Fuel Cell Development and Test Laboratory | Energy Systems Integration
Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel a fuel cell test in the Fuel Cell Development and Test Laboratory. Capability Hubs The Fuel Cell
Status of commercial fuel cell powerplant system development
NASA Technical Reports Server (NTRS)
Warshay, Marvin
1987-01-01
The primary focus is on the development of commercial Phosphoric Acid Fuel Cell (PAFC) powerplant systems because the PAFC, which has undergone extensive development, is currently the closest fuel cell system to commercialization. Shorter discussions are included on the high temperature fuel cell systems which are not as mature in their development, such as the Molten Carbonate Fuel Cell (MCFC) and the Solid Oxide Fuel Cell (SOFC). The alkaline and the Solid Polymer Electrolyte (SPE) fuel cell systems, are also included, but their discussions are limited to their prospects for commercial development. Currently, although the alkaline fuel cell continues to be used for important space applications there are no commercial development programs of significant size in the USA and only small efforts outside. The market place for fuel cells and the status of fuel cell programs in the USA receive extensive treatment. The fuel cell efforts outside the USA, especially the large Japanese programs, are also discussed.
Development of PEM fuel cell technology at international fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, D.J.
1996-04-01
The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.
Hydrogen and Fuel Cells | NREL
Cells A hydrogen-powered fuel cell electric vehicle driving past NREL's hydrogen fueling station NREL's hydrogen and fuel cell research and development (R&D) focuses on developing, integrating, and demonstrating hydrogen production and delivery, hydrogen storage, and fuel cell technologies for transportation
Strong, Tough Glass Composites Developed for Solid Oxide Fuel Cell Seals
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Choi, Sung R.
2005-01-01
A fuel cell is an electrochemical device that continuously converts the chemical energy of a fuel directly into electrical energy. It consists of an electrolyte, an anode, and a cathode. Various types of fuel cells are available, such as direct methanol fuel cells, alkaline fuel cells, proton-exchange-membrane fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells (SOFCs). The salient features of an SOFC are all solid construction and high-temperature electrochemical-reaction-based operation, resulting in clean, efficient power generation from a variety of fuels. SOFCs are being developed for a broad range of applications, such as portable electronic devices, automobiles, power generation, and aeronautics.
Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Kathyayani
Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationarymore » generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).« less
Fuel Cell Research and Development for Future NASA Missions
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Hoberecht, Mark; Loyselle, Patricia; Burke, Kenneth; Bents, David; Farmer, Serene; Kohout, Lisa
2006-01-01
NASA has been using fuel cell systems since the early days of space flight. Polymer Exchange Membrane Fuel cells provided the primary power for the Gemini and Apollo missions and more recently, alkaline fuel cells serve as the primary power source for the Space Shuttle. NASA's current investments in fuel cell technology support both Exploration and Aeronautics programs. This presentation provides an overview of NASA's fuel cell development programs.
Miniaturized biological and electrochemical fuel cells: challenges and applications.
Yang, Jie; Ghobadian, Sasan; Goodrich, Payton J; Montazami, Reza; Hashemi, Nastaran
2013-09-14
This paper discusses the fundamentals and developments of miniaturized fuel cells, both biological and electrochemical. An overview of microfluidic fuel cells, miniaturized microbial fuel cells, enzymatic biofuel cells, and implanted biofuel cells in an attempt to provide green energy and to power implanted microdevices is provided. Also, the challenges and applications of each type of fuel cell are discussed in detail. Most recent developments in fuel cell technologies such as novel catalysts, compact designs, and fabrication methods are reviewed.
Regenerative Fuel Cells for Space Power and Energy Conversion (NaBH4/H2O2 Fuel Cell Development)
NASA Technical Reports Server (NTRS)
Valdez, Thomas I.; Miley, George H.; Luo, Nie; Burton, Rodney; Mather, Joseph; Hawkins, Glenn; Byrd, Ethan; Gu, Lifeng; Shrestha, Prajakti Joshi
2006-01-01
A viewgraph presentation describing hydrogen peroxide and sodium borohydride development is shown. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Fuel Cell Comparisons; 4) MEA Optimization; 5) 500-Watt Stack Testing; 6) System Modeling: Fuel Cell Power Source for Lunar Rovers; and 7) Conclusions
Hydrogen and Fuel Cell Basics | Hydrogen and Fuel Cells | NREL
Hydrogen and Fuel Cell Basics Hydrogen and Fuel Cell Basics NREL researchers are working to unlock the potential of hydrogen as a fuel and to advance fuel cell technologies for automobiles, equipment basics of NREL's hydrogen and fuel cell research and development. Fuel cell electric vehicles (FCEVs
Alkaline fuel cells for the regenerative fuel cell energy storage system
NASA Technical Reports Server (NTRS)
Martin, R. E.
1983-01-01
The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.
1986 fuel cell seminar: Program and abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1986-10-01
Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)
Combustion Characterization and Model Fuel Development for Micro-tubular Flame-assisted Fuel Cells.
Milcarek, Ryan J; Garrett, Michael J; Baskaran, Amrish; Ahn, Jeongmin
2016-10-02
Combustion based power generation has been accomplished for many years through a number of heat engine systems. Recently, a move towards small scale power generation and micro combustion as well as development in fuel cell research has created new means of power generation that combine solid oxide fuel cells with open flames and combustion exhaust. Instead of relying upon the heat of combustion, these solid oxide fuel cell systems rely on reforming of the fuel via combustion to generate syngas for electrochemical power generation. Procedures were developed to assess the combustion by-products under a wide range of conditions. While theoretical and computational procedures have been developed for assessing fuel-rich combustion exhaust in these applications, experimental techniques have also emerged. The experimental procedures often rely upon a gas chromatograph or mass spectrometer analysis of the flame and exhaust to assess the combustion process as a fuel reformer and means of heat generation. The experimental techniques developed in these areas have been applied anew for the development of the micro-tubular flame-assisted fuel cell. The protocol discussed in this work builds on past techniques to specify a procedure for characterizing fuel-rich combustion exhaust and developing a model fuel-rich combustion exhaust for use in flame-assisted fuel cell testing. The development of the procedure and its applications and limitations are discussed.
Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.; Jakupca, Ian J.
2011-01-01
Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.
Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |
NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation
Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers
NASA Astrophysics Data System (ADS)
1994-05-01
DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.
NASA PEMFC Development Background and History
NASA Technical Reports Server (NTRS)
Hoberecht, Mark
2011-01-01
NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. Four vendors have designed and fabricated non-flow-through fuel cell stacks under NASA funding. One of these vendors is considered the "baseline" vendor, and the remaining three vendors are competing for the "alternate" role. Each has undergone testing of their stack hardware integrated with a NASA balance-of-plant. Future Exploration applications for this hardware include primary fuel cells for a Lunar Lander and regenerative fuel cells for Surface Systems.
What utility companies should known about fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirschenhofer, J.H.; Weinstein, R.E.
1996-11-01
Fuel cells are warming up. A world that ten years ago was unaware of the concept now can witness approximately 200 fuel cell units operating in 15 countries. An increasing number of utility company planners and decision makers have begun to ask whether fuel cells might fit into their future. While the fuel cell concept is simple, determining which type of fuel cell to consider may prove taxing. The multiplicity of fuel cells and their development programs, coupled with the amount of subject material and claims-versus-reality, may seem complex. Also to be reckoned with is the changing utility environment thatmore » might portend well for distributed generation with technologies such as fuel cells. This paper provides a road map of major fuel cell development in the US. It offers some views about the impact of the changing utility environment on fuel cells.« less
Electrolytes for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Fergus, Jeffrey W.
The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.
NASA Astrophysics Data System (ADS)
Ogden, Joan M.; Steinbugler, Margaret M.; Kreutz, Thomas G.
All fuel cells currently being developed for near term use in electric vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, or hydrocarbon fuels derived from crude oil (e.g., gasoline, diesel, or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, we present modeling results comparing three leading options for fuel storage onboard fuel cell vehicles: (a) compressed gas hydrogen storage, (b) onboard steam reforming of methanol, (c) onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. We have developed a fuel cell vehicle model, including detailed models of onboard fuel processors. This allows us to compare the vehicle performance, fuel economy, weight, and cost for various vehicle parameters, fuel storage choices and driving cycles. The infrastructure requirements are also compared for gaseous hydrogen, methanol and gasoline, including the added costs of fuel production, storage, distribution and refueling stations. The delivered fuel cost, total lifecycle cost of transportation, and capital cost of infrastructure development are estimated for each alternative. Considering both vehicle and infrastructure issues, possible fuel strategies leading to the commercialization of fuel cell vehicles are discussed.
Fuel Cell Vehicle Basics | NREL
Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics Researchers are developing fuel cells that can be silver four-door sedan being driven on a roadway and containing the words "hydrogen fuel cell electric" across the front and rear doors. This prototype hydrogen fuel cell electric vehicle was
Fuel processors for fuel cell APU applications
NASA Astrophysics Data System (ADS)
Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.
The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.
The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian
2011-01-01
NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.
World wide IFC phosphoric acid fuel cell implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J.M. Jr
1996-04-01
International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.
Technical Assistance to Developers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockward, Tommy; Borup, Rodney L.; Garzon, Fernando H.
2012-07-17
This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols,more » and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.« less
Development of a 5 kW Prototype Coal-Based Fuel Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh
2014-01-20
The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageablemore » carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO 2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.« less
Simulation of a 250 kW diesel fuel processor/PEM fuel cell system
NASA Astrophysics Data System (ADS)
Amphlett, J. C.; Mann, R. F.; Peppley, B. A.; Roberge, P. R.; Rodrigues, A.; Salvador, J. P.
Polymer-electrolyte membrane (PEM) fuel cell systems offer a potential power source for utility and mobile applications. Practical fuel cell systems use fuel processors for the production of hydrogen-rich gas. Liquid fuels, such as diesel or other related fuels, are attractive options as feeds to a fuel processor. The generation of hydrogen gas for fuel cells, in most cases, becomes the crucial design issue with respect to weight and volume in these applications. Furthermore, these systems will require a gas clean-up system to insure that the fuel quality meets the demands of the cell anode. The endothermic nature of the reformer will have a significant affect on the overall system efficiency. The gas clean-up system may also significantly effect the overall heat balance. To optimize the performance of this integrated system, therefore, waste heat must be used effectively. Previously, we have concentrated on catalytic methanol-steam reforming. A model of a methanol steam reformer has been previously developed and has been used as the basis for a new, higher temperature model for liquid hydrocarbon fuels. Similarly, our fuel cell evaluation program previously led to the development of a steady-state electrochemical fuel cell model (SSEM). The hydrocarbon fuel processor model and the SSEM have now been incorporated in the development of a process simulation of a 250 kW diesel-fueled reformer/fuel cell system using a process simulator. The performance of this system has been investigated for a variety of operating conditions and a preliminary assessment of thermal integration issues has been carried out. This study demonstrates the application of a process simulation model as a design analysis tool for the development of a 250 kW fuel cell system.
Fuel Cell Technology Status Analysis | Hydrogen and Fuel Cells | NREL
Technology Status Analysis Fuel Cell Technology Status Analysis Get Involved Fuel cell developers interested in collaborating with NREL on fuel cell technology status analysis should send an email to NREL's Technology Validation Team at techval@nrel.gov. NREL's analysis of fuel cell technology provides objective
Proceedings of the Fuel Cells `97 Review Meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Federal Energy Technology Center (FETC) sponsored the Fuel Cells '97 Review Meeting on August 26-28, 1997, in Morgantown, West Virginia. The purpose of the meeting was to provide an annual forum for the exchange of ideas and discussion of results and plans related to the research on fuel cell power systems. The total of almost 250 conference participants included engineers and scientists representing utilities, academia, and government from the U.S. and eleven other countries: Canada, China, India, Iran, Italy, Japan, Korea, Netherlands, Russia, Taiwan, and the United Kingdom. On first day, the conference covered the perspectives of sponsors andmore » end users, and the progress reports of fuel-cell developers. Papers covered phosphoric, carbonate, and solid oxide fuel cells for stationary power applications. On the second day, the conference covered advanced research in solid oxide and other fuel cell developments. On the third day, the conference sponsored a workshop on advanced research and technology development. A panel presentation was given on fuel cell opportunities. Breakout sessions with group discussions followed this with fuel cell developers, gas turbine vendors, and consultants.« less
Fuel Cell Seminar, 1992: Program and abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technicalmore » papers are included, the majority being processed for the data base.« less
Fuel cell development for transportation: Catalyst development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doddapaneni, N.
1996-04-01
Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.
Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant
NASA Technical Reports Server (NTRS)
Loyselle, Patricia; Prokopius, Kevin
2011-01-01
NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components
Fuel cell power plant economic and operational considerations
NASA Technical Reports Server (NTRS)
Lance, J. R.
1984-01-01
Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.
Carbonate fuel cells: Milliwatts to megawatts
NASA Astrophysics Data System (ADS)
Farooque, M.; Maru, H. C.
The carbonate fuel cell power plant is an emerging high efficiency, ultra-clean power generator utilizing a variety of gaseous, liquid, and solid carbonaceous fuels for commercial and industrial applications. The primary mover of this generator is a carbonate fuel cell. The fuel cell uses alkali metal carbonate mixtures as electrolyte and operates at ∼650 °C. Corrosion of the cell hardware and stability of the ceramic components have been important design considerations in the early stages of development. The material and electrolyte choices are founded on extensive fundamental research carried out around the world in the 60s and early 70s. The cell components were developed in the late 1970s and early 1980s. The present day carbonate fuel cell construction employs commonly available stainless steels. The electrodes are based on nickel and well-established manufacturing processes. Manufacturing process development, scale-up, stack tests, and pilot system tests dominated throughout the 1990s. Commercial product development efforts began in late 1990s leading to prototype field tests beginning in the current decade leading to commercial customer applications. Cost reduction has been an integral part of the product effort. Cost-competitive product designs have evolved as a result. Approximately half a dozen teams around the world are pursuing carbonate fuel cell product development. The power plant development efforts to date have mainly focused on several hundred kW (submegawatt) to megawatt-class plants. Almost 40 submegawatt units have been operating at customer sites in the US, Europe, and Asia. Several of these units are operating on renewable bio-fuels. A 1 MW unit is operating on the digester gas from a municipal wastewater treatment plant in Seattle, Washington (US). Presently, there are a total of approximately 10 MW capacity carbonate fuel cell power plants installed around the world. Carbonate fuel cell products are also being developed to operate on coal-derived gases, diesel, and other logistic fuels. Innovative carbonate fuel cell/turbine hybrid power plant designs promising record energy conversion efficiencies approaching 75% have also emerged. This paper will review the historical development of this unique technology from milliwatt-scale laboratory cells to present megawatt-scale commercial power plants.
INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
FuelCell Energy
2005-05-16
With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP Vmore » Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.« less
The study of integrated coal-gasifier molten carbonate fuel cell systems
NASA Technical Reports Server (NTRS)
1983-01-01
A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.
Advanced PEFC development for fuel cell powered vehicles
NASA Astrophysics Data System (ADS)
Kawatsu, Shigeyuki
Vehicles equipped with fuel cells have been developed with much progress. Outcomes of such development efforts include a Toyota fuel cell electric vehicle (FCEV) using hydrogen as the fuel which was developed and introduced in 1996, followed by another Toyota FCEV using methanol as the fuel, developed and introduced in 1997. In those Toyota FCEVs, a fuel cell system is installed under the floor of each RAV4L, to sports utility vehicle. It has been found that the CO concentration in the reformed gas of methanol reformer can be reduced to 100 ppm in wide ranges of catalyst temperature and gas flow rate, by using the ruthenium (Ru) catalyst as the CO selective oxidizer, instead of the platinum (Pt) catalyst known from some time ago. It has been also found that a fuel cell performance equivalent to that with pure hydrogen can be ensured even in the reformed gas with the carbon monoxide (CO) concentration of 100 ppm, by using the Pt-Ru (platinum ruthenium alloy) electrocatalyst as the anode electrocatalyst of a polymer electrolyte fuel cell (PEFC), instead of the Pt electrocatalyst known from some time ago.
NASA Astrophysics Data System (ADS)
Hooie, D. T.; Harrington, B. C., III; Mayfield, M. J.; Parsons, E. L.
1992-07-01
The primary objective of DOE's Fossil Energy Fuel Cell program is to fund the development of key fuel cell technologies in a manner that maximizes private sector participation and in a way that will give contractors the opportunity for a competitive posture, early market entry, and long-term market growth. This summary includes an overview of the Fuel Cell program, an elementary explanation of how fuel cells operate, and a synopsis of the three major fuel cell technologies sponsored by the DOE/Fossil Energy Phosphoric Acid Fuel Cell program, the Molten Carbonate Fuel Cell program, and the Solid Oxide Fuel Cell program.
Techno-Economic Analysis of Scalable Coal-Based Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Steven S. C.
Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of buildingmore » a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO 2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO 2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH 4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH 4 can interact with CO 2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels and stack revealed that the planner fuel cell stack is not suitable for operation with carbon and coal fuels due to lack of mechanical strength and difficulty in sealing. We have developed scalable processes for manufacturing of process for planner and tubular cells. Our studies suggested that tubular cell stack could be the only option for scaling up the coal-based fuel cell. Although the direct feeding of coal into fuel cell can significantly simplify the fuel cell system, the durability of the fuel cell needs to be further improved before scaling up. We are developing a tubular fuel cell stack with a coal injection and a CO 2 recycling unit.« less
Fuels processing for transportation fuel cell systems
NASA Astrophysics Data System (ADS)
Kumar, R.; Ahmed, S.
Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.
NASA Technical Reports Server (NTRS)
1982-01-01
The development of a commercially viable and cost-effective phospheric acid fuel cell powered on-site integrated energy system (OS/IES) is described. The fuel cell offers energy efficients in the range of 35-40% of the higher heating value of available fuels in the form of electrical energy. In addition, by utilizing the thermal energy generated for heating, ventilating and air-conditioning (HVAC), a fuel cell OS/IES could provide total energy efficiencies in the neighborhood of 80%. Also, the Engelhard fuel cell OS/IES offers the important incentive of replacing imported oil with domestically produced methanol, including coal-derived methanol.
Houchins, Cassidy; Kleen, Greg J; Spendelow, Jacob S; Kopasz, John; Peterson, David; Garland, Nancy L; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C
2012-12-18
Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed.
Proton Exchange Membrane (PEM) Fuel Cells for Space Applications
NASA Technical Reports Server (NTRS)
Bradley, Karla
2004-01-01
This presentation will provide a summary of the PEM fuel cell development at the National Aeronautics and Space Administration, Johnson Space Center (NASA, JSC) in support of future space applications. Fuel cells have been used for space power generation due to their high energy storage density for multi-day missions. The Shuttle currently utilizes the alkaline fuel cell technology, which has highly safe and reliable performance. However, the alkaline technology has a limited life due to the corrosion inherent to the alkaline technology. PEM fuel cells are under development by industry for transportation, residential and commercial stationary power applications. NASA is trying to incorporate some of this stack technology development in the PEM fuel cells for space. NASA has some unique design and performance parameters which make developing a PEM fuel cell system more challenging. Space fuel cell applications utilize oxygen, rather than air, which yields better performance but increases the hazard level. To reduce the quantity of reactants that need to be flown in space, NASA also utilizes water separation and reactant recirculation. Due to the hazards of utilizing active components for recirculation and water separation, NASA is trying to develop passive recirculation and water separation methods. However, the ability to develop recirculation components and water separators that are gravity-independent and successfully operate over the full range of power levels is one of the greatest challenges to developing a safe and reliable PEM fuel cell system. PEM stack, accessory component, and system tests that have been performed for space power applications will be discussed.
Cationic Polymers Developed for Alkaline Fuel Cell Applications
2015-01-20
into five categories: proton exchange membrane fuel cell ( PEMFC ), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), solid oxide fuel...SOFC and PAFC belong to high temperature fuel cell, which can be applied in stationary power generation. PEMFC and AFC belong to low temperature fuel...function of the polymer electrolyte is to serve as electrolyte to transport ions between electrodes. PEMFC uses a polymer as electrolyte and works
Hydrogen fuel cell engines and related technologies
DOT National Transportation Integrated Search
2001-12-01
The manual documents the first training course developed on the use of hydrogen fuel cells in transportation. The manual contains eleven modules covering hydrogen properties, use and safety; fuel cell technology and its systems, fuel cell engine desi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirschenhofer, J.H.
1995-12-31
Fuel cells are finally coming into their own. A world that 10 years ago was unaware of the concept can now witness approximately 200 of the units in operation in 15 countries. As a result, an increasing number of utility planners and decision makers are asking how do fuel cells fit into their future. While the fuel cell concept is simple, determining which type of fuel cell to use for stationary power generation may prove taxing. Admittedly, the complexity of fuel cell development coupled with the amount of subject material and claims-versus-reality may seem overwhelming. This paper is intended tomore » provide a road map of major fuel cell development in the United States, focusing on what has been done recently and what is expected in the near future.« less
NASA Technical Reports Server (NTRS)
Loyselle, Patricia; Prokopius, Kevin
2011-01-01
Proton Exchange Membrane (PEM) fuel cell technology is the leading candidate to replace the alkaline fuel cell technology, currently used on the Shuttle, for future space missions. During a 5-yr development program, a PEM fuel cell powerplant was developed. This report details the initial performance evaluation test results of the powerplant.
Demonstrating a Total Transit Solution for Fuel Cell Electric Buses in Boston
DOT National Transportation Integrated Search
2017-05-01
The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solu...
Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells
NASA Technical Reports Server (NTRS)
Kinder, James D.
2005-01-01
Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.
Work with Us | Hydrogen and Fuel Cells | NREL
agreements. Use our cutting-edge research facilities to develop, test, and evaluate hydrogen and fuel cell science behind emerging hydrogen and fuel cell technologies and develop, test, and validate new for qualified partners to participate in cooperative research and development agreement (CRADA
NREL Develops High-Speed Scanner to Monitor Fuel Cell Material Defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-01
This highlight describes results of recent work in which polymer electrolyte membrane fuel cell electrodes with intentionally introduced known defects were imaged and analyzed using a fuel cell scanner recently developed at NREL. The highlight is being developed for the September 2015 Alliance S&T Board meeting.
Houchins, Cassidy; Kleen, Greg J.; Spendelow, Jacob S.; Kopasz, John; Peterson, David; Garland, Nancy L.; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C.
2012-01-01
Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed. PMID:24958432
Emerging Fuel Cell Technology Being Developed: Offers Many Benefits to Air Vehicles
NASA Technical Reports Server (NTRS)
Walker, James F.; Civinskas, Kestutis C.
2004-01-01
Fuel cells, which have recently received considerable attention for terrestrial applications ranging from automobiles to stationary power generation, may enable new aerospace missions as well as offer fuel savings, quiet operations, and reduced emissions for current and future aircraft. NASA has extensive experience with fuel cells, having used them on manned space flight systems over four decades. Consequently, the NASA Glenn Research Center has initiated an effort to investigate and develop fuel cell technologies for multiple aerospace applications. Two promising fuel cell types are the proton exchange membrane (PEM) and solid oxide fuel cell (SOFC). PEM technology, first used on the Gemini spacecraft in the sixties, remained unutilized thereafter until the automotive industry recently recognized the potential. PEM fuel cells are low-temperature devices offering quick startup time but requiring relatively pure hydrogen fuel. In contrast, SOFCs operate at high temperatures and tolerate higher levels of impurities. This flexibility allows SOFCs to use hydrocarbon fuels, which is an important factor considering our current liquid petroleum infrastructure. However, depending on the specific application, either PEM or SOFC can be attractive. As only NASA can, the Agency is pursuing fuel cell technology for civil uninhabited aerial vehicles (UAVs) because it offers enhanced scientific capabilities, including enabling highaltitude, long-endurance missions. The NASA Helios aircraft demonstrated altitudes approaching 100,000 ft using solar power in 2001, and future plans include the development of a regenerative PEM fuel cell to provide nighttime power. Unique to NASA's mission, the high-altitude aircraft application requires the PEM fuel cell to operate on pure oxygen, instead of the air typical of terrestrial applications.
NASA Glenn Research Center Electrochemistry Branch Battery and Fuel Cell Development Overview
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
2011-01-01
This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Current developments related to batteries and fuel cells are addressed. Specific areas of focus are Li-ion batteries and Polymer Electrolyte Membrane Fuel cells systems and their development for future Exploration missions.
Development of a lightweight fuel cell vehicle
NASA Astrophysics Data System (ADS)
Hwang, J. J.; Wang, D. Y.; Shih, N. C.
This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.
An Overview of Stationary Fuel Cell Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
DR Brown; R Jones
1999-03-23
Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle ormore » rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.« less
NASA Technical Reports Server (NTRS)
Narayanan, S. R.; Valdez, T. I.; Chun, W.
2000-01-01
The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.
Developing and Demonstrating the Next-Generation Fuel Cell Electric Bus Made in America
DOT National Transportation Integrated Search
2012-02-01
The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. CALSTART is one of three non-profit consortia chosen to manage projects competitively selected u...
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Federal Transit Administration's National Fuel Cell Bus Program focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solution for fuel cell electric buses that includes one bus and an on-site hydrogen generation station for the Massachusetts Bay Transportation Authority (MBTA). A team consisting of ElDorado National, BAE Systems, and Ballard Power Systems built the fuel cell electric bus, and Nuvera is providing its PowerTap on-site hydrogen generator to provide fuel for the bus.
ERIC Educational Resources Information Center
Lopez Gaxiola, Daniel
2011-01-01
In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack,…
Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes
2013-06-25
membranes (AEMs) are being developed for potential use in fuel cell systems which include portable power applications. In a fuel cell , these membranes...Alkaline Anion Exchange Membranes Report Title ABSTRACT Anion exchange membranes (AEMs) are being developed for potential use in fuel cell systems which...include portable power applications. In a fuel cell , these membranes transport hydroxide ions from the cathode to the anode. If carbon dioxide is
Sustainable and Renewable Energy Resources — Alternative Forms of Energy
NASA Astrophysics Data System (ADS)
Rao, M. C.
In order to move towards a sustainable existence in our critically energy dependent society there is a continuing need to adopt environmentally sustainable methods for energy production, storage and conversion. A fuel cell is an energy conversion device that generates electricity and heat by electrochemically combining a gaseous fuel and an oxidant gas through electrodes and across an ion conducting electrolyte. The use of fuel cells in both stationary and mobile power applications can offer significant advantages for the sustainable conversion of energy. Currently the cost of fuel cell systems is greater than that of similar, already available products, mainly because of small scale production and the lack of economies of scale. The best fuel for fuel cells is hydrogen and another barrier is fuel flexibility. Benefits arising from the use of fuel cells include efficiency and reliability, as well as economy, unique operating characteristics and planning flexibility and future development potential. By integrating the application of fuel cells, in series with renewable energy storage and production methods, sustainable energy requirements may be realized. As fuel cell application increases and improved fuel storage methods and handlings are developed, it is expected that the costs associated with fuel cell systems will fall dramatically in the future.
DOT National Transportation Integrated Search
2011-07-01
The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. The Northeast Advanced Vehicle Consortium (NAVC) is one of three non-profit consortia chosen to ...
Small Business Innovation Research Award Success Story: FuelCell Energy Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-08-31
This success story describes FuelCell Energy Inc., a small business that manufactures stationary fuel cells. In collaboration with Sustainable Innovations LLC, and with support from a Small Business Innovation Research (SBIR) Award from the U.S. Department of Energy's Fuel Cell Technologies Program, FuelCell Energy Inc. has developed a highly efficient solid state electrochemical hydrogen compressor.
Fuel cells for commercial energy
NASA Astrophysics Data System (ADS)
Huppmann, Gerhard; Weisse, Eckart; Bischoff, Manfred
1990-04-01
The development of various types of fuel cells is described. Advantges and drawbacks are considered for alkaline fuel cells, phosphoric acid fuel cells, and molten carbonate fuel cells. It is shown that their modular construction is particularly adapted to power heat systems. A comparison which is largely in favor of fuel cells, is made between coal, oil, natural gas power stations, and fuel cells. Safety risks in operation are also compared with those of conventional power stations. Fuel cells are particularly suited for dwellings, shopping centers, swimming pools, other sporting installations, and research facilities, whose high current and heat requirements can be covered by power heat coupling.
GATE Center for Automotive Fuel Cell Systems at Virginia Tech
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Douglas
2011-09-30
The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge whichmore » contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.« less
NASA Astrophysics Data System (ADS)
Eisler, Matthew Nicholas
The record of fuel cell research and development is one of the great enigmas in the history of science and technology. For years, this electrochemical power source, which combines hydrogen and oxygen to produce electricity and waste water, excited the imaginations of researchers in many countries. Because fuel cells directly convert chemical into electrical energy, people have long believed them exempt from the so-called Carnot cycle limitation on heat engines, which dictates that such devices must operate at less than 100 per cent efficiency owing to the randomization of energy as heat. Fuel cells have thus struck some scientists and engineers as the "magic bullet" of energy technologies. This dissertation explores why people have not been able to develop a cheap, durable commercial fuel cell despite more than 50 years of concerted effort since the end of Second World War. I argue this is so mainly because expectations have always been higher than the knowledge base. I investigate fuel cell research and development communities as central nodes of expectation generation. They have functioned as a nexus where the physical realities of fuel cell technology meet external factors, those political, economic and cultural pressures that create a "need" for a "miracle" power source. The unique economic exigencies of these communities have shaped distinct material practices that have done much to inform popular ideas of the capabilities of fuel cell technology. After the Second World War, the fuel cell was relatively unknown in industrial and governmental science and technology circles. Researchers in most leading industrialized countries, above all the United States, sought to raise the technology's profile through dramatic demonstrations in reductive circumstances, employing notional fuel cells using pure hydrogen and oxygen. Researchers paid less attention to cost and durability, concentrating on increasing power output, a criterion that could be met relatively easily in controlled conditions. While such demonstrations typically led to short-term investments in further research, they also generated expectations for long-lived and affordable fuel cells using hydrocarbons. However, developing commercial fuel cell technology was an expensive and arduous process, one that few sponsors were willing to support for long in the absence of rapid progress. Despite this mixed record, the fuel cell has become a powerful symbol of technological perfection that continues to inspire further research and dreams of energy plenitude.
DOE perspective on fuel cells in transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kost, R.
1996-04-01
Fuel cells are one of the most promising technologies for meeting the rapidly growing demand for transportation services while minimizing adverse energy and environmental impacts. This paper reviews the benefits of introducing fuel cells into the transportation sector; in addition to dramatically reduced vehicle emissions, fuel cells offer the flexibility than use petroleum-based or alternative fuels, have significantly greater energy efficiency than internal combustion engines, and greatly reduce noise levels during operation. The rationale leading to the emphasis on proton-exchange-membrane fuel cells for transportation applications is reviewed as are the development issues requiring resolution to achieve adequate performance, packaging, andmore » cost for use in automobiles. Technical targets for power density, specific power, platinum loading on the electrodes, cost, and other factors that become increasingly more demanding over time have been established. Fuel choice issues and pathways to reduced costs and to a renewable energy future are explored. One such path initially introduces fuel cell vehicles using reformed gasoline while-on-board hydrogen storage technology is developed to the point of allowing adequate range (350 miles) and refueling convenience. This scenario also allows time for renewable hydrogen production technologies and the required supply infrastructure to develop. Finally, the DOE Fuel Cells in Transportation program is described. The program, whose goal is to establish the technology for fuel cell vehicles as rapidly as possible, is being implemented by means of the United States Fuel Cell Alliance, a Government-industry alliance that includes Detroit`s Big Three automakers, fuel cell and other component suppliers, the national laboratories, and universities.« less
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.
2010-01-01
NASA s Energy Storage Project is one of many technology development efforts being implemented as part of the Exploration Technology Development Program (ETDP), under the auspices of the Exploration Systems Mission Directorate (ESMD). The Energy Storage Project is a focused technology development effort to advance lithium-ion battery and proton-exchange-membrane fuel cell (PEMFC) technologies to meet the specific power and energy storage needs of NASA Exploration missions. The fuel cell portion of the project has as its focus the development of both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems, and is led by the NASA Glenn Research Center (GRC) in partnership with the Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), the Kennedy Space Center (KSC), academia, and industrial partners. The development goals are to improve stack electrical performance, reduce system mass and parasitic power requirements, and increase system life and reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincent, Bill; Gangi, Jennifer; Curtin, Sandra
Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States aremore » investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.« less
2009 Fuel Cell Market Report, November 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States aremore » investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.« less
NASA Technical Reports Server (NTRS)
Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.
2012-01-01
Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.
76 FR 4645 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department...: This notice announces a meeting of the Hydrogen and Fuel Cell Technical Advisory Committee (HTAC). HTAC... Presentations HTAC Subcommittee Overviews HTAC Annual Report Development Stationary Fuel Cell Industry Analysis...
Phosphoric acid fuel cell power plant system performance model and computer program
NASA Technical Reports Server (NTRS)
Alkasab, K. A.; Lu, C. Y.
1984-01-01
A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.
NASA Technical Reports Server (NTRS)
1999-01-01
Through a SBIR contract with Lewis Research Center, ElectroChem, Inc. developed a hydrogen/oxygen fuel cell. The objective for Lewis Research Center's collaboration with ElectroChem was to develop a fuel cell system that could deliver 200-W (minimum) approximately to 10kWh of electrical energy.
Fuel Cell Activities at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.; Lyons, Valerie (Technical Monitor)
2002-01-01
Fuel cells have a long history in space applications and may have potential application in aeronautics as well. A fuel cell is an electrochemical energy conversion device that directly transforms the chemical energy of a fuel and oxidant into electrical energy. Alkaline fuel cells have been the mainstay of the U.S. space program, providing power for the Apollo missions and the Space Shuttle. However, Proton Exchange Membrane (PEM) fuel cells offer potential benefits over alkaline systems and are currently under development for the next generation Reusable Launch Vehicle (RLV). Furthermore, primary and regenerative systems utilizing PEM technology are also being considered for future space applications such as surface power and planetary aircraft. In addition to these applications, the NASA Glenn Research Center is currently studying the feasibility of the use of both PEM and solid oxide fuel cells for low- or zero-emission electric aircraft propulsion. These types of systems have potential applications for high altitude environmental aircraft, general aviation and commercial aircraft, and high attitude airships. NASA Glenn has a unique set of capabilities and expertise essential to the successful development of advanced fuel cell power systems for space and aeronautics applications. NASA Glenn's role in past fuel cell development programs as well as current activities to meet these new challenges will be presented
Final Report - Stationary and Emerging Market Fuel Cell System Cost Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contini, Vince; Heinrichs, Mike; George, Paul
The U.S. Department of Energy (DOE) is focused on providing a portfolio of technology solutions to meet energy security challenges of the future. Fuel cells are a part of this portfolio of technology offerings. To help meet these challenges and supplement the understanding of the current research, Battelle has executed a five-year program that evaluated the total system costs and total ownership costs of two technologies: (1) an ~80 °C polymer electrolyte membrane fuel cell (PEMFC) technology and (2) a solid oxide fuel cell (SOFC) technology, operating with hydrogen or reformate for different applications. Previous research conducted by Battelle, andmore » more recently by other research institutes, suggests that fuel cells can offer customers significant fuel and emission savings along with other benefits compared to incumbent alternatives. For this project, Battelle has applied a proven cost assessment approach to assist the DOE Fuel Cell Technologies Program in making decisions regarding research and development, scale-up, and deployment of fuel cell technology. The cost studies and subsequent reports provide accurate projections of current system costs and the cost impact of state-of-the-art technologies in manufacturing, increases in production volume, and changes to system design on system cost and life cycle cost for several near-term and emerging fuel cell markets. The studies also provide information on types of manufacturing processes that must be developed to commercialize fuel cells and also provide insights into the optimization needed for use of off-the-shelf components in fuel cell systems. Battelle’s analysis is intended to help DOE prioritize investments in research and development of components to reduce the costs of fuel cell systems while considering systems optimization.« less
Battery and Fuel Cell Development for NASA's Constellation Missions
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
2009-01-01
NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EY A) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.
Battery and Fuel Cell Development for NASA's Exploration Missions
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Reid, Concha M.
2009-01-01
NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.
NASA Astrophysics Data System (ADS)
Jewulski, J. R.; Osif, T. L.; Remick, R. J.
1990-12-01
The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling, and optimization studies. Correlation and optimization studies are described which include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells are presented which include the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms.
Fuel cell systems program plan, FY 1990
NASA Astrophysics Data System (ADS)
1989-10-01
A principal goal of the Office of Fossil Energy is to increase the utilization of domestic fuels in an environmentally benign manner, through the development and transfer to the private sector of advanced energy conversion technology. Successful efforts to achieve this goal contribute to the stability and reliability of reasonably priced energy supplies, enhance the competitiveness of domestic fuels and energy technologies in domestic and international markets, and contribute to the development of cost effective strategies for control of acid rain and global warming. Several advanced energy conversion technologies are now under development by DOE which can help to achieve these objectives. Fuel cells are among those technologies. This report briefly describes fuel cell technology and the program plan of U.S. DOE fuel cell program.
Improved Round Trip Efficiency for Regenerative Fuel Cell Systems
2012-05-11
advanced components that enable closed-loop, zero emission, low signature energy storage. The system utilizes proton exchange membrane ( PEM ) fuel cell ...regenerative fuel cell (RFC) systems based on proton exchange membrane ( PEM ) technology. An RFC consists of a fuel cell powerplant, an electrolysis...based on an air independent, hydrogen-oxygen, PEM RFC is feasible within the near term if development efforts proceed forward. Fuel Cell
The TMI regenerable solid oxide fuel cell
NASA Technical Reports Server (NTRS)
Cable, Thomas L.
1995-01-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.
The TMI regenerable solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Cable, Thomas L.
1995-04-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.
Solid State Energy Conversion Alliance Delphi SOFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Gary Blake; Sean Kelly
2006-12-31
The following report details the results under the DOE SECA program for the period July 2006 through December 2006. Developments pertain to the development of a 3 to 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. This report details technical results of the work performed under the following tasks for the SOFC Power System: Task 1 SOFC System Development; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant Components; Task 5 Project Management; and Task 6 System Modeling & Cell Evaluation for Highmore » Efficiency Coal-Based Solid Oxide Fuel Cell Gas Turbine Hybrid System.« less
NASA Technical Reports Server (NTRS)
Kimble, Michael C.; Anderson, Everett B.; Jayne, Karen D.; Woodman, Alan S.
2004-01-01
Micro-tubular fuel cells that would operate at power levels on the order of hundreds of watts or less are under development as alternatives to batteries in numerous products - portable power tools, cellular telephones, laptop computers, portable television receivers, and small robotic vehicles, to name a few examples. Micro-tubular fuel cells exploit advances in the art of proton-exchange-membrane fuel cells. The main advantage of the micro-tubular fuel cells over the plate-and-frame fuel cells would be higher power densities: Whereas the mass and volume power densities of low-pressure hydrogen-and-oxygen-fuel plate-and-frame fuel cells designed to operate in the targeted power range are typically less than 0.1 W/g and 0.1 kW/L, micro-tubular fuel cells are expected to reach power densities much greater than 1 W/g and 1 kW/L. Because of their higher power densities, micro-tubular fuel cells would be better for powering portable equipment, and would be better suited to applications in which there are requirements for modularity to simplify maintenance or to facilitate scaling to higher power levels. The development of PEMFCs has conventionally focused on producing large stacks of cells that operate at typical power levels >5 kW. The usual approach taken to developing lower-power PEMFCs for applications like those listed above has been to simply shrink the basic plate-and-frame configuration to smaller dimensions. A conventional plate-and-frame fuel cell contains a membrane/electrode assembly in the form of a flat membrane with electrodes of the same active area bonded to both faces. In order to provide reactants to both electrodes, bipolar plates that contain flow passages are placed on both electrodes. The mass and volume overhead of the bipolar plates amounts to about 75 percent of the total mass and volume of a fuel-cell stack. Removing these bipolar plates in the micro-tubular fuel cell significantly increases the power density.
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Hoover, D. Q., Jr.
1982-01-01
The phosphoric acid fuel cell module (stack) development which culminated in an 80 cell air-cooled stack with separated gas cooling and treed cooling plates is described. The performance of the 80 cell stack was approx. 100 mV per cell higher than that attained during phase 1. The components and materials performed stably for over 8000 hours in a 5 cell stack. The conceptual design of a fuel conditioning system is described.
NASA Astrophysics Data System (ADS)
Nguyen, Gia Luong Huu
Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the obtained experimental data, the research studied the control of airflow to regulate the temperature of reactors within the fuel processor. The dynamic model provided a platform to test the dynamic response for different control gains. With sufficient sensing and appropriate control, a rapid response to maintain the temperature of the reactor despite an increase in power was possible. The third part of the research studied the use of a fuel cell in conjunction with photovoltaic panels, and energy storage to provide electricity for buildings. This research developed an optimization framework to determine the size of each device in the hybrid energy system to satisfy the electrical demands of buildings and yield the lowest cost. The advantage of having the fuel cell with photovoltaic and energy storage was the ability to operate the fuel cell at baseload at night, thus reducing the need for large battery systems to shift the solar power produced in the day to the night. In addition, the dispatchability of the fuel cell provided an extra degree of freedom necessary for unforeseen disturbances. An operation framework based on model predictive control showed that the method is suitable for optimizing the dispatch of the hybrid energy system.
NASA Astrophysics Data System (ADS)
Palo, Daniel R.; Holladay, Jamie D.; Rozmiarek, Robert T.; Guzman-Leong, Consuelo E.; Wang, Yong; Hu, Jianli; Chin, Ya-Huei; Dagle, Robert A.; Baker, Eddie G.
A 15-W e portable power system is being developed for the US Army that consists of a hydrogen-generating fuel reformer coupled to a proton-exchange membrane fuel cell. In the first phase of this project, a methanol steam reformer system was developed and demonstrated. The reformer system included a combustor, two vaporizers, and a steam reforming reactor. The device was demonstrated as a thermally independent unit over the range of 14-80 W t output. Assuming a 14-day mission life and an ultimate 1-kg fuel processor/fuel cell assembly, a base case was chosen to illustrate the expected system performance. Operating at 13 W e, the system yielded a fuel processor efficiency of 45% (LHV of H 2 out/LHV of fuel in) and an estimated net efficiency of 22% (assuming a fuel cell efficiency of 48%). The resulting energy density of 720 Wh/kg is several times the energy density of the best lithium-ion batteries. Some immediate areas of improvement in thermal management also have been identified, and an integrated fuel processor is under development. The final system will be a hybrid, containing a fuel reformer, a fuel cell, and a rechargeable battery. The battery will provide power for start-up and added capacity for times of peak power demand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palo, Daniel R.; Holladay, Jamelyn D.; Rozmiarek, Robert T.
A 15-We portable power system is being developed for the US Army, comprised of a hydrogen-generating fuel reformer coupled to a hydrogen-converting fuel cell. As a first phase of this project, a methanol steam reformer system was developed and demonstrated. The reformer system included a combustor, two vaporizers, and a steam-reforming reactor. The device was demonstrated as a thermally independent unit over the range of 14 to 80 Wt output. Assuming a 14-day mission life and an ultimate 1-kg fuel processor/fuel cell assembly, a base case was chosen to illustrate the expected system performance. Operating at 13 We, the systemmore » yielded a fuel processor efficiency of 45% (LHV of H2 out/LHV of fuel in) and an estimated net efficiency of 22% (assuming a fuel cell efficiency of 48%). The resulting energy density of 720 W-hr/kg is several times the energy density of the best lithium-ion batteries. Some immediate areas of improvement in thermal management also have been identified and an integrated fuel processor is under development. The final system will be a hybrid, containing a fuel reformer, fuel cell, and rechargeable battery. The battery will provide power for startup and added capacity for times of peak power demand.« less
Demonstration of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William
2012-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.
NASA Astrophysics Data System (ADS)
1994-03-01
This report documents a portion of the work performed on Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective of this program is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.
NASA Technical Reports Server (NTRS)
Reaves, Will F.; Hoberecht, Mark A.
2003-01-01
The Fuel Cell has been used for manned space flight since the Gemini program. Its power output and water production capability over long durations for the mass and volume are critical for manned space-flight requirements. The alkaline fuel cell used on the Shuttle, while very reliable and capable for it s application, has operational sensitivities, limited life, and an expensive recycle cost. The PEM fuel cell offers many potential improvements in those areas. NASA Glenn Research Center is currently leading a PEM fuel cell development and test program intended to move the technology closer to the point required for manned space-flight consideration. This paper will address the advantages of PEM fuel cell technology and its potential for future space flight as compared to existing alkaline fuel cells. It will also cover the technical hurdles that must be overcome. In addition, a description of the NASA PEM fuel cell development program will be presented, and the current status of this effort discussed. The effort is a combination of stack and ancillary component hardware development, culminating in breadboard and engineering model unit assembly and test. Finally, a detailed roadmap for proceeding fiom engineering model hardware to qualification and flight hardware will be proposed. Innovative test engineering and potential payload manifesting may be required to actually validate/certify a PEM fuel cell for manned space flight.
Fuel cell energy storage for Space Station enhancement
NASA Technical Reports Server (NTRS)
Stedman, J. K.
1990-01-01
Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.
Strategic Partnerships in Fuel Cell Development
ERIC Educational Resources Information Center
Diab, Dorey
2006-01-01
This article describes how forming strategic alliances with universities, emerging technology companies, the state of Ohio, the federal government, and the National Science Foundation, has enabled Stark State College to develop a $5.5 million Fuel Cell Prototyping Center and establish a Fuel Cell Technology program to promote economic development…
Development of an alkaline fuel cell subsystem
NASA Technical Reports Server (NTRS)
1987-01-01
A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.
Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju
2010-01-01
Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased.
Alkaline RFC Space Station prototype - 'Next step Space Station'. [Regenerative Fuel Cells
NASA Technical Reports Server (NTRS)
Hackler, I. M.
1986-01-01
The regenerative fuel cell, a candidate technology for the Space Station's energy storage system, is described. An advanced development program was initiated to design, manufacture, and integrate a regenerative fuel cell Space Station prototype (RFC SSP). The RFC SSP incorporates long-life fuel cell technology, increased cell area for the fuel cells, and high voltage cell stacks for both units. The RFC SSP's potential for integration with the Space Station's life support and propulsion systems is discussed.
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.
2010-01-01
As part of the Exploration Technology Development Program (ETDP) under the auspices of the Exploration Systems Mission Directorate (ESMD), NASA is developing both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems within the fuel cell portion of the Energy Storage Project. This effort is being led by the NASA Glenn Research Center (GRC) in partnership with the NASA Johnson Space Center (JSC), Jet Propulsion Laboratory (JPL), NASA Kennedy Space Center (KSC), and industrial partners. The development goals are to improve fuel cell and electrolysis stack electrical performance, reduce system mass, volume, and parasitic power requirements, and increase system life and reliability. A major focus of this effort has been the parallel development of both flow-through and non-flow-through proton exchange membrane (PEM) primary fuel cell power systems. The plan has been, at the appropriate time, to select a single primary fuel cell technology for eventual flight hardware development. Ideally, that appropriate time would occur after both technologies have achieved a technology readiness level (TRL) of six, which represents an engineering model fidelity PEM fuel cell system being successfully tested in a relevant environment. Budget constraints in fiscal year 2009 and beyond have prevented NASA from continuing to pursue the parallel development of both primary fuel cell options. Because very limited data exists for either system, a toplevel, qualitative assessment based on engineering judgement was performed expeditiously to provide guidance for a selection. At that time, the non-flow-through technology was selected for continued development because of potentially major advantages in terms of weight, volume, parasitic power, reliability, and life. This author believes that the advantages are significant enough, and the potential benefits great enough, to offset the higher state of technology readiness of flow-through technology. This paper summarizes the technical considerations which helped form the engineering judgement that led to the final decision.
Program for fundamental and applied research of fuel cells in VNIIEF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anisin, A.V.; Borisseonock, V.A.; Novitskii, Y.Z.
1996-04-01
According to VNIIEF the integral part of development of fuel cell power plants is fundamental and applied research. This paper describes areas of research on molten carbonate fuel cells. Topics include the development of mathematical models for porous electrodes, thin film electrolytes, the possibility of solid nickel anodes, model of activation polarization of anode, electrolyte with high solubility of oxygen. Other areas include research on a stationary mode of stack operation, anticorrosion coatings, impedance diagnostic methods, ultrasound diagnostics, radiation treatments, an air aluminium cell, and alternative catalysts for low temperature fuel cells.
2008 Fuel Cell Technologies Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOE
Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States aremore » investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.« less
Systems Analysis Initiated for All-Electric Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.
2003-01-01
A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three-dimensional computer-aided design (CAD) models of representative PEM fuel cell stack and components were developed and integrated into the virtual reality environment along with an Excel-based model used to calculate fuel cell electrical performance on the basis of cell dimensions (see the figure). CAD models of a representative general aviation aircraft were also developed and added to the environment. With the use of special headgear, users will be able to virtually manipulate the fuel cell s physical characteristics and its placement within the aircraft while receiving information on the resultant fuel cell output power and performance. As the systems analysis effort progresses, we will add more component models to the GRUVE environment to help us more fully understand the effect of various system configurations on the aircraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, D.; Ulsh, M.
In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP)more » and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.« less
Catalysis in high-temperature fuel cells.
Föger, K; Ahmed, K
2005-02-17
Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.
Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju
2010-01-01
Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased. PMID:22163545
Novel carbon-ion fuel cells. Quarterly technical report No. 10, January 1, 1996--March 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocks, F.H.
1996-08-01
This report presents research to develop an entirely new, fundamentally different class of fuel cell using a solid electrolyte that transports carbon ions. This fuel cell would use solid carbon dissolved in molten metal as a fuel reservoir and anode; expensive gaseous or liquid fuel would not be required. A high temperature fuel cell based on a carbon ion membrane/electrolyte would operate in a way like yttria-doped zirconia solid oxide fuel cells; however, the fuel cell would transport the C ion from a fuel source to O{sub 2} in the atmosphere. Such fuel cells, operating above 1000 C, would producemore » an exhaust gas that could be fed directly into existing boilers, and could thus act as ``topping cycles`` to existing power plant steam cycles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melaina, Marc; Saur, Genevieve; Ramsden, Todd
2015-05-28
This presentation summarizes NREL's hydrogen and fuel cell analysis work in three areas: resource potential, greenhouse gas emissions and cost of delivered energy, and influence of auxiliary revenue streams. NREL's hydrogen and fuel cell analysis projects focus on low-carbon and economic transportation and stationary fuel cell applications. Analysis tools developed by the lab provide insight into the degree to which bridging markets can strengthen the business case for fuel cell applications.
Modelling and simulation of two-chamber microbial fuel cell
NASA Astrophysics Data System (ADS)
Zeng, Yingzhi; Choo, Yeng Fung; Kim, Byung-Hong; Wu, Ping
Microbial fuel cells (MFCs) offer great promise for simultaneous treatment of wastewater and energy recovery. While past research has been based extensively on experimental studies, modelling and simulation remains scarce. A typical MFC shares many similarities with chemical fuel cells such as direct ascorbic acid fuel cells and direct methanol fuel cells. Therefore, an attempt is made to develop a MFC model similar to that for chemical fuel cells. By integrating biochemical reactions, Butler-Volmer expressions and mass/charge balances, a MFC model based on a two-chamber configuration is developed that simulates both steady and dynamic behaviour of a MFC, including voltage, power density, fuel concentration, and the influence of various parameters on power generation. Results show that the cathodic reaction is the most significant limiting factor of MFC performance. Periodic changes in the flow rate of fuel result in a boost of power output; this offers further insight into MFC behaviour. In addition to a MFC fuelled by acetate, the present method is also successfully extended to using artificial wastewater (solution of glucose and glutamic acid) as fuel. Since the proposed modelling method is easy to implement, it can serve as a framework for modelling other types of MFC and thereby will facilitate the development and scale-up of more efficient MFCs.
Fuel cells for low power applications
NASA Astrophysics Data System (ADS)
Heinzel, A.; Hebling, C.; Müller, M.; Zedda, M.; Müller, C.
Electronic devices show an ever-increasing power demand and thus, require innovative concepts for power supply. For a wide range of power and energy capacity, membrane fuel cells are an attractive alternative to conventional batteries. The main advantages are the flexibility with respect to power and capacity achievable with different devices for energy conversion and energy storage, the long lifetime and long service life, the good ecological balance, very low self-discharge. Therefore, the development of fuel cell systems for portable electronic devices is an attractive, although also a challenging, goal. The fuel for a membrane fuel cell might be hydrogen from a hydride storage system or methanol/water as a liquid alternative. The main differences between the two systems are the much higher power density for hydrogen fuel cells, the higher energy density per weight for the liquid fuel, safety aspects and infrastructure for fuel supply for hydride materials. For different applications, different system designs are required. High power cells are required for portable computers, low power methanol fuel cells required for mobile phones in hybrid systems with batteries and micro-fuel cells are required, e.g. for hand held PCs in the sub-Watt range. All these technologies are currently under development. Performance data and results of simulations and experimental investigations will be presented.
Recent Progress in Nanostructured Electrocatalysts for PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Sheng; Shao, Yuyan; Yin, Geping
2013-03-30
Polymer electrolyte membrane (PEM) fuel cells are attracting much attention as promising clean power sources and an alternative to conventional internal combustion engines, secondary batteries, and other power sources. Much effort from government laboratories, industry, and academia has been devoted to developing PEM fuel cells, and great advances have been achieved. Although prototype cars powered by fuel cells have been delivered, successful commercialization requires fuel cell electrocatalysts, which are crucial components at the heart of fuel cells, meet exacting performance targets. In this review, we present a brief overview of the recent progress in fuel cell electrocatalysts, which involves catalystmore » supports, Pt and Pt-based electrocatalysts, and non-Pt electrocatalysts.« less
Development of advanced fuel cell system, phase 2
NASA Technical Reports Server (NTRS)
Handley, L. M.; Meyer, A. P.; Bell, W. F.
1973-01-01
A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Development and characterization of a very stable gold alloy catalyst was continued from Phase I of the program. A polymer material for fabrication of cell structural components was identified and its long term compatibility with the fuel cell environment was demonstrated in cell tests. Full scale partial cell stacks, with advanced design closed cycle evaporative coolers, were tested. The characteristics demonstrated in these tests verified the feasibility of developing the engineering model system concept into an advanced lightweight long life powerplant.
Mathematical modeling of solid oxide fuel cells
NASA Technical Reports Server (NTRS)
Lu, Cheng-Yi; Maloney, Thomas M.
1988-01-01
Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.
Development of inexpensive metal macrocyclic complexes for use in fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doddapaneni, N.; Ingersoll, D.; Kosek, J.A.
Several metal macrocyclic complexes were synthesized for use as catalysts in fuel cells. An initial evaluation of their ability to catalyze the fuel cell reactions were completed. Based on this initial evaluation, one metal macrocyclic catalyst was selected and long-term stability testing in a fuel cell was initiated. The fuel cell employing this catalyst was operated continuously for one year with little signs of catalyst degradation. The effect of synthetic reformates on the performance of the catalyst in the fuel cell environment also demonstrated high tolerance of this catalyst for common contaminants and poisons.
Hydrogen-bromine fuel cell advance component development
NASA Technical Reports Server (NTRS)
Charleston, Joann; Reed, James
1988-01-01
Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.
ERIC Educational Resources Information Center
Godoe, Helge
2006-01-01
Telegraphy, the distant ancestor of Internet and GSM (Global System for Mobile Communications), was invented by Samuel Morse in 1838. One year later, William Grove invented the fuel cell. Although numerous highly successful innovations stemming from telegraphy may be observed, the development of fuel cells has been insignificant, slow, and erratic…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, David L.; Duleep, K. G.; Upreti, Girish
Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany,and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and nonautomotive applications.
Analysis and Test of a Proton Exchange Membrane Fuel Cell Power System for Space Power Applications
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Varanauski, Donald; Clark, Robert, Jr.
2000-01-01
An effort is underway to develop a prototype Proton Exchange Membrane (PEM) Fuel Cell breadboard system for fuhlre space applications. This prototype will be used to develop a comprehensive design basis for a space-rated PEM fuel cell powerplant. The prototype system includes reactant pressure regulators, ejector-based reactant pumps, a 4-kW fuel cell stack and cooling system, and a passive, membranebased oxygen / water separator. A computer model is being developed concurrently to analytically predict fluid flow in the oxidant reactant system. Fuel cells have historically played an important role in human-rated spacecraft. The Gemini and Apollo spacecraft used fuel cells for vehicle electrical power. The Space Shuttle currently uses three Alkaline Fuel Cell Powerplants (AFCP) to generate all of the vehicle's 15-20kW electrical power. Engineers at the Johnson Space Center have leveraged off the development effort ongoing in the commercial arena to develop PEM fuel cel ls for terrestrial uses. The prototype design originated from efforts to develop a PEM fuel cell replacement for the current Space Shuttle AFCP' s. In order to improve on the life and an already excellent hi storical record of reliability and safety, three subsystems were focused on. These were the fuel cell stack itself, the reactant circulation devices, and reactant / product water separator. PEM fuel cell stack performance is already demonstrating the potential for greater than four times the useful life of the current Shuttle's AFCP. Reactant pumping for product water removal has historically been accomplished with mechanical pumps. Ejectors offer an effective means of reactant pumping as well as the potential for weight reduction, control simplification, and long life. Centrifugal water separation is used on the current AFCP. A passive, membrane-based water separator offers compatibility with the micro-gravity environment of space, and the potential for control simplification, elimination of moving parts in an oxygen environment, and long life. The prototype system has been assembled from components that have previously been tested and evaluated at the component level. Preliminary data obtained from tests performed with the prototype system, as well as other published data, has been used to validate the analytical component models. These components have been incorporated into an integrated oxidant fluid system model. Results obtained from both the performance tests and the analytical model are presented.
NASA Astrophysics Data System (ADS)
Seymour, C. M.
1992-01-01
A project, jointly funded by VSEL and CJB Developments Limited, is aimed at the development of complete power generation systems based on PEM fuel cell technology. Potential markets for such systems are seen as being very broadly based, ranging from military land and marine systems through to commercial on-site power generation and transport. From the outset the project was applications driven, the intent being to identify market requirements, in terms of system specifications and to use these to produce development targets. The two companies have based their work on the Ballard PEM stack and have focused their efforts on the development of supporting systems. This benefits all three companies as it allows Ballard to obtain applications information on which to base future research and VSEL/CJBD are able to capitalise on the advanced development of the Ballard stack. Current work is focused on the production of a 20 kW, methanol fuelled, power generation system demonstrator, although work is also in hand to address a wider range of fuels including natural gas. The demonstrator, when complete, will be used to indicate the potential benefits of such systems and to act as a design aid for the applications phase of the project. Preliminary work on this next phase is already in hand, with studies to assess both systems and fuel cell stack design requirements for specific applications and to generate concept designs. Work to date has concentrated on the development of a methanol reformer, suitable for integration into a fuel cell system and on extensive testing and evaluation of the Ballard fuel cell stacks. This testing has covered a wide range of operating parameters, including different fuel and oxidant combinations. The effect of contaminants on the performance and life of the fuel cells is also under evaluation. PEM fuel cells still require a great deal of further development if they are to gain widespread commercial acceptance. A recent study conducted by VSEL in conjunction with the UK Department of Energy has addressed the fuel cell cost and performance requirements in order to both focus future research and to aid understanding of the time-scale to reach full commercialisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delmont, Elizabeth; Gangi, Jennifer; Curtin, Sandra
This report was developed by Fuel Cells 2000 with support from the Fuel Cell Technologies program. The report profiles nationally recognizable companies and corporations that are deploying or demonstrating fuel cells for powering forklifts and providing combined heat and power to their stores and headquarters.
The Direct Methanol Liquid-Feed Fuel Cell
NASA Technical Reports Server (NTRS)
Halpert, Gerald
1997-01-01
Until the early 1990's the idea of a practical direct methanol fuel cell from transportation and other applications was just that, an idea. Several types of fuel cells that operate under near ambient conditions were under development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.T.; James P. Meagher; Prasad Apte
2002-12-31
This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but wasmore » delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.« less
More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports onmore » the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.« less
Design considerations for a 10-kW integrated hydrogen-oxygen regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Hoberecht, M. A.; Miller, T. B.; Rieker, L. L.; Gonzalez-Sanabria, O. D.
1984-01-01
Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low earth orbit (LEO) applications characterized by relatively high overall round trip electrical efficiency, long life, and high reliability is possible with present state of the art technology. A hypothetical 10 kW system computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is under development utilizing advanced cell components and standard Shuttle Orbiter system hardware. The alkaline electrolysis technology uses a static water vapor feed technique and scaled up cell hardware is developed. The computer aided study of the performance, operating, and design parameters of the hypothetical system is addressed.
NASA Astrophysics Data System (ADS)
McElroy, J. F.; Nuttall, L. J.
The solid polymer electrolyte (SPE) fuel cell represents the first fuel cell technology known to be used operationally. Current activities are mainly related to the development of a space regenerative fuel cell system for energy storage on board space stations, or other large orbiting vehicles and platforms. During 1981, a study was performed to determine the feasibility of using SPE fuel cells for automotive or other vehicular applications, using methanol as the fuel. The results of this study were very encouraging. Details concerning a conceptual automotive fuel cell power plant study are discussed, taking into account also a layout of major components for compact passenger car installation.
Development of Passive Fuel Cell Thermal Management Heat Exchanger
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.
2010-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.
Development of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony
2011-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.
Fuel Cell Development for NASA's Human Exploration Program: Benchmarking with "The Hydrogen Economy"
NASA Technical Reports Server (NTRS)
Scott, John H.
2007-01-01
The theoretically high efficiency and low temperature operation of hydrogen-oxygen fuel cells has motivated them to be the subject of much study since their invention in the 19th Century, but their relatively high life cycle costs kept them as a "solution in search of a problem" for many years. The first problem for which fuel cells presented a truly cost effective solution was that of providing a power source for NASA's human spaceflight vehicles in the 1960 s. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. This development program continues to place its highest priorities on requirements for minimum system mass and maximum durability and reliability. These priorities drive fuel cell power plant design decisions at all levels, even that of catalyst support. However, since the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of commercial applications. This investment is bringing about notable advances in fuel cell technology, but, as these development efforts place their highest priority on requirements for minimum life cycle cost and field safety, these advances are yielding design solutions quite different at almost every level from those needed for spacecraft applications. This environment thus presents both opportunities and challenges for NASA's Human Exploration Program
Multifunctional Yarns and Fabrics for Energy Applications (NBIT Phase 2)
2013-05-29
project focus on developing biscrolled carbon nanotube yarns and textiles for supercapacitor /battery and fuel cell electrode applications was chosen...redox supercapacitors resulted from program work. While project focus was on fuel cell and energy storage electrodes based on biscrolled yarns...project focus on developing biscrolled carbon nanotube yarns and textiles for supercapacitor /battery and fuel cell electrode applications was chosen
The Development of Fuel Cell Technology for NASA's Human Spaceflight Program
NASA Technical Reports Server (NTRS)
Scott, John H.
2007-01-01
My task this morning is to review the history and current direction of fuel cell technology development for NASA's human spaceflight program and to compare it to the directions being taken in that field for The Hydrogen Economy. The concept of "The Hydrogen Economy" involves many applications for fuel cells, but for today's discussion, I'll focus on automobiles.
NASA Astrophysics Data System (ADS)
Liu, Yongfeng; Lehnert, Werner; Janßen, Holger; Samsun, Remzi Can; Stolten, Detlef
2016-04-01
This paper presents an extensive review of research on the development of auxiliary power units with enhanced reformate tolerance for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Developments in diesel reforming for fuel cells as auxiliary power units (APUs), single fuel cells and stacks and systems are outlined in detail and key findings are presented. Summaries of HT-PEMFC APU applications and start-up times for HT-PEMFC systems are then given. A summary of cooling HT-PEMFC stacks using a classic schematic diagram of a 24-cell HT-PEMFC stack, with a cooling plate for every third cell, is also presented as part of a stack analysis. Finally, a summary of CO tolerances for fuel cells is given, along with the effects of different CO volume fractions on polarization curves, the fraction of CO coverage, hydrogen coverage, anode overpotential and cell potential.
General Motors Partners with NREL to Reduce Automotive Fuel Cell Costs |
Reduce Automotive Fuel Cell Costs General Motors (GM) is partnering with NREL on a multiyear , multimillion-dollar joint research and development effort to lower the cost of automotive fuel cell stacks
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2014
DOT National Transportation Integrated Search
2014-12-03
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including d...
NASA Technical Reports Server (NTRS)
Scott, John H.
2005-01-01
The fuel cell uses a catalyzed reaction between a fuel and an oxidizer to directly produce electricity. Its high theoretical efficiency and low temperature operation made it a subject of much study upon its invention ca. 1900, but its relatively high life cycle costs kept it as "solution in search of a problem" for its first half century. The first problem for which fuel cells presented a cost effective solution was, starting in the 1960's that of a power source for NASA's manned spacecraft. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. However, starting in the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of terrestrial applications. This investment is bringing about notable advances in fuel cell technology, but these advances are often in directions quite different from those needed for NASA spacecraft applications. This environment thus presents both opportunities and challenges for NASA's manned space program.
The introduction of hydrogen fuel cell vehicles and their new technology has created the need for development of new fuel economy test procedures and safety procedures during testing. The United States Environmental Protection Agency-National Vehicle Fuels and Emissions Laborato...
High volumetric power density, non-enzymatic, glucose fuel cells.
Oncescu, Vlad; Erickson, David
2013-01-01
The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.
High volumetric power density, non-enzymatic, glucose fuel cells
Oncescu, Vlad; Erickson, David
2013-01-01
The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an “oxygen depletion design” whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm−2) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm−3). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells. PMID:23390576
Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion
2014-01-01
The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326
Hydrogen storage with trilithium aluminum hexahydride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathaniel, T.A.
1998-05-14
Fuel cells have good potential to replace batteries for many applications requiring moderate, portable electric power. Applications being researched can range from cellular telephones and radios to power generators for large camps. The primary advantages of fuel cells include high power density, low temperature operation, silent operation, no poisonous exhausts, high electric efficiency, and fast start-up capability. While many commercial industries are just beginning to look at the opportunities fuel cells present, the space program has driven the development of fuel cell technology. The paper discusses the status of the fuel cell and in particular, the technology for hydrogen storagemore » for fuel cell use.« less
The fuel cell in space: Yesterday, today and tomorrow
NASA Technical Reports Server (NTRS)
Warshay, Marvin; Prokopius, Paul R.
1989-01-01
The past, present, and future of space fuel cell power systems is reviewed, starting with the first practical fuel cell by F.T. Bacon which led to the 1.5 kW Apollo alkaline fuel cell. However, the first fuel cell to be used for space power was the Gemini 1.0 kW Acid IEM fuel cell. The successor to the Apollo fuel cell is today's 12 kW Orbiter alkaline fuel cell whose technology is considerably different and considerably better than that of its ancestor, the Bacon cell. And in terms of specific weight there has been a steady improvement from the past to the present, from the close to 200 lb/kW of Apollo to the 20 lb/kW of the orbiter. For NASA future Lunar and Martian surface power requirements the regenerative fuel cell (RFC) energy storage system is enabling technology, with the alkaline and the PEM the leading RFC candidate systems. The U.S. Air Force continues to support fuel cell high power density technology development for its future short duration applications.
Defining the Operational Conditions for High Temperature Polymer Fuel Cells in Naval Environments
2008-12-31
benefits of both Proton Exchange Membrane Fuel Cells ( PEMFCs ) and phosphoric acid fuel cell technologies: a solid polymer electrolyte, the PBI...membrane, but with higher temperature (160°C) operation. PBI membrane technology is far less developed than that for PEMFCs , but it is rapidly emerging as...how air contaminants affect the properties of proton exchange membrane fuel cells ( PEMFCs ). PEMFCs operate at 80 °C, and are the present choice of fuel
Waste-to-Energy and Fuel Cell Technologies Overview
2011-01-13
Integration of stationary fuel cells with biomass gasification is a developing technology that is in need of demonstration. Innovation for Our...the PureCell®400 Innovation for Our Energy Future Gasification of wood wastes is another potential source of useful fuel gas. Wood waste... Gasification → Cleanup → Fuel Cell Gasification uses high temperature to convert cellulosic materials to fuel gas • Hydrogen (H2) • Carbon monoxide (CO
Air-Independent Solid Oxide Fuel Cells for NASA's LOX-CH4 Landers
NASA Technical Reports Server (NTRS)
Ryan, Abigail C.; Araghi, Koorosh R.; Farmer, Serene C.
2013-01-01
Gemini, Apollo, and Space Shuttle used fuel cells as main power source for vehicle and water source for life support and thermal PEM (Gemini) and Alkaline (Apollo, Shuttle) fuel cells were used Ideal for short (less than 3 weeks) missions when the required O2 and H2 can be launched with the vehicle. New missions that might require long-duration stays in orbit or at a habitat, cannot rely on the availability of pure reactants but should also aim to be sun-independent - a problem for which Solid Oxide Fuel Cells might be the answer. Recently, NASA has investigated & developed LOX/CH4-propelled landers (Altair, MORPHEUS). In order to preserve mission flexibility, fuel cells are being studied as a potential power source. Much of NASA's fuel cell development has been focused on creating a dead-headed, non-flow through PEM fuel cells which would weigh less and be more reliable than the existing Alkaline and PEM technology; however, LOX/CH4 as a propellant introduces SOFCs as a power option due to their ability to accept those reactants without much reforming.
Grove Medal Address - investing in the fuel cell business
NASA Astrophysics Data System (ADS)
Rasul, Firoz
Successful commercialization of fuel cells will require significant investment. To attract this funding, the objective must be commercially driven and the financing will have to be viewed as an investment in the business of fuel cells rather than just the funding of technology development. With the recent advancements in fuel cells and demonstrations of fuel cell power systems in stationary and transport applications, an industry has begun to emerge and it is attracting the attention of institutional and corporate investors, in addition to the traditional government funding. Although, the strategic importance of fuel cells as a versatile, efficient and cleaner power source of the future as well as an `engine' for economic growth and job creation has now been understood by several governments, major corporations have just begun to recognize the enormous potential of the fuel cell for it to become as ubiquitous for electrical power as the microprocessor has become for computing power. Viewed as a business, fuel cells must meet the commercial requirements of price competitiveness, productivity enhancement, performance and reliability, in addition to environmental friendliness. As fuel cell-based products exhibit commercial advantages over conventional power sources, the potential for higher profits and superior returns will attract the magnitude of investment needed to finance the development of products for the varied applications, the establishment of high volume manufacturing capabilities, and the creation of appropriate fuel and service infrastructures for these new products based on a revolutionary technology. Today, the fuel cell industry is well-positioned to offer the investing public opportunities to reap substantial returns through their participation at this early stage of growth of the industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, David L
2013-06-30
The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuelmore » Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cell technology academic program at Florida Institute of Technology in Melbourne, Florida. Design and Development of an Advanced Hydrogen Storage System using Novel Materials ? E. Stefanakos, University of South Florida The goal of this project was to design and develop novel conducting polymeric nanomaterials for on-board hydrogen storage. The project approach was to examine synthesis of polyaniline solid state hydrogen storage materials. Advanced HiFoil ? Bipolar Plates ? J. Braun, M. Fuchs, EnerFuel, Inc. The goal of this project was to provide a durable, low cost bipolar plate for high temperature proton exchange membrane fuel cells. The project results produced a durable, low cost bipolar plate with very high in-plane thermal conductivity.« less
American Fuel Cell Bus Project Evaluation : Second Report
DOT National Transportation Integrated Search
2015-09-01
This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses (FCEB) operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Admini...
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017
DOT National Transportation Integrated Search
2017-11-01
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016
DOT National Transportation Integrated Search
2016-11-01
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2015
DOT National Transportation Integrated Search
2015-12-01
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...
Fuel cells: principles, types, fuels, and applications.
Carrette, L; Friedrich, K A; Stimming, U
2000-12-15
During the last decade, fuel cells have received enormous attention from research institutions and companies as novel electrical energy conversion systems. In the near future, they will see application in automotive propulsion, distributed power generation, and in low power portable devices (battery replacement). This review gives an introduction into the fundamentals and applications of fuel cells: Firstly, the environmental and social factors promoting fuel cell development are discussed, with an emphasis on the advantages of fuel cells compared to the conventional techniques. Then, the main reactions, which are responsible for the conversion of chemical into electrical energy in fuel cells, are given and the thermodynamic and kinetic fundamentals are stated. The theoretical and real efficiencies of fuel cells are also compared to that of internal combustion engines. Next, the different types of fuel cells and their main components are explained and the related material issues are presented. A section is devoted to fuel generation and storage, which is of paramount importance for the practical aspects of fuel cell use. Finally, attention is given to the integration of the fuel cells into complete systems. © 2000 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
Final Technical Report: Hydrogen Energy in Engineering Education (H2E3)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, Peter A.; Cashman, Eileen; Lipman, Timothy
2011-09-15
Schatz Energy Research Center's Hydrogen Energy in Engineering Education curriculum development project delivered hydrogen energy and fuel cell learning experiences to over 1,000 undergraduate engineering students at five California universities, provided follow-on internships for students at a fuel cell company; and developed commercializable hydrogen teaching tools including a fuel cell test station and a fuel cell/electrolyzer experiment kit. Monitoring and evaluation tracked student learning and faculty and student opinions of the curriculum, showing that use of the curriculum did advance student comprehension of hydrogen fundamentals. The project web site (hydrogencurriculum.org) provides more information.
Novel carbon-ion fuel cells. Quarterly technical report, April--June 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocks, F.H.
1996-11-01
This report presents research to develop a new type of of fuel cell using a solid electrolyte that transports carbon ions. This new class of fuel cell would use solid C dissolved in molten metal (carbide) as a fuel reservoir and anode; thus expensive gas or liquid fuel would not be required. Thermodynamic efficiency of carbon-ion fuel cells is reviewed, as are electrolyte crystal structures (oxide and fluorite carbides). The sequence of laboratory research procedures for developing a solid C-ion electrolyte and to determine the ionic conductivity of C ions therein is outlined; results of the laboratory research to datemore » are summarized, including XRD analysis of crystal structures and transition temperatures of carbides (La, Ce, Be, Al) and SIMS of carbon isotopes.« less
Advanced Fuel Cell System Thermal Management for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
2009-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.
NASA Astrophysics Data System (ADS)
Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.
This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eshraghi, Ray
In September 2008, the U.S. Department of Energy and Martin County Economic Development Corporation entered into an agreement to further the advancement of a microtubular PEM fuel cell developed by Microcell Corporation. The overall focus of this project was on research and development related to high volume manufacturing of fuel cells and cost reduction in the fuel cell manufacturing process. The extrusion process used for the microfiber fuel cells in this project is inherently a low cost, high volume, high speed manufacturing process. In order to take advantage of the capabilities that the extrusion process provides, all subsequent manufacturing processesmore » must be enhanced to meet the extrusion line’s speed and output. Significant research and development was completed on these subsequent processes to ensure that power output and performance were not negatively impacted by the higher speeds, design changes and process improvements developed in this project. All tasks were successfully completed resulting in cost reductions, performance improvements and process enhancements in the areas of speed and quality. These results support the Department of Energy’s goal of fuel cell commercialization.« less
Application of the monolithic solid oxide fuel cell to space power systems
NASA Astrophysics Data System (ADS)
Myles, Kevin M.; Bhattacharyya, Samit K.
1991-01-01
The monolithic solid-oxide fuel cell (MSOFC) is a promising electrochemical power generation device that is currently under development at Argonne National Laboratory. The extremely high power density of the MSOFC leads to MSOFC systems that have sufficiently high energy densities that they are excellent candidates for a number of space missions. The fuel cell can also be operated in reverse, if it can be coupled to an external power source, to regenerate the fuel and oxidant from the water product. This feature further enhances the potential mission applications of the MSOFC. In this paper, the current status of the fuel cell development is presented—the focus being on fabrication and currently achievable performance. In addition, a specific example of a space power system, featuring a liquid metal cooled fast spectrum nuclear reactor and a monolithic solid oxide fuel cell, is presented to demonstrate the features of an integrated system.
Fuelcell-Hybrid Mine loader (LHD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
James L Dippo; Tim Erikson; Kris Hess
2009-07-10
The fuel cell hybrid mine loader project, sponsored by a government-industry consortium, was implemented to determine the viability of proton exchange membrane (PEM) fuel cells in underground mining applications. The Department of Energy (DOE) sponsored this project with cost-share support from industry. The project had three main goals: (1) to develop a mine loader powered by a fuel cell, (2) to develop associated metal-hydride storage and refueling systems, and (3) to demonstrate the fuel cell hybrid loader in an underground mine in Nevada. The investigation of a zero-emissions fuel cell power plant, the safe storage of hydrogen, worker health advantagesmore » (over the negative health effects associated with exposure to diesel emissions), and lower operating costs are all key objectives for this project.« less
American Fuel Cell Bus Project Evaluation. Second Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew
2015-09-01
This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Administration's (FTA's) National Fuel Cell Bus Program. Through the non-profit consortia CALSTART, a team led by SunLine Transit Agency and BAE Systems developed a new fuel cell electric bus for demonstration. SunLine added two more AFCBs to its fleet in 2014 and another in 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE'smore » National Renewable Energy Laboratory to evaluate the buses in revenue service. This report summarizes the performance results for the buses through June 2015.« less
Proton Exchange Membrane (PEM) fuel Cell for Space Shuttle
NASA Technical Reports Server (NTRS)
Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.
1999-01-01
Development of a PEM fuel cell powerplant (PFCP) for use in the Space Shuttle offers multiple benefits to NASA. A PFCP with a longer design life than is delivered currently from the alkaline fuel will reduce Space Shuttle Program maintenance costs. A PFCP compatible with zero-gravity can be adapted for future NASA transportation and exploration programs. Also, the commercial PEM fuel cell industry ensures a competitive environment for select powerplant components. Conceptual designs of the Space Shuttle PFCP have resulted in identification of key technical areas requiring resolution prior to development of a flight system. Those technical areas include characterization of PEM fuel cell stack durability under operational conditions and water management both within and external to the stack. Resolution of the above issues is necessary to adequately control development, production, and maintenance costs for a PFCP.
NASA Astrophysics Data System (ADS)
Lee, Jin Wook; Kjeang, Erik
2013-11-01
Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.
Lowering the temperature of solid oxide fuel cells.
Wachsman, Eric D; Lee, Kang Taek
2011-11-18
Fuel cells are uniquely capable of overcoming combustion efficiency limitations (e.g., the Carnot cycle). However, the linking of fuel cells (an energy conversion device) and hydrogen (an energy carrier) has emphasized investment in proton-exchange membrane fuel cells as part of a larger hydrogen economy and thus relegated fuel cells to a future technology. In contrast, solid oxide fuel cells are capable of operating on conventional fuels (as well as hydrogen) today. The main issue for solid oxide fuel cells is high operating temperature (about 800°C) and the resulting materials and cost limitations and operating complexities (e.g., thermal cycling). Recent solid oxide fuel cells results have demonstrated extremely high power densities of about 2 watts per square centimeter at 650°C along with flexible fueling, thus enabling higher efficiency within the current fuel infrastructure. Newly developed, high-conductivity electrolytes and nanostructured electrode designs provide a path for further performance improvement at much lower temperatures, down to ~350°C, thus providing opportunity to transform the way we convert and store energy.
Hydrogen Fuel Cell Engines and Related Technologies
NASA Astrophysics Data System (ADS)
2001-12-01
The Hydrogen Fuel Cell Engines and Related Technologies report documents the first training course ever developed and made available to the transportation community and general public on the use hydrogen fuel cells in transportation. The course is designed to train a new generation of technicians in gaining a more complete understanding of the concepts, procedures, and technologies involved with hydrogen fuel cell use in transportation purposes. The manual contains 11 modules (chapters). The first eight modules cover (1) hydrogen properties, use and safety; and (2) fuel cell technology and its systems, fuel cell engine design and safety, and design and maintenance of a heavy duty fuel cell bus engine. The different types of fuel cells and hybrid electric vehicles are presented, however, the system descriptions and maintenance procedures focus on proton-exchange-membrane (PEM) fuel cells with respect to heavy duty transit applications. Modules 9 and 10 are intended to provide a better understanding of the acts, codes, regulations and guidelines concerning the use of hydrogen, as well as the safety guidelines for both hydrogen maintenance and fueling facilities. Module 11 presents a glossary and conversions.
2008-07-01
electric ship with all power generation supplied by a PEM Fuel Cell System. The basic unit of this fuel cell system is being developed by the...substantial problem. Further, as reforming techniques improve in the coming years, the weight of the fuell cells will likely decrease. In comparison to...19 Figure 12: 500 kW ONR Fuel Cell Concept
Hydrogen generation from natural gas for the fuel cell systems of tomorrow
NASA Astrophysics Data System (ADS)
Dicks, Andrew L.
In most cases hydrogen is the preferred fuel for use in the present generation of fuel cells being developed for commercial applications. Of all the potential sources of hydrogen, natural gas offers many advantages. It is widely available, clean, and can be converted to hydrogen relatively easily. When catalytic steam reforming is used to generate hydrogen from natural gas, it is essential that sulfur compounds in the natural gas are removed upstream of the reformer and various types of desulfurisation processes are available. In addition, the quality of fuel required for each type of fuel cell varies according to the anode material used, and the cell temperature. Low temperature cells will not tolerate high concentrations of carbon monoxide, whereas the molten fuel cell (MCFC) and solid oxide fuel cell (SOFC) anodes contain nickel on which it is possible to electrochemically oxidise carbon monoxide directly. The ability to internally reform fuel gas is a feature of the MCFC and SOFC. Internal reforming can give benefits in terms of increased electrical efficiency owing to the reduction in the required cell cooling and therefore parasitic system losses. Direct electrocatalysis of hydrocarbon oxidation has been the elusive goal of fuel cell developers over many years and recent laboratory results are encouraging. This paper reviews the principal methods of converting natural gas into hydrogen, namely catalytic steam reforming, autothermic reforming, pyrolysis and partial oxidation; it reviews currently available purification techniques and discusses some recent advances in internal reforming and the direct use of natural gas in fuel cells.
European opportunities for fuel cell commercialisation
NASA Astrophysics Data System (ADS)
Gibbs, C. E.; Steel, M. C. F.
1992-01-01
The European electricity market is changing. This paper will look at the background to power generation in Europe and highlight the recent factors which have entered the market to promote change. The 1990s seem to offer great possibilities for fuel cell commercialisation. Awareness of environmental problems has never been greater and there is growing belief that fuel cell technology can contribute to solving some of these problems. Issues which have caused the power industry in Europe to re-think its methods of generation include: concern over increasing carbon dioxide emissions and their contribution to the greenhouse effect; increasing SO x and NO x emissions and the damage cause by acid rain; the possibility of adverse effects on health caused by high voltage transmission lines; environmental restrictions to the expansion of hydroelectric schemes; public disenchantment with nuclear power following the Chernobyl accident; avoidance of dependence on imported oil following the Gulf crisis and a desire for fuel flexibility. All these factors are hastening the search for clean, efficient, modular power generators which can be easily sited close to the electricity consumer and operated using a variety of fuels. It is not only the power industry which is changing. A tightening of the legislation concerning emissions from cars is encouraging European auto companies to develop electric vehicles, some of which may be powered by fuel cells. Political changes, such as the opening up of Eastern Europe will also expand the market for low-emission, efficient power plants as attempts are made to develop and clean up that region. Many Europeans organisations are re-awakening their interest, or strengthening their activities, in the area of fuel cells because of the increasing opportunities offered by the European market. While some companies have chosen to buy, test and demonstrate Japanese or American fuel cell stacks with the aim of gaining operational experience and developing European sub-systems, others have chosen to develop their own novel cell technology. This paper will survey the extent of the fuel cell activities in Europe and emphasise the particular markets which fuel cell manufacturers are targeting. Demand for fuel cells in defence and military applications will be the first sector to be commercially viable — European companies such as Siemens, Elenco and VSEL are already marketing AFC or PEM systems for naval and aerospace applications. The small-scale CHP sector is also a likely early market for fuel cell plant. Co-generation fuel cells are of great interest to gas companies like ENAGAS and British Gas looking to promote sales of gas by installing on-site gas-fired generators on their customers' premises. The market for utility scale fuel cell plants is expected to develop later in the decade. The largest demonstration planned for Europe is the 1 MW PAFC for Milan, due to come onstream in 1992. MBB GmbH is considering developing MW-scale MCFC plants with the US company ERC — a 2 MW demonstration is planned for the end of 1993. The potential market for utility fuel cells is large — installation rates could reach 500-1000 MW/year by the turn of the century. Fuel cells will probably not achieve significant use in transport applications in Europe until after the turn of the century unless very stringent emissions legislation for vehicles is introduced. The likely early markets for fuel cells in the transport sector seem to be for delivery and fleet vehicles. Examples of European projects in this area include the Amsterdam city bus project which will use Elenco's AFC technology and Siemens' fork lift truck which will incorporate a PEM fuel cell. Fuel cells also link conveniently with renewable energy systems — coupled with an electrolyser a fuel cell can store solar, wind or wave power. The electrolysis proces is used to generate hydrogen from water at times of surplus energy while the fuel cell consumes hydrogen fuel when demand for power exceeds supply. The SWB solar hydrogen project in Germany is testing PAFC and AFC stacks in this application. Several problems remain before fuel cell technology can fulfil its maximum potential market. For PAFC there is a need to reduce plant capital costs and to verify lifetimes and reliability. KTI's 25 kW demonstration at Delft and the Milan 1 MW plant will increase European knowledge and experience of PAFC plant operation. For MCFC there are materials problems to be solved and work needs to be carried out on the best way to scale up plants. Projects underway in the Netherlands, Germany, Italy and elsewhere should bring Europe to the forefront of MCFC technology. SOFC requires further study in the area of design configurations and fabrication techniques. Research on these aspects is underway in Denmark, Switzerland, Germany, the Netherlands and the UK. For PEM technology work on reducing precious metal loadings and selecting the best polymer membrane is required — an area in which Johnson Matthey is involved. For all fuel cell technologies there needs to be a greater awareness among power suppliers, consumers, legislators and environmentalists of the advantages that fuel cells can offer. The increase in activity among European organisations in developing, demonstrating, testing and optimising fuel cell systems will encourage a greater awareness of the technology and bring commercialisation closer to reality.
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2012
DOT National Transportation Integrated Search
2012-11-12
This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The repo...
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2013
DOT National Transportation Integrated Search
2013-12-01
This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. This r...
NASA Glenn Research Center Electrochemistry Branch Overview
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Hoberecht, Mark; Reid, Concha
2010-01-01
This presentation covers an overview of NASA Glenn's history and heritage in the development of electrochemical systems for aerospace applications. Current programs related to batteries and fuel cells are addressed. Specific areas of focus are Li-ion batteries and Polymer Electrolyte Membrane Fuel cells systems and their development for future Exploration missions. The presentation covers details of current component development efforts for high energy and ultra high energy Li-ion batteries and non-flow-through fuel cell stack and balance of plant development. Electrochemistry Branch capabilities and facilities are also addressed.
Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development
market. As the market expands, fueling infrastructure and vehicle rollout will need to grow together Locations by State More Hydrogen Data | All Maps & Data Publications 2016 Vehicle Technologies Market Report State of the States: Fuel Cells in America 2016, 7th Edition 2014 Fuel Cell Technologies Market
Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoxing; Quan, Wenying; Xiao, Jing
2014-09-30
This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. Themore » unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.« less
Electrolyser and fuel cells, key elements for energy and life support
NASA Astrophysics Data System (ADS)
Bockstahler, Klaus; Funke, Helmut; Lucas, Joachim
Both, Electrolyser and Fuel Cells are key elements for regenerative energy and life support systems. Electrolyser technology is originally intended for oxygen production in manned space habitats and in submarines, through splitting water into hydrogen and oxygen. Fuel cells serve for energy production through the reaction, triggered in the presence of an electrolyte, between a fuel and an oxidant. Now combining both technologies i.e. electrolyser and fuel cell makes it a Regenerative Fuel Cell System (RFCS). In charge mode, i.e. with energy supplied e.g. by solar cells, the electrolyser splits water into hydrogen and oxygen being stored in tanks. In discharge mode, when power is needed but no energy is available, the stored gases are converted in the fuel cell to generate electricity under the formation of water that is stored in tanks. Rerouting the water to the electrolyser makes it a closed-loop i.e. regenerative process. Different electrolyser and fuel cell technologies are being evolved. At Astrium emphasis is put on the development of an RFCS comprised of Fixed Alkaline Electrolyser (FAE) and Fuel Cell (AFC) as such technology offers a high electrical efficiency and thus reduced system weight, which is important in space applications. With increasing power demand and increasing discharge time an RFCS proves to be superior to batteries. Since the early technology development multiple design refinements were done at Astrium, funded by the European Space Agency ESA and the German National Agency DLR as well as based on company internal R and T funding. Today a complete RFCS energy system breadboard is established and the operational behavior of the system is being tested. In parallel the electrolyser itself is subject to design refinement and testing in terms of oxygen production in manned space habitats. In addition essential features and components for process monitoring and control are being developed. The present results and achievements and the dedicated experience gained from testing will be presented, complemented by an outlook on next development steps preparatory to the application of electrolyser and fuel cell technology in human and robotic exploration building blocks.
Test of Hydrogen-Oxygen PEM Fuel Cell Stack at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.
2003-01-01
This paper describes performance characterization tests of a 64 cell hydrogen oxygen PEM fuel cell stack at NASA Glenn Research Center in February 2003. The tests were part of NASA's ongoing effort to develop a regenerative fuel cell for aerospace energy storage applications. The purpose of the tests was to verify capability of this stack to operate within a regenerative fuel cell, and to compare performance with earlier test results recorded by the stack developer. Test results obtained include polarization performance of the stack at 50 and 100 psig system pressure, and a steady state endurance run at 100 psig. A maximum power output of 4.8 kWe was observed during polarization runs, and the stack sustained a steady power output of 4.0 kWe during the endurance run. The performance data obtained from these tests compare reasonably close to the stack developer's results although some additional spread between best to worst performing cell voltages was observed. Throughout the tests, the stack demonstrated the consistent performance and repeatable behavior required for regenerative fuel cell operation.
NASA Technical Reports Server (NTRS)
Sofie, Stephen W.; Cable, Thomas L.; Salamone, Sam M.
2005-01-01
Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization.
Monolithic solid oxide fuel cell development
NASA Technical Reports Server (NTRS)
Myles, K. M.; Mcpheeters, C. C.
1989-01-01
The feasibility of the monolithic solid oxide fuel cell (MSOFC) concept has been proven, and the performance has been dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials have been minimized, thus allowing successful fabrication of the MSOFC with few defects. The MSOFC shows excellent promise for development into a practical power source for many applications from stationary power, to automobile propulsion, to space pulsed power.
NASA Astrophysics Data System (ADS)
Lim, Peck Cheng
2009-08-01
Alkaline membrane fuel cell (AMFC) is a relatively new fuel cell technology that is generating considerable interests. It offers the electrocatalytic advantages of conventional alkaline fuel cells, and the manufacturing and cost advantages of solid polymer electrolyte fuel cells. This project was carried out to develop and characterize high performance membrane electrode assemblies (MEAs) for all-solid-state AMFCs. The primary fuel of interests is ethanol, but hydrogen was used in the development stages to facilitate the diagnostic and evaluation of the fuel cell performance. In the preliminary investigation, AMFC was assembled using off-the-shelf electrodes and anion-exchange membrane (AEM). It was found that the performance of AMFC operating on ethanol fuel was limited by a large high-frequency resistance (HFR) value. The advantage of using non-toxic ethanol fuel was also compromised by the need to add hydrazine and potassium hydroxide to the fuel blend. Subsequently, a high performance MEA was developed for an all-solid-state AMFC, in which liquid electrolyte or other additives were not required during the operation of the fuel cell. Ionomer was incorporated in the formulation of catalyst ink, and the catalyst ink was directly coated on the anion-exchange membrane (AEM). An ionomer content of 20 wt.% was found to be the optimum amount required in the catalyst layers. It was demonstrated that the AMFC generated a maximum power density of 365 mW/cm2 and 213 mW/cm 2 with the use of hydrogen/oxygen and hydrogen/pure air, respectively. The performance of the AMFC was also found to be influenced by exposure to carbon dioxide in the air. Hence, the CCMs were pre-treated in potassium hydroxide solution and pure oxygen was used to condition the fuel cell to maximize the power output from the AMFCs. Although satisfactory performance was demonstrated in the AMFC, its stability during cell operation remains a major issue. The poor stability was attributed to degradation of ionomer in the catalyst layers, especially at the catalyst/ionomer interfaces. Ethanol was also used as a fuel in the AMFC with newly developed MEAs. Wetproof gas diffusion layers (GDLs) was found to enhance mass transport in liquid-fed AMFC. With the use of 1M ethanol, the AMFC exhibited a maximum power density of 6.482 mW/cm2 and 3.380 mW/cm2 with pure oxygen and ambient air as oxidant, respectively. These maximum power density values are the highest reported to-date. However, significant work is still necessary in advancing the AMFC technology for direct alcohol fuel cell applications.
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Feret, J. M.
1982-01-01
The efforts performed to develop a phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration are described. The work involves: (1) Performance of pertinent functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes, (2) characterization of fuel cell materials and components, and performance testing and evaluation of the repeating electrode components, (3) establishment of the state-of-the-art manufacturing technology for all fuel cell components at Westinghouse and the fabrication of short stacks of various sites, and (4) development of a 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, John A.
The program began on August 1, 2003 and ended on July 31, 2007. The goal of the project was to optimize a high-temperature polybenzimidazole (PBI) membrane to meet the performance, durability, and cost targets required for stationary fuel cell applications. These targets were identified in the Fuel Cell section (3.4) of DOE’s Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. A membrane that operates at high temperatures is important to the fuel cell industry because it is insensitive to carbon monoxide (a poison to low-temperature fuel cells), and does not require complex water management strategies.more » Together, these two benefits greatly simplify the fuel cell system. As a result, the high-temperature fuel cell system realizes a cost benefit as the number of components is reduced by nearly 30%. There is also an inherent reliability benefit as components such as humidifiers and pumps for water management are unnecessary. Furthermore, combined heat and power (CHP) systems may be the best solution for a commercial, grid-connected, stationary product that must offer a cost benefit to the end user. For a low-temperature system, the quality of the heat supplied is insufficient to meet consumer needs and comfort requirements, so peak heaters or supplemental boilers are required. The higher operating temperature of PBI technology allows the fuel cell to meet the heat and comfort demand without the additional equipment. Plug Power, working with the Rensselaer Polytechnic Institute (RPI) Polymer Science Laboratory, made significant advances in optimizing the PBI membrane material for operation at temperatures greater than 160oC with a lifetime of 40,000 hours. Supporting hardware such as flow field plates and a novel sealing concept were explored to yield the lower-cost stack assembly and corresponding manufacturing process. Additional work was conducted on acid loss, flow field design and cathode electrode development. Membranes and MEAs were supplied by team member BASF Fuel Cell (formerly PEMEAS), a manufacturer of polymer and fiber. Additional subcontractors Entegris, the University of South Carolina (USC) Fuel Cell Center, and RPI’s Fuel Cell Center conducted activities with regard to stack sealing, acid modeling, and electrode development.« less
Phosphoric Acid Fuel Cell Technology Status
NASA Technical Reports Server (NTRS)
Simons, S. N.; King, R. B.; Prokopius, P. R.
1981-01-01
A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.
Fuel cell programs in the United States for stationary power applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, M.
1996-04-01
The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued governmentmore » and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.« less
Utilization of methanol for polymer electrolyte fuel cells in mobile systems
NASA Astrophysics Data System (ADS)
Schmidt, V. M.; Brockerhoff, P.; Hohlein, B.; Menzer, R.; Stimming, U.
1994-04-01
The constantly growing volume of road traffic requires the introduction of new vehicle propulsion systems with higher efficiency and drastically reduced emission rates. As part of the fuel cell programme of the Research Centre Julich a vehicle propulsion system with methanol as secondary energy carrier and a polymer electrolyte membrane fuel cell (PEMFC) as the main component for energy conversion is developed. The fuel gas is produced by a heterogeneously catalyzed steam reforming reaction in which methanol is converted to H2, CO and CO2. The required energy is provided by the catalytic conversion of methanol for both heating up the system and reforming methanol. The high CO content of the fuel gas requires further processing of the gas or the development of new electrocatalysts for the anode. Various Pt-Ru alloys show promising behaviour as CO-tolerant anodes. The entire fuel cell system is discussed in terms of energy and emission balances. The development of important components is described and experimental results are discussed.
Novel carbon-ion fuel cells. Quarterly technical report No. 9, October 1, 1995--December 31, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocks, F.H.
1995-12-31
This report presents research to develop an entirely new, fundamentally different class of fuel cell using a solid electrolyte that transports carbon ions. This fuel cell would use solid carbon dissolved in molten metal as a fuel reservoir and anode; expensive gaseous or liquid fuel would not be required. Thermodynamic factors favor a carbon-ion fuel cell over other fuel cell designs: a combination of enthalpy, entropy, and Gibbs free energy makes the reaction of solid carbon and oxygen very efficient, and the entropy change allows this efficiency to slightly increase at high temperatures. The high temperature exhaust of the fuelmore » cell would make it useful as a ``topping cycle``, to be followed by conventional steam turbine systems.« less
Proton exchange membrane fuel cell system diagnosis based on the signed directed graph method
NASA Astrophysics Data System (ADS)
Hua, Jianfeng; Lu, Languang; Ouyang, Minggao; Li, Jianqiu; Xu, Liangfei
The fuel-cell powered bus is becoming the favored choice for electric vehicles because of its extended driving range, zero emissions, and high energy conversion efficiency when compared with battery-operated electric vehicles. In China, a demonstration program for the fuel cell bus fleet operated at the Beijing Olympics in 2008 and the Shanghai Expo in 2010. It is necessary to develop comprehensive proton exchange membrane fuel cell (PEMFC) diagnostic tools to increase the reliability of these systems. It is especially critical for fuel-cell city buses serving large numbers of passengers using public transportation. This paper presents a diagnostic analysis and implementation study based on the signed directed graph (SDG) method for the fuel-cell system. This diagnostic system was successfully implemented in the fuel-cell bus fleet at the Shanghai Expo in 2010.
Unitized Regenerative Fuel Cell System Development
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
2003-01-01
Unitized Regenerative Fuel Cells (URFC) have recently been developed by several fuel cell manufacturers. These manufacturers have concentrated their efforts on the development of the cell stack technology itself, and have not up to this point devoted much effort to the design and development of the balance of plant. A fuel cell technology program at the Glenn Research Center (GRC) that has as its goal the definition and feasibility testing of the URFC system balance of plant. Besides testing the feasibility, the program also intends to minimize the system weight, volume, and parasitic power as its goal. The design concept currently being developed uses no pumps to circulate coolant or reactants, and minimizes the ancillary components to only the oxygen and hydrogen gas storage tanks, a water storage tank, a loop heat pipe to control the temperature and two pressure control devices to control the cell stack pressures during operation. The information contained in this paper describes the design and operational concepts employed in this concept. The paper also describes the NASA Glenn research program to develop this concept and test its feasibility.
Development of advanced fuel cell system
NASA Technical Reports Server (NTRS)
Grevstad, P. E.
1972-01-01
Weight, life and performance characteristics optimization of hydrogen-oxygen fuel cell power systems were considered. A promising gold alloy cathode catalyst was identified and tested in a cell for 5,000 hours. The compatibility characteristics of candidate polymer structural materials were measured after exposure to electrolyte and water vapor for 8,000 hours. Lightweight cell designs were prepared and fabrication techniques to produce them were developed. Testing demonstrated that predicted performance was achieved. Lightweight components for passive product water removal and evaporative cooling of cells were demonstrated. Systems studies identified fuel cell powerplant concepts for meeting the requirements of advanced spacecraft.
NASA Glenn Research Center's Fuel Cell Stack, Ancillary and System Test and Development Laboratory
NASA Technical Reports Server (NTRS)
Loyselle, Patricia L.; Prokopius, Kevin P.; Becks, Larry A.; Burger, Thomas H.; Dick, Joseph F.; Rodriguez, George; Bremenour, Frank; Long, Zedock
2011-01-01
At the NASA Glenn Research Center, a fully operational fuel cell test and evaluation laboratory is available which is capable of evaluating fuel cell components and systems for future NASA missions. Components and subsystems of various types can be operated and monitored under a variety of conditions utilizing different reactants. This fuel cell facility can test the effectiveness of various component and system designs to meet NASA's needs.
Planar Solid-Oxide Fuel Cell Research and Development
2013-03-28
electrolyte membrane ( PEM ) fuel cells ", Applied Surface Sei., 227 (2004) 56-72. [10] Grujicic, M., and Chittajallu, K. M., "Optimization of the...cathode geometry in polymer electrolyte membrane ( PEM ) fuel cells ", Chem. Eng. Sei., 59 (2004) 5883-5895. 36 [11] Anderson, W.K., Newman, J.C., Whitfield...M., Djilali, N, Suleman, A., "Optimization of a planar self-breathing PEM fuel cell cathode", AIAA 2006-6917, 11th AIAA/ISSMO Multidisciplinary
Publications | Hydrogen and Fuel Cells | NREL
, and demonstration activities in hydrogen and fuel cells. NREL Publications Database Access the full library of our publications. Search the database View all NREL publications about hydrogen and fuel cell research. Transportation and Hydrogen Newsletter Get semi-monthly updates on NREL's research, development
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Feret, J. M.
1981-01-01
A phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration is described. Functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes were performed. Fuel cell materials and components, and performance testing and evaluation of the repeating electrode components were characterized. The state of the art manufacturing technology for all fuel cell components and the fabrication of short stacks of various sites were established. A 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering aproach was developed.
Proton exchange membrane fuel cell technology for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swathirajan, S.
1996-04-01
Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plantmore » was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.« less
[Micro fabricated enzyme battery].
Sasaki, S; Karube, I
1996-10-01
Although various work has been done in the field of implantable micro actuators such as artificial organs and micro surgery robots, a suitable electric power supply for these is yet to be developed. For this purpose a micro fabricated enzyme fuel cell was developed which uses glucose contained in the human body as a fuel. In order to obtain enough voltage each cell was formed as part of a serial array on a silicon wafer. Glucose solution enters the cells by a capillary effect. In this article fuel cells already developed using biocatalysts are described, and the future possibility of a micro fabricated enzyme battery is discussed.
Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage
NASA Technical Reports Server (NTRS)
Sheibley, D. W.
1984-01-01
Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000.
Progress in batteries and solar cells - Volume 6
NASA Astrophysics Data System (ADS)
Shimotake, Hiroshi; Voss, Ernst
The present conference encompasses topics in lithium cell development, manganese cell design, lead-acid batteries, fuel cells, nickel-cadmium and other rechargeable batteries, and battery chargers and related power systems. Attention is given to molten carbonate fuel cells, prospects for sodium/sulfur propulsion batteries, ultrathin lithium batteries, solid state batteries, a gelled electrolyte lead-acid battery for deep discharge applications, and phosphoric acid fuel cells. Also discussed are computer-based battery monitors, a novel nickel-iron battery for electric vehicle applications, conductive polymer electrode electrochemical cells, and catalyst- and electrode-related research for phosphoric acid fuel cells.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew; Gikakis, Christina
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including FCEB developers, transit agencies, and system integrators, have expressed the value of this annual status report, which provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. The annual status report tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. Themore » 2015 summary results primarily focus on the most recent year for each demonstration, from August 2014 through July 2015. The results for these buses account for more than 1,045,000 miles traveled and 83,000 hours of fuel cell power system operation. The primary results presented in the report are from two demonstrations of fuel-cell-dominant bus designs: the Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California and the American Fuel Cell Bus Project at SunLine Transit Agency in California.« less
Ma, Jiwei; Habrioux, Aurélien; Morais, Cláudia; Alonso-Vante, Nicolas
2014-07-21
We reported herein on the use of tolerant cathode catalysts such as carbon supported Pt(x)Ti(y) and/or Pt(x)Se(y) nanomaterials in an air-breathing methanol microfluidic fuel cell. In order to show the improvement of mixed-reactant fuel cell (MRFC) performances obtained with the developed tolerant catalysts, a classical Pt/C nanomaterial was used for comparison. Using 5 M methanol concentration in a situation where the fuel crossover is 100% (MRFC-mixed reactant fuel cell application), the maximum power density of the fuel cell with a Pt/C cathodic catalyst decreased by 80% in comparison with what is observed in the laminar flow fuel cell (LFFC) configuration. With Pt(x)Ti(y)/C and Pt(x)Se(y)/C cathode nanomaterials, the performance loss was only 55% and 20%, respectively. The evaluation of the tolerant cathode catalysts in an air-breathing microfluidic fuel cell suggests the development of a novel nanometric system that will not be size restricted. These interesting results are the consequence of the high methanol tolerance of these advanced electrocatalysts via surface electronic modification of Pt. Herein we used X-ray photoelectron and in situ FTIR spectroscopies to investigate the origin of the high methanol tolerance on modified Pt catalysts.
Fuzzy control based engine sizing optimization for a fuel cell/battery hybrid mini-bus
NASA Astrophysics Data System (ADS)
Kim, Minjin; Sohn, Young-Jun; Lee, Won-Yong; Kim, Chang-Soo
The fuel cell/battery hybrid vehicle has been focused for the alternative engine of the existing internal-combustion engine due to the following advantages of the fuel cell and the battery. Firstly, the fuel cell is highly efficient and eco-friendly. Secondly, the battery has the fast response for the changeable power demand. However, the competitive efficiency of the hybrid fuel cell vehicle is necessary to successfully alternate the conventional vehicles with the fuel cell hybrid vehicle. The most relevant factor which affects the overall efficiency of the hybrid fuel cell vehicle is the relative engine sizing between the fuel cell and the battery. Therefore the design method to optimize the engine sizing of the fuel cell hybrid vehicle has been proposed. The target system is the fuel cell/battery hybrid mini-bus and its power distribution is controlled based on the fuzzy logic. The optimal engine sizes are determined based on the simulator developed in this paper. The simulator includes the several models for the fuel cell, the battery, and the major balance of plants. After the engine sizing, the system efficiency and the stability of the power distribution are verified based on the well-known driving schedule. Consequently, the optimally designed mini-bus shows good performance.
Distillate fuel-oil processing for phosphoric acid fuel cell power plants
NASA Astrophysics Data System (ADS)
1980-02-01
Efforts to develop distillate oil steam reforming processes are reviewed, and the applicability of these processes for integration with the fuel cell are discussed. The development efforts can be grouped into the following processing approaches: high temperature steam reforming; autothermal reforming; autothermal gasification; and ultra desulfurization followed by steam reforming. Sulfur in the feed is a problem in the process development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, B.; Melaina, M.; Penev, M.
This report describes the development and analysis of detailed temporal and spatial scenarios for early market hydrogen fueling infrastructure clustering and fuel cell electric vehicle rollout using the Scenario Evaluation, Regionalization and Analysis (SERA) model. The report provides an overview of the SERA scenario development framework and discusses the approach used to develop the nationwidescenario.
Review of cell performance in anion exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Dekel, Dario R.
2018-01-01
Anion exchange membrane fuel cells (AEMFCs) have recently received increasing attention since in principle they allow for the use of non-precious metal catalysts, which dramatically reduces the cost per kilowatt of power in fuel cell devices. Until not long ago, the main barrier in the development of AEMFCs was the availability of highly conductive anion exchange membranes (AEMs); however, improvements on this front in the past decade show that newly developed AEMs have already reached high levels of conductivity, leading to satisfactory cell performance. In recent years, a growing number of research studies have reported AEMFC performance results. In the last three years, new records in performance were achieved. Most of the literature reporting cell performance is based on hydrogen-AEMFCs, although an increasing number of studies have also reported the use of fuels others than hydrogen - such as alcohols, non-alcohol C-based fuels, as well as N-based fuels. This article reviews the cell performance and performance stability achieved in AEMFCs through the years since the first reports in the early 2000s.
Durability of PEM Fuel Cell Membranes
NASA Astrophysics Data System (ADS)
Huang, Xinyu; Reifsnider, Ken
Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.
NASA's PEM Fuel Cell Power Plant Development Program for Space Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.
2008-01-01
A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.
The TMI Regenerative Solid Oxide Fuel Cell
NASA Technical Reports Server (NTRS)
Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael
1996-01-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.
Fuel Cells | Climate Neutral Research Campuses | NREL
to develop fuel cells on campus. Does your campus support telecommunications networks where there is captures waste heat to generate hot water. Additionally, the exhaust carbon dioxide is routed to an energy conversion calculation methodologies. U.S. Department of Energy - Fuel Cell Animation: Provides an
greenhouse effect. Hydrogen has very high energy for its weight, but very low energy for its volume, so new make a hydrogen economy a reality include: Fuel Cells - Improving fuel cell technology and materials needed for fuel cells. Production - Developing technology to efficiently and cost-effectively make
Developing RCM Strategy for Hydrogen Fuel Cells Utilizing On Line E-Condition Monitoring
NASA Astrophysics Data System (ADS)
Baglee, D.; Knowles, M. J.
2012-05-01
Fuel cell vehicles are considered to be a viable solution to problems such as carbon emissions and fuel shortages for road transport. Proton Exchange Membrane (PEM) Fuel Cells are mainly used in this purpose because they can run at low temperatures and have a simple structure. Yet high maintenance costs and the inherent dangers of maintaining equipment using hydrogen are two main issues which need to be addressed. The development of appropriate and efficient strategies is currently lacking with regard to fuel cell maintenance. A Reliability Centered Maintenance (RCM) approach offers considerable benefit to the management of fuel cell maintenance since it includes an identification and consideration of the impact of critical components. Technological developments in e-maintenance systems, radio-frequency identification (RFID) and personal digital assistants (PDAs) have proven to satisfy the increasing demand for improved reliability, efficiency and safety. RFID technology is used to store and remotely retrieve electronic maintenance data in order to provide instant access to up-to-date, accurate and detailed information. The aim is to support fuel cell maintenance decisions by developing and applying a blend of leading-edge communications and sensor technology including RFID. The purpose of this paper is to review and present the state of the art in fuel cell condition monitoring and maintenance utilizing RCM and RFID technologies. Using an RCM analysis critical components and fault modes are identified. RFID tags are used to store the critical information, possible faults and their cause and effect. The relationship between causes, faults, symptoms and long term implications of fault conditions are summarized. Finally conclusions are drawn regarding suggested maintenance strategies and the optimal structure for an integrated, cost effective condition monitoring and maintenance management system.
Evaluation of Fuel Cell Operation and Degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Mark; Gemmen, Randall; Richards, George
The concepts of area specific resistance (ASR) and degradation are developed for different fuel cell operating modes. The concepts of exergetic efficiency and entropy production were applied to ASR and degradation. It is shown that exergetic efficiency is a time-dependent function useful describing the thermal efficiency of a fuel cell and the change in thermal efficiency of a degrading fuel cell. Entropy production was evaluated for the cases of constant voltage operation and constant current operation of the fuel cell for a fuel cell undergoing ohmic degradation. It was discovered that the Gaussian hypergeometric function describes the cumulative entropy andmore » electrical work produced by fuel cells operating at constant voltage. The Gaussian hypergeometric function is found in many applications in modern physics. This paper builds from and is an extension of several papers recently published by the authors in the Journal of The Electrochemical Society (ECS), ECS Transactions, Journal of Power Sources, and the Journal of Fuel Cell Science and Technology.« less
Advances in fuel cell vehicle design
NASA Astrophysics Data System (ADS)
Bauman, Jennifer
Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied to any system utilizing the novel battery-ultracapacitor energy storage system and is not limited in application to only fuel cell vehicles. With regards to DC/DC converters, it is important to design efficient and light-weight converters for use in fuel cell and other electric vehicles to improve overall vehicle fuel economy. Thus, this research presents a novel soft-switching method, the capacitor-switched regenerative snubber, for the high-power DC/DC boost converters commonly used in fuel cell vehicles. This circuit is shown to increase the efficiency and reduce the overall mass of the DC/DC boost converter.
Fuel cells for vehicle applications in cars - bringing the future closer
NASA Astrophysics Data System (ADS)
Panik, Ferdinand
Among all alternative drive systems, the fuel cell electric propulsion system has the highest potential to compete with the internal combustion engine. For this reason, Daimler-Benz AG has entered into a co-operative alliance with Ballard Power Systems, with the objectives of bringing fuel cell vehicles to the market. Apart from the fuel cell itself, fuel cell vehicles require comprehensive system technology to provide fuel and air supply, cooling, energy management, electric and electronic functions. The system technology determines to a large extent the cost, weight, efficiency, performance and overall customer benefit of fuel cell vehicles. Hence, Daimler-Benz and Ballard are pooling their expertise in fuel cell system technology in a joint company, with the aim of bringing their fuel cell vehicular systems to the stage of maturity required for market entry as early as possible. Hydrogen-fuelled zero-emission fuel cell transit `buses' will be the first market segment addressed, with an emphasis on the North American and European markets. The first buses are already scheduled for delivery to customers in late 1997. Since a liquid fuel like methanol is easier to handle in passenger cars, fuel reforming technologies are developed and will shortly be demonstrated in a prototype, as well. The presentation will cover concepts of fuel cell vehicles with an emphasis on system technology, the related testing procedures and results as well as an outline of market entry strategies.
NASA Technical Reports Server (NTRS)
Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.
1985-01-01
Two 25 cell stacks of the 13 inch x 23 inch cell size (about 4kW) remain on test after 4000 hours and 2900 hours, respectively, using simulated reformate fuel. These tests are focusing on the durability of fuel cell stack components developed through the end of 1983. Also, these stacks are serving as forerunners of a 25kW stack that will contain 175 cells of the same size and will employ the same technology base. The stack technology development program has focused on a new, low cost bipolar plate edge seal technique and evaluation of advanced cathode catalysts, an electrolyte replenishment system, and nonmetallic cooling plates in small stacks.
System level modeling and component level control of fuel cells
NASA Astrophysics Data System (ADS)
Xue, Xingjian
This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the optimal design of tubular SOFC. With the system-level dynamic model as a basis, a framework for the robust, online monitoring of PEM fuel cell is developed in the dissertation. The monitoring scheme employs the Hotelling T2 based statistical scheme to handle the measurement noise and system uncertainties and identifies the fault conditions through a series of self-checking and conformal testing. A statistical sampling strategy is also utilized to improve the computation efficiency. Fuel/gas flow control is the fundamental operation for fuel cell energy systems. In the final part of the dissertation, a high-precision and robust tracking control scheme using piezoelectric actuator circuit with direct hysteresis compensation is developed. The key characteristic of the developed control algorithm includes the nonlinear continuous control action with the adaptive boundary layer strategy.
Fuel Cell Manufacturing Research and Development | Hydrogen and Fuel Cells
methods to meet volume and cost targets for transportation and other applications. Fortunately, much can set Develop predictive models to help industry design better manufacturing processes and methods
Selection of optimal sensors for predicting performance of polymer electrolyte membrane fuel cell
NASA Astrophysics Data System (ADS)
Mao, Lei; Jackson, Lisa
2016-10-01
In this paper, sensor selection algorithms are investigated based on a sensitivity analysis, and the capability of optimal sensors in predicting PEM fuel cell performance is also studied using test data. The fuel cell model is developed for generating the sensitivity matrix relating sensor measurements and fuel cell health parameters. From the sensitivity matrix, two sensor selection approaches, including the largest gap method, and exhaustive brute force searching technique, are applied to find the optimal sensors providing reliable predictions. Based on the results, a sensor selection approach considering both sensor sensitivity and noise resistance is proposed to find the optimal sensor set with minimum size. Furthermore, the performance of the optimal sensor set is studied to predict fuel cell performance using test data from a PEM fuel cell system. Results demonstrate that with optimal sensors, the performance of PEM fuel cell can be predicted with good quality.
Engineering microbial fuels cells: recent patents and new directions.
Biffinger, Justin C; Ringeisen, Bradley R
2008-01-01
Fundamental research into how microbes generate electricity within microbial fuel cells (MFCs) has far outweighed the practical application and large scale development of microbial energy harvesting devices. MFCs are considered alternatives to standard commercial polymer electrolyte membrane (PEM) fuel cell technology because the fuel supply does not need to be purified, ambient operating temperatures are maintained with biologically compatible materials, and the biological catalyst is self-regenerating. The generation of electricity during wastewater treatment using MFCs may profoundly affect the approach to anaerobic treatment technologies used in wastewater treatment as a result of developing this energy harvesting technology. However, the materials and engineering designs for MFCs were identical to commercial fuel cells until 2003. Compared to commercial fuel cells, MFCs will remain underdeveloped as long as low power densities are generated from the best systems. The variety of designs for MFCs has expanded rapidly in the last five years in the literature, but the patent protection has lagged behind. This review will cover recent and important patents relating to MFC designs and progress.
Systems Analysis Of Advanced Coal-Based Power Plants
NASA Technical Reports Server (NTRS)
Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.
1988-01-01
Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.
NASA Technical Reports Server (NTRS)
Kaufman, A.; Olson, B.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.
1986-01-01
A 25-cell stack of the 13 inch x 23 inch cell size (about 4kW) remains on test after 8300 hours, using simulated reformate fuel. A similar stack was previously shut down after 7000 hours on load. These tests have been carried out for the purpose of assessing the durability of fuel cell stack components developed through the end of 1983. A 25kW stack containing 175 cells of the same size and utilizing a technology base representative of the 25-cell stacks has been constructed and is undergoing initial testing. A third 4kW stack is being prepared, and this stack will incorporate several new technology features.
Final Report - MEA and Stack Durability for PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yandrasits, Michael A.
2008-02-15
Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets.more » The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain the same. (6) Through the use of statistical lifetime analysis methods, it is possible to develop new MEAs with predicted durability approaching the DOE 2010 targets. (7) A segmented cell was developed that extend the resolution from ~ 40 to 121 segments for a 50cm2 active area single cell which allowed for more precise investigation of the local phenomena in a operating fuel cell. (8) The single cell concept was extended to a fuel size stack to allow the first of its kind monitoring and mapping of an operational fuel cell stack. An internal check used during this project involved evaluating the manufacturability of any new MEA component. If a more durable MEA component was developed in the lab, but could not be scaled-up to ‘high speed, high volume manufacturing’, then that component was not selected for the final MEA-fuel cell system demonstration. It is the intent of the team to commercialize new products developed under this project, but commercialization can not occur if the manufacture of said new components is difficult or if the price is significantly greater than existing products as to make the new components not cost competitive. Thus, the end result of this project is the creation of MEA and fuel cell system technology that is capable of meeting the DOEs 2010 target of 40,000 hours for stationary fuel cell systems (although this lifetime has not been demonstrated in laboratory or field testing yet) at a cost that is economically viable for the developing fuel cell industry. We have demonstrated over 2,000 hours of run time for the MEA and system developed under this project.« less
Analysis of long-time operation of micro-cogeneration unit with fuel cell
NASA Astrophysics Data System (ADS)
Patsch, Marek; Čaja, Alexander
2015-05-01
Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.
Fuel economy of hybrid fuel-cell vehicles
NASA Astrophysics Data System (ADS)
Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.
The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.
On the application of the PFEM to droplet dynamics modeling in fuel cells
NASA Astrophysics Data System (ADS)
Ryzhakov, Pavel B.; Jarauta, Alex; Secanell, Marc; Pons-Prats, Jordi
2017-07-01
The Particle Finite Element Method (PFEM) is used to develop a model to study two-phase flow in fuel cell gas channels. First, the PFEM is used to develop the model of free and sessile droplets. The droplet model is then coupled to an Eulerian, fixed-grid, model for the airflow. The resulting coupled PFEM-Eulerian algorithm is used to study droplet oscillations in an air flow and droplet growth in a low-temperature fuel cell gas channel. Numerical results show good agreement with predicted frequencies of oscillation, contact angle, and deformation of injected droplets in gas channels. The PFEM-based approach provides a novel strategy to study droplet dynamics in fuel cells.
OTEC to hydrogen fuel cells - A solar energy breakthrough
NASA Astrophysics Data System (ADS)
Roney, J. R.
Recent advances in fuel cell technology and development are discussed, which will enhance the Ocean Thermal Energy Conversion (OTEC)-hydrogen-fuel cell mode of energy utilization. Hydrogen obtained from the ocean solar thermal resources can either be liquified or converted to ammonia, thus providing a convenient mode of transport, similar to that of liquid petroleum. The hydrogen fuel cell can convert hydrogen to electric power at a wide range of scale, feeding either centralized or distributed systems. Although this system of hydrogen energy production and delivery has been examined with respect to the U.S.A., the international market, and especially developing countries, may represent the greatest opportunity for these future generating units.
Development of the work on fuel cells in the Ministry for Atomic Energy of Russian Federation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubovin, B.Y.; Novitski, E.Z.
1996-04-01
This paper describes research on fuel cells in the Russian Federation. The beginning of the practical work on fuel cells in Russia dates back to the 50`s and 60`s when the Ural Electrochemical Plant and the Ural Electromechanical Plant of the Ministry of Medium Machine-Building of the USSR, all Russian Research Institute of the power sources and many other institutes of the Ministry of Electrotechnical Industry of the USSR got to the development of the alkaline fuel cells for the spaceships according to the tasks of the SPC `Energy` and for the submarines on the tasks of the Ministry ofmore » Defense.« less
High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
1999-01-01
Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.
System design of a large fuel cell hybrid locomotive
NASA Astrophysics Data System (ADS)
Miller, A. R.; Hess, K. S.; Barnes, D. L.; Erickson, T. L.
Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads.
Status of shuttle fuel cell technology program.
NASA Technical Reports Server (NTRS)
Rice, W. E.; Bell, D., III
1972-01-01
The hydrogen-oxygen fuel cell has been proved as an efficient and reliable electrical power supply for NASA manned-space-flight vehicles. It has thus ensured a role in the Space Shuttle Program as the primary electrical power supply for the Orbiter vehicle. The advanced fuel cell technology programs conducted under the management of the NASA Manned Spacecraft Center over the past two years have resulted in a high level of technical readiness in fuel cell power generation to support shuttle mission requirements. These programs have taken advantage of technological developments that have occurred since the designs were completed for the Gemini and Apollo fuel cells.
Fuel Cell Technologies Office FY 2017 Budget At-A-Glance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-03-01
The Fuel Cell Technologies Office develops technologies to enable fuel cells to be competitive in diverse applications, with a focus on light-duty vehicles (at less than $40/kW) and to enable renewable hydrogen to be cost-competitive with gasoline (at less than $4 per gallon gasoline equivalent (gge), delivered and dispensed).
Soloveichik, Grigorii L
2014-01-01
The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.
Fuel cells and the city of the future — a Japanese view
NASA Astrophysics Data System (ADS)
Satomi, Tomohide
The development and practical application of fuel cells have been promoted aggressively in Japan, and the on-site phosphoric acid fuel cell (PAFC) has been attained with the prospect for practical market enery in commercial buildings by the middle of the 1990s. Fuel cells have features of less environmental impact and high energy efficiency which meet the requirements of the utility system for the future city. In Japan, the recent concentration of social functions and population to the city have begun to cause many serious problems. To resolve these environmental and resource related problems and to move towards developing and constructing a new city, one answer offered is the concept of CAN (community amenity network). CAN is a sophisticated utility system which integrates fuel cells as well as a system for effective use of unused energy and recycling of waste disposal and water. For solving the housing shortage problem in the next century, the concept of skyscraper building cities is currently proposed. Fuel cell systems can also be applied to these cities as a major element of the integrated zone energy supply network facility.
Liquid-fueled SOFC power sources for transportation
NASA Astrophysics Data System (ADS)
Myles, K. M.; Doshi, R.; Kumar, R.; Krumpelt, M.
Traditionally, fuel cells have been developed for space or stationary terrestrial applications. As the first commercial 200-kW systems were being introduced by ONSI and Fuji Electric, the potentially much larger, but also more challenging, application in transportation was beginning to be addressed. As a result, fuel cell-powered buses have been designed and built, and R&D programs for fuel cell-powered passenger cars have been initiated. The engineering challenge of eventually replacing the internal combustion engine in buses, trucks, and passenger cars with fuel cell systems is to achieve much higher power densities and much lower costs than obtainable in systems designed for stationary applications. At present, the leading fuel cell candidate for transportation applications is, without question, the polymer electrolyte fuel cell (PEFC). Offering ambient temperature start-up and the potential for a relatively high power density, the polymer technology has attracted the interest of automotive manufacturers worldwide. But the difficulties of fuel handling for the PEFC have led to a growing interest in exploring the prospects for solid oxide fuel cells (SOFCs) operating on liquid fuels for transportation applications. Solid oxide fuel cells are much more compatible with liquid fuels (methanol or other hydrocarbons) and are potentially capable of power densities high enough for vehicular use. Two SOFC options for such use are discussed in this report.
NASA Astrophysics Data System (ADS)
Bubna, Piyush; Brunner, Doug; Gangloff, John J.; Advani, Suresh G.; Prasad, Ajay K.
The fuel cell hybrid bus (FCHB) program was initiated at the University of Delaware in 2005 to demonstrate the viability of fuel cell vehicles for transit applications and to conduct research and development to facilitate the path towards their eventual commercialization. Unlike other fuel cell bus programs, the University of Delaware's FCHB design features a battery-heavy hybrid which offers multiple advantages in terms of cost, performance and durability. The current fuel cell hybrid bus is driven on a regular transit route at the University of Delaware. The paper describes the baseline specifications of the bus with a focus on the fuel cell and the balance of plant. The fuel cell/battery series-hybrid design is well suited for urban transit routes and provides key operational advantages such as hydrogen fuel economy, efficient use of the fuel cell for battery recharging, and regenerative braking. The bus is equipped with a variety of sensors including a custom-designed cell voltage monitoring system which provide a good understanding of bus performance under normal operation. Real-time data collection and analysis have yielded key insights for fuel cell bus design optimization. Results presented here illustrate the complex flow of energy within the various subsystems of the fuel cell hybrid bus. A description of maintenance events has been included to highlight the issues that arise during general operation. The paper also describes several modifications that will facilitate design improvements in future versions of the bus. Overall, the fuel cell hybrid bus demonstrates the viability of fuel cells for urban transit applications in real world conditions.
The use of experimental design to find the operating maximum power point of PEM fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crăciunescu, Aurelian; Pătularu, Laurenţiu; Ciumbulea, Gloria
2015-03-10
Proton Exchange Membrane (PEM) Fuel Cells are difficult to model due to their complex nonlinear nature. In this paper, the development of a PEM Fuel Cells mathematical model based on the Design of Experiment methodology is described. The Design of Experiment provides a very efficient methodology to obtain a mathematical model for the studied multivariable system with only a few experiments. The obtained results can be used for optimization and control of the PEM Fuel Cells systems.
NASA Astrophysics Data System (ADS)
Karstedt, Jörg; Ogrzewalla, Jürgen; Severin, Christopher; Pischinger, Stefan
In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented. A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system. Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors. Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.
Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Deangelis; Rich Depuy; Debashis Dey
2004-09-30
This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale upmore » strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.« less
Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinton, David P; McGervey, Joseph; Curran, Scott
2011-11-01
Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: Amore » Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making fuel cell projects easier to put into service. In this environment, federal decision makers can focus on being smart buyers of fuel cell energy instead of attempting to become experts in fuel cell technology. For agencies that want to pursue a fuel cell CHP this guide presents a four step process for a successful project. 1. Perform a preliminary screening of the energy needs energy costs and incentives. 2. Compare a detailed project plan. 3. Make a financing and contracting decision. 4. Execute the project plan including financing, installation, and operation. The simplest procurement method is designated funding for the outright purchase of the fuel cell CHP system, although this is usually not the most cost-effective option. This guide describes the following financing options: Power purchase agreement Energy savings performance contract Utility energy services contract Enhanced use lease Fuel cell CHP technology can help federal facility managers comply with agency objectives for reducing energy consumption and air pollution emissions. Fuel cells do not generate particulate pollutants, unburned hydrocarbons or the gases that produce acid rain. Fuel cells emit less carbon dioxide (CO2) than other, less efficient technologies and use of renewable fuels can make them carbon neutral. Fuel cell CHP technology can deliver reliable electricity and heat with high efficiency (70% to 85%) in a small physical footprint with little noise, making it a cost-effective option for federal facilities.« less
PEM fuel cell bipolar plate material requirements for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E.
1996-04-01
Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.
Testing of Lightweight Fuel Cell Vehicles System at Low Speeds with Energy Efficiency Analysis
NASA Astrophysics Data System (ADS)
Mustaffa, Muhammad Rizuwan B.; Mohamed, Wan Ahmad Najmi B. Wan
2013-12-01
A fuel cell vehicle power train mini test bench was developed which consists of a 1 kW open cathode hydrogen fuel cell, electric motor, wheel, gearing system, DC/DC converter and vehicle control system (VCS). Energy efficiency identification and energy flow evaluation is a useful tool in identifying a detail performance of each component and sub-systems in a fuel cell vehicle system configuration. Three artificial traction loads was simulated at 30 kg, 40 kg and 50 kg force on a single wheel drive configuration. The wheel speed range reported here covers from idle to 16 km/h (low speed range) as a preliminary input in the research work frame. The test result shows that the system efficiency is 84.5 percent when the energy flow is considered from the fuel cell to the wheel and 279 watts of electrical power was produced by the fuel cell during that time. Dynamic system responses was also identified as the load increases beyond the motor traction capabilities where the losses at the converter and motor controller increased significantly as it tries to meet the motor traction power demands. This work is currently being further expanded within the work frame of developing a road-worthy fuel cell vehicle.
Durability and performance optimization of cathode materials for fuel cells
NASA Astrophysics Data System (ADS)
Colon-Mercado, Hector Rafael
The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and understanding the mechanisms of ORR. However, a relatively small number of publications are related to the durability of Pt alloys in the PEMFC environment. In the second part of this dissertation an ADT is developed for the evaluation of PEMFC cathode catalysts in a time and cost effective way.
Development of molten carbonate fuel cells for power generation
NASA Astrophysics Data System (ADS)
1980-04-01
The broad and comprehensive program included elements of system definition, cell and system modeling, cell component development, cell testing in pure and contaminated environments, and the first stages of technology scale up. Single cells, with active areas of 45 sq cm and 582 sq cm, were operated at 650 C and improved to state of the art levels through the development of cell design concepts and improved electrolyte and electrode components. Performance was shown to degrade by the presence of fuel contaminants, such as sulfur and chlorine, and due to changes in electrode structure. Using conventional hot press fabrication techniques, electrolyte structures up to 20" x 20" were fabricated. Promising approaches were developed for nonhot pressed electrolyte structure fabrication and a promising electrolyte matrix material was identified. This program formed the basis for a long range effort to realize the benefits of molten carbonate fuel cell power plants.
The US Department of Energy - investing in clean transport
NASA Astrophysics Data System (ADS)
Chalk, Steven G.; Milliken, JoAnn; Miller, James F.; Venkateswaran, S. R.
The US Department of Energy (DOE), together with six other federal agencies and America's three largest car makers, are jointly investing in the development of polymer electrolyte membrane (PEM) fuel cells as a clean and efficient technology for automotive propulsion under the Partnership for a New Generation of Vehicles (PNGV). (PEM is sometimes referred to as `proton exchange membrane'. The correctness, or otherwise, of that interpretation will depend on the mechanism of apparent proton transfer in the membrane implied). It is anticipated that the successful development of PEM fuel cells (and other long-term technologies) to meet automotive requirements will extend beyond the PNGV's 2004 timeframe for achieving 80 miles per gallon in production prototypes. Given the extraordinary promise of large energy, environmental and economic benefits to the nation from fuel cells and other long-term technologies, the PNGV partners will continue to invest in these technologies beyond 2004. The DOE's Transportation Fuel Cells Program has recently announced US$50 million of new contract awards for focused R&D to overcome critical technical barriers such as fuel-flexible fuel processing technology. The progress achieved toward automotive goals through these and past investments will also enable nearer-term application of fuel cells (e.g. in buses). This paper describes the status of the PNGV program and the key role and technical accomplishments of the DOE Transportation Fuel Cells Program. The DOE's recent investments in new fuel cell R&D activities will be discussed.
Recent developments in microbial fuel cell technologies for sustainable bioenergy.
Watanabe, Kazuya
2008-12-01
Microbial fuel cells (MFCs) are devices that exploit microbial catabolic activities to generate electricity from a variety of materials, including complex organic waste and renewable biomass. These sources provide MFCs with a great advantage over chemical fuel cells that can utilize only purified reactive fuels (e.g., hydrogen). A developing primary application of MFCs is its use in the production of sustainable bioenergy, e.g., organic waste treatment coupled with electricity generation, although further technical developments are necessary for its practical use. In this article, recent advances in MFC technologies that can become fundamentals for future practical MFC developments are summarized. Results of recent studies suggest that MFCs will be of practical use in the near future and will become a preferred option among sustainable bioenergy processes.
Development Of A Solid Oxide Fuel Cell Stack By Delphi And Battelle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukerjee, Subhasish; Shaffer, Steven J.; Zizelman, James
2003-01-20
Delphi and Battelle are developing a Solid Oxide Fuel Cell (SOFC) stack for transportation and residential applications. This paper describes the status of development of the Generation 2 stack and key progress made in addressing some of the challenges in this technology.
DOT National Transportation Integrated Search
2003-10-29
The objective of the DOE/NREL evaluation program is to provide comprehensive, unbiased evaluation results of advanced technology vehicle development and operations, evaluation of hydrogen infrastructure development and operation, and descriptions of ...
Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications
NASA Technical Reports Server (NTRS)
Freeh, Joshua E.; Pratt, Joseph W.; Brouwer, Jacob
2004-01-01
Recent interest in fuel cell-gas turbine hybrid applications for the aerospace industry has led to the need for accurate computer simulation models to aid in system design and performance evaluation. To meet this requirement, solid oxide fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical Propulsion Systems Simulation (NPSS) software package. The SOFC and reformer models solve systems of equations governing steady-state performance using common theoretical and semi-empirical terms. An example hybrid configuration is presented that demonstrates the new capability as well as the interaction with pre-existing gas turbine and heat exchanger models. Finally, a comparison of calculated SOFC performance with experimental data is presented to demonstrate model validity. Keywords: Solid Oxide Fuel Cell, Reformer, System Model, Aerospace, Hybrid System, NPSS
Fundamental research in the area of high temperature fuel cells in Russia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyomin, A.K.
1996-04-01
Research in the area of molten carbonate and solid oxide fuel cells has been conducted in Russia since the late 60`s. Institute of High Temperature Electrochemistry is the lead organisation in this area. Research in the area of materials used in fuel cells has allowed us to identify compositions of electrolytes, electrodes, current paths and transmitting, sealing and structural materials appropriate for long-term fuel cell applications. Studies of electrode processes resulted in better understanding of basic patterns of electrode reactions and in the development of a foundation for electrode structure optimization. We have developed methods to increase electrode activity levelsmore » that allowed us to reach current density levels of up to 1 amper/cm{sup 2}. Development of mathematical models of processes in high temperature fuel cells has allowed us to optimize their structure. The results of fundamental studies have been tested on laboratory mockups. MCFC mockups with up to 100 W capacity and SOFC mockups with up to 1 kW capacity have been manufactured and tested at IHTE. There are three SOFC structural options: tube, plate and modular.« less
First responder training: Supporting commercialization of hydrogen and fuel cell technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barilo, N. F.; Hamilton, J. J.; Weiner, S. C.
A properly trained first responder community is critical to the successful introduction of hydrogen fuel cell applications and their transformation in how we use energy. Providing resources with accurate information and current knowledge is essential to the delivery of effective hydrogen and fuel cell-related first responder training. Furthermore, the California Fuel Cell Partnership and the Pacific Northwest National Laboratory have over 15 years of experience in developing and delivering hydrogen safety-related first responder training materials and programs. A National Hydrogen and Fuel Cell Emergency Response Training Resource was recently released (http://h2tools.org/fr/nt/). This training resource serves the delivery of a varietymore » of training regimens. Associated materials are adaptable for different training formats, ranging from high-level overview presentations to more comprehensive classroom training. Our paper presents what has been learned from the development and delivery of hydrogen safety-related first responder training programs (online, classroom, hands-on) by the respective organizations. We discussed the collaborative strategy being developed for enhancing training materials and methods for greater accessibility based on stakeholder input.« less
First responder training: Supporting commercialization of hydrogen and fuel cell technologies
Barilo, N. F.; Hamilton, J. J.; Weiner, S. C.
2017-03-01
A properly trained first responder community is critical to the successful introduction of hydrogen fuel cell applications and their transformation in how we use energy. Providing resources with accurate information and current knowledge is essential to the delivery of effective hydrogen and fuel cell-related first responder training. Furthermore, the California Fuel Cell Partnership and the Pacific Northwest National Laboratory have over 15 years of experience in developing and delivering hydrogen safety-related first responder training materials and programs. A National Hydrogen and Fuel Cell Emergency Response Training Resource was recently released (http://h2tools.org/fr/nt/). This training resource serves the delivery of a varietymore » of training regimens. Associated materials are adaptable for different training formats, ranging from high-level overview presentations to more comprehensive classroom training. Our paper presents what has been learned from the development and delivery of hydrogen safety-related first responder training programs (online, classroom, hands-on) by the respective organizations. We discussed the collaborative strategy being developed for enhancing training materials and methods for greater accessibility based on stakeholder input.« less
2014-01-01
Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessette, Norman
The objective of this project provided with funds through the American Recovery and Reinvestment Act of 2009 (ARRA) was to demonstrate a Solid Oxide Fuel Cell (SOFC) generator capable of operation on propane fuel to improve efficiency and reduce emissions over commercially available portable generators. The key objectives can be summarized as: Development of two portable electrical generators in the 1-3kW range utilizing Solid Oxide Fuel Cells and propane fuel; The development and demonstration of a proof-of-concept electro-mechanical propane fuel interface that provides a user friendly capability for managing propane fuel; The deployment and use of the fuel cell portablemore » generators to power media production equipment over the course of several months at multiple NASCAR automobile racing events; The deployment and use of the fuel cell portable generators at scheduled events by first responders (police, fire) of the City of Folsom California; and Capturing data with regard to the systems’ ability to meet Department of Energy (DOE) Technical Targets and evaluating the ease of use and potential barriers to further adoption of the systems.« less
Recent Advances in High-Performance Direct Methanol Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, S. R.; Chun, W.; Valdez, T. I.; Jeffries-Nakamura, B.; Frank, H.; Surumpudi, S.; Halpert, G.; Kosek, J.; Cropley, C.; La Conti, A. B.;
1996-01-01
Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed, direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant.
NASA Astrophysics Data System (ADS)
Torija, Sergio; Prieto-Sanchez, Laura; Ashton, Sean J.
2016-09-01
The ability to evaluate the electrochemically active surface area (ECSA) of fuel cell electrodes is crucial toward characterising designs and component suites in-situ, particularly when evaluating component durability in endurance testing, since it is a measure of the electrode area available to take part in the fuel cell reactions. Conventional methods to obtain the ECSA using cyclic voltammetry, however, rely on potentiostats that cannot be easily scaled to simultaneously evaluate all cells in a fuel cell stack of practical size, which is desirable in fuel cell development. In-situ diagnostics of an open-cathode fuel cell stack are furthermore challenging because the cells do not each possess an enclosed cathode compartment; instead, the cathodes are rather open to the environment. Here we report on a diagnostic setup that allows the electrochemically active surface area of each cell anode or cathode in an open-cathode fuel cell stack to be evaluated in-situ and simultaneously, with high resolution and reproducibility, using an easily scalable chronopotentiometry methodology and a gas-tight stack enclosure.
NASA Astrophysics Data System (ADS)
Chalk, Steven G.; Miller, James F.
Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center to verify storage capacity of promising materials. These developments point to a viable path to achieving the DOE/FreedomCAR cost and performance goals. The transition to hydrogen-powered fuel cell vehicles will occur over the next 10-15 years. In the interim, fossil fuel consumption will be reduced by increased penetration of battery/gasoline hybrid cars.
ERIC Educational Resources Information Center
Hawkins, M. D.
1973-01-01
Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)
Vapor feed direct methanol fuel cells with passive thermal-fluids management system
NASA Astrophysics Data System (ADS)
Guo, Zhen; Faghri, Amir
The present paper describes a novel technology that can be used to manage methanol and water in miniature direct methanol fuel cells (DMFCs) without the need for a complex micro-fluidics subsystem. At the core of this new technology is a unique passive fuel delivery system that allows for fuel delivery at an adjustable rate from a reservoir to the anode. Furthermore, the fuel cell is designed for both passive water management and effective carbon dioxide removal. The innovative thermal management mechanism is the key for effective operation of the fuel cell system. The vapor feed DMFC reached a power density of 16.5 mW cm -2 at current density of 60 mA cm -2. A series of fuel cell prototypes in the 0.5 W range have been successfully developed. The prototypes have demonstrated long-term stable operation, easy fuel delivery control and are scalable to larger power systems. A two-cell stack has successfully operated for 6 months with negligible degradation.
Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borup, Rodney; Meyers, Jeremy; Pivovar, Bryan
Rod Borup is a Team Leader in the fuel cell program at Los Alamos National Lab in Los Alamos, New Mexico. He received his B.S.E. in Chemical Engineering from the University of Iowa in 1988 and his Ph.D. from the University of Washington in 1993. He has worked on fuel cell technology since 1994, working in the areas of hydrogen production and PEM fuel cell stack components. He has been awarded 12 U.S. patents, authored over 40 papers related to fuel cell technology, and presented over 50 oral papers at national meetings. His current main research area is related tomore » water transport in PEM fuel cells and PEM fuel cell durability. Recently, he was awarded the 2005 DOE Hydrogen Program R&D Award for the most significant R&D contribution of the year for his team's work in fuel cell durability and was the Principal Investigator for the 2004 Fuel Cell Seminar (San Antonio, TX, USA) Best Poster Award. Jeremy Meyers is an Assistant Professor of materials science and engineering and mechanical engineering at the University of Texas at Austin, where his research focuses on the development of electrochemical energy systems and materials. Prior to joining the faculty at Texas, Jeremy worked as manager of the advanced transportation technology group at UTC Power, where he was responsible for developing new system designs and components for automotive PEM fuel cell power plants. While at UTC Power, Jeremy led several customer development projects and a DOE-sponsored investigation into novel catalysts and membranes for PEM fuel cells. Jeremy has coauthored several papers on key mechanisms of fuel cell degradation and is a co-inventor of several patents. In 2006, Jeremy and several colleagues received the George Mead Medal, UTC's highest award for engineering achievement, and he served as the co-chair of the Gordon Research Conference on fuel cells. Jeremy received his Ph.D. in Chemical Engineering from the University of California at Berkeley and holds a Bachelor's Degree in Chemical Engineering from Stanford University. Bryan Pivovar received his B.S. in Chemical Engineering from the University of Wisconsin in 1994. He completed his Ph.D. in Chemical Engineering at the University of Minnesota in 2000 under the direction of Profs. Ed Cussler and Bill Smyrl, studying transport properties in fuel cell electrolytes. He continued working in the area of polymer electrolyte fuel cells at Los Alamos National Laboratory as a post-doc (2000-2001), as a technical staff member (2001-2005), and in his current position as a team leader (2005-present). In this time, Bryan's research has expanded to include further aspects of fuel cell operation, including electrodes, subfreezing effects, alternative polymers, hydroxide conductors, fuel cell interfaces, impurities, water transport, and high-temperature membranes. Bryan has served at various levels in national and international conferences and workshops, including organizing a DOE sponsored workshop on freezing effects in fuel cells and an ARO sponsored workshop on alkaline membrane fuel cells, and he was co-chair of the 2007 Gordon Research Conference on Fuel Cells. Minoru Inaba is a Professor at the Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Japan. He received his B.Sc. from the Faculty of Engineering, Kyoto University, in 1984 and his M.Sc. in 1986 and his Dr. Eng. in 1995 from the Graduate School of Engineering, Kyoto University. He has worked on electrochemical energy conversion systems including fuel cells and lithium-ion batteries at Kyoto University (1992-2002) and at Doshisha University (2002-present). His primary research interest is the durability of polymer electrolyte fuel cells (PEFCs), in particular, membrane degradation, and he has been involved in NEDO R&D research projects on PEFC durability since 2001. He has authored over 140 technical papers and 30 review articles. Kenichiro Ota is a Professor of the Chemical Energy Laboratory at the Graduate School of Engineering, Yokohama National University, Japan. He received his B.S.E. in Applied Chemistry from the University of Tokyo in 1968 and his Ph.D. from the University of Tokyo in 1973. He has worked on hydrogen energy and fuel cells since 1974, working on materials science for fuel cells and water electrolysis. He has published more than 150 original papers, 70 review papers, and 50 scientific books. He is now the president of the Hydrogen Energy Systems Society of Japan, the chairman of the Fuel Cell Research Group of the Electrochemical Society of Japan, and the chairman of the National Committee for the Standardization of the Stationary Fuel Cells. ABSTRACT TRUNCATED« less
Research and development issues for molten carbonate fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krumpelt, M.
1996-04-01
This paper describes issues pertaining to the development of molten carbonate fuel cells. In particular, the corrosion resistance and service life of nickel oxide cathodes is described. The resistivity of lithium oxide/iron oxides and improvement with doping is addressed.
Silicon micro-fabricated miniature polymer electrolyte fuel cells
NASA Astrophysics Data System (ADS)
Kelley, Shawn Christopher
2000-10-01
The present thesis relates the design, fabrication, and testing of a unique type of silicon-based, miniature fuel cell. The fuel cell electrodes were constructed using standard silicon micro-fabrication techniques, and were used to construct miniature polymer electrolyte fuel cells (PEFCs) using NafionRTM. During testing, methanol and oxygen were the common reactants, but hydrogen and oxygen could be used as well. A novel form of an electrodeposited Pt:Ru alloy was developed for use as a methanol electrooxidation catalyst in the mini-PEFCs. An optimized mini-PEFC design was developed, tested, and compared with large PEFCs on the basis of performance. Mini-PEFC performance was equivalent to that of large PEFCs when scaled for active-area, but was limited by the function of the oxygen electrode. The rate of methanol crossover in a methanol/oxygen mini-PEFC was predicted using Fick's first law and the electrode chip feed-hole area. It was shown that the present mini-PEFC design could function as a fuel cell material test structure. Additionally, the mini-PEFCs were tested as two-cell stacks and as methanol sensors. The miniature, silicon-based PEFCs developed here successfully incorporate the essential aspects of a large PEFC in a smaller, simpler design.
A Novel Unitized Regenerative Proton Exchange Membrane Fuel Cell
NASA Technical Reports Server (NTRS)
Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.
1996-01-01
A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel single cell unitized regenerative fuel cell and results obtained on testing it are presented.
Validation of a Waste Heat Recovery Model for a 1kW PEM Fuel Cell using Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Saufi Sulaiman, M.; Mohamed, W. A. N. W.; Singh, B.; Fitrie Ghazali, M.
2017-08-01
Fuel cell is a device that generates electricity through electrochemical reaction between hydrogen and oxygen. A major by-product of the exothermic reaction is waste heat. The recovery of this waste heat has been subject to research on order to improve the overall energy utilization. However, nearly all of the studies concentrate on high temperature fuel cells using advanced thermodynamic cycles due to the high quality of waste heat. The method, characteristics and challenges in harvesting waste heat from a low temperature fuel cell using a direct energy conversion device is explored in this publication. A heat recovery system for an open cathode 1kW Proton Exchange Membrane fuel cell (PEM FC) was developed using a single unit of thermoelectric generator (TEG) attached to a heat pipe. Power output of the fuel cell was varied to obtain the performance of TEG at different stack temperatures. Natural and forced convections modes of cooling were applied to the TEG cold side. This is to simulate the conditions of a mini fuel cell vehicle at rest and in motion. The experimental results were analysed and a mathematical model based on the thermal circuit analogy was developed and compared. Forced convection mode resulted in higher temperature difference, output voltage and maximum power which are 3.3°C, 33.5 mV, and 113.96mW respectively. The heat recovery system for 1 kW Proton Exchange Membrane fuel cell (PEM FC) using single TEG was successfully established and improved the electrical production of fuel cell. Moreover, the experimental results obtained was in a good agreement with theoretical results.
Chen, Qihong; Long, Rong; Quan, Shuhai
2014-01-01
This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell. PMID:24707206
Solar energy powered microbial fuel cell with a reversible bioelectrode.
Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N
2010-01-01
The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.
Energy management strategy based on fuzzy logic for a fuel cell hybrid bus
NASA Astrophysics Data System (ADS)
Gao, Dawei; Jin, Zhenhua; Lu, Qingchun
Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.
Fuel Cell Balance-of-Plant Reliability Testbed Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sproat, Vern; LaHurd, Debbie
Reliability of the fuel cell system balance-of-plant (BoP) components is a critical factor that needs to be addressed prior to fuel cells becoming fully commercialized. Failure or performance degradation of BoP components has been identified as a life-limiting factor in fuel cell systems.1 The goal of this project is to develop a series of test beds that will test system components such as pumps, valves, sensors, fittings, etc., under operating conditions anticipated in real Polymer Electrolyte Membrane (PEM) fuel cell systems. Results will be made generally available to begin removing reliability as a roadblock to the growth of the PEMmore » fuel cell industry. Stark State College students participating in the project, in conjunction with their coursework, have been exposed to technical knowledge and training in the handling and maintenance of hydrogen, fuel cells and system components as well as component failure modes and mechanisms. Three test beds were constructed. Testing was completed on gas flow pumps, tubing, and pressure and temperature sensors and valves.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, E.
2012-05-01
Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operatingmore » temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.« less
Solid Polymer Electrolyte Fuel Cell Technology Program
NASA Technical Reports Server (NTRS)
1980-01-01
Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.
Battery and Fuel Cell Development Goals for the Lunar Surface and Lander
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.
2008-01-01
NASA is planning a return to the moon and requires advances in energy storage technology for its planned lunar lander and lunar outpost. This presentation describes NASA s overall mission goals and technical goals for batteries and fuel cells to support the mission. Goals are given for secondary batteries for the lander s ascent stage and suits for extravehicular activity on the lunar surface, and for fuel cells for the lander s descent stage and regenerative fuel cells for outpost power. An overall approach to meeting these goals is also presented.
NASA Astrophysics Data System (ADS)
Leucht, Florian; Bessler, Wolfgang G.; Kallo, Josef; Friedrich, K. Andreas; Müller-Steinhagen, H.
A sustainable future power supply requires high fuel-to-electricity conversion efficiencies even in small-scale power plants. A promising technology to reach this goal is a hybrid power plant in which a gas turbine (GT) is coupled with a solid oxide fuel cell (SOFC). This paper presents a dynamic model of a pressurized SOFC system consisting of the fuel cell stack with combustion zone and balance-of-plant components such as desulphurization, humidification, reformer, ejector and heat exchangers. The model includes thermal coupling between the different components. A number of control loops for fuel and air flows as well as power management are integrated in order to keep the system within the desired operation window. Models and controls are implemented in a MATLAB/SIMULINK environment. Different hybrid cycles proposed earlier are discussed and a preferred cycle is developed. Simulation results show the prospects of the developed modeling and control system.
Summary and Evaluation of the Strategic Defense Initiative Space Power Architecture Study
1989-03-01
coolant as fuel) and operates at high efficiency . It was also lower in vibration and dynamic effects than the combustion turbine. The fuel cell ...achievable with development. The main question with fuel cells is — can both high power density and high efficiency be achieved simultaneously? In...energy in a flywheel, fuel cell (power an electrolyzer) or battery. High power for weapon burst is obtained by discharging the storage device over a
2012-01-01
Proton exchange membrane fuel cells ( PEMFCs ), which convert chemical energy to electrical energy through redox reactions, have been developed as...platinum)-based electrocata- lysts, the commercialization of PEMFCs is still limited. Addi- tionally, oxygen reduction and fuel (hydrogen or alcohol) oxi...These are serious obstacles to the extensive adoption of PEMFCs as energy devices.4 An alkaline fuel cell (AFC) uses potassium hydroxide as a liq- uid
FY 2005 Annual Progress Report for the DOE Hydrogen Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In cooperation with industry, academia, national laboratories, and other government agencies, the Department of Energy's Hydrogen Program is advancing the state of hydrogen and fuel cell technologies in support of the President's Hydrogen Fuel Initiative. The initiative seeks to develop hydrogen, fuel cell, and infrastructure technologies needed to make it practical and cost-effective for Americans to choose to use fuel cell vehicles by 2020. Significant progress was made in fiscal year 2005 toward that goal.
NASA Astrophysics Data System (ADS)
Hua, Jianfeng; Lin, Xinfan; Xu, Liangfei; Li, Jianqiu; Ouyang, Minggao
With the worldwide deterioration of the natural environment and the fossil fuel crisis, the possible commercialization of fuel cell vehicles has become a hot topic. In July 2008, Beijing started a clean public transportation plan for the 29th Olympic games. Three fuel cell city buses and 497 other low-emission vehicles are now serving the Olympic core area and Beijing urban areas. The fuel cell buses will operate along a fixed bus line for 1 year as a public demonstration of green energy vehicles. Due to the specialized nature of fuel cell engines and electrified power-train systems, measurement, monitoring and calibration devices are indispensable. Based on the latest Bluetooth wireless technology, a novel Bluetooth universal data interface was developed for the control system of the fuel cell city bus. On this platform, a series of wireless portable control auxiliary systems have been implemented, including wireless calibration, a monitoring system and an in-system programming platform, all of which are ensuring normal operation of the fuel cell buses used in the demonstration.
Lightweight fuel cell powerplant components program
NASA Technical Reports Server (NTRS)
Martin, R. E.
1980-01-01
A lightweight hydrogen-oxygen alkaline fuel cell incorporated into the design of a lightweight fuel cell powerplant (LFCP) was analytically and experimentally developed. The powerplant operates with passive water removal which contributes to a lower system weight and extended operating life. A preliminary LFCP specification and design table were developed along with a lightweight power section for the LFCP design, consisting of repeating two-cell modules was designed. Two, four-cell modules were designed incorporating 0.508 sq ft active area space shuttle technology fuel cells. Over 1,200 hours of single-cell and over 8,800 hours of two-cell module testing was completed. The 0.25 sq ft active area lightweight cell design was shown to be capable of operating on propellant purity reactants out to a current density of 600ASF. Endurance testing of the two-cell module configuration exceeded the 2,500-hour LFCP voltage requirements out to 3700-hours. A two-cell module capable of operating at increased reactant pressure completed 1000 hours of operation at a 30 psia reactant pressure. A lightweight power section consisting of fifteen, two-cell modules connected electrically in series was fabricated.
Spraying Techniques for Large Scale Manufacturing of PEM-FC Electrodes
NASA Astrophysics Data System (ADS)
Hoffman, Casey J.
Fuel cells are highly efficient energy conversion devices that represent one part of the solution to the world's current energy crisis in the midst of global climate change. When supplied with the necessary reactant gasses, fuel cells produce only electricity, heat, and water. The fuel used, namely hydrogen, is available from many sources including natural gas and the electrolysis of water. If the electricity for electrolysis is generated by renewable energy (e.g., solar and wind power), fuel cells represent a completely 'green' method of producing electricity. The thought of being able to produce electricity to power homes, vehicles, and other portable or stationary equipment with essentially zero environmentally harmful emissions has been driving academic and industrial fuel cell research and development with the goal of successfully commercializing this technology. Unfortunately, fuel cells cannot achieve any appreciable market penetration at their current costs. The author's hypothesis is that: the development of automated, non-contact deposition methods for electrode manufacturing will improve performance and process flexibility, thereby helping to accelerate the commercialization of PEMFC technology. The overarching motivation for this research was to lower the cost of manufacturing fuel cell electrodes and bring the technology one step closer to commercial viability. The author has proven this hypothesis through a detailed study of two non-contact spraying methods. These scalable deposition systems were incorporated into an automated electrode manufacturing system that was designed and built by the author for this research. The electrode manufacturing techniques developed by the author have been shown to produce electrodes that outperform a common lab-scale contact method that was studied as a baseline, as well as several commercially available electrodes. In addition, these scalable, large scale electrode manufacturing processes developed by the author are also flexible and can be used to fabricate almost any fuel cell electrodes on the market today. This dissertation provides a description of the entire electrode manufacturing process as well as an analysis of the accuracy, performance and repeatability of the methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Max; Smith, Sarah J.; Sohn, Michael D.
Fuel cells are both a longstanding and emerging technology for stationary and transportation applications, and their future use will likely be critical for the deep decarbonization of global energy systems. As we look into future applications, a key challenge for policy-makers and technology market forecasters who seek to track and/or accelerate their market adoption is the ability to forecast market costs of the fuel cells as technology innovations are incorporated into market products. Specifically, there is a need to estimate technology learning rates, which are rates of cost reduction versus production volume. Unfortunately, no literature exists for forecasting future learningmore » rates for fuel cells. In this paper, we look retrospectively to estimate learning rates for two fuel cell deployment programs: (1) the micro-combined heat and power (CHP) program in Japan, and (2) the Self-Generation Incentive Program (SGIP) in California. These two examples have a relatively broad set of historical market data and thus provide an informative and international comparison of distinct fuel cell technologies and government deployment programs. We develop a generalized procedure for disaggregating experience-curve cost-reductions in order to disaggregate the Japanese fuel cell micro-CHP market into its constituent components, and we derive and present a range of learning rates that may explain observed market trends. Finally, we explore the differences in the technology development ecosystem and market conditions that may have contributed to the observed differences in cost reduction and draw policy observations for the market adoption of future fuel cell technologies. The scientific and policy contributions of this paper are the first comparative experience curve analysis of past fuel cell technologies in two distinct markets, and the first quantitative comparison of a detailed cost model of fuel cell systems with actual market data. The resulting approach is applicable to analyzing other fuel cell markets and other energy-related technologies, and highlights the data needed for cost modeling and quantitative assessment of key cost reduction components.« less
An Innovative Carbonate Fuel Cell Matrix, Abstract #188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilmi, Abdelkader; Surendranath, Arun; Yuh, Chao-Yi
2015-05-28
The electrolyte matrix in direct carbonate fuel cell (DFC) is a microporous ceramic structure sandwiched between the electrodes to isolate the fuel from the oxidant, store electrolyte and facilitate ionic transport. FCE has advanced DFC electrolyte matrix over the years and demonstrated that the matrix meets the requirements for greater than 5 year life based on accelerated tests and field stack operations. However, development of advanced designs and materials that can further increase the performance and extend cell life will enable accelerated MCFC deployment. This paper will report the progress on the development of an unique and innovative matrix designmore » that offers numerous benefits to the carbonate fuel cell performance and durability. In addition, this paper will also review parameters that affect matrix material stability and approaches to extend cell life.« less
Development of a Space-Rated Proton Exchange Membrane Fuel Cell
NASA Technical Reports Server (NTRS)
Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.
1999-01-01
Power systems for human spacecraft have historically included fuel cells due to the superior energy density they offer over battery systems depending on mission length and power consumption. As space exploration focuses on the evolution of reusable spacecraft and also considers planetary exploration power system requirements, fuel cells continue to be a factor in the potential system solutions.
Emission Measurements of Ultracell XX25 Reformed Methanol Fuel Cell System
2008-06-01
combination of electrochemical devices such as fuel cell and battery. Polymer electrolyte membrane fuel cells ( PEMFC ) using hydrogen or liquid...communications and computers, sensors and night vision capabilities. High temperature PEMFC offers some advantages such as enhanced electrode kinetics and better...tolerance of carbon monoxide that will poison the conventional PEMFC . Ultracell Corporation, Livermore, California has developed a first
Energy Storage for Aerospace Applications
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.
2001-01-01
The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew B
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. This annual status report combines results from all FCEB demonstrations, tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. These data and analyses help provide needed information to guide future early-stage researchmore » and development. The 2017 summary results primarily focus on the most recent year for each demonstration, from August 2016 through July 2017. The primary results presented in the report are from five demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus (AFCB) Project at SunLine Transit Agency in California; AFCB Project at the University of California at Irvine; AFCB Project at Orange County Transportation Authority; and AFCB Project at Massachusetts Bay Transportation Authority.« less
Mobile electric power. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomfield, D.P.; Bloomfield, V.J.; Grosjean, P.D.
1995-12-01
The objective of this program was to develop a mobile fuel cell power supply for use by soldiers. The Century Series of 100 through 500 watt fuel cell power supplies was developed. The Century Series fuel cell power supplies are made up of a fuel cell stack, chemical hydride hydrogen supply, a fan and a controller. The FC-200, the 200 watt Century Series power supply, weighs 8.8 ib. and has a volume of 322 in.3. The operating point is 0.7 volt/cell at 125 ASF; a power density of 22.7 watts/lb. or 0.62 watts/in.3 and an energy density of 110 whr/lb.more » The prototype 750 whr hydrogen supply weighs 7 lbs. and has a volume of 193 in.3. The fuel elements weigh 0.45 lb. and require 0.79 lbs. of water. The FC-200 has powered a scooter requiring a starting current of three times the rated current of the stack. It has also powered a microclimate cooler. (KAR) P. 1.« less
NASA Astrophysics Data System (ADS)
Bloomfield, David P.; Bloomfield, Valerie J.; Grosjean, Paul D.; Kelland, James W.
1995-02-01
The objective of this program was to develop a mobile fuel cell power supply for use by soldiers. The Century Series of 100 through 500 watt fuel cell power supplies was developed. The Century Series fuel cell power supplies are made up of a fuel cell stack, chemical hydride hydrogen supply, a fan and a controller. The FC-200, the 200 watt Century Series power supply, weighs 8.8 lb. and has a volume of 322 cu in. The operating point is 0.7 volt/cell at 125 ASF; a power density of 22.7 watts/cu in. or 0.62 watts/cu in. and an energy density of 110 whr/lb. The prototype 750 whr hydrogen supply weighs 7 lbs. and has a volume of 193 cu in. The fuel elements weigh 0.45 lb. and require 0.79 lbs. of water. The FC-200 has powered a scooter requiring a starting current of three times the rated current of the stack. It has also powered a microclimate cooler.
A novel unitized regenerative proton exchange membrane fuel cell
NASA Technical Reports Server (NTRS)
Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.
1995-01-01
A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed in work performed at Lynntech. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel unitized regenerative fuel cell and results obtained on testing it will be presented.
Development of compact fuel processor for 2 kW class residential PEMFCs
NASA Astrophysics Data System (ADS)
Seo, Yu Taek; Seo, Dong Joo; Jeong, Jin Hyeok; Yoon, Wang Lai
Korea Institute of Energy Research (KIER) has been developing a novel fuel processing system to provide hydrogen rich gas to residential polymer electrolyte membrane fuel cells (PEMFCs) cogeneration system. For the effective design of a compact hydrogen production system, the unit processes of steam reforming, high and low temperature water gas shift, steam generator and internal heat exchangers are thermally and physically integrated into a packaged hardware system. Several prototypes are under development and the prototype I fuel processor showed thermal efficiency of 73% as a HHV basis with methane conversion of 81%. Recently tested prototype II has been shown the improved performance of thermal efficiency of 76% with methane conversion of 83%. In both prototypes, two-stage PrOx reactors reduce CO concentration less than 10 ppm, which is the prerequisite CO limit condition of product gas for the PEMFCs stack. After confirming the initial performance of prototype I fuel processor, it is coupled with PEMFC single cell to test the durability and demonstrated that the fuel processor is operated for 3 days successfully without any failure of fuel cell voltage. Prototype II fuel processor also showed stable performance during the durability test.
1978-12-12
hydri de and its integration with the fuel cell. I The combination of the SPE cel l with a hydride fuel offers -- comparedto batteries -- increased...demand changes without intermediate storage of hydrogen gas. In order to control the reacti on with water the hydri de is contained in a cartridge. The use
NASA Astrophysics Data System (ADS)
Moffitt, Blake Almy
Unmanned Aerial Vehicles (UAVs) are the most dynamic growth sector of the aerospace industry today. The need to provide persistent intelligence, surveillance, and reconnaissance for military operations is driving the planned acquisition of over 5,000 UAVs over the next five years. The most pressing need is for quiet, small UAVs with endurance beyond what is capable with advanced batteries or small internal combustion propulsion systems. Fuel cell systems demonstrate high efficiency, high specific energy, low noise, low temperature operation, modularity, and rapid refuelability making them a promising enabler of the small, quiet, and persistent UAVs that military planners are seeking. Despite the perceived benefits, the actual near-term performance of fuel cell powered UAVs is unknown. Until the auto industry began spending billions of dollars in research, fuel cell systems were too heavy for useful flight applications. However, the last decade has seen rapid development with fuel cell gravimetric and volumetric power density nearly doubling every 2--3 years. As a result, a few design studies and demonstrator aircraft have appeared, but overall the design methodology and vehicles are still in their infancy. The design of fuel cell aircraft poses many challenges. Fuel cells differ fundamentally from combustion based propulsion in how they generate power and interact with other aircraft subsystems. As a result, traditional multidisciplinary analysis (MDA) codes are inappropriate. Building new MDAs is difficult since fuel cells are rapidly changing in design, and various competitive architectures exist for balance of plant, hydrogen storage, and all electric aircraft subsystems. In addition, fuel cell design and performance data is closely protected which makes validation difficult and uncertainty significant. Finally, low specific power and high volumes compared to traditional combustion based propulsion result in more highly constrained design spaces that are problematic for design space exploration. To begin addressing the current gaps in fuel cell aircraft development, a methodology has been developed to explore and characterize the near-term performance of fuel cell powered UAVs. The first step of the methodology is the development of a valid MDA. This is accomplished by using propagated uncertainty estimates to guide the decomposition of a MDA into key contributing analyses (CAs) that can be individually refined and validated to increase the overall accuracy of the MDA. To assist in MDA development, a flexible framework for simultaneously solving the CAs is specified. This enables the MDA to be easily adapted to changes in technology and the changes in data that occur throughout a design process. Various CAs that model a polymer electrolyte membrane fuel cell (PEMFC) UAV are developed, validated, and shown to be in agreement with hardware-in-the-loop simulations of a fully developed fuel cell propulsion system. After creating a valid MDA, the final step of the methodology is the synthesis of the MDA with an uncertainty propagation analysis, an optimization routine, and a chance constrained problem formulation. This synthesis allows an efficient calculation of the probabilistic constraint boundaries and Pareto frontiers that will govern the design space and influence design decisions relating to optimization and uncertainty mitigation. A key element of the methodology is uncertainty propagation. The methodology uses Systems Sensitivity Analysis (SSA) to estimate the uncertainty of key performance metrics due to uncertainties in design variables and uncertainties in the accuracy of the CAs. A summary of SSA is provided and key rules for properly decomposing a MDA for use with SSA are provided. Verification of SSA uncertainty estimates via Monte Carlo simulations is provided for both an example problem as well as a detailed MDA of a fuel cell UAV. Implementation of the methodology was performed on a small fuel cell UAV designed to carry a 2.2 kg payload with 24 hours of endurance. Uncertainty distributions for both design variables and the CAs were estimated based on experimental results and were found to dominate the design space. To reduce uncertainty and test the flexibility of the MDA framework, CAs were replaced with either empirical, or semi-empirical relationships during the optimization process. The final design was validated via a hardware-in-the loop simulation. Finally, the fuel cell UAV probabilistic design space was studied. A graphical representation of the design space was generated and the optima due to deterministic and probabilistic constraints were identified. The methodology was used to identify Pareto frontiers of the design space which were shown on contour plots of the design space. Unanticipated discontinuities of the Pareto fronts were observed as different constraints became active providing useful information on which to base design and development decisions.
Karthikeyan, C; Sathishkumar, Y; Lee, Yang Soo; Kim, Ae Rhan; Yoo, Dong Jin; Kumar, G Gnana
2017-01-01
A simple, environmental friendly and biologically important sediment interfaced fuel cell was developed for the green energy generation. The soil sediment used for the study is enriched of rich anthropogenic free organic carbon, sufficient manganese and high level potassium contents as evidenced from the geochemical characterizations. The saccharides produced by the catalytic reaction of substrate chitosan were utilized for the growth of microorganisms and electron shuttling processes. Chitosan substrate influenced sediment microbial fuel cells exhibited the nearly two fold power increment over the substrate free fuel cells. The fuel cell efficiencies were further increased by bringing the substrate chitosan at nanometric level, which is nearly three and two fold higher than that of substrate free and chitosan influenced sediment microbial fuel cells, respectively, and the influential parameters involved in the power and longevity issues were addressed with different perspectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None available
For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department ofmore » Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.« less
Engineering model system study for a regenerative fuel cell: Study report
NASA Technical Reports Server (NTRS)
Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.
1984-01-01
Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
University of California, Berkeley; Wei, Max; Lipman, Timothy
2014-06-23
A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kWmore » level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.« less
Nanoscience Center, develops novel, high-speed, high-resolution, inline-compatible, nondestructive techniques high-temperature fuel cells and Li-ion batteries. The techniques include hyper-spectral and thermal conference publications. Research Interests Low- and high-temperature fuel cells Li-ion batteries Development
300-Watt Power Source Development at the Jet Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Valdez, Thomas I.
2005-01-01
This viewgraph presentation reviews the JPL program to develop a 300 Watt direct methanol fuel cell. The immediate use of the fuel cell is to power test instrumentation on armored vehicles. It reviews the challenges, the system design and the system demonstration.
Oxygen electrodes for rechargeable alkaline fuel cells. II
NASA Technical Reports Server (NTRS)
Swette, L.; Kackley, N.
1990-01-01
The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature, single-unit, rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.
Oxygen electrodes for rechargeable alkaline fuel cells-II
NASA Technical Reports Server (NTRS)
Swette, L.; Kackley, N.
1989-01-01
The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.
NASA Technical Reports Server (NTRS)
Swette, Larry L.; Laconti, Anthony B.; Mccatty, Stephen A.
1993-01-01
This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.
NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision
NASA Technical Reports Server (NTRS)
Hoberecht, Mark
2007-01-01
NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.
Space Electrochemical Research and Technology
NASA Technical Reports Server (NTRS)
Wilson, Richard M. (Compiler)
1996-01-01
Individual papers presented at the conference address the following topics: development of a micro-fiber nickel electrode for nickel-hydrogen cell, high performance nickel electrodes for space power application, bending properties of nickel electrodes for nickel-hydrogen batteries, effect of KOH concentration and anions on the performance of a Ni-H2 battery positive plate, advanced dependent pressure vessel nickel hydrogen spacecraft cell and battery design, electrolyte management considerations in modern nickel hydrogen and nickel cadmium cell and battery design, a novel unitized regenerative proton exchange membrane fuel cell, fuel cell systems for first lunar outpost - reactant storage options, the TMI regenerable solid oxide fuel cell, engineering development program of a closed aluminum-oxygen semi-cell system for an unmanned underwater vehicle, SPE OBOGS on-board oxygen generating system, hermetically sealed aluminum electrolytic capacitor, sol-gel technology and advanced electrochemical energy storage materials, development of electrochemical supercapacitors for EMA applications, and high energy density electrolytic capacitor.
Compact propane fuel processor for auxiliary power unit application
NASA Astrophysics Data System (ADS)
Dokupil, M.; Spitta, C.; Mathiak, J.; Beckhaus, P.; Heinzel, A.
With focus on mobile applications a fuel cell auxiliary power unit (APU) using liquefied petroleum gas (LPG) is currently being developed at the Centre for Fuel Cell Technology (Zentrum für BrennstoffzellenTechnik, ZBT gGmbH). The system is consisting of an integrated compact and lightweight fuel processor and a low temperature PEM fuel cell for an electric power output of 300 W. This article is presenting the current status of development of the fuel processor which is designed for a nominal hydrogen output of 1 k Wth,H2 within a load range from 50 to 120%. A modular setup was chosen defining a reformer/burner module and a CO-purification module. Based on the performance specifications, thermodynamic simulations, benchmarking and selection of catalysts the modules have been developed and characterised simultaneously and then assembled to the complete fuel processor. Automated operation results in a cold startup time of about 25 min for nominal load and carbon monoxide output concentrations below 50 ppm for steady state and dynamic operation. Also fast transient response of the fuel processor at load changes with low fluctuations of the reformate gas composition have been achieved. Beside the development of the main reactors the transfer of the fuel processor to an autonomous system is of major concern. Hence, concepts for packaging have been developed resulting in a volume of 7 l and a weight of 3 kg. Further a selection of peripheral components has been tested and evaluated regarding to the substitution of the laboratory equipment.
Apollo CSM Power Generation System Design Considerations, Failure Modes and Lessons Learned
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
The objectives of this slide presentation are to: review the basic design criteria for fuel cells (FC's), review design considerations during developmental phase that affected Block I and Block II vehicles, summarize the conditions that led to the failure of components in the FC's, and state the solution implemented for each failure. It reviews the location of the fuel cells, the fuel cell theory the design criteria going into development phase and coming from the development phase, failures and solutions of Block I and II, and the lessons learned.
Fuel cell technology for lunar surface operations
NASA Technical Reports Server (NTRS)
Deronck, Henry J.
1992-01-01
Hydrogen-oxygen fuel cells have been shown, in several NASA and contractor studies, to be an enabling technology for providing electrical power for lunar bases, outposts, and vehicles. The fuel cell, in conjunction with similar electrolysis cells, comprises a closed regenerative energy storage system, commonly referred to as a regenerative fuel cell (RFC). For stationary applications, energy densities of 1,000 watt-hours per kilograms an order of magnitude over the best rechargeable batteries, have been projected. In this RFC, the coupled fuel cell and electrolyzer act as an ultra-light battery. Electrical energy from solar arrays 'charges' the system by electrolyzing water into hydrogen and oxygen. When an electrical load is applied, the fuel cell reacts the hydrogen and oxygen to 'discharge' usable power. Several concepts for utilizing RFC's, with varying degrees of integration, have been proposed, including both primary and backup roles. For mobile power needs, such as rovers, an effective configuration may be to have only the fuel cell located on the vehicle, and to use a central electrolysis 'gas station'. Two fuel cell technologies are prime candidates for lunar power system concepts: alkaline electrolyte and proton exchange membrane. Alkaline fuel cells have been developed to a mature production power unit in NASA's Space Shuttle Orbiter. Recent advances in materials offer to significantly improve durability to the level needed for extended lunar operations. Proton exchange membrane fuel cells are receiving considerable support for hydrospace and terrestrial transportation applications. This technology promises durability, simplicity, and flexibility.
Fuel cell technology for lunar surface operations
NASA Astrophysics Data System (ADS)
Deronck, Henry J.
1992-02-01
Hydrogen-oxygen fuel cells have been shown, in several NASA and contractor studies, to be an enabling technology for providing electrical power for lunar bases, outposts, and vehicles. The fuel cell, in conjunction with similar electrolysis cells, comprises a closed regenerative energy storage system, commonly referred to as a regenerative fuel cell (RFC). For stationary applications, energy densities of 1,000 watt-hours per kilograms an order of magnitude over the best rechargeable batteries, have been projected. In this RFC, the coupled fuel cell and electrolyzer act as an ultra-light battery. Electrical energy from solar arrays 'charges' the system by electrolyzing water into hydrogen and oxygen. When an electrical load is applied, the fuel cell reacts the hydrogen and oxygen to 'discharge' usable power. Several concepts for utilizing RFC's, with varying degrees of integration, have been proposed, including both primary and backup roles. For mobile power needs, such as rovers, an effective configuration may be to have only the fuel cell located on the vehicle, and to use a central electrolysis 'gas station'. Two fuel cell technologies are prime candidates for lunar power system concepts: alkaline electrolyte and proton exchange membrane. Alkaline fuel cells have been developed to a mature production power unit in NASA's Space Shuttle Orbiter. Recent advances in materials offer to significantly improve durability to the level needed for extended lunar operations. Proton exchange membrane fuel cells are receiving considerable support for hydrospace and terrestrial transportation applications. This technology promises durability, simplicity, and flexibility.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew; Jeffers, Matthew
This report, published annually, summarizes the progress of fuel cell electric bus development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. Funding for this effort is provided by the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy and by the U.S. Department of Transportation's Federal Transit Administration. The 2016 summary results primarily focus on the most recent year for each demonstration, from August 2015 through Julymore » 2016. The results for these buses account for more than 550,000 miles traveled and 59,500 hours of fuel cell power system operation. The primary results presented in the report are from three demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus Project at SunLine Transit Agency in California; and American Fuel Cell Bus Project at the University of California at Irvine.« less
NASA Technical Reports Server (NTRS)
Kaufman, A.
1981-01-01
An integrated 5 kW power system based upon methanol fuel and a phosphoric acid fuel cell operating at about 473 K is described. Description includes test results of advanced fuel cell catalysts, a semiautomatic acid replenishment system and a completed 5 kW methanol/system reformer. The results of a preliminary system test on a reformer/stack/inverter combination are reported. An initial design for a 25 kW stack is presented. Experimental plans are outlined for data acquisition necessary for design of a 50 kW methanol/steam reformer. Activities related to complete mathematical modelling of the integrated power system, including wasteheat utilization, are described.
Electrochemistry for Energy Conversion
NASA Astrophysics Data System (ADS)
O'Hayre, Ryan
2010-10-01
Imagine a laptop computer that runs for 30 hours on a single charge. Imagine a world where you plug your house into your car and power lines are a distant memory. These dreams motivate today's fuel cell research. While some dreams (like powering your home with your fuel cell car) may be distant, others (like a 30-hour fuel cell laptop) may be closer than you think. If you are curious about fuel cells---how they work, when you might start seeing them in your daily life--- this talk is for you. Learn about the state-of-the art in fuel cells, and where the technology is likely to be headed in the next 20 years. You'll also be treated to several ``behind-the scenes'' glimpses of cutting-edge research projects under development in the Renewable Energy Materials Center at the Colorado School of Mines--- projects like an ``ionic transistor'' that works with protons instead of electrons, and a special ceramic membrane material that enables the ``uphill'' diffusion of steam. Associate Professor Ryan O'Hayre's laboratory at the Colorado School of Mines develops new materials and devices to enable alternative energy technologies including fuel cells and solar cells. Prof. O'Hayre and his students collaborate with the Colorado Fuel Cell Center, the Colorado Center for Advanced Ceramics, the Renewable Energy Materials Science and Engineering Center, and the National Renewable Energy Laboratory.[4pt] In collaboration with Ann Deml, Jianhua Tong, Svitlana Pylypenko, Archana Subramaniyan, Micahael Sanders, Jason Fish, Annette Bunge, Colorado School of Mines.
NASA Astrophysics Data System (ADS)
Klaiber, Thomas
The paper discusses the technical requirements and the customer demands for vehicles that have an on-board methanol reformer and fuel cells. The research concentrates on the technical developmental risks which include minimizing volume, reducing weight and, at the same time, improving efficiency and system dynamics. Fuel cell powered vehicles with methanol reformers are not only suitable for a niche market but also these vehicles will compete with conventional vehicles. The greatest hindrance will be the price of the fuel cell. A possible progressive development of the number of fuel cell powered vehicles in conjunction with a reduction in costs will be discussed in the paper. When fuel cell vehicles come to the market it is necessary that an infrastructure for the fuel methanol or hydrogen is installed. Therefore, it will only be possible to introduce fuel cell vehicles into special markets, e.g. California. Such a process will need to be subsidized by additional incentives like tax concessions. Today there are many technical risks and unsolved problems relating to production technologies, infrastructure, and costs. Nevertheless, among the alternative power units, the fuel cell seems to be the only one that might be competitive to the conventional power unit, especially relating to emissions.
Turning Perspective in Photoelectrocatalytic Cells for Solar Fuels.
Perathoner, Siglinda; Centi, Gabriele; Su, Dangsheng
2016-02-19
The development of new devices for the use and storage of solar energy is a key step to enable a new sustainable energy scenario. The route for direct solar-to-chemical energy transformation, especially to produce liquid fuels, represents a necessary element to realize transition from the actual energy infrastructure. Photoelectrocatalytic (PECa) devices for the production of solar fuels are a key element to enable this sustainable scenario. The development of PECa devices and related materials is of increasing scientific and applied interest. This concept paper introduces the need to turn the viewpoint of research in terms of PECa cell design and related materials with respect to mainstream activities in the field of artificial photosynthesis and leaves. As an example of a new possible direction, the concept of electrolyte-less cell design for PECa cells to produce solar fuels by reduction of CO2 is presented. The fundamental and applied development of new materials and electrodes for these cells should proceed fully integrated with PECa cell design and systematic analysis. A new possible approach to develop semiconductors with improved performances by using visible light is also shortly presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Current legal and institutional issues in the commercialization of phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Nimmons, J. T.; Sheehy, K. D.; Singer, J. R.; Gardner, T. C.
1982-01-01
Legal and institutional factors affecting the development and commercial diffusion of phosphoric acid fuel cells are assessed. Issues for future research and action are suggested. Perceived barriers and potential opportunities for fuel cells in central and dispersed utility operations and on-site applications are reviewed, as well as the general concept of commercialization as applied to emerging energy technologies.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Gikakis, Christina
2013-12-01
This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results from August 2012 through July 2013 for five FCEB demonstrations at four transit agencies.
Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian
2004-01-01
A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.
NASA Technical Reports Server (NTRS)
Vasquez, Arturo
2011-01-01
An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also be used with NASA's advanced nonflow-through fuel cell power systems by simply incorporating a jet nozzle with an appropriate nozzle diameter.
New High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells
NASA Technical Reports Server (NTRS)
Kinder, James D.
2004-01-01
Fuel cells are receiving a considerable amount of attention for potential use in a variety of areas, including the automotive industry, commercial power generation, and personal electronics. Research at the NASA Glenn Research Center has focused on the development of fuel cells for use in aerospace power systems for aircraft, unmanned air vehicles, and space transportation systems. These applications require fuel cells with higher power densities and better durability than what is required for nonaerospace uses. In addition, membrane cost is a concern for any fuel cell application. The most widely used membrane materials for proton exchange membrane (PEM) fuel cells are based on sulfonated perfluorinated polyethers, typically Nafion 117, Flemion, or Aciplex. However, these polymers are costly and do not function well at temperatures above 80 C. At higher temperatures, conventional membrane materials dry out and lose their ability to conduct protons, essential for the operation of the fuel cell. Increasing the operating temperature of PEM fuel cells from 80 to 120 C would significantly increase their power densities and enhance their durability by reducing the susceptibility of the electrode catalysts to carbon monoxide poisoning. Glenn's Polymers Branch has focused on developing new, low-cost membranes that can operate at these higher temperatures. A new series of organically modified siloxane (ORMOSIL) polymers were synthesized for use as membrane materials in a high-temperature PEM fuel cell. These polymers have an organic portion that can allow protons to transport through the polymer film and a cross-linked silica network that gives the polymers dimensional stability. These flexible xerogel polymer films are thermally stable, with decomposition onset as high as 380 C. Two types of proton-conducting ORMOSIL films have been produced: (1) NASA-A, which can coordinate many highly acid inorganic salts that facilitate proton conduction and (2) NASA-B, which has been produced and which incorporates strongly acidic (proton donating) functional groups into the polymer backbone. Both of these polymer films have demonstrated significantly higher proton conductivity than Nafion at elevated temperatures and low relative humidities. An added advantage is that these polymers are very inexpensive to produce because their starting materials are commodity chemicals that are commercially available in large volumes.
Chitosan and alginate types of bio-membrane in fuel cell application: An overview
NASA Astrophysics Data System (ADS)
Shaari, N.; Kamarudin, S. K.
2015-09-01
The major problems of polymer electrolyte membrane fuel cell technology that need to be highlighted are fuel crossovers (e.g., methanol or hydrogen leaking across fuel cell membranes), CO poisoning, low durability, and high cost. Chitosan and alginate-based biopolymer membranes have recently been used to solve these problems with promising results. Current research in biopolymer membrane materials and systems has focused on the following: 1) the development of novel and efficient biopolymer materials; and 2) increasing the processing capacity of membrane operations. Consequently, chitosan and alginate-based biopolymers seek to enhance fuel cell performance by improving proton conductivity, membrane durability, and reducing fuel crossover and electro-osmotic drag. There are four groups of chitosan-based membranes (categorized according to their reaction and preparation): self-cross-linked and salt-complexed chitosans, chitosan-based polymer blends, chitosan/inorganic filler composites, and chitosan/polymer composites. There are only three alginate-based membranes that have been synthesized for fuel cell application. This work aims to review the state-of-the-art in the growth of chitosan and alginate-based biopolymer membranes for fuel cell applications.
Lindblad, Peter; Lindberg, Pia; Oliveira, Paulo; Stensjö, Karin; Heidorn, Thorsten
2012-01-01
There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.
Texas Hydrogen Education Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitchcock, David; Bullock, Dan
2011-06-30
The Texas Hydrogen Education project builds on past interest in hydrogen and fuel cells to help create better informed leaders and stakeholders and thereby improve decision making and planning for inclusion of hydrogen and fuel cell technologies as energy alternatives in Texas. In past years in Texas, there was considerable interest and activities about hydrogen and fuel cells (2000-2004). During that time, the Houston Advanced Research Center (HARC) created a fuel cell consortium and a fuel cell testing lab. Prior to 2008, interest and activities had declined substantially. In 2008, in cooperation with the Texas H2 Coalition and the Statemore » Energy Conservation Office, HARC conducted a planning process to create the Texas Hydrogen Roadmap. It was apparent from analysis conducted during the course of this process that while Texas has hydrogen and fuel cell advantages, there was little program and project activity as compared with other key states. Outreach and education through the provision of informational materials and organizing meetings was seen as an effective way of reaching decision makers in Texas. Previous hydrogen projects in Texas had identified the five major urban regions for program and project development. This geographic targeting approach was adopted for this project. The project successfully conducted the five proposed workshops in four of the target metropolitan areas: San Antonio, Houston, Austin, and the Dallas-Ft. Worth area. In addition, eight outreach events were included to further inform state and local government leaders on the basics of hydrogen and fuel cell technologies. The project achieved its primary objectives of developing communication with target audiences and assembling credible and consistent outreach and education materials. The major lessons learned include: (1) DOE’s Clean Cities programs are a key conduit to target transportation audiences, (2) real-world fuel cell applications (fuel cell buses, fuel cell fork lifts, and hydrogen fueling) are effective for engaging target audiences, and (3) a clear path forward is needed for state and local agencies interested in project implementation (funding, financing, preliminary design, technical assistance, etc.).« less
Scale-up of Carbon/Carbon Bipolar Plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
David P. Haack
2009-04-08
This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the developmentmore » and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.« less
Development of molten carbonate fuel cell technology at M-C Power Corporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilger, D.
1996-04-01
M-C Power Corporation was founded in 1987 with the mission to further develop and subsequently commercialize molten carbonate fuel cells (MCFC). The technology chosen for commercialization was initially developed by the Institute of Gas technology (IGT). At the center of this MCFC technology is the Internally Manifolded Heat EXchange (IMHEX) separator plate design. The IMHEX technology design provides several functions within one component assembly. These functions include integrating the gas manifold structure into the fuel cell stack, separating the fuel gas stream from the oxidant gas stream, providing the required electrical contact between cells to achieve desired power output, andmore » removing excess heat generated in the electrochemical process. Development of this MCFC technology from lab-scale sizes too a commercial area size of 1m{sup 2} has focused our efforts an demonstrating feasibility and evolutionary progress. The development effort will culminate in a proof-of-concept- 250kW power plant demonstration in 1996. The remainder of our commercialization program focuses upon lowering the costs associated with the MCFC power plant system in low production volumes.« less
NASA Astrophysics Data System (ADS)
Isaacs, H. S.
Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.
Solid Oxide Fuel Cell Seal Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Bansal, Narottam P.; Dynys, Fred W.; Lang, Jerry; Daniels, Christopher C.; Palko, Joeseph L.; Choi, S. R.
2004-01-01
Researchers at NASA GRC are confronting the seal durability challenges of Solid Oxide Fuel Cells by pursuing an integrated and multidisciplinary development effort incorporating thermo-structural analyses, advanced materials, experimentation, and novel seal design concepts. The successful development of durable hermetic SOFC seals is essential to reliably producing the high power densities required for aerospace applications.
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.
2011-01-01
NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.
Technology commercialization cost model and component case study
NASA Astrophysics Data System (ADS)
1991-12-01
Fuel cells seem poised to emerge as a clean, efficient, and cost competitive source of fossil fuel based electric power and thermal energy. Sponsors of fuel cell technology development need to determine the validity and the attractiveness of a technology to the market in terms of meeting requirements and providing value which exceeds the total cost of ownership. Sponsors of fuel cell development have addressed this issue by requiring the developers to prepare projections of the future production cost of their fuel cells in commercial quantities. These projected costs, together with performance and life projections, provide a preliminary measure of the total value and cost of the product to the customer. Booz-Allen & Hamilton Inc. and Michael A. Cobb & Company have been retained in several assignments over the years to audit these cost projections. The audits have gone well beyond a simple review of the numbers. They have probed the underlying technical and financial assumptions, the sources of data on material and equipment costs, and explored issues such as the realistic manufacturing yields which can be expected in various processes. Based on the experience gained from these audits, DOE gave Booz-Allen and Michael A. Cobb & company the task to develop a criteria to be used in the execution of future fuel cell manufacturing cost studies. It was thought that such a criteria would make it easier to execute such studies in the future as well as to cause such studies to be more understandable and comparable.
Transport equations in an enzymatic glucose fuel cell
NASA Astrophysics Data System (ADS)
Jariwala, Soham; Krishnamurthy, Balaji
2018-01-01
A mathematical model is developed to study the effects of convective flux and operating temperature on the performance of an enzymatic glucose fuel cell with a membrane. The model assumes isothermal operating conditions and constant feed rate of glucose. The glucose fuel cell domain is divided into five sections, with governing equations describing transport characteristics in each region, namely - anode diffusion layer, anode catalyst layer (enzyme layer), membrane, cathode catalyst layer and cathode diffusion layer. The mass transport is assumed to be one-dimensional and the governing equations are solved numerically. The effects flow rate of glucose feed on the performance of the fuel cell are studied as it contributes significantly to the convective flux. The effects of operating temperature on the performance of a glucose fuel cell are also modeled. The cell performances are compared using cell polarization curves, which were found compliant with experimental observations.
Hydrogen generation from biogenic and fossil fuels by autothermal reforming
NASA Astrophysics Data System (ADS)
Rampe, Thomas; Heinzel, Angelika; Vogel, Bernhard
Hydrogen generation for fuel cell systems by reforming technologies from various fuels is one of the main fields of investigation of the Fraunhofer ISE. Suitable fuels are, on the one hand, gaseous hydrocarbons like methane, propane but also, on the other hand, liquid hydrocarbons like gasoline and alcohols, e.g., ethanol as biogenic fuel. The goal is to develop compact systems for generation of hydrogen from fuel being suitable for small-scale membrane fuel cells. The most recent work is related to reforming according to the autothermal principle — fuel, air and steam is supplied to the reactor. Possible applications of such small-scale autothermal reformers are mobile systems and also miniature fuel cell as co-generation plant for decentralised electricity and heat generation. For small stand-alone systems without a connection to the natural gas grid liquid gas, a mixture of propane and butane is an appropriate fuel.
Advances in direct oxidation methanol fuel cells
NASA Technical Reports Server (NTRS)
Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.
1993-01-01
Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.
Electrodeposition for Electrochemical Energy Conversion and Storage Devices
NASA Astrophysics Data System (ADS)
Shaigan, Nima
Electrodeposition of metals, alloys, metal oxides, conductive polymers, and their composites plays a pivotal role in fabrication processes of some recently developed electrochemical energy devices, most particularly fuel cells, supercapacitors, and batteries. Unique nanoscale architectures of electrocatalysts for low temperature fuel cells, including proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC), can only be obtained through electrodeposition processes. Promising, cost-effective conductive/protective coatings for stainless steel interconnects used in solid oxide fuel cells (SOFCs) have been achieved employing a variety of electrodeposition techniques. In supercapacitors, anodic deposition of metal oxides, conductive polymers, and their composites is a versatile technique for fabrication of electrodes with distinctive morphology and exceptional specific capacitance. Electrodeposition is also very recently employed for preparation of Sn-based anodes for lithium ion batteries.
High Temperature Electrolysis using Electrode-Supported Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; C. M. Stoots
2010-07-01
An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. The cells currently under study were developed primarily for the fuel cell mode of operation. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 µm thick), nickel-YSZ steam/hydrogen electrodes (~1400 µm thick), and manganite (LSM) air-side electrodes (~90 µm thick). The purpose of the present study was to document and compare the performance and degradation ratesmore » of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of DC potential sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-duration testing, first in the fuel cell mode, then in the electrolysis mode over more than 500 hours of operation. Results indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of the single-cell test apparatus developed specifically for these experiments.« less
Porous silicon-based direct hydrogen sulphide fuel cells.
Dzhafarov, T D; Yuksel, S Aydin
2011-10-01
In this paper, the use of Au/porous silicon/Silicon Schottky type structure, as a direct hydrogen sulphide fuel cell is demonstrated. The porous silicon filled with hydrochlorid acid was developed as a proton conduction membrane. The Au/Porous Silicon/Silicon cells were fabricated by first creating the porous silicon layer in single-crystalline Si using the anodic etching under illumination and then deposition Au catalyst layer onto the porous silicon. Using 80 mM H2S solution as fuel the open circuit voltage of 0.4 V was obtained and maximum power density of 30 W/m2 at room temperature was achieved. These results demonstrate that the Au/Porous Silicon/Silicon direct hydrogen sulphide fuel cell which uses H2S:dH2O solution as fuel and operates at room temperature can be considered as the most promising type of low cost fuel cell for small power-supply units.
NASA Astrophysics Data System (ADS)
Kupecki, Jakub; Motyliński, Konrad; Skrzypkiewicz, Marek; Wierzbicki, Michał; Naumovich, Yevgeniy
2017-12-01
The article discusses the operation of solid oxide electrochemical cells (SOC) developed in the Institute of Power Engineering as prospective key components of power-to-gas systems. The fundamentals of the solid oxide cells operated as fuel cells (SOFC - solid oxide fuel cells) and electrolysers (SOEC - solid oxide fuel cells) are given. The experimental technique used for electrochemical characterization of cells is presented. The results obtained for planar cell with anodic support are given and discussed. Based on the results, the applicability of the cells in power-to-gas systems (P2G) is evaluated.
NASA Astrophysics Data System (ADS)
Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.
2017-11-01
Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.
Fuel cell commercialization — beyond the 'Notice of Market Opportunity for Fuel Cells' (NOMO)
NASA Astrophysics Data System (ADS)
Serfass, J. A.; Glenn, D. R.
1992-01-01
The Notice of Market Opportunity for Fuel Cells (NOMO) was released in Oct. 1988 by the American Public Power Association. Its goal was to identify a manufacturer for commercializing a multi-megawatt fuel cell power plant with attractive cost and performance characteristics, supported by a realistic, yet aggressive commercialization plan, leading to mid-1990s application. Energy Research Corporation's program to commercialize its 2-MW internal-reforming carbonate fuel cell was selected. The program was refined in the development of the Principles and Framework for Commercializing Direct Fuel Cell Power Plants, which defines buyer responsibilities for promotion and coordination of information development, supplier responsibilities for meeting certain milestones and for sharing the results of success in a royalty agreement, and risk management features. Twenty-three electric and gas utilities in the US and Canada have joined the Fuel Cell Commercialization Group to support the buyers' obligations in this program. The City of Santa Clara, CA; Electric Power Research Institute; Los Angeles Department of Water and Power; Southern California Gas Company; Southern California Edison; National Rural Electric Cooperative Association; and Pacific Gas & Electric, have formed the Santa Clara Demonstration Group to build the first 2-MW power plant. The preliminary design for this demonstration is nearly complete. Integrated testing of a 20-kW stack with the complete balance-of-plant, has been successfully accomplished by Pacific Gas & Electric at its test facility in San Ramon, CA.
Tolerant chalcogenide cathodes of membraneless micro fuel cells.
Gago, Aldo Saul; Gochi-Ponce, Yadira; Feng, Yong-Jun; Esquivel, Juan Pablo; Sabaté, Neus; Santander, Joaquin; Alonso-Vante, Nicolas
2012-08-01
The most critical issues to overcome in micro direct methanol fuel cells (μDMFCs) are the lack of tolerance of the platinum cathode and fuel crossover through the polymer membrane. Thus, two novel tolerant cathodes of a membraneless microlaminar-flow fuel cell (μLFFC), Pt(x)S(y) and CoSe(2), were developed. The multichannel structure of the system was microfabricated in SU-8 polymer. A commercial platinum cathode served for comparison. When using 5 M CH(3)OH as the fuel, maximum power densities of 6.5, 4, and 0.23 mW cm(-2) were achieved for the μLFFC with Pt, Pt(x)S(y), and CoSe(2) cathodes, respectively. The Pt(x)S(y) cathode outperformed Pt in the same fuel cell when using CH(3)OH at concentrations above 10 M. In a situation where fuel crossover is 100 %, that is, mixing the fuel with the reactant, the maximum power density of the micro fuel cell with Pt decreased by 80 %. However, for Pt(x)S(y) this decrease corresponded to 35 % and for CoSe(2) there was no change in performance. This result is the consequence of the high tolerance of the chalcogenide-based cathodes. When using 10 M HCOOH and a palladium-based anode, the μLFFC with a CoSe(2) cathode achieved a maxiumum power density of 1.04 mW cm(-2). This micro fuel cell does not contain either Nafion membrane or platinum. We report, for the first time, the evaluation of Pt(x)S(y)- and CoSe(2)-based cathodes in membraneless micro fuel cells. The results suggest the development of a novel system that is not size restricted and its operation is mainly based on the selectivity of its electrodes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers
NASA Technical Reports Server (NTRS)
Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.
1989-01-01
Hydrogen-oxygen solid polymer electrolyte (SPE) fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. These solid electrolyte devices have been under continuous development for over 30 years. This experience has resulted in a demonstrated ten-year SPE cell life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluoride loss rates and average expected ultimate cell life. This relationship is shown. Several features have been introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability has been demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density.
Technology status: Batteries and fuel cells
NASA Technical Reports Server (NTRS)
Fordyce, J. S.
1978-01-01
The current status of research and development programs on batteries and fuel cells and the technology goals being pursued are discussed. Emphasis is placed upon those technologies relevant to earth orbital electric energy storage applications.
Market Transformation | Hydrogen and Fuel Cells | NREL
deployment sites Develop techno-economic assessment tools, deployment tools, and business cases for various fuel cell applications Collect and evaluate data from deployment projects to verify the business cases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-06-30
Research on the design, development, and testing of a high-temperature solid electrolyte (HTSOE) fuel cell is described in detail. Task 1 involves the development and refinement of fabrication processes for the porous support tube, fuel electrode, solid electrolyte, air electrode, and interconnection. Task 2 includes the life testing of cell components and the stack; task 3 involves the stack performance evaluation; task 4 includes demonstrating the reproducibility of 10 watt stacks. A cost, design and benefit study to evaluate the nature and worth of an industrial cogeneration application of the HTSOE fuel cell is underway. Here, promisng applications are nowmore » being considered, from which a single application has been selected as a basis for the study - an integrated aluminum production facility. (WHK)« less
Energy harvesting by implantable abiotically catalyzed glucose fuel cells
NASA Astrophysics Data System (ADS)
Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.
Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, David, W.
2012-02-14
Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology formore » air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.« less
Preparation and Evaluation of Multi-Layer Anodes of Solid Oxide Fuel Cell
NASA Technical Reports Server (NTRS)
Santiago, Diana; Farmer, Serene C.; Setlock, John A.
2012-01-01
The development of an energy device with abundant energy generation, ultra-high specific power density, high stability and long life is critical for enabling longer missions and for reducing mission costs. Of all different types of fuel cells, the solid oxide fuel cells (SOFC) is a promising high temperature device that can generate electricity as a byproduct of a chemical reaction in a clean way and produce high quality heat that can be used for other purposes. For aerospace applications, a power-to-weight of (is) greater than 1.0 kW/kg is required. NASA has a patented fuel cell technology under development, capable of achieving the 1.0 kW/kg figure of merit. The first step toward achieving these goals is increasing anode durability. The catalyst plays an important role in the fuel cells for power generation, stability, efficiency and long life. Not only the anode composition, but its preparation and reduction are key to achieving better cell performance. In this research, multi-layer anodes were prepared varying the chemistry of each layer to optimize the performance of the cells. Microstructure analyses were done to the new anodes before and after fuel cell operation. The cells' durability and performance were evaluated in 200 hrs life tests in hydrogen at 850 C. The chemistry of the standard nickel anode was modified successfully reducing the anode degradation from 40% to 8.4% in 1000 hrs and retaining its microstructure.
Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications
NASA Technical Reports Server (NTRS)
Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.
2013-01-01
Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.
Performance of a Fuel-Cell-Powered, Small Electric Airplane Assessed
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.
2004-01-01
Rapidly emerging fuel-cell-power technologies may be used to launch a new revolution of electric propulsion systems for light aircraft. Future small electric airplanes using fuel cell technologies hold the promise of high reliability, low maintenance, low noise, and - with the exception of water vapor - zero emissions. An analytical feasibility and performance assessment was conducted by NASA Glenn Research Center's Airbreathing Systems Analysis Office of a fuel-cell-powered, propeller-driven, small electric airplane based on a model of the MCR-01 two-place kitplane (Dyn'Aero, Darois, France). This assessment was conducted in parallel with an ongoing effort by the Advanced Technology Products Corporation and the Foundation for Advancing Science and Technology Education. Their project - partially funded by a NASA grant - is to design, build, and fly the first manned, continuously propelled, nongliding electric airplane. In our study, an analytical performance model of a proton exchange membrane (PEM) fuel cell propulsion system was developed and applied to a notional, two-place light airplane modeled after the MCR-01 kitplane. The PEM fuel cell stack was fed pure hydrogen fuel and humidified ambient air via a small automotive centrifugal supercharger. The fuel cell performance models were based on chemical reaction analyses calibrated with published data from the fledgling U.S. automotive fuel cell industry. Electric propeller motors, rated at two shaft power levels in separate assessments, were used to directly drive a two-bladed, variable-pitch propeller. Fuel sources considered were compressed hydrogen gas and cryogenic liquid hydrogen. Both of these fuel sources provided pure, contaminant-free hydrogen for the PEM cells.
Phillips, Adam; Ulsh, Michael; Porter, Jason; ...
2017-04-27
An understanding of the impact of coating irregularities on beginning of life polymer electrolyte fuel cell (PEMFC) performance is essential to develop and establish manufacturing tolerances for its components. Coating irregularities occurring in the fuel cell electrode can either possess acceptable process variations or potentially harmful defects. A segmented fuel cell (SFC) is employed to understand how 100% catalyst reduction irregularities ranging from 0.125 to 1 cm 2 in the cathode electrode of a 50 cm 2 sized cell impact spatial and total cell performance at dry and wet humidification conditions. Here, by analyzing the data in a differential formatmore » the local performance effects of irregularity sizes down to 0.25 cm 2 were detected in the current distribution of the cell. Slight total cell performance impacts, due to irregularity sizes of 0.5 and 1 cm 2, were observed under dry operation and high current densities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Adam; Ulsh, Michael; Porter, Jason
An understanding of the impact of coating irregularities on beginning of life polymer electrolyte fuel cell (PEMFC) performance is essential to develop and establish manufacturing tolerances for its components. Coating irregularities occurring in the fuel cell electrode can either possess acceptable process variations or potentially harmful defects. A segmented fuel cell (SFC) is employed to understand how 100% catalyst reduction irregularities ranging from 0.125 to 1 cm 2 in the cathode electrode of a 50 cm 2 sized cell impact spatial and total cell performance at dry and wet humidification conditions. Here, by analyzing the data in a differential formatmore » the local performance effects of irregularity sizes down to 0.25 cm 2 were detected in the current distribution of the cell. Slight total cell performance impacts, due to irregularity sizes of 0.5 and 1 cm 2, were observed under dry operation and high current densities.« less
Evaluation of a Passive Heat Exchanger Based Cooling System for Fuel Cell Applications
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Burke, Kenneth A.
2011-01-01
Fuel cell cooling is conventionally performed with an actively controlled, dedicated coolant loop that exchanges heat with a separate external cooling loop. To simplify this system the concept of directly cooling a fuel cell utilizing a coolant loop with a regenerative heat exchanger to preheat the coolant entering the fuel cell with the coolant exiting the fuel cell was analyzed. The preheating is necessary to minimize the temperature difference across the fuel cell stack. This type of coolant system would minimize the controls needed on the coolant loop and provide a mostly passive means of cooling the fuel cell. The results indicate that an operating temperature of near or greater than 70 C is achievable with a heat exchanger effectiveness of around 90 percent. Of the heat exchanger types evaluated with the same type of fluid on the hot and cold side, a counter flow type heat exchanger would be required which has the possibility of achieving the required effectiveness. The number of heat transfer units required by the heat exchanger would be around 9 or greater. Although the analysis indicates the concept is feasible, the heat exchanger design would need to be developed and optimized for a specific fuel cell operation in order to achieve the high effectiveness value required.
Alkaline regenerative fuel cell energy storage system for manned orbital satellites
NASA Technical Reports Server (NTRS)
Martin, R. E.; Gitlow, B.; Sheibley, D. W.
1982-01-01
It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.
Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover
NASA Technical Reports Server (NTRS)
Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.
2012-01-01
This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.
[Advances in microbial solar cells--A review].
Guo, Xiaoyun; Yu, Changping; Zheng, Tianling
2015-08-04
The energy crisis has become one of the major problems hindering the development of the world. The emergence of microbial fuel cells provides a new solution to the energy crisis. Microbial solar cells, integrating photosynthetic organisms such as plants and microalgae into microbial fuel cells, can convert solar energy into electrical energy. Microbial solar cell has steady electric energy, and broad application prospects in wastewater treatment, biodiesel processing and intermediate metabolites production. Here we reviewed recent progress of microbial solar cells from the perspective of the role of photosynthetic organisms in microbial fuel cells, based on a vast amount of literature, and discussed their advantages and deficiency. At last, brief analysis of the facing problems and research needs of microbial fuel cells are undertaken. This work was expected to be beneficial for the application of the microbial solar cells technology.
Alkaline polymer electrolyte fuel cells stably working at 80 °C
NASA Astrophysics Data System (ADS)
Peng, Hanqing; Li, Qihao; Hu, Meixue; Xiao, Li; Lu, Juntao; Zhuang, Lin
2018-06-01
Alkaline polymer electrolyte fuel cells are a new class of polymer electrolyte fuel cells that fundamentally enables the use of nonprecious metal catalysts. The cell performance mostly relies on the quality of alkaline polymer electrolytes, including the ionic conductivity and the chemical/mechanical stability. For a long time, alkaline polymer electrolytes are thought to be too weak in stability to allow the fuel cell to be operated at elevated temperatures, e.g., above 60 °C. In the present work, we report a progress in the state-of-the-art alkaline polymer electrolyte fuel cell technology. By using a newly developed alkaline polymer electrolyte, quaternary ammonia poly (N-methyl-piperidine-co-p-terphenyl), which simultaneously possesses high ionic conductivity and excellent chemical/mechanical stability, the fuel cell can now be stably operated at 80 °C with high power density. The peak power density reaches ca. 1.5 W/cm2 at 80 °C with Pt/C catalysts used in both the anode and the cathode. The cell works stably in a period of study over 100 h.
Challenges for fuel cells as stationary power resource in the evolving energy enterprise
NASA Astrophysics Data System (ADS)
Rastler, Dan
The primary market challenges for fuel cells as stationary power resources in evolving energy markets are reviewed. Fuel cell power systems have significant barriers to overcome in their anticipated role as decentralized energy power systems. Market segments for fuel cells include combined heat and power; low-cost energy, premium power; peak shaving; and load management and grid support. Understanding the role and fit of fuel cell systems in evolving energy markets and the highest value applications are a major challenge for developers and government funding organizations. The most likely adopters of fuel cell systems and the challenges facing each adopter in the target market segment are reviewed. Adopters include generation companies, utility distribution companies, retail energy service providers and end-users. Key challenges include: overcoming technology risk; achieving retail competitiveness; understanding high value markets and end-user needs; distribution and service channels; regulatory policy issues; and the integration of these decentralized resources within the electrical distribution system.
Modelling and validation of Proton exchange membrane fuel cell (PEMFC)
NASA Astrophysics Data System (ADS)
Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.
2018-01-01
This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.
Assessment of bio-fuel options for solid oxide fuel cell applications
NASA Astrophysics Data System (ADS)
Lin, Jiefeng
Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with diesel engine and truck idling with fuel cell auxiliary power unit system. The customized nozzle used for fuel vaporization and mixing achieved homogenous atomization of input hydrocarbon fuels (e.g., diesel, biodiesel, diesel-biodiesel blend, and biodiesel-ethanol-diesel), and improved the performance of fuel catalytic reformation. Given the same operating condition (reforming temperature, total oxygen content, water input flow, and gas hourly space velocity), the hydrocarbon reforming performance follows the trend of diesel > biodiesel-ethanol-diesel > diesel-biodiesel blend > biodiesel (i.e., diesel catalytic reformation has the highest hydrogen production, lowest risk of carbon formation, and least possibility of hot spot occurrence). These results provide important new insight into the use of bio-fuels and bio-fuel blends as a primary fuel source for solid oxide fuel cell applications.
Research Staff | Hydrogen and Fuel Cells | NREL
laboratory's research areas contribute to this work. Research Areas and Technical Leads NREL's hydrogen and fuel cell research and development is organized into eight research areas. Technical leaders work
Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas
NASA Astrophysics Data System (ADS)
Heinzel, A.; Roes, J.; Brandt, H.
The University of Duisburg-Essen and the Center for Fuel Cell Technology (ZBT Duisburg GmbH) have developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. Fuel processor prototypes based on this concept were built up in the power range from 2.5 to 12.5 kW thermal hydrogen power for different applications and different industrial partners. The fuel processor concept contains all the necessary elements, a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers, in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PrOx) as CO purification. One of the built fuel processors is designed to deliver a thermal hydrogen power output of 2.5 kW according to a PEM fuel cell stack providing about 1 kW electrical power and achieves a thermal efficiency of about 75% (LHV basis after PrOx), while the CO content of the product gas is below 20 ppm. This steam reformer has been combined with a 1 kW PEM fuel cell. Recirculating the anodic offgas results in a significant efficiency increase for the fuel processor. The gross efficiency of the combined system was already clearly above 30% during the first tests. Further improvements are currently investigated and developed at the ZBT.
NASA Technical Reports Server (NTRS)
Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.
1985-01-01
A 25 cell stack of the 13 inch x 23 inch cell size (about 4kW) remains on test after 6000 hours, using simulated reformate fuel. A similar stack was previously shut down after 7000 hours on load. These tests were carried out for the purpose of assessing the durability of fuel cell stack components developed through the end of 1983. In light of the favorable results obtained, a 25kW stack that will contain 175 cells of the same size is being constructed using the same technology base. The components for the 25kW stack have been completed. A methanol steam reformer with a design output equivalent to 50kW has been constructed to serve as a hydrogen generator for the 25kW stack. This reformer and the balance of the fuel processing sub system are currently being tested and debugged. The stack technology development program focused on cost reduction in bipolar plates, nonmetallic cooling plates, and current collecting plates; more stable cathode catalyst support materials; more corrosion resistant metal hardware; and shutdown/start up tolerance.
Development of planar solid oxide fuel cells for power generation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minh, N.Q.
1996-04-01
Planar solid oxide fuel cells (SOFCs) are presently being developed for a variety of electric power generation application. The planar design offers simple cell geometry, high power density, and multiple fabrication and gas manifolding options. Planar SOFC technology has received much attention recently, and significant progress has been made in this area. Recent effort at AlliedSignal has focused on the development of high-performance, lightweight planar SOFCs, having thin-electrolyte films, that can be operated efficiently at reduced temperatures (< 1000{degrees}C). The advantages of reduced-temperature operation include wider material choice (including use of metallic interconnects), expected longer cell life, reduced thermal stress,more » improved reliability, and reduced fuel cell cost. The key aspect in the development of thin-film SIFCs is to incorporate the thin electrolyte layer into the desired structure of cells in a manner that yields the required characteristics. AlliedSignal has developed a simple and cost-effective method based on tape calendering for the fabrication of thin-electrolyte SOFCs. Thin-electrolyte cells made by tape calendering have shown extraordinary performance, e.g., producing more than 500mW/cm{sup 2} at 700{degrees}C and 800mW/cm{sup 2} at 800{degrees}C with hydrogen as fuel and air is oxidant. thin-electrolyte single cells have been incorporated into a compliant metallic stack structure and operated at reduced and operated at reduced-temperature conditions.« less
Coupling of a 2.5 kW steam reformer with a 1 kW el PEM fuel cell
NASA Astrophysics Data System (ADS)
Mathiak, J.; Heinzel, A.; Roes, J.; Kalk, Th.; Kraus, H.; Brandt, H.
The University of Duisburg-Essen has developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. This steam reformer was combined with a polymer electrolyte membrane fuel cell (PEM FC) and a system test of the process chain was performed. The fuel processor comprises a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PROX) as CO purification. The fuel processor is designed to deliver a thermal hydrogen power output from 500 W to 2.5 kW. The PEM fuel cell stack provides about 1 kW electrical power. In the following paper experimental results of measurements of the single components PEM fuel cell and fuel processor as well as results of the coupling of both to form a process chain are presented.
Cooling System Design for PEM Fuel Cell Powered Air Vehicles
2010-06-18
Research Laboratory (NRL) has developed a proton exchange membrane fuel cell ( PEMFC ) powered unmanned air vehicle (UAV) called the Ion Tiger. The Ion Tiger...to design a cooling system for the Ion Tiger and investigate cooling approaches that may be suitable for future PEMFC powered air vehicles. The...modifications) to other PEMFC systems utilizing a CHE for cooling. 18-06-2010 Memorandum Report Unmanned Air Vehicle UAV Fuel cell PEM Cooling Radiator January
Microalgae-microbial fuel cell: A mini review.
Lee, Duu-Jong; Chang, Jo-Shu; Lai, Juin-Yih
2015-12-01
Microalgae-microbial fuel cells (mMFCs) are a device that can convert solar energy to electrical energy via biological pathways. This mini-review lists new research and development works on microalgae processes, microbial fuel cell (MFC) processes, and their combined version, mMFC. The substantial improvement and technological advancement are highlighted, with a discussion on the challenges and prospects for possible commercialization of mMFC technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.
2005-01-01
A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.
Development of Pt-Au-Graphene-Carbon Nanotube Composite for Fuel Cells and Biosensors Applications
2011-02-11
1 Project Title:- Development of Pt-Au- Graphene -Carbon nanotube composites for fuel cells and biosensors applications Objectives:- This...project addresses the architectures needed for the processing of Pt-Au- graphene -carbon nanotube (Pt-Au/f-G/f-CNT) nanocomposites and aims at the...cells:- Graphene and nitrogen doped graphene as catalyst support materials:- Graphene and nitrogen doped graphene have been used as a catalyst
3D visualization of membrane failures in fuel cells
NASA Astrophysics Data System (ADS)
Singh, Yadvinder; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik
2017-03-01
Durability issues in fuel cells, due to chemical and mechanical degradation, are potential impediments in their commercialization. Hydrogen leak development across degraded fuel cell membranes is deemed a lifetime-limiting failure mode and potential safety issue that requires thorough characterization for devising effective mitigation strategies. The scope and depth of failure analysis has, however, been limited by the 2D nature of conventional imaging. In the present work, X-ray computed tomography is introduced as a novel, non-destructive technique for 3D failure analysis. Its capability to acquire true 3D images of membrane damage is demonstrated for the very first time. This approach has enabled unique and in-depth analysis resulting in novel findings regarding the membrane degradation mechanism; these are: significant, exclusive membrane fracture development independent of catalyst layers, localized thinning at crack sites, and demonstration of the critical impact of cracks on fuel cell durability. Evidence of crack initiation within the membrane is demonstrated, and a possible new failure mode different from typical mechanical crack development is identified. X-ray computed tomography is hereby established as a breakthrough approach for comprehensive 3D characterization and reliable failure analysis of fuel cell membranes, and could readily be extended to electrolyzers and flow batteries having similar structure.
State and Local Government Partnership
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, Alexander; Rinebold, Joel; Aresta, Paul
The State and Local Government Partnership project has built relationships between the Department of Energy (DOE), regional states, and municipalities. CCAT implemented this project using a structure that included leadership by the DOE. Outreach was undertaken through collaborative meetings, workshops, and briefings; the development of technical models and local energy plans; support for state stakeholder groups; and implementation of strategies to facilitate the deployment of hydrogen and fuel cell technologies. The final guidance documents provided to stakeholders consisted of individual strategic state “Roadmaps” to serve as development plans. These “Roadmaps” confirm economic impacts, identify deployment targets, and compare policies andmore » incentives for facility development in each of the regional states. The partnerships developed through this project have improved the exchange of knowledge between state and local government stakeholders and is expected to increase the deployment of hydrogen and fuel cell technologies in early market applications, consistent with the DOE’s market transformation efforts. Technically accurate and objective information was, and continues to be, provided to improve public and stakeholder perceptions regarding the use of hydrogen and fuel cell technologies. Based on the “Roadmaps” and studies conducted for this project, there is the potential to generate approximately 10.75 million megawatt hours (MWh) of electricity annually from hydrogen and fuel cell technologies at potential host sites in the Northeast regional states, through the development of 1,364 to 1,818 megawatts (MW) of fuel cell electric generation capacity. Currently, the region has approximately 1,180 companies that are part of the growing hydrogen and fuel cell industry supply chain in the region. These companies are estimated to have over $1 billion in annual revenue and investment, contribute more than $51 million in annual state and local tax revenue, and provide approximately $650 million in annual gross state product from their participation in this regional energy cluster. Twenty-five (25) of these companies are original equipment manufacturers (OEMs) of hydrogen and/or fuel cell systems that provided 2,228 direct jobs and $433.15 million in direct revenue and investment in 2010.« less
Code of Federal Regulations, 2013 CFR
2013-01-01
...); (3) A fuel fabrication plant; (4) An enrichment plant or isotope separation plant for the separation..., irradiated fuel element chopping machines, and hot cells. Nuclear fuel cycle-related research and development...
Code of Federal Regulations, 2014 CFR
2014-01-01
...); (3) A fuel fabrication plant; (4) An enrichment plant or isotope separation plant for the separation..., irradiated fuel element chopping machines, and hot cells. Nuclear fuel cycle-related research and development...
ElectroCat: DOE's approach to PGM-free catalyst and electrode R&D
Thompson, Simon T.; Wilson, Adria R.; Zelenay, Piotr; ...
2018-02-03
The successful development of high-performance, durable platinum group metal-free (PGM-free) electrocatalysts and electrodes for polymer electrolyte membrane fuel cells (PEMFCs) will ultimately improve the cost-competiveness of fuel cells in a wide range of applications. This is considered to be a critical development especially for automotive fuel cell applications in order to bring the system cost of an automotive fuel cell system down to the $30/kW cost target set by the U.S. Department of Energy (DOE). The platinum group metal (PGM) electrocatalysts are a major contributor to the system cost. Addressing the technical challenges to PGM-free electrocatalyst and electrode development, therefore,more » represents one of DOE's most pressing research and development (R&D) priorities. ElectroCat was formed by the DOE as part of the Energy Materials Network (EMN) in early 2016, and shares with other EMN consortia the goal of decreasing the time to market for advanced materials related to clean energy technologies, in the context of increasing U.S. fuel cell electric vehicle (FCEV) manufacturing competitiveness. To accomplish this, the consortium performs core research and development and provides universities and companies streamlined access to the unique, world-class set of tools and expertise relevant to early-stage applied PGM-free catalyst R&D of the member national laboratories. Moreover, ElectroCat fosters a systematic methodology by which prospective catalysts and electrodes are prepared and analyzed rapidly and comprehensively using high-throughput, combinatorial methods. Catalyst discovery is augmented by theory as well as foundational electrocatalysis and materials knowledge at the participating national laboratories. Furthermore, ElectroCat has developed a data sharing framework, requisite of all EMN consortia, for disseminating its findings to the public via a searchable database, to further expedite incorporation of PGM-free electrocatalysts into next-generation fuel cells by advancing the general understanding of the PGM-free electrocatalyst field.« less
ElectroCat: DOE's approach to PGM-free catalyst and electrode R&D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Simon T.; Wilson, Adria R.; Zelenay, Piotr
The successful development of high-performance, durable platinum group metal-free (PGM-free) electrocatalysts and electrodes for polymer electrolyte membrane fuel cells (PEMFCs) will ultimately improve the cost-competiveness of fuel cells in a wide range of applications. This is considered to be a critical development especially for automotive fuel cell applications in order to bring the system cost of an automotive fuel cell system down to the $30/kW cost target set by the U.S. Department of Energy (DOE). The platinum group metal (PGM) electrocatalysts are a major contributor to the system cost. Addressing the technical challenges to PGM-free electrocatalyst and electrode development, therefore,more » represents one of DOE's most pressing research and development (R&D) priorities. ElectroCat was formed by the DOE as part of the Energy Materials Network (EMN) in early 2016, and shares with other EMN consortia the goal of decreasing the time to market for advanced materials related to clean energy technologies, in the context of increasing U.S. fuel cell electric vehicle (FCEV) manufacturing competitiveness. To accomplish this, the consortium performs core research and development and provides universities and companies streamlined access to the unique, world-class set of tools and expertise relevant to early-stage applied PGM-free catalyst R&D of the member national laboratories. Moreover, ElectroCat fosters a systematic methodology by which prospective catalysts and electrodes are prepared and analyzed rapidly and comprehensively using high-throughput, combinatorial methods. Catalyst discovery is augmented by theory as well as foundational electrocatalysis and materials knowledge at the participating national laboratories. Furthermore, ElectroCat has developed a data sharing framework, requisite of all EMN consortia, for disseminating its findings to the public via a searchable database, to further expedite incorporation of PGM-free electrocatalysts into next-generation fuel cells by advancing the general understanding of the PGM-free electrocatalyst field.« less
Challenges in developing direct carbon fuel cells.
Jiang, Cairong; Ma, Jianjun; Corre, Gael; Jain, Sneh L; Irvine, John T S
2017-05-22
A direct carbon fuel cell (DCFC) can produce electricity with both superior electrical efficiency and fuel utilisation compared to all other types of fuel cells. Although the first DCFC prototype was proposed in 1896, there was, until the 1970s, little sustained effort to investigate further, because of technology development issues. Interest in DCFCs has recently been reinvigorated as a possible method of replacing conventional coal-fired power plants to meet the demands for lower CO 2 emissions, and indeed for efficient utilisation of waste derived chars. In this article, recent developments in direct carbon conversion are reviewed, with the principal emphasis on the materials involved. The development of electrolytes, anodes and cathodes as well as fuel sources is examined. The activity and chemical stability of the anode materials are a critical concern addressed in the development of new materials. Redox media of molten carbonate or molten metal facilitating the transportation of ions offer promising possibilities for carbon oxidation. The suitability of different carbon fuels in various DCFC systems, in terms of crystal structure, surface properties, impurities and particle size, is also discussed. We explore the influence of a variety of parameters on the electrochemical performance of DCFCs, with regard to their open circuit voltage, power output and lifetime. The challenges faced in developing DCFCs are summarised, and potential prospects of the system are outlined.
USAF Advanced Terrestrial Energy Study. Volume 4. Analysis, Data, and Bibliography.
1983-04-01
OBJECTIVE OF THIS PROGRAM IS T0 DEVELOP A METHODOLOGY FOR PREDICTING LON(.o-TERM FUEL CELL PERFORM4ANCE FROM S"ORT-TEIM VESTING. APPLYING THE PERVURbATION...ION PROGRAM WAS DEVELOPED FOR ACTUALLY INSTALLINGP THE FUEL CELL POWER PLANT AT THE SANTA CLARA SIE DE SCh1PT ORS6 AIR POLLUTION DATtMENT;AUXILIARY...IV OF THE CERAMIC TECHNOLUGY READINESS PROGRAM TITL IMDNU) ADVANCED MATER IALS FUR ALTERNATIVE FUEL CAPABLE DIRECTLY FIRED HEAT ENGINES 36 - - - . r
Transient Response of a PEM Fuel Cell Representing Variable Load for a Moving Vehicle on Urban Roads
DOT National Transportation Integrated Search
2001-01-01
Three-dimensional numerical simulation of transient response of a Polymer Electrolyte Membrane (PEM) fuel cell subjected to a variable load is developed. The model parameters are typical of experimental cell for a 10-cm2 reactive area with serpentine...
Fuel cells with solid polymer electrolyte and their application on vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fateev, V.
1996-04-01
In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.
Liu, Susu; Liu, Xianhua; Wang, Ying; Zhang, Pingping
2016-12-01
The goal of this work was to develop a method for the direct power generation using macroalgae Enteromorpha prolifera. The process conditions for the saccharification of macroalgae were optimized and a type of alkaline fuel cell contained no precious metal catalysts was developed. Under optimum conditions (170°C and 2% hydrochloric acid for 45min), dilute acid hydrolysis of the homogenized plants yielded 272.25g reducing sugar/kg dry algal biomass. The maximum power density reached 3.81W/m 2 under the condition of 3M KOH and 18.15g/L reducing sugar in hydrolysate, higher than any other reported algae-fed fuel cells. This study represents the first report on direct electricity generation from macroalgae using alkaline fuel cells, suggesting that there is great potential for the production of renewable energy using marine biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electrolysis Propulsion for Spacecraft Applications
NASA Technical Reports Server (NTRS)
deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.
1997-01-01
Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.
Test results for fuel cell operation on anaerobic digester gas
NASA Astrophysics Data System (ADS)
Spiegel, R. J.; Preston, J. L.
EPA, in conjunction with ONSI, embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the process of treating sewage anaerobically to reduce solids. ADG is primarily comprised of methane (57-66%), carbon dioxide (33-39%), nitrogen (1-10%), and a small amount of oxygen (<0.5%). Additionally, ADG contains trace amounts of fuel cell catalyst contaminants consisting of sulfur-bearing compounds (principally hydrogen sulfide) and halogen compounds (chlorides). The project has addressed two major issues: development of a cleanup system to remove fuel cell contaminants from the gas and testing/assessing of a modified ONSI PC25 C fuel cell power plant operating on the cleaned, but dilute, ADG. Results to date demonstrate that the ADG fuel cell power plant can, depending on the energy content of the gas, produce electrical output levels close to full power (200 kW) with measured air emissions comparable to those obtained by a natural gas fuel cell. The cleanup system results show that the hydrogen sulfide levels are reduced to below 10 ppbv and halides to approximately 30 ppbv.
Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean
2012-07-30
In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.
Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean
2012-01-01
In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295
Analysis of dynamic requirements for fuel cell systems for vehicle applications
NASA Astrophysics Data System (ADS)
Pischinger, Stefan; Schönfelder, Carsten; Ogrzewalla, Jürgen
Conventional vehicles with internal combustion engines, as well as battery powered electric vehicles, achieve one of the most important customer requirements; achieving extremely short response times to load changes. Also, fast acceleration times from a cold start to full power in the range of seconds are practicable. New fuel cell-based propulsion systems, as well as auxiliary power units, have to fulfill the same demands to become competitive. This includes heating-up the system to operating temperature as well as the control strategy for start-up. An additional device to supply starting air is necessary, if the compressor motor can only be operated with fuel cell voltage. Since the system components (for example, the air supply or the fuel supply) are not mechanically coupled, as is the case with conventional internal combustion engines, these components have to be controlled by different sensors and actuators. This can be an advantage in optimizing the system, but it also can represent an additional challenge. This paper describes the fuel cell system requirements regarding transient operation and their dependence on system structure. In particular, the requirements for peripheral components such as air supply, fuel supply and the balance of heat in a fuel cell system are examined. Furthermore, the paper outlines the necessity of an electric storage device and its resultant capacity, which will enable faster load changes. Acceleration and deceleration of the vehicle are accomplished through the use of the electric storage device, while the fuel cell system only has to deliver the mean power consumption without higher load peaks. On the basis of system simulation, different concepts are evaluated for use as a propulsion system or APU and, then, critical components are identified. The effects of advanced control strategies regarding the dynamic behavior of the system are demonstrated. Technically, a fuel cell system could be a viable propulsion system alternative to conventional combustion engines, as long as there is a sufficient amount of power output from the fuel cell available for low operating temperatures. An optimized air supply system meets the requirements for transient operation in vehicles; however, specially designed machines are necessary-in particular smaller, integrated units. The electrical storage device helps to minimize fuel cell system response times for transient operation. An even more important point is that the fuel cell can be downsized. Utilizing this potential can reduce cost, space and weight. Fuel processing is preferable for auxiliary power units, since they have to operate in vehicles that use either gasoline or diesel fuel. High losses during the start-up phase can be avoided by using a battery to buffer the highly fluctuating power demands. Only advanced control methods are acceptable for controlling the operation of a fuel cell system with several components. Fuel cell systems can be developed and precisely optimized through the use of simulation tools, within an accelerated development process.
Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes
NASA Technical Reports Server (NTRS)
Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha
2012-01-01
Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.
Microbial fuel cells: From fundamentals to applications. A review.
Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis
2017-07-15
In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.
Microbial fuel cells: From fundamentals to applications. A review
NASA Astrophysics Data System (ADS)
Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis
2017-07-01
In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.
de Jong, Bouke; Siewers, Verena; Nielsen, Jens
2012-08-01
Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels. Copyright © 2011 Elsevier Ltd. All rights reserved.
Development of advanced fuel cell system
NASA Technical Reports Server (NTRS)
Gitlow, B.; Meyer, A. P.; Bell, W. F.; Martin, R. E.
1978-01-01
An experimental program was conducted continuing the development effort to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. These advanced technology cells operate with passive water removal which contributes to a lower system weight and extended operating life. Endurance evaluation of two single cells and two, two-cell plaques was continued. Three new test articles were fabricated and tested. A single cell completed 7038 hours of endurance testing. This cell incorporated a Fybex matrix, hybrid-frame, PPF anode, and a 90 Au/10 Pt cathode. This configuration was developed to extend cell life. Two cell plaques with dedicated flow fields and manifolds for all fluids did not exhibit the cell-to-cell electrolyte transfer that limited the operating life of earlier multicell plaques.
The Palm Desert renewable [hydrogen] transportation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamberlin, C.E.; Lehman, P.
1998-08-01
This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehiclemore » diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.« less
Novel Structured Metal Bipolar Plates for Low Cost Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Conghua
2013-08-15
Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate technology without using any preciousmore » metal. The technology will meet the performance and cost requirements for automobile applications. Through the Phase I project, TreadStone has identified the corrosion resistant and electrically conductive titanium oxide for the metal bipolar plate surface protection for automotive PEM fuel cell applications. TreadStone has overcome the manufacturing issues to apply the coating on metal substrate surface, and has demonstrated the feasibility of the coated stainless steel plates by ex-situ evaluation tests and the in-situ fuel cell long term durability test. The test results show the feasibility of the proposed nano-structured coating as the low cost metal bipolar plates of PEM fuel cells. The plan for further technology optimization is also outlined for the Phase II project.« less
Preparation of nano-structured polymeric proton conducting membranes for use in fuel cells.
Alberti, Giulio; Casciola, Mario; Pica, Monica; Di Cesare, Giusi
2003-03-01
We briefly discuss the state of the art of polymer electrolyte membrane fuel cells and suggest that the main obstacles to the commercial development of these fuel cells are essentially the high costs and poor characteristics of present proton conducting membranes. A strategy for the preparation of improved nanocomposite membranes based on the introduction of proton conducting lamell? in the polymeric matrix of present ionomeric membranes is then discussed. Due to their high proton conductivity (in some cases even higher than 10(-1) S cm(-1)), tailor made lamellae obtained by exfoliation of superacid metal (IV) phosphonates are particularly suitable for the preparation of these hybrid membranes. The expected positive influence of the dispersed lamellae on important properties of proton conducting membranes, such as swelling, mechanical resistance, proton transport, and diffusion of methanol, are also discussed. The methods used to obtain good lamellar dispersions into ionomeric polymers and the preparation and main characteristics of some hybrid membranes are also briefly described. The presence of nanoparticles of metal phosphonates in the electrodic interfaces Nafion/Pt already considerably improves the electrochemical characteristics of fuel cells in the temperature range 80-130 degrees C. The increased working temperature of the fuel cell considerably reduces CO poisoning of the platinum electrodes and allows better control of the cooling system, thus overcoming important obstacles to the development of medium temperature PEM fuel cells.
ERIC Educational Resources Information Center
Klara, Kristina; Hou, Ning; Lawman, Allison; Wu, Liheng; Morrill, Drew; Tente, Alfred; Wang, Li-Qiong
2014-01-01
A simple, affordable hydrogen proton exchange membrane (PEM) fuel cell laboratory was developed through a collaborative effort between faculty and undergraduate students at Brown University. It has been incorporated into the introductory chemistry curriculum and successfully implemented in a class of over 500 students per academic year for over 3…
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Hoover, D. Q., Jr.
1981-01-01
The design features and plans for fabrication of Stacks 564 and 800 are described. The results of the OS/IES loop testing of Stack 562, endurance testing of Stack 560 and the post test analysis of Stack 561 are reported. Progress on construction and modification of the fuel cell test facilities and the 10 kW reformer test station is described. Efforts to develop the technical data base for the fuel conditioning system included vendor contacts, packed bed heat transfer tests, development of the BOLTAR computer program, and work on the detailed design of the 10 kW reformer are described.
Energy Storage Technology Development for Space Exploration
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.
2011-01-01
The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.
Smart Energy Management of Multiple Full Cell Powered Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
MOhammad S. Alam
2007-04-23
In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. Themore » goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.« less
Thin-Film Solid Oxide Fuel Cells
NASA Technical Reports Server (NTRS)
Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex
2009-01-01
The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... vehicles (PHEV), and establishing additional ZEV categories in recognition of new developments in fuel cell... longer expected to produce fuel-cell vehicles to meet part of its gold vehicle credit requirements for...
Development of biologically modified anodes for energy harvesting using microbial fuel cells
NASA Astrophysics Data System (ADS)
Sumner, James J.; Ganguli, Rahul; Chmelka, Brad
2012-06-01
Biological fuel cells hold promise as an alternative energy source to batteries for unattended ground sensor applications due to the fact that they can be extremely long lived. This lifetime can be extended over batteries by scavenging fuel from the deployed environment. Microbial fuel cells (MFC) are one class of such sources that produce usable energy from small organic compounds (i.e. sugars, alcohols, organic acids, and biopolymers) which can be easily containerized or scavenged from the environment. The use of microorganisms as the anodic catalysts is what makes these systems unique from other biofuel cell designs. One of the main drawbacks of engineering a sensor system powered by an MFC is that power densities and current flux are extremely low in currently reported systems. The power density is limited by the mass transfer of the fuel source to the catalyst, the metabolism of the microbial catalysts and the electron transfer from the organism to the anode. This presentation will focus on the development of a new style of microbially-modified anodes which will increase power density to a level where a practical power source can be engineered. This is being achieved by developing a three dimensional matrix as an artificial, conductive biofilm. These artificial biofilms will allow the capture of a consortium of microbes designed for efficient metabolism of the available fuel source. Also it will keep the microbes close to the electrode allowing ready access by fuel and providing a low resistance passage of the liberated electrons from fuel oxidation.
Discrete regenerative fuel cell reduces hysteresis for sustainable cycling of water
Park, Kiwon; Lee, Jungkoo; Kim, Hyung-Man; Choi, Kap-Seung; Hwang, Gunyong
2014-01-01
The discrete regenerative fuel cell is being developed as a residential power control that synchronizes with a renewables load which fluctuates significantly with the time and weather. The power of proton exchange membrane fuel cells can be scaled-up adjustably to meet the residential power demand. As a result, scale-ups from a basic unit cell with a 25 cm2 active area create a serpentine flow-field on an active area of 100 cm2 and take into account the excessive current and the remaining power obtained by stacking single cells. Operating a fuel cell utilising oxygen produced by the electrolyser instead of air improves the electrochemical reaction and the water balance. Furthermore, the performance test results with oxygen instead of air show almost no hysteresis, which results in the very stable operation of the proton exchange membrane fuel cell as well as the sustainable cycle of water by hydrogen and oxygen mediums. PMID:24699531
Major design issues of molten carbonate fuel cell power generation unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T.P.
1996-04-01
In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to complymore » with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.« less
NASA Astrophysics Data System (ADS)
Dahiya, R. P.
1987-06-01
The present conference on the development status of hydrogen energy technologies considers electrolytic hydrogen production, photoelectrolytic hydrogen production, microorganic hydrogen production, OTEC hydrogen production, solid-state materials for hydrogen storage, and a thin-film hydrogen storage system. Also discussed are the cryogenic storage of hydrogen; liquid hydrogen fuel for ground, air, and naval vehicles; hydrogen-fuel internal combustion engines; the use of hydrogen for domestic, commercial, and industrial applications; hydrogen fuel-cell development; enzyme electrodes for the use of hydrogen-rich fuels in biochemical fuel cells; an analysis of H2-O2 MHD generators; and hydrogen energy technology characterization and evaluation on the basis of an input-output structure.
Manual of phosphoric acid fuel cell stack three-dimensional model and computer program
NASA Technical Reports Server (NTRS)
Lu, C. Y.; Alkasab, K. A.
1984-01-01
A detailed distributed mathematical model of phosphoric acid fuel cell stack have been developed, with the FORTRAN computer program, for analyzing the temperature distribution in the stack and the associated current density distribution on the cell plates. Energy, mass, and electrochemical analyses in the stack were combined to develop the model. Several reasonable assumptions were made to solve this mathematical model by means of the finite differences numerical method.
NASA Technical Reports Server (NTRS)
Warshay, Marvin; Prokopius, Paul
1996-01-01
Though the fuel cell was invented in 1839, it was not until the early 1960's that the fuel cell power system was developed and used for a real application, for the NASA Space Mission Gemini. Unfortunately, fuel cell power systems did not, as a result, become in widespread use. Nevertheless, a great deal of progress has been made by both government and industry, culminating in many successful fuel cell power system demonstrations. Initially, each government agency and each private organization went its own way. Later, it became evident that coordination among programs was essential. An overview is presented of the current coordinated efforts by government and industry in fuel cells, with a sufficient historical background. The primary barriers to coordination of programs were institutional and differing application requirements. Initially, in the institutional area, it was the energy crisis and the formation of DOE which fostered close working relationships among government, manufacturers, and users. The authors discuss the fuel cell power system programs (of NASA, DOE, DOT, DOC, EPRI, GRI, industry, and universities), including missions and applications, technology advances, and demonstrations. The discussion covers the new Solar Regenerative Fuel Cell (RFC) program which has space, defense, and commercial terrestrial applications, and which is an excellent example of both program coordination and the Clinton Administration's dual-use application policy.
Direct Methanol Fuel Cell Power Supply For All-Day True Wireless Mobile Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian Wells
PolyFuel has developed state-of-the-art portable fuel cell technology for the portable computing market. A novel approach to passive water recycling within the MEA has led to significant system simplification and size reduction. Miniature stack technology with very high area utilization and minimalist seals has been developed. A highly integrated balance of plant with very low parasitic losses has been constructed around the new stack design. Demonstration prototype systems integrated with laptop computers have been shown in recent months to leading OEM computer manufacturers. PolyFuel intends to provide this technology to its customers as a reference design as a means ofmore » accelerating the commercialization of portable fuel cell technology. The primary goal of the project was to match the energy density of a commercial lithium ion battery for laptop computers. PolyFuel made large strides against this goal and has now demonstrated 270 Wh/liter compared with lithium ion energy densities of 300 Wh/liter. Further, more incremental, improvements in energy density are envisioned with an additional 20-30% gains possible in each of the next two years given further research and development.« less
Ultrafine polybenzimidazole (PBI) fibers. [separators for alkaline batteries and dfuel cells
NASA Technical Reports Server (NTRS)
Chenevey, E. C.
1979-01-01
Mats were made from ultrafine polybenzimidazole (PBI) fibers to provide an alternate to the use of asbestos as separators in fuel cells and alkaline batteries. To minimize distortion during mat drying, a process to provide a dry fibrid was developed. Two fibrid types were developed: one coarse, making mats for battery separators; the other fine, making low permeability matrices for fuel cells. Eventually, it was demonstrated that suitable mat fabrication techniques yielded fuel cell separators from the coarser alkaline battery fibrids. The stability of PBI mats to 45% KOH at 123 C can be increased by heat treatment at high temperatures. Weight loss data to 1000 hours exposure show the alkali resistance of the mats to be superior to that of asbestos.
New applications for phosphoric acid fuel cells
NASA Astrophysics Data System (ADS)
Stickles, R. P.; Breuer, C. T.
1983-11-01
New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on site total energy systems, industrial cogeneration, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting are power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.
New applications for phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Stickles, R. P.; Breuer, C. T.
1983-01-01
New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on site total energy systems, industrial cogeneration, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting are power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.
Regenerative Fuel Cell Test Rig at Glenn Research Center
NASA Technical Reports Server (NTRS)
Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.; Scullin, Vincent J.; Bents, David J.
2003-01-01
The regenerative fuel cell development effort at Glenn Research Center (GRC) involves the integration of a dedicated fuel cell and electrolyzer into an energy storage system test rig. The test rig consists of a fuel cell stack, an electrolysis stack, cooling pumps, a water transfer pump, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, interconnecting tubing, nitrogen purge provisions, and instrumentation for control and monitoring purposes. The regenerative fuel cell (RFC) thus formed is a completely closed system which is capable of autonomous cyclic operation. The test rig provides direct current (DC) load and DC power supply to simulate power consumption and solar power input. In addition, chillers are used as the heat sink to dissipate the waste heat from the electrochemical stack operation. Various vents and nitrogen (N2) sources are included in case inert purging is necessary to safe the RFC test rig.
NASA Astrophysics Data System (ADS)
Trogisch, S.; Hoffmann, J.; Daza Bertrand, L.
In the past years research in the molten carbonate fuel cells (MCFC) area has been focusing its efforts on the utilisation of natural gas as fuel (S. Geitmann, Wasserstoff- & Brennstoffzellen-Projekte, 2002, ISBN 3-8311-3280-1). In order to increase the advantages of this technology, an international consortium has worked on the utilisation of biogas as fuel in MCFC. During the 4 years lasting RTD project EFFECTIVE two different gas upgrading systems have been developed and constructed together with two mobile MCFC test beds which were operated at different locations for approximately 2.000-5.000 h in each run with biogas from different origins and quality. The large variety of test locations has enabled to gather a large database for assessing the effect of the different biogas qualities on the complete system consisting of the upgrading and the fuel cell systems. The findings are challenging. This article also aims at giving an overview of the advantages of using biogas as fuel for fuel cells.
Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells
NASA Technical Reports Server (NTRS)
Prokopius, P. R.; Easter, R. W.
1972-01-01
Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.
HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sell, D. A.; Baily, C. E.; Malewitz, T. J.
2016-09-01
A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium aftermore » the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.« less
Microstructured Electrolyte Membranes to Improve Fuel Cell Performance
NASA Astrophysics Data System (ADS)
Wei, Xue
Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as reactant type, reagent concentration, solution pH, and reaction time. Dense apatite films were formed on palladium substrates that can serve as intermediate temperature fuel cell anodes. The novel apatite membrane structure is promising for fuel cell applications, as well as in improving the biocompatibility of orthopedic implants when coated on stainless steel or titanium substrates.
Hydrogen generator, via catalytic partial oxidation of methane for fuel cells
NASA Astrophysics Data System (ADS)
Recupero, Vincenzo; Pino, Lidia; Di Leonardo, Raffaele; Lagana', Massimo; Maggio, Gaetano
It is well known that the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by the CNR Institute of Transformation and Storage of Energy (CNR-TAE), on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with second generation fuel cells (EC-JOU2 contract). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic catalytic selective partial oxidation of methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.
Emerging Energy Requirements for Future C4ISR
2002-09-01
hydrogen (H2). The transition has already begun, and private industry is leading the way by developing prototype vehicles that use fuel cells and... fuel cell generators in homes and businesses may spread the development cost of the technology beyond vehicles and accelerate consumer acceptance...military and civilian requirements, and this could foster joint programs to develop modern nuclear power sources for use in the 21st century. 4
Hydrogen Generation Via Fuel Reforming
NASA Astrophysics Data System (ADS)
Krebs, John F.
2003-07-01
Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2-based power generation, via reforming, is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2-enriched product stream, such as carbon monoxide (CO) and hydrogen sulfide (H2S), can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC's). Removal of such contaminants requires extensive processing of the H2-rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.
Oxygen electrodes for rechargeable alkaline fuel cells, 3
NASA Technical Reports Server (NTRS)
Swette, L.; Kackley, N.; Mccatty, S. A.
1991-01-01
The investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells is described. Focus is on chemical and electrochemical stability and O2 reduction/evolution activity of the electrode in question.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2008
DOT National Transportation Integrated Search
2008-12-01
In September 2007, the U.S. Department of Energys (DOE) National Renewable Energy Laboratory (NREL) published a report that reviewed past and present fuel cell bus technology development and implementation in the United States. That report reviewe...
SunLine Test Drives Hydrogen Bus
DOT National Transportation Integrated Search
2003-08-01
SunLine collaborated with the U.S. Department of Energys (DOE) Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program on the evaluation of the 30-foot hybrid fuel cell bus that was developed by ThunderPower LLC, a joint venture by Tho...
Fuel Processor Development for a Soldier-Portable Fuel Cell System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palo, Daniel R.; Holladay, Jamie D.; Rozmiarek, Robert T.
2002-01-01
Battelle is currently developing a soldier-portable power system for the U.S. Army that will continuously provide 15 W (25 W peak) of base load electric power for weeks or months using a micro technology-based fuel processor. The fuel processing train consists of a combustor, two vaporizers, and a steam-reforming reactor. This paper describes the concept and experimental progress to date.
Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.
Li, Yinshi; Sun, Xianda; Feng, Ying
2017-05-22
Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm -2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH - ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Feasibility study of a mini fuel cell to detect interference from a cellular phone
NASA Astrophysics Data System (ADS)
Abdullah, M. O.; Gan, Y. K.
Fuel cells produce electricity without involving combustion processes. They generate no noise, vibration or air pollution and are therefore suitable for use in many vibration-free power-generating applications. In this study, a mini alkaline fuel cell signal detector system has been designed, constructed and tested. The initial results have shown the applicability of such system for used as an indicator of signal disturbance from cellular phones. A small disturbance even at 4 mV cm -1, corresponding to an amplitude of 12-18 mG in terms of electromagnetic field, can be well detected by such a device. Subsequently, a thermodynamics model has been developed to provide a parametric study by simulation to show the likely performance of the fuel cell alone in other environments. As such the model can provide many useful generic design data for alkaline fuel cells. Two general conclusions can be drawn from the present theoretical study: (i) fuel cell performance increases with temperature, pressure and correction factor, C f; (ii) the temperature factor (E/ T) increases with increasing temperature and with increasing pressure factor.
NASA Astrophysics Data System (ADS)
Göll, S.; Samsun, R. C.; Peters, R.
Fuel-cell-based auxiliary power units can help to reduce fuel consumption and emissions in transportation. For this application, the combination of solid oxide fuel cells (SOFCs) with upstream fuel processing by autothermal reforming (ATR) is seen as a highly favorable configuration. Notwithstanding the necessity to improve each single component, an optimized architecture of the fuel cell system as a whole must be achieved. To enable model-based analyses, a system-level approach is proposed in which the fuel cell system is modeled as a multi-stage thermo-chemical process using the "flowsheeting" environment PRO/II™. Therein, the SOFC stack and the ATR are characterized entirely by corresponding thermodynamic processes together with global performance parameters. The developed model is then used to achieve an optimal system layout by comparing different system architectures. A system with anode and cathode off-gas recycling was identified to have the highest electric system efficiency. Taking this system as a basis, the potential for further performance enhancement was evaluated by varying four parameters characterizing different system components. Using methods from the design and analysis of experiments, the effects of these parameters and of their interactions were quantified, leading to an overall optimized system with encouraging performance data.
Power conversion and control methods for renewable energy sources
NASA Astrophysics Data System (ADS)
Yu, Dachuan
2005-07-01
In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.
NASA Technical Reports Server (NTRS)
1972-01-01
A program to advance the technology for a cost-effective hydrogen/oxygen fuel cell system for future manned spacecraft is discussed. The evaluation of base line design concepts and the development of product improvements in the areas of life, power, specific weight and volume, versatility of operation, field maintenance and thermal control were conducted from the material and component level through the fabrication and test of an engineering model of the fuel cell system. The program was to be accomplished in a 13 month period.
Summary of Fuel Cell Programs at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla
2000-01-01
The objective of this program is to develop passive ancillary component technology to be teamed with a hydrogen-oxygen unitized regenerative fuel cell (URFC) stack to form a revolutionary new regenerative fuel cell energy (RFC) storage system for aerospace applications. Replacement of active RFC ancillary components with passive components minimizes parasitic power losses and allows the RFC to operate as a H2/O2 battery. The goal of this program is to demonstrate an integrated passive lkW URFC system.
Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.
The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, andmore » operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of biodiesel into mostly hydrogen and carbon monoxide (syngas.) The syngas was fed to the STF and fuel cell stack. The results presented in this experimental report document one of the first times a SOFC has been operated on syngas from reformed biodiesel.« less
Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.; Scullin, Vincent J.; Chang, B. J.; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.
2006-01-01
The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at NASA Glenn Research Center has demonstrated multiple back to back contiguous cycles at rated power, and round trip efficiencies up to 52 percent. It is the first fully closed cycle regenerative fuel cell ever demonstrated (entire system is sealed: nothing enters or escapes the system other than electrical power and heat). During FY2006 the system has undergone numerous modifications and internal improvements aimed at reducing parasitic power, heat loss and noise signature, increasing its functionality as an unattended automated energy storage device, and in-service reliability. It also serves as testbed towards development of a 600 W-hr/kg flight configuration, through the successful demonstration of lightweight fuel cell and electrolyser stacks and supporting components. The RFC has demonstrated its potential as an energy storage device for aerospace solar power systems such as solar electric aircraft, lunar and planetary surface installations; any airless environment where minimum system weight is critical. Its development process continues on a path of risk reduction for the flight system NASA will eventually need for the manned lunar outpost.
NASA Astrophysics Data System (ADS)
Varady, M. J.; McLeod, L.; Meacham, J. M.; Degertekin, F. L.; Fedorov, A. G.
2007-09-01
Portable fuel cells are an enabling technology for high efficiency and ultra-high density distributed power generation, which is essential for many terrestrial and aerospace applications. A key element of fuel cell power sources is the fuel processor, which should have the capability to efficiently reform liquid fuels and produce high purity hydrogen that is consumed by the fuel cells. To this end, we are reporting on the development of two novel MEMS hydrogen generators with improved functionality achieved through an innovative process organization and system integration approach that exploits the advantages of transport and catalysis on the micro/nano scale. One fuel processor design utilizes transient, reverse-flow operation of an autothermal MEMS microreactor with an intimately integrated, micromachined ultrasonic fuel atomizer and a Pd/Ag membrane for in situ hydrogen separation from the product stream. The other design features a simpler, more compact planar structure with the atomized fuel ejected directly onto the catalyst layer, which is coupled to an integrated hydrogen selective membrane.
Full scale phosphoric acid fuel cell stack technology development
NASA Technical Reports Server (NTRS)
Christner, L.; Faroque, M.
1984-01-01
The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krause, Theodore
This goal of this project was to develop a new hybrid fuel cell technology that operates directly on natural gas or biogas to generate electrical energy and to produce ethane or ethylene from methane, the main component of natural gas or biogas, which can be converted to a liquid fuel or high-value chemical using existing process technologies. By taking advantage of the modularity and scalability of fuel cell technology, this combined fuel cell/chemical process technology targets the recovery of stranded natural gas available at the well pad or biogas produced at waste water treatment plants and municipal landfills by convertingmore » it to a liquid fuel or chemical. By converting the stranded gas to a liquid fuel or chemical, it can be cost-effectively transported to market thus allowing the stranded natural gas or biogas to be monetized instead of flared, producing CO2, a greenhouse gas, because the volumes produced at these locations are too small to be economically recovered using current gas-to-liquids process technologies.« less
Monolithic Solid Oxide Fuel Cell development
NASA Technical Reports Server (NTRS)
Myles, K. M.; Mcpheeters, C. C.
1989-01-01
The Monolithic Solid Oxide Fuel Cell (MSOFC) is an oxide-ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/L, at fuel efficienceis over 50 percent, because of small cell size and low resistive losses in the materials. The MSOFC operates in the range of 700 to 1000 C, at which temperatures rapid reform of hydrocarbon fuels is expected within the nickel-YSZ fuel channels. Tape casting and hot roll calendering are used to fabricate the MSOFC structure. The performance of the MSOFC has improved significantly during the course of development. The limitation of this system, based on materials resistance alone without interfacial resistances, is 0.093 ohm-sq cm area-specific resistance (ASR). The current typical performance of MSOFC single cells is characterized by ASRs of about 0.4 to 0.5 ohm-sq cm. With further development the ASR is expected to be reduced below 0.2 ohm-sq cm, which will result in power levels greater than 1.4 W/sq cm. The feasibility of the MSOFC concept was proven, and the performance was dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials were minimized. As a result of good matching of these properties, the MSOFC structure was successfully fabricated with few defects, and the system shows excellent promise for development into a practical power source.
NASA Astrophysics Data System (ADS)
Ward, Brian
Solid oxide fuel cells (SOFCs) are energy conversion devices that use ceramic powders as a precursor material for their electrodes. Presently, powder manufacturers are encountering complications producing consistent precursor powders. Through various thermal, chemical and physical tests, such as DSC and XRD, a preliminary production standard will be developed.
2012-01-01
complex fuels (2, 4-6). Current research on alkali fuel cells is primarily focused on the development of a solid polymer anion exchange membrane ( AEM ...a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a...research focus the last few decades due to their high power density and low emissions when operating with hydrogen fuel (1-3). Recently however
Regenerative fuel cell energy storage system for a low earth orbit space station
NASA Technical Reports Server (NTRS)
Martin, R. E.; Garow, J.; Michaels, K. B.
1988-01-01
A study was conducted to define characteristics of a Regenerative Fuel Cell System (RFCS) for low earth orbit Space Station missions. The RFCS's were defined and characterized based on both an alkaline electrolyte fuel cell integrated with an alkaline electrolyte water electrolyzer and an alkaline electrolyte fuel cell integrated with an acid solid polymer electrolyte (SPE) water electrolyzer. The study defined the operating characteristics of the systems including system weight, volume, and efficiency. A maintenance philosophy was defined and the implications of system reliability requirements and modularization were determined. Finally, an Engineering Model System was defined and a program to develop and demonstrate the EMS and pacing technology items that should be developed in parallel with the EMS were identified. The specific weight of an optimized RFCS operating at 140 F was defined as a function of system efficiency for a range of module sizes. An EMS operating at a nominal temperature of 180 F and capable of delivery of 10 kW at an overall efficiency of 55.4 percent is described. A program to develop the EMS is described including a technology development effort for pacing technology items.
The NASA Advanced Space Power Systems Project
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar
2015-01-01
The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.
Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breault, R.W.; Rolfe, J.
1998-08-01
Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermomore » Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.« less
Fuel cell system with sodium borohydride as hydrogen source for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Kim, Kyunghwan; Kim, Taegyu; Lee, Kiseong; Kwon, Sejin
In this study, we design and fabricate a fuel cell system for application as a power source in unmanned aerial vehicles (UAVs). The fuel cell system consists of a fuel cell stack, hydrogen generator, and hybrid power management system. PEMFC stack with an output power of 100 W is prepared and tested to decide the efficient operating conditions; the stack must be operated in the dead-end mode with purge in order to ensure prolonged stack performance. A hydrogen generator is fabricated to supply gaseous hydrogen to the stack. Sodium borohydride (NaBH 4) is used as the hydrogen source in the present study. Co/Al 2O 3 catalyst is prepared for the hydrolysis of the alkaline NaBH 4 solution at room temperature. The fabricated Co catalyst is comparable to the Ru catalyst. The UAV consumes more power in the takeoff mode than in the cruising mode. A hybrid power management system using an auxiliary battery is developed and evaluated for efficient energy management. Hybrid power from both the fuel cell and battery powers takeoff and turning flight operations, while the fuel cell supplies steady power during the cruising flight. The capabilities of the fuel-cell UAVs for long endurance flights are validated by successful flight tests.
A membraneless single compartment abiotic glucose fuel cell
NASA Astrophysics Data System (ADS)
Slaughter, Gymama; Sunday, Joshua
2014-09-01
A simple energy harvesting strategy has been developed to selectively catalyze glucose in the presence of oxygen in a glucose/O2 fuel cell. The anode consists of an abiotic catalyst Al/Au/ZnO, in which ZnO seed layer was deposited on the surface of Al/Au substrate using hydrothermal method. The cathode is constructed from a single rod of platinum with an outer diameter of 500 μm. The abiotic glucose fuel cell was studied in phosphate buffer solution (pH 7.4) containing 5 mM glucose at a temperature of 22 °C. The cell is characterized according to its open-circuit voltage, polarization profile, and power density plot. Under these conditions, the abiotic glucose fuel cell possesses an open-circuit voltage of 840 mV and delivered a maximum power density of 16.2 μW cm-2 at a cell voltage of 495 mV. These characteristics are comparable to biofuel cell utilizing a much more complex system design. Such low-cost lightweight abiotic catalyzed glucose fuel cells have a great promise to be optimized, miniaturized to power bio-implantable devices.
Nonlinear observer designs for fuel cell power systems
NASA Astrophysics Data System (ADS)
Gorgun, Haluk
A fuel cell is an electrochemical device that combines hydrogen and oxygen, with the aid of electro-catalysts, to produce electricity. A fuel cell consists of a negatively charged anode, a positively charged cathode and an electrolyte, which transports protons or ions. A low temperature fuel cell has an electrical potential of about 0.7 Volt when generating a current density of 300--500 mA/cm2. Practical fuel cell power systems will require a combination of several cells in series (a stack) to satisfy the voltage requirements of specific applications. Fuel cells are suitable for a potentially wide variety of applications, from stationary power generation in the range of hundreds of megawatts to portable electronics in the range of a couple of watts. Efficient operation of a fuel cell system requires advanced feedback control designs. Reliable measurements from the system are necessary to implement such designs. However, most of the commercially available sensors do not operate properly in the reformate and humidified gas streams in fuel cell systems. Sensors working varying degrees of success are too big and costly, and sensors that are potentially low cost are not reliable or do not have the required life time [28]. Observer designs would eliminate sensor needs for measurements, and make feedback control implementable. Since the fuel cell system dynamics are highly nonlinear, observer design is not an easy task. In this study we aim to develop nonlinear observer design methods applicable to fuel cell systems. In part I of the thesis we design an observer to estimate the hydrogen partial pressure in the anode channel. We treat inlet partial pressure as an unknown slowly varying parameter and develop an adaptive observer that employs a nonlinear voltage injection term. However in this design Fuel Processing System (FPS) dynamics are not modelled, and their effect on the anode dynamics are treated as plant uncertainty. In part II of the thesis we study the FPS dynamics, and estimate not only hydrogen but also all other species in its reactors. We design nonlinear observers for the Catalytic Partial Oxidation (CPO), Water Gas Shift (WGS), and Preferential Oxidation (PROX), reactors in the FPS. The observers make use of temperature measurements (and possibly one more variable, such as pressure) to estimate the mole fractions of each species in the reactors. An advantage of these designs is that they are based on reaction invariants and do not rely on knowledge of reaction rate expressions. Finally, in part III, we illustrate how the designs of parts I and II can be incorporated in fault detection and estimation algorithms for common failures encountered in fuel cells, such as the cathode blower failure and the anode valve failure. For this task, we combine geometric tools with our observers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleschev, Yu.N.; Chulharev, V.F.
1996-04-01
Investigations being performed at VNIITF covers the whole cycle of solid oxide fuel cell manufacturing. This report describes the main directions of investigations in materials, technologies, and commercialization.
Fuel Cell Buses in U.S. Transit Fleets : Summary of Experiences and Current Status
DOT National Transportation Integrated Search
2007-09-01
This report reviews past and present fuel cell bus technology development and implementation, specifically focusing on experiences and progress in the United States. This review encompasses results from the U.S. Department of Energy (DOE)/National Re...
Modelling and analysis of a direct ascorbic acid fuel cell
NASA Astrophysics Data System (ADS)
Zeng, Yingzhi; Fujiwara, Naoko; Yamazaki, Shin-ichi; Tanimoto, Kazumi; Wu, Ping
L-Ascorbic acid (AA), also known as vitamin C, is an environmentally-benign and biologically-friendly compound that can be used as an alternative fuel for direct oxidation fuel cells. While direct ascorbic acid fuel cells (DAAFCs) have been studied experimentally, modelling and simulation of these devices have been overlooked. In this work, we develop a mathematical model to describe a DAAFC and validate it with experimental data. The model is formulated by integrating the mass and charge balances, and model parameters are estimated by best-fitting to experimental data of current-voltage curves. By comparing the transient voltage curves predicted by dynamic simulation and experiments, the model is further validated. Various parameters that affect the power generation are studied by simulation. The cathodic reaction is found to be the most significant determinant of power generation, followed by fuel feed concentration and the mass-transfer coefficient of ascorbic acid. These studies also reveal that the power density steadily increases with respect to the fuel feed concentration. The results may guide future development and operation of a more efficient DAAFC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen; Eichman, Josh; Kurtz, Jennifer
This National Renewable Energy Laboratory industry-inspired Laboratory Directed Research and Development project evaluates the feasibility and economics of using fuel cell backup power systems in cell towers to provide grid services (e.g., balancing, ancillary services, demand response). The work is intended to evaluate the integration of thousands of under-utilized, clean, efficient, and reliable fuel cell systems that are already installed in cell towers for potential grid and ancillary services.
Fuel cell technology program contract summary report
NASA Technical Reports Server (NTRS)
1972-01-01
A fuel cell technology program which was established to advance the state-of-the-art of hydrogen-oxygen fuel cells using the P and WA PC8B technology as the base is reported. The major tasks of this program consisted of (1) fuel cell system studies of a space shuttle powerplant conceptual design (designated engineering model -1, EM-1) supported by liaison with the space shuttle prime contractors; (2) component and subsystem technology advancement and; (3) a demonstrator powerplant test. Fuel cell system studies, with the EM-1 as the focal point of design activities, included determination of voltage regulation, specific reactant consumption, weight, voltage level and performance characteristics. These studies provided the basis for coordination activities with the space shuttle vehicle prime contractor. Interface information, on-board checkout and in-flight monitoring requirements, and development cost data were also provided as part of this activity. Even though the two vehicles primes had different voltage requirements (115 volts in one case and 28 volts in the other), it was concluded that either option could be provided in the fuel cell power system by the electrical hook-up of the cells in the stack.
Platinum- and membrane-free swiss-roll mixed-reactant alkaline fuel cell.
Aziznia, Amin; Oloman, Colin W; Gyenge, Előd L
2013-05-01
Eliminating the expensive and failure-prone proton exchange membrane (PEM) together with the platinum-based anode and cathode catalysts would significantly reduce the high capital and operating costs of low-temperature (<373 K) fuel cells. We recently introduced the Swiss-roll mixed-reactant fuel cell (SR-MRFC) concept for borohydride-oxygen alkaline fuel cells. We now present advances in anode electrocatalysis for borohydride electrooxidation through the development of osmium nanoparticulate catalysts supported on porous monolithic carbon fiber materials (referred to as an osmium 3D anode). The borohydride-oxygen SR-MRFC operates at 323 K and near atmospheric pressure, generating a peak power density of 1880 W m(-2) in a single-cell configuration by using an osmium-based anode (with an osmium loading of 0.32 mg cm(-2)) and a manganese dioxide gas-diffusion cathode. To the best of our knowledge, 1880 W m(-2) is the highest power density ever reported for a mixed-reactant fuel cell operating under similar conditions. Furthermore, the performance matches the highest reported power densities for conventional dual chamber PEM direct borohydride fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transport Studies and Modeling in PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittelsteadt, Cortney K.; Xu, Hui; Brawn, Shelly
2014-07-30
This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalentmore » weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties was not achieved. We have simulated fuel cell performance, current distribution and water distribution at various values of the water uptake, membrane diffusivity, and electro-osmotic drag coefficient (EODC) and compared modeling results with segmented-cell data for both serpentine and parallel flow-fields. We have developed iterations of fuel cell flow fields to achieve specific water transport and thermal management targets. This work demonstrated the importance of membrane diffusivity on fuel cell performance, the necessity of a high membrane diffusion coefficient, and the desirability of a low EODC at low levels of relative humidity.« less
In-situ membrane hydration measurement of proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Lai, Yeh-Hung; Fly, Gerald W.; Clapham, Shawn
2015-01-01
Achieving proper membrane hydration control is one of the most critical aspects of PEM fuel cell development. This article describes the development and application of a novel 50 cm2 fuel cell device to study the in-situ membrane hydration by measuring the through-thickness membrane swelling via an array of linear variable differential transducers. Using this setup either as an air/air (dummy) cell or as a hydrogen/air (operating) cell, we performed a series of hydration and dehydration experiments by cycling the RH of the inlet gas streams at 80 °C. From the linear relationship between the under-the-land swelling and the over-the-channel water content, the mechanical constraint within the fuel cell assembly can suppress the membrane water uptake by 11%-18%. The results from the air/air humidity cycling test show that the membrane can equilibrate within 120 s for all RH conditions and that membrane can reach full hydration at a RH higher than 140% in spite of the use of a liquid water impermeable Carbel MP30Z microporous layer. This result confirms that the U.S. DOE's humidity cycling mechanical durability protocol induces sufficient humidity swings to maximize hygrothermal mechanical stresses. This study shows that the novel experimental technique can provide a robust and accurate means to study the in-situ hydration of thin membranes subject to a wide range of fuel cell conditions.
Commercialization of proton exchange membrane fuel cells for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wismer, L.
1996-04-01
Environmental concerns with air quality and global warming have triggered strict federal ambient ozone air quality standards. Areas on non-attainment of these standards exist across the United States. Because it contains several of the most difficult attainment areas, the State of California has adopted low emission standards including a zero emission vehicle mandate that has given rise to development of hybrid electric vehicles, both battery-powered and fuel-cell powered. Fuel cell powered vehicles, using on-board hydrogen as a fuel, share the non-polluting advantage of the battery electric vehicle while offering at least three times the range today`s battery technology.
NASA Astrophysics Data System (ADS)
Son, In-Hyuk; Shin, Woo-Cheol; Lee, Yong-Kul; Lee, Sung-Chul; Ahn, Jin-Gu; Han, Sang-Il; kweon, Ho-Jin; Kim, Ju-Yong; Kim, Moon-Chan; Park, Jun-Yong
A polymer electrolyte membrane fuel cell (PEMFC) system is developed to power a notebook computer. The system consists of a compact methanol-reforming system with a CO preferential oxidation unit, a 16-cell PEMFC stack, and a control unit for the management of the system with a d.c.-d.c. converter. The compact fuel-processor system (260 cm 3) generates about 1.2 L min -1 of reformate, which corresponds to 35 We, with a low CO concentration (<30 ppm, typically 0 ppm), and is thus proven to be capable of being targetted at notebook computers.
A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices
NASA Astrophysics Data System (ADS)
Oncescu, Vlad; Erickson, David
In the past decade the scientific community has showed considerable interest in the development of implantable medical devices such as muscle stimulators, neuroprosthetic devices, and biosensors. Those devices have low power requirements and can potentially be operated through fuel cells using reactants present in the body such as glucose and oxygen instead of non-rechargeable lithium batteries. In this paper, we present a thin, enzyme-free fuel cell with high current density and good stability at a current density of 10 μA cm -2. A non-enzymatic approach is preferred because of higher long term stability. The fuel cell uses a stacked electrode design in order to achieve glucose and oxygen separation. An important characteristic of the fuel cell is that it has no membrane separating the electrodes, which results in low ohmic losses and small fuel cell volume. In addition, it uses a porous carbon paper support for the anodic catalyst layer which reduces the amount of platinum or other noble metal catalysts required for fabricating high surface area electrodes with good reactivity. The peak power output of the fuel cell is approximately 2 μW cm -2 and has a sustainable power density of 1.5 μW cm -2 at 10 μA cm -2. An analysis on the effects of electrode thickness and inter electrode gap on the maximum power output of the fuel cell is also performed.
Advanced technology for extended endurance alkaline fuel cells
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Martin, R. A.
1987-01-01
Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.
Role of fuel cells in industrial cogeneration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camara, E.H.
Work at the Institute of Gas Technology on fuel cell technology for commercial application has focused on phosphoric acid (PAFC), molten carbonate (MCFC), and solid oxide (SOFC) fuel cells. The author describes the status of the three technologies, and concludes that the MCFC in particular can efficiently supply energy in industrial cogeneration applications. The four largest industrial markets are primary metals, chemicals, food, and wood products, which collectively represent a potential market of 1000 to 1500 MEe annual additions. At $700 to $900/kW, fuel cells can successfully compete with other advanced systems. An increase in research and development support wouldmore » be in the best interest of industry and the nation. 1 reference, 5 figures, 5 tables.« less
Metallofullerenes as fuel cell electrocatalysts: a theoretical investigation of adsorbates on C59Pt.
Gabriel, Margaret A; Genovese, Luigi; Krosnicki, Guillaume; Lemaire, Olivier; Deutsch, Thierry; Franco, Alejandro A
2010-08-28
Nano-structured electrode degradation in state-of-the-art polymer electrolyte membrane fuel cells (PEMFCs) is one of the main shortcomings that limit the large-scale development and commercialization of this technology. During normal operating conditions of the fuel cell, the PEMFC lifetime tends to be limited by coarsening of the cathode's Pt-based catalyst and by corrosion of the cathode's carbon black support. Because of their chemical properties, metallofullerenes such as C(59)Pt may be more electrochemically stable than the Pt/C mixture. In this paper we investigate, by theoretical methods, the stability of oxygen reduction reaction (ORR) adsorbates on the metallofullerene C(59)Pt and evaluate its potential as a PEMFC fuel cell catalyst.
Final Scientifc Report - Hydrogen Education State Partnership Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leon, Warren
2012-02-03
Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for statesmore » and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.« less
A method for monitoring nuclear absorption coefficients of aviation fuels
NASA Technical Reports Server (NTRS)
Sprinkle, Danny R.; Shen, Chih-Ping
1989-01-01
A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.
NASA Astrophysics Data System (ADS)
Colella, Whitney G.
Although the fuel cells research and development community has traditionally focused the majority of its efforts on improving the fuel cell stack's voltage (electrical efficiency), combined heat and power (CHP) fuel cell system (FCSs) may achieve a competitive advantage over conventional generators only if the research and development community refocuses its efforts on cultivating other inherent technical qualities of such systems. Based on an analysis of their use within energy markets, these inherent qualities include (1) an ability to vary their electrical load rapidly, (2) an ability to vary their heat to power ratio during operation, and (3) an ability to deliver their waste heat to a useful thermal sink. This article focuses on the last of three design objectives: effectively capturing heat from a CHP FCS. This article (1) delineates the design specifications for a 6 kWe CHP FCS, (2) analyses four possible cooling loop configurations for this system, and (3) concludes which one of these provides the optimal heat recovery performance.
U.S. Army PEM fuel cell programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, A.S.; Jacobs, R.
The United States Army has identified the need for lightweight power sources to provide the individual soldier with continuous power for extended periods without resupply. Due to the high cost of primary batteries and the high weight of rechargeable batteries, fuel cell technology is being developed to provide a power source for the individual soldier, sensors, communications equipment and other various applications in the Army. Current programs are in the tech base area and will demonstrate Proton Exchange Membrane (PEM) Fuel Cell Power Sources with low weight and high energy densities. Fuel Cell Power Sources underwent user evaluations in 1996more » that showed a power source weight reduction of 75%. The quiet operation along with the ability to refuel much like an engine was well accepted by the user and numerous applications were investigated. These programs are now aimed at further weight reduction for applications that are weight critical; system integration that will demonstrate a viable military power source; refining the user requirements; and planning for a transition to engineering development.« less
Skid steer fuel cell powered unmanned ground vehicle (Burro)
NASA Astrophysics Data System (ADS)
Meldrum, Jay S.; Green, Christopher A.
2008-04-01
The use of alternative energy technology for vehicle propulsion and auxiliary power is becoming more important. Work is being performed at Michigan Technological University's Keweenaw Research Center on an Army Research Laboratory cooperative agreement to develop two unmanned ground vehicles for military applications. A wide range of alternative energy technologies were investigated. Hydrogen-powered proton exchange membrane fuel cells were identified as the most appropriate alternative energy source. This is due to some development and commercialization which makes the technology "drop-in plug-in" for immediate use. We have previously presented research work on a small unmanned ground vehicle demonstration platform where the fuel cell is the only power source. We now present research work on the integration of a fuel cell onto a larger skid steer platform. The dual-power capability of this vehicle can provide a modest level of propulsion in "engine-off mode" and may also be used to power directed energy devices which have applications in countermine and similar threat technologies.
Fuel-cell powered unmanned ground vehicle
NASA Astrophysics Data System (ADS)
Meldrum, Jay S.; Green, Christopher A.; Gwaltney, Geoffrey D.; Bradley, Scott A.; Keith, Jason M.; Podlesak, Thomas F.
2007-04-01
The use of alternative energy technology for vehicle propulsion and auxiliary power is becoming more important. Work is being performed at Michigan Technological University's Keweenaw Research Center on an Army Research Laboratory cooperative agreement to develop two unmanned ground vehicles for military applications. A wide range of alternative energy technologies were investigated, and hydrogen-powered proton exchange membrane fuel cells were identified as the most appropriate alternative energy source. This is due to some development and commercialization which makes the technology "drop-in plug-in" for immediate use. We present research work on a small unmanned ground vehicle demonstration platform where the fuel cell is the only power source. We also present research work on the integration of a fuel cell onto a large existing platform. The dual-power capability of this vehicle can provide a modest level of propulsion in "engine-off mode" and may also be used to power directed energy devices which have applications in countermine and similar threat technologies.
NASA's PEM Fuel Cell Power Plant Development Program for Space Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark
2006-01-01
NASA embarked on a PEM fuel cell power plant development program beginning in 2001. This five-year program was conducted by a three-center NASA team of Glenn Research Center (lead), Johnson Space Center, and Kennedy Space Center. The program initially was aimed at developing hardware for a Reusable Launch Vehicle (RLV) application, but more recently had shifted to applications supporting the NASA Exploration Program. The first phase of the development effort, to develop breadboard hardware in the 1-5 kW power range, was conducted by two competing vendors. The second phase of the effort, to develop Engineering Model hardware at the 10 kW power level, was conducted by the winning vendor from the first phase of the effort. Both breadboard units and the single engineering model power plant were delivered to NASA for independent testing. This poster presentation will present a summary of both phases of the development effort, along with a discussion of test results of the PEM fuel cell engineering model under simulated mission conditions.
Ionic Liquids and New Proton Exchange Membranes for Fuel Cells
NASA Technical Reports Server (NTRS)
Belieres, Jean-Philippe
2004-01-01
There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research Center during this summer is to develop and characterize proton exchange membranes doped with ionic liquids. The main techniques used to characterize these materials are: Impedance Spectroscopy, NMR, DSC, TGA, DMA, IR, and SEM ...
High power density yeast catalyzed microbial fuel cells
NASA Astrophysics Data System (ADS)
Ganguli, Rahul
Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density increase was shown to quickly saturate with cell mass attached on the electrode. Based on recent modelling data that suggested that the electrode currents might be limited by the poor electrical conductivity of the anode, the power density versus electrical conductivity of a yeast-immobilized anode was investigated. Introduction of high aspect ratio carbon fiber filaments to the immobilization matrix increased the electrical conductivity of the anode. Although a higher electrical conductivity clearly led to an increase in power densities, it was shown that the principal limitation to power density increase was coming from proton transfer limitations in the immobilized anode. Partial overcoming of the gradients lead a power density of ca. 250 microW cm-2, which is the highest reported for yeast powered MFCs. A yeast-catalyzed microbial fuel cell was investigated as a power source for low power sensors using raw tree sap. It was shown that yeast can efficiently utilize the sucrose present in the raw tree sap to produce electricity when excess salt is added to the medium. Therefore the salinity of a potential energy source is an important consideration when MFCs are being considered for energy harvesting from natural sources.
Fuel cell power trains for road traffic
NASA Astrophysics Data System (ADS)
Höhlein, Bernd; Biedermann, Peter; Grube, Thomas; Menzer, Reinhard
Legal regulations, especially the low emission vehicle (LEV) laws in California, are the driving forces for more intensive technological developments with respect to a global automobile market. In the future, high efficient vehicles at very low emission levels will include low temperature fuel cell systems (e.g., polymer electrolyte fuel cell (PEFC)) as units of hydrogen-, methanol- or gasoline-based electric power trains. In the case of methanol or gasoline/diesel, hydrogen has to be produced on-board using heated steam or partial oxidation reformers as well as catalytic burners and gas cleaning units. Methanol could also be used for direct electricity generation inside the fuel cell (direct methanol fuel cell (DMFC)). The development potentials and the results achieved so far for these concepts differ extremely. Based on the experience gained so far, the goals for the next few years include cost and weight reductions as well as optimizations in terms of the energy management of power trains with PEFC systems. At the same time, questions of fuel specification, fuel cycle management, materials balances and environmental assessment will have to be discussed more intensively. On the basis of process engineering analyses for net electricity generation in PEFC-powered power trains as well as on assumptions for both electric power trains and vehicle configurations, overall balances have been carried out. They will lead not only to specific energy demand data and specific emission levels (CO 2, CO, VOC, NO x) for the vehicle but will also present data of its full fuel cycle (FFC) in comparison to those of FFCs including internal combustion engines (ICE) after the year 2005. Depending on the development status (today or in 2010) and the FFC benchmark results, the advantages of balances results of FFC with PEFC vehicles are small in terms of specific energy demand and CO 2 emissions, but very high with respect to local emission levels.
Magnetotomography—a new method for analysing fuel cell performance and quality
NASA Astrophysics Data System (ADS)
Hauer, Karl-Heinz; Potthast, Roland; Wüster, Thorsten; Stolten, Detlef
Magnetotomography is a new method for the measurement and analysis of the current density distribution of fuel cells. The method is based on the measurement of the magnetic flux surrounding the fuel cell stack caused by the current inside the stack. As it is non-invasive, magnetotomography overcomes the shortcomings of traditional methods for the determination of current density in fuel cells [J. Stumper, S.A. Campell, D.P. Wilkinson, M.C. Johnson, M. Davis, In situ methods for the determination of current distributions in PEM fuel cells, Electrochem. Acta 43 (1998) 3773; S.J.C. Cleghorn, C.R. Derouin, M.S. Wilson, S. Gottesfeld, A printed circuit board approach to measuring current distribution in a fuel cell, J. Appl. Electrochem. 28 (1998) 663; Ch. Wieser, A. Helmbold, E. Gülzow, A new technique for two-dimensional current distribution measurements in electro-chemical cells, J. Appl. Electrochem. 30 (2000) 803; Grinzinger, Methoden zur Ortsaufgelösten Strommessung in Polymer Elektrolyt Brennstoffzellen, Diploma thesis, TU-München, 2003; Y.-G. Yoon, W.-Y. Lee, T.-H. Yang, G.-G. Park, C.-S. Kim, Current distribution in a single cell of PEMFC, J. Power Sources 118 (2003) 193-199; M.M. Mench, C.Y. Wang, An in situ method for determination of current distribution in PEM fuel cells applied to a direct methanol fuel cell, J. Electrochem. Soc. 150 (2003) A79-A85; S. Schönbauer, T. Kaz, H. Sander, E. Gülzow, Segmented bipolar plate for the determination of current distribution in polymer electrolyte fuel cells, in: Proceedings of the Second European PEMFC Forum, vol. 1, Lucerne/Switzerland, 2003, pp. 231-237; G. Bender, S.W. Mahlon, T.A. Zawodzinski, Further refinements in the segmented cell approach to diagnosing performance in polymer electrolyte fuel cells, J. Power Sources 123 (2003) 163-171]. After several years of research a complete prototype system is now available for research on single cells and stacks. This paper describes the basic system (fundamentals, hardware and software) as well as the state of development until December 2003. Initial findings on a full-size single cell will be presented together with an outlook on the planned next steps.
Fuel Processing System for a 5kW Methanol Fuel Cell Power Unit.
1985-11-27
report documents the development and design of a 5kW neat methanol reformer for phosphoric acid fuel cell power plants . The reformer design was based...VAPORIZATION OF METHANOL ........... 4.3 REFORMING/SHIFT CATALYST BED ......... 2 5.0 COMPONENT TESTING............... 5.1 COMBUSTION TUBE...69 36 Catalyst Bed Temperature Profile Before and After Transient ................. 70 37 Assembly -5kw Neat Methanol Reformer. ......... 72 Page No
System Regulates the Water Contents of Fuel-Cell Streams
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Lazaroff, Scott
2005-01-01
An assembly of devices provides for both humidification of the reactant gas streams of a fuel cell and removal of the product water (the water generated by operation of the fuel cell). The assembly includes externally-sensing forward-pressure regulators that supply reactant gases (fuel and oxygen) at variable pressures to ejector reactant pumps. The ejector supply pressures depend on the consumption flows. The ejectors develop differential pressures approximately proportional to the consumption flow rates at constant system pressure and with constant flow restriction between the mixer-outlet and suction ports of the ejectors. For removal of product water from the circulating oxygen stream, the assembly includes a water/gas separator that contains hydrophobic and hydrophilic membranes. The water separator imposes an approximately constant flow restriction, regardless of the quality of the two-phase flow that enters it from the fuel cell. The gas leaving the water separator is nearly 100 percent humid. This gas is returned to the inlet of the fuel cell along with a quantity of dry incoming oxygen, via the oxygen ejector, thereby providing some humidification.
The Fuel Cell Powered Club Car Carryall
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2005-01-01
The NASA Glenn Research Center initiated development of the Fuel Cell Powered Club Car Carryall as a way to reduce pollution in industrial settings, reduce fossil fuel consumption and reduce operating costs for transportation systems. The Club Car Carryall provides an inexpensive approach to advance the state of the art in electric vehicle technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future aeronautics and space applications. The work was done under the Hybrid Power Management (HPM) Program. The Carryall is a state of the art, dedicated, electric utility vehicle. Hydrogen powered proton exchange membrane (PEM) fuel cells are the primary power source. Ultracapacitors were used for energy storage as long life, maintenance free operation, and excellent low temperature performance is essential. Metal hydride hydrogen storage was used to store hydrogen in a safe and efficient low-pressure solid form. The report concludes that the Fuel Cell Powered Club Car Carryall can provide excellent performance, and that the implementation of fuel cells in conjunction with ultracapacitors in the power system can provide significant reliability and performance improvements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Billy D.; Akhil, Abbas Ali
This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a costmore » perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.« less
Fuel cell cassette with compliant seal
Karl, Haltiner, Jr. J.; Anthony, Derose J.; Klotzbach, Darasack C.; Schneider, Jonathan R.
2017-11-07
A fuel cell cassette for forming a fuel cell stack along a fuel cell axis includes a cell retainer, a plate positioned axially to the cell retainer and defining a space axially with the cell retainer, and a fuel cell having an anode layer and a cathode layer separated by an electrolyte layer. The outer perimeter of the fuel cell is positioned in the space between the plate and the cell retainer, thereby retaining the fuel cell and defining a cavity between the cell retainer, the fuel cell, and the plate. The fuel cell cassette also includes a seal disposed within the cavity for sealing the edge of the fuel cell. The seal is compliant at operational temperatures of the fuel cell, thereby allowing lateral expansion and contraction of the fuel cell within the cavity while maintaining sealing at the edge of the fuel cell.
A natural-gas fuel processor for a residential fuel cell system
NASA Astrophysics Data System (ADS)
Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.
A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.
BioCapacitor: A novel principle for biosensors.
Sode, Koji; Yamazaki, Tomohiko; Lee, Inyoung; Hanashi, Takuya; Tsugawa, Wakako
2016-02-15
Studies regarding biofuel cells utilizing biocatalysts such as enzymes and microorganisms as electrocatalysts have been vigorously conducted over the last two decades. Because of their environmental safety and sustainability, biofuel cells are expected to be used as clean power generators. Among several principles of biofuel cells, enzyme fuel cells have attracted significant attention for their use as alternative energy sources for future implantable devices, such as implantable insulin pumps and glucose sensors in artificial pancreas and pacemakers. However, the inherent issue of the biofuel cell principle is the low power of a single biofuel cell. The theoretical voltage of biofuel cells is limited by the redox potential of cofactors and/or mediators employed in the anode and cathode, which are inadequate for operating any devices used for biomedical application. These limitations inspired us to develop a novel biodevice based on an enzyme fuel cell that generates sufficient stable power to operate electric devices, designated "BioCapacitor." To increase voltage, the enzyme fuel cell is connected to a charge pump. To obtain a sufficient power and voltage to operate an electric device, a capacitor is used to store the potential generated by the charge pump. Using the combination of a charge pump and capacitor with an enzyme fuel cell, high voltages with sufficient temporary currents to operate an electric device were generated without changing the design and construction of the enzyme fuel cell. In this review, the BioCapacitor principle is described. The three different representative categories of biodevices employing the BioCapacitor principle are introduced. Further, the recent challenges in the developments of self-powered stand-alone biodevices employing enzyme fuel cells combined with charge pumps and capacitors are introduced. Finally, the future prospects of biodevices employing the BioCapacitor principle are addressed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Fuel cell-gas turbine hybrid system design part II: Dynamics and control
NASA Astrophysics Data System (ADS)
McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott
2014-05-01
Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.
CAPSTONE SENIOR DESIGN - SUPRAMOLECULAR PROTON EXCHANGE MEMBRANES FOR FUEL CELLS
In order to assume a leading role in the burgeoning hydrogen economy, new infrastructure will be required for fuel cell manufacturing and R&D capabilities. The objective of this proposal is the development of a new generation of advanced proton exchange membrane (PEM) technol...
Fuel cell-fuel cell hybrid system
Geisbrecht, Rodney A.; Williams, Mark C.
2003-09-23
A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.
Effect of compressive force on PEM fuel cell performance
NASA Astrophysics Data System (ADS)
MacDonald, Colin Stephen
Polymer electrolyte membrane (PEM) fuel cells possess the potential, as a zero-emission power source, to replace the internal combustion engine as the primary option for transportation applications. Though there are a number of obstacles to vast PEM fuel cell commercialization, such as high cost and limited durability, there has been significant progress in the field to achieve this goal. Experimental testing and analysis of fuel cell performance has been an important tool in this advancement. Experimental studies of the PEM fuel cell not only identify unfiltered performance response to manipulation of variables, but also aid in the advancement of fuel cell modelling, by allowing for validation of computational schemes. Compressive force used to contain a fuel cell assembly can play a significant role in how effectively the cell functions, the most obvious example being to ensure proper sealing within the cell. Compression can have a considerable impact on cell performance beyond the sealing aspects. The force can manipulate the ability to deliver reactants and the electrochemical functions of the cell, by altering the layers in the cell susceptible to this force. For these reasons an experimental study was undertaken, presented in this thesis, with specific focus placed on cell compression; in order to study its effect on reactant flow fields and performance response. The goal of the thesis was to develop a consistent and accurate general test procedure for the experimental analysis of a PEM fuel cell in order to analyse the effects of compression on performance. The factors potentially affecting cell performance, which were a function of compression, were identified as: (1) Sealing and surface contact; (2) Pressure drop across the flow channel; (3) Porosity of the GDL. Each factor was analysed independently in order to determine the individual contribution to changes in performance. An optimal degree of compression was identified for the cell configuration in question and the performance gains from the aforementioned compression factors were quantified. The study provided a considerable amount of practical and analytical knowledge in the area of cell compression and shed light on the importance of precision compressive control within the PEM fuel cell.
NASA Astrophysics Data System (ADS)
Meiler, M.; Andre, D.; Schmid, O.; Hofer, E. P.
Intelligent energy management is a cost-effective key path to realize efficient automotive drive trains [R. O'Hayre, S.W. Cha, W. Colella, F.B. Prinz. Fuel Cell Fundamentals, John Wiley & Sons, Hoboken, 2006]. To develop operating strategy in fuel cell drive trains, precise and computational efficient models of all system components, especially the fuel cell stack, are needed. Should these models further be used in diagnostic or control applications, then some major requirements must be fulfilled. First, the model must predict the mean fuel cell voltage very precisely in all possible operating conditions, even during transients. The model output should be as smooth as possible to support best efficient optimization strategies of the complete system. At least, the model must be computational efficient. For most applications, a difference between real fuel cell voltage and model output of less than 10 mV and 1000 calculations per second will be sufficient. In general, empirical models based on system identification offer a better accuracy and consume less calculation resources than detailed models derived from theoretical considerations [J. Larminie, A. Dicks. Fuel Cell Systems Explained, John Wiley & Sons, West Sussex, 2003]. In this contribution, the dynamic behaviour of the mean cell voltage of a polymer-electrolyte-membrane fuel cell (PEMFC) stack due to variations in humidity of cell's reactant gases is investigated. The validity of the overall model structure, a so-called general Hammerstein model (or Uryson model), was introduced recently in [M. Meiler, O. Schmid, M. Schudy, E.P. Hofer. Dynamic fuel cell stack model for real-time simulation based on system identification, J. Power Sources 176 (2007) 523-528]. Fuel cell mean voltage is calculated as the sum of a stationary and a dynamic voltage component. The stationary component of cell voltage is represented by a lookup-table and the dynamic voltage by a parallel placed, nonlinear transfer function. A suitable experimental setup to apply fast variations of gas humidity is introduced and is used to investigate a 10 cell PEMFC stack under various operation conditions. Using methods like stepwise multiple-regression a good mathematical description with reduced free parameters is achieved.
Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, James H.; Cox, Philip; Harrington, William J
2013-09-03
ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focusedmore » on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel containment. PROJECT OVERVIEW The University of North Florida (UNF), with project partner the University of Florida, recently completed the Department of Energy (DOE) project entitled “Advanced Direct Methanol Fuel Cell for Mobile Computing”. The primary objective of the project was to advance portable fuel cell system technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a 20-watt, direct methanol fuel cell (DMFC), portable power supply based on the UNF innovative “passive water recovery” MEA. Extensive component, sub-system, and system development and testing was undertaken to meet the rigorous demands of the consumer electronic application. Numerous brassboard (nonpackaged) systems were developed to optimize the integration process and facilitating control algorithm development. The culmination of the development effort was a fully-integrated, DMFC, power supply (referred to as DP4). The project goals were 40 W/kg for specific power, 55 W/l for power density, and 575 Whr/l for energy density. It should be noted that the specific power and power density were for the power section only, and did not include the hybrid battery. The energy density is based on three, 200 ml, fuel cartridges, and also did not include the hybrid battery. The results show that the DP4 system configured without the methanol concentration sensor exceeded all performance goals, achieving 41.5 W/kg for specific power, 55.3 W/l for power density, and 623 Whr/l for energy density. During the project, the DOE revised its technical targets, and the definition of many of these targets, for the portable power application. With this revision, specific power, power density, specific energy (Whr/kg), and energy density are based on the total system, including fuel tank, fuel, and hybridization battery. Fuel capacity is not defined, but the same value is required for all calculations. Test data showed that the DP4 exceeded all 2011 Technical Status values; for example, the DP4 energy density was 373 Whr/l versus the DOE 2011 status of 200 Whr/l. For the DOE 2013 Technical Goals, the operation time was increased from 10 hours to 14.3 hours. Under these conditions, the DP4 closely approached or surpassed the technical targets; for example, the DP4 achieved 468 Whr/l versus the goal of 500 Whr/l. Thus, UNF has successfully met the project goals. A fully-operational, 20-watt DMFC power supply was developed based on the UNF passive water recovery MEA. The power supply meets the project performance goals and advances portable power technology towards the commercialization targets set by the DOE.« less
Fuel Cells Utilizing Oxygen From Air at Low Pressures
NASA Technical Reports Server (NTRS)
Cisar, Alan; Boyer, Chris; Greenwald, Charles
2006-01-01
A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.
Deep sea microbial fuel cell output as a proxy for microbial activity
NASA Astrophysics Data System (ADS)
Richter, K.; George, R.; Hardy, K. R.
2016-02-01
Abstract: Microbial fuel cells (MFCs) work by providing bacteria in anaerobic sediments with an electron acceptor (anode) that stimulates metabolism of organic matter. The buried anode is connected via control circuitry to a cathode exposed to oxygen in the overlying water. During metabolism, bacteria release hydrogen ions into the sediment and transfer electrons extra-cellularly to the anode, which eventually reduce dissolved oxygen at the cathode, forming water. The current is chiefly limited by the rate of microbial metabolism at the anode and serves as a proxy for microbial activity. The Office of Naval Research has encouraged development of microbial fuel cells in the marine environment at a number of academic and naval institutions and studies of important environmental parameters that affect fuel cell performance. Earlier work in shallow sediments of San Diego Bay showed that the most important environmental parameters that control fuel cell power output in San Diego Bay were total organic carbon in the sediment and seasonal water temperature. Current MFC work at SPAWAR includes extension of microbial fuel cell tests to the deep sea environment (>4000 m) and, in parallel, testing microbial fuel cells in the laboratory under deep sea conditions. We are pursuing a field efforts to deploy a microbial fuel cell in progressively deeper water, record in situ power and temperature over several weeks, and retrieve the fuel cell along with sediment samples for analysis. We are also pursuing a laboratory effort to build a matching microbial fuel cell in a pressure vessel capable of matching the pressure and temperature of deep water, and stocking the pressure vessel with deep water sediment in order to take measurements analogous to those in the field. We also hope to determine whether bacteria growing on the anode are different from bacteria growing in the bulk sediment via DNA analysis. The current progress and results from this work at SPAWAR will be presented.
Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes
NASA Technical Reports Server (NTRS)
Chin, D. T.; Hsueh, K. L.; Chang, H. H.
1984-01-01
Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. The areas covered were: (1) development of a theoretical expression for the rotating ring disk electrode technique; (2) determination of the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; (3) determination of oxygen reduction mechanism in trifluoreomethanesulfonic acid (TFMSA) which was considered as an alternate electrolyte for the acid fuel cells; and (4) the measurement of transport properties of the phosphoric acid electrolyte at high concentrations and temperatures.
Professional Advanced Research and Analysis
NASA Technical Reports Server (NTRS)
Coulman, George A.
1996-01-01
Reported here is a summary of studies examining some problems in an energy conversion system. Regenerative fuel cell systems have been suggested for future manned space missions, but to meet the needed specific power requirements substantial improvements in the state-of-the-art technologies are needed. Similar improvements are needed, with emphasis on cost reduction in addition to higher conversion efficiency, for fuel cell systems that have potential for terrestrial applications. Polymer Electrolyte Membrane (PEM) fuel cells have been identified as promising candidates for development that would lead to the desired cost reduction and increased efficiency.
Photoregenerative I⁻/I₃⁻ couple as a liquid cathode for proton exchange membrane fuel cell.
Liu, Zhen; Wang, Yadong; Ai, Xinping; Tu, Wenmao; Pan, Mu
2014-10-28
A photoassisted oxygen reduction reaction (ORR) through I(-)/I3(-) redox couple was investigated for proton exchange membrane (PEM) fuel cell cathode reaction. The I(-)/I3(-)-based liquid cathode was used to replace conventional oxygen cathode, and its discharge product I(-) was regenerated to I3(-) by photocatalytic oxidation with the participation of oxygen. This new and innovative approach may provide a strategy to eliminate the usage of challenging ORR electrocatalysts, resulting in an avenue for developing low-cost and high-efficiency PEM fuel cells.
Mechanical Behavior of Free-Standing Fuel Cell Electrodes on Water Surface.
Kim, Sanwi; Kim, Jae-Han; Oh, Jong-Gil; Jang, Kyung-Lim; Jeong, Byeong-Heon; Hong, Bo Ki; Kim, Taek-Soo
2016-06-22
Fundamental understanding of the mechanical behavior of polymer electrolyte fuel cell electrodes as free-standing materials is essential to develop mechanically robust fuel cells. However, this has been a significant challenge due to critical difficulties, such as separating the pristine electrode from the substrate without damage and precisely measuring the mechanical properties of the very fragile and thin electrodes. We report the mechanical behavior of free-standing fuel cell electrodes on the water surface through adopting an innovative ice-assisted separation method to separate the electrode from decal transfer film. It is found that doubling the ionomer content in electrodes increases not only the tensile stress at the break and the Young's modulus (E) of the electrodes by approximately 2.1-3.5 and 1.7-2.4 times, respectively, but also the elongation at the break by approximately 1.5-1.7 times, which indicates that stronger, stiffer, and tougher electrodes are attained with increasing ionomer content, which have been of significant interest in materials research fields. The scaling law relationship between Young's modulus and density (ρ) has been unveiled as E ∼ ρ(1.6), and it is compared with other materials. These findings can be used to develop mechanically robust electrodes for fuel cell applications.
Hydrogen-Oxygen PEM Regenerative Fuel Cell at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.
2004-01-01
The NASA Glenn Research Center has constructed a closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) to explore its potential use as an energy storage device for a high altitude solar electric aircraft. Built up over the last 2 years from specialized hardware and off the shelf components the Glenn RFC is a complete "brassboard" energy storage system which includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for re-use during the next cycle. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It specific developmental functions include: (1) Test fuel cells and fuel cell components under repeated closed-cycle operation (nothing escapes; everything is used over and over again). (2) Simulate diurnal charge-discharge cycles (3) Observe long-term system performance and identify degradation and loss mechanisms. (4) Develop safe and convenient operation and control strategies leading to the successful development of mission-capable, flight-weight RFC's.
Nabae, Yuta; Nagata, Shinsuke; Hayakawa, Teruaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Isoda, Ayano; Matsunaga, Atsushi; Tanaka, Kazuhisa; Aoki, Tsutomu
2016-01-01
The development of a non-precious metal (NPM) fuel cell catalyst is extremely important to achieve globalization of polymer electrolyte fuel cells due to the cost and scarcity of platinum. Here, we report on a NPM cathode catalyst prepared by the pyrolysis of spherical polyimide nanoparticles that contain small amounts of Fe additive. 60 nm diameter Fe-containing polyimide nanoparticles were successfully synthesized by the precipitation polymerization of pyromellitic acid dianhydride and 1,3,5-tris(4-aminophenyl)benzene with Fe(acac)3 (acac = acetylacetonate) as an additive. The particles were subsequently carbonized by multistep pyrolysis to obtain the NPM catalyst while retaining the small particle size. The catalyst has good performance and promising durability for fuel cell applications. The fuel cell performance under a 0.2 MPa air atmosphere at 80 °C of 1.0 A cm−2 at 0.46 V is especially remarkable and better than that previously reported. PMID:26987682
Fuel Cells Provide Reliable Power to U.S. Postal Service Facility in Anchorage, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Steven
2003-01-01
Working together, the U.S. Postal Service (USPS) and Chugach Electric Association, partnering with the Department of Defense (DOD), Department of Energy (DOE), US Army Corps of Engineers Construction Engineering Research Laboratories (USA CERL), Electric Power Research Institute (EPRI), and National Rural Electric Cooperative Association (NRECA), developed and installed one of the largest fuel cell installations in the world. The one-megawatt fuel cell combined heat and power plant sits behind the Anchorage U.S. Postal Service Mail Processing and Distribution Facility. Chugach Electric owns, operates, and maintains the fuel cell power plant, which provides clean, reliable power to the USPS facility. Inmore » addition, heat recovered from the fuel cells, in the form of hot water, is used to heat the USPS Mail Processing and Distribution Facility. By taking a leadership role, the USPS will save over $800,000 in electricity and natural gas costs over the 5 1/2-year contract term with Chugach Electric.« less
NASA Astrophysics Data System (ADS)
Maizia, R.; Dib, A.; Thomas, A.; Martemianov, S.
2017-02-01
Electrochemical noise analysis (ENA) has been performed for the diagnosis of proton-exchange membrane fuel cell (PEMFC) under various operating conditions. Its interest is related with the possibility of a non-invasive on-line diagnosis of a commercial fuel cell. A methodology of spectral analysis has been developed and an evaluation of the stationarity of the signal has been proposed. It has been revealed that the spectral signature of fuel cell, is a linear slope with a fractional power dependence 1/fα where α = 2 for different relative humidities and current densities. Experimental results reveal that the electrochemical noise is sensitive to the water management, especially under dry conditions. At RHH2 = 20% and RHair = 20%, spectral analysis shows a three linear slopes signature on the spectrum at low frequency range (f < 100 Hz). This results indicates that power spectral density, calculated thanks to FFT, can be used for the detection of an incorrect fuel cell water balance.
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2004-01-01
In fiscal year 2003, the continuation of the Hybrid Power Management (HPM) Program through NASA Glenn Research Center's Commercial Technology Office resulted in several new successful applications of this pioneering technology. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors, fuel cells, and photovoltaics. HPM has extremely wide potential, with applications from nanowatts to megawatts--including power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. Fuel cells provide excellent efficiency and energy density, but do not have good power density. In contrast, ultracapacitors have excellent power density and virtually unlimited cycle life. To improve the power density of the fuel cell, the combination of fuel cells and ultracapacitors was evaluated.
Grattieri, Matteo; Shivel, Nelson D; Sifat, Iram; Bestetti, Massimiliano; Minteer, Shelley D
2017-05-09
Microbial fuel cells are an emerging technology for wastewater treatment, but to be commercially viable and sustainable, the electrode materials must be inexpensive, recyclable, and reliable. In this study, recyclable polymeric supports were explored for the development of anode electrodes to be applied in single-chamber microbial fuel cells operated in field under hypersaline conditions. The support was covered with a carbon nanotube (CNT) based conductive paint, and biofilms were able to colonize the electrodes. The single-chamber microbial fuel cells with Pt-free cathodes delivered a reproducible power output after 15 days of operation to achieve 12±1 mW m -2 at a current density of 69±7 mA m -2 . The decrease of the performance in long-term experiments was mostly related to inorganic precipitates on the cathode electrode and did not affect the performance of the anode, as shown by experiments in which the cathode was replaced and the fuel cell performance was regenerated. The results of these studies show the feasibility of polymeric supports coated with CNT-based paint for microbial fuel cell applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems
NASA Astrophysics Data System (ADS)
Ally, Jamie; Pryor, Trevor
The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.
Experimental study of a fuel cell power train for road transport application
NASA Astrophysics Data System (ADS)
Corbo, P.; Corcione, F. E.; Migliardini, F.; Veneri, O.
The development of fuel cell electric vehicles requires the on-board integration of fuel cell systems and electric energy storage devices, with an appropriate energy management system. The optimization of performance and efficiency needs an experimental analysis of the power train, which has to be effected in both stationary and transient conditions (including standard driving cycles). In this paper experimental results concerning the performance of a fuel cell power train are reported and discussed. In particular characterization results for a small sized fuel cell system (FCS), based on a 2.5 kW PEM stack, alone and coupled to an electric propulsion chain of 3.7 kW are presented and discussed. The control unit of the FCS allowed the main stack operative parameters (stoichiometric ratio, hydrogen and air pressure, temperature) to be varied and regulated in order to obtain optimized polarization and efficiency curves. Experimental runs effected on the power train during standard driving cycles have allowed the performance and efficiency of the individual components (fuel cell stack and auxiliaries, dc-dc converter, traction batteries, electric engine) to be evaluated, evidencing the role of output current and voltage of the dc-dc converter in directing the energy flows within the propulsion system.
Gold Nanoparticles-Enhanced Proton Exchange Membrane (PEM) Fuel Cell
NASA Astrophysics Data System (ADS)
Li, Hongfei; Pan, Cheng; Liu, Ping; Zhu, Yimei; Adzic, Radoslav; Rafailovich, Miriam
Proton exchange membrane fuel cells have drawn great attention and been taken as a promising alternated energy source. One of the reasons hamper the wider application of PEM fuel cell is the catalytic poison effect from the impurity of the gas flow. Haruta has predicted that gold nanoparticles that are platelet shaped and have direct contact with the metal oxide substrate to be the perfect catalysts of the CO oxidization, yet the synthesis method is difficult to apply in the Fuel Cell. In our approach, thiol-functionalized gold nanoparticles were synthesized through two-phase method developed by Brust et al. We deposit these Au particles with stepped surface directly onto the Nafion membrane in the PEM fuel cell by Langmuir-Blodgett method, resulting in over 50% enhancement of the efficiency of the fuel cell. DFT calculations were conducted to understand the theory of this kind of enhancement. The results indicated that only when the particles were in direct surface contact with the membrane, where AuNPs attached at the end of the Nafion side chains, it could reduce the energy barrier for the CO oxidation that could happen at T<300K.
Self-sustained operation of a kW e-class kerosene-reforming processor for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Yoon, Sangho; Bae, Joongmyeon; Kim, Sunyoung; Yoo, Young-Sung
In this paper, fuel-processing technologies are developed for application in residential power generation (RPG) in solid oxide fuel cells (SOFCs). Kerosene is selected as the fuel because of its high hydrogen density and because of the established infrastructure that already exists in South Korea. A kerosene fuel processor with two different reaction stages, autothermal reforming (ATR) and adsorptive desulfurization reactions, is developed for SOFC operations. ATR is suited to the reforming of liquid hydrocarbon fuels because oxygen-aided reactions can break the aromatics in the fuel and steam can suppress carbon deposition during the reforming reaction. ATR can also be implemented as a self-sustaining reactor due to the exothermicity of the reaction. The kW e self-sustained kerosene fuel processor, including the desulfurizer, operates for about 250 h in this study. This fuel processor does not require a heat exchanger between the ATR reactor and the desulfurizer or electric equipment for heat supply and fuel or water vaporization because a suitable temperature of the ATR reformate is reached for H 2S adsorption on the ZnO catalyst beds in desulfurizer. Although the CH 4 concentration in the reformate gas of the fuel processor is higher due to the lower temperature of ATR tail gas, SOFCs can directly use CH 4 as a fuel with the addition of sufficient steam feeds (H 2O/CH 4 ≥ 1.5), in contrast to low-temperature fuel cells. The reforming efficiency of the fuel processor is about 60%, and the desulfurizer removed H 2S to a sufficient level to allow for the operation of SOFCs.
Study of component technologies for fuel cell on-site integrated energy systems
NASA Technical Reports Server (NTRS)
Lee, W. D.; Mathias, S.
1980-01-01
Heating, ventilation and air conditioning equipment are integrated with three types of fuel cells. System design and computer simulations are developed to utilize the thermal energy discharge of the fuel in the most cost effective manner. The fuel provides all of the electric needs and a loss of load probability analysis is used to ensure adequate power plant reliability. Equipment cost is estimated for each of the systems analyzed. A levelized annual cost reflecting owning and operating costs including the cost of money was used to select the most promising integrated system configurations. Cash flows are presented for the most promising 16 systems. Several systems for the 96 unit apartment complex (a retail store was also studied) were cost competitive with both gas and electric based conventional systems. Thermal storage is shown to be beneficial and the optimum absorption chiller sizing (waste heat recovery) in connection with electric chillers are developed. Battery storage was analyzed since the system is not electric grid connected. Advanced absorption chillers were analyzed as well. Recommendations covering financing, technical development, and policy issues are given to accelerate the commercialization of the fuel cell for on-site power generation in buildings.
Phosphoric acid electric utility fuel cell technology development
NASA Astrophysics Data System (ADS)
Breault, R. D.; Briggs, T. A.; Congdon, J. V.; Demarche, T. E.; Gelting, R. L.; Goller, G. J.; Luoma, W. L.; McCloskey, M. W.; Mientek, A. P.; Obrien, J. J.
1991-04-01
The major objective of this effort was the advancement of cell and stack technology required to meet performance and cost criteria for fabrication and operation of a prototype large area, full height phosphoric acid fuel cell stack. The performance goal for the cell stack corresponded to a power density of 150 wsf, and the manufactured cost goal was a 510 $/kW reduction (in 1981 dollars) compared to existing 3.7 ft.(exp 2) active area cell stacks.
Development of Ni-Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Miyazaki, Kazunari; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi
2017-10-01
In this study, the availability of Ni-Ba(Zr,Y)O3-δ (BZY) cermet for the anode of direct ammonia-fueled solid oxide fuel cells (SOFCs) is evaluated. In this device, the anodes need to be active for the catalytic ammonia decomposition as well as the electrochemical hydrogen oxidation. In the catalytic activity test, ammonia decomposes completely over Ni-BZY at ca. 600 °C, while higher temperature is required to accomplish the complete decomposition over the conventional SOFC anode of Ni-yttria-stabilized zirconia cermet. The high activity of Ni-BZY is attributed to the high basicity of BZY and the high resistance to hydrogen poisoning effect. The electrochemical property of Ni-BZY anode is also evaluated with the anode-supported cell of Ni-BZY|BZY|Pt at 600-700 °C with feeding ammonia or hydrogen as a fuel. Since the residence time of ammonia fuel in the thick Ni-BZY anode is long, the difference in the cell performance between two fuels is relatively small. Furthermore, it is proved that the steam concentration in the fuel strongly affects the cell performance. We find that this factor is important to satisfy the above mentioned requirements for the anode of direct ammonia-fueled SOFCs. Throughout this study, it is concluded that Ni-BZY cermet will be a promising anode.
NASA Astrophysics Data System (ADS)
Zhao, Yingru; Chen, Jincan
A theoretical modeling approach is presented, which describes the behavior of a typical fuel cell-heat engine hybrid system in steady-state operating condition based on an existing solid oxide fuel cell model, to provide useful fundamental design characteristics as well as potential critical problems. The different sources of irreversible losses, such as the electrochemical reaction, electric resistances, finite-rate heat transfer between the fuel cell and the heat engine, and heat-leak from the fuel cell to the environment are specified and investigated. Energy and entropy analyses are used to indicate the multi-irreversible losses and to assess the work potentials of the hybrid system. Expressions for the power output and efficiency of the hybrid system are derived and the performance characteristics of the system are presented and discussed in detail. The effects of the design parameters and operating conditions on the system performance are studied numerically. It is found that there exist certain optimum criteria for some important parameters. The results obtained here may provide a theoretical basis for both the optimal design and operation of real fuel cell-heat engine hybrid systems. This new approach can be easily extended to other fuel cell hybrid systems to develop irreversible models suitable for the investigation and optimization of similar energy conversion settings and electrochemistry systems.
Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D
2012-11-01
This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.
Lu, Yuzheng; Afzal, Muhammad; Zhu, Bin; Wang, Baoyuan; Wang, Jun; Xia, Chen
2017-07-10
Nanocomposites (integrating the nano and composite technologies) for advanced fuel cells (NANOCOFC) demonstrate the great potential to reduce the operational temperature of solid oxide fuel cell (SOFC) significantly in the low temperature (LT) range 300-600ºC. NANOCOFC has offered the development of multi-functional materials composed of semiconductor and ionic materials to meet the requirements of low temperature solid oxide fuel cell (LTSOFC) and green energy conversion devices with their unique mechanisms. This work reviews the recent developments relevant to the devices and the patents in LTSOFCs from nanotechnology perspectives that reports advances including fabrication methods, material compositions, characterization techniques and cell performances. Finally, the future scope of LTSOFC with nanotechnology and the practical applications are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Novel Structured Metal Bipolar Plates for Low Cost Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Conghua
Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate coating technology without using anymore » precious metal. The technology must meet the performance and cost requirements for automobile applications.« less
Final Report - Advanced Cathode Catalysts and Supports for PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debe, Mark
2012-09-28
The principal objectives of the program were development of a durable, low cost, high performance cathode electrode (catalyst and support), that is fully integrated into a fuel cell membrane electrode assembly with gas diffusion media, fabricated by high volume capable processes, and is able to meet or exceed the 2015 DOE targets. Work completed in this contract was an extension of the developments under three preceding cooperative agreements/grants Nos. DE-FC-02-97EE50473, DE-FC-99EE50582 and DE-FC36- 02AL67621 which investigated catalyzed membrane electrode assemblies for PEM fuel cells based on a fundamentally new, nanostructured thin film catalyst and support system, and demonstrated the feasibilitymore » for high volume manufacturability.« less
Kamino, Takeo; Yaguchi, Toshie; Shimizu, Takahiro
2017-10-01
Polymer electrolyte fuel cells hold great potential for stationary and mobile applications due to high power density and low operating temperature. However, the structural changes during electrochemical reactions are not well understood. In this article, we detail the development of the sample holder equipped with gas injectors and electric conductors and its application to a membrane electrode assembly of a polymer electrolyte fuel cell. Hydrogen and oxygen gases were simultaneously sprayed on the surfaces of the anode and cathode catalysts of the membrane electrode assembly sample, respectively, and observation of the structural changes in the catalysts were simultaneously carried out along with measurement of the generated voltages.
Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric
2011-10-15
Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for modification is easy to control and can be optimized and implemented for many carbon materials currently used in microbial fuel cells and other bioelectrochemical systems. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Niroumand, Amir M.; Homayouni, Hooman; DeVaal, Jake; Golnaraghi, Farid; Kjeang, Erik
2016-08-01
This paper describes a diagnostic tool for in-situ characterization of the rate and distribution of hydrogen transfer leaks in Polymer Electrolyte Membrane (PEM) fuel cell stacks. The method is based on reducing the air flow rate from a high to low value at a fixed current, while maintaining an anode overpressure. At high air flow rates, the reduction in air flow results in lower oxygen concentration in the cathode and therefore reduction in cell voltages. Once the air flow rate in each cell reaches a low value at which the cell oxygen-starves, the voltage of the corresponding cell drops to zero. However, oxygen starvation results from two processes: 1) the electrochemical oxygen reduction reaction which produces current; and 2) the chemical reaction between oxygen and the crossed over hydrogen. In this work, a diagnostic technique has been developed that accounts for the effect of the electrochemical reaction on cell voltage to identify the hydrogen leak rate and number of leaky cells in a fuel cell stack. This technique is suitable for leak characterization during fuel cell operation, as it only requires stack air flow and voltage measurements, which are readily available in an operational fuel cell system.
Novel inorganic materials for polymer electrolyte and alkaline fuel cells
NASA Astrophysics Data System (ADS)
Tadanaga, Kiyoharu
2012-06-01
Inorganic materials with high ionic conductivity must have big advantages for the thermal and long term stability when the materials are used as the electrolyte of fuel cells. In the present paper, novel ionic conductive inorganic materials for polymer electrolyte fuel cells (PEFCs) and all solid state alkaline fuel cells (AFCs) that have been developed by our group have been reviewed. PEFCs which can operate in temperature range from 100 to 200 °C are intensively studied because of some advantages such as reduction of CO poisoning of Pt catalyst and acceleration of electrode reactions. We showed that the fuel cells using the composite membranes prepared from phosphosilicate gel powder and polyimide precursor can operate in the temperature range from 30 to 180 °C. We also found that the inorganic-organic hybrid membranes with acid-base pairs from 3-aminopropyl triethoxy silane and H2SO4 or H3PO4 show high proton conductivity under dry atmosphere, and the membranes are thermally stable at intermediate temperatures. On the other hand, because the use of noble platinum is the serious problem for the commercialization of PEFCs and because oxidation reactions are usually faster than those of acid-type fuel cells, alkaline type fuel cells, in which a nonplatinum catalyst can be used, are attractive. Recently, we have proposed an alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts. So-called hydrotalcite clay, Mg-Al layered double hydroxide intercalated with CO32- (Mg-Al CO32- LDH), has been proved to be a hydroxide ion conductor. An alkalinetype DEFC using Mg-Al CO32- LDH as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibited excellent electrochemical performance.
Hydrogen storage and fuel cells
NASA Astrophysics Data System (ADS)
Liu, Di-Jia
2018-01-01
Global warming and future energy supply are two major challenges facing American public today. To overcome such challenges, it is imperative to maximize the existing fuel utilization with new conversion technologies while exploring alternative energy sources with minimal environmental impact. Hydrogen fuel cell represents a next-generation energy-efficient technology in transportation and stationary power productions. In this presentation, a brief overview of the current technology status of on-board hydrogen storage and polymer electrolyte membrane fuel cell in transportation will be provided. The directions of the future researches in these technological fields, including a recent "big idea" of "H2@Scale" currently developed at the U. S. Department of Energy, will also be discussed.
Fuel cell applied research: Electrocatalysis and materials
NASA Astrophysics Data System (ADS)
Srinivasan, S.; Isaacs, H.; McBreen, J.; Ogrady, W. E.; Olender, H.; Olmer, L. J.; Schouler, E. J. L.; Adzic, R. R.
1980-03-01
The effect of underpotential deposited metal layers on the electrocatalysis of fuel cell reactions is studied. The potential for developing organic compound/air fuel cells using underpotential deposited Pb adatoms to enhance the electrocatalysis of the fuel electrode is explored. The effects of adsorbed layers of Pb, Tl and Bi on formic acid and methanol oxidation on platinum in 85 percent H3PO4 were investigated. The effect of crystal orientation on formic acid oxidation on platinum in 1 M CHlO2 was investigated. The kinetics of the oxygen reduction and evolution reactions at the electrode (metal or oxide) solid electrolyte (yttria stabilized zirconia) interface were investigated using ac and dc techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.
Status of development of the power plants on the base of MCFC in TFNC-VNIIEF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novitski, E.Z.; Savkin, G.G.
1996-04-01
VNIIF started work on Molten Carbonate Fuel cells and power plants in 1991. Some results of VNIIF work in the direction of Autonomous Power Engineering are presented. Topics include molten carbonate fuel cell components, separator plates, manufacturing and testing, design, and goals.
ERIC Educational Resources Information Center
Clark, Todd; Jones, Rick
2004-01-01
While the political climate seems favorable for the development of fuel-cell vehicles for personal transportation, the market's demand may not be so favorable. Nonetheless, middle level students will be the next generation of drivers and voters, and they need to be able to make informed decisions regarding the nation's energy and transportation…
Anhydrous Proton-Conducting Membranes for Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram; Yen, Shiao-Pin S.
2005-01-01
Polymeric electrolyte membranes that do not depend on water for conduction of protons are undergoing development for use in fuel cells. Prior polymeric electrolyte fuel-cell membranes (e.g., those that contain perfluorosulfonic acid) depend on water and must be limited to operation below a temperature of 125 C because they retain water poorly at higher temperatures. In contrast, the present developmental anhydrous membranes are expected to function well at temperatures up to 200 C. The developmental membranes exploit a hopping-and-reorganization proton- conduction process that can occur in the solid state in organic amine salts and is similar to a proton-conduction process in a liquid. This process was studied during the 1970s, but until now, there has been no report of exploiting organic amine salts for proton conduction in fuel cells.
NASA Astrophysics Data System (ADS)
Herden, Susanne; Riewald, Felix; Hirschfeld, Julian A.; Perchthaler, Markus
2017-07-01
Within the active area of a fuel cell inhomogeneous operating conditions occur, however, state of the art electrodes are homogenous over the complete active area. This study uses current density distribution measurements to analyze which ionomer equivalent weight (EW) shows locally the highest current densities. With this information a segmented cathode electrode is manufactured by decal transfer. The segmented electrode shows better performance especially at high current densities compared to homogenous electrodes. Furthermore this segmented catalyst coated membrane (CCM) performs optimal in wet as well as dry conditions, both operating conditions arise in automotive fuel cell applications. Thus, cathode electrodes with an optimized ionomer EW distribution might have a significant impact on future automotive fuel cell development.
Development of porous carbon foam polymer electrolyte membrane fuel cell
NASA Astrophysics Data System (ADS)
Kim, Jin; Cunningham, Nicolas
In order to prove the feasibility of using porous carbon foam material in a polymer electrolyte membrane fuel cell (PEMFC), a single PEMFC is constructed with a piece of 80PPI (pores per linear inch) Reticulated Vitreous Carbon (RVC) foam at a thickness of 3.5 mm employed in the cathode flow-field. The cell performance of such design is compared with that of a conventional fuel cell with serpentine channel design in the cathode and anode flow-fields. Experimental results show that the RVC foam fuel cell not only produces comparative power density to, but also offers interesting benefits over the conventional fuel cell. A 250 h long term test conducted on a RVC foam fuel cell shows that the durability and performance stability of the material is deemed to be acceptable. Furthermore, a parametric study is conducted on single RVC foam fuel cells. Effect of geometrical and material parameters of the RVC foam such as PPI and thickness and operating conditions such as pressure, temperature, and stoichiometric ratio of the reactant gases on the cell performance is experimentally investigated in detail. The single cell with the 80PPI RVC foam exhibits the best performance, especially if the thinnest foam (3.5 mm) is used. The cell performance improves with increasing the operating gauge pressure from 0 kPa to 80 kPa and the operating temperature from 40 °C to 60 °C, but deteriorates as it further increases to 80 °C. The cell performance improves as the stoichiometric ratio of air increases from 1.5 to 4.5; however, the improvement becomes marginal when it is raised above 3.0. On the other hand, changing the stoichiometric ratio of hydrogen does not have a significant impact on the cell performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jie Guan; Atul Verma; Nguyen Minh
2003-04-01
This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimizationmore » is in progress.« less