesting that no major hepatic elimination of bDNA occurs in advanced liver disease. bDNA, in contrast to previous reports was largely unrelated to a panel of markers of inflammation and without relation to portal pressure. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Using long ssDNA polynucleotides to amplify STRs loci in degraded DNA samples
Pérez Santángelo, Agustín; Corti Bielsa, Rodrigo M.; Sala, Andrea; Ginart, Santiago; Corach, Daniel
2017-01-01
Obtaining informative short tandem repeat (STR) profiles from degraded DNA samples is a challenging task usually undermined by locus or allele dropouts and peak-high imbalances observed in capillary electrophoresis (CE) electropherograms, especially for those markers with large amplicon sizes. We hereby show that the current STR assays may be greatly improved for the detection of genetic markers in degraded DNA samples by using long single stranded DNA polynucleotides (ssDNA polynucleotides) as surrogates for PCR primers. These long primers allow a closer annealing to the repeat sequences, thereby reducing the length of the template required for the amplification in fragmented DNA samples, while at the same time rendering amplicons of larger sizes suitable for multiplex assays. We also demonstrate that the annealing of long ssDNA polynucleotides does not need to be fully complementary in the 5’ region of the primers, thus allowing for the design of practically any long primer sequence for developing new multiplex assays. Furthermore, genotyping of intact DNA samples could also benefit from utilizing long primers since their close annealing to the target STR sequences may overcome wrong profiling generated by insertions/deletions present between the STR region and the annealing site of the primers. Additionally, long ssDNA polynucleotides might be utilized in multiplex PCR assays for other types of degraded or fragmented DNA, e.g. circulating, cell-free DNA (ccfDNA). PMID:29099837
Chavan, Preeti; Warude, Dnyaneshwar; Joshi, Kalpana; Patwardhan, Bhushan
2008-05-01
Zingiber officinale Roscoe (common or culinary ginger) is an official drug in Ayurvedic, Indian herbal, Chinese, Japanese, African and British Pharmacopoeias. The objective of the present study was to develop DNA-based markers that can be applied for the identification and differentiation of the commercially important plant Z. officinale Roscoe from the closely related species Zingiber zerumbet (pinecone, bitter or 'shampoo' ginger) and Zingiber cassumunar [cassumunar or plai (Thai) ginger]. The rhizomes of the other two Zingiber species used in the present study are morphologically similar to that of Z. officinale Roscoe and can be used as its adulterants or contaminants. Various methods, including macroscopy, microscopy and chemoprofiling, have been reported for the quality control of crude ginger and its products. These methods are reported to have limitations in distinguishing Z. officinale from closely related species. Hence, newer complementary methods for correct identification of ginger are useful. In the present study, RAPD (random amplification of polymorphic DNA) analysis was used to identify putative species-specific amplicons for Z. officinale. These were further cloned and sequenced to develop SCAR (sequence-characterized amplified region) markers. The developed SCAR markers were tested in several non-Zingiber species commonly used in ginger-containing formulations. One of the markers, P3, was found to be specific for Z. officinale and was successfully applied for detection of Z. officinale from Trikatu, a multicomponent formulation.
Development of a Gene Cloning System in Methanogens.
1987-03-27
Genetic transfer via DNA-dependent natural transformation was achieved for two markers, 5-fluorouracil-resistance, and 6- mercaptopurine resistance...resistance genes, and genes coding for enzymes that produce colored products will be tested as markers for plasmid transformation. A functional plasmid...clones, which include resistances to mercaptopurine , azahypoxanthine, diazauracil, kanamycin, mitomycin C, and fluorouracil- mercaptopurine and
USDA-ARS?s Scientific Manuscript database
The gene Ryadg from S. tuberosum ssp. andigena provides extreme resistance to PVY. This gene has been mapped to chromosome XI and linked PCR-based DNA markers have been identified. Advanced tetraploid russeted potato clones developed by the U.S. Pacific Northwest Potato Breeding Program with Ryadg P...
Glenn, Travis C; Lance, Stacey L; McKee, Anna M; Webster, Bonnie L; Emery, Aidan M; Zerlotini, Adhemar; Oliveira, Guilherme; Rollinson, David; Faircloth, Brant C
2013-10-17
Urogenital schistosomiasis caused by Schistosoma haematobium is widely distributed across Africa and is increasingly being targeted for control. Genome sequences and population genetic parameters can give insight into the potential for population- or species-level drug resistance. Microsatellite DNA loci are genetic markers in wide use by Schistosoma researchers, but there are few primers available for S. haematobium. We sequenced 1,058,114 random DNA fragments from clonal cercariae collected from a snail infected with a single Schistosoma haematobium miracidium. We assembled and aligned the S. haematobium sequences to the genomes of S. mansoni and S. japonicum, identifying microsatellite DNA loci across all three species and designing primers to amplify the loci in S. haematobium. To validate our primers, we screened 32 randomly selected primer pairs with population samples of S. haematobium. We designed >13,790 primer pairs to amplify unique microsatellite loci in S. haematobium, (available at http://www.cebio.org/projetos/schistosoma-haematobium-genome). The three Schistosoma genomes contained similar overall frequencies of microsatellites, but the frequency and length distributions of specific motifs differed among species. We identified 15 primer pairs that amplified consistently and were easily scored. We genotyped these 15 loci in S. haematobium individuals from six locations: Zanzibar had the highest levels of diversity; Malawi, Mauritius, Nigeria, and Senegal were nearly as diverse; but the sample from South Africa was much less diverse. About half of the primers in the database of Schistosoma haematobium microsatellite DNA loci should yield amplifiable and easily scored polymorphic markers, thus providing thousands of potential markers. Sequence conservation among S. haematobium, S. japonicum, and S. mansoni is relatively high, thus it should now be possible to identify markers that are universal among Schistosoma species (i.e., using DNA sequences conserved among species), as well as other markers that are specific to species or species-groups (i.e., using DNA sequences that differ among species). Full genome-sequencing of additional species and specimens of S. haematobium, S. japonicum, and S. mansoni is desirable to better characterize differences within and among these species, to develop additional genetic markers, and to examine genes as well as conserved non-coding elements associated with drug resistance.
Zhang, Xue; Shen, Shikang; Wu, Fuqin; Wang, Yuehua
2017-01-01
Michelia yunnanensis Franch., is a traditional ornamental, aromatic, and medicinal shrub that endemic to Yunnan Province in southwest China. Although the species has a large distribution pattern and is abundant in Yunnan Province, the populations are dramatically declining because of overexploitation and habitat destruction. Studies on the genetic variation and demography of endemic species are necessary to develop effective conservation and management strategies. To generate such knowledge, we used 3 pairs of universal cpDNA markers and 10 pairs of microsatellite markers to assess the genetic diversity, genetic structure, and demographic history of 7 M. yunnanensis populations. We calculated a total of 88 alleles for 10 polymorphic loci and 10 haplotypes for a combined 2,089 bp of cpDNA. M. yunnanensis populations showed high genetic diversity (Ho = 0.551 for nuclear markers and Hd = 0.471 for cpDNA markers) and low genetic differentiation (FST = 0.058). Geographical structure was not found among M. yunnanensis populations. Genetic distance and geographic distance were not correlated (P > 0.05), which indicated that geographic isolation is not the primary cause of the low genetic differentiation of M. yunnanensis. Additionally, M. yunnanensis populations contracted ~20,000–30,000 years ago, and no recent expansion occurred in current populations. Results indicated that the high genetic diversity of the species and within its populations holds promise for effective genetic resource management and sustainable utilization. Thus, we suggest that the conservation and management of M. yunnanensis should address exotic overexploitation and habitat destruction. PMID:28484472
Tillmar, Andreas O; Phillips, Chris
2017-01-01
Advances in massively parallel sequencing technology have enabled the combination of a much-expanded number of DNA markers (notably STRs and SNPs in one or combined multiplexes), with the aim of increasing the weight of evidence in forensic casework. However, when data from multiple loci on the same chromosome are used, genetic linkage can affect the final likelihood calculation. In order to study the effect of linkage for different sets of markers we developed the biostatistical tool ILIR, (Impact of Linkage on forensic markers for Identity and Relationship tests). The ILIR tool can be used to study the overall impact of genetic linkage for an arbitrary set of markers used in forensic testing. Application of ILIR can be useful during marker selection and design of new marker panels, as well as being highly relevant for existing marker sets as a way to properly evaluate the effects of linkage on a case-by-case basis. ILIR, implemented via the open source platform R, includes variation and genomic position reference data for over 40 STRs and 140 SNPs, combined with the ability to include additional forensic markers of interest. The use of the software is demonstrated with examples from several different established marker sets (such as the expanded CODIS core loci) including a review of the interpretation of linked genetic data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
M. -S. Kim; N. B. Klopfenstein; J. W. Hanna; G. I. McDonald
2006-01-01
Phylogenetic and genetic relationships among 10 North American Armillaria species were analysed using sequence data from ribosomal DNA (rDNA), including intergenic spacer (IGS-1), internal transcribed spacers with associated 5.8S (ITS + 5.8S), and nuclear large subunit rDNA (nLSU), and amplified fragment length polymorphism (AFLP) markers. Based on rDNA sequence data,...
RAD tag sequencing as a source of SNP markers in Cynara cardunculus L
2012-01-01
Background The globe artichoke (Cynara cardunculus L. var. scolymus) genome is relatively poorly explored, especially compared to those of the other major Asteraceae crops sunflower and lettuce. No SNP markers are in the public domain. We have combined the recently developed restriction-site associated DNA (RAD) approach with the Illumina DNA sequencing platform to effect the rapid and mass discovery of SNP markers for C. cardunculus. Results RAD tags were sequenced from the genomic DNA of three C. cardunculus mapping population parents, generating 9.7 million reads, corresponding to ~1 Gbp of sequence. An assembly based on paired ends produced ~6.0 Mbp of genomic sequence, separated into ~19,000 contigs (mean length 312 bp), of which ~21% were fragments of putative coding sequence. The shared sequences allowed for the discovery of ~34,000 SNPs and nearly 800 indels, equivalent to a SNP frequency of 5.6 per 1,000 nt, and an indel frequency of 0.2 per 1,000 nt. A sample of heterozygous SNP loci was mapped by CAPS assays and this exercise provided validation of our mining criteria. The repetitive fraction of the genome had a high representation of retrotransposon sequence, followed by simple repeats, AT-low complexity regions and mobile DNA elements. The genomic k-mers distribution and CpG rate of C. cardunculus, compared with data derived from three whole genome-sequenced dicots species, provided a further evidence of the random representation of the C. cardunculus genome generated by RAD sampling. Conclusion The RAD tag sequencing approach is a cost-effective and rapid method to develop SNP markers in a highly heterozygous species. Our approach permitted to generate a large and robust SNP datasets by the adoption of optimized filtering criteria. PMID:22214349
DNA typing of Pakistani cattle breeds Tharparkar and Red Sindhi by microsatellite markers.
Azam, Amber; Babar, Masroor Ellahi; Firyal, Sehrish; Anjum, Aftab Ahmad; Akhtar, Nabeela; Asif, Muhammad; Hussain, Tanveer
2012-02-01
Microsatellite markers are used for any individual identity and breed characterization in animals that is an efficient and successful way of investigation. They are used for multiple purposes as genetic detectors including, rapid mutation rate, high level of polymorphism, and range of variety of microsatellite markers available. A panel of 19 microsatellite markers was developed for breed characterization in Tharparkar and Red Sindhi breeds of cattle in Pakistan. Forty four blood samples of cattle (each breed) were collected from Department of Livestock Management, Sindh Agriculture University, Tandojam, Tando Qaiser, Tharparkar Cattle Farm Nabi sar Road, Umer Kot, Sindh, and Govt. Red Sindhi Cattle Breeding Farm, Tando Muhammad Khan Pakistan. Breed characterization was 100% successful. Average PIC, He and Power of Exclusion values were found to be 0.91, 0.62 and 13.28, respectively. Pattern of allelic frequencies of most of the microsatellite markers were clearly distinct between two breeds. As a result of present study a reliable, efficient and very informative panel of microsatellite markers was successfully developed which was capable to interpret individual identity, forensic cases and breed characterization in cattle. This facility is ready to be provided to local cattle breeder at commercial level for DNA testing of cattle. This study will also be highly helpful for breed conservation of cattle. In addition this study can also become a basis to open up new disciplines of animal forensics in Pakistan.
Sun, Suli; Deng, Dong; Wang, Zhongyi; Duan, Canxing; Wu, Xiaofei; Wang, Xiaoming; Zong, Xuxiao; Zhu, Zhendong
2016-05-01
A novel er1 allele, er1 -7, conferring pea powdery mildew resistance was characterized by a 10-bp deletion in PsMLO1 cDNA, and its functional marker was developed and validated in pea germplasms. Pea powdery mildew caused by Erysiphe pisi DC is a major disease worldwide. Pea cultivar 'DDR-11' is an elite germplasm resistant to E. pisi. To identify the gene conferring resistance in DDR-11, the susceptible Bawan 6 and resistant DDR-11 cultivars were crossed to produce F1, F2, and F(2:3) populations. The phenotypic segregation patterns in the F2 and F(2:3) populations fit the 3:1 (susceptible:resistant) and 1:2:1 (susceptible homozygotes:heterozygotes:resistant homozygotes) ratios, respectively, indicating that resistance was controlled by a single recessive gene. Analysis of er1-linked markers in the F2 population suggested that the recessive resistance gene in DDR-11 was an er1 allele, which was mapped between markers ScOPE16-1600 and c5DNAmet. To further characterize er1 allele, the cDNA sequences of PsMLO1 from the parents were obtained and a novel er1 allele in DDR-11 was identified and designated as er1-7, which has a 10-bp deletion in position 111-120. The er1-7 allele caused a frame-shift mutation, resulting in a premature termination of translation of PsMLO1 protein. A co-dominant functional marker specific for er1-7 was developed, InDel111-120, which co-segregated with E. pisi resistance in the mapping population. The marker was able to distinguish between pea germplasms with and without the er1-7. Of 161 pea germplasms tested by InDel111-120, seven were detected containing resistance allele er1-7, which was verified by sequencing their PsMLO1 cDNA. Here, a novel er1 allele was characterized and its an ideal functional marker was validated, providing valuable genetic information and a powerful tool for breeding pea resistance to powdery mildew.
Development of new strains and related SCAR markers for an edible mushroom, Hypsizygus marmoreus.
Lee, Chang Y; Park, Jeong-Eun; Lee, Jia; Kim, Jong-Kuk; Ro, Hyeon-Su
2012-02-01
New fast-growing and less bitter varieties of Hypsizygus marmoreus were developed by crossing monokaryotic mycelia from a commercial strain (Hm1-1) and a wild strain (Hm3-10). Six of the better tasting new strains with a shorter cultivation period were selected from 400 crosses in a large-scale cultivation experiment. We attempted to develop sequence characterized amplified region (SCAR) markers to identify the new strain from other commercial strains. For the SCAR markers, we conducted molecular genetic analysis on a wild strain and the eight most cultivated H. marmoreus strains collected from various areas in East Asia by randomly amplified polymorphic DNA. Ten unique DNA bands for a commercial Hm1-1 strain and the Hm3-10 strain were extracted and their sequences were determined. Primer sets were designed based on the determined sequences. PCR reactions with the primer sets revealed that four primer sets successfully discriminated the new strains from other commercial strains and are thus suitable for commercial purposes. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Gaines, C.A; Hare, M.P; Beck, S.E; Rosenbaum, H.C
2005-01-01
Right whales (genus: Eubalaena) are among the most endangered mammals, yet their taxonomy and phylogeny have been questioned. A phylogenetic hypothesis based on mitochondrial DNA (mtDNA) variation recently prompted a taxonomic revision, increasing the number of right whale species to three. We critically evaluated this hypothesis using sequence data from 13 nuclear DNA (nuDNA) loci as well as the mtDNA control region. Fixed diagnostic characters among the nuclear markers strongly support the hypothesis of three genetically distinct species, despite the lack of any diagnostic morphological characters. A phylogenetic analysis of all data produced a strict consensus cladogram with strong support at nodes that define each right whale species as well as relationships among species. Results showed very little conflict among the individual partitions as well as congruence between the mtDNA and nuDNA datasets. These data clearly demonstrate the strength of using numerous independent genetic markers during a phylogenetic analysis of closely related species. In evaluating phylogenetic support contributed by individual loci, 11 of the 14 loci provided support for at least one of the nodes of interest to this study. Only a single marker (mtDNA control region) provided support at all four nodes. A study using any single nuclear marker would have failed to support the proposed phylogeny, and a strong phylogenetic hypothesis was only revealed by the simultaneous analysis of many nuclear loci. In addition, nuDNA and mtDNA data provided complementary levels of support at nodes of different evolutionary depth indicating that the combined use of mtDNA and nuDNA data is both practical and desirable. PMID:15846869
Enhanced low-template DNA analysis conditions and investigation of allele dropout patterns.
Hedell, Ronny; Dufva, Charlotte; Ansell, Ricky; Mostad, Petter; Hedman, Johannes
2015-01-01
Forensic DNA analysis applying PCR enables profiling of minute biological samples. Enhanced analysis conditions can be applied to further push the limit of detection, coming with the risk of visualising artefacts and allele imbalances. We have evaluated the consecutive increase of PCR cycles from 30 to 35 to investigate the limitations of low-template (LT) DNA analysis, applying the short tandem repeat (STR) analysis kit PowerPlex ESX 16. Mock crime scene DNA extracts of four different quantities (from around 8-84 pg) were tested. All PCR products were analysed using 5, 10 and 20 capillary electrophoresis (CE) injection seconds. Bayesian models describing allele dropout patterns, allele peak heights and heterozygote balance were developed to assess the overall improvements in EPG quality with altered PCR/CE settings. The models were also used to evaluate the impact of amplicon length, STR marker and fluorescent label on the risk for allele dropout. The allele dropout probability decreased for each PCR cycle increment from 30 to 33 PCR cycles. Irrespective of DNA amount, the dropout probability was not affected by further increasing the number of PCR cycles. For the 42 and 84 pg samples, mainly complete DNA profiles were generated applying 32 PCR cycles. For the 8 and 17 pg samples, the allele dropouts decreased from 100% using 30 cycles to about 75% and 20%, respectively. The results for 33, 34 and 35 PCR cycles indicated that heterozygote balance and stutter ratio were mainly affected by DNA amount, and not directly by PCR cycle number and CE injection settings. We found 32 and 33 PCR cycles with 10 CE injection seconds to be optimal, as 34 and 35 PCR cycles did not improve allele detection and also included CE saturation problems. We find allele dropout probability differences between several STR markers. Markers labelled with the fluorescent dyes CXR-ET (red in electropherogram) and TMR-ET (shown as black) generally have higher dropout risks compared with those labelled with JOE (green) and fluorescein (blue). Overall, the marker D10S1248 has the lowest allele dropout probability and D8S1179 the highest. The marker effect is mainly pronounced for 30-32 PCR cycles. Such effects would not be expected if the amplification efficiencies were identical for all markers. Understanding allele dropout risks and the variability in peak heights and balances is important for correct interpretation of forensic DNA profiles. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Prenatal exclusion of Norrie disease with flanking DNA markers.
Gal, A; Uhlhaas, S; Glaser, D; Grimm, T
1988-10-01
Three polymorphic DNA markers linked to the locus of Norrie disease were used for indirect genotype analysis in a ten-wk-old fetus at risk for the disease. When haplotypes of the family members and the estimated recombination frequency between Norrie gene and each of the DNA marker loci DXS7, DXS84, and DXS146 were taken into account, the risk that the fetus had inherited the mutation was about 1%.
Microsatellite markers for northern red oak (Fagaceae: Quercus rubra)
Preston R. Aldrich; Charles H. Michler; Weilin Sun; Jeanne Romero-Severson
2002-01-01
We provide primer sequences for 14 (GA)n microsatellite loci developed from northern red oak, an important timber species. We screened loci using two sets of samples. A parent-offspring set included DNA from seven acorns collected from one mother tree along with maternal DNA, to determine that all progeny carried a maternal allele at each locus....
Alarcón-Hernández, E; Cabrera-Juárez, E
1992-01-01
Transforming DNA containing the streptomycin resistance marker, was irradiated for 8 h with broad near ultraviolet light (325-400 nm) at pH 4.8, and the inactivation kinetics determined. After selection of streptomycin resistant transformants, they were grown until a turbidity of 150-200 Klett units. In these cultures we looked for new markers coming from the irradiated transforming DNA. We looked and found the novobiocin resistance marker and one that conveys to protoporphyrin IX utilization, measured as an increase in the mutation frequency of these markers in the streptomycin resistant population. In other experiments, we found a decline in spontaneous mutation frequency for the same markers in the cells transformed with irradiated DNA. This last finding rises the possibility of alterations on the mutator genes as a result of near ultraviolet irradiation.
Forensic DNA methylation profiling from evidence material for investigative leads
Lee, Hwan Young; Lee, Soong Deok; Shin, Kyoung-Jin
2016-01-01
DNA methylation is emerging as an attractive marker providing investigative leads to solve crimes in forensic genetics. The identification of body fluids that utilizes tissue-specific DNA methylation can contribute to solving crimes by predicting activity related to the evidence material. The age estimation based on DNA methylation is expected to reduce the number of potential suspects, when the DNA profile from the evidence does not match with any known person, including those stored in the forensic database. Moreover, the variation in DNA implicates environmental exposure, such as cigarette smoking and alcohol consumption, thereby suggesting the possibility to be used as a marker for predicting the lifestyle of potential suspect. In this review, we describe recent advances in our understanding of DNA methylation variations and the utility of DNA methylation as a forensic marker for advanced investigative leads from evidence materials. [BMB Reports 2016; 49(7): 359-369] PMID:27099236
Rescue of a Porcine Anellovirus (Torque Teno Sus Virus 2) from Cloned Genomic DNA in Pigs
Huang, Yao-Wei; Patterson, Abby R.; Opriessnig, Tanja; Dryman, Barbara A.; Gallei, Andreas; Harrall, Kylie K.; Vaughn, Eric M.; Roof, Michael B.
2012-01-01
Anelloviruses are a group of single-stranded circular DNA viruses infecting humans and other animal species. Animal models combined with reverse genetic systems of anellovirus have not been developed. We report here the construction and initial characterization of full-length DNA clones of a porcine anellovirus, torque teno sus virus 2 (TTSuV2), in vitro and in vivo. We first demonstrated that five cell lines, including PK-15 cells, are free of TTSuV1 or TTSuV2 contamination, as determined by a real-time PCR and an immunofluorescence assay (IFA) using anti-TTSuV antibodies. Recombinant plasmids harboring monomeric or tandem-dimerized genomic DNA of TTSuV2 from the United States and Germany were constructed. Circular TTSuV2 genomic DNA with or without introduced genetic markers and tandem-dimerized TTSuV2 plasmids were transfected into PK-15 cells, respectively. Splicing of viral mRNAs was identified in transfected cells. Expression of TTSuV2-specific open reading frame 1 (ORF1) in cell nuclei, especially in nucleoli, was detected by IFA. However, evidence of productive TTSuV2 infection was not observed in 12 different cell lines transfected with the TTSuV2 DNA clones. Transfection with circular DNA from a TTSuV2 deletion mutant did not produce ORF1 protein, suggesting that the observed ORF1 expression is driven by TTSuV2 DNA replication in cells. Pigs inoculated with either the tandem-dimerized clones or circular genomic DNA of U.S. TTSuV2 developed viremia, and the introduced genetic markers were retained in viral DNA recovered from the sera of infected pigs. The availability of an infectious DNA clone of TTSuV2 will facilitate future study of porcine anellovirus pathogenesis and biology. PMID:22491450
Identifying Fishes through DNA Barcodes and Microarrays.
Kochzius, Marc; Seidel, Christian; Antoniou, Aglaia; Botla, Sandeep Kumar; Campo, Daniel; Cariani, Alessia; Vazquez, Eva Garcia; Hauschild, Janet; Hervet, Caroline; Hjörleifsdottir, Sigridur; Hreggvidsson, Gudmundur; Kappel, Kristina; Landi, Monica; Magoulas, Antonios; Marteinsson, Viggo; Nölte, Manfred; Planes, Serge; Tinti, Fausto; Turan, Cemal; Venugopal, Moleyur N; Weber, Hannes; Blohm, Dietmar
2010-09-07
International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.
Nosek, Jozef; Tomáška, L'ubomír; Ryčovská, Adriana; Fukuhara, Hiroshi
2002-01-01
Recent studies have demonstrated that a large number of organisms carry linear mitochondrial DNA molecules possessing specialized telomeric structures at their ends. Based on this specific structural feature of linear mitochondrial genomes, we have developed an approach for identification of the opportunistic yeast pathogen Candida parapsilosis. The strategy for identification of C. parapsilosis strains is based on PCR amplification of specific DNA sequences derived from the mitochondrial telomere region. This assay is complemented by immunodetection of a protein component of mitochondrial telomeres. The results demonstrate that mitochondrial telomeres represent specific molecular markers with potential applications in yeast diagnostics and taxonomy. PMID:11923346
Postawski, Krzysztof; Przadka-Rabaniuk, Dorota; Piersiak, Tomasz
2013-01-01
In the case of carcinogenesis in human endometrium no information exists on tissue concentration of 8-oxo-7,8-dihydroguanine, the DNA oxidative stress marker This was the main reason to undertake the investigation of this DNA modification in human uterine estrogen-dependent tissue cancers. In order to estimate the level of oxidative damage, 8-oxo-7,8-dihydroguanine was determined directly in cells of tissue microscope slides using OxyDNA Assay Kit, Fluorometric. Cells were investigated under confocal microscope. Images of individual cells were captured by computer-interfaced digital photography and analyzed for fluorescence intensities (continuous inverted 8-bit gray-scale = 0 [black]-255 [white]). Fluorescence scores were calculated for each of 13 normal endometrial samples and 31 uterine adenocarcinoma specimens. Finally the level of the oxidative stress marker was also analyzed according to histological and clinical features of the neoplasms. The obtained data revealed that: 8-oxo-7,8-dihydroguanine levels were higher in uterine adenocarcinomas than in normal endometrial samples (48,32 vs. 38,64; p<0,001); in contrast to normal endometrium there was no correlation between age and DNA oxidative modification content in uterine cancer; highest mean fluorescence intensity was recognized in G2 endometrial adenocarcinomas; level of 8-oxo-7,8-dihydroguanine does not depend on Body Mass Index (BMI) and cancer uterine wall infiltration or tumor FIGO stage. Our study indicates that accumulation of the oxidized DNA base may contribute to the development of endometrial neoplasia, however oxidative DNA damage does not seem to increase with tumor progression.
A dual-color marker system for in vivo visualization of cell cycle progression in Arabidopsis.
Yin, Ke; Ueda, Minako; Takagi, Hitomi; Kajihara, Takehiro; Sugamata Aki, Shiori; Nobusawa, Takashi; Umeda-Hara, Chikage; Umeda, Masaaki
2014-11-01
Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M-specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S-phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy-terminal region is responsible for proteasome-mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S-specific promoter of a histone 3.1-type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M-specific CYCB1-GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time-lapse imaging of cell cycle progression. The resultant dual-color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L.).
Zhao, Yongli; Williams, Roxanne; Prakash, C S; He, Guohao
2012-12-15
Date palm (Phoenix dactylifera L.) is an important tree in the Middle East and North Africa due to the nutritional value of its fruit. Molecular Breeding would accelerate genetic improvement of fruit tree through marker assisted selection. However, the lack of molecular markers in date palm restricts the application of molecular breeding. In this study, we analyzed 28,889 EST sequences from the date palm genome database to identify simple-sequence repeats (SSRs) and to develop gene-based markers, i.e. expressed sequence tag-SSRs (EST-SSRs). We identified 4,609 ESTs as containing SSRs, among which, trinucleotide motifs (69.7%) were the most common, followed by tetranucleotide (10.4%) and dinucleotide motifs (9.6%). The motif AG (85.7%) was most abundant in dinucleotides, while motifs AGG (26.8%), AAG (19.3%), and AGC (16.1%) were most common among trinucleotides. A total of 4,967 primer pairs were designed for EST-SSR markers from the computational data. In a follow up laboratory study, we tested a sample of 20 random selected primer pairs for amplification and polymorphism detection using genomic DNA from date palm cultivars. Nearly one-third of these primer pairs detected DNA polymorphism to differentiate the twelve date palm cultivars used. Functional categorization of EST sequences containing SSRs revealed that 3,108 (67.4%) of such ESTs had homology with known proteins. Date palm EST sequences exhibits a good resource for developing gene-based markers. These genic markers identified in our study may provide a valuable genetic and genomic tool for further genetic research and varietal development in date palm, such as diversity study, QTL mapping, and molecular breeding.
Knowledge-based image processing for on-off type DNA microarray
NASA Astrophysics Data System (ADS)
Kim, Jong D.; Kim, Seo K.; Cho, Jeong S.; Kim, Jongwon
2002-06-01
This paper addresses the image processing technique for discriminating whether the probes are hybrized with target DNA in the Human Papilloma Virus (HPV) DNA Chip designed for genotyping HPV. In addition to the probes, the HPV DNA chip has markers that always react with the sample DNA. The positions of probe-dots in the final scanned image are fixed relative to the marker-dot locations with a small variation according to the accuracy of the dotter and the scanner. The probes are duplicated 4 times for the diagnostic stability. The prior knowledges such as the maker relative distance and the duplication information of probes is integrated into the template matching technique with the normalized correlation measure. Results show that the employment of both of the prior knowledges is to simply average the template matching measures over the positions of the markers and probes. The eventual proposed scheme yields stable marker locating and probe classification.
Manivannan, Abinaya; Kim, Jin-Hee; Yang, Eun-Young; Ahn, Yul-Kyun; Lee, Eun-Su; Choi, Sena; Kim, Do-Sun
2018-01-01
Pepper is an economically important horticultural plant that has been widely used for its pungency and spicy taste in worldwide cuisines. Therefore, the domestication of pepper has been carried out since antiquity. Owing to meet the growing demand for pepper with high quality, organoleptic property, nutraceutical contents, and disease tolerance, genomics assisted breeding techniques can be incorporated to develop novel pepper varieties with desired traits. The application of next-generation sequencing (NGS) approaches has reformed the plant breeding technology especially in the area of molecular marker assisted breeding. The availability of genomic information aids in the deeper understanding of several molecular mechanisms behind the vital physiological processes. In addition, the NGS methods facilitate the genome-wide discovery of DNA based markers linked to key genes involved in important biological phenomenon. Among the molecular markers, single nucleotide polymorphism (SNP) indulges various benefits in comparison with other existing DNA based markers. The present review concentrates on the impact of NGS approaches in the discovery of useful SNP markers associated with pungency and disease resistance in pepper. The information provided in the current endeavor can be utilized for the betterment of pepper breeding in future.
K.J. Garner; J.M. Slavicek
1996-01-01
The recent introduction of the Asian gypsy moth (Lymantria dispar L.) into North America has necessitated the development of genetic markers to distinguish Asian moths from the established North American population, which originated in Europe. We used RAPD-PCR to identify a DNA length polymorphism that is diagnostic for the two moth strains. The...
Haider, Nadia
2017-01-01
Investigation of genetic variation and phylogenetic relationships among date palm (Phoenix dactylifera L.) cultivars is useful for their conservation and genetic improvement. Various molecular markers such as restriction fragment length polymorphisms (RFLPs), simple sequence repeat (SSR), representational difference analysis (RDA), and amplified fragment length polymorphism (AFLP) have been developed to molecularly characterize date palm cultivars. PCR-based markers random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) are powerful tools to determine the relatedness of date palm cultivars that are difficult to distinguish morphologically. In this chapter, the principles, materials, and methods of RAPD and ISSR techniques are presented. Analysis of data generated from these two techniques and the use of these data to reveal phylogenetic relationships among date palm cultivars are also discussed.
Park, Seong Hwan; Park, Chung Hyun; Zhang, Yong; Piao, Huguo; Chung, Ukhee; Kim, Seong Yoon; Ko, Kwang Soo; Yi, Cheong-Ho; Jo, Tae-Ho; Hwang, Juck-Joon
2013-01-01
Identifying species of insects used to estimate postmortem interval (PMI) is a major subject in forensic entomology. Because forensic insect specimens are morphologically uniform and are obtained at various developmental stages, DNA markers are greatly needed. To develop new autosomal DNA markers to identify species, partial genomic sequences of the bicoid (bcd) genes, containing the homeobox and its flanking sequences, from 12 blowfly species (Aldrichina grahami, Calliphora vicina, Calliphora lata, Triceratopyga calliphoroides, Chrysomya megacephala, Chrysomya pinguis, Phormia regina, Lucilia ampullacea, Lucilia caesar, Lucilia illustris, Hemipyrellia ligurriens and Lucilia sericata; Calliphoridae: Diptera) were determined and analyzed. This study first sequenced the ten blowfly species other than C. vicina and L. sericata. Based on the bcd sequences of these 12 blowfly species, a phylogenetic tree was constructed that discriminates the subfamilies of Calliphoridae (Luciliinae, Chrysomyinae, and Calliphorinae) and most blowfly species. Even partial genomic sequences of about 500 bp can distinguish most blowfly species. The short intron 2 and coding sequences downstream of the bcd homeobox in exon 3 could be utilized to develop DNA markers for forensic applications. These gene sequences are important in the evolution of insect developmental biology and are potentially useful for identifying insect species in forensic science. PMID:23586044
King, Timothy L.; Johnson, Robin L.
2011-01-01
We document the isolation and characterization of 19 tetra-nucleotide microsatellite DNA markers in northern snakehead (Channa argus) fish that recently colonized Meadow Lake, New York City, New York. These markers displayed moderate levels of allelic diversity (averaging 6.8 alleles/locus) and heterozygosity (averaging 74.2%). Demographic analyses suggested that the Meadow Lake collection has not achieved mutation-drift equilibrium. These results were consistent with instances of deviations from Hardy–Weinberg equilibrium and the presence of some linkage disequilibrium. A comparison of individual pair-wise distances suggested the presence of multiple differentiated groups of related individuals. Results of all analyses are consistent with a pattern of multiple, recent introductions. The microsatellite markers developed for C. argus yielded sufficient genetic diversity to potentially: (1) delineate kinship; (2) elucidate fine-scale population structure; (3) define management (eradication) units; (4) estimate dispersal rates; (5) estimate population sizes; and (6) provide unique demographic perspectives of control or eradication effectiveness.
Marker-assisted selection: an approach for precision plant breeding in the twenty-first century.
Collard, Bertrand C Y; Mackill, David J
2008-02-12
DNA markers have enormous potential to improve the efficiency and precision of conventional plant breeding via marker-assisted selection (MAS). The large number of quantitative trait loci (QTLs) mapping studies for diverse crops species have provided an abundance of DNA marker-trait associations. In this review, we present an overview of the advantages of MAS and its most widely used applications in plant breeding, providing examples from cereal crops. We also consider reasons why MAS has had only a small impact on plant breeding so far and suggest ways in which the potential of MAS can be realized. Finally, we discuss reasons why the greater adoption of MAS in the future is inevitable, although the extent of its use will depend on available resources, especially for orphan crops, and may be delayed in less-developed countries. Achieving a substantial impact on crop improvement by MAS represents the great challenge for agricultural scientists in the next few decades.
Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia.
Barrett, Angela N; McDonnell, Thomas C R; Chan, K C Allen; Chitty, Lyn S
2012-06-01
Cell-free fetal DNA (cffDNA) constitutes approximately 10% of the cell-free DNA in maternal plasma and is a suitable source of fetal genetic material for noninvasive prenatal diagnosis (NIPD). The objective of this study was to determine the feasibility of using digital PCR for NIPD in pregnancies at risk of sickle cell anemia. Minor-groove binder (MGB) TaqMan probes were designed to discriminate between wild-type hemoglobin A and mutant (hemoglobin S) alleles encoded by the HBB (hemoglobin, beta) gene in cffDNA isolated from maternal plasma samples obtained from pregnancies at risk of sickle cell anemia. The fractional fetal DNA concentration was assessed in male-bearing pregnancies with a digital PCR assay for the Y chromosome-specific marker DYS14. In pregnancies with a female fetus, a panel of biallelic insertion/deletion polymorphism (indel) markers was developed for the quantification of the fetal DNA fraction. We used digital real-time PCR to analyze the dosage of the variant encoding hemoglobin S relative to that encoding wild-type hemoglobin A. The sickle cell genotype was correctly determined in 82% (37 of 45) of male fetuses and 75% (15 of 20) of female fetuses. Mutation status was determined correctly in 100% of the cases (25 samples) with fractional fetal DNA concentrations >7%. The panel of indels was informative in 65% of the female-bearing pregnancies. Digital PCR can be used to determine the genotype of fetuses at risk for sickle cell anemia. Optimization of the fractional fetal DNA concentration is essential. More-informative indel markers are needed for this assay's comprehensive use in cases of a female fetus.
Portable DNA markers tailored for systematic characterization of Gossypium germplasm
USDA-ARS?s Scientific Manuscript database
Many small-scale ad-hoc studies on characterization of Gossypium germplasm have been conducted that use different sets of markers. Coordination with the cotton community is needed to reach a consensus on the appropriate initial set of DNA markers. In consultation with the cotton community, a set o...
Siracusa, L D; Chapman, V M; Bennett, K L; Hastie, N D; Pietras, D F; Rossant, J
1983-02-01
Mammalian chimaeras have proved useful for investigating early steps in embryonic development. However, a complete clonal analysis of cell lineages has been limited by the lack of a marker which is ubiquitous and can distinguish parental cell types in situ. We have developed a cell marker system which fulfils these criteria. Chimaeric mice were successfully produced from two mouse species which possess sufficient genetic differences to allow unequivocal identification of parental cell types. DNA-DNA in situ hybridization with cloned, species-specific sequences was performed to distinguish the parental cell types. We have identified a cloned, Mus musculus satellite DNA sequence which shows hybridization differences between Mus musculus and Mus caroli DNA. This clone was used a a probe in in situ hybridizations to bone marrow chromosomes from Mus musculus, Mus caroli, and an interspecific F1 hybrid. The clone could qualitatively distinguish Mus musculus from Mus caroli chromosomes after in situ hybridization, even when they were derived from the same F1 hybrid cell. Quantitation of this hybridization to interphase nuclei from bone marrow spreads indicates that the probe can successfully distinguish Mus musculus from Mus caroli cells and can determine the percentage contribution of Mus musculus in mixtures of bone marrow cells of these species and in chimaeric bone marrow cell preparations.
Applications of DNA Technologies in Agriculture.
Fang, Jinggui; Zhu, Xudong; Wang, Chen; Shangguan, Lingfei
2016-08-01
With the development of molecular biology, some DNA-based technologies have showed great potentiality in promoting the efficiency of crop breeding program, protecting germplasm resources, improving the quality and outputs of agricultural products, and protecting the eco-environment etc., making their roles in modern agriculture more and more important. To better understand the application of DNA technologies in agriculture, and achieve the goals to promote their utilities in modern agriculture, this paper describes, in some different way, the applications of molecular markers, transgenic engineering and gene's information in agriculture. Some corresponding anticipations for their development prospects are also made.
Land plants and DNA barcodes: short-term and long-term goals.
Chase, Mark W; Salamin, Nicolas; Wilkinson, Mike; Dunwell, James M; Kesanakurthi, Rao Prasad; Haider, Nadia; Haidar, Nadia; Savolainen, Vincent
2005-10-29
Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the 'genetic gaps' that are useful in assessing species limits.
Land plants and DNA barcodes: short-term and long-term goals
Chase, Mark W; Salamin, Nicolas; Wilkinson, Mike; Dunwell, James M; Kesanakurthi, Rao Prasad; Haidar, Nadia; Savolainen, Vincent
2005-01-01
Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the ‘genetic gaps’ that are useful in assessing species limits. PMID:16214746
Liu, Shasha; Xu, Kunhua; Wu, Zhigang; Xie, Xiao; Feng, Junli
2016-09-01
Tunas are economically important fishery worldwide, and are often used for commercial processed production. For effective fishery management and protection of consumers' rights, it is important to develop a molecular method to identify species in canned tuna products rapidly and reliably. Here, we have developed a duplex quantitative real-time PCR (qPCR) for identification of five highly priced tuna species (Thunnus maccoyii, Thunnus obesus, Thunnus albacares, Thunnus alalunga and Katsuwonus pelamis) from processed as well as fresh fish. After amplification and sequencing of seven genetic markers commonly used for species identification, 16S rDNA and control region (CR) of mitochondrial DNA were selected as the reference gene markers for genus Thunnus and tuna species identification, respectively. Subsequently, a 73 bp fragment of 16S rDNA and 85-99 bp fragment of CR were simultaneously amplified from each target species by qPCR. The qPCR efficiency of each reaction was calculated according to the standard curves, and the method was validated by amplification DNA extracted from single or mixed tuna specimen. The developed duplex qPCR system was applied to authenticate species of 14 commercial tuna products successfully, which demonstrated it was really a useful and academic technique to identify highly priced tuna species.
Ng, Kevin Kit Siong; Lee, Soon Leong; Tnah, Lee Hong; Nurul-Farhanah, Zakaria; Ng, Chin Hong; Lee, Chai Ting; Tani, Naoki; Diway, Bibian; Lai, Pei Sing; Khoo, Eyen
2016-07-01
Illegal logging and smuggling of Gonystylus bancanus (Thymelaeaceae) poses a serious threat to this fragile valuable peat swamp timber species. Using G. bancanus as a case study, DNA markers were used to develop identification databases at the species, population and individual level. The species level database for Gonystylus comprised of an rDNA (ITS2) and two cpDNA (trnH-psbA and trnL) markers based on a 20 Gonystylus species database. When concatenated, taxonomic species recognition was achieved with a resolution of 90% (18 out of the 20 species). In addition, based on 17 natural populations of G. bancanus throughout West (Peninsular Malaysia) and East (Sabah and Sarawak) Malaysia, population and individual identification databases were developed using cpDNA and STR markers respectively. A haplotype distribution map for Malaysia was generated using six cpDNA markers, resulting in 12 unique multilocus haplotypes, from 24 informative intraspecific variable sites. These unique haplotypes suggest a clear genetic structuring of West and East regions. A simulation procedure based on the composition of the samples was used to test whether a suspected sample conformed to a given regional origin. Overall, the observed type I and II errors of the databases showed good concordance with the predicted 5% threshold which indicates that the databases were useful in revealing provenance and establishing conformity of samples from West and East Malaysia. Sixteen STRs were used to develop the DNA profiling databases for individual identification. Bayesian clustering analyses divided the 17 populations into two main genetic clusters, corresponding to the regions of West and East Malaysia. Population substructuring (K=2) was observed within each region. After removal of bias resulting from sampling effects and population subdivision, conservativeness tests showed that the West and East Malaysia databases were conservative. This suggests that both databases can be used independently for random match probability estimation within respective regions. The reliability of the databases was further determined by independent self-assignment tests based on the likelihood of each individual's multilocus genotype occurring in each identified population, genetic cluster and region with an average percentage of correctly assigned individuals of 54.80%, 99.60% and 100% respectively. Thus, after appropriate validation, the genetic identification databases developed for G. bancanus in this study could support forensic applications and help safeguard this valuable species into the future. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Forgetta, Vincenzo; Oughton, Matthew T.; Marquis, Pascale; Brukner, Ivan; Blanchette, Ruth; Haub, Kevin; Magrini, Vince; Mardis, Elaine R.; Gerding, Dale N.; Loo, Vivian G.; Miller, Mark A.; Mulvey, Michael R.; Rupnik, Maja; Dascal, Andre; Dewar, Ken
2011-01-01
Clostridium difficile is a common cause of infectious diarrhea in hospitalized patients. A severe and increased incidence of C. difficile infection (CDI) is associated predominantly with the NAP1 strain; however, the existence of other severe-disease-associated (SDA) strains and the extensive genetic diversity across C. difficile complicate reliable detection and diagnosis. Comparative genome analysis of 14 sequenced genomes, including those of a subset of NAP1 isolates, allowed the assessment of genetic diversity within and between strain types to identify DNA markers that are associated with severe disease. Comparative genome analysis of 14 isolates, including five publicly available strains, revealed that C. difficile has a core genome of 3.4 Mb, comprising ∼3,000 genes. Analysis of the core genome identified candidate DNA markers that were subsequently evaluated using a multistrain panel of 177 isolates, representing more than 50 pulsovars and 8 toxinotypes. A subset of 117 isolates from the panel had associated patient data that allowed assessment of an association between the DNA markers and severe CDI. We identified 20 candidate DNA markers for species-wide detection and 10,683 single nucleotide polymorphisms (SNPs) associated with the predominant SDA strain (NAP1). A species-wide detection candidate marker, the sspA gene, was found to be the same across 177 sequenced isolates and lacked significant similarity to those of other species. Candidate SNPs in genes CD1269 and CD1265 were found to associate more closely with disease severity than currently used diagnostic markers, as they were also present in the toxin A-negative and B-positive (A-B+) strain types. The genetic markers identified illustrate the potential of comparative genomics for the discovery of diagnostic DNA-based targets that are species specific or associated with multiple SDA strains. PMID:21508155
Epigenetic Biomarkers of Breast Cancer Risk: Across the Breast Cancer Prevention Continuum.
Terry, Mary Beth; McDonald, Jasmine A; Wu, Hui Chen; Eng, Sybil; Santella, Regina M
2016-01-01
Epigenetic biomarkers, such as DNA methylation, can increase cancer risk through altering gene expression. The Cancer Genome Atlas (TCGA) Network has demonstrated breast cancer-specific DNA methylation signatures. DNA methylation signatures measured at the time of diagnosis may prove important for treatment options and in predicting disease-free and overall survival (tertiary prevention). DNA methylation measurement in cell free DNA may also be useful in improving early detection by measuring tumor DNA released into the blood (secondary prevention). Most evidence evaluating the use of DNA methylation markers in tertiary and secondary prevention efforts for breast cancer comes from studies that are cross-sectional or retrospective with limited corresponding epidemiologic data, raising concerns about temporality. Few prospective studies exist that are large enough to address whether DNA methylation markers add to the prediction of tertiary and secondary outcomes over and beyond standard clinical measures. Determining the role of epigenetic biomarkers in primary prevention can help in identifying modifiable pathways for targeting interventions and reducing disease incidence. The potential is great for DNA methylation markers to improve cancer outcomes across the prevention continuum. Large, prospective epidemiological studies will provide essential evidence of the overall utility of adding these markers to primary prevention efforts, screening, and clinical care.
The forensic value of X-linked markers in mixed-male DNA analysis.
He, HaiJun; Zha, Lagabaiyila; Cai, JinHong; Huang, Jian
2018-05-04
Autosomal genetic markers and Y chromosome markers have been widely applied in analysis of mixed stains at crime scenes by forensic scientists. However, true genotype combinations are often difficult to distinguish using autosomal markers when similar amounts of DNA are contributed by multiple donors. In addition, specific individuals cannot be determined by Y chromosomal markers because male relatives share the same Y chromosome. X-linked markers, possessing characteristics somewhere intermediate between autosomes and the Y chromosome, are less universally applied in criminal casework. In this paper, X markers are proposed to apply to male mixtures because their true genes can be more easily and accurately recognized than the decision of the genotypes of AS markers. In this study, an actual two-man mixed stain from a forensic case file and simulated male-mixed DNA were examined simultaneously with the X markers and autosomal markers. Finally, the actual mixture was separated successfully by the X markers, although it was unresolved by AS-STRs, and the separation ratio of the simulated mixture was much higher using Chr X tools than with AS methods. We believe X-linked markers provide significant advantages in individual discrimination of male mixtures that should be further applied to forensic work.
IDENTIFICATION OF BACTERIAL DNA MARKERS FOR THE DETECTION OF HUMAN FECAL POLLUTION IN WATER
We used genome fragment enrichment and bioinformatics to identify several microbial DNA sequences with high potential for use as markers in PCR assays for detection of human fecal contamination in water. Following competitive solution-phase hybridization of total DNA from human a...
Epigenetic discrimination of identical twins from blood under the forensic scenario.
Vidaki, Athina; Díez López, Celia; Carnero-Montoro, Elena; Ralf, Arwin; Ward, Kirsten; Spector, Timothy; Bell, Jordana T; Kayser, Manfred
2017-11-01
Monozygotic (MZ) twins share the same STR profile, demonstrating a practical problem in forensic casework. DNA methylation has provided a suitable resource for MZ twin differentiation; however, studies addressing the forensic feasibility are lacking. Here, we investigated epigenetic MZ twin differentiation from blood under the forensic scenario comprising i) the discovery of candidate markers in reference-type blood DNA via genome-wide analysis, ii) the technical validation of candidate markers in reference-type blood DNA using a suitable targeted method, and iii) the analysis of the validated markers in trace-type DNA. Genome-wide methylation analysis in blood DNA from 10 MZ twin pairs resulted in 19-111 twin-differentially methylated sites (tDMSs) per pair with >0.3 twin-to-twin differences. Considering all top three candidate tDMSs across all pairs in the technical validation based on methylation-specific qPCR, 67.85% generated >0.1 twin-to-twin differences. Of the validated tDMSs, 68.4% showed >0.1 twin-to-twin differences with qPCR in trace-type DNA across 8 pairs. Using an updated marker selection strategy, 8 additional candidate tDMSs were obtained for an example MZ pair, of which 7 showed >0.1 twin-to-twin differences in both reference- and trace-type DNA. Lastly, we introduce a high-resolution melting curve analysis of the entire fragment that can complement the proposed approach. Overall, our study demonstrates the general feasibility of epigenetic twin differentiation in the forensic context and highlights that the number of informative tDMSs in the final trace DNA analysis is crucial, as some candidate markers identified in reference DNA were shown not informative in the trace DNA due to various, including technical, reasons. Future studies will need to address the optimal number of epigenetic markers required for reliable identification of MZ twin individuals including statistical considerations. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Gaofeng; Jian, Jianbo; Wang, Penghao; Li, Chengdao; Tao, Ye; Li, Xuan; Renshaw, Daniel; Clements, Jonathan; Sweetingham, Mark; Yang, Huaan
2018-01-01
An ultra-high density genetic map containing 34,574 sequence-defined markers was developed in Lupinus angustifolius. Markers closely linked to nine genes of agronomic traits were identified. A physical map was improved to cover 560.5 Mb genome sequence. Lupin (Lupinus angustifolius L.) is a recently domesticated legume grain crop. In this study, we applied the restriction-site associated DNA sequencing (RADseq) method to genotype an F 9 recombinant inbred line population derived from a wild type × domesticated cultivar (W × D) cross. A high density linkage map was developed based on the W × D population. By integrating sequence-defined DNA markers reported in previous mapping studies, we established an ultra-high density consensus genetic map, which contains 34,574 markers consisting of 3508 loci covering 2399 cM on 20 linkage groups. The largest gap in the entire consensus map was 4.73 cM. The high density W × D map and the consensus map were used to develop an improved physical map, which covered 560.5 Mb of genome sequence data. The ultra-high density consensus linkage map, the improved physical map and the markers linked to genes of breeding interest reported in this study provide a common tool for genome sequence assembly, structural genomics, comparative genomics, functional genomics, QTL mapping, and molecular plant breeding in lupin.
Assignment of sockeye salmon (Oncorhynchus nerka) to spawning sites using DNA markers.
Corley-Smith, Graham E; Wennerberg, Liv; Schembri, Joy A; Lim, Chinten J; Cooper, Karen L; Brandhorst, Bruce P
2005-01-01
Randomly amplified polymorphic DNA (RAPD) markers were used to assign individual adult sockeye salmon to their spawning sites using a genotype assignment test. Six primers were selected for use by screening bulked DNA samples for markers missing in fish from one or more of 5 sites in British Columbia or Alaska. Of 73 markers scored, 54 showed variation between or within sites among the sampled fish. Thirty-seven of the variable markers were not detected in any fish from one or more sites; 18 variable markers were detected in all fish from one or more other sites. Thus 25% of markers scored were found in all fish of some sites and in no fish of some other sites. An assignment test placed all 70 fish tested into their correct populations. Principal coordinate analysis of genetic variation produced clusters of fish corresponding to each sampling site. No sex-specific RAPD markers were detected among more than 1300 screened.
Multiplex pyrosequencing of InDel markers for forensic DNA analysis.
Bus, Magdalena M; Karas, Ognjen; Allen, Marie
2016-12-01
The capillary electrophoresis (CE) technology is commonly used for fragment length separation of markers in forensic DNA analysis. In this study, pyrosequencing technology was used as an alternative and rapid tool for the analysis of biallelic InDel (insertion/deletion) markers for individual identification. The DNA typing is based on a subset of the InDel markers that are included in the Investigator ® DIPplex Kit, which are sequenced in a multiplex pyrosequencing analysis. To facilitate the analysis of degraded DNA, the polymerase chain reaction (PCR) fragments were kept short in the primer design. Samples from individuals of Swedish origin were genotyped using the pyrosequencing strategy and analysis of the Investigator ® DIPplex markers with CE. A comparison between the pyrosequencing and CE data revealed concordant results demonstrating a robust and correct genotyping by pyrosequencing. Using optimal marker combination and a directed dispensation strategy, five markers could be multiplexed and analyzed simultaneously. In this proof-of-principle study, we demonstrate that multiplex InDel pyrosequencing analysis is possible. However, further studies on degraded samples, lower DNA quantities, and mixtures will be required to fully optimize InDel analysis by pyrosequencing for forensic applications. Overall, although CE analysis is implemented in most forensic laboratories, multiplex InDel pyrosequencing offers a cost-effective alternative for some applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phutikanit, Nawapen; Suwimonteerabutr, Junpen; Harrison, Dion; D'Occhio, Michael; Carroll, Bernie; Techakumphu, Mongkol
2010-03-05
The purpose of this study was to apply an arbitrarily primed methylation sensitive polymerase chain reaction (PCR) assay called Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) to investigate the methylation profiles of somatic and germ cells obtained from Holstein bulls. Genomic DNA was extracted from sperm, leukocytes and fibroblasts obtained from three bulls and digested with a methylation sensitive endonuclease (HpaII). The native genomic and enzyme treated DNA samples were used as templates in an arbitrarily primed-PCR assay with 30 sets of single short oligonucleotide primer. The PCR products were separated on silver stained denaturing polyacrylamide gels. Three types of PCR markers; digestion resistant-, digestion sensitive-, and digestion dependent markers, were analyzed based on the presence/absence polymorphism of the markers between the two templates. Approximately 1,000 PCR markers per sample were produced from 27 sets of primer and most of them (>90%) were digestion resistant markers. The highest percentage of digestion resistant markers was found in leukocytic DNA (94.8%) and the lowest in fibroblastic DNA (92.3%, P < or = 0.05). Spermatozoa contained a higher number of digestion sensitive markers when compared with the others (3.6% vs. 2.2% and 2.6% in leukocytes and fibroblasts respectively, P < or = 0.05). The powerfulness of the AMP PCR assay was the generation of methylation-associated markers without any prior knowledge of the genomic sequence. The data obtained from different primers provided an overview of genome wide DNA methylation content in different cell types. By using this technique, we found that DNA methylation profile is tissue-specific. Male germ cells were hypomethylated at the HpaII locations when compared with somatic cells, while the chromatin of the well-characterized somatic cells was heavily methylated when compared with that of the versatile somatic cells.
Heyting, C; Menke, H H
1979-01-11
1. We have determined the physical location of mitochondrial genetic markers in the 21S region of yeast mtDNA by genetic analysis of petite mutants whose mtDNA has been physically mapped on the wild-type mtDNA. 2. The order of loci, determined in this study, is in agreement with the order deduced from recombination analysis and coretention analysis except for the position of omega+: we conclude that omega+ is located between C321 (RIB-1) and E514 (RIB-3). 3. The marker E514 (RIB-3) has been localized on a DNA segment of 3800 bp, and the markers E354, E553 and cs23 (RIB-2) on a DNA segment of 1100 base pairs; both these segments overlap the 21S rRNA cistron. The marker C321 (RIB-1) has been localized within a segment of 240 bp which also overlaps the 21S rRNA cistron, and we infer on the basis of indirect evidence that this marker lies within this cistron. 4. In all our rho+ as well as rho- strains there is a one-to-one correlation between the omega+ phenotype, the ability to transmit the omega+ allele and the presence of a mtDNA segment of about 1000 bp long, located between sequences specifying RIB-3 and sequences corresponding to the loci RIB-1 and RIB-2. This segment may be inserted at this same position into omega- mtDNA by recombination. 5. The role which the different allelic forms of omega may play in the polarity of recombination is discussed.
Couillerot, O; Poirier, M-A; Prigent-Combaret, C; Mavingui, P; Caballero-Mellado, J; Moënne-Loccoz, Y
2010-08-01
To assess the applicability of sequence characterized amplified region (SCAR) markers obtained from BOX, ERIC and RAPD fragments to design primers for real-time PCR quantification of the phytostimulatory maize inoculants Azospirillum brasilense UAP-154 and CFN-535 in the rhizosphere. Primers were designed based on strain-specific SCAR markers and were screened for successful amplification of target strain and absence of cross-reaction with other Azospirillum strains. The specificity of primers thus selected was verified under real-time PCR conditions using genomic DNA from strain collection and DNA from rhizosphere samples. The detection limit was 60 fg DNA with pure cultures and 4 x 10(3) (for UAP-154) and 4 x 10(4) CFU g(-1) (for CFN-535) in the maize rhizosphere. Inoculant quantification was effective from 10(4) to 10(8) CFU g(-1) soil. BOX-based SCAR markers were useful to find primers for strain-specific real-time PCR quantification of each A. brasilense inoculant in the maize rhizosphere. Effective root colonization is a prerequisite for successful Azospirillum phytostimulation, but cultivation-independent monitoring methods were lacking. The real-time PCR methods developed here will help understand the effect of environmental conditions on root colonization and phytostimulation by A. brasilense UAP-154 and CFN-535.
Hamilton, Matthew J; Yan, Tao; Sadowsky, Michael J
2006-06-01
The contamination of waterways with fecal material is a persistent threat to public health. Identification of the sources of fecal contamination is a vital component for abatement strategies and for determination of total maximum daily loads. While phenotypic and genotypic techniques have been used to determine potential sources of fecal bacteria in surface waters, most methods require construction of large known-source libraries, and they often fail to adequately differentiate among environmental isolates originating from different animal sources. In this study, we used pooled genomic tester and driver DNAs in suppression subtractive hybridizations to enrich for host source-specific DNA markers for Escherichia coli originating from locally isolated geese. Seven markers were identified. When used as probes in colony hybridization studies, the combined marker DNAs identified 76% of the goose isolates tested and cross-hybridized, on average, with 5% of the human E. coli strains and with less than 10% of the strains obtained from other animal hosts. In addition, the combined probes identified 73% of the duck isolates examined, suggesting that they may be useful for determining the contribution of waterfowl to fecal contamination. However, the hybridization probes reacted mainly with E. coli isolates obtained from geese in the upper midwestern United States, indicating that there is regional specificity of the markers identified. Coupled with high-throughput, automated macro- and microarray screening, these markers may provide a quantitative, cost-effective, and accurate library-independent method for determining the sources of genetically diverse E. coli strains for use in source-tracking studies. However, future efforts to generate DNA markers specific for E. coli must include isolates obtained from geographically diverse animal hosts.
A case study characterizing animal fecal sources in surface water using a mitochondrial DNA marker.
Bucci, John P; Shattuck, Michelle D; Aytur, Semra A; Carey, Richard; McDowell, William H
2017-08-01
Water quality impairment by fecal waste in coastal watersheds is a public health issue. The present study provided evidence for the use of a mitochondrial (mtDNA) marker to detect animal fecal sources in surface water. The accurate identification of fecal pollution is based on the notion that fecal microorganisms preferentially inhabit a host animal's gut environment. In contrast, mtDNA host-specific markers are inherent to eukaryotic host cells, which offers the advantage by detecting DNA from the host rather than its fecal bacteria. The present study focused on sampling water presumably from non-point sources (NPS), which can increase bacterial and nitrogen concentrations to receiving water bodies. Stream sampling sites located within the Piscataqua River Watershed (PRW), New Hampshire, USA, were sampled from a range of sites that experienced nitrogen inputs such as sewer and septic systems and suburban runoff. Three mitochondrial (mtDNA) gene marker assays (human, bovine, and canine) were tested from surface water. Nineteen sites were sampled during an 18-month period. Analyses of the combined single and multiplex assay results showed that the proportion of occurrence was highest for bovine (15.6%; n = 77) compared to canine (5.6%; n = 70) and human (5.7%; n = 107) mtDNA gene markers. For the human mtDNA marker, there was a statistically significant relationship between presence vs. absence and land use (Fisher's test p = 0.0031). This result was evident particularly for rural suburban septic, which showed the highest proportion of presence (19.2%) compared to the urban sewered (3.3%), suburban sewered (0%), and agricultural (0%) as well as forested septic (0%) sites. Although further testing across varied land use is needed, our study provides evidence for using the mtDNA marker in large watersheds.
Salivary DNA and markers of oxidative stress in patients with chronic periodontitis.
Baňasová, Lenka; Kamodyová, Natália; Janšáková, Katarína; Tóthová, Ľubomíra; Stanko, Peter; Turňa, Ján; Celec, Peter
2015-03-01
Previous observational studies have shown that periodontal status is associated with salivary markers of oxidative damage. A direct comparison of periodontitis patients and controls using a wide palette of salivary markers of oxidative stress is lacking. Characteristics of salivary DNA in periodontitis are unknown. The aim of this study was to compare the salivary markers of oxidative stress and characteristics of salivary DNA between patients with chronic periodontitis and periodontitis-free controls. Saliva was collected from 23 patients with chronic periodontitis and 19 periodontitis-free controls. All participants underwent a clinical periodontal examination. Markers of oxidative and carbonyl stress were measured in saliva. Human and bacterial DNA was quantified, and human DNA integrity was assessed. Salivary thiobarbituric acid-reacting substances were higher in patients than in controls; at least in men, the difference was significant (p < 0.01). In women, patients had significantly lower salivary antioxidant status (p < 0.001). No quantitative differences were found regarding salivary DNA. Tendencies towards reduced DNA integrity were found in periodontitis patients. The results confirmed the association of salivary thiobarbituric acid-reacting substances with periodontitis. Lipid peroxidation in periodontitis seems to be caused by increased production of reactive oxygen species in men and by decreased antioxidant status in women. Whether lower salivary DNA integrity is involved in the pathogenesis of periodontitis remains to be elucidated. Salivary thiobarbituric acid-reacting substances are associated with periodontitis at least on a population level. Sex-specific causes of lipid peroxidation might point towards different pathogenic mechanisms.
Alghanim, Hussain; Antunes, Joana; Silva, Deborah Soares Bispo Santos; Alho, Clarice Sampaio; Balamurugan, Kuppareddi; McCord, Bruce
2017-11-01
Recent developments in the analysis of epigenetic DNA methylation patterns have demonstrated that certain genetic loci show a linear correlation with chronological age. It is the goal of this study to identify a new set of epigenetic methylation markers for the forensic estimation of human age. A total number of 27 CpG sites at three genetic loci, SCGN, DLX5 and KLF14, were examined to evaluate the correlation of their methylation status with age. These sites were evaluated using 72 blood samples and 91 saliva samples collected from volunteers with ages ranging from 5 to 73 years. DNA was bisulfite modified followed by PCR amplification and pyrosequencing to determine the level of DNA methylation at each CpG site. In this study, certain CpG sites in SCGN and KLF14 loci showed methylation levels that were correlated with chronological age, however, the tested CpG sites in DLX5 did not show a correlation with age. Using a 52-saliva sample training set, two age-predictor models were developed by means of a multivariate linear regression analysis for age prediction. The two models performed similarly with a single-locus model explaining 85% of the age variance at a mean absolute deviation of 5.8 years and a dual-locus model explaining 84% of the age variance with a mean absolute deviation of 6.2 years. In the validation set, the mean absolute deviation was measured to be 8.0 years and 7.1 years for the single- and dual-locus model, respectively. Another age predictor model was also developed using a 40-blood sample training set that accounted for 71% of the age variance. This model gave a mean absolute deviation of 6.6 years for the training set and 10.3years for the validation set. The results indicate that specific CpGs in SCGN and KLF14 can be used as potential epigenetic markers to estimate age using saliva and blood specimens. These epigenetic markers could provide important information in cases where the determination of a suspect's age is critical in developing investigative leads. Copyright © 2017. Published by Elsevier B.V.
Yang, Ching-Fu; Chen, Kuan-Chun; Cheng, Ying-Hui; Raja, Joseph A. J.; Huang, Ya-Ling; Chien, Wan-Chu; Yeh, Shyi-Dong
2014-01-01
Global threats of ssDNA geminivirus and ss(-)RNA tospovirus on crops necessitate the development of transgenic resistance. Here, we constructed a two-T DNA vector carrying a hairpin of the intergenic region (IGR) of Ageratum yellow vein virus (AYVV), residing in an intron inserted in an untranslatable nucleocapsid protein (NP) fragment of Melon yellow spot virus (MYSV). Transgenic tobacco lines highly resistant to AYVV and MYSV were generated. Accumulation of 24-nt siRNA, higher methylation levels on the IGR promoters of the transgene, and suppression of IGR promoter activity of invading AYVV indicate that AYVV resistance is mediated by transcriptional gene silencing. Lack of NP transcript and accumulation of corresponding siRNAs indicate that MYSV resistance is mediated through post-transcriptional gene silencing. Marker-free progenies with concurrent resistance to both AYVV and MYSV, stably inherited as dominant nuclear traits, were obtained. Hence, we provide a novel way for concurrent control of noxious DNA and RNA viruses with less biosafety concerns. PMID:25030413
Tada, T; Seki, Y; Kameyama, Y; Kikkawa, Y; Wada, K
2016-12-19
The Ezo red fox (Vulpes vulpes schrencki), a subspecies endemic to Hokkaido island, Japan, is a known host species for the tapeworm Echinococcus multilocularis. To develop tools for molecular ecological studies, we isolated 28 microsatellite regions from the genome of Ezo red fox, and developed 18 polymorphic microsatellite markers. These markers were characterized using 7 individuals and 22 fecal samples of the Ezo red fox. The number of alleles for these markers ranged from 1 to 7, and the observed heterozygosity, estimated on the basis of the genotypes of 7 individuals, ranged from 0.29 to 1.00. All markers, except DvNok5, were in Hardy-Weinberg equilibrium (P > 0.05), and no linkage disequilibrium was detected among these loci, except between DvNok14 and DvNok28 (P = 0.01). Moreover, six microsatellite loci were successfully genotyped using feces-derived DNA from the Ezo red fox. The markers developed in our study might serve as a useful tool for molecular ecological studies of the Ezo red fox.
NASA Astrophysics Data System (ADS)
Zhan, Aibin; Bao, Zhenmin; Hu, Xiaoli; Lu, Wei; Hu, Jingjie
2009-06-01
Microsatellite markers have become one kind of the most important molecular tools used in various researches. A large number of microsatellite markers are required for the whole genome survey in the fields of molecular ecology, quantitative genetics and genomics. Therefore, it is extremely necessary to select several versatile, low-cost, efficient and time- and labor-saving methods to develop a large panel of microsatellite markers. In this study, we used Zhikong scallop ( Chlamys farreri) as the target species to compare the efficiency of the five methods derived from three strategies for microsatellite marker development. The results showed that the strategy of constructing small insert genomic DNA library resulted in poor efficiency, while the microsatellite-enriched strategy highly improved the isolation efficiency. Although the mining public database strategy is time- and cost-saving, it is difficult to obtain a large number of microsatellite markers, mainly due to the limited sequence data of non-model species deposited in public databases. Based on the results in this study, we recommend two methods, microsatellite-enriched library construction method and FIASCO-colony hybridization method, for large-scale microsatellite marker development. Both methods were derived from the microsatellite-enriched strategy. The experimental results obtained from Zhikong scallop also provide the reference for microsatellite marker development in other species with large genomes.
Allelic Associations between 100 DNA Markers and High versus Low IQ.
ERIC Educational Resources Information Center
Plomin, Robert; And Others
1995-01-01
For DNA markers in or near genes of neurological relevance, allelic frequencies were compared for groups of high- and low-IQ children (total sample of 86). This study adds 40 markers to the 60 already studied. Only one showed a significant association with IQ in original and replication samples. (SLD)
Jeyaram, Kumaraswamy; Tamang, Jyoti Prakash; Capece, Angela; Romano, Patrizia
2011-11-01
Autochthonous strains of Saccharomyces cerevisiae from traditional starters used for the production of rice-based ethnic fermented beverage in North East India were examined for their genetic polymorphism using mitochondrial DNA-RFLP and electrophoretic karyotyping. Mitochondrial DNA-RFLP analysis of S. cerevisiae strains with similar technological origins from hamei starter of Manipur and marcha starter of Sikkim revealed widely separated clusters based on their geographical origin. Electrophoretic karyotyping showed high polymorphism amongst the hamei strains within similar mitochondrial DNA-RFLP cluster and one unique karyotype of marcha strain was widely distributed in the Sikkim-Himalayan region. We conceptualized the possibility of separate domestication events for hamei strains in Manipur (located in the Indo-Burma biodiversity hotspot) and marcha strains in Sikkim (located in Himalayan biodiversity hotspot), as a consequence of less homogeneity in the genomic structure between these two groups, their clear separation being based on geographical origin, but not on technological origin and low strain level diversity within each group. The molecular markers developed based on HinfI-mtDNA-RFLP profile and the chromosomal doublets in chromosome VIII position of Sikkim-Himalayan strains could be effectively used as geographical markers for authenticating the above starter strains and differentiating them from other commercial strains.
Current genetic methodologies in the identification of disaster victims and in forensic analysis.
Ziętkiewicz, Ewa; Witt, Magdalena; Daca, Patrycja; Zebracka-Gala, Jadwiga; Goniewicz, Mariusz; Jarząb, Barbara; Witt, Michał
2012-02-01
This review presents the basic problems and currently available molecular techniques used for genetic profiling in disaster victim identification (DVI). The environmental conditions of a mass disaster often result in severe fragmentation, decomposition and intermixing of the remains of victims. In such cases, traditional identification based on the anthropological and physical characteristics of the victims is frequently inconclusive. This is the reason why DNA profiling became the gold standard for victim identification in mass-casualty incidents (MCIs) or any forensic cases where human remains are highly fragmented and/or degraded beyond recognition. The review provides general information about the sources of genetic material for DNA profiling, the genetic markers routinely used during genetic profiling (STR markers, mtDNA and single-nucleotide polymorphisms [SNP]) and the basic statistical approaches used in DNA-based disaster victim identification. Automated technological platforms that allow the simultaneous analysis of a multitude of genetic markers used in genetic identification (oligonucleotide microarray techniques and next-generation sequencing) are also presented. Forensic and population databases containing information on human variability, routinely used for statistical analyses, are discussed. The final part of this review is focused on recent developments, which offer particularly promising tools for forensic applications (mRNA analysis, transcriptome variation in individuals/populations and genetic profiling of specific cells separated from mixtures).
From genomics to functional markers in the era of next-generation sequencing.
Salgotra, R K; Gupta, B B; Stewart, C N
2014-03-01
The availability of complete genome sequences, along with other genomic resources for Arabidopsis, rice, pigeon pea, soybean and other crops, has revolutionized our understanding of the genetic make-up of plants. Next-generation DNA sequencing (NGS) has facilitated single nucleotide polymorphism discovery in plants. Functionally-characterized sequences can be identified and functional markers (FMs) for important traits can be developed at an ever-increasing ease. FMs are derived from sequence polymorphisms found in allelic variants of a functional gene. Linkage disequilibrium-based association mapping and homologous recombinants have been developed for identification of "perfect" markers for their use in crop improvement practices. Compared with many other molecular markers, FMs derived from the functionally characterized sequence genes using NGS techniques and their use provide opportunities to develop high-yielding plant genotypes resistant to various stresses at a fast pace.
Huang, Fu-Chun; Chen, Yih-Far; Lee, Gwo-Bin
2007-04-01
This study presents a new packaging method using a polyethylene/thermoplastic elastomer (PE/TPE) film to seal an injection-molded CE chip made of either poly(methyl methacrylate) (PMMA) or polycarbonate (PC) materials. The packaging is performed at atmospheric pressure and at room temperature, which is a fast, easy, and reliable bonding method to form a sealed CE chip for chemical analysis and biomedical applications. The fabrication of PMMA and PC microfluidic channels is accomplished by using an injection-molding process, which could be mass-produced for commercial applications. In addition to microfluidic CE channels, 3-D reservoirs for storing biosamples, and CE buffers are also formed during this injection-molding process. With this approach, a commercial CE chip can be of low cost and disposable. Finally, the functionality of the mass-produced CE chip is demonstrated through its successful separation of phiX174 DNA/HaeIII markers. Experimental data show that the S/N for the CE chips using the PE/TPE film has a value of 5.34, when utilizing DNA markers with a concentration of 2 ng/microL and a CE buffer of 2% hydroxypropyl-methylcellulose (HPMC) in Tris-borate-EDTA (TBE) with 1% YO-PRO-1 fluorescent dye. Thus, the detection limit of the developed chips is improved. Lastly, the developed CE chips are used for the separation and detection of PCR products. A mixture of an amplified antibiotic gene for Streptococcus pneumoniae and phiX174 DNA/HaeIII markers was successfully separated and detected by using the proposed CE chips. Experimental data show that these DNA samples were separated within 2 min. The study proposed a promising method for the development of mass-produced CE chips.
Applying plant DNA barcodes to identify species of Parnassia (Parnassiaceae).
Yang, Jun-Bo; Wang, Yi-Ping; Möller, Michael; Gao, Lian-Ming; Wu, Ding
2012-03-01
DNA barcoding is a technique to identify species by using standardized DNA sequences. In this study, a total of 105 samples, representing 30 Parnassia species, were collected to test the effectiveness of four proposed DNA barcodes (rbcL, matK, trnH-psbA and ITS) for species identification. Our results demonstrated that all four candidate DNA markers have a maximum level of primer universality and sequencing success. As a single DNA marker, the ITS region provided the highest species resolution with 86.7%, followed by trnH-psbA with 73.3%. The combination of the core barcode regions, matK+rbcL, gave the lowest species identification success (63.3%) among any combination of multiple markers and was found unsuitable as DNA barcode for Parnassia. The combination of ITS+trnH-psbA achieved the highest species discrimination with 90.0% resolution (27 of 30 sampled species), equal to the four-marker combination and higher than any two or three marker combination including rbcL or matK. Therefore, matK and rbcL should not be used as DNA barcodes for the species identification of Parnassia. Based on the overall performance, the combination of ITS+trnH-psbA is proposed as the most suitable DNA barcode for identifying Parnassia species. DNA barcoding is a useful technique and provides a reliable and effective mean for the discrimination of Parnassia species, and in combination with morphology-based taxonomy, will be a robust approach for tackling taxonomically complex groups. In the light of our findings, we found among the three species not identified a possible cryptic speciation event in Parnassia. © 2011 Blackwell Publishing Ltd.
Polymorphic microsatellite DNA markers for the Florida manatee (Trichechus manatus latirostris)
Pause, K.C.; Nourisson, C.; Clark, A.; Kellogg, M.E.; Bonde, R.K.; McGuire, P.M.
2007-01-01
Florida manatees (Trichechus manatus latirostris) are marine mammals that inhabit the coastal waters and rivers of the southeastern USA, primarily Florida. Previous studies have shown that Florida manatees have low mitochondrial DNA variability, suggesting that nuclear DNA loci are necessary for discriminatory analyses. Here we report 10 polymorphic microsatellite loci with an average of 4.2 alleles per locus, and average heterozygosity of 50.1%. These loci have been developed for use in population studies, parentage assignment, and individual identification. ?? 2007 Blackwell Publishing Ltd.
Incorporating thyroid markers in Down syndrome screening protocols.
Dhaifalah, Ishraq; Salek, Tomas; Langova, Dagmar; Cuckle, Howard
2017-05-01
The article aimed to assess the benefit of incorporating maternal serum thyroid disease marker levels (thyroid-stimulating hormone and free thyroxine) into first trimester Down syndrome screening protocols. Statistical modelling was used to predict performance with and without the thyroid markers. Two protocols were considered: the combined test and the contingent cell-free DNA (cfDNA) test, where 15-40% women are selected for cfDNA because of increased risk based on combined test results. Published parameters were used for the combined test, cfDNA and the Down syndrome means for thyroid-stimulating hormone and free thyroxine; other parameters were derived from a series of 5230 women screened for both thyroid disease and Down syndrome. Combined test: For a fixed 85% detection rate, the predicted false positive rate was reduced from 5.3% to 3.6% with the addition of the thyroid markers. Contingent cfDNA test: For a fixed 95% detection rate, the proportion of women selected for cfDNA was reduced from 25.6% to 20.2%. When screening simultaneously for maternal thyroid disease and Down syndrome, thyroid marker levels should be used in the calculation of Down syndrome risk. The benefit is modest but can be achieved with no additional cost. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
Six DNA regions were evaluated in a multi-national, multi-laboratory consortium as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it...
You, Mingxu; Zhu, Guizhi; Chen, Tao; Donovan, Michael J; Tan, Weihong
2015-01-21
The specific inventory of molecules on diseased cell surfaces (e.g., cancer cells) provides clinicians an opportunity for accurate diagnosis and intervention. With the discovery of panels of cancer markers, carrying out analyses of multiple cell-surface markers is conceivable. As a trial to accomplish this, we have recently designed a DNA-based device that is capable of performing autonomous logic-based analysis of two or three cancer cell-surface markers. Combining the specific target-recognition properties of DNA aptamers with toehold-mediated strand displacement reactions, multicellular marker-based cancer analysis can be realized based on modular AND, OR, and NOT Boolean logic gates. Specifically, we report here a general approach for assembling these modular logic gates to execute programmable and higher-order profiling of multiple coexisting cell-surface markers, including several found on cancer cells, with the capacity to report a diagnostic signal and/or deliver targeted photodynamic therapy. The success of this strategy demonstrates the potential of DNA nanotechnology in facilitating targeted disease diagnosis and effective therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gust, I.D.; Feinstone, S.M.; Purcell, R.H.
1980-01-01
A sensitive ''Farr'' assay, utilizing /sup 125/I-labelled DNA was developed for detecting antibody to single-stranded DNA (anti-ssDNA). The test was shown to be specific and as sensitive as assays using /sup 14/C-labelled DNA, for the detection of antibody in patients with connective tissue diseases. Groups of sera from patients with naturally acquired viral hepatitis and experimentally infected chimpanzees were tested for anti-ssDNA by the /sup 125/I assay and by counterimmunoelectrophoresis (CIEP). No consistent pattern was observed with either technique, indicating the elevated levels of this antibody are not as reliable markers of parenchymal liver damage as had been previously suggested.
Elucidating polyploidization of bermudagrasses as assessed by organelle and nuclear DNA markers.
Gulsen, Osman; Ceylan, Ahmet
2011-12-01
Clarification of relationships among ploidy series of Cynodon accessions could be beneficial to bermudagrass breeding programs, and would enhance our understanding of the evolutionary biology of this warm season grass species. This study was initiated to elucidate polyploidization among Cynodon accessions with different ploidy series collected from Turkey based on chloroplast and nuclear DNA. Forty Cynodon accessions including 7 diploids, 3 triploids, 10 tetraploids, 11 pentaploids, and 9 hexaploids were analyzed using chloroplast DNA restriction fragment-length polymorphism (cpDNA RFLP), chloroplast DNA simple sequence repeat (cpDNA SSR), and nuclear DNA markers based on neighbor-joining (NJ) and principle component analyses (PCA). All three-marker systems with two statistical algorithms clustered the diploids apart from the other ploidy levels. Assuming autopolyploidy, spontaneous polyploidization followed by rapid diversification among the higher ploidy levels than the diploids is likely in Cynodon's evolution. Few tetraploid and hexaploid accessions were clustered with or closely to the group of diploids, supporting the hypothesis above. Eleven haplotypes as estimated by cpDNA RFLP and SSR markers were detected. This study indicated that the diploids had different organelle genome from the rest of the ploidy series and provided valuable insight into relationships among ploidy series of Cynodon accessions based on cp and nuclear DNAs.
Martirosian, I A; Kan, N G; Petrosian, V G; Malysheva, D N; Trofimova, A A; Danielian, F D; Darevskiĭ, I S; Korochkin, L I; Ryskov, A P; Tokarskaia, O N
2003-02-01
Population and family samples of two morphological forms (mutant and normal with respect to dorsal color) of pathogenetic lizard Darevskia armeniaca were examined by means of DNA fingerprinting using M13 mini- and (GATA)n and (TCC)n microsatellite DNA markers. The morphological forms examined were characterized by clonally inherited, species-specific patterns of the DNA markers, which were different from the species-specific DNA fingerprints of the other parthenogenetic species of the genus Darevskia (D. dahli. D. unisexualis, and D. rostombekovi). The mean index of similarity (S) obtained for a sample of 36 individuals from three isolated populations using three types of DNA markers was 0.966. This was similar to the variability level observed in D. dahli (0.962) (P > 0.05), but higher than that in D. unisexualis (0.950) (P < 0.05) and D. rostombekovi (0.875) (P < 0.01). Inheritance of M13 minisatellite and (TCC)n microsatellite DNA markers in the F1 offspring of parthenogenetic lizards was examined. It was shown that variability and clonal diversity of the fingerprint phenotypes observed in the populations and families of D. armeniaca could be at least partly explained by RFLP mutations in microsatellite repeats.
A pseudoautosomal random amplified polymorphic DNA marker for the sex chromosomes of Silene dioica.
Di Stilio, V S; Kesseli, R V; Mulcahy, D L
1998-01-01
The segregation pattern of an 810-bp random amplified polymorphic DNA (RAPD) band in the F1 and backcross generations of a Silene dioica (L.) Clairv. family provides evidence that this molecular marker is located in the pseudoautosomal region (PAR) of the X and Y chromosomes. The marker was found through a combination of bulked segregant analysis (BSA) and RAPD techniques. Recombination rates between this pseudoautosomal marker and the differentiating portion of the Y chromosome are 15% in both generations. Alternative explanations involving nondisjunction or autosomal inheritance are presented and discussed. Chromosome counts provide evidence against the nondisjunction hypothesis, and probability calculations argue against the possibility of autosomal inheritance. This constitutes the first report of a pseudoautosomal DNA marker for plant sex chromosomes. PMID:9691057
Yao, Jia-Long; Tomes, Sumathi; Gleave, Andrew P
2013-05-01
Apple acetolactate synthase mutants were generated by site-specific mutagenesis and successfully used as selection marker in tobacco and apple transformation. T-DNA/Apple genome junctions were analysed using genome-walking PCR and sequencing. An Agrobacterium-mediated genetic transformation system was developed for apple (Malus × domestica), using mutants of apple acetolactate synthase (ALS) as a selectable marker. Four apple ALS mutants were generated by site-specific mutagenesis and subsequently cloned under the transcriptional control of the CaMV 35S promoter and ocs 3' terminator, in a pART27-derived plant transformation vector. Three of the four mutations were found to confer resistance to the herbicide Glean(®), containing the active agent chlorsulfuron, in tobacco (Nicotiana tabacum) transformation. In apple transformation, leaf explants infected with Agrobacterium tumefaciens EHA105 containing one of the three ALS mutants resulted in the production of shoots on medium containing 2-8 μg L(-1) Glean(®), whilst uninfected wild-type explants failed to regenerate shoots or survive on medium containing 1 and 3 μg L(-1) Glean(®), respectively. Glean(®)-resistant, regenerated shoots were further multiplied and rooted on medium containing 10 μg L(-1) Glean(®). The T-DNA and apple genome-DNA junctions from eight rooted transgenic apple plants were analysed using genome-walking PCR amplification and sequencing. This analysis confirmed T-DNA integration into the apple genome, identified the genome integration sites and revealed the extent of any vector backbone integration, T-DNA rearrangements and deletions of apple genome DNA at the sites of integration.
Jaramillo-Correa, J P; Bousquet, J; Beaulieu, J; Isabel, N; Perron, M; Bouillé, M
2003-05-01
Primers previously developed to amplify specific non-coding regions of the mitochondrial genome in Angiosperms, and new primers for additional non-coding mtDNA regions, were tested for their ability to direct DNA amplification in 12 conifer taxa and to detect sequence-tagged-site (STS) polymorphisms within and among eight species in Picea. Out of 12 primer pairs, nine were successful at amplifying mtDNA in most of the taxa surveyed. In conifers, indels and substitutions were observed for several loci, allowing them to distinguish between families, genera and, in some cases, between species within genera. In Picea, interspecific polymorphism was detected for four loci, while intraspecific variation was observed for three of the mtDNA regions studied. One of these (SSU rRNA V1 region) exhibited indel polymorphisms, and the two others ( nad1 intron b/c and nad5 intron1) revealed restriction differences after digestion with Sau3AI (PCR-RFLP). A fourth locus, the nad4L- orf25 intergenic region, showed a multibanding pattern for most of the spruce species, suggesting a possible gene duplication. Maternal inheritance, expected for mtDNA in conifers, was observed for all polymorphic markers except the intergenic region nad4L- orf25. Pooling of the variation observed with the remaining three markers resulted in two to six different mtDNA haplotypes within the different species of Picea. Evidence for intra-genomic recombination was observed in at least two taxa. Thus, these mitotypes are likely to be more informative than single-locus haplotypes. They should be particularly useful for the study of biogeography and the dynamics of hybrid zones.
Mapping of the Gynoecy in Bitter Gourd (Momordica charantia) Using RAD-Seq Analysis
Matsumura, Hideo; Miyagi, Norimichi; Taniai, Naoki; Fukushima, Mai; Tarora, Kazuhiko; Shudo, Ayano; Urasaki, Naoya
2014-01-01
Momordica charantia is a monoecious plant of the Cucurbitaceae family that has both male and female unisexual flowers. Its unique gynoecious line, OHB61-5, is essential as a maternal parent in the production of F1 cultivars. To identify the DNA markers for this gynoecy, a RAD-seq (restriction-associated DNA tag sequencing) analysis was employed to reveal genome-wide DNA polymorphisms and to genotype the F2 progeny from a cross between OHB61-5 and a monoecious line. Based on a RAD-seq analysis of F2 individuals, a linkage map was constructed using 552 co-dominant markers. In addition, after analyzing the pooled genomic DNA from monoecious or gynoecious F2 plants, several SNP loci that are genetically linked to gynoecy were identified. GTFL-1, the closest SNP locus to the putative gynoecious locus, was converted to a conventional DNA marker using invader assay technology, which is applicable to the marker-assisted selection of gynoecy in M. charantia breeding. PMID:24498029
2012-01-01
Background There are several reports describing thousands of SSR markers in the peanut (Arachis hypogaea L.) genome. There is a need to integrate various research reports of peanut DNA polymorphism into a single platform. Further, because of lack of uniformity in the labeling of these markers across the publications, there is some confusion on the identities of many markers. We describe below an effort to develop a central comprehensive database of polymorphic SSR markers in peanut. Findings We compiled 1,343 SSR markers as detecting polymorphism (14.5%) within a total of 9,274 markers. Amongst all polymorphic SSRs examined, we found that AG motif (36.5%) was the most abundant followed by AAG (12.1%), AAT (10.9%), and AT (10.3%).The mean length of SSR repeats in dinucleotide SSRs was significantly longer than that in trinucleotide SSRs. Dinucleotide SSRs showed higher polymorphism frequency for genomic SSRs when compared to trinucleotide SSRs, while for EST-SSRs, the frequency of polymorphic SSRs was higher in trinucleotide SSRs than in dinucleotide SSRs. The correlation of the length of SSR and the frequency of polymorphism revealed that the frequency of polymorphism was decreased as motif repeat number increased. Conclusions The assembled polymorphic SSRs would enhance the density of the existing genetic maps of peanut, which could also be a useful source of DNA markers suitable for high-throughput QTL mapping and marker-assisted selection in peanut improvement and thus would be of value to breeders. PMID:22818284
Mitochondrial DNA Marker EST00083 Is Not Associated with High vs. Average IQ in a German Sample.
ERIC Educational Resources Information Center
Moises, Hans W.; Yang, Liu; Kohnke, Michael; Vetter, Peter; Neppert, Jurgen; Petrill, Stephen A.; Plomin, Robert
1998-01-01
Tested the association of a mitochondrial DNA marker (EST00083) with high IQ in a sample of 47 German adults with high IQ scores and 77 adults with IQs estimated at lower than 110. Results do not support the hypothesis that high IQ is associated with this marker. (SLD)
Durso, Danielle Fernandes; Bacalini, Maria Giulia; Sala, Claudia; Pirazzini, Chiara; Marasco, Elena; Bonafé, Massimiliano; do Valle, Ítalo Faria; Gentilini, Davide; Castellani, Gastone; Faria, Ana Maria Caetano; Franceschi, Claudio; Garagnani, Paolo; Nardini, Christine
2017-04-04
Changes in blood epigenetic age have been associated with several pathological conditions and have recently been described to anticipate cancer development. In this work, we analyze a publicly available leukocytes methylation dataset to evaluate the relation between DNA methylation age and the prospective development of specific types of cancer. We calculated DNA methylation age acceleration using five state-of-the-art estimators (three multi-site: Horvath, Hannum, Weidner; and two CpG specific: ELOV2 and FHL2) in a cohort including 845 subjects from the EPIC-Italy project and we compared 424 samples that remained cancer-free over the approximately ten years of follow-up with 235 and 166 subjects who developed breast and colorectal cancer, respectively. We show that the epigenetic age estimated from blood DNA methylation data is statistically significantly associated to future breast and male colorectal cancer development. These results are corroborated by survival analysis that shows significant association between age acceleration and cancer incidence suggesting that the chance of developing age-related diseases may be predicted by circulating epigenetic markers, with a dependence upon tumor type, sex and age estimator. These are encouraging results towards the non-invasive and perspective usage of epigenetic biomarkers.
History and perspectives of bioanalytical methods for chemical warfare agent detection.
Black, Robin M
2010-05-15
This paper provides a short historical overview of the development of bioanalytical methods for chemical warfare (CW) agents and their biological markers of exposure, with a more detailed overview of methods for organophosphorus nerve agents. Bioanalytical methods for unchanged CW agents are used primarily for toxicokinetic/toxicodynamic studies. An important aspect of nerve agent toxicokinetics is the different biological activity and detoxification pathways for enantiomers. CW agents have a relatively short lifetime in the human body, and are hydrolysed, metabolised, or adducted to nucleophilic sites on macromolecules such as proteins and DNA. These provide biological markers of exposure. In the past two decades, metabolites, protein adducts of nerve agents, vesicants and phosgene, and DNA adducts of sulfur and nitrogen mustards, have been identified and characterized. Sensitive analytical methods have been developed for their detection, based mainly on mass spectrometry combined with gas or liquid chromatography. Biological markers for sarin, VX and sulfur mustard have been validated in cases of accidental and deliberate human exposures. The concern for terrorist use of CW agents has stimulated the development of higher throughput analytical methods in support of homeland security. Copyright (c) 2010. Published by Elsevier B.V.
Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J; Iqbal, Nayyer
2015-01-01
Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) markers differentiating parent genotypes were identified. Recombination in hybrids was confirmed using these polymorphic DNA markers. The NM 2006 × Mash 88 was most successful interspecific cross. Most of true recombinants confirmed by molecular markers were from this cross combination. SSR markers were efficient in detecting genetic variability and recombination with reference to specific chromosomes and particular loci. SSR (RIS) and RAPD identified variability dispersed throughout the genome. In conclusion, DNA based marker assisted selection (MAS) efficiently confirmed the interspecific recombinants. The results provided evidence that MAS can enhance the authenticity of selection in mungbean improvement program.
NASA Astrophysics Data System (ADS)
Zhou, Wei; Ding, Hongye; Sui, Zhenghong; Wang, Zhongxia; Wang, Jinguo
2014-05-01
The red alga Gracilariopsis lemaneiformis (Bory) is an economically valuable macroalgae. As a means to identify the sex of immature Gracilariopsis lemaneiformis, the amplified fragment length polymorphism (AFLP) technique was used to search for possible sex- or phase-related markers in male gametophytes, female gametophytes, and tetrasporophytes, respectively. Seven AFLP selective amplification primers were used in this study. The primer combination E-TG/M-CCA detected a specific band linked to male gametophytes. The DNA fragment was recovered and a 402-bp fragment was sequenced. However, no DNA sequence match was found in public databases. Sequence characterized amplified region (SCAR) primers were designed from the sequence to test the repeatability of the relationship to the sex, using 69 male gametophytes, 139 female gametophytes, and 47 tetrasporophytes. The test results demonstrate a good linkage and repeatability of the SCAR marker to sex. The SCAR primers developed in this study could reduce the time required for sex identification of Gracilariopsis lemaneiformis by four to six months. This can reduce both the time investment and number of specimens required in breeding experiments.
[Review of Second Generation Sequencing and Its Application in Forensic Genetics].
Zhang, S H; Bian, Y N; Zhao, Q; Li, C T
2016-08-01
The rapid development of second generation sequencing (SGS) within the past few years has led to the increasement of data throughput and read length while at the same time brought down substantially the sequencing cost. This made new breakthrough in the area of biology and ushered the forensic genetics into a new era. Based on the history of sequencing application in forensic genetics, this paper reviews the importance of sequencing technologies for genetic marker detection. The application status and potential of SGS in forensic genetics are discussed based on the already explored SGS platforms of Roche, Illumina and Life Technologies. With these platforms, DNA markers (SNP, STR), RNA markers (mRNA, microRNA) and whole mtDNA can be sequenced. However, development and validation of application kits, maturation of analysis software, connection to the existing databases and the possible ethical issues occurred with big data will be the key factors that determine whether this technology can substitute or supplement PCR-CE, the mature technology, and be widely used for cases detection. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Sex-specific gonadal and gene expression changes throughout development in fathead minnow
Although fathead minnows (Pimephales promelas) are commonly used as a model fish in endocrine disruption studies, none have characterized sex-specific baseline expression of genes involved in sex differentiation during development in this species. Using a sex-linked DNA marker t...
Tan, Ji; Lim, Phaik-Eem; Phang, Siew-Moi; Hong, Dang Diem; Sunarpi, H.; Hurtado, Anicia Q.
2012-01-01
DNA barcoding has been a major advancement in the field of taxonomy, seeing much effort put into the barcoding of wide taxa of organisms, macro and microalgae included. The mitochondrial-encoded cox1 and plastid-encoded rbcL has been proposed as potential DNA barcodes for rhodophytes, but are yet to be tested on the commercially important carrageenophytes Kappaphycus and Eucheuma. This study gauges the effectiveness of four markers, namely the mitochondrial cox1, cox2, cox2-3 spacer and the plastid rbcL in DNA barcoding on selected Kappaphycus and Eucheuma from Southeast Asia. Marker assessments were performed using established distance and tree-based identification criteria from earlier studies. Barcoding patterns on a larger scale were simulated by empirically testing on the commonly used cox2-3 spacer. The phylogeny of these rhodophytes was also briefly described. In this study, the cox2 marker which satisfies the prerequisites of DNA barcodes was found to exhibit moderately high interspecific divergences with no intraspecific variations, thus a promising marker for the DNA barcoding of Kappaphycus and Eucheuma. However, the already extensively used cox2-3 spacer was deemed to be in overall more appropriate as a DNA barcode for these two genera. On a wider scale, cox1 and rbcL were still better DNA barcodes across the rhodophyte taxa when practicality and cost-efficiency were taken into account. The phylogeny of Kappaphycus and Eucheuma were generally similar to those earlier reported. Still, the application of DNA barcoding has demonstrated our relatively poor taxonomic comprehension of these seaweeds, thus suggesting more in-depth efforts in taxonomic restructuring as well as establishment. PMID:23285223
Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects.
Zhang, De-Xing; Hewitt, Godfrey M
2003-03-01
Population-genetic studies have been remarkably productive and successful in the last decade following the invention of PCR technology and the introduction of mitochondrial and microsatellite DNA markers. While mitochondrial DNA has proven powerful for genealogical and evolutionary studies of animal populations, and microsatellite sequences are the most revealing DNA markers available so far for inferring population structure and dynamics, they both have important and unavoidable limitations. To obtain a fuller picture of the history and evolutionary potential of populations, genealogical data from nuclear loci are essential, and the inclusion of other nuclear markers, i.e. single copy nuclear polymorphic (scnp) sequences, is clearly needed. Four major uncertainties for nuclear DNA analyses of populations have been facing us, i.e. the availability of scnp markers for carrying out such analysis, technical laboratory hurdles for resolving haplotypes, difficulty in data analysis because of recombination, low divergence levels and intraspecific multifurcation evolution, and the utility of scnp markers for addressing population-genetic questions. In this review, we discuss the availability of highly polymorphic single copy DNA in the nuclear genome, describe patterns and rate of evolution of nuclear sequences, summarize past empirical and theoretical efforts to recover and analyse data from scnp markers, and examine the difficulties, challenges and opportunities faced in such studies. We show that although challenges still exist, the above-mentioned obstacles are now being removed. Recent advances in technology and increases in statistical power provide the prospect of nuclear DNA analyses becoming routine practice, allowing allele-discriminating characterization of scnp loci and microsatellite loci. This certainly will increase our ability to address more complex questions, and thereby the sophistication of genetic analyses of populations.
Buonaccorsi, V P; McDowell, J R; Graves, J E
2001-05-01
Different classes of molecular markers occasionally yield discordant views of population structure within a species. Here, we examine the distribution of molecular variance from 14 polymorphic loci comprising four classes of molecular markers within approximately 400 blue marlin individuals (Makaira nigricans). Samples were collected from the Atlantic and Pacific Oceans over 5 years. Data from five hypervariable tetranucleotide microsatellite loci and restriction fragment length polymorphism (RFLP) analysis of whole molecule mitochondrial DNA (mtDNA) were reported and compared with previous analyses of allozyme and single-copy nuclear DNA (scnDNA) loci. Temporal variance in allele frequencies was nonsignificant in nearly all cases. Mitochondrial and microsatellite loci revealed striking phylogeographic partitioning among Atlantic and Pacific Ocean samples. A large cluster of alleles was present almost exclusively in Atlantic individuals at one microsatellite locus and for mtDNA, suggesting that, if gene flow occurs, it is likely to be unidirectional from Pacific to Atlantic oceans. Mitochondrial DNA inter-ocean divergence (FST) was almost four times greater than microsatellite or combined nuclear divergences including allozyme and scnDNA markers. Estimates of Neu varied by five orders of magnitude among marker classes. Using mathematical and computer simulation approaches, we show that substantially different distributions of FST are expected from marker classes that differ in mode of inheritance and rate of mutation, without influence of natural selection or sex-biased dispersal. Furthermore, divergent FST values can be reconciled by quantifying the balance between genetic drift, mutation and migration. These results illustrate the usefulness of a mitochondrial analysis of population history, and relative precision of nuclear estimates of gene flow based on a mean of several loci.
Breitler, Jean-Christophe; Meynard, Donaldo; Van Boxtel, Jos; Royer, Monique; Bonnot, François; Cambillau, Laurence; Guiderdoni, Emmanuel
2004-06-01
A pilot binary vector was constructed to assess the potential of the 2 T-DNA system for generating selectable marker-free progeny plants in three elite rice cultivars (ZhongZuo321, Ariete and Khao Dawk Mali 105) known to exhibit contrasting amenabilities to transformation. The first T-DNA of the vector, delimited by Agrobacterium tumefaciens borders, contains the hygromycin phosphotransferase (hpt) selectable gene and the green fluorescent protein (gfp) reporter gene while the second T-DNA, delimited by Agrobacterium rhizogenes borders, bears the phosphinothricin acetyl transferase (bar) gene, featuring the gene of interest. 82-90% of the hygromycin-resistant primary transformants exhibited tolerance to ammonium glufosinate mediated by the bar gene suggesting very high co-transformation frequency in the three cultivars. All of the regenerated plants were analyzed by Southern blot which confirmed co-integration of the T-DNAs at frequencies consistent with those of co-expression and allowed determination of copy number for each gene as well as detection of two different vector backbone fragments extending between the two T-DNAs. Hygromycin susceptible, ammonium glufosinate tolerant phenotypes represented 14.4, 17.4 and 14.3% of the plants in T1 progenies of ZZ321, Ariete and KDML105 primary transformants, respectively. We developed a statistical model for deducing from the observed copy number of each T-DNA in T0 plants and phenotypic segregations in T1 progenies the most likely constitution and linkage of the T-DNA integration locus. Statistical analysis identified in 40 out of 42 lines a most likely linkage configuration theoretically allowing genetic separation of the two T-DNA types and out segregation of the T-DNA bearing the bar gene. Overall, though improvements of the technology would be beneficial, the 2 T-DNA system appeared to be a useful approach to generate selectable marker-free rice plants with a consistent frequency among cultivars.
Barth, Susanne; Jankowska, Marta Jolanta; Hodkinson, Trevor Roland; Vellani, Tia; Klaas, Manfred
2016-03-22
Forty three microsatellite markers were developed for further genetic characterisation of a forage and biomass grass crop, for which genomic resources are currently scarce. The microsatellite markers were developed from a normalized EST-SSR library. All of the 43 markers gave a clear banding pattern on 3% Metaphor agarose gels. Eight selected SSR markers were tested in detail for polymorphism across eleven DNA samples of large geographic distribution across Europe. The new set of 43 SSR markers will help future research to characterise the genetic structure and diversity of Phalaris arundinacea, with a potential to further understand its invasive character in North American wetlands, as well as aid in breeding work for desired biomass and forage traits. P. arundinacea is particularly valued in the northern latitude as a crop with high biomass potential, even more so on marginal lands.
Poovitha, Sundar; Stalin, Nithaniyal; Balaji, Raju; Parani, Madasamy
2016-12-01
The genus Hibiscus L. includes several taxa of medicinal value and species used for the extraction of natural dyes. These applications require the use of authentic plant materials. DNA barcoding is a molecular method for species identification, which helps in reliable authentication by using one or more DNA barcode marker. In this study, we have collected 44 accessions, representing 16 species of Hibiscus, distributed in the southern peninsular India, to evaluate the discriminatory power of the two core barcodes rbcLa and matK together with the suggested additional regions trnH-psbA and ITS2. No intraspecies divergence was observed among the accessions studied. Interspecies divergence was 0%-9.6% with individual markers, which increased to 0%-12.5% and 0.8%-20.3% when using two- and three-marker combinations, respectively. Differentiation of all the species of Hibiscus was possible with the matK DNA barcode marker. Also, in two-marker combinations, only those combinations with matK differentiated all the species. Though all the three-marker combinations showed 100% species differentiation, species resolution was consistently better when the matK marker formed part of the combination. These results clearly showed that matK is more suitable when compared to rbcLa, trnH-psbA, and ITS2 for species identification in Hibiscus.
Gull, Iram; Javed, Attia; Aslam, Muhammad Shahbaz; Mushtaq, Roohi; Athar, Muhammad Amin
2016-01-01
The use of Moringa oleifera as natural food preservative has been evaluated in the present study. In addition, for quality assurance, the study has also been focused on the shelf life of product to authenticate the identification of plant by development of DNA based marker. Among the different extracts prepared from flower pods of Moringa oleifera, methanol and aqueous extract exhibited high antibacterial and antioxidant activity, respectively. The high phenolic contents (53.5 ± 0.169 mg GAE/g) and flavonoid contents (10.9 ± 0.094 mg QE/g) were also recorded in methanol and aqueous extract, respectively. Due to instability of bioactive compounds in aqueous extract, methanol extract is considered as potent natural preservative. The shelf life of methanol extract was observed for two months at 4°C under dark conditions. The developed SCAR primers (MOF217/317/MOR317) specifically amplified a fragment of 317 bp from DNA of Moringa oleifera samples collected from different regions of Punjab province of Pakistan. The methanol extract of Moringa oleifera flower pods has great potential to be used as natural preservative and nutraceutical in food industry.
Gull, Iram; Javed, Attia; Aslam, Muhammad Shahbaz; Mushtaq, Roohi; Athar, Muhammad Amin
2016-01-01
The use of Moringa oleifera as natural food preservative has been evaluated in the present study. In addition, for quality assurance, the study has also been focused on the shelf life of product to authenticate the identification of plant by development of DNA based marker. Among the different extracts prepared from flower pods of Moringa oleifera, methanol and aqueous extract exhibited high antibacterial and antioxidant activity, respectively. The high phenolic contents (53.5 ± 0.169 mg GAE/g) and flavonoid contents (10.9 ± 0.094 mg QE/g) were also recorded in methanol and aqueous extract, respectively. Due to instability of bioactive compounds in aqueous extract, methanol extract is considered as potent natural preservative. The shelf life of methanol extract was observed for two months at 4°C under dark conditions. The developed SCAR primers (MOF217/317/MOR317) specifically amplified a fragment of 317 bp from DNA of Moringa oleifera samples collected from different regions of Punjab province of Pakistan. The methanol extract of Moringa oleifera flower pods has great potential to be used as natural preservative and nutraceutical in food industry. PMID:27471732
Prange, Anika Nadja Sabine; Bartsch, Melanie; Meiners, Julia; Serek, Margrethe; Winkelmann, Traud
2012-04-01
By applying polyethylene glycol (PEG)-mediated protoplast fusion, the first somatic hybrids were obtained between Cyclamen persicum (2n = 2x = 48) and C. coum (2n = 2x = 30)-two species that cannot be combined by cross breeding. Heterofusion was detected by double fluorescent staining with fluorescein diacetate and scopoletin. The highest heterofusion frequencies (of about 5%) resulted from a protocol using a protoplast density of 1 × 10(6)/mL and 40% PEG. The DNA content of C. coum was estimated for the first time by propidium iodide staining to be 14.7 pg/2C and was 4.6 times higher than that of C. persicum. Among 200 in vitro plantlets regenerated from fusion experiments, most resembled the C. coum parent, whereas only 5 plants showed typical C. persicum phenotypes and 46 had a deviating morphology. By flow cytometry, six putative somatic hybrids were identified. A species-specific DNA marker was developed based on the sequence of the 5.8S gene in the ribosomal nuclear DNA and its flanking internal transcribed spacers ITS1 and ITS2. The hybrid status of only one plant could be verified by the species-specific DNA marker as well as sequencing of the amplification product. RAPD markers turned out to be less informative and applicable for hybrid identification, as no clear additivity of the parental marker bands was observed. Chromosome counting in root tips of four hybrids revealed the presence of the 30 C. coum chromosomes and 2-41 additional ones indicating elimination of C. persicum chromosomes. © Springer-Verlag 2011
Ardura, Alba; Zaiko, Anastasija; Martinez, Jose L; Samulioviene, Aurelija; Semenova, Anna; Garcia-Vazquez, Eva
2015-12-01
Intense human activities facilitate the successful spread and establishment of non-indigenous aquatic organisms in marine and freshwater ecosystems. In some cases such intrusions result in noticeable and adverse changes in the recipient environments. In the Baltic Sea, the discovery and rapid initial spread of the North American wedge clam Rangia cuneata represents a new wave of invasion which may trigger unpredictable changes of the local benthic communities. In this study we present a species-specific DNA-based marker developed in silico and experimentally tested on environmental samples. Marker specificity and sensitivity were assessed in vitro from water samples containing different mixtures of the target species and other five bivalves currently present in the region: the native Cerastoderma glaucum, Macoma balthica and Mytilus trossulus, the invasive Dreissena polymorpha and the cryptogenic Mya arenaria. Cross-species amplification was not found in any case. The method allows to detecting at least 0.4 ng of R. cuneata DNA per μl, and 0.1 g of tissue per liter of water. Finally, the marker performance was assessed in water samples from the Baltic Sea and Vistula Lagoon. The coincidence between independent visual observations of R. cuneata and positive PCR amplification of the marker from the water samples confirmed the efficiency of this highly reproducible, fast, and technically easy method. R. cuneata traces can be detected from environmental DNA even when the population is sparse and small, enabling rapid management responses and allowing to track the invasion dynamics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schneider, Dominik; Wemheuer, Franziska; Pfeiffer, Birgit; Wemheuer, Bernd
2017-01-01
Microbial communities play an important role in marine ecosystem processes. Although the number of studies targeting marker genes such as the 16S rRNA gene has been increased in the last few years, the vast majority of marine diversity is rather unexplored. Moreover, most studies focused on the entire bacterial community and thus disregarded active microbial community players. Here, we describe a detailed protocol for the simultaneous extraction of DNA and RNA from marine water samples and for the generation of cDNA from the isolated RNA which can be used as a universal template in various marker gene studies.
Development and Validation of Environmental DNA (eDNA) Markers for Detection of Freshwater Turtles.
Davy, Christina M; Kidd, Anne G; Wilson, Chris C
2015-01-01
Environmental DNA (eDNA) is a potentially powerful tool for detection and monitoring of rare species, including threatened native species and recently arrived invasive species. Here, we develop DNA primers for a suite of nine sympatric freshwater turtles, and use it to test whether turtle eDNA can be successfully detected in samples from aquaria and an outdoor pond. We also conduct a cost comparison between eDNA detection and detection through traditional survey methods, using data from field surveys at two sites in our target area. We find that eDNA from turtles can be detected using both conventional polymerase chain reaction (PCR) and quantitative PCR (qPCR), and that the cost of detection through traditional survey methods is 2-10X higher than eDNA detection for the species in our study range. We summarize necessary future steps for application of eDNA surveys to turtle monitoring and conservation and propose specific cases in which the application of eDNA could further the conservation of threatened turtle species.
Development and Validation of Environmental DNA (eDNA) Markers for Detection of Freshwater Turtles
Davy, Christina M.; Kidd, Anne G.; Wilson, Chris C.
2015-01-01
Environmental DNA (eDNA) is a potentially powerful tool for detection and monitoring of rare species, including threatened native species and recently arrived invasive species. Here, we develop DNA primers for a suite of nine sympatric freshwater turtles, and use it to test whether turtle eDNA can be successfully detected in samples from aquaria and an outdoor pond. We also conduct a cost comparison between eDNA detection and detection through traditional survey methods, using data from field surveys at two sites in our target area. We find that eDNA from turtles can be detected using both conventional polymerase chain reaction (PCR) and quantitative PCR (qPCR), and that the cost of detection through traditional survey methods is 2–10X higher than eDNA detection for the species in our study range. We summarize necessary future steps for application of eDNA surveys to turtle monitoring and conservation and propose specific cases in which the application of eDNA could further the conservation of threatened turtle species. PMID:26200348
Development of Genetic Markers in Eucalyptus Species by Target Enrichment and Exome Sequencing
Dasgupta, Modhumita Ghosh; Dharanishanthi, Veeramuthu; Agarwal, Ishangi; Krutovsky, Konstantin V.
2015-01-01
The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs) and insertions/ deletions (InDels) were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family– based QTL and association analysis in Eucalyptus. PMID:25602379
Sardina, Maria Teresa; Tortorici, Lina; Mastrangelo, Salvatore; Di Gerlando, Rosalia; Tolone, Marco; Portolano, Baldassare
2015-08-01
In livestock, breed assignment may play a key role in the certification of products linked to specific breeds. Traceability of farm animals and authentication of their products can contribute to improve breed profitability and sustainability of animal productions with significant impact on the rural economy of particular geographic areas and on breed and biodiversity conservation. With the goal of developing a breed genetic traceability system for Girgentana dairy products, the aim of this study was to identify specific microsatellite markers able to discriminate among the most important Sicilian dairy goat breeds, in order to detect possible adulteration in Girgentana dairy products. A total of 20 microsatellite markers were analyzed on 338 individual samples from Girgentana, Maltese, and Derivata di Siria goat breeds. Specific microsatellite markers useful for traceability of dairy products were identified. Eight microsatellite markers showed alleles present at the same time in Maltese and Derivata di Siria and absent in Girgentana and, therefore, they were tested on DNA pools of the three breeds. Considering the electropherograms' results, only FCB20, SRCRSP5, and TGLA122 markers were tested on DNA samples extracted from cheeses of Girgentana goat breed. These three microsatellite markers could be applied in a breed genetic traceability system of Girgentana dairy products in order to detect adulteration due to Maltese and Derivata di Siria goat breeds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Armentrout, Richard W.; Rutberg, Lars
1971-01-01
A temperature-inducible mutant of temperate Bacillus bacteriophage φ105 was isolated and used to lysogenize a thymine-requiring strain of Bacillus subtilis 168. Synthesis of phage and bacterial deoxyribonucleic acid (DNA) was studied by sucrose gradient centrifugation and density equilibrium centrifugation of DNA extracted from induced bacteria. The distribution of DNA in the gradients was measured by differential isotope and density labeling of DNA before and after induction and by measuring the biological activity of the DNA in genetic transformation, in rescue of phage markers, and in infectivity assays. At early times after induction, but after at least one round of replication, phage DNA remains associated with high-molecular-weight DNA, whereas, later in the infection, phage DNA is associated with material of decreasing molecular weight. Genetic linkage between phage and bacterial markers can be demonstrated in replicated DNA from induced cells. Prophage induction is shown to affect replication of the bacterial chromosome. The overall rate of replication of prelabeled bacterial DNA is identical in temperature-induced lysogenics and in “mock-induced” wild-type φ105 lysogenics. The rate of replication of the bacterial marker phe-1 (and also of nia-38), located close to the prophage in direction of the terminus of the bacterial chromosome, is increased in induced cells, however, relative to other bacterial markers tested. In temperature-inducible lysogenics, where the prophage also carries a ts mutation which blocks phage DNA synthesis, replication of both phage and bacterial DNA stops after about 50% of the phage DNA has replicated once. The results of these experiments suggest that the prophage is not initially excised in induced cells, but rather it is specifically replicated in situ together with adjacent parts of the bacterial chromosome. PMID:5002012
Song, Zhangfa; von Figura, Guido; Liu, Yan; Kraus, Johann M.; Torrice, Chad; Dillon, Patric; Rudolph-Watabe, Masami; Ju, Zhenyu; Kestler, Hans A.; Sanoff, Hanna; Rudolph, K. Lenhard
2010-01-01
Summary Cellular aging is characterised by telomere shortening, which can lead to uncapping of chromosome ends (telomere dysfunction) and that activation of DNA damage responses. There is some evidence the DNA damage accumulates during human aging and that lifestyle factors contribute to the accumulation of DNA damage. Recent studies have identified a set of serum markers that are induced by telomere dysfunction and DNA damage and these markers showed an increased expression in blood during human aging. Here, we investigated the influence of lifestyle factors (such as exercise, smoking, body mass) on the aging associated expression of serum markers of DNA damage (CRAMP, EF-1α, Stathmin, n-acetyl-glucosaminidase, and chitinase) in comparison to other described markers of cellular aging (p16INK4a upregulation and telomere shortening) in human peripheral blood. The study shows that lifestyle factors have an age-independent impact on the expression level of biomarkers of DNA damage. Smoking and increased body mass indices were associated with elevated levels of biomarkers of DNA damage independent of the age of the individuals. In contrast, exercise was associated with an age-independent reduction in the expression of biomarkers of DNA damage in human blood. The expression of biomarkers of DNA damage correlated positively with p16INK4a expression and negatively with telomere length in peripheral blood T-lymphocytes. Together, these data provide experimental evidence that both aging and lifestyle impact on the accumulation of DNA damage during human aging. PMID:20560902
Nguyen, Thao T.B.; Arimatsu, Yuji; Hong, Sung-Jong; Brindley, Paul J.; Blair, David; Laha, Thewarach; Sripa, Banchob
2015-01-01
Clonorchis sinensis is an important carcinogenic human liver fluke endemic in East and Southeast Asia. There are several conventional molecular markers have been used for identification and genetic diversity, however, no information about microsatellites of this liver fluke published so far. We here report microsatellite characterization and marker development for genetic diversity study in C. sinensis using genome-wide bioinformatics approach. Based on our search criteria, a total of 256,990 microsatellites (≥ 12 base pairs) were identified from genome database of C. sinensis with hexa-nucleotide motif being the most abundant (51%) followed by penta-nucleotide (18.3%) and tri-nucleotide (12.7%). The tetra-nucleotide, di-nucleotide and mononucleotide motifs accounted for 9.75 %, 7.63% and 0.14%, respectively. The total length of all microsatellites accounts for 0. 72 % of 547 Mb of the whole genome size and the frequency of microsatellites were found to be one microsatellite in every 2.13 kb of DNA. For the di-, tri, and tetra-nucleotide, the repeat numbers redundant are six (28%), four (45%) and three (76%), respectively. The ATC repeat is the most abundant microsatellites followed by AT, AAT and AC, respectively. Within 40 microsatellite loci developed, 24 microsatellite markers showed potential to differentiate between C. sinensis and O. viverrini. Seven out of 24 loci showed heterozygous with observed heterozygosity ranged from 0.467 to 1. Four-primer sets could amplify both C. sinensis and O. viverrini DNA with different sizes. This study provides basic information of C. sinensis microsatellites and the genome-wide markers developed may be a useful tool for genetic study of C. sinensis. PMID:25782682
Nguyen, Thao T B; Arimatsu, Yuji; Hong, Sung-Jong; Brindley, Paul J; Blair, David; Laha, Thewarach; Sripa, Banchob
2015-06-01
Clonorchis sinensis is an important carcinogenic human liver fluke endemic in East and Southeast Asia. There are several conventional molecular markers that have been used for identification and genetic diversity; however, no information about microsatellites of this liver fluke is published so far. We here report microsatellite characterization and marker development for a genetic diversity study in C. sinensis, using a genome-wide bioinformatics approach. Based on our search criteria, a total of 256,990 microsatellites (≥12 base pairs) were identified from a genome database of C. sinensis, with hexanucleotide motif being the most abundant (51%) followed by pentanucleotide (18.3%) and trinucleotide (12.7%). The tetranucleotide, dinucleotide, and mononucleotide motifs accounted for 9.75, 7.63, and 0.14%, respectively. The total length of all microsatellites accounts for 0. 72% of 547 Mb of the whole genome size, and the frequency of microsatellites was found to be one microsatellite in every 2.13 kb of DNA. For the di-, tri-, and tetranucleotide, the repeat numbers redundant are six (28%), four (45%), and three (76%), respectively. The ATC repeat is the most abundant microsatellites followed by AT, AAT, and AC, respectively. Within 40 microsatellite loci developed, 24 microsatellite markers showed potential to differentiate between C. sinensis and Opisthorchis viverrini. Seven out of 24 loci showed to be heterozygous with observed heterozygosity that ranged from 0.467 to 1. Four primer sets could amplify both C. sinensis and O. viverrini DNA with different sizes. This study provides basic information of C. sinensis microsatellites, and the genome-wide markers developed may be a useful tool for the genetic study of C. sinensis.
Involvement of oxidatively damaged DNA and repair in cancer development and aging
Tudek, Barbara; Winczura, Alicja; Janik, Justyna; Siomek, Agnieszka; Foksinski, Marek; Oliński, Ryszard
2010-01-01
DNA damage and DNA repair may mediate several cellular processes, like replication and transcription, mutagenesis and apoptosis and thus may be important factors in the development and pathology of an organism, including cancer. DNA is constantly damaged by reactive oxygen species (ROS) and reactive nitrogen species (RNS) directly and also by products of lipid peroxidation (LPO), which form exocyclic adducts to DNA bases. A wide variety of oxidatively-generated DNA lesions are present in living cells. 8-oxoguanine (8-oxoGua) is one of the best known DNA lesions due to its mutagenic properties. Among LPO-derived DNA base modifications the most intensively studied are ethenoadenine and ethenocytosine, highly miscoding DNA lesions considered as markers of oxidative stress and promutagenic DNA damage. Although at present it is impossible to directly answer the question concerning involvement of oxidatively damaged DNA in cancer etiology, it is likely that oxidatively modified DNA bases may serve as a source of mutations that initiate carcinogenesis and are involved in aging (i.e. they may be causal factors responsible for these processes). To counteract the deleterious effect of oxidatively damaged DNA, all organisms have developed several DNA repair mechanisms. The efficiency of oxidatively damaged DNA repair was frequently found to be decreased in cancer patients. The present work reviews the basis for the biological significance of DNA damage, particularly effects of 8-oxoGua and ethenoadduct occurrence in DNA in the aspect of cancer development, drawing attention to the multiplicity of proteins with repair activities. PMID:20589166
Prostate Cancer: Serum and Tissue Markers
Miller, Gary J; Brawer, Michael K; Sakr, Wael A; Thrasher, J Brantley; Townsend, Ronald
2001-01-01
The detection of prostate cancer, its clinical staging, and the prediction of its prognosis remain topics of paramount importance in clinical management. The digital rectal exam, although once the “gold standard,” has been largely supplanted by a variety of techniques including serum and tissue-based assays. This article reviews recent progress in the development of prostate-specific antigen assays with greater specificity; molecular markers for prostate cancer (DNA ploidy, nuclear morphometry, markers of proliferation, and cell adhesion molecules); the link between vitamin D deficiency and the clinical emergence of prostate cancer; the possible correlation of serum insulin-like growth factor levels with the risk for developing prostate cancer; and the latest advances in radiologic staging. PMID:16985995
Yang, Huaan; Jian, Jianbo; Li, Xuan; Renshaw, Daniel; Clements, Jonathan; Sweetingham, Mark W; Tan, Cong; Li, Chengdao
2015-09-02
Molecular marker-assisted breeding provides an efficient tool to develop improved crop varieties. A major challenge for the broad application of markers in marker-assisted selection is that the marker phenotypes must match plant phenotypes in a wide range of breeding germplasm. In this study, we used the legume crop species Lupinus angustifolius (lupin) to demonstrate the utility of whole genome sequencing and re-sequencing on the development of diagnostic markers for molecular plant breeding. Nine lupin cultivars released in Australia from 1973 to 2007 were subjected to whole genome re-sequencing. The re-sequencing data together with the reference genome sequence data were used in marker development, which revealed 180,596 to 795,735 SNP markers from pairwise comparisons among the cultivars. A total of 207,887 markers were anchored on the lupin genetic linkage map. Marker mining obtained an average of 387 SNP markers and 87 InDel markers for each of the 24 genome sequence assembly scaffolds bearing markers linked to 11 genes of agronomic interest. Using the R gene PhtjR conferring resistance to phomopsis stem blight disease as a test case, we discovered 17 candidate diagnostic markers by genotyping and selecting markers on a genetic linkage map. A further 243 candidate diagnostic markers were discovered by marker mining on a scaffold bearing non-diagnostic markers linked to the PhtjR gene. Nine out from the ten tested candidate diagnostic markers were confirmed as truly diagnostic on a broad range of commercial cultivars. Markers developed using these strategies meet the requirements for broad application in molecular plant breeding. We demonstrated that low-cost genome sequencing and re-sequencing data were sufficient and very effective in the development of diagnostic markers for marker-assisted selection. The strategies used in this study may be applied to any trait or plant species. Whole genome sequencing and re-sequencing provides a powerful tool to overcome current limitations in molecular plant breeding, which will enable plant breeders to precisely pyramid favourable genes to develop super crop varieties to meet future food demands.
NASA Astrophysics Data System (ADS)
Du, Guoying; Wu, Feifei; Guo, Hao; Xue, Hongfan; Mao, Yunxiang
2015-05-01
A total of 142 specimens of Ceramiales (Rhodophyta) were collected each month from October 2011 to November 2012 in the intertidal zone of the northwestern Yellow Sea. These specimens covered 21 species, 14 genera, and four families. Cluster analyses show that the specimens had a high diversity for the three DNA markers, namely, partial large subunit rRNA gene (LSU), universal plastid amplicon (UPA), and partial mitochondrial cytochrome c oxidase subunit I gene (COI). No intraspecific divergence was found in our collection for these markers, except for a 1-3 bp divergence in the COI of Ceramium kondoi, Symphyocladia latiuscula, and Neosiphonia japonica. Because short DNA markers were used, the phylogenetic relationships of higher taxonomic levels were hard to evaluate with poor branch support. More than half species of our collection failed to find their matched sequences owing to shortage information of DNA barcodes for macroalgae in GenBank or BOLD (Barcode of Life Data) Systems. Three specimens were presumed as Heterosiphonia crispella by cluster analyses on DNA barcodes assisted by morphological identification, which was the first record in the investigated area, implying that it might be a cryptic or invasive species in the coastal area of northwestern Yellow Sea. In the neighbor-joining trees of all three DNA markers, Heterosiphonia japonica converged with Dasya spp. and was distant from the other Heterosiphonia spp., implying that H. japonica had affinities to the genus Dasya. The LSU and UPA markers amplified and sequenced easier than the COI marker across the Ceramiales species, but the COI had a higher ability to discriminate between species.
Arshed, Muhammad Jefte C; Valdez, Marcos B; Alejandro, Grecebio Jonathan D
2017-01-01
The pantropical genus Lasianthus Jack is identified for high phenotypic plasticity making traditional taxonomic identification difficult. Having some members with important medicinal properties, a precise complimentary identification through DNA barcoding is needed for species delineation. In this study, 12 samples representing six Philippine Lasianthus species were used to determine the most efficient barcoding loci among the cpDNA markers ( mat K, rbc L, rps 16, and trn T-F) and nrDNA (ITS) based on the criteria of universality, discriminatory power, and resolution of species. The results revealed that ITS has the recommended primer universality, greatest interspecific divergences, and average resolution of species. Among the cpDNA markers, mat K and rbc L are recommended but with minimal resolution of species. While trn T-F showed moderate interspecific variations and resolution of Lasianthus species, rps 16 has the lowest interspecific divergence and resolution of species. Consequently, ITS is the potential ideal DNA barcode for Lasianthus species. ITS, mat K, and rps 16 markers have the excellent amplification and sequence qualityITS marker has the highest interspecific divergence with the maximum values, followed by mat K, rbc L, trn T-F, and rps 16, respectivelyAll markers except rps 16 yielded average resolution to Lasianthus speciesITS marker is the most ideal locus in terms of excellent universality, high interspecific discriminatory ability, and average species resolution. Abbreviations used: ITS: Internal Transcribe Spacer, mat K: maturase K, rbc L: ribulose-1,5-biphospahte-carboxylase, rps 16: ribosomal protein 16 small subunit gene.
Endoreduplication intensity as a marker of seed developmental stage in the Fabaceae.
Rewers, Monika; Sliwinska, Elwira
2012-12-01
Flow cytometry (FCM) can be used to study cell cycle activity in developing, mature and germinating seeds. It provides information about a seed's physiological state and therefore can be used by seed growers for assessing optimal harvest times and presowing treatments. Because an augmented proportion of 4C nuclei usually is indicative of high mitotic activity, the 4C/2C ratio is commonly used to follow the progress of seed development and germination. However, its usefulness for polysomatic (i.e., containing cells with different DNA content) seeds is questioned. Changes in cell cycle/endoreduplication activity in developing seeds of five members of the Fabaceae were studied to determine a more suitable marker of seed developmental stages for polysomatic species based on FCM measurements. Seeds of Phaseolus vulgaris, Medicago sativa, Pisum sativum, Vicia sativa, and Vicia faba var. minor were collected 20, 30, 40, 50, and 60 days after flowering (DAF), embryos were isolated and the proportion of nuclei with different DNA contents in the embryo axis and cotyledon was established. The ratios 4C/2C and (Σ>2C)/2C were calculated. Dried seeds were subjected to laboratory germination tests following international seed testing association (ISTA) rules. Additionally, the absolute nuclear DNA content was estimated in the leaves of the studied species. During seed development nuclei with DNA contents from 2C to 128C were detected; the endopolyploidy pattern depended on the species, seed organ and developmental stage. The cell cycle/endoreduplication parameters correlated negatively with genome size. The (Σ>2C)/2C ratio in the cotyledons reflected the seed developmental stage and corresponded with seed germinability. Therefore, this ratio is recommended as a marker in polysomatic seed research and production instead of the 4C/2C ratio, which does not consider the occurrence of endopolyploid cells. Copyright © 2012 International Society for Advancement of Cytometry.
NASA Astrophysics Data System (ADS)
Zhou, Hong; Zhang, Zhinan; Chen, Haiyan; Sun, Renhua; Wang, Hui; Guo, Lei; Pan, Haijian
2010-07-01
In this study, we integrated a DNA barcoding project with an ecological survey on intertidal polychaete communities and investigated the utility of CO1 gene sequence as a DNA barcode for the classification of the intertidal polychaetes. Using 16S rDNA as a complementary marker and combining morphological and ecological characterization, some of dominant and common polychaete species from Chinese coasts were assessed for their taxonomic status. We obtained 22 haplotype gene sequences of 13 taxa, including 10 CO1 sequences and 12 16S rDNA sequences. Based on intra- and inter-specific distances, we built phylogenetic trees using the neighbor-joining method. Our study suggested that the mitochondrial CO1 gene was a valid DNA barcoding marker for species identification in polychaetes, but other genes, such as 16S rDNA, could be used as a complementary genetic marker. For more accurate species identification and effective testing of species hypothesis, DNA barcoding should be incorporated with morphological, ecological, biogeographical, and phylogenetic information. The application of DNA barcoding and molecular identification in the ecological survey on the intertidal polychaete communities demonstrated the feasibility of integrating DNA taxonomy and ecology.
Heterologous mitochondrial DNA recombination in human cells.
D'Aurelio, Marilena; Gajewski, Carl D; Lin, Michael T; Mauck, William M; Shao, Leon Z; Lenaz, Giorgio; Moraes, Carlos T; Manfredi, Giovanni
2004-12-15
Inter-molecular heterologous mitochondrial DNA (mtDNA) recombination is known to occur in yeast and plants. Nevertheless, its occurrence in human cells is still controversial. To address this issue we have fused two human cytoplasmic hybrid cell lines, each containing a distinct pathogenic mtDNA mutation and specific sets of genetic markers. In this hybrid model, we found direct evidence of recombination between these two mtDNA haplotypes. Recombinant mtDNA molecules in the hybrid cells were identified using three independent experimental approaches. First, recombinant molecules containing genetic markers from both parental alleles were demonstrated with restriction fragment length polymorphism of polymerase chain reaction products, by measuring the relative frequencies of each marker. Second, fragments of recombinant mtDNA were cloned and sequenced to identify the regions involved in the recombination events. Finally, recombinant molecules were demonstrated directly by Southern blot using appropriate combinations of polymorphic restriction sites and probes. This combined approach confirmed the existence of heterogeneous species of recombinant mtDNA molecules in the hybrid cells. These findings have important implications for mtDNA-related diseases, the interpretation of human evolution and population genetics and forensic analyses based on mtDNA genotyping.
Wildlife forensic science: A review of genetic geographic origin assignment.
Ogden, Rob; Linacre, Adrian
2015-09-01
Wildlife forensic science has become a key means of enforcing legislation surrounding the illegal trade in protected and endangered species. A relatively new dimension to this area of forensic science is to determine the geographic origin of a seized sample. This review focuses on DNA testing, which relies on assignment of an unknown sample to its genetic population of origin. Key examples of this are the trade in timber, fish and ivory and these are used only to illustrate the large number of species for which this type of testing is potentially available. The role of mitochondrial and nuclear DNA markers is discussed, alongside a comparison of neutral markers with those exhibiting signatures of selection, which potentially offer much higher levels of assignment power to address specific questions. A review of assignment tests is presented along with detailed methods for evaluating error rates and considerations for marker selection. The availability and quality of reference data are of paramount importance to support assignment applications and ensure reliability of any conclusions drawn. The genetic methods discussed have been developed initially as investigative tools but comment is made regarding their use in courts. The potential to compliment DNA markers with elemental assays for greater assignment power is considered and finally recommendations are made for the future of this type of testing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Lata, Charu; Bhutty, Sarita; Bahadur, Ranjit Prasad; Majee, Manoj; Prasad, Manoj
2011-06-01
The DREB genes code for important plant transcription factors involved in the abiotic stress response and signal transduction. Characterization of DREB genes and development of functional markers for effective alleles is important for marker-assisted selection in foxtail millet. Here the characterization of a cDNA (SiDREB2) encoding a putative dehydration-responsive element-binding protein 2 from foxtail millet and the development of an allele-specific marker (ASM) for dehydration tolerance is reported. A cDNA clone (GenBank accession no. GT090998) coding for a putative DREB2 protein was isolated as a differentially expressed gene from a 6 h dehydration stress SSH library. A 5' RACE (rapid amplification of cDNA ends) was carried out to obtain the full-length cDNA, and sequence analysis showed that SiDREB2 encoded a polypeptide of 234 amino acids with a predicted mol. wt of 25.72 kDa and a theoretical pI of 5.14. A theoretical model of the tertiary structure shows that it has a highly conserved GCC-box-binding N-terminal domain, and an acidic C-terminus that acts as an activation domain for transcription. Based on its similarity to AP2 domains, SiDREB2 was classified into the A-2 subgroup of the DREB subfamily. Quantitative real-time PCR analysis showed significant up-regulation of SiDREB2 by dehydration (polyethylene glycol) and salinity (NaCl), while its expression was less affected by other stresses. A synonymous single nucleotide polymorphism (SNP) associated with dehydration tolerance was detected at the 558th base pair (an A/G transition) in the SiDREB2 gene in a core set of 45 foxtail millet accessions used. Based on the identified SNP, three primers were designed to develop an ASM for dehydration tolerance. The ASM produced a 261 bp fragment in all the tolerant accessions and produced no amplification in the sensitive accessions. The use of this ASM might be faster, cheaper, and more reproducible than other SNP genotyping methods, and thus will enable marker-aided breeding of foxtail millet for dehydration tolerance.
Hurst, Gregory D.D; Jiggins, Francis M
2005-01-01
Mitochondrial DNA (mtDNA) has been a marker of choice for reconstructing historical patterns of population demography, admixture, biogeography and speciation. However, it has recently been suggested that the pervasive nature of direct and indirect selection on this molecule renders any conclusion derived from it ambiguous. We review here the evidence for indirect selection on mtDNA in arthropods arising from linkage disequilibrium with maternally inherited symbionts. We note first that these symbionts are very common in arthropods and then review studies that reveal the extent to which they shape mtDNA evolution. mtDNA diversity patterns are compatible with neutral expectations for an uninfected population in only 2 of 19 cases. The remaining 17 studies revealed cases of symbiont-driven reduction in mtDNA diversity, symbiont-driven increases in diversity, symbiont-driven changes in mtDNA variation over space and symbiont-associated paraphyly of mtDNA. We therefore conclude that these elements often confound the inference of an organism's evolutionary history from mtDNA data and that mtDNA on its own is an unsuitable marker for the study of recent historical events in arthropods. We also discuss the impact of these studies on the current programme of taxonomy based on DNA bar-coding. PMID:16048766
Chen, Xiangrui; Shazib, Shahed Uddin Ahmed; Kim, Ji Hye; Kim, Min Seok; Shin, Mann Kyoon
2018-05-09
Gruberia Kahl, 1932 is a species-poor genus comprising only seven named species. Most of these species have not been reinvestigated since the original reports. In the present work, we investigated the taxonomy and phylogeny of Gruberia lanceolata (Gruber, 1884) Kahl, 1932 based on analyses of morphology and multiple gene sequences from four South Korean populations. This species is mainly characterized by a well-developed peristome region, segmented paroral membrane, and moniliform macronucleus. Some morphological features were not stable among the four populations investigated, such as body shape and size, cell color, and the ratio of oral length to body length. However, our molecular analyses of four different genetic markers - three nuclear DNA markers (18S rDNA, ITS1-5.8S-ITS2 region, D1D2 of 28S rDNA) and one mitochondrial (mt) marker (CO1 gene) - indicated that all Korean populations examined were the same species. Based on our present findings and historic works, we propose that G. calkinsi, G. aculeata, and G. beninensis are junior synonyms of G. lanceolata. Copyright © 2018 Elsevier GmbH. All rights reserved.
pH-Controlled Assembly of DNA Tiles
Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo; ...
2016-09-15
We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less
pH-Controlled Assembly of DNA Tiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo
We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less
Alaizari, Nader A; Sperandio, Marcelo; Odell, Edward W; Peruzzo, Daiane; Al-Maweri, Sadeq A
2018-02-01
DNA aneuploidy is an imbalance of chromosomal DNA content that has been highlighted as a predictor of biological behavior and risk of malignant transformation. To date, DNA aneuploidy in oral potentially malignant diseases (OPMD) has been shown to correlate strongly with severe dysplasia and high-risk lesions that appeared non-dysplastic can be identified by ploidy analysis. Nevertheless, the prognostic value of DNA aneuploidy in predicting malignant transformation of OPMD remains to be validated. The aim of this meta-analysis was to assess the role of DNA aneuploidy in predicting malignant transformation in OPMD. The questions addressed were (i) Is DNA aneuploidy a useful marker to predict malignant transformation in OPMD? (ii) Is DNA diploidy a useful negative marker of malignant transformation in OPMD? These questions were addressed using the PECO method. Five studies assessing aneuploidy as a risk marker of malignant change were pooled into the meta-analysis. Aneuploidy was found to be associated with a 3.12-fold increased risk to progress into cancer (RR=3.12, 95% CI 1.86-5.24). Based on the five studies meta-analyzed, "no malignant progression" was more likely to occur in DNA diploid OPMD by 82% when compared to aneuploidy (RR=0.18, 95% CI 0.08-0.41). In conclusion, aneuploidy is a useful marker of malignant transformation in OPMD, although a diploid result should be interpreted with caution. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Suzuki, Hideaki; Yu, Jiwen; Wang, Fei; Zhang, Jinfa
2013-06-01
Cytoplasmic male sterility (CMS), which is a maternally inherited trait and controlled by novel chimeric genes in the mitochondrial genome, plays a pivotal role in the production of hybrid seed. In cotton, no PCR-based marker has been developed to discriminate CMS-D8 (from Gossypium trilobum) from its normal Upland cotton (AD1, Gossypium hirsutum) cytoplasm. The objective of the current study was to develop PCR-based single nucleotide polymorphic (SNP) markers from mitochondrial genes for the CMS-D8 cytoplasm. DNA sequence variation in mitochondrial genes involved in the oxidative phosphorylation chain including ATP synthase subunit 1, 4, 6, 8 and 9, and cytochrome c oxidase 1, 2 and 3 subunits were identified by comparing CMS-D8, its isogenic maintainer and restorer lines on the same nuclear genetic background. An allelic specific PCR (AS-PCR) was utilized for SNP typing by incorporating artificial mismatched nucleotides into the third or fourth base from the 3' terminus in both the specific and nonspecific primers. The result indicated that the method modifying allele-specific primers was successful in obtaining eight SNP markers out of eight SNPs using eight primer pairs to discriminate two alleles between AD1 and CMS-D8 cytoplasms. Two of the SNPs for atp1 and cox1 could also be used in combination to discriminate between CMS-D8 and CMS-D2 cytoplasms. Additionally, a PCR-based marker from a nine nucleotide insertion-deletion (InDel) sequence (AATTGTTTT) at the 59-67 bp positions from the start codon of atp6, which is present in the CMS and restorer lines with the D8 cytoplasm but absent in the maintainer line with the AD1 cytoplasm, was also developed. A SNP marker for two nucleotide substitutions (AA in AD1 cytoplasm to CT in CMS-D8 cytoplasm) in the intron (1,506 bp) of cox2 gene was also developed. These PCR-based SNP markers should be useful in discriminating CMS-D8 and AD1 cytoplasms, or those with CMS-D2 cytoplasm as a rapid, simple, inexpensive, and reliable genotyping tool to assist hybrid cotton breeding.
Programmable and Multiparameter DNA-Based Logic Platform For Cancer Recognition and Targeted Therapy
2014-01-01
The specific inventory of molecules on diseased cell surfaces (e.g., cancer cells) provides clinicians an opportunity for accurate diagnosis and intervention. With the discovery of panels of cancer markers, carrying out analyses of multiple cell-surface markers is conceivable. As a trial to accomplish this, we have recently designed a DNA-based device that is capable of performing autonomous logic-based analysis of two or three cancer cell-surface markers. Combining the specific target-recognition properties of DNA aptamers with toehold-mediated strand displacement reactions, multicellular marker-based cancer analysis can be realized based on modular AND, OR, and NOT Boolean logic gates. Specifically, we report here a general approach for assembling these modular logic gates to execute programmable and higher-order profiling of multiple coexisting cell-surface markers, including several found on cancer cells, with the capacity to report a diagnostic signal and/or deliver targeted photodynamic therapy. The success of this strategy demonstrates the potential of DNA nanotechnology in facilitating targeted disease diagnosis and effective therapy. PMID:25361164
[Development of Chinese forensic Y-STR DNA database].
Ge, Jian-Ye; Yan, Jiang-Wei; Xie, Qun; Sun, Hong-Yu; Zhou, Huai-Gu; Li, Bin
2013-06-01
Y chromosome is a male-specific paternal inherited chromosome. The STR markers on Y chromosome have been widely used in forensic practices. This article summarizes the characteristics of Y-STR and some factors are considered of selecting appropriate Y-STR markers for Chinese population. The prospects of existing and potential forensic applications of Y-STR profiles are discussed including familial excluding, familial searching, crowd source deducing, mixture sample testing, and kinship identifying. The research, development, verification of Y-STR kit, Y-STR mutation rate, and search software are explored and some suggestions are given.
Raschke, Elena; Epp, Laura S.; Stoof-Leichsenring, Kathleen R.; Schwamborn, Georg; Herzschuh, Ulrike
2017-01-01
Ecosystem boundaries, such as the Arctic-Boreal treeline, are strongly coupled with climate and were spatially highly dynamic during past glacial-interglacial cycles. Only a few studies cover vegetation changes since the last interglacial, as most of the former landscapes are inundated and difficult to access. Using pollen analysis and sedimentary ancient DNA (sedaDNA) metabarcoding, we reveal vegetation changes on Bol’shoy Lyakhovsky Island since the last interglacial from permafrost sediments. Last interglacial samples depict high levels of floral diversity with the presence of trees (Larix, Picea, Populus) and shrubs (Alnus, Betula, Ribes, Cornus, Saliceae) on the currently treeless island. After the Last Glacial Maximum, Larix re-colonised the island but disappeared along with most shrub taxa. This was probably caused by Holocene sea-level rise, which led to increased oceanic conditions on the island. Additionally, we applied two newly developed larch-specific chloroplast markers to evaluate their potential for tracking past population dynamics from environmental samples. The novel markers were successfully re-sequenced and exhibited two variants of each marker in last interglacial samples. SedaDNA can track vegetation changes as well as genetic changes across geographic space through time and can improve our understanding of past processes that shape modern patterns. PMID:29027988
TIM L. KING; MICHAEL S. EACKLES; ANNE P. HENDERSON; CAROL I. BOCETTI; DAVE CURRIE; JR WUNDERLE
2005-01-01
We document the isolation and characterization of 23 microsatellite DNA markers for the endangered Kirtlandâs warbler (Dendroica kirtlandii), a Nearctic/Neotropical migrant passerine. This suite of markers revealed moderate to high levels of allelic diversity (averaging 7.7 alleles per locus) and heterozygosity (averaging 72%). Genotypic frequencies at 22 of 23 (95%)...
Bloom, Kristie; Ely, Abdullah; Mussolino, Claudio; Cathomen, Toni; Arbuthnot, Patrick
2013-01-01
Chronic hepatitis B virus (HBV) infection remains an important global health problem. Stability of the episomal covalently closed circular HBV DNA (cccDNA) is largely responsible for the modest curative efficacy of available therapy. Since licensed anti-HBV drugs have a post-transcriptional mechanism of action, disabling cccDNA is potentially of therapeutic benefit. To develop this approach, we engineered mutagenic transcription activator-like effector nucleases (TALENs) that target four HBV-specific sites within the viral genome. TALENs with cognate sequences in the S or C open-reading frames (ORFs) efficiently disrupted sequences at the intended sites and suppressed markers of viral replication. Following triple transfection of cultured HepG2.2.15 cells under mildly hypothermic conditions, the S TALEN caused targeted mutation in ~35% of cccDNA molecules. Markers of viral replication were also inhibited in vivo in a murine hydrodynamic injection model of HBV replication. HBV target sites within S and C ORFs of the injected HBV DNA were mutated without evidence of toxicity. These findings are the first to demonstrate a targeted nuclease-mediated disruption of HBV cccDNA. Efficacy in vivo also indicates that these engineered nucleases have potential for use in treatment of chronic HBV infection. PMID:23883864
Construction of a general human chromosome jumping library, with application to cystic fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, F.S.; Drumm, M.L.; Cole, J.L.
1987-02-27
In many genetic disorders, the responsible gene and its protein product are unknown. The technique known as reverse genetics, in which chromosomal map positions and genetically linked DNA markers are used to identify and clone such genes, is complicated by the fact that the molecular distances from the closest DNA markers to the gene itself are often too large to traverse by standard cloning techniques. To address this situation, a general human chromosome jumping library was constructed that allows the cloning of DNA sequences approximately 100 kilobases away from any starting point in genomic DNA. As an illustration of itsmore » usefulness, this library was searched for a jumping clone, starting at the met oncogene, which is a marker tightly linked to the cystic fibrosis gene that is located on human chromosome 7. Mapping of the new genomic fragment by pulsed field gel electrophoresis confirmed that it resides on chromosome 7 within 240 kilobases downstream of the met gene. The use of chromosome jumping should be applicable to any genetic locus for which a closely linked DNA marker is available.« less
Theilmann, J; Kanani, S; Shiang, R; Robbins, C; Quarrell, O; Huggins, M; Hedrick, A; Weber, B; Collins, C; Wasmuth, J J
1989-01-01
Analysis of many families with linked DNA markers has provided support for the Huntington's disease (HD) gene being close to the telomere on the short arm of chromosome 4. However, analysis of recombination events in particular families has provided conflicting results about the precise location of the HD gene relative to these closely linked DNA markers. Here we report an investigation of linkage disequilibrium between six DNA markers and the HD gene in 75 separate families of varied ancestry. We show significant non-random association between alleles detected at D4S95 and D4S98 and the mutant gene. These data suggest that it may be possible to construct high and low risk haplotypes, which may be helpful in DNA analysis and genetic counselling for HD, and represent independent evidence that the gene for HD is centromeric to more distally located DNA markers such as D4S90. This information may be helpful in defining a strategy to clone the gene for HD based on its location in the human genome. Images PMID:2531224
Development of DNA markers for newly identified high-oleate peanut mutants
USDA-ARS?s Scientific Manuscript database
Development of high-oleate cultivars is one of the important objectives of peanut breeding because consuming products containing high oleate can benefit human health in many aspects. By screening the entire USDA cultivated peanut collection, we have identified two new high-oleate mutants (PI 342664...
Serum ALT levels as a surrogate marker for serum HBV DNA levels in HBeAg-negative pregnant women.
Sangfelt, Per; Von Sydow, Madeleine; Uhnoo, Ingrid; Weiland, Ola; Lindh, Gudrun; Fischler, Björn; Lindgren, Susanne; Reichard, Olle
2004-01-01
In Stockholm, Sweden, the majority of pregnant women positive for hepatitis B surface antigen (HBsAg) are hepatitis Be antigen (HBeAg) negative. Newborns to HBeAg positive mothers receive vaccination and hepatitis B immunoglobulin (HBIg). Newborns to HBeAg negative mothers receive vaccine and HBIg only if the mothers have elevated ALT levels. The aim of this study was to retrospectively evaluate ALT levels as a surrogate marker for HBV DNA levels in HBeAg negative carrier mothers. Altogether 8947 pregnant women were screened for HBV markers from 1999 to 2001 at the Virology Department, Karolinska Hospital. Among mothers screened 192 tested positive for HBsAg (2.2%). 13 of these samples could not be retrieved. Of the remaining 179 sera, 8 (4%) tested positive for HBeAg and 171 (95.5%) were HBeAg negative. Among the HBeAg negative mothers, 9 had HBV DNA levels > 10(5) copies/ml, and of these 7 had normal ALT levels indicating low sensitivity of an elevated ALT level as a surrogate marker for high HBV DNA level. Furthermore, no correlation was found between ALT and HBV DNA levels. Hence, it is concluded that the use of ALT as a surrogate marker for high viral replication in HBeAg negative mothers could be questioned.
Liu, Rulong; Yeung, Leo T C; Ho, Pui-Hei; Lau, Stanley C K
2017-03-01
Routine water quality monitoring practices based on the enumeration of culturable Escherichia coli provides no information about the source or age of fecal pollution. An emerging strategy is to use culturable E. coli and the DNA markers of Bacteroidales complementarily for microbial source tracking. In this study, we consistently observed in seawater microcosms of 3 different conditions that culturable E. coli decayed faster (T 99 = 1.14 - 4.29 days) than Bacteroidales DNA markers did (T 99 = 1.81 - 200.23 days). Concomitantly, the relative concentration between Bacteroidales DNA markers and culturable E. coli increased over time in all treatments. Particularly, the increase during the early stage of the experiments (before T 99 of E. coli was reached) was faster than during the later stage (after T 99 of E. coli was attained). We propose that the tracking of the relative concentration between Bacteroidales DNA markers and culturable E. coli provides an opportunity to differentiate a pollution that is relatively fresh from one that has aged. This method, upon further investigation and validation, could be useful in episodic pollution events where the surge of E. coli concentration causes noncompliance to the single sample maximum criterion that mandates high frequency follow-up monitoring.
Sengupta, Subhadipa; Chakraborti, Dipankar; Mondal, Hossain A; Das, Sampa
2010-03-01
Rice, the major food crop of world is severely affected by homopteran sucking pests. We introduced coding sequence of Allium sativum leaf agglutinin, ASAL, in rice cultivar IR64 to develop sustainable resistance against sap-sucking planthoppers as well as eliminated the selectable antibiotic-resistant marker gene hygromycin phosphotransferase (hpt) exploiting cre/lox site-specific recombination system. An expression vector was constructed containing the coding sequence of ASAL, a potent controlling agent against green leafhoppers (GLH, Nephotettix virescens) and brown planthopper (BPH, Nilaparvata lugens). The selectable marker (hpt) gene cassette was cloned within two lox sites of the same vector. Alongside, another vector was developed with chimeric cre recombinase gene cassette. Reciprocal crosses were performed between three single-copy T(0) plants with ASAL- lox-hpt-lox T-DNA and three single-copy T(0) plants with cre-bar T-DNA. Marker gene excisions were detected in T(1) hybrids through hygromycin sensitivity assay. Molecular analysis of T(1) plants exhibited 27.4% recombination efficiency. T(2) progenies of L03C04(1) hybrid parent showed 25% cre negative ASAL-expressing plants. Northern blot, western blot and ELISA showed significant level of ASAL expression in five marker-free T(2) progeny plants. In planta bioassay of GLH and BPH performed on these T(2) progenies exhibited radical reduction in survivability and fecundity compared with the untransformed control plants.
Schoch, Conrad L.; Seifert, Keith A.; Huhndorf, Sabine; Robert, Vincent; Spouge, John L.; Levesque, C. André; Chen, Wen; Bolchacova, Elena; Voigt, Kerstin; Crous, Pedro W.; Miller, Andrew N.; Wingfield, Michael J.; Aime, M. Catherine; An, Kwang-Deuk; Bai, Feng-Yan; Barreto, Robert W.; Begerow, Dominik; Bergeron, Marie-Josée; Blackwell, Meredith; Boekhout, Teun; Bogale, Mesfin; Boonyuen, Nattawut; Burgaz, Ana R.; Buyck, Bart; Cai, Lei; Cai, Qing; Cardinali, G.; Chaverri, Priscila; Coppins, Brian J.; Crespo, Ana; Cubas, Paloma; Cummings, Craig; Damm, Ulrike; de Beer, Z. Wilhelm; de Hoog, G. Sybren; Del-Prado, Ruth; Dentinger, Bryn; Diéguez-Uribeondo, Javier; Divakar, Pradeep K.; Douglas, Brian; Dueñas, Margarita; Duong, Tuan A.; Eberhardt, Ursula; Edwards, Joan E.; Elshahed, Mostafa S.; Fliegerova, Katerina; Furtado, Manohar; García, Miguel A.; Ge, Zai-Wei; Griffith, Gareth W.; Griffiths, K.; Groenewald, Johannes Z.; Groenewald, Marizeth; Grube, Martin; Gryzenhout, Marieka; Guo, Liang-Dong; Hagen, Ferry; Hambleton, Sarah; Hamelin, Richard C.; Hansen, Karen; Harrold, Paul; Heller, Gregory; Herrera, Cesar; Hirayama, Kazuyuki; Hirooka, Yuuri; Ho, Hsiao-Man; Hoffmann, Kerstin; Hofstetter, Valérie; Högnabba, Filip; Hollingsworth, Peter M.; Hong, Seung-Beom; Hosaka, Kentaro; Houbraken, Jos; Hughes, Karen; Huhtinen, Seppo; Hyde, Kevin D.; James, Timothy; Johnson, Eric M.; Johnson, Joan E.; Johnston, Peter R.; Jones, E.B. Gareth; Kelly, Laura J.; Kirk, Paul M.; Knapp, Dániel G.; Kõljalg, Urmas; Kovács, Gábor M.; Kurtzman, Cletus P.; Landvik, Sara; Leavitt, Steven D.; Liggenstoffer, Audra S.; Liimatainen, Kare; Lombard, Lorenzo; Luangsa-ard, J. Jennifer; Lumbsch, H. Thorsten; Maganti, Harinad; Maharachchikumbura, Sajeewa S. N.; Martin, María P.; May, Tom W.; McTaggart, Alistair R.; Methven, Andrew S.; Meyer, Wieland; Moncalvo, Jean-Marc; Mongkolsamrit, Suchada; Nagy, László G.; Nilsson, R. Henrik; Niskanen, Tuula; Nyilasi, Ildikó; Okada, Gen; Okane, Izumi; Olariaga, Ibai; Otte, Jürgen; Papp, Tamás; Park, Duckchul; Petkovits, Tamás; Pino-Bodas, Raquel; Quaedvlieg, William; Raja, Huzefa A.; Redecker, Dirk; Rintoul, Tara L.; Ruibal, Constantino; Sarmiento-Ramírez, Jullie M.; Schmitt, Imke; Schüßler, Arthur; Shearer, Carol; Sotome, Kozue; Stefani, Franck O.P.; Stenroos, Soili; Stielow, Benjamin; Stockinger, Herbert; Suetrong, Satinee; Suh, Sung-Oui; Sung, Gi-Ho; Suzuki, Motofumi; Tanaka, Kazuaki; Tedersoo, Leho; Telleria, M. Teresa; Tretter, Eric; Untereiner, Wendy A.; Urbina, Hector; Vágvölgyi, Csaba; Vialle, Agathe; Vu, Thuy Duong; Walther, Grit; Wang, Qi-Ming; Wang, Yan; Weir, Bevan S.; Weiß, Michael; White, Merlin M.; Xu, Jianping; Yahr, Rebecca; Yang, Zhu L.; Yurkov, Andrey; Zamora, Juan-Carlos; Zhang, Ning; Zhuang, Wen-Ying; Schindel, David
2012-01-01
Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups. PMID:22454494
Schoch, Conrad L; Seifert, Keith A; Huhndorf, Sabine; Robert, Vincent; Spouge, John L; Levesque, C André; Chen, Wen
2012-04-17
Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.
Pérez, Gabriel; Verdejo, Valentina; Gondim-Porto, Clarissa; Orlando, Julieta; Carú, Margarita
2014-11-01
Several species of the fungal genus Trichoderma establish biological interactions with various micro- and macro-organisms. Some of these interactions are relevant in ecological terms and in biotechnological applications, such as biocontrol, where Trichoderma could be considered as an invasive species that colonizes a recipient community. The success of this invasion depends on multiple factors, which can be assayed using experimental communities as study models. Therefore, the aim of this work is to develop a species-specific sequence-characterized amplified region (SCAR) marker to monitor the colonization and growth of T. cf. harzianum when it invades experimental communities. For this study, 16 randomly amplified polymorphic DNA (RAPD) primers of 10-mer were used to generate polymorphic patterns, one of which generated a band present only in strains of T. cf. harzianum. This band was cloned, sequenced, and five primers of 20-23 mer were designed. Primer pairs 2F2/2R2 and 2F2/2R3 successfully and specifically amplified fragments of 278 and 448 bp from the T. cf. harzianum BpT10a strain DNA, respectively. Both primer pairs were also tested against the DNA from 14 strains of T. cf. harzianum and several strains of different fungal genera as specificity controls. Only the DNA from the strains of T. cf. harzianum was successfully amplified. Moreover, primer pair 2F2/2R2 was assessed by quantitative real-time polymerase chain reaction (PCR) using fungal DNA mixtures and DNA extracted from fungal experimental communities as templates. T. cf. harzianum was detectable even when as few as 100 copies of the SCAR marker were available or even when its population represented only 0.1% of the whole community.
Pérez, Gabriel; Verdejo, Valentina; Gondim-Porto, Clarissa; Orlando, Julieta; Carú, Margarita
2014-01-01
Several species of the fungal genus Trichoderma establish biological interactions with various micro- and macro-organisms. Some of these interactions are relevant in ecological terms and in biotechnological applications, such as biocontrol, where Trichoderma could be considered as an invasive species that colonizes a recipient community. The success of this invasion depends on multiple factors, which can be assayed using experimental communities as study models. Therefore, the aim of this work is to develop a species-specific sequence-characterized amplified region (SCAR) marker to monitor the colonization and growth of T. cf. harzianum when it invades experimental communities. For this study, 16 randomly amplified polymorphic DNA (RAPD) primers of 10-mer were used to generate polymorphic patterns, one of which generated a band present only in strains of T. cf. harzianum. This band was cloned, sequenced, and five primers of 20–23 mer were designed. Primer pairs 2F2/2R2 and 2F2/2R3 successfully and specifically amplified fragments of 278 and 448 bp from the T. cf. harzianum BpT10a strain DNA, respectively. Both primer pairs were also tested against the DNA from 14 strains of T. cf. harzianum and several strains of different fungal genera as specificity controls. Only the DNA from the strains of T. cf. harzianum was successfully amplified. Moreover, primer pair 2F2/2R2 was assessed by quantitative real-time polymerase chain reaction (PCR) using fungal DNA mixtures and DNA extracted from fungal experimental communities as templates. T. cf. harzianum was detectable even when as few as 100 copies of the SCAR marker were available or even when its population represented only 0.1% of the whole community. PMID:25367789
Ruibal, Monica P; Peakall, Rod; Foret, Sylvain; Linde, Celeste C
2014-06-01
To investigate fungal species identity and diversity in mycorrhizal fungi of order Sebacinales, we developed phylogenetic markers. These new markers will enable future studies investigating species delineation and phylogenetic relationships of the fungal symbionts and facilitate investigations into evolutionary interactions among Sebacina species and their orchid hosts. • We generated partial genome sequences for a Sebacina symbiont originating from Caladenia huegelii with 454 genome sequencing and from three symbionts from Eriochilus dilatatus and one from E. pulchellus using Illumina sequencing. Six nuclear and two mitochondrial loci showed high variability (10-31% parsimony informative sites) for Sebacinales mycorrhizal fungi across four genera of Australian orchids (Caladenia, Eriochilus, Elythranthera, and Glossodia). • We obtained highly informative DNA markers that will allow investigation of mycorrhizal diversity of Sebacinaceae fungi associated with terrestrial orchids in Australia and worldwide.
Ethical, legal and social implications of forensic molecular phenotyping in South Africa.
Slabbert, Nandi; Heathfield, Laura Jane
2018-06-01
Conventional forensic DNA analysis involves a matching principle, which compares DNA profiles from evidential samples to those from reference samples of known origin. In casework, however, the accessibility to a reference sample is not guaranteed which limits the use of DNA as an investigative tool. This has led to the development of phenotype prediction, which uses SNP analysis to estimate the physical appearance of the sample donor. Physical traits, such as eye, hair and skin colour, have been associated with certain alleles within specific genes involved in the melanogenesis pathways. These genetic markers are also associated with ancestry and their trait prediction ability has mainly been assessed in European and North American populations. This has prompted research investigating the discriminatory power of these markers in other populations, especially those exhibiting admixture. South Africa is well known for its diversity, and the viability of these particular SNPs still needs to be assessed within this population. South African law currently restricts the use of DNA for molecular phenotyping, and there are also numerous ethical and social considerations, all of which are discussed. © 2018 John Wiley & Sons Ltd.
Lam, Kelly Y C; Chan, Gallant K L; Xin, Gui-Zhong; Xu, Hong; Ku, Chuen-Fai; Chen, Jian-Ping; Yao, Ping; Lin, Huang-Quan; Dong, Tina T X; Tsim, Karl W K
2015-12-15
Cordyceps sinensis is an endoparasitic fungus widely used as a tonic and medicinal food in the practice of traditional Chinese medicine (TCM). In historical usage, Cordyceps specifically is referring to the species of C. sinensis. However, a number of closely related species are named themselves as Cordyceps, and they are sold commonly as C. sinensis. The substitutes and adulterants of C. sinensis are often introduced either intentionally or accidentally in the herbal market, which seriously affects the therapeutic effects or even leads to life-threatening poisoning. Here, we aim to identify Cordyceps by DNA sequencing technology. Two different DNA-based approaches were compared. The internal transcribed spacer (ITS) sequences and the random amplified polymorphic DNA (RAPD)-sequence characterized amplified region (SCAR) were developed here to authenticate different species of Cordyceps. Both approaches generally enabled discrimination of C. sinensis from others. The application of the two methods, supporting each other, increases the security of identification. For better reproducibility and faster analysis, the SCAR markers derived from the RAPD results provide a new method for quick authentication of Cordyceps.
Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron
2016-01-01
Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453
Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA)
Schultz, Martin T.; Lance, Richard F.
2015-01-01
The environmental DNA (eDNA) method is the practice of collecting environmental samples and analyzing them for the presence of a genetic marker specific to a target species. Little is known about the sensitivity of the eDNA method. Sensitivity is the probability that the target marker will be detected if it is present in the water body. Methods and tools are needed to assess the sensitivity of sampling protocols, design eDNA surveys, and interpret survey results. In this study, the sensitivity of the eDNA method is modeled as a function of ambient target marker concentration. The model accounts for five steps of sample collection and analysis, including: 1) collection of a filtered water sample from the source; 2) extraction of DNA from the filter and isolation in a purified elution; 3) removal of aliquots from the elution for use in the polymerase chain reaction (PCR) assay; 4) PCR; and 5) genetic sequencing. The model is applicable to any target species. For demonstration purposes, the model is parameterized for bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) assuming sampling protocols used in the Chicago Area Waterway System (CAWS). Simulation results show that eDNA surveys have a high false negative rate at low concentrations of the genetic marker. This is attributed to processing of water samples and division of the extraction elution in preparation for the PCR assay. Increases in field survey sensitivity can be achieved by increasing sample volume, sample number, and PCR replicates. Increasing sample volume yields the greatest increase in sensitivity. It is recommended that investigators estimate and communicate the sensitivity of eDNA surveys to help facilitate interpretation of eDNA survey results. In the absence of such information, it is difficult to evaluate the results of surveys in which no water samples test positive for the target marker. It is also recommended that invasive species managers articulate concentration-based sensitivity objectives for eDNA surveys. In the absence of such information, it is difficult to design appropriate sampling protocols. The model provides insights into how sampling protocols can be designed or modified to achieve these sensitivity objectives. PMID:26509674
Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA).
Schultz, Martin T; Lance, Richard F
2015-01-01
The environmental DNA (eDNA) method is the practice of collecting environmental samples and analyzing them for the presence of a genetic marker specific to a target species. Little is known about the sensitivity of the eDNA method. Sensitivity is the probability that the target marker will be detected if it is present in the water body. Methods and tools are needed to assess the sensitivity of sampling protocols, design eDNA surveys, and interpret survey results. In this study, the sensitivity of the eDNA method is modeled as a function of ambient target marker concentration. The model accounts for five steps of sample collection and analysis, including: 1) collection of a filtered water sample from the source; 2) extraction of DNA from the filter and isolation in a purified elution; 3) removal of aliquots from the elution for use in the polymerase chain reaction (PCR) assay; 4) PCR; and 5) genetic sequencing. The model is applicable to any target species. For demonstration purposes, the model is parameterized for bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) assuming sampling protocols used in the Chicago Area Waterway System (CAWS). Simulation results show that eDNA surveys have a high false negative rate at low concentrations of the genetic marker. This is attributed to processing of water samples and division of the extraction elution in preparation for the PCR assay. Increases in field survey sensitivity can be achieved by increasing sample volume, sample number, and PCR replicates. Increasing sample volume yields the greatest increase in sensitivity. It is recommended that investigators estimate and communicate the sensitivity of eDNA surveys to help facilitate interpretation of eDNA survey results. In the absence of such information, it is difficult to evaluate the results of surveys in which no water samples test positive for the target marker. It is also recommended that invasive species managers articulate concentration-based sensitivity objectives for eDNA surveys. In the absence of such information, it is difficult to design appropriate sampling protocols. The model provides insights into how sampling protocols can be designed or modified to achieve these sensitivity objectives.
Yang, Jia; Vázquez, Lucía; Chen, Xiaodan; Li, Huimin; Zhang, Hao; Liu, Zhanlin; Zhao, Guifang
2017-01-01
Chloroplast DNA (cpDNA) is frequently used for species demography, evolution, and species discrimination of plants. However, the lack of efficient and universal markers often brings particular challenges for genetic studies across different plant groups. In this study, chloroplast genomes from two closely related species (Quercus rubra and Castanea mollissima) in Fagaceae were compared to explore universal cpDNA markers for the Chinese oak species in Quercus subgenus Quercus, a diverse species group without sufficient molecular differentiation. With the comparison, nine and 14 plastid markers were selected as barcoding and phylogeographic candidates for the Chinese oaks. Five (psbA-trnH, matK-trnK, ycf3-trnS, matK, and ycf1) of the nine plastid candidate barcodes, with the addition of newly designed ITS and a single-copy nuclear gene (SAP), were then tested on 35 Chinese oak species employing four different barcoding approaches (genetic distance-, BLAST-, character-, and tree-based methods). The four methods showed different species identification powers with character-based method performing the best. Of the seven barcodes tested, a barcoding gap was absent in all of them across the Chinese oaks, while ITS and psbA-trnH provided the highest species resolution (30.30%) with the character- and BLAST-based methods, respectively. The six-marker combination (psbA-trnH + matK-trnK + matK + ycf1 + ITS + SAP) showed the best species resolution (84.85%) using the character-based method for barcoding the Chinese oaks. The barcoding results provided additional implications for taxonomy of the Chinese oaks in subg. Quercus, basically identifying three major infrageneric clades of the Chinese oaks (corresponding to Groups Quercus, Cerris, and Ilex) referenced to previous phylogenetic classification of Quercus. While the morphology-based allocations proposed for the Chinese oaks in subg. Quercus were challenged. A low variation rate of the chloroplast genome, and complex speciation patterns involving incomplete lineage sorting, interspecific hybridization and introgression, possibly have negative impacts on the species assignment and phylogeny of oak species. PMID:28579999
Development and use of molecular markers: past and present.
Grover, Atul; Sharma, P C
2016-01-01
Molecular markers, due to their stability, cost-effectiveness and ease of use provide an immensely popular tool for a variety of applications including genome mapping, gene tagging, genetic diversity diversity, phylogenetic analysis and forensic investigations. In the last three decades, a number of molecular marker techniques have been developed and exploited worldwide in different systems. However, only a handful of these techniques, namely RFLPs, RAPDs, AFLPs, ISSRs, SSRs and SNPs have received global acceptance. A recent revolution in DNA sequencing techniques has taken the discovery and application of molecular markers to high-throughput and ultrahigh-throughput levels. Although, the choice of marker will obviously depend on the targeted use, microsatellites, SNPs and genotyping by sequencing (GBS) largely fulfill most of the user requirements. Further, modern transcriptomic and functional markers will lead the ventures onto high-density genetic map construction, identification of QTLs, breeding and conservation strategies in times to come in combination with other high throughput techniques. This review presents an overview of different marker technologies and their variants with a comparative account of their characteristic features and applications.
Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana.
Wittenberg, Alexander H J; van der Lee, Theo; Cayla, Cyril; Kilian, Andrzej; Visser, Richard G F; Schouten, Henk J
2005-08-01
Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds of restriction site based polymorphisms between genotypes and does not require DNA sequence information or site-specific oligonucleotides. This paper demonstrates the potential of DArT for genetic mapping by validating the quality and molecular basis of the markers, using the model plant Arabidopsis thaliana. Restriction fragments from a genomic representation of the ecotype Landsberg erecta (Ler) were amplified by PCR, individualized by cloning and spotted onto glass slides. The arrays were then hybridized with labeled genomic representations of the ecotypes Columbia (Col) and Ler and of individuals from an F(2) population obtained from a Col x Ler cross. The scoring of markers with specialized software was highly reproducible and 107 markers could unambiguously be ordered on a genetic linkage map. The marker order on the genetic linkage map coincided with the order on the DNA sequence map. Sequencing of the Ler markers and alignment with the available Col genome sequence confirmed that the polymorphism in DArT markers is largely a result of restriction site polymorphisms.
A simplified field protocol for genetic sampling of birds using buccal swabs
Vilstrup, Julia T.; Mullins, Thomas D.; Miller, Mark P.; McDearman, Will; Walters, Jeffrey R.; Haig, Susan M.
2018-01-01
DNA sampling is an essential prerequisite for conducting population genetic studies. For many years, blood sampling has been the preferred method for obtaining DNA in birds because of their nucleated red blood cells. Nonetheless, use of buccal swabs has been gaining favor because they are less invasive yet still yield adequate amounts of DNA for amplifying mitochondrial and nuclear markers; however, buccal swab protocols often include steps (e.g., extended air-drying and storage under frozen conditions) not easily adapted to field settings. Furthermore, commercial extraction kits and swabs for buccal sampling can be expensive for large population studies. We therefore developed an efficient, cost-effective, and field-friendly protocol for sampling wild birds after comparing DNA yield among 3 inexpensive buccal swab types (2 with foam tips and 1 with a cotton tip). Extraction and amplification success was high (100% and 97.2% respectively) using inexpensive generic swabs. We found foam-tipped swabs provided higher DNA yields than cotton-tipped swabs. We further determined that omitting a drying step and storing swabs in Longmire buffer increased efficiency in the field while still yielding sufficient amounts of DNA for detailed population genetic studies using mitochondrial and nuclear markers. This new field protocol allows time- and cost-effective DNA sampling of juveniles or small-bodied birds for which drawing blood may cause excessive stress to birds and technicians alike.
Edet, Offiong Ukpong; Kim, June-Sik; Okamoto, Masanori; Hanada, Kousuke; Takeda, Tomoyuki; Kishii, Masahiro; Gorafi, Yasir Serag Alnor; Tsujimoto, Hisashi
2018-03-27
The tertiary gene pool of bread wheat, to which Leymus racemosus belongs, has remained underutilized due to the current limited genomic resources of the species that constitute it. Continuous enrichment of public databases with useful information regarding these species is, therefore, needed to provide insights on their genome structures and aid successful utilization of their genes to develop improved wheat cultivars for effective management of environmental stresses. We generated de novo DNA and mRNA sequence information of L. racemosus and developed 110 polymorphic PCR-based markers from the data, and to complement the PCR markers, DArT-seq genotyping was applied to develop additional 9990 SNP markers. Approximately 52% of all the markers enabled us to clearly genotype 22 wheat-L. racemosus chromosome introgression lines, and L. racemosus chromosome-specific markers were highly efficient in detailed characterization of the translocation and recombination lines analyzed. A further analysis revealed remarkable transferability of the PCR markers to three other important Triticeae perennial species: L. mollis, Psathyrostachys huashanica and Elymus ciliaris, indicating their suitability for characterizing wheat-alien chromosome introgressions carrying chromosomes of these genomes. The efficiency of the markers in characterizing wheat-L. racemosus chromosome introgression lines proves their reliability, and their high transferability further broadens their scope of application. This is the first report on sequencing and development of markers from L. racemosus genome and the application of DArT-seq to develop markers from a perennial wild relative of wheat, marking a paradigm shift from the seeming concentration of the technology on cultivated species. Integration of these markers with appropriate cytogenetic methods would accelerate development and characterization of wheat-alien chromosome introgression lines.
Pesik, V Yu; Fedunin, A A; Agdzhoyan, A T; Utevska, O M; Chukhraeva, M I; Evseeva, I V; Churnosov, M I; Lependina, I N; Bogunov, Yu V; Bogunova, A A; Ignashkin, M A; Yankovsky, N K; Balanovska, E V; Orekhov, V A; Balanovsky, O P
2014-06-01
We conducted the first genetic analysis of a wide a range of rural Russian populations in European Russia with a panel of common DNA markers commonly used in criminalistics genetic identification. We examined a total of 647 samples from indigenous ethnic Russian populations in Arkhangelsk, Belgorod, Voronezh, Kursk, Rostov, Ryazan, and Orel regions. We employed a multiplex genotyping kit, COrDIS Plus, to genotype Short Tandem Repeat (STR) loci, which included the genetic marker panel officially recommended for DNA identification in the Russian Federation, the United States, and the European Union. In the course of our study, we created a database of allelic frequencies, examined the distribution of alleles and genotypes in seven rural Russian populations, and defined the genetic relationships between these populations. We found that, although multidimensional analysis indicated a difference between the Northern gene pool and the rest of the Russian European populations, a pairwise comparison using 19 STR markers among all populations did not reveal significant differences. This is in concordance with previous studies, which examined up to 12 STR markers of urban Russian populations. Therefore, the database of allelic frequencies created in this study can be applied for forensic examinations and DNA identification among the ethnic Russian population over European Russia. We also noted a decrease in the levels of heterozygosity in the northern Russian population compared to ethnic populations in southern and central Russia, which is consistent with trends identified previously using classical gene markers and analysis of mitochondrial DNA.
UPIC + GO: Zeroing in on informative markers
USDA-ARS?s Scientific Manuscript database
Microsatellites/SSRs (simple sequence repeats) have become a powerful tool in genomic biology because of their broad range of applications and availability. An efficient method recently developed to generate microsatellite-enriched libraries used in combination with high throughput DNA pyrosequencin...
Yoo, Seong Yeon; Cho, Nam Soo; Park, Myung Jin; Seong, Ki Min; Hwang, Jung Ho; Song, Seok Bean; Han, Myun Soo; Lee, Won Tae; Chung, Ki Wha
2011-01-01
Genotyping of highly polymorphic short tandem repeat (STR) markers is widely used for the genetic identification of individuals in forensic DNA analyses and in paternity disputes. The National DNA Profile Databank recently established by the DNA Identification Act in Korea contains the computerized STR DNA profiles of individuals convicted of crimes. For the establishment of a large autosomal STR loci population database, 1805 samples were obtained at random from Korean individuals and 15 autosomal STR markers were analyzed using the AmpFlSTR Identifiler PCR Amplification kit. For the 15 autosomal STR markers, no deviations from the Hardy-Weinberg equilibrium were observed. The most informative locus in our data set was the D2S1338 with a discrimination power of 0.9699. The combined matching probability was 1.521 × 10-17. This large STR profile dataset including atypical alleles will be important for the establishment of the Korean DNA database and for forensic applications. PMID:21597912
Yoo, Seong Yeon; Cho, Nam Soo; Park, Myung Jin; Seong, Ki Min; Hwang, Jung Ho; Song, Seok Bean; Han, Myun Soo; Lee, Won Tae; Chung, Ki Wha
2011-07-01
Genotyping of highly polymorphic short tandem repeat (STR) markers is widely used for the genetic identification of individuals in forensic DNA analyses and in paternity disputes. The National DNA Profile Databank recently established by the DNA Identification Act in Korea contains the computerized STR DNA profiles of individuals convicted of crimes. For the establishment of a large autosomal STR loci population database, 1805 samples were obtained at random from Korean individuals and 15 autosomal STR markers were analyzed using the AmpFlSTR Identifiler PCR Amplification kit. For the 15 autosomal STR markers, no deviations from the Hardy-Weinberg equilibrium were observed. The most informative locus in our data set was the D2S1338 with a discrimination power of 0.9699. The combined matching probability was 1.521 × 10(-17). This large STR profile dataset including atypical alleles will be important for the establishment of the Korean DNA database and for forensic applications.
DNA sequence database as a tool to identify decapod crustaceans on the São Paulo coastline.
Mantelatto, Fernando L; Terossi, Mariana; Negri, Mariana; Buranelli, Raquel C; Robles, Rafael; Magalhães, Tatiana; Tamburus, Ana Francisca; Rossi, Natália; Miyazaki, Mayara J
2017-09-05
DNA barcoding has emerged as an efficient tool for taxonomy and other biodiversity fields. The vast and speciose group of decapod crustaceans is not an exception in the current scenario and comparing short DNA fragments has enabled researchers to overcome some taxonomic impediments to help broadening knowledge on the diversity of this group of crustaceans. Brazil is considered as an important area in terms of global marine biodiversity and some regions stand out in terms of decapod fauna, such as the São Paulo coastline. Thus, the aim of this study is to obtain sequences of the mitochondrial markers (COI and 16S) for decapod crustaceans distributed at the São Paulo coastline and to test the accuracy of these markers for species identification from this region by comparing our sequences to those already present in the GenBank database. We sampled along almost the 300 km of the São Paulo coastline from estuaries to offshore islands during the development of a multidisciplinary research project that took place for 5 years. All the species were processed to obtain the DNA sequences. The diversity of the decapod fauna on the São Paulo coastline comprises at least 404 species. We were able to collect 256 of those species and sequence of at least one of the target genes from 221. By testing the accuracy of these two DNA markers as a tool for identification, we were able to check our own identifications, including new records in GenBank, spot potential mistakes in GenBank, and detect potential new species.
Castañeda, María; Odriozola, Adrián; Gómez, Javier; Zarrabeitia, María T
2013-07-01
We report the development of an effective system for analyzing X chromosome-linked mini short tandem repeat loci with reduced-size amplicons (less than 220 bp), useful for analyzing highly degraded DNA samples. To generate smaller amplicons, we redesigned primers for eight X-linked microsatellites (DXS7132, DXS10079, DXS10074, DXS10075, DXS6801, DXS6809, DXS6789, and DXS6799) and established efficient conditions for a multiplex PCR system (miniX). The validation tests confirmed that it has good sensitivity, requiring as little as 20 pg of DNA, and performs well with DNA from paraffin-embedded tissues, thus showing potential for improved analysis and identification of highly degraded and/or very limited DNA samples. Consequently, this system may help to solve complex forensic cases, particularly when autosomal markers convey insufficient information.
Frías-López, Cristina; Sánchez-Herrero, José F; Guirao-Rico, Sara; Mora, Elisa; Arnedo, Miquel A; Sánchez-Gracia, Alejandro; Rozas, Julio
2016-12-15
The development of molecular markers is one of the most important challenges in phylogenetic and genome wide population genetics studies, especially in studies with non-model organisms. A highly promising approach for obtaining suitable markers is the utilization of genomic partitioning strategies for the simultaneous discovery and genotyping of a large number of markers. Unfortunately, not all markers obtained from these strategies provide enough information for solving multiple evolutionary questions at a reasonable taxonomic resolution. We have developed Development Of Molecular markers In Non-model Organisms (DOMINO), a bioinformatics tool for informative marker development from both next generation sequencing (NGS) data and pre-computed sequence alignments. The application implements popular NGS tools with new utilities in a highly versatile pipeline specifically designed to discover or select personalized markers at different levels of taxonomic resolution. These markers can be directly used to study the taxa surveyed for their design, utilized for further downstream PCR amplification in a broader set taxonomic scope, or exploited as suitable templates to bait design for target DNA enrichment techniques. We conducted an exhaustive evaluation of the performance of DOMINO via computer simulations and illustrate its utility to find informative markers in an empirical dataset. DOMINO is freely available from www.ub.edu/softevol/domino CONTACT: elsanchez@ub.edu or jrozas@ub.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Gupta, Samir; Sun, Han; Yi, Sang; Storm, Joy; Xiao, Guanghua; Balasubramanian, Bijal A; Zhang, Song; Ashfaq, Raheela; Rockey, Don C
2014-10-01
Risk stratification using number, size, and histology of colorectal adenomas is currently suboptimal for identifying patients at increased risk for future colorectal cancer. We hypothesized that molecular markers of carcinogenesis in adenomas, measured via immunohistochemistry, may help identify high-risk patients. To test this hypothesis, we conducted a retrospective, 1:1 matched case-control study (n = 216; 46% female) in which cases were patients with colorectal cancer and synchronous adenoma and controls were patients with adenoma but no colorectal cancer at baseline or within 5 years of follow-up. In phase I of analyses, we compared expression of molecular markers of carcinogenesis in case and control adenomas, blind to case status. In phase II of analyses, patients were randomly divided into independent training and validation groups to develop a model for predicting case status. We found that seven markers [p53, p21, Cox-2, β-catenin (BCAT), DNA-dependent protein kinase (DNApkcs), survivin, and O6-methylguanine-DNA methyltransferase (MGMT)] were significantly associated with case status on unadjusted analyses, as well as analyses adjusted for age and advanced adenoma status (P < 0.01 for at least one marker component). When applied to the validation set, a predictive model using these seven markers showed substantial accuracy for identifying cases [area under the receiver operation characteristic curve (AUC), 0.83; 95% confidence interval (CI), 0.74-0.92]. A parsimonious model using three markers performed similarly to the seven-marker model (AUC, 0.84). In summary, we found that molecular markers of carcinogenesis distinguished adenomas from patients with and without colorectal cancer. Furthermore, we speculate that prospective studies using molecular markers to identify individuals with polyps at risk for future neoplasia are warranted. ©2014 American Association for Cancer Research.
DNA Methylation in Osteoarthritis: Current Status and Therapeutic Implications
Miranda-Duarte, Antonio
2018-01-01
Background: Primary Osteoarthritis (OA) is a multifactorial disease in which genetic factors are strongly associated with its development; however, recently it has been observed that epigenetic modifications are also involved in the pathogenesis of OA. DNA methylation is related to gene silencing, and several studies have investigated its role in the loci of different pathways or molecules associated to OA. Objective: This review is focused on the current status of DNA methylation studies related to OA pathogenesis. Method: A review of the literature was conducted on searching in PUBMED for original papers on DNA methylation in OA. Conclusion: The DNA methylation research of loci related to OA pathogenesis has shown a correlation between methylation and gene repression; however, there are some exceptions to this rule. Recently, the development of genome-wide methylation and genome-wide hydroxymethylation profiles has demonstrated that several genes previously associated with OA can have changes in their methylation status, favoring the development of the disease, and these have even shown the role of other epigenetic markers. PMID:29682093
Xiang, Yuqian; Zhang, Junyu; Li, Qiaoli; Zhou, Xinyao; Wang, Teng; Xu, Mingqing; Xia, Shihui; Xing, Qinghe; Wang, Lei; He, Lin; Zhao, Xinzhi
2014-09-01
Utilizing epigenetic (DNA methylation) differences to differentiate between maternal peripheral blood (PBL) and fetal (placental) DNA has been a promising strategy for non-invasive prenatal testing (NIPT). However, the differentially methylated regions (DMRs) have yet to be fully ascertained. In the present study, we performed genome-wide comparative methylome analysis between maternal PBL and placental DNA from pregnancies of first trimester by methylated DNA immunoprecipitation-sequencing (MeDIP-Seq) and Infinium HumanMethylation450 BeadChip assays. A total of 36 931 DMRs and 45 804 differentially methylated sites (DMSs) covering the whole genome, exclusive of the Y chromosome, were identified via MeDIP-Seq and Infinium 450k array, respectively, of which 3759 sites in 2188 regions were confirmed by both methods. Not only did we find the previously reported potential fetal DNA markers in our identified DMRs/DMSs but also we verified fully the identified DMRs/DMSs in the validation round by MassARRAY EpiTYPER. The screened potential fetal DNA markers may be used for NIPT on aneuploidies and other chromosomal diseases, such as cri du chat syndrome and velo-cardio-facial syndrome. In addition, these potential markers may have application in the early diagnosis of placental dysfunction, such as pre-eclampsia. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Date Palm Genetic Diversity Analysis Using Microsatellite Polymorphism.
Khierallah, Hussam S M; Bader, Saleh M; Hamwieh, Alladin; Baum, Michael
2017-01-01
Date palm (Phoenix dactylifera L.) is considered one of the great socioeconomic resources in the Middle East and the Arab regions. The tree has been and still is at the center of the comprehensive agricultural development. The number of known date palm cultivars, distributed worldwide, is approximately 3000. The success of genetic diversity conservation or any breeding program depends on an understanding of the amount and distribution of the genetic variation already in existence in the genetic pool. Development of suitable DNA molecular markers for this tree may allow researchers to estimate genetic diversity, which will ultimately lead to the genetic conservation of date palm. Simple sequence repeats (SSRs) are DNA strands, consisting of tandemly repeated mono-, di-, tri-, tetra-, or penta-nucleotide units that are arranged throughout the genomes of most eukaryotic species. Microsatellite markers, developed from genomic libraries, belong to either the transcribed region or the non-transcribed region of the genome, and there is rarely available information on their functions. Microsatellite sequences are especially suited to distinguish closely related genotypes due to a high degree of variability making them ideally suitable in population studies and the identification of closely related cultivars. This chapter focuses on the methods employed to characterize date palm genotypes using SSR markers.
Siew, Ging Yang; Ng, Wei Lun; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Tan, Soon Guan; Yeap, Swee Keong
2018-01-01
Durian ( Durio zibethinus ) is one of the most popular tropical fruits in Asia. To date, 126 durian types have been registered with the Department of Agriculture in Malaysia based on phenotypic characteristics. Classification based on morphology is convenient, easy, and fast but it suffers from phenotypic plasticity as a direct result of environmental factors and age. To overcome the limitation of morphological classification, there is a need to carry out genetic characterization of the various durian types. Such data is important for the evaluation and management of durian genetic resources in producing countries. In this study, simple sequence repeat (SSR) markers were used to study the genetic variation in 27 durian types from the germplasm collection of Universiti Putra Malaysia. Based on DNA sequences deposited in Genbank, seven pairs of primers were successfully designed to amplify SSR regions in the durian DNA samples. High levels of variation among the 27 durian types were observed (expected heterozygosity, H E = 0.35). The DNA fingerprinting power of SSR markers revealed by the combined probability of identity (PI) of all loci was 2.3×10 -3 . Unique DNA fingerprints were generated for 21 out of 27 durian types using five polymorphic SSR markers (the other two SSR markers were monomorphic). We further tested the utility of these markers by evaluating the clonal status of shared durian types from different germplasm collection sites, and found that some were not clones. The findings in this preliminary study not only shows the feasibility of using SSR markers for DNA fingerprinting of durian types, but also challenges the current classification of durian types, e.g., on whether the different types should be called "clones", "varieties", or "cultivars". Such matters have a direct impact on the regulation and management of durian genetic resources in the region.
Siew, Ging Yang; Tan, Sheau Wei; Tan, Soon Guan; Yeap, Swee Keong
2018-01-01
Durian (Durio zibethinus) is one of the most popular tropical fruits in Asia. To date, 126 durian types have been registered with the Department of Agriculture in Malaysia based on phenotypic characteristics. Classification based on morphology is convenient, easy, and fast but it suffers from phenotypic plasticity as a direct result of environmental factors and age. To overcome the limitation of morphological classification, there is a need to carry out genetic characterization of the various durian types. Such data is important for the evaluation and management of durian genetic resources in producing countries. In this study, simple sequence repeat (SSR) markers were used to study the genetic variation in 27 durian types from the germplasm collection of Universiti Putra Malaysia. Based on DNA sequences deposited in Genbank, seven pairs of primers were successfully designed to amplify SSR regions in the durian DNA samples. High levels of variation among the 27 durian types were observed (expected heterozygosity, HE = 0.35). The DNA fingerprinting power of SSR markers revealed by the combined probability of identity (PI) of all loci was 2.3×10−3. Unique DNA fingerprints were generated for 21 out of 27 durian types using five polymorphic SSR markers (the other two SSR markers were monomorphic). We further tested the utility of these markers by evaluating the clonal status of shared durian types from different germplasm collection sites, and found that some were not clones. The findings in this preliminary study not only shows the feasibility of using SSR markers for DNA fingerprinting of durian types, but also challenges the current classification of durian types, e.g., on whether the different types should be called “clones”, “varieties”, or “cultivars”. Such matters have a direct impact on the regulation and management of durian genetic resources in the region. PMID:29511604
Ohtani, Masato; Tani, Naoki; Yoshimaru, Hiroshi
2008-11-01
Polymorphic microsatellite markers were developed for Hibiscus glaber, an endemic tree of the Bonin Islands. Eighty-seven of the 208 sequences from an enriched library were unique and containing microsatellites. Ten loci were proved to be highly polymorphic among 78 individuals from the Nishi-jima Island. Total exclusionary powers for the first and the second parents were 99.989% and 99.999%, respectively. Nine loci also amplified single fragment from genomic DNA of H. tiliaceus, a related and widespread congener. Our markers can be reliably used for the estimation of current gene flow within/among populations of the two woody Hibiscus species. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.
Oliver, N A; Wallace, D C
1982-01-01
Two mitochondrially synthesized marker polypeptides, MV-1 and MV-2, were found in human HeLa and HT1080 cells. These were assigned to the mitochondrial DNA in HeLa-HT1080 cybrids and hybrids by demonstrating their linkage to cytoplasmic genetic markers. These markers include mitochondrial DNA restriction site polymorphisms and resistance to chloramphenicol, an inhibitor of mitochondrial protein synthesis. In the absence of chloramphenicol, the expression of MV-1 and MV-2 in cybrids and hybrids was found to be directly proportional to the ratio of the parental mitochondrial DNAs. In the presence of chloramphenicol, the marker polypeptide linked to the chloramphenicol-sensitive mitochondrial DNA continued to be expressed. This demonstrated that resistant and sensitive mitochondrial DNAs can cooperate within a cell for gene expression and that the CAP-resistant allele was dominant or codominant to sensitive. Such cooperation suggests that mitochondrial DNAs can be exchanged between mitochondria. Images PMID:6955589
Yang, Haiyuan; Ren, Xiang; Weng, Qingmei; Zhu, Lili; He, Guangcun
2002-01-01
The brown planthopper (BPH), Nilaparvata lugens Stål, is a serious insect pest of rice (Oryza saliva L.). We have determined the chromosomal location of a BPH resistance gene in rice using SSR and RFLP techniques. A rice line 'B14', derived from the wild rice Oryza latifolia, showed high resistance to BPH. For tagging the resistance gene in 'B14X', an F2 population and a recombinant inbred (RI) population from a cross between Taichung Native 1 and 'B14' were developed and evaluated for BPH resistance. The results showed that a single dominant gene controlled the resistance of 'B14' to BPH. Bulked segregant SSR analysis was employed for identification of DNA markers linked to the resistance gene. From the survey of 302 SSR primer pairs, three SSR (RM335, RM261, RM185) markers linked to the resistance gene were identified. The closest SSR marker RM261 was linked to the resistance gene at a distance of 1.8 cM. Regions surrounding the resistance gene and the SSR markers were examined with additional RFLP markers on chromosome 4 to define the location of the resistance gene. Linkage of RFLP markers C820, R288, C946 with the resistance gene further confirmed its location on the short arm of chromosome 4. Closely linked DNA markers will facilitate selection for resistant lines in breeding programs and provide the basis for map-based cloning of this resistance gene.
Blochlinger, K; Diggelmann, H
1984-12-01
The DNA coding sequence for the hygromycin B phosphotransferase gene was placed under the control of the regulatory sequences of a cloned long terminal repeat of Moloney sarcoma virus. This construction allowed direct selection for hygromycin B resistance after transfection of eucaryotic cell lines not naturally resistant to this antibiotic, thus providing another dominant marker for DNA transfer in eucaryotic cells.
Blochlinger, K; Diggelmann, H
1984-01-01
The DNA coding sequence for the hygromycin B phosphotransferase gene was placed under the control of the regulatory sequences of a cloned long terminal repeat of Moloney sarcoma virus. This construction allowed direct selection for hygromycin B resistance after transfection of eucaryotic cell lines not naturally resistant to this antibiotic, thus providing another dominant marker for DNA transfer in eucaryotic cells. Images PMID:6098829
Waldmann, T A; Davis, M M; Bongiovanni, K F; Korsmeyer, S J
1985-09-26
The T alpha and T beta chains of the heterodimeric T-lymphocyte antigen receptor are encoded by separated DNA segments that recombine during T-cell development. We have used rearrangements of the T beta gene as a widely applicable marker of clonality in the T-cell lineage. We show that the T beta genes are used in both the T8 and T4 subpopulations of normal T cells and that Sézary leukemia, adult T-cell leukemia, and the non-B-lineage acute lymphoblastic leukemias are clonal expansions of T cells. Furthermore, circulating T cells from a patient with the T8-cell-predominantly lymphocytosis associated with granulocytopenia are shown to be monoclonal. Finally, the sensitivity and specificity of this tumor-associated marker have been exploited to monitor the therapy of a patient with adult T-cell leukemia. These unique DNA rearrangements provide insights into the cellular origin, clonality, and natural history of T-cell neoplasia.
Darvasi, A.; Soller, M.
1994-01-01
Selective genotyping is a method to reduce costs in marker-quantitative trait locus (QTL) linkage determination by genotyping only those individuals with extreme, and hence most informative, quantitative trait values. The DNA pooling strategy (termed: ``selective DNA pooling'') takes this one step further by pooling DNA from the selected individuals at each of the two phenotypic extremes, and basing the test for linkage on marker allele frequencies as estimated from the pooled samples only. This can reduce genotyping costs of marker-QTL linkage determination by up to two orders of magnitude. Theoretical analysis of selective DNA pooling shows that for experiments involving backcross, F(2) and half-sib designs, the power of selective DNA pooling for detecting genes with large effect, can be the same as that obtained by individual selective genotyping. Power for detecting genes with small effect, however, was found to decrease strongly with increase in the technical error of estimating allele frequencies in the pooled samples. The effect of technical error, however, can be markedly reduced by replication of technical procedures. It is also shown that a proportion selected of 0.1 at each tail will be appropriate for a wide range of experimental conditions. PMID:7896115
Genomic scan for genes predisposing to schizophrenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coon, H.; Jensen. S.; Holik, J.
1994-03-15
We initiated a genome-wide search for genes predisposing to schizophrenia by ascertaining 9 families, each containing three to five cases of schizophrenia. The 9 pedigrees were initially genotyped with 329 polymorphic DNA loci distributed throughout the genome. Assuming either autosomal dominant or recessive inheritance, 254 DNA loci yielded lod scores less than -2.0 at {theta} = 0.0, 101 DNA markers gave lod scores less than -2.0 at {theta} = 0.05, while 5 DNA loci produced maximum lod scores greater than 1: D4S35, D14S17, D15S1, D22S84, and D22S55. Of the DNA markers yielding lod scores greater than 1, D4S35 and D22S55more » also were suggestive of linkage when the Affected-Pedigree-Member method was used. The families were then genotyped with four highly polymorphic simple sequence repeat markers; possible linkage diminished with DNA markers mapping nearby D4S35, while suggestive evidence of linkage remained with loci in the region of D22S55. Although follow-up investigation of these chromosomal regions may be warranted, our linkage results should be viewed as preliminary observations, as 35 unaffected persons are not past the age of risk. 90 refs., 3 tabs.« less
DNA methylation epigenotype and clinical features of NRAS-mutation(+) colorectal cancer.
Takane, Kiyoko; Akagi, Kiwamu; Fukuyo, Masaki; Yagi, Koichi; Takayama, Tadatoshi; Kaneda, Atsushi
2017-05-01
Sporadic colorectal cancer (CRC) is classified into several molecular subtypes. We previously established two groups of DNA methylation markers through genome-wide DNA methylation analysis to classify CRC into distinct subgroups: high-, intermediate-, and low-methylation epigenotypes (HME, IME, and LME, respectively). HME CRC, also called CpG island methylator phenotype (CIMP)-high CRC, shows methylation of both Group 1 markers (CIMP markers) and Group 2 markers, while IME/CIMP-low CRC shows methylation of Group 2, but not of Group 1 markers, and LME CRC shows no methylation of either Group 1 or Group 2 markers. While BRAF- and KRAS-mutation(+) CRC strongly correlated with HME and IME, respectively, clinicopathological features of NRAS-mutation(+) CRC, including association with DNA methylation, remain unclear. To characterize NRAS-mutation(+) CRC, the methylation levels of 19 methylation marker genes (6 Group 1 and 13 Group 2) were analyzed in 61 NRAS-mutation(+) and 144 NRAS-mutation(-) CRC cases by pyrosequencing, and their correlation with clinicopathological features was investigated. Different from KRAS-mutation(+) CRC, NRAS-mutation(+) CRC significantly correlated with LME. NRAS-mutation(+) CRC showed significantly better prognosis than KRAS-mutation(+) CRC (P = 3 × 10 -4 ). NRAS-mutation(+) CRC preferentially occurred in elder patients (P = 0.02) and at the distal colon (P = 0.006), showed significantly less lymph vessel invasion (P = 0.002), and correlated with LME (P = 8 × 10 -5 ). DNA methylation significantly accumulated at the proximal colon. NRAS-mutation(+) CRC may constitute a different subgroup from KRAS-mutation(+) CRC, showing significant correlation with LME, older age, distal colon, and relatively better prognosis. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Zhu, Meiqin; Yu, Jian; Zhou, Changlin; Fang, Hongqing
2016-01-01
Red-based recombineering has been widely used in Escherichia coli genome modification through electroporating PCR fragments into electrocompetent cells to replace target sequences. Some mutations in the PCR fragments may be brought into the homologous regions near the target. To solve this problem in markeless gene deletion we developed a novel method characterized with two-step recombination and a donor plasmid. First, generated by PCR a linear DNA cassette which comprises a I-Sec I site-containing marker gene and homologous arms was electroporated into cells for marker-substitution deletion of the target sequence. Second, after a donor plasmid carrying the I-Sec I site-containing fusion homologous arm was chemically transformed into the marker-containing cells, the fusion arms and the marker was simultaneously cleaved by I-Sec I endonuclease and the marker-free deletion was stimulated by double-strand break-mediated intermolecular recombination. Eleven nonessential regions in E. coli DH1 genome were sequentially deleted by our method, resulting in a 10.59% reduced genome size. These precise deletions were also verified by PCR sequencing and genome resequencing. Though no change in the growth rate on the minimal medium, we found the genome-reduced strains have some alteration in the acid resistance and for the synthesis of lycopene.
DNA markers in molecular diagnostics for hepatocellular carcinoma
Su, Ying-Hsiu; Lin, Selena Y; Song, Wei; Jain, Surbhi
2015-01-01
Hepatocellular carcinoma (HCC) is the one of the leading causes of cancer mortality in the world, mainly due to the difficulty of early detection and limited therapeutic options. The implementation of HCC surveillance programs in well-defined, high-risk populations were only able to detect about 40–50% of HCC at curative stages (Barcelona Clinic Liver Cancer stages 0 & 1) due to the low sensitivities of the current screening methods. The advance of sequencing technologies has identified numerous modifications as potential candidate DNA markers for diagnosis/surveillance. Here we aim to provide an overview of the DNA alterations that result in activation of cancer pathways known to potentially drive HCC carcinogenesis and to summarize performance characteristics of each DNA marker in the periphery (blood or urine) for HCC screening. PMID:25098554
Development of a New Marker System for Identification of Spirodela polyrhiza and Landoltia punctata
Feng, Bo; Fang, Yang; Xu, Zhibin; Xiang, Chao; Zhou, Chunhong; Jiang, Fei; Wang, Tao
2017-01-01
Lemnaceae (commonly called duckweed) is an aquatic plant ideal for quantitative analysis in plant sciences. Several species of this family represent the smallest and fastest growing flowering plants. Different ecotypes of the same species vary in their biochemical and physiological properties. Thus, selecting of desirable ecotypes of a species is very important. Here, we developed a simple and rapid molecular identification system for Spirodela polyrhiza and Landoltia punctata based on the sequence polymorphism. First, several pairs of primers were designed and three markers were selected as good for identification. After PCR amplification, DNA fragments (the combination of three PCR products) in different duckweeds were detected using capillary electrophoresis. The high-resolution capillary electrophoresis displayed high identity to the sequencing results. The combination of the PCR products containing several DNA fragments highly improved the identification frequency. These results indicate that this method is not only good for interspecies identification but also ideal for intraspecies distinguishing. Meanwhile, 11 haplotypes were found in both the S. polyrhiza and L. punctata ecotypes. The results suggest that this marker system is useful for large-scale identification of duckweed and for the screening of desirable ecotypes to improve the diverse usage in duckweed utilization. PMID:28168191
NASA Astrophysics Data System (ADS)
Suwastika, I. Nengah; Pakawaru, Nurul Aisyah; Rifka, Rahmansyah, Muslimin, Ishizaki, Yoko; Cruz, André Freire; Basri, Zainuddin; Shiina, Takashi
2017-02-01
Chloroplast genomes typically range in size from 120 to 170 kilo base pairs (kb), which relatively conserved among plant species. Recent evaluation on several species, certain unique regions showed high variability which can be utilized in the phylogenetic analysis. Many fragments of coding regions, introns, and intergenic spacers, such as atpB-rbcL, ndhF, rbcL, rpl16, trnH-psbA, trnL-F, trnS-G, etc., have been used for phylogenetic reconstructions at various taxonomic levels. Based on that status, we would like to analysis the diversity of chloroplast genome within species of local cacao (Theobroma cacao L.) from Central Sulawesi. Our recent data showed, there were more than 20 clones from local farming in Central Sulawesi, and it can be detected based on phenotypic and nuclear-genome-based characterization (RAPD- Random Amplified Polymorphic DNA and SSR- Simple Sequences Repeat) markers. In developing DNA marker for this local cacao, here we also included analysis based on the variation of chloroplast genome. At least several regions such as rpl32-TurnL, it can be considered as chloroplast markers on our local clone of cocoa. Furthermore, we could develop phylogenetic analysis in between clones of cocoa.
A review of bioinformatic methods for forensic DNA analyses.
Liu, Yao-Yuan; Harbison, SallyAnn
2018-03-01
Short tandem repeats, single nucleotide polymorphisms, and whole mitochondrial analyses are three classes of markers which will play an important role in the future of forensic DNA typing. The arrival of massively parallel sequencing platforms in forensic science reveals new information such as insights into the complexity and variability of the markers that were previously unseen, along with amounts of data too immense for analyses by manual means. Along with the sequencing chemistries employed, bioinformatic methods are required to process and interpret this new and extensive data. As more is learnt about the use of these new technologies for forensic applications, development and standardization of efficient, favourable tools for each stage of data processing is being carried out, and faster, more accurate methods that improve on the original approaches have been developed. As forensic laboratories search for the optimal pipeline of tools, sequencer manufacturers have incorporated pipelines into sequencer software to make analyses convenient. This review explores the current state of bioinformatic methods and tools used for the analyses of forensic markers sequenced on the massively parallel sequencing (MPS) platforms currently most widely used. Copyright © 2017 Elsevier B.V. All rights reserved.
Diway, Bibian; Khoo, Eyen
2017-01-01
The development of timber tracking methods based on genetic markers can provide scientific evidence to verify the origin of timber products and fulfill the growing requirement for sustainable forestry practices. In this study, the origin of an important Dark Red Meranti wood, Shorea platyclados, was studied by using the combination of seven chloroplast DNA and 15 short tandem repeats (STRs) markers. A total of 27 natural populations of S. platyclados were sampled throughout Malaysia to establish population level and individual level identification databases. A haplotype map was generated from chloroplast DNA sequencing for population identification, resulting in 29 multilocus haplotypes, based on 39 informative intraspecific variable sites. Subsequently, a DNA profiling database was developed from 15 STRs allowing for individual identification in Malaysia. Cluster analysis divided the 27 populations into two genetic clusters, corresponding to the region of Eastern and Western Malaysia. The conservativeness tests showed that the Malaysia database is conservative after removal of bias from population subdivision and sampling effects. Independent self-assignment tests correctly assigned individuals to the database in an overall 60.60−94.95% of cases for identified populations, and in 98.99−99.23% of cases for identified regions. Both the chloroplast DNA database and the STRs appear to be useful for tracking timber originating in Malaysia. Hence, this DNA-based method could serve as an effective addition tool to the existing forensic timber identification system for ensuring the sustainably management of this species into the future. PMID:28430826
Lukoschek, V; Waycott, M; Keogh, J S
2008-07-01
Polymorphic microsatellites are widely considered more powerful for resolving population structure than mitochondrial DNA (mtDNA) markers, particularly for recently diverged lineages or geographically proximate populations. Weaker population subdivision for biparentally inherited nuclear markers than maternally inherited mtDNA may signal male-biased dispersal but can also be attributed to marker-specific evolutionary characteristics and sampling properties. We discriminated between these competing explanations with a population genetic study on olive sea snakes, Aipysurus laevis. A previous mtDNA study revealed strong regional population structure for A. laevis around northern Australia, where Pleistocene sea-level fluctuations have influenced the genetic signatures of shallow-water marine species. Divergences among phylogroups dated to the Late Pleistocene, suggesting recent range expansions by previously isolated matrilines. Fine-scale population structure within regions was, however, poorly resolved for mtDNA. In order to improve estimates of fine-scale genetic divergence and to compare population structure between nuclear and mtDNA, 354 olive sea snakes (previously sequenced for mtDNA) were genotyped for five microsatellite loci. F statistics and Bayesian multilocus genotype clustering analyses found similar regional population structure as mtDNA and, after standardizing microsatellite F statistics for high heterozygosities, regional divergence estimates were quantitatively congruent between marker classes. Over small spatial scales, however, microsatellites recovered almost no genetic structure and standardized F statistics were orders of magnitude smaller than for mtDNA. Three tests for male-biased dispersal were not significant, suggesting that recent demographic expansions to the typically large population sizes of A. laevis have prevented microsatellites from reaching mutation-drift equilibrium and local populations may still be diverging.
Allnutt, T R; Roper, K; Henry, C
2008-01-23
A genetic marker system based on the S1 Short Interspersed Elements (SINEs) in the important commercial crop, oilseed rape ( Brassica napus L.) has been developed. SINEs provided a successful multilocus, dominant marker system that was capable of clearly delineating winter- and spring-type crop varieties. Sixteen of 20 varieties tested showed unique profiles from the 17 polymorphic SINE markers generated. The 3' or 5' flank region of nine SINE markers were cloned, and DNA was sequenced. In addition, one putative pre-transposition SINE allele was cloned and sequenced. Two SINE flanking sequences were used to design real-time PCR assays. These quantitative SINE assays were applied to study the genetic structure of eight fields of oilseed rape crops. Studied fields were more genetically diverse than expected for the chosen loci (mean H T = 0.23). The spatial distribution of SINE marker frequencies was highly structured in some fields, suggesting locations of volunteer impurities within the crop. In one case, the assay identified a mislabeling of the crop variety. SINE markers were a useful tool for crop genetics, phylogenetics, variety identification, and purity analysis. The use and further application of quantitative, real-time PCR markers are discussed.
Microsatellites for Lindera species
Craig S. Echt; D. Deemer; T.L. Kubisiak; C.D. Nelson
2006-01-01
Microsatellite markers were developed for conservation genetic studies of Lindera melissifolia (pondberry), a federally endangered shrub of southern bottomland ecosystems. Microsatellite sequences were obtained from DNA libraries that were enriched for the (AC)n simple sequence repeat motif. From 35 clone sequences, 20 primer...
Rajesh, M K; Sabana, A A; Rachana, K E; Rahman, Shafeeq; Jerard, B A; Karun, Anitha
2015-12-01
Coconut (Cocos nucifera L.) is one of the important palms grown both as a homestead and plantation crop in countries and most island territories of tropical regions. Different DNA-based marker systems have been utilized to assess the extent of genetic diversity in coconut. Advances in genomics research have resulted in the development of novel gene-targeted markers. In the present study, we have used a simple and novel marker system, start codon targeted polymorphism (SCoT), for its evaluation as a potential marker system in coconut. SCoT markers were utilized for assessment of genetic diversity in 23 coconut accessions (10 talls and 13 dwarfs), representing different geographical regions. Out of 25 SCoT primers screened, 15 primers were selected for this study based on their consistent amplification patterns. A total of 102 scorable bands were produced by the 15 primers, 88 % of which were polymorphic. The scored data were used to construct a similarity matrix. The similarity coefficient values ranged between 0.37 and 0.91. These coefficients were utilized to construct a dendrogram using the unweighted pair group of arithmetic means (UPGMA). The extent of genetic diversity observed based on SCoT analysis of coconut accessions was comparable to earlier findings using other marker systems. Tall and dwarf coconut accessions were clearly demarcated, and in general, coconut accessions from the same geographical region clustered together. The results indicate the potential of SCoT markers to be utilized as molecular markers to detect DNA polymorphism in coconut accessions.
Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti.
Adelman, Zachary N; Jasinskiene, Nijole; James, Anthony A
2002-04-30
Transgenesis technology has been developed for the yellow fever mosquito, Aedes aegypti. Successful integration of exogenous DNA into the germline of this mosquito has been achieved with the class II transposable elements, Hermes, mariner and piggyBac. A number of marker genes, including the cinnabar(+) gene of Drosophila melanogaster, and fluorescent protein genes, can be used to monitor the insertion of these elements. The availability of multiple elements and marker genes provides a powerful set of tools to investigate basic biological properties of this vector insect, as well as the materials for developing novel, genetics-based, control strategies for the transmission of disease.
The Biology and Clinical Utility of EBV Monitoring in Blood.
Kanakry, Jennifer; Ambinder, Richard
2015-01-01
Epstein-Barr virus (EBV) DNA in blood can be quantified in peripheral blood mononuclear cells, in circulating cell-free (CCF) DNA specimens, or in whole blood. CCF viral DNA may be actively released or extruded from viable cells, packaged in virions or passively shed from cells during apoptosis or necrosis. In infectious mononucleosis, viral DNA is detected in each of these kinds of specimens, although it is only transiently detected in CCF specimens. In nasopharyngeal carcinoma, CCF EBV DNA is an established tumor marker. In EBV-associated Hodgkin lymphoma and in EBV-associated extranodal NK-/T-cell lymphoma, there is growing evidence for the utility of CCF DNA as a tumor marker.
Martirosian, I A; Ryskov, A P; Petrosian, V G; Arakelian, M S; Aslanian, A V; Danielian, F D; Darevskiĭ, I S; Tokarskaia, O N
2002-06-01
Variation and clonal diversity in populations of the parthenogenetic rock lizard Darevskia rostombekovi was examined by means of multilocus DNA fingerprinting using mini- and microsatellite DNA markers M13, (GATA)4, and (TCC)50). The animals examined were shown to exhibit a clonally inherited, species-specific pattern of DNA markers (fingerprint profile) that is different from the species-specific patterns of parthenogenetic species D. dahli, D. armeniaca, and D. unisexualis. The mean intraspecific similarity index S was 0.950 (0.003) for a sample of 19 animals from three isolated populations of North Armenia. This significantly differed from the estimate of this parameter for a sample of 21 animals including two individuals from mountainous, relict population from the vicinity of the Sevan Lake, which was equal to 0.875 (0.001). A comparison of DNA fingerprints showed differences between 21 individuals attaining 79 DNA fragments of 1801 mini- and microsatellite markers included in the analysis. The results obtained show that intraspecific variation in D. rostombekovi is higher than that in the previously studied parthenogenetic species D. dahli (S = 0.962) and D. unisexualis (S = 0.950) (P < 0.001). Taking into account that D. rostombekovi is considered monoclonal on the basis of allozyme data, the problem of clonal variability is discussed with regard to the evidence on nuclear DNA markers. It is suggested that the hybrid karyotype of D. rostombekovi, which is more unstable than that of D. dahli and D. unisexualis, generates a series of chromosomal rearrangements (mutations). This may lead to the appearance of a geographically isolated chromosomal race (clone) in the population inhabiting the southeastern coast of the Sevan Lake.
Johnson, David H; Taylor, William R; Aboelsoud, Mohammed M; Foote, Patrick H; Yab, Tracy C; Cao, Xiaoming; Smyrk, Thomas C; Loftus, Edward V; Mahoney, Douglas W; Ahlquist, David A; Kisiel, John B
2016-07-01
Stool DNA testing in patients with inflammatory bowel disease (IBD) may detect colorectal cancer and advanced precancers with high sensitivity; less is known about the presence of DNA markers in small IBD lesions, their association with metachronous neoplasia, or contribution to stool test positivity. At a single center in 2 blinded phases, we assayed methylated bone morphogenic protein 3, methylated N-Myc downstream-regulated gene 4, and mutant KRAS in DNA extracted from paraffin-embedded benign lesions, and matched control tissues of patients with IBD, who were followed for subsequent colorectal dysplasia. Stool samples from independent cases and controls with lesions <1 cm or advanced neoplasms were assayed for the same markers. Among IBD lesions (29 low-grade dysplasia, 19 serrated epithelial change, and 10 sessile serrated adenoma/polyps), the prevalence of methylation was significantly higher than in mucosae from 44 matched IBD controls (P < 0.0001 for methylated bone morphogenic protein 3 or methylated N-Myc downstream-regulated gene 4). KRAS mutations were more abundant in serrated epithelial change than all other groups (P < 0.001). Subsequent dysplasia was not associated with DNA marker levels. In stools, the sensitivity of methylated bone morphogenic protein 3 as a single marker was 60% for all lesions <1 cm, 63% for low-grade dysplasia ≥1 cm and 81% for high-grade dysplasia/colorectal cancer, all at 91% specificity (P < 0.0001). Selected DNA markers known to be present in advanced IBD neoplasia can also be detected in both tissues and stools from IBD patients with small adenomas and serrated lesions. Mutant KRAS exfoliated from serrated epithelial change lesions might raise false-positive rates. These findings have relevance to potential future applications of stool DNA testing for IBD surveillance.
Chaudhary, Sakshi; Mishra, Bharat Kumar; Vivek, Thiruvettai; Magadum, Santoshkumar; Yasin, Jeshima Khan
2016-01-01
Simple Sequence Repeats or microsatellites are resourceful molecular genetic markers. There are only few reports of SSR identification and development in pineapple. Complete genome sequence of pineapple available in the public domain can be used to develop numerous novel SSRs. Therefore, an attempt was made to identify SSRs from genomic, chloroplast, mitochondrial and EST sequences of pineapple which will help in deciphering genetic makeup of its germplasm resources. A total of 359511 SSRs were identified in pineapple (356385 from genome sequence, 45 from chloroplast sequence, 249 in mitochondrial sequence and 2832 from EST sequences). The list of EST-SSR markers and their details are available in the database. PineElm_SSRdb is an open source database available for non-commercial academic purpose at http://app.bioelm.com/ with a mapping tool which can develop circular maps of selected marker set. This database will be of immense use to breeders, researchers and graduates working on Ananas spp. and to others working on cross-species transferability of markers, investigating diversity, mapping and DNA fingerprinting.
Development of a novel forensic STR multiplex for ancestry analysis and extended identity testing.
Phillips, Chris; Fernandez-Formoso, Luis; Gelabert-Besada, Miguel; Garcia-Magariños, Manuel; Santos, Carla; Fondevila, Manuel; Carracedo, Angel; Lareu, Maria Victoria
2013-04-01
There is growing interest in developing additional DNA typing techniques to provide better investigative leads in forensic analysis. These include inference of genetic ancestry and prediction of common physical characteristics of DNA donors. To date, forensic ancestry analysis has centered on population-divergent SNPs but these binary loci cannot reliably detect DNA mixtures, common in forensic samples. Furthermore, STR genotypes, forming the principal DNA profiling system, are not routinely combined with forensic SNPs to strengthen frequency data available for ancestry inference. We report development of a 12-STR multiplex composed of ancestry informative marker STRs (AIM-STRs) selected from 434 tetranucleotide repeat loci. We adapted our online Bayesian classifier for AIM-SNPs: Snipper, to handle multiallele STR data using frequency-based training sets. We assessed the ability of the 12-plex AIM-STRs to differentiate CEPH Human Genome Diversity Panel populations, plus their informativeness combined with established forensic STRs and AIM-SNPs. We found combining STRs and SNPs improves the success rate of ancestry assignments while providing a reliable mixture detection system lacking from SNP analysis alone. As the 12 STRs generally show a broad range of alleles in all populations, they provide highly informative supplementary STRs for extended relationship testing and identification of missing persons with incomplete reference pedigrees. Lastly, mixed marker approaches (combining STRs with binary loci) for simple ancestry inference tests beyond forensic analysis bring advantages and we discuss the genotyping options available. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ufnar, Jennifer A; Ufnar, David F; Wang, Shiao Y; Ellender, R D
2007-08-01
The goal of this study was to evaluate methanogen diversity in animal hosts to develop a swine-specific archaeal molecular marker for fecal source tracking in surface waters. Phylogenetic analysis of swine mcrA sequences compared to mcrA sequences from the feces of five animals (cow, deer, sheep, horse, and chicken) and sewage showed four distinct swine clusters, with three swine-specific clades. From this analysis, six sequences were chosen for molecular marker development and initial testing. Only one mcrA sequence (P23-2) showed specificity for swine and therefore was used for environmental testing. PCR primers for the P23-2 clone mcrA sequence were developed and evaluated for swine specificity. The P23-2 primers amplified products in P23-2 plasmid DNA (100%), pig feces (84%), and swine waste lagoon surface water samples (100%) but did not amplify a product in 47 bacterial and archaeal stock cultures and 477 environmental bacterial isolates and sewage and water samples from a bovine waste lagoon and a polluted creek. Amplification was observed in only one sheep sample out of 260 human and nonswine animal fecal samples. Sequencing of PCR products from pig feces demonstrated 100% similarity to pig mcrA sequence from clone P23-2. The minimal amount of DNA required for the detection was 1 pg for P23-2 plasmid, 1 ng for pig feces, 50 ng for swine waste lagoon surface water, 1 ng for sow waste influent, and 10 ng for lagoon sludge samples. Lower detection limits of 10(-6) g of wet pig feces in 500 ml of phosphate-buffered saline and 10(-4) g of lagoon waste in estuarine water were established for the P23-2 marker. This study was the first to utilize methanogens for the development of a swine-specific fecal contamination marker.
Ufnar, Jennifer A.; Ufnar, David F.; Wang, Shiao Y.; Ellender, R. D.
2007-01-01
The goal of this study was to evaluate methanogen diversity in animal hosts to develop a swine-specific archaeal molecular marker for fecal source tracking in surface waters. Phylogenetic analysis of swine mcrA sequences compared to mcrA sequences from the feces of five animals (cow, deer, sheep, horse, and chicken) and sewage showed four distinct swine clusters, with three swine-specific clades. From this analysis, six sequences were chosen for molecular marker development and initial testing. Only one mcrA sequence (P23-2) showed specificity for swine and therefore was used for environmental testing. PCR primers for the P23-2 clone mcrA sequence were developed and evaluated for swine specificity. The P23-2 primers amplified products in P23-2 plasmid DNA (100%), pig feces (84%), and swine waste lagoon surface water samples (100%) but did not amplify a product in 47 bacterial and archaeal stock cultures and 477 environmental bacterial isolates and sewage and water samples from a bovine waste lagoon and a polluted creek. Amplification was observed in only one sheep sample out of 260 human and nonswine animal fecal samples. Sequencing of PCR products from pig feces demonstrated 100% similarity to pig mcrA sequence from clone P23-2. The minimal amount of DNA required for the detection was 1 pg for P23-2 plasmid, 1 ng for pig feces, 50 ng for swine waste lagoon surface water, 1 ng for sow waste influent, and 10 ng for lagoon sludge samples. Lower detection limits of 10−6 g of wet pig feces in 500 ml of phosphate-buffered saline and 10−4 g of lagoon waste in estuarine water were established for the P23-2 marker. This study was the first to utilize methanogens for the development of a swine-specific fecal contamination marker. PMID:17586669
Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers.
Salimath, S S; de Oliveira, A C; Godwin, I D; Bennetzen, J L
1995-08-01
Finger millet (Eleusine coracana), an allotetraploid cereal, is widely cultivated in the arid and semiarid regions of the world. Three DNA marker techniques, restriction fragment length polymorphism (RFLP), randomly amplified polymorphic DNA (RAPD), and inter simple sequence repeat amplification (ISSR), were employed to analyze 22 accessions belonging to 5 species of Eleusine. An 8 probe--3 enzyme RFLP combination, 18 RAPD primers, and 6 ISSR primers, respectively, revealed 14, 10, and 26% polymorphism in 17 accessions of E. coracana from Africa and Asia. These results indicated a very low level of DNA sequence variability in the finger millets but did allow each line to be distinguished. The different Eleusine species could be easily identified by DNA marker technology and the 16% intraspecific polymorphism exhibited by the two analyzed accessions of E. floccifolia suggested a much higher level of diversity in this species than in E. coracana. Between species, E. coracana and E. indica shared the most markers, while E. indica and E. tristachya shared a considerable number of markers, indicating that these three species form a close genetic assemblage within the Eleusine. Eleusine floccifolia and E. compressa were found to be the most divergent among the species examined. Comparison of RFLP, RAPD, and ISSR technologies, in terms of the quantity and quality of data output, indicated that ISSRs are particularly promising for the analysis of plant genome diversity.
Gor, Mian Chee; Mantri, Nitin; Pang, Edwin
2016-01-01
A Fragaria Discovery Panel (FDP; strawberry-specific SDA) containing 287 features was constructed by subtracting the pooled gDNA of nine non-angiosperm species from the pooled gDNA of five strawberry genotypes. This FDP was used for Bulk Segregant Analysis (BSA) to enable identification of molecular markers associated with day-neutrality. Analysis of hybridisation patterns of a short day (SD) DNA bulk and three day-neutral (DN) DNA bulks varying in flowering strength allowed identification of a novel feature, FaP2E11, closely linked to CYTOKININ OXIDASE 1 (CKX1) gene possibly involved in promoting flowering under non-inductive condition. The signal intensities of FaP2E11 feature obtained from the strong DN bulk (DN1) is three fold higher than the short day bulk (SD), indicating that the putative marker may linked to a CKX1 variant allele with lower enzyme activity. We propose a model for flowering regulation based on the hypothesis that flowering strength may be regulated by the copy number of FaP2E11-linked CKX1 alleles. This study demonstrates the feasibility of the SDA-based BSA approach for the identification of molecular markers associated with day-neutrality in strawberry. This innovative strategy is an efficient and cost-effective approach for molecular marker discovery. PMID:27586242
A Linkage Map of the Asian Tiger Mosquito (Aedes albopictus) Based on cDNA Markers
Sutherland, Ian W.; Mori, Akio; Montgomery, John; Fleming, Karen L.; Anderson, Jennifer M.; Valenzuela, Jesus G.; Severson, David W.
2011-01-01
The Asian tiger mosquito, Aedes (Stegomyia) albopictus (Skuse), is an important vector of a number of arboviruses, and populations exhibit extreme variation in adaptive traits such as egg diapause, cold hardiness, and autogeny (ability to mature a batch of eggs without blood feeding). The genetic basis of some of these traits has been established, but lack of a high-resolution linkage map has prevented in-depth genetic analyses of the genes underlying these complex traits. We report here on the breeding of 4 F1 intercross mapping families and the use of these to locate 35 cDNA markers to the A. albopictus linkage map. The present study increases the number of markers on the A. albopictus cDNA linkage map from 38 to 73 and the density of markers from 1 marker/5.7 cM to 1 marker/2.9 cM and adds 9, 16, and 10 markers to the 3 linkage groups, respectively. The overall lengths of the 3 linkage groups are 64.5, 76.5, and 71.6 cM, respectively, for a combined length of 212.6 cM. Despite conservation in the order of most genes among the 4 families and a previous mapping family, we found substantial heterogeneity in the amount of recombination among markers. This was most marked in linkage group I, which varied between 16.7 and 69.3 cM. A map integrating the results from these 4 families with an earlier cDNA linkage map is presented. PMID:21148282
Suyama, Yoshihisa; Matsuki, Yu
2015-01-01
Restriction-enzyme (RE)-based next-generation sequencing methods have revolutionized marker-assisted genetic studies; however, the use of REs has limited their widespread adoption, especially in field samples with low-quality DNA and/or small quantities of DNA. Here, we developed a PCR-based procedure to construct reduced representation libraries without RE digestion steps, representing de novo single-nucleotide polymorphism discovery, and its genotyping using next-generation sequencing. Using multiplexed inter-simple sequence repeat (ISSR) primers, thousands of genome-wide regions were amplified effectively from a wide variety of genomes, without prior genetic information. We demonstrated: 1) Mendelian gametic segregation of the discovered variants; 2) reproducibility of genotyping by checking its applicability for individual identification; and 3) applicability in a wide variety of species by checking standard population genetic analysis. This approach, called multiplexed ISSR genotyping by sequencing, should be applicable to many marker-assisted genetic studies with a wide range of DNA qualities and quantities. PMID:26593239
Henderson, Anne P.; King, Tim L.
2012-01-01
Shortnose sturgeon Acipenser brevirostrum is an endangered polyploid fish species for which no nuclear DNA markers previously existed. To address this need, 86 polysomic loci were developed and characterized in 20 A. brevirostrum from five river systems and eight members (parents and six progeny) of a captive-bred family. All markers proved to be polymorphic, polysomic, and demonstrated direct inheritance when tested in a captive family. Eleven loci were included in a range-wide survey of 561 fish sampled from 17 geographic collections. Allelic diversity at these markers ranged from 7 to 24 alleles/locus and averaged 16.5 alleles/locus; sufficient diversity to produce unique multilocus genotypes. In the range-wide survey, a Mantel comparison of an ecological (1-Jaccard’s) and genetic (ΦPT; an analog to FST) distance metrics, identified a strong positive correlation (r = 0.98, P PT represents a viable metric for assessing genetic relatedness using this class of marker.
Characterization and Amplification of Gene-Based Simple Sequence Repeat (SSR) Markers in Date Palm.
Zhao, Yongli; Keremane, Manjunath; Prakash, Channapatna S; He, Guohao
2017-01-01
The paucity of molecular markers limits the application of genetic and genomic research in date palm (Phoenix dactylifera L.). Availability of expressed sequence tag (EST) sequences in date palm may provide a good resource for developing gene-based markers. This study characterizes a substantial fraction of transcriptome sequences containing simple sequence repeats (SSRs) from the EST sequences in date palm. The EST sequences studied are mainly homologous to those of Elaeis guineensis and Musa acuminata. A total of 911 gene-based SSR markers, characterized with functional annotations, have provided a useful basis not only for discovering candidate genes and understanding genetic basis of traits of interest but also for developing genetic and genomic tools for molecular research in date palm, such as diversity study, quantitative trait locus (QTL) mapping, and molecular breeding. The procedures of DNA extraction, polymerase chain reaction (PCR) amplification of these gene-based SSR markers, and gel electrophoresis of PCR products are described in this chapter.
Black carp vasa identifies embryonic and gonadal germ cells.
Xue, Ting; Yu, Miao; Pan, Qihua; Wang, Yizhou; Fang, Jian; Li, Lingyu; Deng, Yu; Chen, Kai; Wang, Qian; Chen, Tiansheng
2017-07-01
Identification of molecular markers is an essential step in the study of germ cells. Vasa is an RNA helicase and a well-known germ cell marker that plays a crucial role in germ cell development. Here, we identified the Vasa homolog termed Mpvasa as the first germ cell marker in black carp (Mylopharyngodon piceus). First, a 2819-bp full-length Mpvasa complementary DNA (cDNA) was cloned by PCR using degenerated primers of conserved sequences and gene-specific primers. The Mpvasa cDNA sequence encodes a 637-amino acid protein that contains eight conserved characteristic motifs of the DEAD box protein family, and shares high identity to grass carp (81%) and zebrafish (74%) vasa homologs. Second, Mpvasa expression was restricted to the gonad in adulthood by RT-PCR and Western blot analysis. The dynamic patterns of temporal-spatial expression of Mpvasa during gametogenesis were examined by in situ hybridization, and Mpvasa transcripts were strictly detected in gonadal germ cells throughout oogenesis, predominantly in immature oocytes (stage I, II, and III oocytes). Third, Mpvasa transcripts were highly detected in unfertilized eggs and early embryos, and the signal indicated a dynamic migration of the primordial germ cells during embryogenesis, suggesting that Mpvasa transcripts were maternally inherited and specifically distributed in germ cells. Taken together, these results demonstrated that Mpvasa is an applicable molecular marker for identification of gonadal and embryonic germ cells, which facilitates the isolation and utilization of germ cells in black carp.
CHRONICITY OF DEPRESSION AND MOLECULAR MARKERS IN A LARGE SAMPLE OF HAN CHINESE WOMEN.
Edwards, Alexis C; Aggen, Steven H; Cai, Na; Bigdeli, Tim B; Peterson, Roseann E; Docherty, Anna R; Webb, Bradley T; Bacanu, Silviu-Alin; Flint, Jonathan; Kendler, Kenneth S
2016-04-25
Major depressive disorder (MDD) has been associated with changes in mean telomere length and mitochondrial DNA (mtDNA) copy number. This study investigates if clinical features of MDD differentially impact these molecular markers. Data from a large, clinically ascertained sample of Han Chinese women with recurrent MDD were used to examine whether symptom presentation, severity, and comorbidity were related to salivary telomere length and/or mtDNA copy number (maximum N = 5,284 for both molecular and phenotypic data). Structural equation modeling revealed that duration of longest episode was positively associated with mtDNA copy number, while earlier age of onset of most severe episode and a history of dysthymia were associated with shorter telomeres. Other factors, such as symptom presentation, family history of depression, and other comorbid internalizing disorders, were not associated with these molecular markers. Chronicity of depressive symptoms is related to more pronounced telomere shortening and increased mtDNA copy number among individuals with a history of recurrent MDD. As these molecular markers have previously been implicated in physiological aging and morbidity, individuals who experience prolonged depressive symptoms are potentially at greater risk of adverse medical outcomes. © 2016 Wiley Periodicals, Inc.
Manufacturing porcine islets: culture at 22°C has no advantage above culture at 37°C
Mueller, Kate R; Martins, Kyra V; Murtaugh, Michael P; Schuurman, Henk-Jan; Papas, Klearchos K
2013-01-01
Background The manufacturing process of islets includes a culture step which was originally introduced to ease the logistics of procedures in preparing the graft and transplant recipient. It has been suggested that culture at room temperature has an advantage over culture at 37°C, in part by reducing immunogenicity via preferential elimination of contaminating cells (such as passenger leukocytes) within islets. We investigated this using islets isolated from pancreata of adult pigs. Methods Porcine islets were isolated from three donors and cultured at 37°C for 1 day, and then under three different conditions: 37°C for 6 days (condition A); 22°C for 6 days (condition B); or 22°C for 5 days followed by 37°C for 1 day (condition C). Recovery was assessed by DNA measurement, viability by oxygen consumption rate normalized for DNA (OCR/DNA), and gene expression by RT-PCR for a series of 9 lymphocyte markers, 11 lymphokines and chemokines, and 14 apoptotic and stress markers. Results Post-culture islet recoveries were similar for the three culture conditions. Average OCR/DNA values were 129–159 nmol/min.mgDNA before culture, and 259–291, 204–212, and 207–228 nmol/min•mgDNA, respectively, for culture under conditions A, B, and C, respectively. Irrespective of culture condition, examined gene expression in all three series of lymphocyte markers, lymphokines and chemokines, and apoptotic and stress markers manifested a statistically significant decrease upon culture for 7 days. This decrease was most dramatic for condition A: in particular most of lymphocyte markers showed a >10-fold reduction and also 6 markers in the lymphokine and chemokine series: these reductions are consistent with the elimination of immune cells present within islets during culture. The reduction was less for apoptotic and stress markers. For culture under condition B the reduction in gene expression was less, and culture under condition C resulted in gene expression levels similar to those under condition A: this indicates that 24 hours at 37°C is sufficient to re-equilibrate gene expression levels from those in islets cultured at 22°C to those in islets cultured at 37°C. Results were consistent among the preparations from the three donors. Conclusions Culture of porcine islets at 37°C provides benefits over culture at 22°C with respect to OCR/DNA outcomes and reduced expression of genes encoding lymphocyte markers, lymphokines and chemokines, and markers for apoptosis and stress. PMID:23941232
Elnady, Basant M; Kamal, Naglaa M; Shaker, Raneyah H M; Soliman, Amal F; Hasan, Waleed A; Alghamdi, Hamed A; Algethami, Mohammed M; Jajah, Mohamed Bilal
2016-09-01
Autoimmune diseases are considered the 3rd leading cause of morbidity and mortality in the industrialized countries. Autoimmune thyroid diseases (ATDs) are associated with high prevalence of nonorgan-specific autoantibodies, such as antinuclear antibodies (ANA), antidouble-stranded deoxyribonucleic acid (anti-dsDNA), antiextractable-nuclear antigens (anti-ENAs), rheumatoid factor (RF), and anticyclic-citrullinated peptides (anti-CCP) whose clinical significance is unknown.We aimed to assess the prevalence of various nonorgan-specific autoantibodies in patients with ATD, and to investigate the possible association between these autoantibodies and occurrence of rheumatic diseases and, if these autoantibodies could be considered as predictor markers for autoimmune rheumatic diseases in the future.This study had 2 phases: phase 1; in which 61 ATD patients free from rheumatic manifestations were assessed for the presence of these nonorgan-specific autoantibodies against healthy 61 control group, followed by 2nd phase longitudinal clinical follow-up in which cases are monitored systematically to establish occurrence and progression of any rheumatic disease in association to these autoantibodies with its influences and prognosis.Regarding ATD patients, ANA, anti-dsDNA, Anti-ENA, and RF were present in a percentage of (50.8%), (18%), (21.3%), and (34.4%), respectively, with statistically significance difference (P < 0.5) rather than controls. Nearly one third of the studied group (32.8%) developed the rheumatic diseases, over 2 years follow-up. It was obvious that those with positive anti-dsDNA had higher risk (2.45 times) to develop rheumatic diseases than those without. There was a statistically significant positive linear relationship between occurrence of disease in months and (age, anti-dsDNA, anti-CCP, RF, and duration of thyroiditis). Anti-dsDNA and RF are the most significant predictors (P < 0.0001).ATD is more associated with rheumatic diseases than previously thought. Anti-dsDNA, RF, and anti-CCP antibodies may be used as predictive screening markers of systemic lupus erythematosus and RA, with early referral to rheumatologists for close follow-up and early diagnoses for appropriate disease management of the disease, as early disease control will allow better quality of life.
Age Estimation with DNA: From Forensic DNA Fingerprinting to Forensic (Epi)Genomics: A Mini-Review.
Parson, Walther
2018-01-01
Forensic genetics developed from protein-based techniques a quarter of a century ago and became famous as "DNA fingerprinting," this being based on restriction fragment length polymorphisms (RFLPs) of high-molecular-weight DNA. The amplification of much smaller short tandem repeat (STR) sequences using the polymerase chain reaction soon replaced RFLP analysis and advanced to become the gold standard in genetic identification. Meanwhile, STR multiplexes have been developed and made commercially available which simultaneously amplify up to 30 STR loci from as little as 15 cells or fewer. The enormous information content that comes with the large variety of observed STR genotypes allows for genetic individualisation (with the exception of identical twins). Carefully selected core STR loci form the basis of intelligence-led DNA databases that provide investigative leads by linking unsolved crime scenes and criminals through their matched STR profiles. Nevertheless, the success of modern DNA fingerprinting depends on the availability of reference material from suspects. In order to provide new investigative leads in cases where such reference samples are absent, forensic scientists started to explore the prediction of phenotypic traits from the DNA of the evidentiary sample. This paradigm change now uses DNA and epigenetic markers to forecast characteristics that are useful to triage further investigative work. So far, the best investigated externally visible characteristics are eye, hair and skin colour, as well as geographic ancestry and age. Information on the chronological age of a stain donor (or any sample donor) is elemental for forensic investigations in a number of aspects and has, therefore, been explored by researchers in some detail. Among different methodological approaches tested to date, the methylation-sensitive analysis of carefully selected DNA markers (CpG sites) has brought the most promising results by providing prediction accuracies of ±3-4 years, which can be comparable to, or even surpass those from, eyewitness reports. This mini-review puts recent developments in age estimation via (epi)genetic methods in the context of the requirements and goals of forensic genetics and highlights paths to follow in the future of forensic genomics. © 2018 S. Karger AG, Basel.
Origin and evolution of Andigena potatoes revealed by chloroplast and nuclear DNA markers.
Sukhotu, Thitaporn; Hosaka, Kazuyoshi
2006-06-01
Andigena potatoes (Solanum tuberosum L. subsp. andigena Hawkes) (2n = 4x = 48) are important, native-farmer-selected cultivars in the Andes, which form a primary gene pool for improving a worldwide grown potato (S. tuberosum subsp. tuberosum). To elucidate the origin of Andigena, 196 Andigena accessions were compared with 301 accessions of 33 closely related cultivated and wild species using several types of chloroplast DNA (ctDNA) markers and nuclear DNA (nDNA) restriction fragment length polymorphism (RFLP) markers. Fourteen ctDNA types (haplotypes) and 115 RFLP bands were detected in Andigena, of which the main haplotypes and frequent RFLP bands were mostly shared with a cultivated diploid species, S. stenotomum Juz. et Buk. Principal component analysis of nDNA polymorphisms revealed a progressive and continuous variation from Peruvian wild species with C-type ctDNA to a group of wild species having S-type ctDNA in its variation range (S. bukasovii, S. canasense, S. candolleanum, and S. multidissectum), to cultivated diploid potatoes (S. phureja and S. stenotomum), and to cultivated tetraploid potatoes (Andigena and Chilean S. tuberosum subsp. tuberosum). These results suggest that the initial Andigena population arose with multiple origins exclusively from S. stenotomum. The overall evolutionary process toward the present-day Andigena was discussed.
Circulating, cell-free DNA as a marker for exercise load in intermittent sports.
Haller, Nils; Helmig, Susanne; Taenny, Pascal; Petry, Julian; Schmidt, Sebastian; Simon, Perikles
2018-01-01
Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA) have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of cfDNA due to repeated maximal sprints and due to a professional football game. Nine participants were subjected to a standardised sprint training session with cross-over design of five maximal sprints of 40 meters with either "short" (1 minute) or "long" pauses (5 minutes). Capillary cfDNA and lactate were measured after every sprint and venous cfDNA before and after each series of sprints. Moreover, capillary cfDNA and lactate values were taken in 23 professional football players before and after incremental exercise testing, during the course of a training week at rest (baseline) and in all 17 enrolled players following a season game. Lactate and venous cfDNA increased more pronounced during "short" compared to "long" (1.4-fold, p = 0.032 and 1.7-fold, p = 0.016) and cfDNA correlated significantly with lactate (r = 0.69; p<0.001). Incremental exercise testing increased cfDNA 7.0-fold (p<0.001). The season game increased cfDNA 22.7-fold (p<0.0001), while lactate showed a 2.0-fold (p = 0.09) increase compared to baseline. Fold-changes in cfDNA correlated with distance covered during game (spearman's r = 0.87, p = 0.0012), while no correlation between lactate and the tracking data could be found. We show for the first time that cfDNA could be an objective marker for distance covered in elite intermittent sports. In contrast to the potential of more established blood-based markers like IL-6, CK, or CRP, cfDNA shows by far the strongest fold-change and a high correlation with a particular load related aspect in professional football.
Circulating, cell-free DNA as a marker for exercise load in intermittent sports
Haller, Nils; Helmig, Susanne; Taenny, Pascal; Petry, Julian; Schmidt, Sebastian
2018-01-01
Background Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA) have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of cfDNA due to repeated maximal sprints and due to a professional football game. Methods Nine participants were subjected to a standardised sprint training session with cross-over design of five maximal sprints of 40 meters with either “short” (1 minute) or “long” pauses (5 minutes). Capillary cfDNA and lactate were measured after every sprint and venous cfDNA before and after each series of sprints. Moreover, capillary cfDNA and lactate values were taken in 23 professional football players before and after incremental exercise testing, during the course of a training week at rest (baseline) and in all 17 enrolled players following a season game. Results Lactate and venous cfDNA increased more pronounced during “short” compared to “long” (1.4-fold, p = 0.032 and 1.7-fold, p = 0.016) and cfDNA correlated significantly with lactate (r = 0.69; p<0.001). Incremental exercise testing increased cfDNA 7.0-fold (p<0.001). The season game increased cfDNA 22.7-fold (p<0.0001), while lactate showed a 2.0-fold (p = 0.09) increase compared to baseline. Fold-changes in cfDNA correlated with distance covered during game (spearman’s r = 0.87, p = 0.0012), while no correlation between lactate and the tracking data could be found. Discussion We show for the first time that cfDNA could be an objective marker for distance covered in elite intermittent sports. In contrast to the potential of more established blood-based markers like IL-6, CK, or CRP, cfDNA shows by far the strongest fold-change and a high correlation with a particular load related aspect in professional football. PMID:29370268
Pornruseetriratn, Siritavee; Maipanich, Wanna; Sa-nguankiat, Surapol; Pubampen, Somchit; Poodeepiyasawat, Akkarin; Thaenkham, Urusa
2017-01-01
Taenia solium, T. saginata, and T. asiatica are cestode pathogens causing taeniasis in humans. Houseflies can transfer Taenia eggs to food. However, houseflies are thought to carry only small numbers of Taenia eggs, sometimes fewer than 10. Although several PCR-based methods have been developed to detect Taenia DNA, these require more than 10 eggs for adequate detection. We developed a multiplex PCR method with high specificity for the discrimination among the eggs of the three Taenia species, T. solium, T. saginata, and T. asiatica, using 18S ribosomal DNA (rDNA) as a genetic marker. This technique was found to be highly sensitive, capable of identifying the Taenia species from only one egg. This multiplex PCR technique using 18S rDNA specific primers should be suitable to diagnose Taenia eggs.
Shetova, I M; Timofeev, D Iu; Shamalov, N A; Bondarenko, E A; Slominskiĭ, P A; Limborskaia, S A; Skvortsova, V I
2012-01-01
The analysis of association between DNA markers and total stroke risk was performed in 950 Slavonic patients. Patients with cardioembolic stroke were selected for a genome-wide association study. The HUMANCYTOSNP12 v.2 microchip was used to analyze all DNA samples on a panel of 301 000 single nucleotide polymorphisms. SNP rs1842993 on chromosome 7 was found to be associated with cardioembolic stroke risk.
Bi-parental cytoplasmic DNA inheritance in Wisteria (fabaceae): evidence from a natural experiment
Jennifer L. Trusty; Kataren J. Johnson; Graeme B. Lockaby; Leslie R. Goertzen
2007-01-01
Cytoplasmic inheritance was investigated in interspecific hybrids of Wisteria sinensis and W. floribunda. Species-specific nuclear, mitochondrial and plastid DNA markers were identified from wild-collected plants of each species in its native range. These markers provide evidence for the bi-parental transmission of plastids in...
Watanabe, Yoshiyuki; Kim, Hyun Soo; Castoro, Ryan J; Chung, Woonbok; Estecio, Marcos R H; Kondo, Kimie; Guo, Yi; Ahmed, Saira S; Toyota, Minoru; Itoh, Fumio; Suk, Ki Tae; Cho, Mee-Yon; Shen, Lanlan; Jelinek, Jaroslav; Issa, Jean-Pierre J
2009-06-01
Aberrant DNA methylation is an early and frequent process in gastric carcinogenesis and could be useful for detection of gastric neoplasia. We hypothesized that methylation analysis of DNA recovered from gastric washes could be used to detect gastric cancer. We studied 51 candidate genes in 7 gastric cancer cell lines and 24 samples (training set) and identified 6 for further studies. We examined the methylation status of these genes in a test set consisting of 131 gastric neoplasias at various stages. Finally, we validated the 6 candidate genes in a different population of 40 primary gastric cancer samples and 113 nonneoplastic gastric mucosa samples. Six genes (MINT25, RORA, GDNF, ADAM23, PRDM5, MLF1) showed frequent differential methylation between gastric cancer and normal mucosa in the training, test, and validation sets. GDNF and MINT25 were most sensitive molecular markers of early stage gastric cancer, whereas PRDM5 and MLF1 were markers of a field defect. There was a close correlation (r = 0.5-0.9, P = .03-.001) between methylation levels in tumor biopsy and gastric washes. MINT25 methylation had the best sensitivity (90%), specificity (96%), and area under the receiver operating characteristic curve (0.961) in terms of tumor detection in gastric washes. These findings suggest MINT25 is a sensitive and specific marker for screening in gastric cancer. Additionally, we have developed a new method for gastric cancer detection by DNA methylation in gastric washes.
Jo, Ick Hyun; Kim, Young Chang; Kim, Dong Hwi; Kim, Kee Hong; Hyun, Tae Kyung; Ryu, Hojin; Bang, Kyong Hwan
2017-10-01
The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.
Using ITS2 PCR-RFLP to generate molecular markers for authentication of Sophora flavescens Ait.
Lin, Tzu Che; Yeh, Mau Shing; Cheng, Ya Ming; Lin, Li Chang; Sung, Jih Min
2012-03-15
Dried root of Sophora flavescens Ait. is a medicinal material occasionally misused or adulterated by other species similar in appearance. In this study the internal transcribed spacer (ITS) regions of DNA samples of S. flavescens Ait. collected from different areas of Taiwan were amplified by polymerase chain reaction (PCR) and compared. The effectiveness of using ITS2 PCR restriction fragment length polymorphism (RFLP)-generated markers to differentiate S. flavescens Ait. from possible adulterants was also evaluated. The S. flavescens Ait. samples collected from different areas were extremely low in ITS sequence variability at species level. ITS2 PCR-RFLP coupled with restriction enzymes Sac I, Sac II, Xho I or Pvu I produced specific fragments for all tested variants. ITS2 PCR-RFLP coupled with Sac II was further performed to identify mixtures of DNA extracts of S. flavescens Ait. and Sophora tomentosa L. in various ratios. The developed ITS2 PCR-RFLP markers could detect mixed DNA samples of S. flavescens Ait./S. tomentosa L. up to a ratio of 10:1. The present study demonstrates the usefulness of ITS2 PCR-RFLP coupled with pre-selected restriction enzymes for practical and accurate authentication of S. flavescens Ait. The technique is also suitable for analysing S. flavescens Ait. mixed with other adulterants.
Source Identification of Human Biological Materials and Its Prospect in Forensic Science.
Zou, K N; Gui, C; Gao, Y; Yang, F; Zhou, H G
2016-06-01
Source identification of human biological materials in crime scene plays an important role in reconstructing the crime process. Searching specific genetic markers to identify the source of different human biological materials is the emphasis and difficulty of the research work of legal medical experts in recent years. This paper reviews the genetic markers which are used for identifying the source of human biological materials and studied widely, such as DNA methylation, mRNA, microRNA, microflora and protein, etc. By comparing the principles and methods of source identification of human biological materials using different kinds of genetic markers, different source of human biological material owns suitable marker types and can be identified by detecting single genetic marker or combined multiple genetic markers. Though there is no uniform standard and method for identifying the source of human biological materials in forensic laboratories at present, the research and development of a series of mature and reliable methods for distinguishing different human biological materials play the role as forensic evidence which will be the future development direction. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Wang, Ke; Liu, Huiyun; Du, Lipu; Ye, Xingguo
2017-05-01
Genotype specificity is a big problem lagging the development of efficient hexaploid wheat transformation system. Increasingly, the biosecurity of genetically modified organisms is garnering public attention, so the generation of marker-free transgenic plants is very important to the eventual potential commercial release of transgenic wheat. In this study, 15 commercial Chinese hexaploid wheat varieties were successfully transformed via an Agrobacterium-mediated method, with efficiency of up to 37.7%, as confirmed by the use of Quickstix strips, histochemical staining, PCR analysis and Southern blotting. Of particular interest, marker-free transgenic wheat plants from various commercial Chinese varieties and their F 1 hybrids were successfully obtained for the first time, with a frequency of 4.3%, using a plasmid harbouring two independent T-DNA regions. The average co-integration frequency of the gus and the bar genes located on the two independent T-DNA regions was 49.0% in T 0 plants. We further found that the efficiency of generating marker-free plants was related to the number of bar gene copies integrated in the genome. Marker-free transgenic wheat plants were identified in the progeny of three transgenic lines that had only one or two bar gene copies. Moreover, silencing of the bar gene was detected in 30.7% of T 1 positive plants, but the gus gene was never found to be silenced in T 1 plants. Bisulphite genomic sequencing suggested that DNA methylation in the 35S promoter of the bar gene regulatory region might be the main reason for bar gene silencing in the transgenic plants. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Mendrzyk, Frank; Radlwimmer, Bernhard; Joos, Stefan; Kokocinski, Felix; Benner, Axel; Stange, Daniel E; Neben, Kai; Fiegler, Heike; Carter, Nigel P; Reifenberger, Guido; Korshunov, Andrey; Lichter, Peter
2005-12-01
Medulloblastoma is the most common malignant brain tumor in children. Despite multimodal aggressive treatment, nearly half of the patients die as a result of this tumor. Identification of molecular markers for prognosis and development of novel pathogenesis-based therapies depends crucially on a better understanding of medulloblastoma pathomechanisms. We performed genome-wide analysis of DNA copy number imbalances in 47 medulloblastomas using comparative genomic hybridization to large insert DNA microarrays (matrix-CGH). The expression of selected candidate genes identified by matrix-CGH was analyzed immunohistochemically on tissue microarrays representing medulloblastomas from 189 clinically well-documented patients. To identify novel prognostic markers, genomic findings and protein expression data were correlated to patient survival. Matrix-CGH analysis revealed frequent DNA copy number alterations of several novel candidate regions. Among these, gains at 17q23.2-qter (P < .01) and losses at 17p13.1 to 17p13.3 (P = .04) were significantly correlated to poor prognosis. Within 17q23.2-qter and 7q21.2, two of the most frequently gained chromosomal regions, confined amplicons were identified that contained the PPM1D and CDK6 genes, respectively. Immunohistochemistry revealed strong expression of PPM1D in 148 (88%) of 168 and CDK6 in 50 (30%) of 169 medulloblastomas. Overexpression of CDK6 correlated significantly with poor prognosis (P < .01) and represented an independent prognostic marker of overall survival on multivariate analysis (P = .02). We identified CDK6 as a novel molecular marker that can be determined by immunohistochemistry on routinely processed tissue specimens and may facilitate the prognostic assessment of medulloblastoma patients. Furthermore, increased protein-levels of PPM1D and CDK6 may link the TP53 and RB1 tumor suppressor pathways to medulloblastoma pathomechanisms.
Aubriot, Xavier; Lowry, Porter P; Cruaud, Corinne; Couloux, Arnaud; Haevermans, Thomas
2013-01-01
The island of Madagascar is a key hot spot for the genus Euphorbia, with at least 170 native species, almost all endemic. Threatened by habitat loss and illegal collection of wild plants, nearly all Malagasy Euphorbia are listed in CITES Appendices I and II. The absence of a reliable taxonomic revision makes it particularly difficult to identify these plants, even when fertile, and thereby compromises the application of CITES regulations. DNA barcoding, which can facilitate species-level identification irrespective of developmental stage and the presence of flowers or fruits, may be a promising tool for monitoring and controlling trade involving threatened species. In this study, we test the potential value of barcoding on 41 Euphorbia species representative of the genus in Madagascar, using the two widely adopted core barcode markers (matK and rbcL), along with two additional DNA regions, nuclear internal transcribed spacer (ITS) and the chloroplastic intergenic spacer psbA-trnH. For each marker and for selected marker combinations, inter- and intraspecific distance estimates and species discrimination rates are calculated. Results using just the 'official' barcoding markers yield overlapping inter- and intraspecific ranges and species discrimination rates below 60%. When ITS is used, whether alone or in combination with the core markers, species discrimination increases to nearly 100%, whereas the addition of psbA-trnH produces less satisfactory results. This study, the first ever to test barcoding on the large, commercially important genus Euphorbia shows that this method could be developed into a powerful identification tool and thereby contribute to more effective application of CITES regulations. © 2012 Blackwell Publishing Ltd.
DNA linkage studies of degenerative retinal diseases.
Daiger, S P; Heckenlively, J R; Lewis, R A; Pelias, M Z
1987-01-01
DNA linkage studies of human genetic diseases have led to rapid characterization of a number of otherwise intractable disease loci. Detection of a linked DNA marker, the first step in "reverse genetics", has permitted cloning of the genes for Duchenne muscular dystrophy, retinoblastoma and chronic granulomatosis disease, among others. Thus, the case for applying these techniques to retinitis pigmentosa and related diseases, and the urgency in capitalizing on molecular developments, is justified and compelling. The first major success regarding RP was in demonstrating linkage of the DNA marker DXS7 (L1.28) to XRP. For autosomal forms of the disease, conventional linkage studies have provided tentative evidence for linkage of ADRP to the Rh blood group on chromosome lp and for linkage of Usher's syndrome to Gc and 4q. These provisional assignments are, at least, an important starting point for DNA analysis. The Support Program for DNA Linkage Studies of Degenerative Retinal Diseases was established to provide access for the scientific community to appropriate families, using the resources of the Human Genetic Mutant Cell Repository to prepare, store and distribute lymphoblast lines. To date, two extensive, well-characterized families are included in the program: the autosomal dominant RP family UCLA-RP01, and the Usher's syndrome families LSU-US01. It is highly likely that rapid progress will be made in mapping and characterizing the inherited retinal dystrophies. We believe the support program will facilitate this progress.
Dorraj, Ghamar Soltan; Rassaee, Mohammad Javad; Latifi, Ali Mohammad; Pishgoo, Bahram; Tavallaei, Mahmood
2015-08-20
Troponin T and I are ideal markers which are highly sensitive and specific for myocardial injury and have shown better efficacy than earlier markers. Since aptamers are ssDNA or RNA that bind to a wide variety of target molecules, the purpose of this research was to select an aptamer from a 79bp single-stranded DNA (ssDNA) random library that was used to bind the Human Cardiac Troponin I from a synthetic nucleic acids library by systematic evolution of ligands exponential enrichment (Selex) based on several selection and amplification steps. Human Cardiac Troponin I protein was coated onto the surface of streptavidin magnetic beads to extract specific aptamer from a large and diverse random ssDNA initial oligonucleotide library. As a result, several aptamers were selected and further examined for binding affinity and specificity. Finally TnIApt 23 showed beast affinity in nanomolar range (2.69nM) toward the target protein. A simple and rapid colorimetric detection assay for Human Cardiac Troponin I using the novel and specific aptamer-AuNPs conjugates based on dot blot assay was developed. The detection limit for this protein using aptamer-AuNPs-based assay was found to be 5ng/ml. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Yihan; Zhang, Jingyu; Xiao, Xingjun; Liu, Hongbo; Wang, Fang; Li, Song; Wen, Yanhua; Wei, Yanjun; Su, Jianzhong; Zhang, Yunming; Zhang, Yan
2016-03-07
As one of the most widely studied epigenetic modifications, DNA methylation has an important influence on human traits and cancers. Dynamic variations in DNA methylation have been reported in malignant neoplasm and aging; however, the mechanisms remain poorly understood. By constructing an age-associated and cancer-related weighted network (ACWN) based on the correlation of the methylation level and the protein-protein interaction, we found that DNA methylation changes associated with age were closely related to the occurrence of cancer. Additional analysis of 102 module genes mined from the ACWN revealed discrimination based on two main patterns. One pattern involved methylation levels that increased with aging and were higher in cancer patients compared with normal controls (HH pattern). The other pattern involved methylation levels that decreased with aging and were lower in cancer compared with normal (LL pattern). Upon incorporation with gene expression levels, 25 genes were filtered based on negative regulation by DNA methylation. These genes were regarded as potential cancer risk markers that were influenced by age in the process of carcinogenesis. Our results will facilitate further studies regarding the impact of the epigenetic effects of aging on diseases and will aid in the development of tailored cancer preventive strategies.
Wang, Yihan; Zhang, Jingyu; Xiao, Xingjun; Liu, Hongbo; Wang, Fang; Li, Song; Wen, Yanhua; Wei, Yanjun; Su, Jianzhong; Zhang, Yunming; Zhang, Yan
2016-01-01
As one of the most widely studied epigenetic modifications, DNA methylation has an important influence on human traits and cancers. Dynamic variations in DNA methylation have been reported in malignant neoplasm and aging; however, the mechanisms remain poorly understood. By constructing an age-associated and cancer-related weighted network (ACWN) based on the correlation of the methylation level and the protein-protein interaction, we found that DNA methylation changes associated with age were closely related to the occurrence of cancer. Additional analysis of 102 module genes mined from the ACWN revealed discrimination based on two main patterns. One pattern involved methylation levels that increased with aging and were higher in cancer patients compared with normal controls (HH pattern). The other pattern involved methylation levels that decreased with aging and were lower in cancer compared with normal (LL pattern). Upon incorporation with gene expression levels, 25 genes were filtered based on negative regulation by DNA methylation. These genes were regarded as potential cancer risk markers that were influenced by age in the process of carcinogenesis. Our results will facilitate further studies regarding the impact of the epigenetic effects of aging on diseases and will aid in the development of tailored cancer preventive strategies. PMID:26949191
Development of genome-wide SNP assays for rice
USDA-ARS?s Scientific Manuscript database
With the introduction of new sequencing technologies, single nucleotide polymorphisms (SNPs) are rapidly replacing simple sequence repeats (SSRs) as the DNA marker of choice for applications in plant breeding and genetics because they are more abundant, stable, amenable to automation, efficient, and...
Towards establishing a human fecal contamination index in microbial source tracking
There have been significant advances in development of PCR-based methods to detect source associated DNA sequences (markers), but method evaluation has focused on performance with individual challenge samples. Little attention has been given to integration of multiple samples fro...
Multiplex-Ready Technology for mid-throughput genotyping of molecular markers.
Bonneau, Julien; Hayden, Matthew
2014-01-01
Screening molecular markers across large populations in breeding programs is generally time consuming and expensive. The Multiplex-Ready Technology (MRT) (Hayden et al., BMC genomics 9:80, 2008) was created to optimize polymorphism screening and genotyping using standardized PCR reaction conditions. The flexibility of this method maximizes the number of markers (up to 24 markers SSR or SNP, ideally small PCR product <500 bp and highly polymorphic) by using fluorescent dye (VIC, FAM, NED, and PET) and a semiautomated DNA fragment analyzer (ABI3730) capillary electrophoresis for large numbers of DNA samples (96 or 384 samples).
iPBS: a universal method for DNA fingerprinting and retrotransposon isolation.
Kalendar, Ruslan; Antonius, Kristiina; Smýkal, Petr; Schulman, Alan H
2010-11-01
Molecular markers are essential in plant and animal breeding and biodiversity applications, in human forensics, and for map-based cloning of genes. The long terminal repeat (LTR) retrotransposons are well suited as molecular markers. As dispersed and ubiquitous transposable elements, their "copy and paste" life cycle of replicative transposition leads to new genome insertions without excision of the original element. Both the overall structure of retrotransposons and the domains responsible for the various phases of their replication are highly conserved in all eukaryotes. Nevertheless, up to a year has been required to develop a retrotransposon marker system in a new species, involving cloning and sequencing steps as well as the development of custom primers. Here, we describe a novel PCR-based method useful both as a marker system in its own right and for the rapid isolation of retrotransposon termini and full-length elements, making it ideal for "orphan crops" and other species with underdeveloped marker systems. The method, iPBS amplification, is based on the virtually universal presence of a tRNA complement as a reverse transcriptase primer binding site (PBS) in LTR retrotransposons. The method differs from earlier retrotransposon isolation methods because it is applicable not only to endogenous retroviruses and retroviruses, but also to both Gypsy and Copia LTR retrotransposons, as well as to non-autonomous LARD and TRIM elements, throughout the plant kingdom and to animals. Furthermore, the inter-PBS amplification technique as such has proved to be a powerful DNA fingerprinting technology without the need for prior sequence knowledge.
Cytoplasmic DNA variation and biogeography of Larix Mill. in northeast Asia.
Polezhaeva, Maria A; Lascoux, Martin; Semerikov, Vladimir L
2010-03-01
Range-wide variation in 54 populations of Dahurian larch (Larix gmelinii) and related taxa in Northeast Asia was assessed with four mitochondrial PCR-RFLP and five chloroplast SSR markers. Eleven mitotypes and 115 chlorotypes were detected. The highest diversity was observed in the southern Russian Far East where hybrids of L. gmelinii, L. olgensis and L. kamtschatica are distributed. In contrast, only two mitotypes occurred in L. cajanderi and L. gmelinii. The Japanese larch (L. kaempferi) was found to be closely related to populations of L. kamtschatica inhabiting the Kuril Islands and South Sakhalin, populations from the northern part of Sakhalin being more closely related to continental species. In general, both mitochondrial (G(ST) = 0.786; N(ST) = 0.823) and chloroplast (G(ST) = 0.144; R(ST) = 0.432) markers showed a strong phylogeographical structure and evidence of isolation-by-distance. Yet both markers did not allow a clear delineation of species borders. In particular, and contrary to expectations, cpDNA was not significantly better than mtDNA at delineating species borders. This lack of concordance between morphological species and molecular markers could reflect extensive ancestral haplotype sharing and past and ongoing introgression. Finally the distribution of mtDNA and cpDNA variation suggests the presence of several refugia during Pleistocene glacial intervals. In particular, mtDNA and cpDNA reveal weak but visible differentiation between L. gmelinii and L. cajanderi, suggesting independent glacial histories of these species.
Buonaccorsi, Vincent P; Reece, Kimberly S; Morgan, Lee W; Graves, John E
1999-04-01
This study presents a comparative hierarchical analysis of variance applied to three classes of molecular markers within the blue marlin (Makaira nigricans). Results are reported from analyses of four polymorphic allozyme loci, four polymorphic anonymously chosen single-copy nuclear DNA (scnDNA) loci, and previously reported restriction fragment length polymorphisms (RFLPs) of mitochondrial DNA (mtDNA). Samples were collected within and among the Atlantic and Pacific Oceans over a period of several years. Although moderate levels of genetic variation were detected at both polymorphic allozyme (H = 0.30) and scnDNA loci (H = 0.37), mtDNA markers were much more diverse (h = 0.85). Allele frequencies were significantly different between Atlantic and Pacific Ocean samples at three of four allozyme loci and three of four scnDNA loci. Estimates of allozyme genetic differentiation (θ O ) ranged from 0.00 to 0.15, with a mean of 0.08. The θ O values for scnDNA loci were similar to those of allozymes, ranging from 0.00 to 0.12 with a mean of 0.09. MtDNA RFLP divergence between oceans (θ O = 0.39) was significantly greater than divergence detected at nuclear loci (95% nuclear confidence interval = 0.04-0.11). The fourfold smaller effective population size of mtDNA and male-mediated gene flow may account for the difference observed between nuclear and mitochondrial divergence estimates. © 1999 The Society for the Study of Evolution.
Woods, D E; Edge, M D; Colten, H R
1984-01-01
Complementary DNA (cDNA) clones corresponding to the major histocompatibility (MHC) class III antigen, complement protein C2, have been isolated from human liver cDNA libraries with the use of a complex mixture of synthetic oligonucleotides (17 mer) that contains 576 different oligonucleotide sequences. The C2 cDNA were used to identify a DNA restriction enzyme fragment length polymorphism that provides a genetic marker within the MHC that was not detectable at the protein level. An extensive search for genomic polymorphisms using a cDNA clone for another MHC class III gene, factor B, failed to reveal any DNA variants. The genomic variants detected with the C2 cDNA probe provide an additional genetic marker for analysis of MHC-linked diseases. Images PMID:6086718
Ahmed, Asmaa I; Soliman, Randa A; Samir, Shereif
2016-12-01
Cell free DNA (cfDNA) was recently suggested as a new marker of sepsis and poor outcome in ICU patients. Procalcitonin has also been the focus of attention as an early marker for systemic inflammation and sepsis. cfDNA, procalcitonin (PCT), C-reactive protein (CRP), and lactate levels were measured in 30 ICU patients with multiple trauma or after major surgery on the first day of admission and on 5th and 7th days for PCT, CRP, and lactate. cfDNA was measured by real-time PCR, PCT by ELISA, CRP immunoturbidimetrically, and lactate spectrophotometrically. SOFA score and Injury Severity Score (ISS) for trauma patients were calculated. Significantly higher levels of cfDNA were observed in non-survivor patients in comparison to survivors and in patients with sepsis in comparison to those without sepsis (p = 0.002 and p = 0.02, respectively). The ROC curve was calculated for cfDNA as a predictor of outcome, the area under the curve (AUC) was 0.847 (95% CI: 0.669 - 0.952), at a cutoff value of 15500 ng/µL, sensitivity = 83.3%, specificity = 77.8% (p < 0.0001). As a prognostic marker of sepsis, the AUC for cfDNA was 0.788 (95% CI: 0.601 - 0.915), sensitivity = 56.25%, specificity = 100% (p = 0.0007). Day 5 PCT levels significantly correlated with SOFA scores on day 5, ISS on admission (p < 0.001 and p = 0.028, respectively), and a significant elevation of its levels was observed in non-survivor patients compared to survivors (p = 0.001). As a predictor of sepsis, PCT showed a sensitivity of 81.3%, specificity of 100% on day 5, (AUC: 0.987, 95% CI: 0.955 - 1.00); at a cutoff value of 202.90 pg/mL (p = 0.001). As a predictor of outcome, PCT on day 5 showed a sensitivity of 94.0% and a specificity of 78.0% at a cutoff value of 194.40 pg/mL (p = 0.001). Day 1 CRP correlated with ISS on admission, and on day 5 it correlated with SOFA score 5, while lactate correlated with length of stay on days 1, 5, and 7, and its levels were significantly higher in non-survivors on days 5 and 7. cfDNA is a good predictor of patient outcome in ICU and to a lesser extent as a marker of sepsis. PCT is another promising marker that can complement cfDNA to reach better patient management. Other markers can help in less severe cases.
Seasonal trends in eDNA detection and occupancy of bigheaded carps
Erickson, Richard A.; Merkes, Christopher; Jackson, Craig; Goforth, Reuben; Amberg, Jon J.
2017-01-01
Bigheaded carps, which include silver and bighead carp, are threatening to invade the Great Lakes. These species vary seasonally in distribution and abundance due to environmental conditions such as precipitation and temperature. Monitoring this seasonal movement is important for management to control the population size and spread of the species. We examined if environmental DNA (eDNA) approaches could detect seasonal changes of these species. To do this, we developed a novel genetic marker that was able to both detect and differentiate bighead and silver carp DNA. We used the marker, combined with a novel occupancy model, to study the occurrence of bigheaded carps at 3 sites on the Wabash River over the course of a year. We studied the Wabash River because of concerns that carps may be able to use the system to invade the Great Lakes via a now closed (ca. 2017) connection at Eagle Marsh between the Wabash River's watershed and the Great Lakes' watershed. We found seasonal trends in the probability of detection and occupancy that varied across sites. These findings demonstrate that eDNA methods can detect seasonal changes in bigheaded carps densities and suggest that the amount of eDNA present changes seasonally. The site that was farthest upstream and had the lowest carp densities exhibited the strongest seasonal trends for both detection probabilities and sample occupancy probabilities. Furthermore, other observations suggest that carps seasonally leave this site, and we were able to detect this with our eDNA approach.
Alidjinou, Enagnon Kazali; Moukassa, Donatien; Sané, Famara; Twagirimana Nyenyeli, Séraphin; Akoko, Estina Chandrelle; Mountou, Michèle Valy; Bocket, Laurence; Ibara, Jean-Rosaire; Hober, Didier
2014-03-01
The detection of hepatitis B virus (HBV) infection markers by using dried plasma spots from 32 patients living in Congo has been assessed. Considering frozen plasma samples as gold standard, the sensitivity and specificity of HBV serologic markers detection in dried plasma eluted from filter paper were 100%. The sensitivity and the specificity of HBV DNA detection reached 96% and 100%, respectively, with plasma samples dried on filter paper compared to standard samples. Dried plasma samples can represent an alternative to conventional sampling for HBV detection and management of the infection in developing countries. Copyright © 2014 Elsevier Inc. All rights reserved.
Mutant KRAS Circulating Tumor DNA Is an Accurate Tool for Pancreatic Cancer Monitoring.
Perets, Ruth; Greenberg, Orli; Shentzer, Talia; Semenisty, Valeria; Epelbaum, Ron; Bick, Tova; Sarji, Shada; Ben-Izhak, Ofer; Sabo, Edmond; Hershkovitz, Dov
2018-05-01
Many new pancreatic cancer treatment combinations have been discovered in recent years, yet the prognosis of pancreatic ductal adenocarcinoma (PDAC) remains grim. The advent of new treatments highlights the need for better monitoring tools for treatment response, to allow a timely switch between different therapeutic regimens. Circulating tumor DNA (ctDNA) is a tool for cancer detection and characterization with growing clinical use. However, currently, ctDNA is not used for monitoring treatment response. The high prevalence of KRAS hotspot mutations in PDAC suggests that mutant KRAS can be an efficient ctDNA marker for PDAC monitoring. Seventeen metastatic PDAC patients were recruited and serial plasma samples were collected. CtDNA was extracted from the plasma, and KRAS mutation analysis was performed using next-generation sequencing and correlated with serum CA19-9 levels, imaging, and survival. Plasma KRAS mutations were detected in 5/17 (29.4%) patients. KRAS ctDNA detection was associated with shorter survival (8 vs. 37.5 months). Our results show that, in ctDNA positive patients, ctDNA is at least comparable to CA19-9 as a marker for monitoring treatment response. Furthermore, the rate of ctDNA change was inversely correlated with survival. Our results confirm that mutant KRAS ctDNA detection in metastatic PDAC patients is a poor prognostic marker. Additionally, we were able to show that mutant KRAS ctDNA analysis can be used to monitor treatment response in PDAC patients and that ctDNA dynamics is associated with survival. We suggest that ctDNA analysis in metastatic PDAC patients is a readily available tool for disease monitoring. Avoiding futile chemotherapy in metastatic pancreatic ductal adenocarcinoma (PDAC) patients by monitoring response to treatment is of utmost importance. A novel biomarker for monitoring treatment response in PDAC, using mutant KRAS circulating tumor DNA (ctDNA), is proposed. Results, although limited by small sample numbers, suggest that ctDNA can be an effective marker for disease monitoring and that ctDNA level over time is a better predictor of survival than the dynamics of the commonly used biomarker CA19-9. Therefore, ctDNA analysis can be a useful tool for monitoring PDAC treatment response. These results should be further validated in larger sample numbers. © AlphaMed Press 2018.
[Applications of DNA methylation markers in forensic medicine].
Zhao, Gui-sen; Yang, Qing-en
2005-02-01
DNA methylation is a post-replication modification that is predominantly found in cytosines of the dinucleotide sequence CpG. Epigenetic information is stored in the distribution of the modified base 5-methylcytosine. DNA methylation profiles represent a more chemically and biologically stable source of molecular diagnostic information than RNA or most proteins. Recent advances attest to the great promise of DNA methylation markers as powerful future tools in the clinic. In the past decade, DNA methylation analysis has been revolutionized by two technological advances--bisulphite modification of DNA and methylation-specific polymerase chain reaction (MSP). The methylation pattern of human genome is space-time specific, sex-specific, parent-of-origin specific and disease specific, providing us an alternative way to solve forensic problems.
Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza
2017-01-01
A microfluidic electrochemical lab-on-a-chip (LOC) device for DNA hybridization detection has been developed. The device comprises a 3 × 3 array of microelectrodes integrated with a dual layer microfluidic valved manipulation system that provides controlled and automated capabilities for high throughput analysis of microliter volume samples. The surface of the microelectrodes is functionalized with single-stranded DNA (ssDNA) probes which enable specific detection of complementary ssDNA targets. These targets are detected by a capacitive technique which measures dielectric variation at the microelectrode-electrolyte interface due to DNA hybridization events. A quantitative analysis of the hybridization events is carried out based on a sensing modeling that includes detailed analysis of energy storage and dissipation components. By calculating these components during hybridization events the device is able to demonstrate specific and dose response sensing characteristics. The developed microfluidic LOC for DNA hybridization detection offers a technology for real-time and label-free assessment of genetic markers outside of laboratory settings, such as at the point-of-care or in-field environmental monitoring.
Educational Software for Mapping Quantitative Trait Loci (QTL)
ERIC Educational Resources Information Center
Helms, T. C.; Doetkott, C.
2007-01-01
This educational software was developed to aid teachers and students in their understanding of how the process of identifying the most likely quantitative trait loci (QTL) position is determined between two flanking DNA markers. The objective of the software that we developed was to: (1) show how a QTL is mapped to a position on a chromosome using…
Qi, L L; Talukder, Z I; Hulke, B S; Foley, M E
2017-06-01
Diagnostic DNA markers are an invaluable resource in breeding programs for successful introgression and pyramiding of disease resistance genes. Resistance to downy mildew (DM) disease in sunflower is mediated by Pl genes which are known to be effective against the causal fungus, Plasmopara halstedii. Two DM resistance genes, Pl Arg and Pl 8 , are highly effective against P. halstedii races in the USA, and have been previously mapped to the sunflower linkage groups (LGs) 1 and 13, respectively, using simple sequence repeat (SSR) markers. In this study, we developed high-density single nucleotide polymorphism (SNP) maps encompassing the Pl arg and Pl 8 genes and identified diagnostic SNP markers closely linked to these genes. The specificity of the diagnostic markers was validated in a highly diverse panel of 548 sunflower lines. Dissection of a large marker cluster co-segregated with Pl Arg revealed that the closest SNP markers NSA_007595 and NSA_001835 delimited Pl Arg to an interval of 2.83 Mb on the LG1 physical map. The SNP markers SFW01497 and SFW06597 delimited Pl 8 to an interval of 2.85 Mb on the LG13 physical map. We also developed sunflower lines with homozygous, three gene pyramids carrying Pl Arg , Pl 8 , and the sunflower rust resistance gene R 12 using the linked SNP markers from a segregating F 2 population of RHA 340 (carrying Pl 8 )/RHA 464 (carrying Pl Arg and R 12 ). The high-throughput diagnostic SNP markers developed in this study will facilitate marker-assisted selection breeding, and the pyramided sunflower lines will provide durable resistance to downy mildew and rust diseases.
A DNA fingerprinting procedure for ultra high-throughput genetic analysis of insects.
Schlipalius, D I; Waldron, J; Carroll, B J; Collins, P J; Ebert, P R
2001-12-01
Existing procedures for the generation of polymorphic DNA markers are not optimal for insect studies in which the organisms are often tiny and background molecular information is often non-existent. We have used a new high throughput DNA marker generation protocol called randomly amplified DNA fingerprints (RAF) to analyse the genetic variability in three separate strains of the stored grain pest, Rhyzopertha dominica. This protocol is quick, robust and reliable even though it requires minimal sample preparation, minute amounts of DNA and no prior molecular analysis of the organism. Arbitrarily selected oligonucleotide primers routinely produced approximately 50 scoreable polymorphic DNA markers, between individuals of three independent field isolates of R. dominica. Multivariate cluster analysis using forty-nine arbitrarily selected polymorphisms generated from a single primer reliably separated individuals into three clades corresponding to their geographical origin. The resulting clades were quite distinct, with an average genetic difference of 37.5 +/- 6.0% between clades and of 21.0 +/- 7.1% between individuals within clades. As a prelude to future gene mapping efforts, we have also assessed the performance of RAF under conditions commonly used in gene mapping. In this analysis, fingerprints from pooled DNA samples accurately and reproducibly reflected RAF profiles obtained from individual DNA samples that had been combined to create the bulked samples.
Tumour heterogeneity poses a significant challenge to cancer biomarker research
Cyll, Karolina; Ersvær, Elin; Vlatkovic, Ljiljana; Pradhan, Manohar; Kildal, Wanja; Avranden Kjær, Marte; Kleppe, Andreas; Hveem, Tarjei S; Carlsen, Birgitte; Gill, Silje; Löffeler, Sven; Haug, Erik Skaaheim; Wæhre, Håkon; Sooriakumaran, Prasanna; Danielsen, Håvard E
2017-01-01
Background: The high degree of genomic diversity in cancer represents a challenge for identifying objective prognostic markers. We aimed to examine the extent of tumour heterogeneity and its effect on the evaluation of a selected prognostic marker using prostate cancer as a model. Methods: We assessed Gleason Score (GS), DNA ploidy status and phosphatase and tensin homologue (PTEN) expression in radical prostatectomy specimens (RP) from 304 patients followed for a median of 10 years (interquartile range 6–12). GS was assessed for every tumour-containing block and DNA ploidy for a median of four samples for each RP. In a subgroup of 40 patients we assessed DNA ploidy and PTEN status in every tumour-containing block. In 102 patients assigned to active surveillance (AS), GS and DNA ploidy were studied in needle biopsies. Results: Extensive heterogeneity was observed for GS (89% of the patients) and DNA ploidy (40% of the patients) in the cohort, and DNA ploidy (60% of the patients) and PTEN expression (75% of the patients) in the subgroup. DNA ploidy was a significant prognostic marker when heterogeneity was taken into consideration. In the AS cohort we found heterogeneity in GS (24%) and in DNA ploidy (25%) specimens. Conclusions: Multi-sample analysis should be performed to support clinical treatment decisions. PMID:28618431
Karska-Wysocki, B; Mamet-Bratley, M D; Verly, W G
1976-01-01
After treatment with methyl or ethyl methane sulfonate, T7 amber mutants display a reduced capacity for recombination. Moreover, alkylation reduces recombination frequency involving markers on the right-hand side of the genetic map more than it reduces recombination frequency involving markers on the left-hand side. We interpret this to mean that alkylation can stop DNA injection at any point along the DNA molecule, and that T7 phage injects its DNA in a unique fashion starting from the end carrying the genes for early proteins. PMID:183007
NASA Astrophysics Data System (ADS)
Lapin, Ivan N.; Shabalina, Anastasiia V.; Svetlichyi, Valery A.; Kolovskaya, Olga S.
2018-04-01
Nanoconstructions of gold nanoparticles (NPs) obtained via pulsed laser ablation in liquid with DNA-aptamer specific to protein tumor marker were visualized on the surface of screen-printed electrode using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). AuNPs/aptamer nanoconstuctions distribution on the solid surface was studied. More uniform coverage of the carbon electrode surface with the nanoconstuctions was showed in comparison with DNA-aptamer alone on the golden electrode surface. Targeted binding of the tumor marker molecules with the AuNPs/DNA-aptamer nanoconstuctions was approved.
Epstein-Barr virus recombinants from overlapping cosmid fragments.
Tomkinson, B; Robertson, E; Yalamanchili, R; Longnecker, R; Kieff, E
1993-12-01
Five overlapping type 1 Epstein-Barr virus (EBV) DNA fragments constituting a complete replication- and transformation-competent genome were cloned into cosmids and transfected together into P3HR-1 cells, along with a plasmid encoding the Z immediate-early activator of EBV replication. P3HR-1 cells harbor a type 2 EBV which is unable to transform primary B lymphocytes because of a deletion of DNA encoding EBNA LP and EBNA 2, but the P3HR-1 EBV can provide replication functions in trans and can recombine with the transfected cosmids. EBV recombinants which have the type 1 EBNA LP and 2 genes from the transfected EcoRI-A cosmid DNA were selectively and clonally recovered by exploiting the unique ability of the recombinants to transform primary B lymphocytes into lymphoblastoid cell lines. PCR and immunoblot analyses for seven distinguishing markers of the type 1 transfected DNAs identified cell lines infected with EBV recombinants which had incorporated EBV DNA fragments beyond the transformation marker-rescuing EcoRI-A fragment. Approximately 10% of the transforming virus recombinants had markers mapping at 7, 46 to 52, 93 to 100, 108 to 110, 122, and 152 kbp from the 172-kbp transfected genome. These recombinants probably result from recombination among the transfected cosmid-cloned EBV DNA fragments. The one recombinant virus examined in detail by Southern blot analysis has all the polymorphisms characteristic of the transfected type 1 cosmid DNA and none characteristic of the type 2 P3HR-1 EBV DNA. This recombinant was wild type in primary B-lymphocyte infection, growth transformation, and lytic replication. Overall, the type 1 EBNA 3A gene was incorporated into 26% of the transformation marker-rescued recombinants, a frequency which was considerably higher than that observed in previous experiments with two-cosmid EBV DNA cotransfections into P3HR-1 cells (B. Tomkinson and E. Kieff, J. Virol. 66:780-789, 1992). Of the recombinants which had incorporated the marker-rescuing cosmid DNA fragment and the fragment encoding the type 1 EBNA 3A gene, most had incorporated markers from at least two other transfected cosmid DNA fragments, indicating a propensity for multiple homologous recombinations. The frequency of incorporation of the nonselected transfected type 1 EBNA 3C gene, which is near the end of two of the transfected cosmids, was 26% overall, versus 3% in previous experiments using transfections with two EBV DNA cosmids. In contrast, the frequency of incorporation of a 12-kb EBV DNA deletion which was near the end of two of the transfected cosmids was only 13%.(ABSTRACT TRUNCATED AT 400 WORDS)
Kovtun, P A; Kuklev, M Iu; Lapenkov, M I; Plakhina, N V
2013-01-01
This article is concerned with the management of the disputable situations arising in the course of establishment of the kinship based on the analysis of autosomal STR loci. It is proposed to enhance the accuracy of determining thekinsip relations in the parent-child pairs (in the absence of one of the parents) by using additional sets of genetic markers localized for example on sex chromosomes, mitochondrial DNA (mtDNA) and bi-allele markers.
A laboratory information management system for DNA barcoding workflows.
Vu, Thuy Duong; Eberhardt, Ursula; Szöke, Szániszló; Groenewald, Marizeth; Robert, Vincent
2012-07-01
This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA sequence markers. We aim at generating barcode data for all strains (or specimens) included in the collection (currently ca. 80 k). The LIMS has been developed to better manage large amounts of sequence data and to keep track of the whole experimental procedure. The system has allowed us to classify strains more efficiently as the quality of sequence data has improved, and as a result, up-to-date taxonomic names have been given to strains and more accurate correlation analyses have been carried out.
Genetic instability in urinary bladder cancer: An evolving hallmark.
Wadhwa, N; Mathew, B B; Jatawa, S K; Tiwari, A
2013-01-01
Bladder cancer is a major health-care concern. A successful treatment of bladder cancer depends on its early diagnosis at the initial stage. Genetic instability is an essential early step toward the development of bladder cancer. This instability is found more often at the chromosomal level than at the nucleotide level. Microsatellite and chromosomal instability markers can be used as a prognostic marker for screening bladder cancer. Bladder cancer can be distinguished in two different categories according to genetic instability: Cancers with chromosomal level instability and cancers with nucleotide level instability. Deoxyribonucleic acid (DNA) mismatch repair (MMR) system and its correlation with other biologic pathway, both are essential to understand the basic mechanisms of cancer development. Microsatellite instability occurs due to defects in DNA MMR genes, including human mutL homolog 1 and human mutL homolog 2. Chromosomal alterations including deletions on chromosome 3, 8, 9, 11, 13, 17 have been detected in bladder cancer. In the current review, the most recent literature of genetic instability in urinary bladder cancer has been summarized.
Campbell, Nathan R.; LaPatra, Scott E.; Overturf, Ken; Towner, Richard; Narum, Shawn R.
2014-01-01
Recent advances in genotyping-by-sequencing have enabled genome-wide association studies in nonmodel species including those in aquaculture programs. As with other aquaculture species, rainbow trout and steelhead (Oncorhynchus mykiss) are susceptible to disease and outbreaks can lead to significant losses. Fish culturists have therefore been pursuing strategies to prevent losses to common pathogens such as Flavobacterium psychrophilum (the etiological agent for bacterial cold water disease [CWD]) and infectious hematopoietic necrosis virus (IHNV) by adjusting feed formulations, vaccine development, and selective breeding. However, discovery of genetic markers linked to disease resistance offers the potential to use marker-assisted selection to increase resistance and reduce outbreaks. For this study we sampled juvenile fish from 40 families from 2-yr classes that either survived or died after controlled exposure to either CWD or IHNV. Restriction site−associated DNA sequencing produced 4661 polymorphic single-nucleotide polymorphism loci after strict filtering. Genotypes from individual survivors and mortalities were then used to test for association between disease resistance and genotype at each locus using the program TASSEL. After we accounted for kinship and stratification of the samples, tests revealed 12 single-nucleotide polymorphism markers that were highly associated with resistance to CWD and 19 markers associated with resistance to IHNV. These markers are candidates for further investigation and are expected to be useful for marker assisted selection in future broodstock selection for various aquaculture programs. PMID:25354781
Herrera, Carlos M; Alonso, Conchita; Medrano, Mónica; Pérez, Ricardo; Bazaga, Pilar
2018-04-01
The ecological and evolutionary significance of natural epigenetic variation (i.e., not based on DNA sequence variants) variation will depend critically on whether epigenetic states are transmitted from parents to offspring, but little is known on epigenetic inheritance in nonmodel plants. We present a quantitative analysis of transgenerational transmission of global DNA cytosine methylation (= proportion of all genomic cytosines that are methylated) and individual epigenetic markers (= methylation status of anonymous MSAP markers) in the shrub Lavandula latifolia. Methods based on parent-offspring correlations and parental variance component estimation were applied to epigenetic features of field-growing plants ('maternal parents') and greenhouse-grown progenies. Transmission of genetic markers (AFLP) was also assessed for reference. Maternal parents differed significantly in global DNA cytosine methylation (range = 21.7-36.7%). Greenhouse-grown maternal families differed significantly in global methylation, and their differences were significantly related to maternal origin. Methylation-sensitive amplified polymorphism (MSAP) markers exhibited significant transgenerational transmission, as denoted by significant maternal variance component of marker scores in greenhouse families and significant mother-offspring correlations of marker scores. Although transmission-related measurements for global methylation and MSAP markers were quantitatively lower than those for AFLP markers taken as reference, this study has revealed extensive transgenerational transmission of genome-wide global cytosine methylation and anonymous epigenetic markers in L. latifolia. Similarity of results for global cytosine methylation and epigenetic markers lends robustness to this conclusion, and stresses the value of considering both types of information in epigenetic studies of nonmodel plants. © 2018 Botanical Society of America.
A Validated Methodology for Genetic Identification of Tuna Species (Genus Thunnus)
Viñas, Jordi; Tudela, Sergi
2009-01-01
Background Tuna species of the genus Thunnus, such as the bluefin tunas, are some of the most important and yet most endangered trade fish in the world. Identification of these species in traded forms, however, may be difficult depending on the presentation of the products, which may hamper conservation efforts on trade control. In this paper, we validated a genetic methodology that can fully distinguish between the eight Thunnus species from any kind of processed tissue. Methodology After testing several genetic markers, a complete discrimination of the eight tuna species was achieved using Forensically Informative Nucleotide Sequencing based primarily on the sequence variability of the hypervariable genetic marker mitochondrial DNA control region (mtDNA CR), followed, in some specific cases, by a second validation by a nuclear marker rDNA first internal transcribed spacer (ITS1). This methodology was able to distinguish all tuna species, including those belonging to the subgenus Neothunnus that are very closely related, and in consequence can not be differentiated with other genetic markers of lower variability. This methodology also took into consideration the presence of introgression that has been reported in past studies between T. thynnus, T. orientalis and T. alalunga. Finally, we applied the methodology to cross-check the species identity of 26 processed tuna samples. Conclusions Using the combination of two genetic markers, one mitochondrial and another nuclear, allows a full discrimination between all eight tuna species. Unexpectedly, the genetic marker traditionally used for DNA barcoding, cytochrome oxidase 1, could not differentiate all species, thus its use as a genetic marker for tuna species identification is questioned. PMID:19898615
A validated methodology for genetic identification of tuna species (genus Thunnus).
Viñas, Jordi; Tudela, Sergi
2009-10-27
Tuna species of the genus Thunnus, such as the bluefin tunas, are some of the most important and yet most endangered trade fish in the world. Identification of these species in traded forms, however, may be difficult depending on the presentation of the products, which may hamper conservation efforts on trade control. In this paper, we validated a genetic methodology that can fully distinguish between the eight Thunnus species from any kind of processed tissue. After testing several genetic markers, a complete discrimination of the eight tuna species was achieved using Forensically Informative Nucleotide Sequencing based primarily on the sequence variability of the hypervariable genetic marker mitochondrial DNA control region (mtDNA CR), followed, in some specific cases, by a second validation by a nuclear marker rDNA first internal transcribed spacer (ITS1). This methodology was able to distinguish all tuna species, including those belonging to the subgenus Neothunnus that are very closely related, and in consequence can not be differentiated with other genetic markers of lower variability. This methodology also took into consideration the presence of introgression that has been reported in past studies between T. thynnus, T. orientalis and T. alalunga. Finally, we applied the methodology to cross-check the species identity of 26 processed tuna samples. Using the combination of two genetic markers, one mitochondrial and another nuclear, allows a full discrimination between all eight tuna species. Unexpectedly, the genetic marker traditionally used for DNA barcoding, cytochrome oxidase 1, could not differentiate all species, thus its use as a genetic marker for tuna species identification is questioned.
The epigenetics of prostate cancer diagnosis and prognosis: update on clinical applications.
Blute, Michael L; Damaschke, Nathan A; Jarrard, David F
2015-01-01
There is a major deficit in our ability to detect and predict the clinical behavior of prostate cancer (PCa). Epigenetic changes are associated with PCa development and progression. This review will focus on recent results in the clinical application of diagnostic and prognostic epigenetic markers. The development of high throughput technology has seen an enormous increase in the discovery of new markers that encompass epigenetic changes including those in DNA methylation and histone modifications. Application of these findings to urine and other biofluids, but also cancer and noncancerous prostate tissue, has resulted in new biomarkers. There has been a recent commercial development of a DNA methylation-based assay for identifying PCa risk from normal biopsy tissue. Other biomarkers are currently in the validation phase and encompass combinations of multiple genes. Epigenetic changes improve the specificity and sensitivity of PCa diagnosis and have the potential to help determine clinical prognosis. Additional studies will not only provide new and better biomarker candidates, but also have the potential to inform new therapeutic strategies given the reversibility of these processes.
Young, W.P.; Ostberg, C.O.; Keim, P.; Thorgaard, G.H.
2001-01-01
Interspecific hybridization represents a dynamic evolutionary phenomenon and major conservation problem in salmonid fishes. In this study we used amplified fragment length polymorphisms (AFLP) and mitochondrial DNA (mtDNA) markers to describe the extent and characterize the pattern of hybridization and introgression between coastal rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Hybrid individuals were initially identified using principle coordinate analysis of 133 polymorphic AFLP markers. Subsequent analysis using 23 diagnostic AFLP markers revealed the presence of F1, rainbow trout backcross, cutthroat trout backcross and later-generation hybrids. mtDNA analysis demonstrated equal numbers of F1 hybrids with rainbow and cutthroat trout mtDNA indicating reciprocal mating of the parental types. In contrast, rainbow and cutthroat trout backcross hybrids always exhibited the mtDNA from the recurrent parent, indicating a male hybrid mating with a pure female. This study illustrates the usefulness of the AFLP technique for generating large numbers of species diagnostic markers. The pattern of hybridization raises many questions concerning the existence and action of reproductive isolating mechanisms between these two species. Our findings are consistent with the hypothesis that introgression between anadromous populations of coastal rainbow and coastal cutthroat trout is limited by an environment-dependent reduction in hybrid fitness.
Epigenetic disorders and male subfertility.
Boissonnas, Céline Chalas; Jouannet, Pierre; Jammes, Hélène
2013-03-01
To provide a link between epigenetics and male subfertility at the DNA, histone-protamine, and RNA levels and its consequences on fertilization and embryo development. Review of the relevant literature. University-based clinical and research laboratories. Fertile and infertile men. None. Critical review of the literature. Epigenetic markers can be modified in infertile patients. Epigenetic modifications include methylation loss or gain on the global level and on imprinted genes, high levels of histone retention in spermatozoa, and deficiencies in some transcripts involved in spermatogenesis. Interestingly, these abnormalities are all linked together, because DNA methylation maintenance depends on DNA histone-protamine configuration which itself is stabilized by spermatozoal RNAs. The paternal genome has long been considered to be silent and passive in embryo formation. The epigenetic processes associated with the paternal DNA genome highlights its importance in male fertility as well as for embryo development. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Gor, Mian Chee; Candappa, Chrishani; de Silva, Thishakya; Mantri, Nitin; Pang, Edwin
2017-12-12
Breeding strawberry (Fragaria x ananassa) with enhanced fruit flavour is one of the top breeding goals of many strawberry-producing countries. Although several genes involved in the biosynthetic pathways of key aroma compounds have been identified, the development and application of molecular markers associated with fruit flavour remain limited. This study aims to identify molecular markers closely linked to genes controlling strawberry aroma. A purpose-built Subtracted Diversity Array (SDA) known as Fragaria Discovery Panel (FDP) was used for marker screening. Polymorphic sequences associated with key aroma compounds were identified from two DNA bulks with extreme phenotypes, established using 50 F 1 progeny plants derived from Juliette X 07-102-41 cross, two strawberry genotypes differing in aroma profile. A total of 49 polymorphic markers for eight key aroma compounds were detected using genotypic data of the extreme DNA bulks and phenotypic data obtained from gas chromatography-mass spectrometry (GC-MS). A similarity search against the physical maps of Fragaria vesca revealed that FaP1D7 is linked to genes potentially involved in the synthesis of methyl butanoate. A C/T SNP was detected within the feature, which could possibly be converted to a molecular tool for rapid screening of the strawberry accessions for their methyl butanoate production capacity.
DNA amplification polymorphisms of the cultivated mushroom Agaricus bisporus.
Khush, R S; Becker, E; Wach, M
1992-01-01
Single 10-bp primers were used to generate random amplified polymorphic DNA (RAPD) markers from commercial and wild strains of the cultivated mushroom Agaricus bisporus via the polymerase chain reaction. Of 20 primers tested, 19 amplified A. bisporus DNA, each producing 5 to 15 scorable markers ranging from 0.5 to 3.0 kbp. RAPD markers identified seven distinct genotypes among eight heterokaryotic strains; two of the commercial strains were shown to be related to each other through single-spore descent. Homokaryons recovered from protoplast regenerants of heterokaryotic strains carried a subset of the RAPD markers found in the heterokaryon, and both of the haploid nuclei from two heterokaryons were distinguishable. RAPD markers also served to verify the creation of a hybrid heterokaryon and to analyze meiotic progeny from this new strain: most of the basidiospores displayed RAPD fingerprints identical to that of the parental heterokaryon, although a few selected slow growers were homoallelic at a number of loci that were heteroallelic in the parent, suggesting that they represented rare homokaryotic basidiospores; crossover events between a RAPD marker locus and its respective centromere appeared to be infrequent. These results demonstrate that RAPD markers provide an efficient alternative for strain fingerprinting and a versatile tool for genetic studies and manipulations of A. bisporus. Images PMID:1444410
King, T.L.; Eackles, M.S.; Henderson, A.P.; Bocetti, Carol I.; Currie, D.; Wunderle, J.M.
2005-01-01
We document the isolation and characterization of 23 microsatellite DNA markers for the endangered Kirtland's warbler (Dendroica kirtlandii), a Nearctic/Neotropical migrant passerine. This suite of markers revealed moderate to high levels of allelic diversity (averaging 7.7 alleles per locus) and heterozygosity (averaging 72%). Genotypic frequencies at 22 of 23 (95%) markers conformed to Hardy-Weinberg equilibrium expectations, and no linkage disequilibrium was observed in blood samples taken from 14 warblers found on the wintering grounds in the Bahamas archipelago. Multilocus genotypes resulting from this suite of markers should reduce the amount of resources required for initiating new genetic studies assessing breeding structure, parentage, demographics, and individual-level ecological interactions for D. kirtlandii. ?? 2005 Blackwell Publishing Ltd.
Taverniers, Isabel; Windels, Pieter; Vaïtilingom, Marc; Milcamps, Anne; Van Bockstaele, Erik; Van den Eede, Guy; De Loose, Marc
2005-04-20
Since the 18th of April 2004, two new regulations, EC/1829/2003 on genetically modified food and feed products and EC/1830/2003 on traceability and labeling of GMOs, are in force in the EU. This new, comprehensive regulatory framework emphasizes the need of an adequate tracing system. Unique identifiers, such as the transgene genome junction region or a specific rearrangement within the transgene DNA, should form the basis of such a tracing system. In this study, we describe the development of event-specific tracing systems for transgenic maize lines Bt11, Bt176, and GA21 and for canola event GT73. Molecular characterization of the transgene loci enabled us to clone an event-specific sequence into a plasmid vector, to be used as a marker, and to develop line-specific primers. Primer specificity was tested through qualitative PCRs and dissociation curve analysis in SYBR Green I real-time PCRs. The primers were then combined with event-specific TaqMan probes in quantitative real-time PCRs. Calibration curves were set up both with genomic DNA samples and the newly synthesized plasmid DNA markers. It is shown that cloned plasmid GMO target sequences are perfectly suitable as unique identifiers and quantitative calibrators. Together with an event-specific primer pair and a highly specific TaqMan probe, the plasmid markers form crucial components of a unique and straighforward tracing system for Bt11, Bt176, and GA21 maize and GT73 canola events.
Arulandhu, Alfred J.; Staats, Martijn; Hagelaar, Rico; Voorhuijzen, Marleen M.; Prins, Theo W.; Scholtens, Ingrid; Costessi, Adalberto; Duijsings, Danny; Rechenmann, François; Gaspar, Frédéric B.; Barreto Crespo, Maria Teresa; Holst-Jensen, Arne; Birck, Matthew; Burns, Malcolm; Haynes, Edward; Hochegger, Rupert; Klingl, Alexander; Lundberg, Lisa; Natale, Chiara; Niekamp, Hauke; Perri, Elena; Barbante, Alessandra; Rosec, Jean-Philippe; Seyfarth, Ralf; Sovová, Tereza; Van Moorleghem, Christoff; van Ruth, Saskia; Peelen, Tamara
2017-01-01
Abstract DNA metabarcoding provides great potential for species identification in complex samples such as food supplements and traditional medicines. Such a method would aid Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) enforcement officers to combat wildlife crime by preventing illegal trade of endangered plant and animal species. The objective of this research was to develop a multi-locus DNA metabarcoding method for forensic wildlife species identification and to evaluate the applicability and reproducibility of this approach across different laboratories. A DNA metabarcoding method was developed that makes use of 12 DNA barcode markers that have demonstrated universal applicability across a wide range of plant and animal taxa and that facilitate the identification of species in samples containing degraded DNA. The DNA metabarcoding method was developed based on Illumina MiSeq amplicon sequencing of well-defined experimental mixtures, for which a bioinformatics pipeline with user-friendly web-interface was developed. The performance of the DNA metabarcoding method was assessed in an international validation trial by 16 laboratories, in which the method was found to be highly reproducible and sensitive enough to identify species present in a mixture at 1% dry weight content. The advanced multi-locus DNA metabarcoding method assessed in this study provides reliable and detailed data on the composition of complex food products, including information on the presence of CITES-listed species. The method can provide improved resolution for species identification, while verifying species with multiple DNA barcodes contributes to an enhanced quality assurance. PMID:29020743
Arulandhu, Alfred J; Staats, Martijn; Hagelaar, Rico; Voorhuijzen, Marleen M; Prins, Theo W; Scholtens, Ingrid; Costessi, Adalberto; Duijsings, Danny; Rechenmann, François; Gaspar, Frédéric B; Barreto Crespo, Maria Teresa; Holst-Jensen, Arne; Birck, Matthew; Burns, Malcolm; Haynes, Edward; Hochegger, Rupert; Klingl, Alexander; Lundberg, Lisa; Natale, Chiara; Niekamp, Hauke; Perri, Elena; Barbante, Alessandra; Rosec, Jean-Philippe; Seyfarth, Ralf; Sovová, Tereza; Van Moorleghem, Christoff; van Ruth, Saskia; Peelen, Tamara; Kok, Esther
2017-10-01
DNA metabarcoding provides great potential for species identification in complex samples such as food supplements and traditional medicines. Such a method would aid Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) enforcement officers to combat wildlife crime by preventing illegal trade of endangered plant and animal species. The objective of this research was to develop a multi-locus DNA metabarcoding method for forensic wildlife species identification and to evaluate the applicability and reproducibility of this approach across different laboratories. A DNA metabarcoding method was developed that makes use of 12 DNA barcode markers that have demonstrated universal applicability across a wide range of plant and animal taxa and that facilitate the identification of species in samples containing degraded DNA. The DNA metabarcoding method was developed based on Illumina MiSeq amplicon sequencing of well-defined experimental mixtures, for which a bioinformatics pipeline with user-friendly web-interface was developed. The performance of the DNA metabarcoding method was assessed in an international validation trial by 16 laboratories, in which the method was found to be highly reproducible and sensitive enough to identify species present in a mixture at 1% dry weight content. The advanced multi-locus DNA metabarcoding method assessed in this study provides reliable and detailed data on the composition of complex food products, including information on the presence of CITES-listed species. The method can provide improved resolution for species identification, while verifying species with multiple DNA barcodes contributes to an enhanced quality assurance. © The Authors 2017. Published by Oxford University Press.
Frías-De-León, María Guadalupe; Ramírez-Bárcenas, José Antonio; Rodríguez-Arellanes, Gabriela; Velasco-Castrejón, Oscar; Taylor, Maria Lucia; Reyes-Montes, María Del Rocío
2017-03-01
Histoplasmosis is considered the most important systemic mycosis in Mexico, and its diagnosis requires fast and reliable methodologies. The present study evaluated the usefulness of PCR using Hcp100 and 1281-1283 (220) molecular markers in detecting Histoplasma capsulatum in occupational and recreational outbreaks. Seven clinical serum samples of infected individuals from three different histoplasmosis outbreaks were processed by enzyme-linked immunosorbent assay (ELISA) to titre anti-H. capsulatum antibodies and to extract DNA. Fourteen environmental samples were also processed for H. capsulatum isolation and DNA extraction. Both clinical and environmental DNA samples were analysed by PCR with Hcp100 and 1281-1283 (220) markers. Antibodies to H. capsulatum were detected by ELISA in all serum samples using specific antigens, and in six of these samples, the PCR products of both molecular markers were amplified. Four environmental samples amplified one of the two markers, but only one sample amplified both markers and an isolate of H. capsulatum was cultured from this sample. All PCR products were sequenced, and the sequences for each marker were analysed using the Basic Local Alignment Search Tool (BLASTn), which revealed 95-98 and 98-100 % similarities with the reference sequences deposited in the GenBank for Hcp100 and 1281-1283 (220) , respectively. Both molecular markers proved to be useful in studying histoplasmosis outbreaks because they are matched for pathogen detection in either clinical or environmental samples.
Genome Mapping and Molecular Breeding of Tomato
Foolad, Majid R.
2007-01-01
The cultivated tomato, Lycopersicon esculentum, is the second most consumed vegetable worldwide and a well-studied crop species in terms of genetics, genomics, and breeding. It is one of the earliest crop plants for which a genetic linkage map was constructed, and currently there are several molecular maps based on crosses between the cultivated and various wild species of tomato. The high-density molecular map, developed based on an L. esculentum × L. pennellii cross, includes more than 2200 markers with an average marker distance of less than 1 cM and an average of 750 kbp per cM. Different types of molecular markers such as RFLPs, AFLPs, SSRs, CAPS, RGAs, ESTs, and COSs have been developed and mapped onto the 12 tomato chromosomes. Markers have been used extensively for identification and mapping of genes and QTLs for many biologically and agriculturally important traits and occasionally for germplasm screening, fingerprinting, and marker-assisted breeding. The utility of MAS in tomato breeding has been restricted largely due to limited marker polymorphism within the cultivated species and economical reasons. Also, when used, MAS has been employed mainly for improving simply-inherited traits and not much for improving complex traits. The latter has been due to unavailability of reliable PCR-based markers and problems with linkage drag. Efforts are being made to develop high-throughput markers with greater resolution, including SNPs. The expanding tomato EST database, which currently includes ∼214 000 sequences, the new microarray DNA chips, and the ongoing sequencing project are expected to aid development of more practical markers. Several BAC libraries have been developed that facilitate map-based cloning of genes and QTLs. Sequencing of the euchromatic portions of the tomato genome is paving the way for comparative and functional analysis of important genes and QTLs. PMID:18364989
Mueller, Kate R; Martins, Kyra V; Murtaugh, Michael P; Schuurman, Henk-Jan; Papas, Klearchos K
2013-01-01
The manufacturing process of islets includes a culture step which was originally introduced to ease the logistics of procedures in preparing the graft and transplant recipient. It has been suggested that culture at room temperature has an advantage over culture at 37 °C, in part by reducing immunogenicity via preferential elimination of contaminating cells (such as passenger leukocytes) within islets. We investigated this using islets isolated from pancreata of adult pigs. Porcine islets were isolated from three donors and cultured at 37 °C for 1 day, and then under three different conditions: 37 °C for 6 days (condition A); 22 °C for 6 days (condition B); or 22 °C for 5 days followed by 37 °C for 1 day (condition C). Recovery was assessed by DNA measurement, viability by oxygen consumption rate normalized for DNA (OCR/DNA), and gene expression by RT-PCR for a series of 9 lymphocyte markers, 11 lymphokines and chemokines, and 14 apoptotic and stress markers. Post-culture islet recoveries were similar for the three culture conditions. Average OCR/DNA values were 129-159 nmol/min·mgDNA before culture, and 259-291, 204-212, and 207-228 nmol/min·mgDNA, respectively, for culture under conditions A, B, and C, respectively. Irrespective of culture condition, examined gene expression in all three series of lymphocyte markers, lymphokines and chemokines, and apoptotic and stress markers manifested a statistically significant decrease upon culture for 7 days. This decrease was most dramatic for condition A: in particular, most of lymphocyte markers showed a >10-fold reduction and also six markers in the lymphokine and chemokine series; these reductions are consistent with the elimination of immune cells present within islets during culture. The reduction was less for apoptotic and stress markers. For culture under condition B, the reduction in gene expression was less, and culture under condition C resulted in gene expression levels similar to those under condition A: this indicates that 24 h at 37 °C is sufficient to re-equilibrate gene expression levels from those in islets cultured at 22 °C to those in islets cultured at 37 °C. Results were consistent among the preparations from the three donors. Culture of porcine islets at 37 °C provides benefits over culture at 22 °C with respect to OCR/DNA outcomes and reduced expression of genes encoding lymphocyte markers, lymphokines and chemokines, and markers for apoptosis and stress. © 2013 John Wiley & Sons A/S.
DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species.
Yu, Min; Jiao, Lichao; Guo, Juan; Wiedenhoeft, Alex C; He, Tuo; Jiang, Xiaomei; Yin, Yafang
2017-12-01
ITS2+ trnH - psbA was the best combination of DNA barcode to resolve the Dalbergia wood species studied. We demonstrate the feasibility of building a DNA barcode reference database using xylarium wood specimens. The increase in illegal logging and timber trade of CITES-listed tropical species necessitates the development of unambiguous identification methods at the species level. For these methods to be fully functional and deployable for law enforcement, they must work using wood or wood products. DNA barcoding of wood has been promoted as a promising tool for species identification; however, the main barrier to extensive application of DNA barcoding to wood is the lack of a comprehensive and reliable DNA reference library of barcodes from wood. In this study, xylarium wood specimens of nine Dalbergia species were selected from the Wood Collection of the Chinese Academy of Forestry and DNA was then extracted from them for further PCR amplification of eight potential DNA barcode sequences (ITS2, matK, trnL, trnH-psbA, trnV-trnM1, trnV-trnM2, trnC-petN, and trnS-trnG). The barcodes were tested singly and in combination for species-level discrimination ability by tree-based [neighbor-joining (NJ)] and distance-based (TaxonDNA) methods. We found that the discrimination ability of DNA barcodes in combination was higher than any single DNA marker among the Dalbergia species studied, with the best two-marker combination of ITS2+trnH-psbA analyzed with NJ trees performing the best (100% accuracy). These barcodes are relatively short regions (<350 bp) and amplification reactions were performed with high success (≥90%) using wood as the source material, a necessary factor to apply DNA barcoding to timber trade. The present results demonstrate the feasibility of using vouchered xylarium specimens to build DNA barcoding reference databases.
Gupta, Sandeep K; Thangaraj, Kumarasamy; Singh, Lalji
2006-07-01
The population of the Asian elephant is being dramatically reduced due to poaching of the ivory from the male. As poaching occurs in remote forests, it often takes weeks or longer for it to be discovered and it is therefore often very difficult to determine the sex of the decomposed body. Data suggest that in the recent past, over 2000 male elephants have been poached in South India. We have developed a technique based on molecular markers to determine that the carcass is an elephant and that it is a male. Using DNA sequence information from Genbank, we have developed two primer pairs: one for the mitochondrial DNA (mtDNA) and the other for the sex-determining region of Y chromosome (SRY) gene of the Indian elephant. After PCR amplification of known elephant DNA, we found that the mtDNA was common in both males and females, whereas the SRY-specific amplicon was observed only in the male.
Circulating Cell-free DNA for Metastatic Cervical Cancer Detection, Genotyping, and Monitoring.
Kang, Zhigang; Stevanović, Sanja; Hinrichs, Christian S; Cao, Liang
2017-11-15
Purpose: Circulating cell-free (ccf) human papillomavirus (HPV) DNA may serve as a unique tumor marker for HPV-associated malignancies, including cervical cancer. We developed a method to genotype and quantify circulating HPV DNA in patients with HPV16- or HPV18-positive metastatic cervical cancer for potential disease monitoring and treatment-related decision making. Experimental Design: In this retrospective study, HPV ccfDNA was measured in serum samples from 19 metastatic cervical cancer patients by duplex digital droplet PCR (ddPCR). Nine patients had received tumor-infiltrating lymphocyte (TIL) immunotherapy. ccfDNA data were aligned with the tumor HPV genotype, drug treatment, and clinical outcome. Results: In blinded tests, HPV ccfDNA was detected in 19 of 19 (100%) patients with HPV-positive metastatic cervical cancer but not in any of the 45 healthy blood donors. The HPV genotype harbored in the patients' tumors was correctly identified in 87 of 87 (100%) sequential patient serum samples from 9 patients who received TIL immunotherapy. In three patients who experienced objective cancer regression after TIL treatment, a transient HPV ccfDNA peak was detected 2-3 days after TIL infusion. Furthermore, persistent clearance of HPV ccfDNA was only observed in two patients who experienced complete response (CR) after TIL immunotherapy. Conclusions: HPV ccfDNA represents a promising tumor marker for noninvasive HPV genotyping and may be used in selecting patients for HPV type-specific T-cell-based immunotherapies. It may also have value in detecting antitumor activity of therapeutic agents and in the long-term follow-up of cervical cancer patients in remission. Clin Cancer Res; 23(22); 6856-62. ©2017 AACR . ©2017 American Association for Cancer Research.
Theory and modeling of particles with DNA-mediated interactions
NASA Astrophysics Data System (ADS)
Licata, Nicholas A.
In recent years significant attention has been attracted to proposals which utilize DNA for nanotechnological applications. Potential applications of these ideas range from the programmable self-assembly of colloidal crystals, to biosensors and nanoparticle based drug delivery platforms. In Chapter I we introduce the system, which generically consists of colloidal particles functionalized with specially designed DNA markers. The sequence of bases on the DNA markers determines the particle type. Due to the hybridization between complementary single-stranded DNA, specific, type-dependent interactions can be introduced between particles by choosing the appropriate DNA marker sequences. In Chapter II we develop a statistical mechanical description of the aggregation and melting behavior of particles with DNA-mediated interactions. A quantitative comparison between the theory and experiments is made by calculating the experimentally observed melting profile. In Chapter III a model is proposed to describe the dynamical departure and diffusion of particles which form reversible key-lock connections. The model predicts a crossover from localized to diffusive behavior. The random walk statistics for the particles' in plane diffusion is discussed. The lateral motion is analogous to dispersive transport in disordered semiconductors, ranging from standard diffusion with a renormalized diffusion coefficient to anomalous, subdiffusive behavior. In Chapter IV we propose a method to self-assemble nanoparticle clusters using DNA scaffolds. An optimal concentration ratio is determined for the experimental implementation of our self-assembly proposal. A natural extension is discussed in Chapter V, the programmable self-assembly of nanoparticle clusters where the desired cluster geometry is encoded using DNA-mediated interactions. We determine the probability that the system self-assembles the desired cluster geometry, and discuss the connections to jamming in granular and colloidal systems. In Chapter VI we consider a nanoparticle based drug delivery platform for targeted, cell specific chemotherapy. A key-lock model is proposed to describe the results of in-vitro experiments, and the situation in-vivo is discussed. The cooperative binding, and hence the specificity to cancerous cells, is kinetically limited. The implications for optimizing the design of nanoparticle based drug delivery platforms is discussed. In Chapter VII we present prospects for future research: the connection between DNA-mediated colloidal crystallization and jamming, and the inverse problem in self-assembly.
Self-reported smoking, serum cotinine, and blood DNA methylation.
Zhang, Yan; Florath, Ines; Saum, Kai-Uwe; Brenner, Hermann
2016-04-01
Epigenome-wide profiling of DNA methylation pattern with respect to tobacco smoking has given rise to a new measure of smoking exposure. We investigated the relationships of methylation markers with both cotinine, an established marker of internal smoking exposure, and self-reported smoking. Blood DNA methylation levels across the genome and serum cotinine were measured in 1000 older adults aged 50-75 years. Epigenome-wide scans were performed to identify methylation markers associated with cotinine. The inter-dose-response relationships between the number of cigarettes smoked per day, cotinine concentration, and DNA methylation were modeled by restricted cubic spline regression. Of 61 CpGs that passed the genome-wide significance threshold (p<1.13×10(-7)), 40 CpGs in 25 chromosomal regions were successfully replicated, showing 0.2-3% demethylation per 10ng/ml increases in cotinine. The strongest associations were observed for several loci at AHRR, F2RL3, 2q37.1, 6p21.33, and GFI1 that were previously identified to be related to self-reported smoking. One locus at RAB34 was newly discovered. Both cotinine and methylation markers exhibited non-linear relationships with the number of cigarettes smoked per day, where the highest rates of increase in cotinine and decreases in methylation were observed at low smoking intensity (1-15 cigarettes/day) and plateaued at high smoking intensity (>15-20 cigarettes/day). A clear linear relationship was observed between cotinine concentration and methylation level. Both cotinine and methylation markers showed similar accuracy in distinguishing current from never smoker, but only methylation markers distinguished former from never smoker with high accuracy. Our study corroborates and expands the list of smoking-associated DNA methylation markers. Methylation levels were linearly related to cotinine concentration and provided accurate measures for both current and past smoking exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
2012-01-01
Background Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. Results An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. Conclusions The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison. PMID:22908993
Maturation of the developing human fetal prostate in a rodent xenograft model
Saffarini, Camelia M.; McDonnell, Elizabeth V.; Amin, Ali; Spade, Daniel J.; Huse, Susan M.; Kostadinov, Stefan; Hall, Susan J.; Boekelheide, Kim
2015-01-01
Background Prostate cancer is the most commonly diagnosed non-skin cancer in men. The etiology of prostate cancer is unknown, although both animal and epidemiologic data suggest that early life exposures to various toxicants, may impact DNA methylation status during development, playing an important role. Methods We have developed a xenograft model to characterize the growth and differentiation of human fetal prostate implants (gestational age 12-24 weeks) that can provide new data on the potential role of early life stressors on prostate cancer. The expression of key immunohistochemical markers responsible for prostate maturation was evaluated, including p63, cytokeratin 18, α-smooth muscle actin, vimentin, caldesmon, Ki-67, prostate specific antigen, estrogen receptor-α, and androgen receptor. Xenografts were separated into epithelial and stromal compartments using laser capture microdissection (LCM), and the DNA methylation status was assessed in >480,000 CpG sites throughout the genome. Results Xenografts demonstrated growth and maturation throughout the 200 days of post-implantation evaluation. DNA methylation profiles of laser capture micro-dissected tissue demonstrated tissue-specific markers clustered by their location in either the epithelium or stroma of human prostate tissue. Differential methylated promoter region CpG-associated gene analysis revealed significantly more stromal than epithelial DNA methylation in the 30 and 90-day xenografts. Functional classification analysis identified CpG-related gene clusters in methylated epithelial and stromal human xenografts. Conclusion This study of human fetal prostate tissue establishes a xenograft model that demonstrates dynamic growth and maturation, allowing for future mechanistic studies of the developmental origins of later life proliferative prostate disease. PMID:24038131
Deep divergence and apparent sex-biased dispersal revealed by a Y-linked marker in rainbow trout
Brunelli, Joseph P.; Steele, Craig A.; Thorgaard, Gary H.
2010-01-01
Y-chromosome and mitochondrial DNA markers can reveal phylogenetic patterns by allowing tracking of male and female lineages, respectively. We used sequence data from a recently discovered Y-linked marker and a mitochondrial marker to examine phylogeographic structure in the widespread and economically important rainbow trout (Oncorhynchus mykiss). Two distinct geographic groupings that generally correspond to coastal and inland subspecies were evident within the Y marker network while the mtDNA haplotype network showed little geographic structure. Our results suggest that male-specific behavior has prevented widespread admixture of Y haplotypes and that gene flow between the coastal and inland subspecies has largely occurred through females. This new Y marker may also aid conservation efforts by genetically identifying inland populations that have not hybridized with widely stocked coastal-derived hatchery fish. PMID:20546904
Wang, Wensheng; Zhao, Xiuqin; Pan, Yajiao; Zhu, Linghua; Fu, Binying; Li, Zhikang
2011-09-20
DNA methylation, one of the most important epigenetic phenomena, plays a vital role in tuning gene expression during plant development as well as in response to environmental stimuli. In the present study, a methylation-sensitive amplified polymorphism (MSAP) analysis was performed to profile DNA methylation changes in two contrasting rice genotypes under salt stress. Consistent with visibly different phenotypes in response to salt stress, epigenetic markers classified as stable inter-cultivar DNA methylation differences were determined between salt-tolerant FL478 and salt-sensitive IR29. In addition, most tissue-specific DNA methylation loci were conserved, while many of the growth stage-dependent DNA methylation loci were dynamic between the two genotypes. Strikingly, salt stress induced a decrease in DNA methylation specifically in roots at the seedling stage that was more profound in IR29 than in the FL478. This result may indicate that demethylation of genes is an active epigenetic response to salt stress in roots at the seedling stage, and helps to further elucidate the implications of DNA methylation in crop growth and development. Copyright © 2011. Published by Elsevier Ltd.
Translational genomics for analysis of complex traits in peanut and sorghum
USDA-ARS?s Scientific Manuscript database
The integration of sequencing and genotype data from natural variation studies (by whole genome resequencing [wgs] or genotype by sequencing [gbs]), transcriptome (RNA-seq) and mutant analysis (also by wgs) facilitated the development of DNA markers in the form of single nucleotide polymorphic (SNP)...
What is in your cup of tea? DNA Verity Test to characterize black and green commercial teas
Comparone, Maria; Di Maio, Antonietta; Del Guacchio, Emanuele; Menale, Bruno; Troisi, Jacopo; Aliberti, Francesco
2017-01-01
In this study, we used several molecular techniques to develop a fast and reliable protocol (DNA Verity Test, DVT) for the characterization and confirmation of the species or taxa present in herbal infusions. As a model plant for this protocol, Camellia sinensis, a traditional tea plant, was selected due to the following reasons: its historical popularity as a (healthy) beverage, its high selling value, the importation of barely recognizable raw product (i.e., crushed), and the scarcity of studies concerning adulterants or contamination. The DNA Verity Test includes both the sequencing of DNA barcoding markers and genotyping of labeled-PCR DNA barcoding fragments for each sample analyzed. This protocol (DVT) was successively applied to verify the authenticity of 32 commercial teas (simple or admixture), and the main results can be summarized as follows: (1) the DVT protocol is suitable to detect adulteration in tea matrices (contaminations or absence of certified ingredients), and the method can be exported for the study of other similar systems; (2) based on the BLAST analysis of the sequences of rbcL+matK±rps7-trnV(GAC) chloroplast markers, C. sinensis can be taxonomically characterized; (3) rps7-trnV(GAC) can be employed to discriminate C. sinensis from C. pubicosta; (4) ITS2 is not an ideal DNA barcode for tea samples, reflecting potential incomplete lineage sorting and hybridization/introgression phenomena in C. sinensis taxa; (5) the genotyping approach is an easy, inexpensive and rapid pre-screening method to detect anomalies in the tea templates using the trnH(GUG)-psbA barcoding marker; (6) two herbal companies provided no authentic products with a contaminant or without some of the listed ingredients; and (7) the leaf matrices present in some teabags could be constituted using an admixture of different C. sinensis haplotypes and/or allied species (C. pubicosta). PMID:28542606
Randomly amplified polymorphic DNA linkage relationships in different Norway spruce populations
M. Troggio; Thomas L. Kubisiak; G. Bucci; P. Menozzi
2001-01-01
We tested the constancy of linkage relationships of randomly amplified polymorphic DNA (RAPD) marker loci used to construct a population-based consensus map in material from an Italian stand of Picea abies (L.) Karst. in 29 individuals from three Norwegian populations. Thirteen marker loci linked in the Italian stand did show a consistent locus...
[cDNA library construction from panicle meristem of finger millet].
Radchuk, V; Pirko, Ia V; Isaenkov, S V; Emets, A I; Blium, Ia B
2014-01-01
The protocol for production of full-size cDNA using SuperScript Full-Length cDNA Library Construction Kit II (Invitrogen) was tested and high quality cDNA library from meristematic tissue of finger millet panicle (Eleusine coracana (L.) Gaertn) was created. The titer of obtained cDNA library comprised 3.01 x 10(5) CFU/ml in avarage. In average the length of cDNA insertion consisted about 1070 base pairs, the effectivity of cDNA fragment insertions--99.5%. The selective sequencing of cDNA clones from created library was performed. The sequences of cDNA clones were identified with usage of BLAST-search. The results of cDNA library analysis and selective sequencing represents prove good functionality and full length character of inserted cDNA clones. Obtained cDNA library from meristematic tissue of finger millet panicle represents good and valuable source for isolation and identification of key genes regulating metabolism and meristematic development and for mining of new molecular markers to conduct out high quality genetic investigations and molecular breeding as well.
Spiked GBS: A unified, open platform for single marker genotyping and whole-genome profiling
USDA-ARS?s Scientific Manuscript database
In plant breeding, there are two primary applications for DNA markers in selection: 1) selection of known genes using a single marker assay (marker-assisted selection; MAS); and 2) whole-genome profiling and prediction (genomic selection; GS). Typically, marker platforms have addressed only one of t...
Şakalar, Çağrı; Kuk, Salih; Erensoy, Ahmet; Dağli, Adile Ferda; Özercan, İbrahim Hanifi; Çetınkaya, Ülfet; Yazar, Süleyman
2014-01-01
To develop a novel polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) protocol using a new genomic marker sequence and a novel set of restriction enzymes in order to detect and discriminate 2 Echinococcus species, E. granulosus and E. multilocularis, found in formalin-fixed paraffin-embedded (FFPE) human tissues. DNA was isolated from 11 FFPE human tissue samples positive for cystic echinococcosis or alveolar echinococcosis. A mitochondrial genomic marker region was amplified and sequenced using a novel primer pair and a new PCR-RFLP protocol was developed for the detection and discrimination of E. granulosus and E. multilocularis using a set of restriction enzymes including AccI, MboI, MboII, and TsoI. The selected marker region was amplified using DNA isolated from FFPE human tissue samples positive for cystic echinococcosis or alveolar echinococcosis and the discrimination of E. granulosus and E. multilocularis was accomplished by use of the novel PCR-RFLP method. In this PCR-RFLP protocol, use of any single restriction enzyme is enough for the discrimination of E. granulosus and E. multilocularis. The PCR-RFLP protocol can be potentially used for the discrimination of 5 other Echinococcus species: E. oligarthus, E. shiquicus, E. ortleppi, E. canadensis, and E. vogeli.
Kim, Hyun-Joong; Ryu, Ji-Oh; Song, Ji-Yeon; Kim, Hae-Yeong
2017-07-01
In the detection of Shigella species using molecular biological methods, previously known genetic markers for Shigella species were not sufficient to discriminate between Shigella species and diarrheagenic Escherichia coli. The purposes of this study were to screen for genetic markers of the Shigella genus and four Shigella species through comparative genomics and develop a multiplex polymerase chain reaction (PCR) for the detection of shigellae and Shigella species. A total of seven genomic DNA sequences from Shigella species were subjected to comparative genomics for the screening of genetic markers of shigellae and each Shigella species. The primer sets were designed from the screened genetic markers and evaluated using PCR with genomic DNAs from Shigella and other bacterial strains in Enterobacteriaceae. A novel Shigella quintuplex PCR, designed for the detection of Shigella genus, S. dysenteriae, S. boydii, S. flexneri, and S. sonnei, was developed from the evaluated primer sets, and its performance was demonstrated with specifically amplified results from each Shigella species. This Shigella multiplex PCR is the first to be reported with novel genetic markers developed through comparative genomics and may be a useful tool for the accurate detection of the Shigella genus and species from closely related bacteria in clinical microbiology and food safety.
King, Timothy L.; Eackles, Michael S.; Garner, B. A.; van Tuinen, M.; Arbogast, B. S.
2015-01-01
The hermaphroditic flat-spired three-tooth land snail (Triodopsis platysayoides) is endemic to a 21-km stretch of the Cheat River Gorge of northeastern West Virginia, USA. We document isolation and characterization of ten microsatellite DNA markers in this at-risk species. The markers displayed a moderate level of allelic diversity (averaging 7.1 alleles/locus) and heterozygosity (averaging 58.6 %). Allelic diversity at seven loci was sufficient to produce unique multilocus genotypes; no indication of selfing was detected in this cosexual species. Minimal deviations from Hardy–Weinberg equilibrium and no linkage disequilibrium were observed within subpopulations. All loci deviated from Hardy–Weinberg expectations when individuals from subpopulations were pooled. Microsatellite markers developed for T. platysayoides yielded sufficient genetic diversity to (1) distinguish all individuals sampled and the level of selfing; (2) be appropriate for addressing fine-scale population structuring; (3) provide novel demographic insights for the species; and (4) cross-amplify and detect allelic diversity in the congeneric T. juxtidens.
Pickard, Dawn
2007-01-01
We have developed experiments and materials to model human genetics using rapid cycling Brassica rapa, also known as Fast Plants. Because of their self-incompatibility for pollination and the genetic diversity within strains, B. rapa can serve as a relevant model for human genetics in teaching laboratory experiments. The experiment presented here is a paternity exclusion project in which a child is born with a known mother but two possible alleged fathers. Students use DNA markers (microsatellites) to perform paternity exclusion on these subjects. Realistic DNA marker analysis can be challenging to implement within the limitations of an instructional lab, but we have optimized the experimental methods to work in a teaching lab environment and to maximize the “hands-on” experience for the students. The genetic individuality of each B. rapa plant, revealed by analysis of polymorphic microsatellite markers, means that each time students perform this project, they obtain unique results that foster independent thinking in the process of data interpretation. PMID:17548880
Watanabe, Yoshiyuki; Kim, Hyun Soo; Castoro, Ryan J.; Chung, Woonbok; Estecio, Marcos R. H.; Kondo, Kimie; Guo, Yi; Ahmed, Saira S.; Toyota, Minoru; Itoh, Fumio; Suk, Ki Tae; Cho, Mee-Yon; Shen, Lanlan; Jelinek, Jaroslav; Issa, Jean-Pierre J.
2009-01-01
Background & Aims Aberrant DNA methylation is an early and frequent process in gastric carcinogenesis and could be useful for detection of gastric neoplasia. We hypothesized that methylation analysis of DNA recovered from gastric washes could be used to detect gastric cancer. Methods We studied 51 candidate genes in 7 gastric cancer cell lines and 24 samples (training set) and identified 6 for further studies. We examined the methylation status of these genes in a test set consisting of 131 gastric neoplasias at various stages. Finally, we validated the 6 candidate genes in a different population of 40 primary gastric cancer samples and 113 non-neoplastic gastric mucosa samples. Results 6 genes (MINT25, RORA, GDNF, ADAM23, PRDM5, MLF1) showed frequent differential methylation between gastric cancer and normal mucosa in the training, test and validation sets. GDNF and MINT25 were most sensitive molecular markers of early stage gastric cancer while PRDM5 and MLF1 were markers of a field defect. There was a close correlation (r=0.5 to 0.9, p=0.03 to 0.001) between methylation levels in tumor biopsy and gastric washes. MINT25 methylation had the best sensitivity (90%), specificity (96%), and area under the ROC curve (0.961) in terms of tumor detection in gastric washes. Conclusions These findings suggest MINT25 is a sensitive and specific marker for screening in gastric cancer. Additionally we have developed a new methodology for gastric cancer detection by DNA methylation in gastric washes. PMID:19375421
An Alu-based, MGB Eclipse real-time PCR method for quantitation of human DNA in forensic samples.
Nicklas, Janice A; Buel, Eric
2005-09-01
The forensic community needs quick, reliable methods to quantitate human DNA in crime scene samples to replace the laborious and imprecise slot blot method. A real-time PCR based method has the possibility of allowing development of a faster and more quantitative assay. Alu sequences are primate-specific and are found in many copies in the human genome, making these sequences an excellent target or marker for human DNA. This paper describes the development of a real-time Alu sequence-based assay using MGB Eclipse primers and probes. The advantages of this assay are simplicity, speed, less hands-on-time and automated quantitation, as well as a large dynamic range (128 ng/microL to 0.5 pg/microL).
A ranking index for quality assessment of forensic DNA profiles forensic DNA profiles
2010-01-01
Background Assessment of DNA profile quality is vital in forensic DNA analysis, both in order to determine the evidentiary value of DNA results and to compare the performance of different DNA analysis protocols. Generally the quality assessment is performed through manual examination of the DNA profiles based on empirical knowledge, or by comparing the intensities (allelic peak heights) of the capillary electrophoresis electropherograms. Results We recently developed a ranking index for unbiased and quantitative quality assessment of forensic DNA profiles, the forensic DNA profile index (FI) (Hedman et al. Improved forensic DNA analysis through the use of alternative DNA polymerases and statistical modeling of DNA profiles, Biotechniques 47 (2009) 951-958). FI uses electropherogram data to combine the intensities of the allelic peaks with the balances within and between loci, using Principal Components Analysis. Here we present the construction of FI. We explain the mathematical and statistical methodologies used and present details about the applied data reduction method. Thereby we show how to adapt the ranking index for any Short Tandem Repeat-based forensic DNA typing system through validation against a manual grading scale and calibration against a specific set of DNA profiles. Conclusions The developed tool provides unbiased quality assessment of forensic DNA profiles. It can be applied for any DNA profiling system based on Short Tandem Repeat markers. Apart from crime related DNA analysis, FI can therefore be used as a quality tool in paternal or familial testing as well as in disaster victim identification. PMID:21062433
Mechanisms of double-strand-break repair during gene targeting in mammalian cells.
Ng, P; Baker, M D
1999-01-01
In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism. PMID:10049929
Liang, Ling-Bo; Zhu, Xia; Yan, Li-Bo; Du, Ling-Yao; Liu, Cong; Liao, Juan; Tang, Hong
2016-11-01
The aim of this study was to determine the role of baseline hepatitis B virus (HBV) forming covalently closed circular DNA (HBV cccDNA) in liver inflammation in patients infected with HBV with serum alanine aminotransferase (ALT) levels under two times the upper limit of normal (2×ULN). After liver biopsy and serum virological and biochemical marker screening, patients diagnosed with chronic HBV infection with serum ALT levels under 2×ULN and histological liver inflammation of less than grade G2 were prospectively recruited into this study. Recruitment took place between March 2009 and November 2010 at the Center of Infectious Disease, Sichuan University. Patient virological and biochemical markers, as well as markers of liver inflammation, were monitored. A total of 102 patients were recruited and 68 met the inclusion criteria; the median follow-up was 4.1 years (range 3.9-5.2 years). During follow-up, 41 patients (60.3%) exhibited signs of inflammation. Baseline HBV cccDNA >1 copy/cell (odds ratio 9.43, p=0.049) and liver inflammation grade ≥G1 (odds ratio 5.77, p=0.046) were both independent predictors of liver inflammation. A higher baseline intrahepatic HBV cccDNA level may increase the risk of liver inflammation. Further investigations will be required to validate HBV cccDNA as an intrahepatic virological marker of patients who require extended outpatient management. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Most melon (Cucumis melo L.) breeding lines in South Korea display andromonoecious sex expression (i.e., possessing both bisexual and male flowers on the same plant), which, in turn, necessitates laborious hand emasculation during F1 hybrid seed production. Thus, there is a need to develop monoecio...
Alterations in mtDNA, gastric carcinogenesis and early diagnosis.
Rodrigues-Antunes, S; Borges, B N
2018-05-26
Gastric cancer remains one of the most prevalent cancers in the world. Due to this, efforts are being made to improve the diagnosis of this neoplasm and the search for molecular markers that may be involved in its genesis. Within this perspective, the mitochondrial DNA is considered as a potential candidate, since it has several well documented changes and is readily accessible. However, numerous alterations have been reported in mtDNA, not facilitating the visualization of which alterations and molecular markers are truly involved with gastric carcinogenesis. This review presents a compilation of the main known changes relating mtDNA to gastric cancer and their clinical significance.
A non-invasive technique for rapid extraction of DNA from fish scales.
Kumar, Ravindra; Singh, Poonam Jayant; Nagpure, N S; Kushwaha, Basdeo; Srivastava, S K; Lakra, W S
2007-11-01
DNA markers are being increasingly used in studies related to population genetics and conservation biology of endangered species. DNA isolation for such studies requires a source of biological material that is easy to collect, non-bulky and reliable. Further, the sampling strategies based on non-invasive procedures are desirable, especially for the endangered fish species. In view of above, a rapid DNA extraction method from fish scales has been developed with the use of a modified lysis buffer that require about 2 hr duration. This methodology is non-invasive, less expensive and reproducible with high efficiency of DNA recovery. The DNA extracted by this technique, have been found suitable for performing restriction enzyme digestion and PCR amplification. Therefore, the present DNA extraction procedure can be used as an alternative technique in population genetic studies pertaining to endangered fish species. The technique was also found equally effective for DNA isolation from fresh, dried and ethanol preserved scales.
Halter, Mathew C; Zahn, James A
2017-02-01
White biotechnology has made a positive impact on the chemical industry by providing safer, more efficient chemical manufacturing processes that have reduced the use of toxic chemicals, harsh reaction conditions, and expensive metal catalysts, which has improved alignment with the principles of Green Chemistry. The genetically-modified (GM) biocatalysts that are utilized in these processes are typically separated from high-value products and then recycled, or eliminated. Elimination routes include disposal in sanitary landfills, incineration, use as a fuel, animal feed, or reuse as an agricultural soil amendment or other value-added products. Elimination routes that have the potential to impact the food chain or environment have been more heavily scrutinized for the fate and persistence of biological products. In this study, we developed and optimized a method for monitoring the degradation of strain-specific DNA markers from a genetically-modified organism (GMO) used for the commercial production of 1,3-propanediol. Laboratory and field tests showed that a marker for heterologous DNA in the GM organism was no longer detectable by end-point polymerase chain reaction (PCR) after 14 days. The half-life of heterologous DNA was increased by 17% (from 42.4 to 49.7 h) after sterilization of the soil from a field plot, which indicated that abiotic factors were important in degradation of DNA under field conditions. There was no evidence for horizontal transfer of DNA target sequences from the GMO to viable organisms present in the soil.
Beaudet, Denis; Nadimi, Maryam; Iffis, Bachir; Hijri, Mohamed
2013-01-01
Arbuscular mycorrhizal fungi (AMF) are common and important plant symbionts. They have coenocytic hyphae and form multinucleated spores. The nuclear genome of AMF is polymorphic and its organization is not well understood, which makes the development of reliable molecular markers challenging. In stark contrast, their mitochondrial genome (mtDNA) is homogeneous. To assess the intra- and inter-specific mitochondrial variability in closely related Glomus species, we performed 454 sequencing on total genomic DNA of Glomus sp. isolate DAOM-229456 and we compared its mtDNA with two G. irregulare isolates. We found that the mtDNA of Glomus sp. is homogeneous, identical in gene order and, with respect to the sequences of coding regions, almost identical to G. irregulare. However, certain genomic regions vary substantially, due to insertions/deletions of elements such as introns, mitochondrial plasmid-like DNA polymerase genes and mobile open reading frames. We found no evidence of mitochondrial or cytoplasmic plasmids in Glomus species, and mobile ORFs in Glomus are responsible for the formation of four gene hybrids in atp6, atp9, cox2, and nad3, which are most probably the result of horizontal gene transfer and are expressed at the mRNA level. We found evidence for substantial sequence variation in defined regions of mtDNA, even among closely related isolates with otherwise identical coding gene sequences. This variation makes it possible to design reliable intra- and inter-specific markers. PMID:23637766
Beaudet, Denis; Nadimi, Maryam; Iffis, Bachir; Hijri, Mohamed
2013-01-01
Arbuscular mycorrhizal fungi (AMF) are common and important plant symbionts. They have coenocytic hyphae and form multinucleated spores. The nuclear genome of AMF is polymorphic and its organization is not well understood, which makes the development of reliable molecular markers challenging. In stark contrast, their mitochondrial genome (mtDNA) is homogeneous. To assess the intra- and inter-specific mitochondrial variability in closely related Glomus species, we performed 454 sequencing on total genomic DNA of Glomus sp. isolate DAOM-229456 and we compared its mtDNA with two G. irregulare isolates. We found that the mtDNA of Glomus sp. is homogeneous, identical in gene order and, with respect to the sequences of coding regions, almost identical to G. irregulare. However, certain genomic regions vary substantially, due to insertions/deletions of elements such as introns, mitochondrial plasmid-like DNA polymerase genes and mobile open reading frames. We found no evidence of mitochondrial or cytoplasmic plasmids in Glomus species, and mobile ORFs in Glomus are responsible for the formation of four gene hybrids in atp6, atp9, cox2, and nad3, which are most probably the result of horizontal gene transfer and are expressed at the mRNA level. We found evidence for substantial sequence variation in defined regions of mtDNA, even among closely related isolates with otherwise identical coding gene sequences. This variation makes it possible to design reliable intra- and inter-specific markers.
Rathore, Mangal S; Jha, Bhavanath
2016-03-01
The present investigation aimed to evaluate the degree and pattern of DNA methylation using methylation-sensitive AFLP (MS-AFLP) markers in genetically stable in vitro regenerates of Jatropha curcas L.. The genetically stable in vitro regenerates were raised through direct organogenesis via enhanced axillary shoot bud proliferation (Protocol-1) and in vitro-derived leaf regeneration (Protocol-2). Ten selective combinations of MS-AFLP primers produced 462 and 477 MS-AFLP bands in Protocol-1 (P-1) and Protocol-2 (P-2) regenerates, respectively. In P-1 regenerates, 15.8-31.17 % DNA was found methylated with an average of 25.24 %. In P-2 regenerates, 15.93-32.7 % DNA was found methylated with an average of 24.11 %. Using MS-AFLP in P-1 and P-2 regenerates, 11.52-25.53 % and 13.33-25.47 % polymorphism in methylated DNA was reported, respectively. Compared to the mother plant, P-1 regenerates showed hyper-methylation while P-2 showed hypo-methylation. The results clearly indicated alternation in degree and pattern of DNA methylation; hence, epigenetic instability in the genetically stable in vitro regenerates of J. curcas, developed so far using two different regeneration systems and explants of two different origins. The homologous nucleotide fragments in genomes of P-1 and P-2 regenerates showing methylation re-patterning might be involved in immediate adaptive responses and developmental processes through differential regulation of transcriptome under in vitro conditions.
Development of a method for detection and quantification of B. brongniartii and B. bassiana in soil
NASA Astrophysics Data System (ADS)
Canfora, L.; Malusà, E.; Tkaczuk, C.; Tartanus, M.; Łabanowska, B. H.; Pinzari, F.
2016-03-01
A culture independent method based on qPCR was developed for the detection and quantification of two fungal inoculants in soil. The aim was to adapt a genotyping approach based on SSR (Simple Sequence Repeat) marker to a discriminating tracing of two different species of bioinoculants in soil, after their in-field release. Two entomopathogenic fungi, Beauveria bassiana and B. brongniartii, were traced and quantified in soil samples obtained from field trials. These two fungal species were used as biological agents in Poland to control Melolontha melolontha (European cockchafer), whose larvae live in soil menacing horticultural crops. Specificity of SSR markers was verified using controls consisting of: i) soil samples containing fungal spores of B. bassiana and B. brongniartii in known dilutions; ii) the DNA of the fungal microorganisms; iii) soil samples singly inoculated with each fungus species. An initial evaluation of the protocol was performed with analyses of soil DNA and mycelial DNA. Further, the simultaneous detection and quantification of B. bassiana and B. brongniartii in soil was achieved in field samples after application of the bio-inoculants. The protocol can be considered as a relatively low cost solution for the detection, identification and traceability of fungal bio-inoculants in soil.
Doh, Eui Jeong; Paek, Seung-Ho; Lee, Guemsan; Lee, Mi-Young; Oh, Seung-Eun
2016-01-01
Several Artemisia species are used as herbal medicines including the dried aerial parts of Artemisia capillaris, which are used as Artemisiae Capillaris Herba (known as “Injinho” in Korean medicinal terminology and “Yin Chen Hao” in Chinese). In this study, we developed tools for distinguishing between A. capillaris and 11 other Artemisia species that grow and/or are cultured in China, Japan, and Korea. Based on partial nucleotide sequences in the internal transcribed spacer (ITS) that differ between the species, we designed primers to amplify a DNA marker for A. capillaris. In addition, to detect other Artemisia species that are contaminants of A. capillaris, we designed primers to amplify DNA markers of A. japonica, A. annua, A. apiacea, and A. anomala. Moreover, based on random amplified polymorphic DNA analysis, we confirmed that primers developed in a previous study could be used to identify Artemisia species that are sources of Artemisiae Argyi Folium and Artemisiae Iwayomogii Herba. By using these primers, we found that multiplex polymerase chain reaction (PCR) was a reliable tool to distinguish between A. capillaris and other Artemisia species and to identify other Artemisia species as contaminants of A. capillaris in a single PCR. PMID:27313651
Development of a method for detection and quantification of B. brongniartii and B. bassiana in soil
Canfora, L.; Malusà, E.; Tkaczuk, C.; Tartanus, M.; Łabanowska, B.H.; Pinzari, F.
2016-01-01
A culture independent method based on qPCR was developed for the detection and quantification of two fungal inoculants in soil. The aim was to adapt a genotyping approach based on SSR (Simple Sequence Repeat) marker to a discriminating tracing of two different species of bioinoculants in soil, after their in-field release. Two entomopathogenic fungi, Beauveria bassiana and B. brongniartii, were traced and quantified in soil samples obtained from field trials. These two fungal species were used as biological agents in Poland to control Melolontha melolontha (European cockchafer), whose larvae live in soil menacing horticultural crops. Specificity of SSR markers was verified using controls consisting of: i) soil samples containing fungal spores of B. bassiana and B. brongniartii in known dilutions; ii) the DNA of the fungal microorganisms; iii) soil samples singly inoculated with each fungus species. An initial evaluation of the protocol was performed with analyses of soil DNA and mycelial DNA. Further, the simultaneous detection and quantification of B. bassiana and B. brongniartii in soil was achieved in field samples after application of the bio-inoculants. The protocol can be considered as a relatively low cost solution for the detection, identification and traceability of fungal bio-inoculants in soil. PMID:26975931
Asano, Kenji; Kobayashi, Akira; Tsuda, Shogo; Nishinaka, Mio; Tamiya, Seiji
2012-06-01
One of major objectives of crop breeding is conferring resistance to diseases and pests. However, large-scale phenotypic evaluation for many diseases and pests is difficult because strict controls are required to prevent their spread. Detection of disease resistance genes by using DNA markers may be an alternative approach to select potentially resistant accessions. Potato (Solanum tuberosum L.) breeders in Japan extensively use resistance gene H1, which confers nearly absolute resistance to potato cyst nematode (Globodera rostochiensis) pathotype Ro1, the only pathotype found in Japan. However, considering the possibility of accidental introduction of the other pathotypes, breeding of resistant varieties is an important strategy to prevent infestation by non-invading pathotypes in Japan. In this study, to evaluate the prevalence of resistance genes in Japanese genetic resources, we developed a multiplex PCR method that simultaneously detects 3 resistance genes, H1, Gpa2 and Gro1-4. We revealed that many Japanese varieties possess not only H1 but Gpa2, which are potentially resistant to other pathotypes of potato cyst nematode. On the other hand, no genotype was found to have the Gro1-4, indicating importance of introduction of varieties having Gro1-4. Our results demonstrate the applicability of DNA-marker assisted evaluation of resistant potato genotypes without phenotypic evaluation.
Asano, Kenji; Kobayashi, Akira; Tsuda, Shogo; Nishinaka, Mio; Tamiya, Seiji
2012-01-01
One of major objectives of crop breeding is conferring resistance to diseases and pests. However, large-scale phenotypic evaluation for many diseases and pests is difficult because strict controls are required to prevent their spread. Detection of disease resistance genes by using DNA markers may be an alternative approach to select potentially resistant accessions. Potato (Solanum tuberosum L.) breeders in Japan extensively use resistance gene H1, which confers nearly absolute resistance to potato cyst nematode (Globodera rostochiensis) pathotype Ro1, the only pathotype found in Japan. However, considering the possibility of accidental introduction of the other pathotypes, breeding of resistant varieties is an important strategy to prevent infestation by non-invading pathotypes in Japan. In this study, to evaluate the prevalence of resistance genes in Japanese genetic resources, we developed a multiplex PCR method that simultaneously detects 3 resistance genes, H1, Gpa2 and Gro1-4. We revealed that many Japanese varieties possess not only H1 but Gpa2, which are potentially resistant to other pathotypes of potato cyst nematode. On the other hand, no genotype was found to have the Gro1-4, indicating importance of introduction of varieties having Gro1-4. Our results demonstrate the applicability of DNA-marker assisted evaluation of resistant potato genotypes without phenotypic evaluation. PMID:23136525
Liu, Liqin; Luo, Qiaoling; Teng, Wan; Li, Bin; Li, Hongwei; Li, Yiwen; Li, Zhensheng; Zheng, Qi
2018-05-01
Based on SLAF-seq, 67 Thinopyrum ponticum-specific markers and eight Th. ponticum-specific FISH probes were developed, and these markers and probes could be used for detection of alien chromatin in a wheat background. Decaploid Thinopyrum ponticum (2n = 10x = 70) is a valuable gene reservoir for wheat improvement. Identification of Th. ponticum introgression would facilitate its transfer into diverse wheat genetic backgrounds and its practical utilization in wheat improvement. Based on specific-locus-amplified fragment sequencing (SLAF-seq) technology, 67 new Th. ponticum-specific molecular markers and eight Th. ponticum-specific fluorescence in situ hybridization (FISH) probes have been developed from a tiny wheat-Th. ponticum translocation line. These newly developed molecular markers allowed the detection of Th. ponticum DNA in a variety of materials specifically and steadily at high throughput. According to the hybridization signal pattern, the eight Th. ponticum-specific probes could be divided into two groups. The first group including five dispersed repetitive sequence probes could identify Th. ponticum chromatin more sensitively and accurately than genomic in situ hybridization (GISH). Whereas the second group having three tandem repetitive sequence probes enabled the discrimination of Th. ponticum chromosomes together with another clone pAs1 in wheat-Th. ponticum partial amphiploid Xiaoyan 68.
Uniparental ancestry markers in Chilean populations
Vieira-Machado, Camilla Dutra; Tostes, Maluah; Alves, Gabrielle; Nazer, Julio; Martinez, Liliana; Wettig, Elisabeth; Pizarro Rivadeneira, Oscar; Diaz Caamaño, Marcela; Larenas Ascui, Jessica; Pavez, Pedro; Dutra, Maria da Graça; Castilla, Eduardo Enrique; Orioli, Ieda Maria
2016-01-01
Abstract The presence of Native Americans, Europeans, and Africans has led to the development of a multi-ethnic, admixed population in Chile. This study aimed to contribute to the characterization of the uniparental genetic structure of three Chilean regions. Newborns from seven hospitals in Independencia, Providencia, Santiago, Curicó, Cauquenes, Valdívia, and Puerto Montt communes, belonging to the Chilean regions of Santiago, Maule, and Los Lagos, were studied. The presence of Native American mitochondrial DNA (mtDNA) haplogroups and two markers present in the non-recombinant region of the Y chromosome, DYS199 and DYS287, indicative of Native American and African ancestry, respectively, was determined. A high Native American matrilineal contribution and a low Native American and African patrilineal contributions were found in all three studied regions. As previously found in Chilean admixed populations, the Native American matrilineal contribution was lower in Santiago than in the other studied regions. However, there was an unexpectedly higher contribution of Native American ancestry in one of the studied communes in Santiago, probably due to the high rate of immigration from other regions of the country. The population genetic sub-structure we detected in Santiago using few uniparental markers requires further confirmation, owing to possible stratification for autosomal and X-chromosome markers. PMID:27561109
Chen, En-Qiang; Feng, Shu; Wang, Meng-Lan; Liang, Ling-Bo; Zhou, Ling-Yun; Du, Ling-Yao; Yan, Li-Bo; Tao, Chuan-Min; Tang, Hong
2017-03-14
Recently, hepatitis B core-related antigen (HBcrAg) has been suggested as an additional marker of hepatitis B virus (HBV) infection. This study aimed to investigate whether serum quantitative HBcrAg (qHBcrAg) was a satisfactory surrogate marker of intrahepatic covalently closed circular DNA (cccDNA). A total of 139 patients with liver biopsy were enrolled, consisting of 59 patients in immune tolerance (IT) phase, 52 patients in immune clearance (IC) phase, 18 patients in low-replication (LR) phase, and 10 patients in reactivation phase. All patients in IC phase have received entecavir (ETV) therapy, and 32 of them undergone a second liver biopsy at 24 months. Among those patients, qHBcrAg was strongly correlated with intrahepatic cccDNA, which is superior to that of qHBsAg and HBV DNA. And similar findings were also observed in patients in IT, IC, LR and reactivation phases. Among the 32 ETV-treated patients with a second liver biopsy in IC phase, the decline of intrahepatic cccDNA was accompanied by changes in both qHBcrAg and qHBsAg. However, as compared to qHBsAg, the change of qHBcrAg was more strongly associated with intrahepatic cccDNA-decline. In summary, serum qHBcrAg should be a satisfactory surrogate of intrahepatic HBV cccDNA in CHB patients.
Varietal Tracing of Virgin Olive Oils Based on Plastid DNA Variation Profiling
Pérez-Jiménez, Marga; Besnard, Guillaume; Dorado, Gabriel; Hernandez, Pilar
2013-01-01
Olive oil traceability remains a challenge nowadays. DNA analysis is the preferred approach to an effective varietal identification, without any environmental influence. Specifically, olive organelle genomics is the most promising approach for setting up a suitable set of markers as they would not interfere with the pollinator variety DNA traces. Unfortunately, plastid DNA (cpDNA) variation of the cultivated olive has been reported to be low. This feature could be a limitation for the use of cpDNA polymorphisms in forensic analyses or oil traceability, but rare cpDNA haplotypes may be useful as they can help to efficiently discriminate some varieties. Recently, the sequencing of olive plastid genomes has allowed the generation of novel markers. In this study, the performance of cpDNA markers on olive oil matrices, and their applicability on commercial Protected Designation of Origin (PDO) oils were assessed. By using a combination of nine plastid loci (including multi-state microsatellites and short indels), it is possible to fingerprint six haplotypes (in 17 Spanish olive varieties), which can discriminate high-value commercialized cultivars with PDO. In particular, a rare haplotype was detected in genotypes used to produce a regional high-value commercial oil. We conclude that plastid haplotypes can help oil traceability in commercial PDO oils and set up an experimental methodology suitable for organelle polymorphism detection in the complex olive oil matrices. PMID:23950947
Microsatellite DNA capture from enriched libraries.
Gonzalez, Elena G; Zardoya, Rafael
2013-01-01
Microsatellites are DNA sequences of tandem repeats of one to six nucleotides, which are highly polymorphic, and thus the molecular markers of choice in many kinship, population genetic, and conservation studies. There have been significant technical improvements since the early methods for microsatellite isolation were developed, and today the most common procedures take advantage of the hybrid capture methods of enriched-targeted microsatellite DNA. Furthermore, recent advents in sequencing technologies (i.e., next-generation sequencing, NGS) have fostered the mining of microsatellite markers in non-model organisms, affording a cost-effective way of obtaining a large amount of sequence data potentially useful for loci characterization. The rapid improvements of NGS platforms together with the increase in available microsatellite information open new avenues to the understanding of the evolutionary forces that shape genetic structuring in wild populations. Here, we provide detailed methodological procedures for microsatellite isolation based on the screening of GT microsatellite-enriched libraries, either by cloning and Sanger sequencing of positive clones or by direct NGS. Guides for designing new species-specific primers and basic genotyping are also given.
Sun, Kun; Jiang, Peiyong; Chan, K. C. Allen; Wong, John; Cheng, Yvonne K. Y.; Liang, Raymond H. S.; Chan, Wai-kong; Ma, Edmond S. K.; Chan, Stephen L.; Cheng, Suk Hang; Chan, Rebecca W. Y.; Tong, Yu K.; Ng, Simon S. M.; Wong, Raymond S. M.; Hui, David S. C.; Leung, Tse Ngong; Leung, Tak Y.; Lai, Paul B. S.; Chiu, Rossa W. K.; Lo, Yuk Ming Dennis
2015-01-01
Plasma consists of DNA released from multiple tissues within the body. Using genome-wide bisulfite sequencing of plasma DNA and deconvolution of the sequencing data with reference to methylation profiles of different tissues, we developed a general approach for studying the major tissue contributors to the circulating DNA pool. We tested this method in pregnant women, patients with hepatocellular carcinoma, and subjects following bone marrow and liver transplantation. In most subjects, white blood cells were the predominant contributors to the circulating DNA pool. The placental contributions in the plasma of pregnant women correlated with the proportional contributions as revealed by fetal-specific genetic markers. The graft-derived contributions to the plasma in the transplant recipients correlated with those determined using donor-specific genetic markers. Patients with hepatocellular carcinoma showed elevated plasma DNA contributions from the liver, which correlated with measurements made using tumor-associated copy number aberrations. In hepatocellular carcinoma patients and in pregnant women exhibiting copy number aberrations in plasma, comparison of methylation deconvolution results using genomic regions with different copy number status pinpointed the tissue type responsible for the aberrations. In a pregnant woman diagnosed as having follicular lymphoma during pregnancy, methylation deconvolution indicated a grossly elevated contribution from B cells into the plasma DNA pool and localized B cells as the origin of the copy number aberrations observed in plasma. This method may serve as a powerful tool for assessing a wide range of physiological and pathological conditions based on the identification of perturbed proportional contributions of different tissues into plasma. PMID:26392541
Jones, D A; Prior, S L; Barry, J D; Caplin, S; Baxter, J N; Stephens, J W
2014-12-01
In the past 30 years, prevalence of obesity has almost trebled resulting in an increased incidence of type 2 diabetes mellitus and other co-morbidities. Visceral adipose tissue is believed to play a vital role, but underlying mechanisms remain unclear. Our aim was to investigate changes in markers of oxidative damage in human visceral adipose tissue to determine levels of oxidative burden that may be attributed to obesity and/or diabetes. Visceral adipose tissue samples from 61 subjects undergoing abdominal surgery grouped as lean, obese and obese with type 2 diabetes mellitus, were examined using 3 different markers of oxidative stress. Malondialdehyde (MDA) concentration was measured as a marker of lipid peroxidation, telomere length and Comet assay as markers of oxidative DNA damage. No significant difference in MDA concentration, telomere length and DNA damage was observed between groups, although longer telomere lengths were seen in the obese with diabetes group compared to the obese group (P<0.05). Lower MDA concentration and longer telomere length were seen in subjects with diabetes compared to those without (P<0.05). DNA damage, analysed via Comet assay, was significantly lower in subjects with diabetes compared to those without (P<0.05). A paradoxical decrease in oxidative stress and DNA damage was observed in samples from subjects with type 2 diabetes mellitus. Further work is required to investigate this further, however this phenomenon may be due to an up regulation of antioxidant defences in adipose tissue. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DNA polymorphisms at bermudagrass microsatellite loci and their use in genotype fingerprinting
USDA-ARS?s Scientific Manuscript database
The economically important, turf-type bermudagrasses include diploid Cynodon transvaalensis, tetraploid C. dactylon, and sterile triploid hybrids produced by crosses of these species. The objective of this study was to develop a set of microsatellite markers that could be used to distinguish among c...
Standardized Plant Disease Evaluations will Enhance Resistance Gene Discovery
USDA-ARS?s Scientific Manuscript database
Gene discovery and marker development using DNA based tools require plant populations with well-documented phenotypes. Related crops such as apples and pears may share a number of genes, for example resistance to common diseases, and data mining in one crop may reveal genes for the other. However, u...
The development of genomics applied to dairy breeding
USDA-ARS?s Scientific Manuscript database
Genomic selection (GS) has profoundly changed dairy cattle breeding in the last decade and can be defined as the use of genomic breeding values (GEBV) in selection programs. The GEBV is the sum of the effects of dense DNA markers across the whole genome, capturing all the quantitative trait loci (QT...
Construction of the first genetic linkage map of Japanese gentian (Gentianaceae)
2012-01-01
Background Japanese gentians (Gentiana triflora and Gentiana scabra) are amongst the most popular floricultural plants in Japan. However, genomic resources for Japanese gentians have not yet been developed, mainly because of the heterozygous genome structure conserved by outcrossing, the long juvenile period, and limited knowledge about the inheritance of important traits. In this study, we developed a genetic linkage map to improve breeding programs of Japanese gentians. Results Enriched simple sequence repeat (SSR) libraries from a G. triflora double haploid line yielded almost 20,000 clones using 454 pyrosequencing technology, 6.7% of which could be used to design SSR markers. To increase the number of molecular markers, we identified three putative long terminal repeat (LTR) sequences using the recently developed inter-primer binding site (iPBS) method. We also developed retrotransposon microsatellite amplified polymorphism (REMAP) markers combining retrotransposon and inter-simple sequence repeat (ISSR) markers. In addition to SSR and REMAP markers, modified amplified fragment length polymorphism (AFLP) and random amplification polymorphic DNA (RAPD) markers were developed. Using 93 BC1 progeny from G. scabra backcrossed with a G. triflora double haploid line, 19 linkage groups were constructed with a total of 263 markers (97 SSR, 97 AFLP, 39 RAPD, and 30 REMAP markers). One phenotypic trait (stem color) and 10 functional markers related to genes controlling flower color, flowering time and cold tolerance were assigned to the linkage map, confirming its utility. Conclusions This is the first reported genetic linkage map for Japanese gentians and for any species belonging to the family Gentianaceae. As demonstrated by mapping of functional markers and the stem color trait, our results will help to explain the genetic basis of agronomic important traits, and will be useful for marker-assisted selection in gentian breeding programs. Our map will also be an important resource for further genetic analyses such as mapping of quantitative trait loci and map-based cloning of genes in this species. PMID:23186361
Diversity arrays technology: a generic genome profiling technology on open platforms.
Kilian, Andrzej; Wenzl, Peter; Huttner, Eric; Carling, Jason; Xia, Ling; Blois, Hélène; Caig, Vanessa; Heller-Uszynska, Katarzyna; Jaccoud, Damian; Hopper, Colleen; Aschenbrenner-Kilian, Malgorzata; Evers, Margaret; Peng, Kaiman; Cayla, Cyril; Hok, Puthick; Uszynski, Grzegorz
2012-01-01
In the last 20 years, we have observed an exponential growth of the DNA sequence data and simular increase in the volume of DNA polymorphism data generated by numerous molecular marker technologies. Most of the investment, and therefore progress, concentrated on human genome and genomes of selected model species. Diversity Arrays Technology (DArT), developed over a decade ago, was among the first "democratizing" genotyping technologies, as its performance was primarily driven by the level of DNA sequence variation in the species rather than by the level of financial investment. DArT also proved more robust to genome size and ploidy-level differences among approximately 60 organisms for which DArT was developed to date compared to other high-throughput genotyping technologies. The success of DArT in a number of organisms, including a wide range of "orphan crops," can be attributed to the simplicity of underlying concepts: DArT combines genome complexity reduction methods enriching for genic regions with a highly parallel assay readout on a number of "open-access" microarray platforms. The quantitative nature of the assay enabled a number of applications in which allelic frequencies can be estimated from DArT arrays. A typical DArT assay tests for polymorphism tens of thousands of genomic loci with the final number of markers reported (hundreds to thousands) reflecting the level of DNA sequence variation in the tested loci. Detailed DArT methods, protocols, and a range of their application examples as well as DArT's evolution path are presented.
The Use of DNA Barcoding in Identification and Conservation of Rosewood (Dalbergia spp.)
Hartvig, Ida; Czako, Mihaly; Kjær, Erik Dahl; Nielsen, Lene Rostgaard; Theilade, Ida
2015-01-01
The genus Dalbergia contains many valuable timber species threatened by illegal logging and deforestation, but knowledge on distributions and threats is often limited and accurate species identification difficult. The aim of this study was to apply DNA barcoding methods to support conservation efforts of Dalbergia species in Indochina. We used the recommended rbcL, matK and ITS barcoding markers on 95 samples covering 31 species of Dalbergia, and tested their discrimination ability with both traditional distance-based as well as different model-based machine learning methods. We specifically tested whether the markers could be used to solve taxonomic confusion concerning the timber species Dalbergia oliveri, and to identify the CITES-listed Dalbergia cochinchinensis. We also applied the barcoding markers to 14 samples of unknown identity. In general, we found that the barcoding markers discriminated among Dalbergia species with high accuracy. We found that ITS yielded the single highest discrimination rate (100%), but due to difficulties in obtaining high-quality sequences from degraded material, the better overall choice for Dalbergia seems to be the standard rbcL+matK barcode, as this yielded discrimination rates close to 90% and amplified well. The distance-based method TaxonDNA showed the highest identification rates overall, although a more complete specimen sampling is needed to conclude on the best analytic method. We found strong support for a monophyletic Dalbergia oliveri and encourage that this name is used consistently in Indochina. The CITES-listed Dalbergia cochinchinensis was successfully identified, and a species-specific assay can be developed from the data generated in this study for the identification of illegally traded timber. We suggest that the use of DNA barcoding is integrated into the work flow during floristic studies and at national herbaria in the region, as this could significantly increase the number of identified specimens and improve knowledge about species distributions. PMID:26375850
Shcherbakov, V. P.; Plugina, L. A.; Kudryashova, E. A.
1995-01-01
Recombinational effects of the antimutator allele tsL42 of gene 43 of phage T4, encoding DNA polymerase, were studied in crosses between rIIB mutants. Recombination under tsL42-restricted conditions differed from the normal one in several respects: (1) basic recombination was enhanced, especially within very short distances; (2) mismatch repair tracts were shortened, while the contribution of mismatch repair to recombination was not changed; (3) marker interference at very short distances was augmented. We infer that the T4 DNA polymerase is directly involved in mismatch repair, performing both excision of a nonmatched single strand (by its 3' -> 5' exonuclease) and filling the resulting gap. A pathway for the mismatch repair was substantiated; it includes sequential action of endo VII (gp49) -> 3'->5' exonuclease (gp43) -> DNA polymerase (gp43) -> DNA ligase (gp30). It is argued that the marker interference at very short distances may result from the same sequence of events during the final processing of recombinational intermediates. PMID:7635281
The pPSU Plasmids for Generating DNA Molecular Weight Markers.
Henrici, Ryan C; Pecen, Turner J; Johnston, James L; Tan, Song
2017-05-26
Visualizing nucleic acids by gel electrophoresis is one of the most common techniques in molecular biology, and reference molecular weight markers or ladders are commonly used for size estimation. We have created the pPSU1 & pPSU2 pair of molecular weight marker plasmids which produce both 100 bp and 1 kb DNA ladders when digested with two common restriction enzymes. The 100 bp ladder fragments have been optimized to migrate appropriately on both agarose and native polyacrylamide, unlike many currently available DNA ladders. Sufficient plasmid DNA can be isolated from 100 ml E. coli cultures for the two plasmids to produce 100 bp or 1 kb ladders for 1000 gels. As such, the pPSU1 and pPSU2 plasmids provide reference fragments from 50 to 10000 bp at a fraction of the cost of commercial DNA ladders. The pPSU1 and pPSU2 plasmids are available without licensing restrictions to nonprofit academic users, affording freely available high-quality, low-cost molecular weight standards for molecular biology applications.
Cleary, Katherine A; Waits, Lisette P; Hohenlohe, Paul A
2016-01-01
Rapid anthropogenic land use change threatens the primary habitat of the Chestnut short-tailed bat (Carollia castanea) throughout much of its range. Information on population genetic structure can inform management strategies for this widespread frugivorous bat, and effective protection of C. castanea will also benefit the more than 20 mutualistic plant species of which this bat is the primary seed disperser. To facilitate understanding of population genetic structure in this species, fourteen novel microsatellite markers were developed using restriction-site-associated DNA libraries and Illumina sequencing and tested on 28 individuals from 13 locations in Costa Rica. These are the first microsatellite markers developed for C. castanea. All loci were polymorphic, with number of alleles ranging from 2-11 and average observed heterozygosity of 0.631. Markers were also cross-amplified in three additional frugivorous bat species threatened by habitat loss and fragmentation: Sowell's short-tailed bat (Carollia sowelli), Seba's short-tailed bat (Carollia perspicillata), and the Jamaican fruit bat (Artibeus jamaicensis), and 10, 11, and 8 were polymorphic, respectively.
Development of microsatellite markers of vandaceous orchids for species and variety identification.
Peyachoknagul, S; Nettuwakul, C; Phuekvilai, P; Wannapinpong, S; Srikulnath, K
2014-07-24
Vandaceous orchids are a group of orchid genera in the subfamily Vandoideae. Among this group, Mokara, Phalaenopsis, and Vanda are the most popular and commercially important orchids in Thailand. Novel microsatellite markers were developed from Mokara, the intergeneric hybrid from 3 genera Vanda, Ascocentrum, and Arachnis by using enriched method. Six primers from this study plus one primer previously developed from Vanda genome, a total of 7 markers, were selected to characterize 4 orchid genera (Mokara, Vanda, Rhynchostylis, and Ascocenda). The observed and expected heterozygosities varied in the 4 genera from 0.0000-1.0000 and 0.0000-0.8765, respectively. The transferability of these primers was also investigated in 76 vandaceous orchids from 12 genera. Three primer pairs, MOK26, MOK29, and MOK62, could successfully amplify the DNA of all samples, while MOK103 could be used with most of the samples. The total number of alleles from 76 samples ranged from 3 to 19 alleles per locus, with an average of 8.5714. Therefore, these markers could be used for variety/ species identification, certification and protection, genetic diversity, and evolutionary studies.
New polymorphic markers in the vicinity of the pearl locus on mouse chromosome 13.
Xu, H P; Yanak, B L; Wigler, M H; Gorin, M B
1996-01-01
We have used a Mus domesticus/-Mus spretus congenic animal that was selected for retention of Mus spretus DNA around the pearl locus to create a highly polymorphic region suitable for screening new markers. Representation difference analysis (RDA) was performed with either DNA from the congenic animal or C57BL/6J as the driver for subtraction. Four clones were identified, characterized, and converted to PCR-based polymorphic markers. Three of the four markers equally subdivide a 10-cM interval containing the pearl locus, with the fourth located centromeric to it. These markers have been placed on the mouse genetic map by use of an interspecific backcross panel between Mus domesticus (C57BL/6J) and Mus spretus generated by The Jackson Laboratory.
Mallik, A; Chakrabarty, U; Dutta, S; Mondal, D; Mandal, N
2016-02-01
White spot disease caused by white spot syndrome virus (WSSV) is responsible for harming shrimp aquaculture industry and results in a pandemic throughout the world. Undeniably, the knowledge on geographic distribution, transmission, virulence, and seasonal prevalence of this disease alongside information on the distribution of disease-resistant shrimps may be helpful to understand important aspects of disease biology. This study was intended to estimate WSSV prevalence by qualitative and quantitative PCR method among the Penaeus monodon samples collected from four different places namely Digha, West Bengal; Chilika, Orissa; Visakhapatnam, Andhra Pradesh; and Chennai, Tamil Nadu at three different seasons in the period of 2011-2013 from east coast of India. Along with this, the disease-resistant prevalence was also investigated using earlier developed 71 bp microsatellite and 457 bp RAPD-SCAR DNA marker among the collected shrimps. Qualitative PCR depicted that the cumulative WSSV prevalence at four places was the lowest (0%) at pre-monsoon, whereas, it was the highest (21.2%) during post-monsoon season. Quantitative real-time PCR showed the average copy number of WSSV to be the highest (~10(3) copy μg(-1) shrimp genomic DNA) at post-monsoon season. Additionally, estimated disease-resistant prevalence was the highest in Visakhapatnam (79%) and lowest in Digha (21%). It is well known to all that a trait cannot be identified using a single genetic pattern. This study will significantly contribute insight to develop specific pathogen-resistant (SPR) seeds of P. monodon simultaneously using two DNA markers that would be a cost-effective and safer approach towards disease prevention instead of conventional trends of seed generation from unselected wild broodstock. © 2014 Blackwell Verlag GmbH.
An Ultra-High Discrimination Y Chromosome Short Tandem Repeat Multiplex DNA Typing System
Hanson, Erin K.; Ballantyne, Jack
2007-01-01
In forensic casework, Y chromosome short tandem repeat markers (Y-STRs) are often used to identify a male donor DNA profile in the presence of excess quantities of female DNA, such as is found in many sexual assault investigations. Commercially available Y-STR multiplexes incorporating 12–17 loci are currently used in forensic casework (Promega's PowerPlex® Y and Applied Biosystems' AmpFlSTR® Yfiler®). Despite the robustness of these commercial multiplex Y-STR systems and the ability to discriminate two male individuals in most cases, the coincidence match probabilities between unrelated males are modest compared with the standard set of autosomal STR markers. Hence there is still a need to develop new multiplex systems to supplement these for those cases where additional discriminatory power is desired or where there is a coincidental Y-STR match between potential male participants. Over 400 Y-STR loci have been identified on the Y chromosome. While these have the potential to increase the discrimination potential afforded by the commercially available kits, many have not been well characterized. In the present work, 91 loci were tested for their relative ability to increase the discrimination potential of the commonly used ‘core’ Y-STR loci. The result of this extensive evaluation was the development of an ultra high discrimination (UHD) multiplex DNA typing system that allows for the robust co-amplification of 14 non-core Y-STR loci. Population studies with a mixed African American and American Caucasian sample set (n = 572) indicated that the overall discriminatory potential of the UHD multiplex was superior to all commercial kits tested. The combined use of the UHD multiplex and the Applied Biosystems' AmpFlSTR® Yfiler® kit resulted in 100% discrimination of all individuals within the sample set, which presages its potential to maximally augment currently available forensic casework markers. It could also find applications in human evolutionary genetics and genetic genealogy. PMID:17668066
Palumbo, Fabio; Galla, Giulio
2017-01-01
Summary The orzo Agordino is a very old local variety of domesticated barley (Hordeum vulgare ssp. distichum L.) that is native to the Agordo District, Province of Belluno, and is widespread in the Veneto Region, Italy. Seeds of this landrace are widely used for the preparation of very famous dishes of the dolomitic culinary tradition such as barley soup, bakery products and local beer. Understanding the genetic diversity and identity of the Agordino barley landrace is a key step to establish conservation and valorisation strategies of this local variety and also to provide molecular traceability tools useful to ascertain the authenticity of its derivatives. The gene pool of the Agordino barley landrace was reconstructed using 60 phenotypically representative individual plants and its genotypic relationships with commercial varieties were investigated using 21 pure lines widely cultivated in the Veneto Region. For genomic DNA analysis, following an initial screening of 14 mapped microsatellite (SSR) loci, seven discriminant markers were selected on the basis of their genomic position across linkage groups and polymorphic marker alleles per locus. The genetic identity of the local barley landrace was determined by analysing all SSR markers in a single multi-locus PCR assay. Extent of genotypic variation within the Agordino barley landrace and the genotypic differentiation between the landrace individuals and the commercial varieties was determined. Then, as few as four highly informative SSR loci were selected and used to develop a molecular traceability system exploitable to verify the genetic authenticity of food products deriving from the Agordino landrace. This genetic authentication assay was validated using both DNA pools from individual Agordino barley plants and DNA samples from Agordino barley food products. On the whole, our data support the usefulness and robustness of this DNA-based diagnostic tool for the orzo Agordino identification, which could be rapidly and efficiently exploited to guarantee the authenticity of local varieties and the typicality of food products. PMID:28559731
Jing, Rong-Rong; Wang, Hui-Min; Cui, Ming; Fang, Meng-Kang; Qiu, Xiao-Jun; Wu, Xin-Hua; Qi, Jin; Wang, Yue-Guo; Zhang, Lu-Rong; Zhu, Jian-Hua; Ju, Shao-Qing
2011-09-01
Human cell-free circulating DNA (cf-DNA) derived mainly from cell apoptosis and necrosis can be measured by a variety of laboratory techniques, but almost all of these methods require sample preparation. We have developed a branched DNA (bDNA)-based Alu assay for quantifying cf-DNA in myocardial infarction (MI) patients. A total of 82 individuals were included in the study; 22 MI and 60 normal controls. cf-DNA was quantified using a bDNA-based Alu assay. cf-DNA was higher in serum compared to plasma and there was a difference between genders. cf-DNA was significantly higher in MI patients compared to the controls. There was no correlation between cf-DNA and creatine kinase-MB (CK-MB), troponin I (cTnI) or myoglobin (MYO). In serial specimens, cf-DNA was sensitive and peaked earlier than cTnI. The bDNA-based Alu assay is a novel method for quantifying human cf-DNA. Increased cf-DNA in MI patients might complement cTnI, CK-MB and MYO in a multiple marker format. Copyright © 2011 The Canadian Society of Clinical Chemists. All rights reserved.
Lavranos, Giagkos; Manolakou, Panagiota; Katsiki, Evangelia; Angelopoulou, Roxani
2013-12-01
Anthropology has always been particularly interested in the origin of human life and the development towards adulthood. Although originally working with skeletal measurements and bio-morphological markers in modern populations, it has now entered the growing field of applied molecular biology. This relatively recent advance allows the detailed study of major events in human development and senescence. For instance, sperm DNA integrity and chromatin re-organization are crucial factors for fertilization and embryo development. Clinical researchers have developed improved methods for the evaluation of DNA integrity and protaminosis in sperm nuclei, such as the TUNEL and the CMA3 assays. DNA damage in spermatozoal nuclei is detected using the TUNEL assay which depends on the specific enzymatic reaction of TdT with the end strand breaks of DNA. Protaminosis in spermatozoal nucleus is evaluated using CMA3 assay, which is based on the in situ competition between CMA3 and protamines. Such measurements may provide useful data on human reproductive health, aiding the explanation of demographic differences across the world.
Beyer, Maila; Nazareno, Alison G.; Lohmann, Lúcia G.
2017-01-01
Premise of the study: We developed chloroplast microsatellite markers (cpSSRs) to be used to study the patterns of genetic structure and genetic diversity of populations of Stizophyllum riparium (Bignonieae, Bignoniaceae). Methods and Results: We used genomic data obtained through an Illumina HiSeq sequencing platform to develop a set of cpSSRs for S. riparium. A total of 36 primer pairs were developed, of which 28 displayed polymorphisms across 59 individuals from three populations. Two to 12 alleles were recorded, and the unbiased haploid diversity per locus ranged from 0.037 to 0.905. All 28 cpSSRs presented transferability to two closely related species, S. inaequilaterum and S. perforatum. Conclusions: We report a set of 28 cpSSRs for S. riparium. All markers were shown to be variable in S. riparium, indicating that these markers will be valuable for population genetic studies across S. riparium and congeneric species. PMID:29109920
Sharma, Vishakha; Nandineni, Madhusudan R
2014-04-01
Potato (Solanum tuberosum) is an important non-cereal crop throughout the world and is highly recommended for ensuring global food security. Owing to the complexities in genetics and inheritance pattern of potato, the conventional method of cross breeding for developing improved varieties has been difficult. Identification and tagging of desirable traits with informative molecular markers would aid in the development of improved varieties. Insertional polymorphism of copia-like and gypsy-like long terminal repeat retrotransposons (RTN) were investigated among 47 potato varieties from India using Inter-Retrotransposon Amplified Polymorphism (IRAP) and Retrotransposon Microsatellite Amplified Polymorphism (REMAP) marker techniques and were compared with the DNA profiles obtained with simple sequence repeats (SSRs). The genetic polymorphism, efficiency of polymorphism and effectiveness of marker systems were evaluated to assess the extent of genetic diversity among Indian potato varieties. A total of 139 polymorphic SSR alleles, 270 IRAP and 98 REMAP polymorphic bands, showing polymorphism of 100%, 87.9% and 68.5%, respectively, were used for detailed characterization of the genetic relationships among potato varieties by using cluster analysis and principal coordinate analysis (PCoA). IRAP analysis resulted in the highest number of polymorphic bands with an average of 15 polymorphic bands per assay unit when compared to the other two marker systems. Based on pair-wise comparison, the genetic similarity was calculated using Dice similarity coefficient. The SSRs showed a wide range in genetic similarity values (0.485-0.971) as compared to IRAP (0.69-0.911) and REMAP (0.713-0.947). A Mantel's matrix correspondence test showed a high positive correlation (r=0.6) between IRAP and REMAP, an intermediate value (r=0.58) for IRAP and SSR and the lowest value (r=0.17) for SSR and REMAP. Statistically significant cophenetic correlation coefficient values, of 0.961, 0.941 and 0.905 were observed for REMAP, IRAP and SSR, respectively. The widespread presence and distinct DNA profiles for copia-like and gypsy-like RTNs in the examined genotypes indicate that these elements are active in the genome and may have even contributed to the potato genome organization. Although the three marker systems were capable of distinguishing all the 47 varieties; high reproducibility, low cost and ease of DNA profiling data collection make IRAP and REMAP markers highly efficient whole-genome scanning molecular probes for population genetic studies. Information obtained from the present study regarding the genetic association and distinctiveness provides an useful guide for selection of germplasm for plant breeding and conservation efforts. Copyright © 2014. Published by Elsevier Inc.
A review on SNP and other types of molecular markers and their use in animal genetics
Vignal, Alain; Milan, Denis; SanCristobal, Magali; Eggen, André
2002-01-01
During the last ten years, the use of molecular markers, revealing polymorphism at the DNA level, has been playing an increasing part in animal genetics studies. Amongst others, the microsatellite DNA marker has been the most widely used, due to its easy use by simple PCR, followed by a denaturing gel electrophoresis for allele size determination, and to the high degree of information provided by its large number of alleles per locus. Despite this, a new marker type, named SNP, for Single Nucleotide Polymorphism, is now on the scene and has gained high popularity, even though it is only a bi-allelic type of marker. In this review, we will discuss the reasons for this apparent step backwards, and the pertinence of the use of SNPs in animal genetics, in comparison with other marker types. PMID:12081799
Traceability of plant contribution in olive oil by amplified fragment length polymorphisms.
Pafundo, Simona; Agrimonti, Caterina; Marmiroli, Nelson
2005-09-07
Application of DNA molecular markers to traceability of foods is thought to bring new benefit to consumer's protection. Even in a complex matrix such as olive oil, DNA could be traced with PCR markers such as the amplified fragment length polymorphisms (AFLPs). In this work, fluorescent AFLPs were optimized for the characterization of olive oil DNA, to obtain highly reproducible, high-quality fingerprints, testing different parameters: the concentrations of dNTPs and labeled primer, the kind of Taq DNA polymerase and thermal cycler, and the quantity of DNA employed. It was found that correspondence of fingerprinting by comparing results in oils and in plants was close to 70% and that the DNA extraction from olive oil was the limiting step for the reliability of AFLP profiles, due to the complex matrix analyzed.
Value of DNA tests: a decision perspective.
Taroni, Franco; Bozza, Silvia; Bernard, Magali; Champod, Christophe
2007-01-01
Before a Court of Law testifying in DNA-evidence cases, scientists are often challenged with the idea that the more markers (loci) the better, i.e., why does the scientist not use 16 or more markers? This paper introduces a new perspective, decision analysis, to deal with the problem of the number of markers to type in a criminal context. The decision-making process, which plays a key role in the routine work of a forensic scientist, consists of the rational choice, given personal objectives, between two or more possible outcomes when the consequences of the choice are uncertain. Simulated results support the hypothesis that analytical added value does not increase with the number of markers.
Two EST-derived marker systems for cultivar identification in tree peony.
Zhang, J J; Shu, Q Y; Liu, Z A; Ren, H X; Wang, L S; De Keyser, E
2012-02-01
Tree peony (Paeonia suffruticosa Andrews), a woody deciduous shrub, belongs to the section Moutan DC. in the genus of Paeonia of the Paeoniaceae family. To increase the efficiency of breeding, two EST-derived marker systems were developed based on a tree peony expressed sequence tag (EST) database. Using target region amplification polymorphism (TRAP), 19 of 39 primer pairs showed good amplification for 56 accessions with amplicons ranging from 120 to 3,000 bp long, among which 99.3% were polymorphic. In contrast, 7 of 21 primer pairs demonstrated adequate amplification with clear bands for simple sequence repeats (SSRs) developed from ESTs, and a total of 33 alleles were found in 56 accessions. The similarity matrices generated by TRAP and EST-SSR markers were compared, and the Mantel test (r = 0.57778, P = 0.0020) showed a moderate correlation between the two types of molecular markers. TRAP markers were suitable for DNA fingerprinting and EST-SSR markers were more appropriate for discriminating synonyms (the same cultivars with different names due to limited information exchanged among different geographic areas). The two sets of EST-derived markers will be used further for genetic linkage map construction and quantitative trait locus detection in tree peony.
Bowman, Amy; Martinez-Levasseur, Laura M; Acevedo-Whitehouse, Karina; Gendron, Diane; Birch-Machin, Mark A
2013-07-01
Due to life history and physiological constraints, cetaceans (whales) are unable to avoid prolonged exposure to external environmental insults, such as solar ultraviolet radiation (UV). The majority of studies on the effects of UV on skin are restricted to humans and laboratory animals, but it is important to develop tools to understand the effects of UV damage on large mammals such as whales, as these animals are long-lived and widely distributed, and can reflect the effects of UV across a large geographical range. We and others have used mitochondrial DNA (mtDNA) as a reliable marker of UV-induced damage particularly in human skin. UV-induced mtDNA strand breaks or lesions accumulate throughout the lifespan of an individual, thus constituting an excellent biomarker for cumulative exposure. Based on our previous studies in human skin, we have developed for the first time in the literature a quantitative real-time PCR methodology to detect and quantify mtDNA lesions in skin from sun-blistered whales. Furthermore the methodology allows for simultaneous detection of mtDNA damage in different species. Therefore using 44 epidermal mtDNA samples collected from 15 blue whales, 10 fin whales, and 19 sperm whales from the Gulf of California, Mexico, we quantified damage across 4.3 kilobases, a large region of the ~16,400 base pair whale mitochondrial genome. The results show a range of mtDNA damage in the skin of the three different whale species. This previously unreported observation was correlated with apoptotic damage and microscopic lesions, both of which are markers of UV-induced damage. As is the case in human studies, this suggests the potential use of mtDNA as a biomarker for measuring the effect of cumulative UV exposure in whales and may provide a platform to help understand the effects of changing global environmental conditions. Copyright © 2013 Elsevier B.V. and Mitochondria Research Society. All rights reserved. All rights reserved.
A cautionary note on the evaluation of genetic evidence from uniparentally transmitted markers.
Amorim, António
2008-09-01
The combination of the information obtained from lineage genetic markers, such as mitochondrial DNA (mtDNA) and the non-homologous region of Y-chromosome, with data resulting from meiotically recombining loci (diploid/autosomal or haplodiploid/X chromosome) into a single likelihood ratio has been recently proposed. In this work we challenge this proposal and demonstrate that while the genetic evidence obtained from loci which reshuffle at meiosis is appropriate for individual probability calculations, mtDNA and Y-chromosome data are not and, consequently, that joining the evidential value of the two types of markers is generally inconsistent and should be avoided. The assumption of non-involvement of relatives must be clearly and explicitly stated and its acceptance must be left to the court decision.
Global changes in DNA methylation in Alzheimer's disease peripheral blood mononuclear cells.
Di Francesco, Andrea; Arosio, Beatrice; Falconi, Anastasia; Micioni Di Bonaventura, Maria Vittoria; Karimi, Mohsen; Mari, Daniela; Casati, Martina; Maccarrone, Mauro; D'Addario, Claudio
2015-03-01
Changes in epigenetic marks may help explain the late onset of Alzheimer's disease (AD). In this study we measured genome-wide DNA methylation by luminometric methylation assay, a quantitative measurement of genome-wide DNA methylation, on DNA isolated from peripheral blood mononuclear cells of 37 subjects with late-onset AD (LOAD) and 44 healthy controls (CT). We found an increase in global DNA methylation in LOAD subjects compared to CT (p=0.0122), associated with worse cognitive performances (p=0.0002). DNA hypermethylation in LOAD group was paralleled by higher DNA methyltransferase 1 (DNMT1) gene expression and protein levels. When data were stratified on the basis of the APOE polymorphisms, higher DNA methylation levels were associated with the presence of APOE ε4 allele (p=0.0043) in the global population. Among the APOE ε3 carriers, a significant increase of DNA methylation was still observed in LOAD patients compared to healthy controls (p=0.05). Our data suggest global DNA methylation in peripheral samples as a useful marker for screening individuals at risk of developing AD. Copyright © 2014 Elsevier Inc. All rights reserved.
Harley, H G; Brook, J D; Floyd, J; Rundle, S A; Crow, S; Walsh, K V; Thibault, M C; Harper, P S; Shaw, D J
1991-01-01
We have examined the linkage of two new polymorphic DNA markers (D19S62 and D19S63) and a previously unreported polymorphism with an existing DNA marker (ERCC1) to the myotonic dystrophy (DM) locus. In addition, we have used pulsed-field gel electrophoresis to obtain a fine-structure map of this region. The detection of linkage disequilibrium between DM and one of these markers (D19S63) is the first demonstration of this phenomenon in a heterogeneous DM population. The results suggest that at least 58% of DM patients in the British population, as well as those in a French-Canadian subpopulation, are descended from the same ancestral DM mutation. We discuss the implications of this finding in terms of strategies for cloning the DM gene, for a possible role in modification of risk for prenatal and presymptomatic testing, and we speculate on the origin and number of existing mutations which may result in a DM phenotype. PMID:2063878
Molecular trophic markers in marine food webs and their potential use for coral ecology.
Leal, Miguel Costa; Ferrier-Pagès, Christine
2016-10-01
Notable advances in ecological genomics have been driven by high-throughput sequencing technology and taxonomically broad sequence repositories that allow us to accurately assess species interactions with great taxonomic resolution. The use of DNA as a marker for ingested food is particularly relevant to address predator-prey interactions and disentangle complex marine food webs. DNA-based methods benefit from reductionist molecular approaches to address ecosystem scale processes, such as community structure and energy flow across trophic levels, among others. Here we review how molecular trophic markers have been used to better understand trophic interactions in the marine environment and their advantages and limitations. We focus on animal groups where research has been focused, such as marine mammals, seabirds, fishes, pelagic invertebrates and benthic invertebrates, and use case studies to illustrate how DNA-based methods unraveled food-web interactions. The potential of molecular trophic markers for disentangling the complex trophic ecology of corals is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.