Sample records for develop heavy noble

  1. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOEpatents

    Gross, K.C.; Markun, F.; Zawadzki, M.T.

    1998-04-28

    An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

  2. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOEpatents

    Gross, Kenneth C.; Markun, Francis; Zawadzki, Mary T.

    1998-01-01

    An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

  3. Trapping of noble gases in proton-irradiated silicate smokes

    NASA Technical Reports Server (NTRS)

    Nichols, R. H., Jr.; Nuth, J. A., III; Hohenberg, C. M.; Olinger, C. T.; Moore, M. H.

    1992-01-01

    We have measured Ne, Ar, Kr, and Xe in Si2O3 'smokes' that were condensed on Al substrates, vapor-deposited with various mixtures of CH4, NH3, H2O3 and noble gases at 10 K and subsequently irradiated with 1 MeV protons to simulate conditions during grain mantle formation in interstellar clouds. Neither Ne nor Ar is retained by the samples upon warming to room temperature, but Xe is very efficiently trapped and retained. Kr is somewhat less effectively retained, typically depleted by factors of about 10-20 relative to Xe. Isotopic fractionation favoring the heavy isotopes of Xe and Kr of about 5-10-percent/amu is observed. Correlations between the specific chemistry of the vapor deposition and heavy noble gas retention are most likely the result of competition by the various species for irradiation-produced trapping sites. The concentration of Xe retained by some of these smokes exceeds that observed in phase Q of meteorites and, like phase Q, they do not seem to be carriers of the light noble gases.

  4. Noble Gas Signatures in Snow: a New Experimental Investigation.

    NASA Astrophysics Data System (ADS)

    Amalberti, J.; Hall, C. M.; Castro, C.

    2016-12-01

    Dissolved noble gases in groundwater (He, Ne, Ar, Kr, and Xe) have been widely used to improve our knowledge of surface and groundwater dynamics. However, a recent rainwater study [1] recorded noble gas concentration anomalies originating from conditions at high altitude. Potential anomaly sources might include fog, orographic rain, synoptic rain and snow, depending on the region considered. Here, we outline a methodology for measuring noble gases in freshly collected snow samples. Their fine-grained nature leads to significant experimental challenges. Overall, our results (Fig. 1) show that snow has elevated He concentrations with depleted concentrations of all other noble gases. Similar results have been recorded in ice [2, 3]. In addition, our results show relatively homogeneous (< 14%) He and Ne concentrations while Ar, Kr and Xe display large concentration variability (> 80%). These observations led us to investigate the structure of snow and potential host-sites (available empty space) within the crystal structure. Noble gases are chemically inert and do not form bonds that could affect the ice crystal structure. Therefore, host-sites control the solubility of each noble gas. Our results show that He and Ne, which are known to have small atomic radii, are likely dissolved into the ice/snow crystal lattice, while heavy noble gas (Ar, Kr and Xe) are likely accommodated into defects. Consequently, smaller variability recorded in light noble gases, may result from He and Ne being hosted within the crystal lattice, whereas heavy noble gases rely on the presence of defects, which may randomly appear within the structure during snow formation. These new results can be used to better constrain the source of ground ice [3], groundwater systems and to investigate the structural transition mechanisms from snow to firn and ice. Figure 1: Noble gas concentrations (C) in snow (filled circles symbols) and ice (half-filled square symbols) normalized to air saturated water (ASW). [1] Warrier, et al., (2013), Geophys. Res. Lett., 40, 3248-3252. [2] Malone et al., (2010), EPSL, 289, 112-122. [3] Utting et a., (2016), Quat. Res., 85, 117-184.

  5. Mantle Noble Gas Contents Controlled by Serpentinite Subduction

    NASA Astrophysics Data System (ADS)

    Krantz, J. A.; Parman, S. W.; Kelley, S. P.; Smye, A.; Jackson, C.; Cooper, R. F.

    2017-12-01

    Noble gases serve as powerful tracers of the mantle's chemical and physical evolution. Analyses of material from subduction zones1, mid-ocean ridge basalts, and ocean island basalts2 indicate that heavy noble gases are being recycled from the surface of the earth into the mantle. The exact mechanism by which these uncharged atoms can be bound to a mineral and the subsequent path of recycling remains unclear, but experimental work suggests that ring structures in silicate minerals are ideal sites for noble gases3. Serpentine contains such ring structures and is abundant in subducting slabs. Developing an understanding of how noble gases are transported sheds light on the large-scale mantle dynamics associated with volatile transport, subduction, convection, and mantle heterogeneity. The solubilities of He, Ne, Ar, Kr, and Xe have been experimentally determined in natural samples of antigorite, the high-pressure polymorph of serpentine. The measured solubilities for all noble gases are high relative to mantle silicates (olivine and pyroxenes)4,5. Mixing lines between the noble gas contents of seawater and serpentinite may explain the noble gas composition of mid-ocean ridge basalts and constrain the source material of EM1, EM2 and HIMU ocean island basalts. 1. Kendrick, M.A. et al., Nature Geoscience, 4, 807-812, 2011 2. Parai, R. and Mukhopadhyay, S., GGG, 16, 719-735, 2015 3. Jackson, C.R.M. et al., GCA, 159, 1-15, 2015 4. Heber, V.S. et al., GCA, 71, 1041-1061, 2007 5. Jackson, C.R.M. et al., EPSL, 384, 178-187, 2013

  6. Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis

    PubMed Central

    March, Gregory; Nguyen, Tuan Dung; Piro, Benoit

    2015-01-01

    Heavy metal pollution is one of the most serious environmental problems, and regulations are becoming stricter. Many efforts have been made to develop sensors for monitoring heavy metals in the environment. This review aims at presenting the different label-free strategies used to develop electrochemical sensors for the detection of heavy metals such as lead, cadmium, mercury, arsenic etc. The first part of this review will be dedicated to stripping voltammetry techniques, on unmodified electrodes (mercury, bismuth or noble metals in the bulk form), or electrodes modified at their surface by nanoparticles, nanostructures (CNT, graphene) or other innovative materials such as boron-doped diamond. The second part will be dedicated to chemically modified electrodes especially those with conducting polymers. The last part of this review will focus on bio-modified electrodes. Special attention will be paid to strategies using biomolecules (DNA, peptide or proteins), enzymes or whole cells. PMID:25938789

  7. Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone

    USGS Publications Warehouse

    Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.

    2017-01-01

    To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ∼110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.

  8. Noble gases recycled into the mantle through cold subduction zones

    NASA Astrophysics Data System (ADS)

    Smye, Andrew J.; Jackson, Colin R. M.; Konrad-Schmolke, Matthias; Hesse, Marc A.; Parman, Steve W.; Shuster, David L.; Ballentine, Chris J.

    2017-08-01

    Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole - a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5-35% and 60-80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.

  9. Lunar and Planetary Surface Dynamics and Early History

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This document, submitted as part of this proposal renewal represents the Final Report required by NASA for Grant NAGS-9442. It should be emphasized that, while this work statement in the original proposal outlined anticipated directions of our research, the specific activities we carried out during this period differed slightly from those proposed, capitalizing on new unexpected results and new advances in analytical capability. The thrust of all the work we completed were completely within the stated research goals of the proposal and significantly advanced our knowledge of planetary processes and our understanding of the early solar system. The following summary outlines our achievements in the different areas of research. These include: A) Early solar system processes and time scales using I-Xe chronometry; B) The Active Capture of Volatiles: A new mechanism for the capture of heavy noble gases, possible implications for phase Q and planetary heavy noble gases; C) Separation of Xe-L from Xe-H: Physically selective experiments; D) Abundances of Presolar grains; E) Studies of Neon and Helium from single interstellar SiC and graphite grains; F) Pre-compaction exposure of meteoritic grains and chondrules; G) Geochemically Measured Half-Lives: Double beta-decay of Te and Ba isotopes; H) Noble gases in stratospheric interplanetary dust particles; I) New Analytical Instrument.

  10. Neutron detection by scintillation of noble-gas excimers

    NASA Astrophysics Data System (ADS)

    McComb, Jacob Collin

    Neutron detection is a technique essential to homeland security, nuclear reactor instrumentation, neutron diffraction science, oil-well logging, particle physics and radiation safety. The current shortage of helium-3, the neutron absorber used in most gas-filled proportional counters, has created a strong incentive to develop alternate methods of neutron detection. Excimer-based neutron detection (END) provides an alternative with many attractive properties. Like proportional counters, END relies on the conversion of a neutron into energetic charged particles, through an exothermic capture reaction with a neutron absorbing nucleus (10B, 6Li, 3He). As charged particles from these reactions lose energy in a surrounding gas, they cause electron excitation and ionization. Whereas most gas-filled detectors collect ionized charge to form a signal, END depends on the formation of diatomic noble-gas excimers (Ar*2, Kr*2,Xe* 2) . Upon decaying, excimers emit far-ultraviolet (FUV) photons, which may be collected by a photomultiplier tube or other photon detector. This phenomenon provides a means of neutron detection with a number of advantages over traditional methods. This thesis investigates excimer scintillation yield from the heavy noble gases following the boron-neutron capture reaction in 10B thin-film targets. Additionally, the thesis examines noble-gas excimer lifetimes with relationship to gas type and gas pressure. Experimental data were collected both at the National Institute of Standards and Technology (NIST) Center for Neutron Research, and on a newly developed neutron beamline at the Maryland University Training Reactor. The components of the experiment were calibrated at NIST and the University of Maryland, using FUV synchrotron radiation, neutron imaging, and foil activation techniques, among others. Computer modeling was employed to simulate charged-particle transport and excimer photon emission within the experimental apparatus. The observed excimer scintillation yields from the 10B( n, alpha)7Li reaction are comparable to the yields of many liquid and solid neutron scintillators. Additionally, the observed slow triplet-state decay of neutron-capture-induced excimers may be used in a practical detector to discriminate neutron interactions from gamma-ray interactions. The results of these measurements and simulations will contribute to the development and optimization of a deployable neutron detector based on noble-gas excimer scintillation.

  11. High energy primary knock-on process in metal deuterium systems initiated by bombardment with noble gas ions

    NASA Astrophysics Data System (ADS)

    Gann, V. V.; Tolstolutskaya, G. D.

    2008-08-01

    An experimental study confirms the possibility of nuclear fusion reactions initiating in metal-deuterium targets by bombarding them with ions that are not the reagents of the fusion reaction, in particular, with noble gas ions. The yields of (d,d) and (d,t) reactions were measured as functions of energy (0.4-3.2 MeV) and mass of incident ions (He +, Ne +, Ar +, Kr + and Xe +). Irradiation by heavy ions produced a number of energetic deuterium atoms in the deuteride and deuterium + tritium metal targets. At ion energies of ˜0.1-1 MeV the d-d reaction yields are relatively high. A model of nuclear fusion reaction cross-sections in atomic collision cascades initiated by noble gas ion beam in metal-deuterium target is developed. The method for calculation tritium or deuterium recoil fluxes and the yield of d-d fusion reaction in subsequent collisions was proposed. It was shown that D(d,p)t and D(t,n) 4He reactions mainly occur in energy region of the recoiled D-atom from 10 keV to 250 keV. The calculated probabilities of d-d and d-t fusion reactions were found to be in a good agreement with the experimental data.

  12. Heavy noble gases in solar wind delivered by Genesis mission.

    PubMed

    Meshik, Alex; Hohenberg, Charles; Pravdivtseva, Olga; Burnett, Donald

    2014-02-15

    One of the major goals of the Genesis Mission was to refine our knowledge of the isotopic composition of the heavy noble gases in solar wind and, by inference, the Sun, which represents the initial composition of the solar system. This has now been achieved with permil precision: 36 Ar/ 38 Ar = 5.5005 ± 0.0040, 86 Kr/ 84 Kr = .3012 ± .0004, 83 Kr/ 84 Kr = .2034 ± .0002, 82 Kr/ 84 Kr = .2054 ± .0002, 80 Kr/ 84 Kr = .0412 ± .0002, 78 Kr/ 84 Kr = .00642 ± .00005, 136 Xe/ 132 Xe = .3001 ± .0006, 134 Xe/ 132 Xe = .3691 ± .0007, 131 Xe/ 132 Xe = .8256 ± .0012, 130 Xe/ 132 Xe = .1650 ± .0004, 129 Xe/ 132 Xe = 1.0405 ± .0010, 128 Xe/ 132 Xe = .0842 ± .0003, 126 Xe/ 132 Xe = .00416 ± .00009, and 124 Xe/ 132 Xe = .00491 ± .00007 (error-weighted averages of all published data). The Kr and Xe ratios measured in the Genesis solar wind collectors generally agree with the less precise values obtained from lunar soils and breccias, which have accumulated solar wind over hundreds of millions of years, suggesting little if any temporal variability of the isotopic composition of solar wind krypton and xenon. The higher precision for the initial composition of the heavy noble gases in the solar system allows (1) to confirm that, exept 136 Xe and 134 Xe, the mathematically derived U-Xe is equivalent to Solar Wind Xe and (2) to provide an opportunity for better understanding the relationship between the starting composition and Xe-Q (and Q-Kr), the dominant current "planetary" component, and its host, the mysterious phase-Q.

  13. Heavy noble gases in solar wind delivered by Genesis mission

    PubMed Central

    Meshik, Alex; Hohenberg, Charles; Pravdivtseva, Olga; Burnett, Donald

    2017-01-01

    One of the major goals of the Genesis Mission was to refine our knowledge of the isotopic composition of the heavy noble gases in solar wind and, by inference, the Sun, which represents the initial composition of the solar system. This has now been achieved with permil precision: 36Ar/38Ar = 5.5005 ± 0.0040, 86Kr/84Kr = .3012 ± .0004, 83Kr/84Kr = .2034 ± .0002, 82Kr/84Kr = .2054 ± .0002, 80Kr/84Kr = .0412 ± .0002, 78Kr/84Kr = .00642 ± .00005, 136Xe/132Xe = .3001 ± .0006, 134Xe/132Xe = .3691 ± .0007, 131Xe/132Xe = .8256 ± .0012, 130Xe/132Xe = .1650 ± .0004, 129Xe/132Xe = 1.0405 ± .0010, 128Xe/132Xe = .0842 ± .0003, 126Xe/132Xe = .00416 ± .00009, and 124Xe/132Xe = .00491 ± .00007 (error-weighted averages of all published data). The Kr and Xe ratios measured in the Genesis solar wind collectors generally agree with the less precise values obtained from lunar soils and breccias, which have accumulated solar wind over hundreds of millions of years, suggesting little if any temporal variability of the isotopic composition of solar wind krypton and xenon. The higher precision for the initial composition of the heavy noble gases in the solar system allows (1) to confirm that, exept 136Xe and 134Xe, the mathematically derived U–Xe is equivalent to Solar Wind Xe and (2) to provide an opportunity for better understanding the relationship between the starting composition and Xe-Q (and Q-Kr), the dominant current “planetary” component, and its host, the mysterious phase-Q. PMID:29151613

  14. Isotopic signatures and distribution of nitrogen and trapped and radiogenic xenon in the Acapulco and FRO90011 meteorites

    NASA Technical Reports Server (NTRS)

    Kim, Y.; Marti, K.

    1993-01-01

    Acapulco metal and silicate show distinct N isotopic signatures. Trapped heavy noble gases are carried by 'magnetic' opx and radiogenic Xe-129 excesses are observed in phosphate and in minor surficial phases on metal grains. N and Xe isotopic signatures in FRO90011 do not agree with those observed in Acapulco. The Acapulco meteorite is unique in having achondritic texture and chondritic composition. Its mineralogical study shows the record of high temperature (1100 C) recrystallization. However, this meteorite shows abundances of volatile elements close to the levels observed in carbonaceous chondrites and concentrations of heavy noble gases comparable to those observed in type 4 ordinary chondrites, not expected for a presumed highly equilibrated object. Nitrogen measurements in bulk Acapulco revealed two different isotopic signatures, in apparent conflict with evidence for a high degree of recrystallization. N and Xe were studied in separated mineral phases to search for the carriers in order to better understand the formation and thermal history of the Acapulco parent body.

  15. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    DOE PAGES

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; ...

    2016-11-01

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. But, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stablemore » isotopes, unmeasured by Viking. Our new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, but, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.« less

  16. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; Owen, T.; Pavlov, A. A.; Wiens, R. C.; Wong, M. H.; Mahaffy, P. R.

    2016-11-01

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  17. In Situ Measurement of Atmospheric Krypton and Xenon on Mars with Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; hide

    2016-01-01

    Mars Science Laboratorys Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking missions krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  18. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. But, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stablemore » isotopes, unmeasured by Viking. Our new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, but, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.« less

  19. New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples.

    PubMed

    Bereiter, Bernhard; Kawamura, Kenji; Severinghaus, Jeffrey P

    2018-05-30

    The global ocean constitutes the largest heat buffer in the global climate system, but little is known about its past changes. The isotopic and elemental ratios of heavy noble gases (krypton and xenon), together with argon and nitrogen in trapped air from ice cores, can be used to reconstruct past mean ocean temperatures (MOTs). Here we introduce two successively developed methods to measure these parameters with a sufficient precision to provide new constraints on past changes in MOT. The air from an 800-g ice sample - containing roughly 80 mL STP air - is extracted and processed to be analyzed on two independent dual-inlet isotope ratio mass spectrometers. The primary isotope ratios (δ 15 N, δ 40 Ar and δ 86 Kr values) are obtained with precisions in the range of 1 per meg (0.001‰) per mass unit. The three elemental ratio values δKr/N 2 , δXe/N 2 and δXe/Kr are obtained using sequential (non-simultaneous) peak-jumping, reaching precisions in the range of 0.1-0.3‰. The latest version of the method achieves a 30% to 50% better precision on the elemental ratios and a twofold better sample throughput than the previous one. The method development uncovered an unexpected source of artefactual gas fractionation in a closed system that is caused by adiabatic cooling and warming of gases (termed adiabatic fractionation) - a potential source of measurement artifacts in other methods. The precisions of the three elemental ratios δKr/N 2 , δXe/N 2 and δXe/Kr - which all contain the same MOT information - suggest smaller uncertainties for reconstructed MOTs (±0.3-0.1°C) than previous studies have attained. Due to different sensitivities of the noble gases to changes in MOT, δXe/N 2 provides the best constraints on the MOT under the given precisions followed by δXe/Kr, and δKr/N 2 ; however, using all of them helps to detect methodological artifacts and issues with ice quality. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Methane Sources and Migration Mechanisms in Shallow Groundwaters in Parker and Hood Counties, Texas-A Heavy Noble Gas Analysis.

    PubMed

    Wen, Tao; Castro, M Clara; Nicot, Jean-Philippe; Hall, Chris M; Larson, Toti; Mickler, Patrick; Darvari, Roxana

    2016-11-01

    This study places constraints on the source and transport mechanisms of methane found in groundwater within the Barnett Shale footprint in Texas using dissolved noble gases, with particular emphasis on 84 Kr and 132 Xe. Dissolved methane concentrations are positively correlated with crustal 4 He, 21 Ne, and 40 Ar and suggest that noble gases and methane originate from common sedimentary strata, likely the Strawn Group. In contrast to most samples, four water wells with the highest dissolved methane concentrations unequivocally show strong depletion of all atmospheric noble gases ( 20 Ne, 36 Ar, 84 Kr, 132 Xe) with respect to air-saturated water (ASW). This is consistent with predicted noble gas concentrations in a water phase in contact with a gas phase with initial ASW composition at 18 °C-25 °C and it suggests an in situ, highly localized gas source. All of these four water wells tap into the Strawn Group and it is likely that small gas accumulations known to be present in the shallow subsurface were reached. Additionally, lack of correlation of 84 Kr/ 36 Ar and 132 Xe/ 36 Ar fractionation levels along with 4 He/ 20 Ne with distance to the nearest gas production wells does not support the notion that methane present in these groundwaters migrated from nearby production wells either conventional or using hydraulic fracturing techniques.

  1. Sorption of noble gases by solids, with reference to meteorites. II - Chromite and carbon. III - Sulfides, spinels, and other substances; on the origin of planetary gases

    NASA Technical Reports Server (NTRS)

    Yang, J.; Anders, E.

    1982-01-01

    The trapping of noble gases by chromite and carbon, two putative carriers of primordial noble gases in meteorites, was studied by synthesizing 19 samples in a Ne-Ar-Kr-Xe atmosphere at 440-720 K. Noble gas contents are found to approximately obey Henry's Law, but only slight correlations are found with composition, surface area, or adsorption temperature. Geometric mean distribution coefficients for bulk samples and HCl residues in 10 cu cm STP/g atm are: Xe 100, Kr 15, Ar 3.5, and Ne 0.62. Elemental fractionation data support the suggestion of Lewis et al. (1977) that chromite and carbon in C2 and C3 chondrites were formed by the reaction: Fe, Cr + 4CO yields (Fe, Cr)3O4 + 4C + carbides. In contrast to meteoritic minerals, the synthetic specimens show no isotopic fractionation of noble gases. In a subsequent study, attention is given to the cases of sulfides and spinels, on the way to consideration of the origin of planetary gases. Sulfides showed three distinctive trends relative to chromite or magnetite. The elemental fractionation pattern of Ar, Kr and Xe in meteorites, terrestrial rocks and planets resembles the adsorption patterns on the carbons, spinels, sulfides, and other solids studied. The high release temperature of meteoritic noble gases may be explained by transformation of the physisorbed or chemisorbed gas. The ready loss of meteoritic heavy gases on surficial oxidation is consistent with adsorption, as is the high abundance.

  2. Noble Gas signatures of Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Kulongoski, J. T.; Tyne, R. L.; Hillegonds, D.; Byrne, D. J.; Landon, M. K.; Ballentine, C. J.

    2017-12-01

    Noble gases are powerful tracers of fluids from various oil and gas production activities in hydrocarbon reservoirs and nearby groundwater. Non-radiogenic noble gases are introduced into undisturbed oil and natural gas reservoirs through exchange with formation waters [1-3]. Reservoirs with extensive hydraulic fracturing, injection for enhanced oil recovery (EOR), and/or waste disposal also show evidence for a component of noble gases introduced from air [4]. Isotopic and elemental ratios of noble gases can be used to 1) assess the migration history of the injected and formation fluids, and 2) determine the extent of exchange between multiphase fluids in different reservoirs. We present noble gas isotope and abundance data from casing, separator and injectate gases of the Lost Hills and Fruitvale oil fields in the San Joaquin basin, California. Samples were collected as part of the California State Water Resource Control Board's Oil and Gas Regional Groundwater Monitoring Program. Lost Hills (n=7) and Fruitvale (n=2) gases are geochemically distinct and duplicate samples are highly reproducible. Lost Hills casing gas samples were collected from areas where EOR and hydraulic fracturing has occurred in the past several years, and from areas where EOR is absent. The Fruitvale samples were collected from a re-injection port. All samples are radiogenic in their He isotopes, typical of a crustal environment, and show enrichments in heavy noble gases, resulting from preferential adsorption on sediments. Fruitvale samples reflect air-like surface conditions, with higher air-derived noble gas concentrations. Lost Hills gases show a gradation from pristine crustal signatures - indicative of closed-system exchange with formation fluids - to strongly air-contaminated signatures in the EOR region. Pristine samples can be used to determine the extent of hydrocarbon exchange with fluids, whereas samples with excess air can be used to quantify the extent of EOR. Determining noble gas baseline values for pristine vs. recently modified (EOR, hydraulic fracturing) zones will be critical for interpreting the origin of any fugitive gases identified in nearby aquifers. [1] Ballentine et al., (1996) GCA, 60, 831-849 [2] Barry et al., (2016) GCA, 194, 291-309. [3] Barry et al., (2017) Geology, 45, 9. Darrah et al., (2014) PNAS 111, 39.

  3. Performance and Durability of a Generator Set CI Engine using Synthetic and Petroleum Based Fuels for Military Applications

    DTIC Science & Technology

    2009-07-27

    viable; however, better understanding of the fundamental effects of alternative fuels on engine operation is required before control strategies can be...calibrated for Diesel #2 fuel. This was not altered throughout the testing. The intake is a turbocharged -aspirated engine with a compression ratio of... Fundamentals . New York: McGraw‐ [ Hill, 1988    [2]   Noble P, McMillan D, Dabell M. Development of a Diesel‐Powered, Heavy Lift,  Amphibious  Air‐Cushion

  4. Multidiffusion mechanisms for noble gases (He, Ne, Ar) in silicate glasses and melts in the transition temperature domain: Implications for glass polymerization

    NASA Astrophysics Data System (ADS)

    Amalberti, Julien; Burnard, Pete; Laporte, Didier; Tissandier, Laurent; Neuville, Daniel R.

    2016-01-01

    Noble gases are ideal probes to study the structure of silicate glasses and melts as the modifications of the silicate network induced by the incorporation of noble gases are negligible. In addition, there are systematic variations in noble gas atomic radii and several noble gas isotopes with which the influence of the network itself on diffusion may be investigated. Noble gases are therefore ideally suited to constrain the time scales of magma degassing and cooling. In order to document noble gas diffusion behavior in silicate glass, we measured the diffusivities of three noble gases (4He, 20Ne and 40Ar) and the isotopic diffusivities of two Ar isotopes (36Ar and 40Ar) in two synthetic basaltic glasses (G1 and G2; 20Ne and 36Ar were only measured in sample G1). These new diffusion results are used to re-interpret time scales of the acquisition of fractionated atmospheric noble gas signatures in pumices. The noble gas bearing glasses were synthesized by exposing the liquids to high noble gas partial pressures at high temperature and pressure (1750-1770 K and 1.2 GPa) in a piston-cylinder apparatus. Diffusivities were measured by step heating the glasses between 423 and 1198 K and measuring the fraction of gas released at each temperature step by noble gas mass spectrometry. In addition we measured the viscosity of G1 between 996 and 1072 K in order to determine the precise glass transition temperature and to estimate network relaxation time scales. The results indicate that, to a first order, that the smaller the size of the diffusing atom, the greater its diffusivity at a given temperature: D(He) > D(Ne) > D(Ar) at constant T. Significantly, the diffusivities of the noble gases in the glasses investigated do not display simple Arrhenian behavior: there are well-defined departures from Arrhenian behavior which occur at lower temperatures for He than for Ne or Ar. We propose that the non-Arrhenian behavior of noble gases can be explained by structural modifications of the silicate network itself as the glass transition temperature is approached: as the available free volume (available site for diffusive jumps) is modified, noble gas diffusion is no longer solely temperature-activated but also becomes sensitive to the kinetics of network rearrangements. The non-Arrhenian behavior of noble gas diffusion close to Tg is well described by a modified Vogel-Tammann-Fulcher (VTF) equation: Finally, our step heating diffusion experiments suggest that at T close to Tg, noble gas isotopes may suffer kinetic fractionation at a degree larger than that predicted by Graham's law. In the case of 40Ar and 36Ar, the traditional assumption based on Graham's law is that the ratio D40Ar/D36Ar should be equal to 0.95 (the square root of the ratio of the mass of 36Ar over the mass of 40Ar). In our experiment with glass G1, D40Ar/D36Ar rapidly decreased with decreasing temperature, from near unity (0.98 ± 0.14) at T > 1040 K to 0.76 when close to Tg (T = 1003 K). Replicate experiments are needed to confirm the strong kinetic fractionation of heavy noble gases close to the transition temperature.

  5. Investigation of laser polarized xenon magnetic resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    1998-01-01

    Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR.

  6. Genesis Noble Gas Measurements

    NASA Technical Reports Server (NTRS)

    Hohenberg, Charles M.

    2005-01-01

    The original thrust of our Genesis funding was to extend and refine the noble gas analytical capabilities of this laboratory to improve the precision and accuracy of noble gas measurements in order to optimize the scientific return from the Genesis Mission. This process involved both instrumental improvement (supplemented by a SRLIDAP instrument grant) and refinement of technique. The Genesis landing mishap shifted our emphasis to the irregular aluminum heat shield material from the flat collector wafers. This has required redesign of our laser extraction cells to accommodate the longer focal lengths required for laser extraction from non-flat surfaces. Extraction of noble gases from solid aluminum surfaces, rather than thin coatings on transparent substrates has required refinement of controlled-depth laser ablation techniques. Both of these bring new problems, both with potentially higher blanks form larger laser cells and the larger quantities of evaporated aluminum which can coat the sapphire entrance ports. This is mainly a problem for the heavy noble gases where larger extraction areas are required, necessitating the new aluminum vapor containment techniques described below. With the Genesis Mission came three new multiple multiplier noble gas mass spectrometers to this laboratory, one built solely by us (Supergnome-M), one built in collaboration with Nu-Instruments (Noblesse), and one built in collaboration with GVI (Helix). All of these have multiple multiplier detection sections with the Nu-Instruments using a pair of electrostatic quad lenses for isotope spacing and the other two using mechanically adjustable positions for the electron multipliers. The Supergnome-M and Noblesse are installed and running. The GVI instrument was delivered a year late (in March 2005) and is yet to be installed by GVI. As with all new instruments there were some initial development issues, some of which are still outstanding. The most serious of these are performance issues with the miniature channel electron multipliers. The delayed installation of Helix by the GVI is partly due to failure of the initial batch of Burle channel multipliers to perform as expected. A number of the channel multipliers designed for Noblesse by Burle have also failed upon baking. Burle has now refined the design of these and we have installed two of the new multipliers and are assessing their performance. The remaining multipliers Will be upgraded to the new design from Burle once we confirm that the problem has been fixed.

  7. Mantle Noble Gas Contents Controlled by Subduction of Serpentinite

    NASA Astrophysics Data System (ADS)

    Krantz, J. A.; Parman, S. W.; Kelley, S. P.; Smye, A.; Jackson, C.

    2017-12-01

    Geochemical analyses of exhumed subduction zone material1, well gases2, MORB, and OIBs3 indicate that noble gases are being recycled from the surface of the earth into the mantle. However, the path taken by these noble gases is unclear. To estimate the distribution and quantity of Ar, Kr, and Xe in subducting slabs, a model consisting of layers of sediments, altered oceanic crust (AOC), and serpentinite (hydrously altered mantle) has been developed. The noble gas contents of sediments and AOC were calculated using the least air-like and most gas-rich analyses from natural systems4,5, while serpentinite was modelled using both data from natural systems1 and experimentally determined solubilities. Layer thicknesses were assessed over a range of values: 1 to 12 km of sediments, 5 to 9 km of AOC, and 1 to 30 km of serpentinite. In all cases, the serpentinite layer contains at least an order of magnitude more Ar and Kr than the other layers. For realistic layer thicknesses (1 km of sediments, 6 km of AOC, and 3 km of serpentinite), Xe is distributed roughly equally between the three layers. By incorporating global subduction rates6, fluxes of the heavy noble gases into the mantle have been calculated as 4 · 1012 mol/Ma for 36Ar, 6 · 1011 mol/Ma for 84Kr, and 8 · 109 mol/Ma for 130Xe. These fluxes are equivalent to the total 84Kr and 130Xe contents of the depleted and bulk mantle over 1 and 10 Ma7. Similarly, the flux of 36Ar is equivalent over 1 and 100 Ma. Since the Kr and Xe have not been completely overprinted by recycling, the large majority of subducted noble gases must escape in the subduction zone. However, even the small amounts that are subducted deeper have affected the mantle as measured in both MORB and OIBs. 1. Kendrick, M.A. et al., Nature Geoscience, 4, 807-812, 2011 2. Holland, G. and Ballentine, C.J., Nature, 441, 186-191, 2006 3. Parai, R. and Mukhopadhyay, S., G3, 16, 719-735, 2015 4. Matsuda, J. and Nagao, K., Geochemical Journal, 20, 71-80, 1986 5. Chavrit, D. et al., GCA, 183, 106-124, 2016 6. Hacker, B.R., G3, 9, 1-24,2008 7. Marty, B., EPSL, 313-314, 56-66, 2012

  8. Rubidium D1 collision shift by heavy noble gases

    NASA Astrophysics Data System (ADS)

    Wells, N. P.; Driskell, T. U.; Camparo, J. C.

    2015-10-01

    Using an isoclinic-point technique, we measured the D1 collision shift by Xe, ∂ [δ ν ]/∂ P , and the exponent κ of the shift's temperature dependence (i.e., δ ν ˜Tκ ). As demonstrated in our examination of the Rb-Kr system [N. P. Wells et al., Phys. Rev. A 89, 052516 (2014), 10.1103/PhysRevA.89.052516], the isoclinic point provides (arguably) the only means of assessing κ unambiguously: κKr=0.36 ±0.06 and in the present work κXe=0.32 ±0.05 . With our estimate of κ for the Rb-Kr and Rb-Xe systems, we were able to combine our Kr and Xe collision shift measurements with those of Rotondaro and Perram [M. D. Rotondaro and G. P. Perram, J. Quant. Spectrosc. Radiat. Transfer 57, 497 (1997), 10.1016/S0022-4073(96)00147-1] (another set of high quality ∂ [δ ν ]/∂ P measurements) to obtain a highly accurate experimental estimate for the D1 collision shift resulting from Rb's interaction with the heavy noble gases: For the Rb-Kr interaction ∂ [δ ν ] /∂ P |T =323 K=-5.02 ±0.07 MHz /torr and for the Rb-Xe interaction ∂ [δ ν ] /∂ P |T =323 K=-5.46 ±0.09 MHz /torr . These measured values for the collision-shift coefficient are approximately 20 % smaller (in magnitude) than the best theoretical estimates, suggesting that there is room for theoretical improvement regarding our present understanding of how noble-gas collisions perturb the alkali-metal P1 /2 state.

  9. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2003-01-01

    We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.

  10. The Noble Gases in A-Level Chemistry.

    ERIC Educational Resources Information Center

    Marchant, G. W.

    1983-01-01

    Suggests two methods of developing the study of the noble gases: first, the discovery of the elements and recent discovery of xenon show the human face of chemistry (historical development); second, the properties of noble gas compounds (particularly xenon) can be used to test the framework of conventional chemistry. (Author/JM)

  11. Highly Concentrated Nebular Noble Gases in Porous Nanocarbon Separates from the Saratov (L4) Meteorite

    NASA Astrophysics Data System (ADS)

    Amari, Sachiko; Matsuda, Jun-ichi; Stroud, Rhonda M.; Chisholm, Matthew F.

    2013-11-01

    The majority of heavy noble gases (Ar, Kr, and Xe) in primitive meteorites are stored in a poorly understood phase called Q. Although Q is thought to be carbonaceous, the full identity of the phase has remained elusive for almost four decades. In order to better characterize phase Q and, in turn, the early solar nebula, we separated carbon-rich fractions from the Saratov (L4) meteorite. We chose this meteorite because Q is most resistant in thermal alteration among carbonaceous noble gas carriers in meteorites and we hoped that, in this highly metamorphosed meteorite, Q would be present but not diamond: these two phases are very difficult to separate from each other. One of the fractions, AJ, has the highest 132Xe concentration of 2.1 × 10-6 cm3 STP g-1, exceeding any Q-rich fractions that have yet been analyzed. Transmission electron microscopy studies of the fraction AJ and a less Q-rich fraction AI indicate that they both are primarily porous carbon that consists of domains with short-range graphene orders, with variable packing in three dimensions, but no long-range graphitic order. The relative abundance of Xe and C atoms (6:109) in the separates indicates that individual noble gas atoms are associated with only a minor component of the porous carbon, possibly one or more specific arrangements of the nanoparticulate graphene.

  12. Ab initio study of the trapping of polonium on noble metals

    NASA Astrophysics Data System (ADS)

    Rijpstra, Kim; Van Yperen-De Deyne, Andy; Maugeri, Emilio Andrea; Neuhausen, Jörg; Waroquier, Michel; Van Speybroeck, Veronique; Cottenier, Stefaan

    2016-04-01

    In the future MYRRHA reactor, lead bismuth eutectic (LBE) will be used both as coolant and as spallation target. Due to the high neutron flux a small fraction of the bismuth will transmute to radiotoxic 210Po. Part of this radiotoxic element will evaporate into the gas above the coolant. Extracting it from the gas phase is necessary to ensure a safe handling of the reactor. An issue in the development of suitable filters is the lack of accurate knowledge on the chemical interaction between a candidate filter material and either elemental polonium or polonium containing molecules. Experimental work on this topic is complicated by the high radiotoxicity of polonium. Therefore, we present in this paper a first-principles study on the adsorption of polonium on noble metals as filter materials. The adsorption of monoatomic Po is considered on the candidate filter materials palladium, platinum, silver and gold. The case of the gold filter is looked upon in more detail by examining how bismuth pollution affects its capability to capture polonium and by studying the adsorption of the heavy diatomic molecules Po2, PoBi and PoPb on this gold filter.

  13. Determining the source and genetic fingerprint of natural gases using noble gas geochemistry: a northern Appalachian Basin case study

    USGS Publications Warehouse

    Hunt, Andrew G.; Darrah, Thomas H.; Poreda, Robert J.

    2012-01-01

    Silurian and Devonian natural gas reservoirs present within New York state represent an example of unconventional gas accumulations within the northern Appalachian Basin. These unconventional energy resources, previously thought to be noneconomically viable, have come into play following advances in drilling (i.e., horizontal drilling) and extraction (i.e., hydraulic fracturing) capabilities. Therefore, efforts to understand these and other domestic and global natural gas reserves have recently increased. The suspicion of fugitive mass migration issues within current Appalachian production fields has catalyzed the need to develop a greater understanding of the genetic grouping (source) and migrational history of natural gases in this area. We introduce new noble gas data in the context of published hydrocarbon carbon (C1,C2+) (13C) data to explore the genesis of thermogenic gases in the Appalachian Basin. This study includes natural gases from two distinct genetic groups: group 1, Upper Devonian (Marcellus shale and Canadaway Group) gases generated in situ, characterized by early mature (13C[C1  C2][13C113C2]: –9), isotopically light methane, with low (4He) (average, 1  103 cc/cc) elevated 4He/40Ar and 21Ne/40Ar (where the asterisk denotes excess radiogenic or nucleogenic production beyond the atmospheric ratio), and a variable, atmospherically (air-saturated–water) derived noble gas component; and group 2, a migratory natural gas that emanated from Lower Ordovician source rocks (i.e., most likely, Middle Ordovician Trenton or Black River group) that is currently hosted primarily in Lower Silurian sands (i.e., Medina or Clinton group) characterized by isotopically heavy, mature methane (13C[C1 – C2] [13C113C2]: 3), with high (4He) (average, 1.85  103 cc/cc) 4He/40Ar and 21Ne/40Ar near crustal production levels and elevated crustal noble gas content (enriched 4He,21Ne, 40Ar). Because the release of each crustal noble gas (i.e., He, Ne, Ar) from mineral grains in the shale matrix is regulated by temperature, natural gases obtain and retain a record of the thermal conditions of the source rock. Therefore, noble gases constitute a valuable technique for distinguishing the genetic source and post-genetic processes of natural gases.

  14. Santa Lucia (2008) (L6) Chondrite, a Recent Fall: Composition, Noble Gases, Nitrogen and Cosmic Ray Exposure Age

    NASA Astrophysics Data System (ADS)

    Mahajan, Ramakant R.; Varela, Maria Eugenia; Joron, Jean Louis

    2016-04-01

    The Santa Lucia (2008)—one the most recent Argentine meteorite fall, fell in San Juan province, Argentina, on 23 January 2008. Several masses (total ~6 kg) were recovered. Most are totally covered by fusion crust. The exposed interior is of light-grey colour. Chemical data [olivine (Fa24.4) and low-Ca pyroxene (En77.8 Fs20.7 Wo1.6)] indicate that Santa Luica (2008) is a member of the low iron L chondrite group, corresponding to the equilibrated petrologic type 6. The meteorite name was approved by the Nomenclature Committee (NomCom) of the Meteoritical Society (Meteoritic Bulletin, no. 97). We report about the chemical composition of the major mineral phases, its bulk trace element abundance, its noble gas and nitrogen data. The cosmic ray exposure age based on cosmogenic 3He, 21Ne, and 38Ar around 20 Ma is comparable to one peak of L chondrites. The radiogenic K-Ar age of 2.96 Ga, while the young U, Th-He are of 1.2 Ga indicates that Santa Lucia (2008) lost radiogenic 4He more recently. Low cosmogenic (22Ne/21Ne)c and absence of solar wind noble gases are consistent with irradiation in a large body. Heavy noble gases (Ar/Kr/Xe) indicated trapped gases similar to ordinary chondrites. Krypton and neon indicates irradiation in large body, implying large pre-atmospheric meteoroid.

  15. Highly concentrated nebular noble gases in porous nanocarbon separates from the Saratov (L4) meteorite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amari, Sachiko; Matsuda, Jun-ichi; Stroud, Rhonda M.

    2013-11-20

    The majority of heavy noble gases (Ar, Kr, and Xe) in primitive meteorites are stored in a poorly understood phase called Q. Although Q is thought to be carbonaceous, the full identity of the phase has remained elusive for almost four decades. In order to better characterize phase Q and, in turn, the early solar nebula, we separated carbon-rich fractions from the Saratov (L4) meteorite. We chose this meteorite because Q is most resistant in thermal alteration among carbonaceous noble gas carriers in meteorites and we hoped that, in this highly metamorphosed meteorite, Q would be present but not diamond:more » these two phases are very difficult to separate from each other. One of the fractions, AJ, has the highest {sup 132}Xe concentration of 2.1 × 10{sup –6} cm{sup 3} STP g{sup –1}, exceeding any Q-rich fractions that have yet been analyzed. Transmission electron microscopy studies of the fraction AJ and a less Q-rich fraction AI indicate that they both are primarily porous carbon that consists of domains with short-range graphene orders, with variable packing in three dimensions, but no long-range graphitic order. The relative abundance of Xe and C atoms (6:10{sup 9}) in the separates indicates that individual noble gas atoms are associated with only a minor component of the porous carbon, possibly one or more specific arrangements of the nanoparticulate graphene.« less

  16. The Induction of Noble Rot (Botrytis cinerea) Infection during Postharvest Withering Changes the Metabolome of Grapevine Berries (Vitis vinifera L., cv. Garganega)

    PubMed Central

    Negri, Stefano; Lovato, Arianna; Boscaini, Filippo; Salvetti, Elisa; Torriani, Sandra; Commisso, Mauro; Danzi, Roberta; Ugliano, Maurizio; Polverari, Annalisa; Tornielli, Giovanni B.; Guzzo, Flavia

    2017-01-01

    The natural or induced development of noble rot caused by the fungus Botrytis cinerea during the late stages of grapevine (Vitis vinifera L.) berry ripening is used in some traditional viticulture areas to produce high-quality wines such as Sauternes and Tokaji. In this research, we wanted to verify if by changing the environmental conditions during post-harvest withering we could induce the noble rot development on harvested berries in order to positively change the wine produced from withered Garganega berries. Therefore, we exposed the berries to postharvest withering under normal or artificially humid conditions, the latter to induce noble rot. The presence of noble rot symptoms was associated with the development of B. cinerea in the berries maintained under humid conditions. The composition of infected and non-infected berries was investigated by untargeted metabolomics using liquid chromatography/mass spectrometry. We also explored the effects of the two withering methods on the abundance of volatile organic compounds in wine by yeast-inoculated micro-fermentation followed by targeted gas chromatography/mass spectrometry. These experiments revealed significant metabolic differences between berries withered under normal and humid conditions, indicating that noble rot affects berry metabolism and composition. As well as well-known botrytization markers, we detected two novel lipids that have not been observed before in berries infected with noble rot. Unraveling the specific metabolic profile of berries infected with noble rot may help to determine the compounds responsible for the organoleptic quality traits of botrytized Garganega wines. PMID:28680428

  17. Methane Sources and Migration Mechanisms in the Shallow Trinity Aquifer in Parker and Hood Counties, Texas - a Noble Gas Analysis

    NASA Astrophysics Data System (ADS)

    Wen, T.; Castro, C.; Nicot, J. P.; Hall, C. M.; Mickler, P. J.; Darvari, R.

    2016-12-01

    The presence of elevated methane in groundwaters within the Barnett Shale footprint in Parker and Hood counties, Texas has caused public concern that hydrocarbon production may facilitate migration of natural gas into a critical groundwater resource. This study places constraints on the source of methane in these groundwaters by analyzing water and stray gas data from groundwater wells and gas production wells from both the Barnett Shale and Strawn Group for methane content and noble gases, both of crustal and atmospheric origin. Particular emphasis is given to the atmospheric heavier noble gases 84Kr and 132Xe, which are significantly less affected by the presence of excess air, commonly present in modern Texas groundwaters (e.g., [1]). Dissolved methane concentrations are positively correlated with crustal 4He, 21Ne and 40Ar and suggest that noble gases and methane in these groundwaters originate from a common source, likely the Strawn Group, which the sampled aquifer overlies unconformably. This finding is further supported by the noble gas isotopic signature of stray gas when compared to the gas isotopic signatures of both Barnett Shale and the Strawn Group. In contrast to most samples, four groundwater wells with the highest methane concentrations unequivocally show heavy depletion of the atmospheric noble gases 20Ne, 36Ar, 84Kr and 132Xe with respect to freshwater recharge equilibrated with the atmosphere (ASW). This is consistent with predicted noble gas concentrations in a residual water phase in contact with a gas phase with initial ASW composition at 18°C-25°C, assuming a closed-system and suggest a highly localized gas source. All these four wells, without exception, tap into the Strawn Group and it is likely that shallow gas accumulations, as they are known to exist, were reached. Additionally, lack of correlation between 84Kr/36Ar and 132Xe/36Ar fractionation levels and distance to the nearest production wells does not support the notion that methane present in these groundwater wells migrated from nearby production wells, either conventional or using hydraulic fracturing techniques. Lack of correlation between the latter and 4He/20Ne further supports these findings. [1] Castro et al. (2007) EPSL 257, 170-187.

  18. Preparation for Analytical Measurements on Mars

    NASA Image and Video Library

    2015-03-31

    A Sample Analysis at Mars (SAM) team member at NASA's Goddard Space Flight Center, Greenbelt, Maryland, prepares the SAM testbed for an experiment. This test copy of the SAM suite of instruments is inside a chamber that, when closed, can model the pressure and temperature environment that SAM sees inside NASA's Curiosity rover on Mars. Many weeks of testing are often needed to develop and refine sequences of operations that SAM uses for making specific measurements on Mars. This was the case with preparation to pull a volume of gas from the atmosphere and extract the heavy noble gas xenon. SAM's measurements of different types of xenon in the Martian atmosphere provide clues about the planet's history. http://photojournal.jpl.nasa.gov/catalog/PIA19149

  19. Studies of Copper, Silver, and Gold Cluster Anions: Evidence of Electronic Shell Structure.

    NASA Astrophysics Data System (ADS)

    Pettiette, Claire Lynn

    A new Ultraviolet Magnetic Time-of-Flight Photoelectron Spectrometer (MTOFPES) has been developed for the study of the electronic structure of clusters produced in a pulsed supersonic molecular beam. This is the first technique which has been successful in probing the valence electronic states of metal clusters. The ultraviolet photoelectron spectra of negative cluster ions of the noble metals have been taken at several different photon energies. These are presented along with the electron affinity and HOMO-LUMO gap measurements for Cu_6^- to Cu_ {41}^-, using 4.66 eV and 6.42 eV detachment energies; Ag_3^- to Ag_{21}^-, using 6.42 eV detachment energy; and Au_3^ - to Au_{21}^-, using 6.42 eV and 7.89 eV detachment energies. The spectra provide the first detailed probes of the s valence electrons of the noble metal clusters. In addition, the 6.42 eV and 7.89 eV spectra probe the first one to two electron volts of the molecular orbitals of the d valence electrons of copper and gold clusters. The electron affinity and HOMO-LUMO gap measurements of the noble metal clusters agree with the predictions of the ellipsoidal shell model for mono-valent metal clusters. In particular, cluster numbers 8, 20, and 40--which correspond to the spherical shell closings of this model--have low electron affinities and large HOMO-LUMO gaps. The spectra of the gold cluster ions indicate that the molecular orbital energies of the cluster valence electrons are more widely spaced for gold than for copper or silver. This is to be expected for the heavy atom clusters when relativistic effects are taken into account.

  20. Noble gases and the early history of the Earth: Inappropriate paradigms and assumptions inhibit research and communication

    NASA Technical Reports Server (NTRS)

    Huss, G. R.; Alexander, E. C., Jr.

    1985-01-01

    The development of models as tracers of nobel gases through the Earth's evolution is discussed. A new set of paradigms embodying present knowledge was developed. Several important areas for future research are: (1) measurement of the elemental and isotopic compositions of the five noble gases in a large number of terrestrial materials, thus better defining the composition and distribution of terrestrial noble gases; (2) determinations of relative diffusive behavior, chemical behavior, and the distribution between solid and melt of noble gases under mantle conditions are urgently needed; (3) disequilibrium behavior in the nebula needs investigation, and the behavior of plasmas and possible cryotrapping on cold nebular solids are considered.

  1. A membrane inlet mass spectrometry system for noble gases at natural abundances in gas and water samples.

    PubMed

    Visser, Ate; Singleton, Michael J; Hillegonds, Darren J; Velsko, Carol A; Moran, Jean E; Esser, Bradley K

    2013-11-15

    Noble gases dissolved in groundwater can reveal paleotemperatures, recharge conditions, and precise travel times. The collection and analysis of noble gas samples are cumbersome, involving noble gas purification, cryogenic separation and static mass spectrometry. A quicker and more efficient sample analysis method is required for introduced tracer studies and laboratory experiments. A Noble Gas Membrane Inlet Mass Spectrometry (NG-MIMS) system was developed to measure noble gases at natural abundances in gas and water samples. The NG-MIMS system consists of a membrane inlet, a dry-ice water trap, a carbon-dioxide trap, two getters, a gate valve, a turbomolecular pump and a quadrupole mass spectrometer equipped with an electron multiplier. Noble gases isotopes (4)He, (22)Ne, (38)Ar, (84)Kr and (132)Xe are measured every 10 s. The NG-MIMS system can reproduce measurements made on a traditional noble gas mass spectrometer system with precisions of 2%, 8%, 1%, 1% and 3% for He, Ne, Ar, Kr and Xe, respectively. Noble gas concentrations measured in an artificial recharge pond were used to monitor an introduced xenon tracer and to reconstruct temperature variations to within 2 °C. Additional experiments demonstrated the capability to measure noble gases in gas and in water samples, in real time. The NG-MIMS system is capable of providing analyses sufficiently accurate and precise for introduced noble gas tracers at managed aquifer recharge facilities, groundwater fingerprinting based on excess air and noble gas recharge temperature, and field and laboratory studies investigating ebullition and diffusive exchange. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Trapping of Noble Gases by Radiative Association with H3 + in the Protosolar Nebula

    NASA Astrophysics Data System (ADS)

    Pauzat, F.; Bacchus-Montabonel, M.-C.; Ellinger, Y.; Mousis, O.

    2016-04-01

    The heavy noble gas deficiencies observed in Titan’s atmosphere and in comets have been proposed to be related to a sequestration process by {{{H}}}3+ in the gas phase at the early protosolar nebula. Chemical thermodynamics and astrophysics modeling are favorable to this hypothesis, as presented in preceding papers. However, there is a point still to be raised, I.e., that no dynamical study of the efficiency of the collisional processes had been performed so far. Here, we show that, apart from the expected exception of Ne, the rate constants obtained, I.e., 0.7 × 10-18, 0.5 × 10-16, and 10-16 (cm3 s-1) for Ar, Kr, and Xe, respectively, are reasonably high for such processes, particularly in the case of Kr and Xe. The temperature dependence is also considered, showing a similar behavior for all noble gases with a peak efficiency in the range 50-60 K. Globally, we can conclude that the scenario of sequestration by {{{H}}}3+ is definitively comforted by the results of our quantum dynamical treatment. This process may also be responsible of the Ar impoverishment just measured in comet 67P/Churyumov-Gerasimenko by the ROSINA mass spectrometer on board the Rosetta spacecraft.

  3. Noble gases, nitrogen, cosmic ray exposure history and mineralogy of Beni M'hira (L6) chondrite

    NASA Astrophysics Data System (ADS)

    Mahajan, Ramakant R.; Nejia, Laridhi Ouazaa; Ray, Dwijesh; Naik, Sekhar

    2018-03-01

    The concentrations and isotopic composition of noble gases helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon(Xe) and nitrogen were measured in the Beni M'hira L6 chondrite. The cosmic ray exposure age of Beni M'hira is estimated of 15.6 ± 3.7 (Ma). The radiogenic age, of around 485 ± 64 Ma, derived from 4He, and of around 504 ± 51 Ma from 40Ar, suggests an age resetting indicating the event impact. The heavy noble gases (Ar, Kr and Xe) concentrations imply that the gas is a mixture of trapped component Q and solar wind. The measured nitrogen abundance of 0.74 ppm and the isotopic signature of δ15N = 14.6‰ are within the range of ordinary chondrites. The homogeneous chemical composition of olivine (Fa:26 ± 0.25) and low-Ca pyroxene (Fs:22.4 ± 0.29) suggest that the Beni M'hira meteorite is an equilibrated chondrite. This is further corroborated by strong chondrule-matrix textural integration (lack of chondrules, except a few relict clast). Shock metamorphism generally corresponds to S5 (>45 GPa), however, locally disequilibrium melting (shock-melt veins) suggests, that the peak shock metamorphism was at ∼75 GPa, 950 °C.

  4. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2001-01-01

    We are developing laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI) (e.g., of lung ventilation) as well as studies of tissue perfusion. In addition, laser-polarized noble gases (He-3 and Xe-129) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We are pursuing two specific aims in this research. The first aim is to develop a low-field (< 0.01 T) instrument for noble gas MRI of humans, and the second aim is to develop functional MRI of the lung using laser-polarized Xe-129 and related techniques.

  5. An RF-only ion-funnel for extraction from high-pressure gases

    DOE PAGES

    Brunner, T.; Fudenberg, D.; Varentsov, V.; ...

    2015-01-27

    An RF ion-funnel technique has been developed to extract ions from a high-pressure (10 bar) noble-gas environment into a vacuum (10 -6 mbar). Detailed simulations have been performed and a prototype has been developed for the purpose of extracting 136Ba ions from Xe gas with high efficiency. With this prototype, ions have been extracted for the first time from high-pressure xenon gas and argon gas. Systematic studies have been carried out and compared to simulations. This demonstration of extraction of ions, with mass comparable to that of the gas generating the high-pressure, has applications to Ba tagging from a Xe-gasmore » time-projection chamber for double-beta decay, as well as to the general problem of recovering trace amounts of an ionized element in a heavy (m > 40 u) carrier gas.« less

  6. Noble Gases in Two Fragments of Different Lithologies from the Almahata Sitta Meteorite

    NASA Technical Reports Server (NTRS)

    Nagao, K.; Haba, M. K.; Zolensky, M.; Jenniskens, P.; Shaddad, M. H.

    2014-01-01

    The Almahata Sitta meteorite, whose preat-mospheric body was the asteroid 2008 TC3, fell on October 7, 2008 in the Nubian Desert in northern Sudan [e.g., 1, 2]. Numer-ous fragments have been recovered during several expeditions organized from December 2008 [2]. The meteorite was classified as an anomalous polymict ureilite with several different kinds of chondritic fragments [e.g., 3-5]. Noble gas studies performed on several fragments from the meteorite showed cosmic-ray expo-sure ages of about 20 My [e.g., 6-8], although slightly shorter ages were also reported in [9, 10]. Concentrations of trapped heavy noble gases are variable among the fragments of different lithologies [9, 10]. We report noble gas data on two samples from the #1 and #47 fragments [2], which were the same as those re-ported by Ott et al. [9]. Experimental Procedure: Weights of bulk samples #1 and #47 used in this work were 16.1 mg and 17.6 mg, respectively. Noble gases were extracted by stepwise heating at the tempera-tures of 800, 1200 and 1800°C for #1 and 600, 800, 1000, 1200, 1400, 1600 and 1800°C for #47. Concentrations and isotopic ra-tios of noble gases were measured with a modified-VG5400/MS-III at the Geochemical Research Center, University of Tokyo. Results and Discussion: Cosmogenic He and Ne are domi-nant in both #1 and #47, but trapped Ar, Kr and Xe concentra-tions are much higher in #47 than in #1, showing that noble gas compositions in #47 are similar to those of ureilites. 3He/21Ne and 22Ne/21Ne of cosmogenic He and Ne are 4.8 and 1.12 for #1 and 3.6 and 1.06 for #47, respectively, both of which plot on a Bern line [11]. This indicates negligible loss of cosmogenic 3He from #1 in our sample, unlike the low 3He/21Ne of 3.1 for #1 by Ott et al. [9]. Concentrations of cosmogenic 3He and 21Ne (10-8 cc/g) are 30 and 6.3 for #1 and 32 and 9.0 for #47, respectively, which are higher than those in [9] and give cosmic-ray exposure ages of ca. 20 My depending on assumed production rates. Rela-tive abundances of trapped 36Ar, 84Kr and 132Xe for #1 resemble those of Q-component, which is a dominant trapped noble gas component in chondrites. In contrast to #1, #47 plots below a trend for ureilites [12] as well as Q, which implies a partial loss of trapped 36Ar from the lithology of #47.

  7. MASCOT: a new mass-spectrometer facility dedicated to the analysis of cosmogenic noble gases (3He and 21Ne) from terrestrial samples (Institute of Geological Sciences - University of Bern, Switzerland).

    NASA Astrophysics Data System (ADS)

    Delunel, Romain; Enderli, Patrick; Jenni, Hans-Erich; Leya, Ingo; Schlunegger, Fritz

    2017-04-01

    In the past years, terrestrial cosmogenic nuclides have been successfully used for dating exposure history of landforms and measuring erosional processes on Earth's surface. In this context, quantifications of landscape change have mainly been accomplished through the use of radioactive cosmogenic nuclides such as 10Be and 26Al, but their application has generally been restricted to Quaternary time scales because of their relatively short half-lives. The results are 10Be and 26Al concentrations that are below the detection limit of available accelerator mass spectrometers if the samples have a Late Miocene or even a Pliocene age. Contrariwise, cosmogenic noble gases such as 3He and 21Ne do not experience any radioactive decay through time, which places these isotopes in an unbeatable position for measuring paleo-denudation rates preserved in detrital material even if the ages of these deposits are up to 10 Ma and even older. These isotopes are thus keys for assessing the interplays between tectonic, climate and surface processes involved in the long-term evolution of mountain belts. Here we report the technical specifications of a noble gas analytical system that we have developed and set up at the Institute of Geological Sciences of the University of Bern, Switzerland, with the motivations to get dates and rates of erosion processes from the measurement of cosmogenic noble gases (3He and 21Ne) concentrations from terrestrial samples. This new facility, hosted at the Institute of Geological Sciences of the University of Bern, combines a MAP215-50 mass spectrometer fitted with a new high-sensitivity channel electron multiplier with an all-metal extraction and purification line. This later system thus comprises: (i) a double vacuum resistance furnace loaded by a 22-samples carrousel, (ii) three in-vacuo crushers (iii) an ultra high vacuum pumping system (<10-8 mbar) composed of turbo-molecular, ion-getter pumps and backed by a scroll pump, (iv) the line itself made up of a series of valves, connectors, a collection of getter-pellets filled fingers and activated charcoal cold-traps and (v) a dry-cryogen free cryostat system operating at temperatures ranging between 8K and 375K for trapping remaining heavy gases and focusing He and/or Ne before analysis in the mass spectrometer. This communication will be the opportunity to present our new noble gas system's full specifications together with an overview of the associated scientific questions we want to address using this new facility.

  8. Our Loss Was Heavy: Brigadier General Josiah Harmar’s Kekionga Campaign of 1790

    DTIC Science & Technology

    2015-05-23

    visiting forts, and perusing niche museums around the world instead of lounging on the beach during the ever too few leave periods. I am ever grateful for...forcing the Algonquian people to shape a new existence26 Other authors such as Eric Hinderaker, Gregory H. Nobles, and Sarah E . Miller further expand...Frontiers: Cultural Encounters and Continental Conquest (New York: Hill and Wang, 1997), 15. Likewise, Sarah E . Miller notes that the United States

  9. Constraints on the composition of the ancient terrestrial atmosphere and hydrosphere from fluid inclusion analysis

    NASA Astrophysics Data System (ADS)

    Marty, B.; Avice, G.; Burgess, R.

    2016-12-01

    The evolution of the hydrosphere and atmosphere during the first half of Earth's history is still largely unknown. We are currently investigating the compositions of these reservoirs from the analysis of fluid inclusions trapped in 3.5-2.7 Ga-old hydrothermal quartz. We specifically analyze noble gases and nitrogen which are conservative enough to have survived the long history of their host phases. The samples come from Archean terranes situated in North Pole, the Pilbara, NW Australia, and in the Barberton greenstone belt, South Africa. Their morphologies suggest that the quartz deposition was contemporary with terrane formation. They were selected on the basis of their ages determined by the Ar-Ar method. The results published by our group show that the noble gas isotopic composition of the Archean atmosphere was similar to the modern one, with the outstanding exception of xenon. This heavy noble gas experienced gradual isotopic fractionation through time, as a result of its preferential escape to space, which mechanism remains to be elucidated. In contrast, the isotope composition of atmospheric N was similar to the modern one, suggesting little, if any, loss of this element from the terrestrial atmosphere from 3.5 Ga to Present. The atmospheric partial pressure of N2 was likely to be comparable to, or lower than, the modern one, casting doubt on the possibility of enhanced pN2 as a mean to counterbalance the faint Sun energy flux. Here we shall newly report data on chlorine and potassium in fluid inclusions with, together with noble gases, suggest that the salinity of the Archean oceans was not very different from that of the modern seawater.

  10. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot1[OPEN

    PubMed Central

    Collins, Thomas S.; Vicente, Ariel R.; Doyle, Carolyn L.; Ye, Zirou; Allen, Greg; Heymann, Hildegarde

    2015-01-01

    Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for botrytized wine production. Using an integrated transcriptomics and metabolomics approach, we demonstrate that noble rot alters the metabolism of cv Sémillon berries by inducing biotic and abiotic stress responses as well as ripening processes. During noble rot, B. cinerea induced the expression of key regulators of ripening-associated pathways, some of which are distinctive to the normal ripening of red-skinned cultivars. Enhancement of phenylpropanoid metabolism, characterized by a restricted flux in white-skinned berries, was a common outcome of noble rot and red-skinned berry ripening. Transcript and metabolite analyses together with enzymatic assays determined that the biosynthesis of anthocyanins is a consistent hallmark of noble rot in cv Sémillon berries. The biosynthesis of terpenes and fatty acid aroma precursors also increased during noble rot. We finally characterized the impact of noble rot in botrytized wines. Altogether, the results of this work demonstrated that noble rot causes a major reprogramming of berry development and metabolism. This desirable interaction between a fruit and a fungus stimulates pathways otherwise inactive in white-skinned berries, leading to a greater accumulation of compounds involved in the unique flavor and aroma of botrytized wines. PMID:26450706

  11. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot.

    PubMed

    Blanco-Ulate, Barbara; Amrine, Katherine C H; Collins, Thomas S; Rivero, Rosa M; Vicente, Ariel R; Morales-Cruz, Abraham; Doyle, Carolyn L; Ye, Zirou; Allen, Greg; Heymann, Hildegarde; Ebeler, Susan E; Cantu, Dario

    2015-12-01

    Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for botrytized wine production. Using an integrated transcriptomics and metabolomics approach, we demonstrate that noble rot alters the metabolism of cv Sémillon berries by inducing biotic and abiotic stress responses as well as ripening processes. During noble rot, B. cinerea induced the expression of key regulators of ripening-associated pathways, some of which are distinctive to the normal ripening of red-skinned cultivars. Enhancement of phenylpropanoid metabolism, characterized by a restricted flux in white-skinned berries, was a common outcome of noble rot and red-skinned berry ripening. Transcript and metabolite analyses together with enzymatic assays determined that the biosynthesis of anthocyanins is a consistent hallmark of noble rot in cv Sémillon berries. The biosynthesis of terpenes and fatty acid aroma precursors also increased during noble rot. We finally characterized the impact of noble rot in botrytized wines. Altogether, the results of this work demonstrated that noble rot causes a major reprogramming of berry development and metabolism. This desirable interaction between a fruit and a fungus stimulates pathways otherwise inactive in white-skinned berries, leading to a greater accumulation of compounds involved in the unique flavor and aroma of botrytized wines. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. Helium Isotopes and Noble Gas Abundances of Cave Dripping Water in Three Caves in East Asia

    NASA Astrophysics Data System (ADS)

    Chen, A. T.; Shen, C. C.; Tan, M.; Li, T.; Uemura, R.; Asami, R.

    2015-12-01

    Paleo-temperature recorded in nature archives is a critical parameter to understand climate change in the past. With advantages of unique inert chemical characteristics and sensitive solubilities with temperature, dissolved noble gases in speleothem inclusion water were recently proposed to retrieve terrestrial temperature history. In order to accurately apply this newly-developed speleothem noble gas temperature (NGT) as a reliable proxy, a fundamental issue about behaviors of noble gases in the karst should be first clarified. In this study, we measured noble gas contents in air and dripping water to evaluate any ratio deviation between noble gases. Cave dripping water samples was collected from three selected caves, Shihua Cave in northern China, Furong Cave in southwestern, and Gyukusen Cave in an island located in the western Pacific. For these caves are characterized by a thorough mixing and long-term storage of waters in a karst aquifer by the absence of seasonal oxygen isotope shifts. Ratios of dripping water noble gases are statistically insignificant from air data. Helium isotopic ratios in the dripping water samples match air value. The results indicate that elemental and isotopic signatures of noble gases from air can be frankly preserved in the epikarst and support the fidelity of NGT techniques.

  13. A 3He-129Xe co-magnetometer probed by a Rb magnetometer with Ramsey-pulse technique

    NASA Astrophysics Data System (ADS)

    Sheng, Dong; Kabcenell, Aaron; Romalis, Michael

    2013-05-01

    We report the recent progress in development of a new kind of co-magnetometer, benifiting from both the long spin coherence time of a noble gas and a highly sensitive alkali metal magnetometer. Due to the Fermi-contact interaction between alkali metal electron spin and noble gas nuclear spin the effective magnetization of the noble gas is enhanced by a factor of 6 to 600, allowing near quantum-limited detection of nuclear spins. Collisions between polarized alkali atoms and noble gas also introduce a large shift to the nuclear spin precession frequency. We reduce this effect by using Ramsey pulse techniques to measure the noble gas spin precession frequency ``in the dark'' by turning off the pumping laser between Ramsey pulses. A furthur reduction of the back-hyperpolarization from the noble gas can be achieved by controlling the cell temperature on short time scale. We showed that a 3He-129Xe Ramsey co-magnetometer is effective in cancelling fluctuations of external magnetic fields and gradients and developed cells with sufficient 129Xe T2 time without surface coatings. The new co-magnetometer has potential applications for many precision measurements, such as searches for spin-gravity couplings, electric dipole moments, and nuclear spin gyroscopes. Supported by DARPA.

  14. Covalent triazine framework supported non-noble metal nanoparticles with superior activity for catalytic hydrolysis of ammonia borane: from mechanistic study to catalyst design† †Electronic supplementary information (ESI) available: 11B NMR spectra, XRD patterns, results of BET and ICP, XPS spectra, TOF values and activation energies E a of the non-noble metal catalysts, time versus volume of H2, catalytic activities and TEM images of 5% Co/CNT, 3% Co/CNT, 1% Co/CNT, the plot of hydrogen generation rate versus the concentration of Co and AB, kinetic isotope effect and TEM image of 5% Co/CTF-1 after reaction. See DOI: 10.1039/c6sc02456d Click here for additional data file.

    PubMed Central

    Li, Zhao; Liu, Lin; Chen, Weidong; Zhang, Miao; Wu, Guotao; Chen, Ping

    2017-01-01

    Development of non-noble metal catalysts with similar activity and stability to noble metals is of significant importance in the conversion and utilization of clean energy. The catalytic hydrolysis of ammonia borane (AB) to produce 3 equiv. of H2, as an example of where noble metal catalysts significantly outperform their non-noble peers, serves as an excellent test site for the design and optimization of non-noble metal catalysts. Our kinetic isotopic effect measurements reveal, for the first time, that the kinetic key step of the hydrolysis is the activation of H2O. Deducibly, a transition metal with an optimal electronic structure that bonds H2O and –OH in intermediate strengths would favor the hydrolysis of AB. By employing a covalent triazine framework (CTF), a newly developed porous material capable of donating electrons through the lone pairs on N, the electron densities of nano-sized Co and Ni supported on CTF are markedly increased, as well as their catalytic activities. Specifically, Co/CTF exhibits a total turnover frequency of 42.3 molH2 molCo –1 min–1 at room temperature, which is superior to all peer non-noble metal catalysts ever reported and even comparable to some noble metal catalysts. PMID:28451227

  15. Noble Metal Nanoparticles for Biosensing Applications

    PubMed Central

    Doria, Gonçalo; Conde, João; Veigas, Bruno; Giestas, Leticia; Almeida, Carina; Assunção, Maria; Rosa, João; Baptista, Pedro V.

    2012-01-01

    In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios) that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies—from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory. PMID:22438731

  16. Irreversible adsorption of atmospheric helium on olivine: A lobster pot analogy

    NASA Astrophysics Data System (ADS)

    Protin, Marie; Blard, Pierre-Henri; Marrocchi, Yves; Mathon, François

    2016-04-01

    This study reports new experimental results that demonstrate that large amounts of atmospheric helium may be adsorbed onto the surfaces of olivine grains. This behavior is surface-area-related in that this contamination preferentially affects grains that are smaller than 125 μm in size. One of the most striking results of our study is that in vacuo heating at 900 °C for 15 min is not sufficient to completely remove the atmospheric contamination. This suggests that the adsorption of helium may involve high-energy trapping of helium through irreversible anomalous adsorption. This trapping process of helium can thus be compared to a ;lobster pot; adsorption: atmospheric helium easily gets in, but hardly gets out. While this type of behavior has previously been reported for heavy noble gases (Ar, Kr, Xe), this is the first time that it has been observed for helium. Adsorption of helium has, until now, generally been considered to be negligible on silicate surfaces. Our findings have significant implications for helium and noble gas analysis of natural silicate samples, such as for cosmic-ray exposure dating or noble gas characterization of extraterrestrial material. Analytical procedures in future studies should be adapted in order to avoid this contamination. The results of this study also allow us to propose an alternative explanation for previously described matrix loss of cosmogenic 3He.

  17. Resonance bonding in XNgY (X = F, Cl, Br, I; Ng = Kr or Xe; Y = CN or NC) molecules: an NBO/NRT investigation.

    PubMed

    Song, Junjie; Su, Yue; Jia, Yanping; Chen, Lusheng; Zhang, Guiqiu

    2018-05-07

    Several noble-gas-containing molecules XNgY were observed experimentally. However, the bonding in such systems is still not understood. Using natural bond orbital and natural resonance theory (NBO/NRT) methods, the present work investigated bonding of the title molecules. The results show that each of the studied XNgY molecules should be better described as a resonance hybrid of ω-bonding and [Formula: see text]-type long-bonding structures: X: - Ng +  - Y, X - Ng + : Y - , and X ^ Y. The ω-bonding and long-bonding make competing contributions to the composite resonance hybrid due to the accurately preserved bond order conservation principle. We find that the resonance bonding is highly tunable for these noble-gas-containing molecules due to its dependence on the nature of the halogen X or the central noble-gas atoms Ng. When the molecule XNgY consists of a relatively lighter Ng atom, a relatively low-electronegative X atom, and the CN fragment rather than NC, the long-bonding structure X ^ Y tends to be highlighted. In contrast, the heavy Ng atom and high-electronegative X atom will enhance the ω-bonding structure. Overall, the present work provides electronic principles and chemical insights that help understand the bonding in these XNgY species.

  18. Toxic and heavy metals as a cause of crayfish mass mortality from acidified headwater streams.

    PubMed

    Svobodová, Jitka; Douda, Karel; Fischer, David; Lapšanská, Natalia; Vlach, Pavel

    2017-03-01

    Mining activities are responsible for high concentrations of metals in river networks in many parts of the world. Mining activities and the resulting high loads of heavy metals interact with intensive acid rain, and often have great consequences for biodiversity. However, considering the frequently episodic nature of these heavy acid rains, there is little detailed evidence of direct impacts. In 2011 we observed a massive mortality of noble crayfish and stone crayfish in Padrťsko Special Area of Conservation (SAC) in the Brdy Mountain region of the Czech Republic. Based on concentrations of metals (Al, Fe, As, Cd, Pb, Cu, Zn and Hg) in various tissues (gills, hepatopancreas, muscle) of both dead and live crayfish in this locality compared to reference populations, these crayfish had experienced long-term exposure to increased levels of these metals. Here we give detailed documentation of crayfish mortality associated with high metal concentrations in the gills and other tissues of these endangered invertebrates.

  19. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, X. J.; Xue, X. L.; Guo, Z. X.

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt N nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt N, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D 6h symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). But, the magic number of Pt Nmore » clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt-57 motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d 96s 1) of Pt, which result in a delicate balance between the enhanced Pt-Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. Our findings about Pt N clusters are also applicable to Ir N clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. Finally, the findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.« less

  20. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  1. Probing the interaction of noble gases with pristine and nitrogen-doped graphene through Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cunha, Renato; Perea-López, Néstor; Elías, Ana Laura; Fujisawa, Kazunori; Carozo, Victor; Feng, Simin; Lv, Ruitao; dos Santos, Maria Cristina; Terrones, Mauricio; Araujo, Paulo T.

    2018-05-01

    The interactions of adsorbates with graphene have received increasing attention due to its importance in the development of applications involving graphene-based coatings. Here, we present a study of the adsorption of noble gases on pristine and nitrogen-doped graphene. Single-layer graphene samples were synthesized by chemical vapor deposition (CVD) and transferred to transmission electron microscopy (TEM) grids. Several noble gases were allowed to adsorb on the suspended graphene substrate at very low temperatures. Raman spectra show distinct frequency blue shifts in both the 2D and G bands, which are induced by gas adsorption onto high quality single layer graphene (1LG). These shifts, which we associate with compressive biaxial strain in the graphene layers induced by the noble gases, are negligible for nitrogen-doped graphene. Additionally, a thermal depinning transition, which is related to the desorption of a noble gas layer from the graphene surface at low temperatures (ranging from 20 to 35 K), was also observed at different transition temperatures for different noble gases. These transition temperatures were found to be 25 K for argon and 35 K for xenon. Moreover, we were able to obtain values for the compressive biaxial strain in graphene induced by the adsorbed layer of noble gases, using Raman spectroscopy. Ab initio calculations confirmed the correlation between the noble gas-induced strain and the changes in the Raman features observed.

  2. Heavy metal content (Cd, Ni, Cr and Pb) in soil amendment with a low polluted biosolid

    NASA Astrophysics Data System (ADS)

    Gomez Lucas, Ignacio; Lag Brotons, Alfonso; Navarro-Pedreño, Jose; Belén Almendro-Candel, Maria; Jordán, Manuel M.; Bech, Jaume; Roca, Nuria

    2016-04-01

    The progressively higher water quality standards in Europe has led to the generation of large quantities of sewage sludge derived from wastewater treatment (Fytili and Zabaniotou 2008). Composting is an effective method to minimize these risks, as pathogens are biodegraded and heavy metals are stabilized as a result of organic matter transformations (Barker and Bryson 2002; Noble and Roberts 2004). Most of the studies about sewage sludge pollution are centred in medium and high polluted wastes. However, the aim of this study was to assess the effects on soil heavy metal content of a low polluted sewage sludge compost in order to identify an optimal application rate based in heavy metal concentration under a period of cultivation of a Mediterranean horticultural plant (Cynara carducnculus). The experiment was done between January to June: rainfall was 71 mm, the volume of water supplied every week was 10.5 mm, mean air temperatures was 14.2, 20.4 (maximum), and 9.2◦C (minimum). The soil was a clay-loam anthrosol (WRB 2006). The experimental plot (60 m2) was divided into five subplots with five treatments corresponding to 0, 2, 4, 6, and 8 kg compost/m2. Three top-soil (first 20 cm) samples from each treatment were taken (January, April and June) and these parameters were analysed: pH, electrical conductivity, organic matter and total content of heavy metals (microwave acid digestion followed by AAS-spectrometry determination). The results show that sewage sludge compost treatments increase the organic matter content and salinity (electrical conductivity of the soils) and diminish the pH. Cd and Ni total content in top-soil was affected and both slightly reduce their concentration. Pb and Cr show minor changes. In general, the application of this low polluted compost may affect the mobility of Cd and Ni due to the pH modification and the water added by irrigation along time but Pb and Cr remain their content in the top-soil. References Barker, A.V., and G.M. Bryson. 2002. "Bioremediation of Heavy Metals and Organic Toxicants by Composting." The Scientific World Journal 2: 407-420. Fytili, D., and A. Zabaniotou. 2008. "Utilization of Sewage Sludge in EU Application of Old and New Methods - A Review." Renewable and Sustainable Energy Reviews 12: 116-140. Noble, R., and S.J. Roberts. 2004. "Eradication of Plant Pathogens and Nematodes during composting: A Review." Plant Patology 53: 548-568.

  3. Exploiting differential electrochemical stripping behaviors of Fe3O4 nanocrystals toward heavy metal ions by crystal cutting.

    PubMed

    Yao, Xian-Zhi; Guo, Zheng; Yuan, Qing-Hong; Liu, Zhong-Gang; Liu, Jin-Huai; Huang, Xing-Jiu

    2014-08-13

    This study attempts to understand the intrinsic impact of different morphologies of nanocrystals on their electrochemical stripping behaviors toward heavy metal ions. Two differently shaped Fe3O4 nanocrystals, i.e., (100)-bound cubic and (111)-bound octahedral, have been synthesized for the experiments. Electrochemical results indicate that Fe3O4 nanocrystals with different shapes show different stripping behaviors toward heavy metal ions. Octahedral Fe3O4 nanocrystals show better electrochemical sensing performances toward the investigated heavy metal ions such as Zn(II), Cd(II), Pb(II), Cu(II), and Hg(II), in comparison with cubic ones. Specifically, Pb(II) is found to have the best stripping performance on both the (100) and (111) facets. To clarify these phenomena, adsorption abilities of as-prepared Fe3O4 nanocrystals have been investigated toward heavy metal ions. Most importantly, combined with theoretical calculations, their different electrochemical stripping behaviors in view of facet effects have been further studied and enclosed at the level of molecular/atom. Finally, as a trial to find a disposable platform completely free from noble metals, the potential application of the Fe3O4 nanocrystals for electrochemical detection of As(III) in drinking water is demonstrated.

  4. Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic, and electromagnetic shielding properties

    PubMed Central

    Sahoo, P. K.; Aepuru, Radhamanohar; Panda, Himanshu Sekhar; Bahadur, D.

    2015-01-01

    In-situ homogeneous dispersion of noble metals in three-dimensional graphene sheets is a key tactic for producing macroscopic architecture, which is desirable for practical applications, such as electromagnetic interference shielding and catalyst. We report a one-step greener approach for developing porous architecture of 3D-graphene/noble metal (Pt and Ag) nanocomposite monoliths. The resulting graphene/noble metal nanocomposites exhibit a combination of ultralow density, excellent elasticity, and good electrical conductivity. Moreover, in order to illuminate the advantages of the 3D-graphene/noble metal nanocomposites, their electromagnetic interference (EMI) shielding and electrocatalytic performance are further investigated. The as-synthesized 3D-graphene/noble metal nanocomposites exhibit excellent EMI shielding effectiveness when compared to bare graphene; the effectiveness has an average of 28 dB in the 8.2–12.4 GHz X-band range. In the electro-oxidation of methanol, the 3D-graphene/Pt nanocomposite also exhibits significantly enhanced electrocatalytic performance and stability than compared to reduced graphene oxide/Pt and commercial Pt/C. PMID:26638827

  5. Enhanced nitrogen diffusion induced by atomic attrition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochoa, E.A.; Figueroa, C.A.; Czerwiec, T.

    2006-06-19

    The nitrogen diffusion in steel is enhanced by previous atomic attrition with low energy xenon ions. The noble gas bombardment generates nanoscale texture surfaces and stress in the material. The atomic attrition increases nitrogen diffusion at lower temperatures than the ones normally used in standard processes. The stress causes binding energy shifts of the Xe 3d{sub 5/2} electron core level. The heavy ion bombardment control of the texture and stress of the material surfaces may be applied to several plasma processes where diffusing species are involved.

  6. Catalytic combustion of coal-derived liquids

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.; Tacina, R. R.

    1981-01-01

    A noble metal catalytic reactor was tested with three grades of SRC 2 coal derived liquids, naphtha, middle distillate, and a blend of three parts middle distillate to one part heavy distillate. A petroleum derived number 2 diesel fuel was also tested to provide a direct comparison. The catalytic reactor was tested at inlet temperatures from 600 to 800 K, reference velocities from 10 to 20 m/s, lean fuel air ratios, and a pressure of 3 x 10 to the 5th power Pa. Compared to the diesel, the naphtha gave slightly better combustion efficiency, the middle distillate was almost identical, and the middle heavy blend was slightly poorer. The coal derived liquid fuels contained from 0.58 to 0.95 percent nitrogen by weight. Conversion of fuel nitrogen to NOx was approximately 75 percent for all three grades of the coal derived liquids.

  7. Real-time noble gas release signaling rock deformation

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.; Gardner, W. P.; Lee, H.

    2016-12-01

    We present empirical results/relationships of rock strain, microfracture density, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite and basalt. Noble gases are contained in most crustal rock at inter/intra granular sites, their release during natural and manmade stress and strain changes represents a signal of brittle/semi brittle deformation. The gas composition depends on lithology, geologic history and age, fluids present, and uranium, thorium and potassium-40 concentrations in the rocks that affect radiogenic noble gases (helium, argon) production. Noble gas emission and its relationship to crustal processes have been studied, including correlations to tectonic velocities and qualitative estimates of deep permeability from surface measurements, finger prints of nuclear weapon detonation, and as potential precursory signals to earthquakes attributed to gas release due to pre-seismic stress, dilatancy and/or rock fracturing. Helium emission has been shown as a precursor of volcanic activity. Real-time noble gas release is observed using an experimental system utilizing mass spectrometers to measure gases released during triaxial rock deformation. Noble gas release is shown to represent a sensitive precursor signal of rock deformation by relating real-time noble gas release to stress-strain state changes and acoustic emissions. We propose using noble gas release to also signal rock deformation in boreholes, mines and nuclear waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress/strain state, and or permanent deformation dependent. Such relationships, when calibrated, may be used to sense rock deformation and then develop predictive models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the US Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7468 A

  8. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, X. J.; Xue, X. L.; Jia, Yu

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt{sub N} nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt{sub N}, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D{sub 6h} symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of Pt{sub N}more » clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt{sub 57} motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d{sup 9}6s{sup 1}) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about Pt{sub N} clusters are also applicable to Ir{sub N} clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.« less

  9. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturingmore » fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.« less

  10. A generic biokinetic model for noble gases with application to radon.

    PubMed

    Leggett, Rich; Marsh, James; Gregoratto, Demetrio; Blanchardon, Eric

    2013-06-01

    To facilitate the estimation of radiation doses from intake of radionuclides, the International Commission on Radiological Protection (ICRP) publishes dose coefficients (dose per unit intake) based on reference biokinetic and dosimetric models. The ICRP generally has not provided biokinetic models or dose coefficients for intake of noble gases, but plans to provide such information for (222)Rn and other important radioisotopes of noble gases in a forthcoming series of reports on occupational intake of radionuclides (OIR). This paper proposes a generic biokinetic model framework for noble gases and develops parameter values for radon. The framework is tailored to applications in radiation protection and is consistent with a physiologically based biokinetic modelling scheme adopted for the OIR series. Parameter values for a noble gas are based largely on a blood flow model and physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions for radon are shown to be consistent with results of controlled studies of its biokinetics in human subjects.

  11. Electrospun Polymer Nanofibers Decorated with Noble Metal Nanoparticles for Chemical Sensing.

    PubMed

    Chen, Chen; Tang, Yongan; Vlahovic, Branislav; Yan, Fei

    2017-12-01

    The integration of different noble metal nanostructures, which exhibit desirable plasmonic and/or electrocatalytic properties, with electrospun polymer nanofibers, which display unique mechanical and thermodynamic properties, yields novel hybrid nanoscale systems of synergistic properties and functions. This review summarizes recent advances on how to incorporate noble metal nanoparticles into electrospun polymer nanofibers and illustrates how such integration paves the way towards chemical sensing applications with improved sensitivity, stability, flexibility, compatibility, and selectivity. It is expected that further development of this field will eventually make a wide impact on many areas of research.

  12. Positronium collisions with atoms and molecules

    NASA Astrophysics Data System (ADS)

    Fabrikant, I. I.; Gribakin, G. F.; Wilde, R. S.

    2017-11-01

    We review recent theoretical efforts to explain observed similarities between electron-atom and positronium(Ps)-atom scattering which also extends to molecular targets. In the range of the projectile velocities above the threshold for Ps ionization (break-up) this similarity can be explained in terms of quasi-free electron scattering and impulse approximation. However, for lower Ps velocities more sophisticated methods should be developed. Our calculations of Ps scattering by heavy noble-gas atoms agree well with experiments at Ps velocities above the Ps ionization threshold. However, in contrast to electron scattering cross sections, at lower velocities they exhibit maxima whereas the experimental cross sections tend to decrease toward lower velocities indicating the same similarity with electron scattering cross section observed above the threshold. Our preliminary results for Ps-N2 scattering confirm experimental observation of a resonance similar to the ∏ g resonance in electron-N2 scattering.

  13. Expeditious synthesis of noble metal nanoparticles using Vitamin B12 under microwave irradiation

    EPA Science Inventory

    A greener synthesis protocol for noble nanometals is developed using vitamin B12 as a reducing and capping agent in conjunction with the use of microwaves. Successful assembly of nanoparticles or microparticles with varied shapes and sizes have been demonstrated. The synthesized ...

  14. Reconnecting to the Power of Reading

    ERIC Educational Resources Information Center

    Perks, Kevin

    2006-01-01

    Noble High School, a large school located in rural southern Maine, embraces the concept of smaller learning communities, and its more than 1,100 students are heterogeneously grouped into teams. Although Noble was recently cited as a model of rural education (NASSP, 2004), its students nevertheless struggle to develop important literacy skills. On…

  15. The Colour of the Noble Metals.

    ERIC Educational Resources Information Center

    Poole, R. T.

    1983-01-01

    Examines the physical basis for colors of noble metals (copper, silver, gold) developed from energy conservation/quantum mechanical view of free electron photoabsorption. Describes production of absorption edges produced by change in density of occupied valence electron states in the d-band, which allows stronger absorption in the visible photon…

  16. Circumventing shallow air contamination in Mid Ocean Ridge Basalts

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sujoy; Parai, Rita; Tucker, Jonathan; Middleton, Jennifer; Langmuir, Charles

    2016-04-01

    Noble gases in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. However, the ubiquity of shallow-level air contamination frequently obscures the mantle noble gas signal. In a majority of samples, shallow air contamination dominates the noble gas budget. As a result, reconstructing the variability in heavy noble gas mantle source compositions and inferring the history of deep recycling of atmospheric noble gases is difficult. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Here, we present results from experiments designed to elucidate the source of shallow air contamination in MORBs. Step-crushes were carried out to measure He, Ne, Ar and Xe isotopic compositions on two aliquots of a depleted popping glass that was dredged from between the Kane and Atlantis Fracture Zones of the Mid-Atlantic Ridge in May 2012. One aliquot was sealed in ultrapure N2 after dredge retrieval, while the other aliquot was left exposed to air for 3.5 years. The bulk 20Ne/22Ne and 129Xe/130Xe ratios measured in the aliquot bottled in ultrapure N2 are 12.3 and 7.6, respectively, and are nearly identical to the estimated mantle source values. On the other hand, step crushes in the aliquot left exposed to air for several years show Ne isotopic compositions that are shifted towards air, with a bulk 20Ne/22Ne of 11.5; the bulk 129Xe/130Xe, however, was close to 7.6. These results indicate that lighter noble gases exchange more efficiently between the bubbles trapped in basalt glass and air, suggesting a diffusive or kinetic mechanism for the incorporation of the shallow air contamination. Importantly, in Ne-Ar or Ar-Xe space, step-crushes from the bottled aliquot display a trend that can be easily fit with a simple two-component hyperbolic mixing between mantle and atmosphere noble gases. Step-crushes in the aliquot left exposed to air display significantly more scatter, which makes it difficult to fit a two-component mixing hyperbola and obtain the mantle source value for this aliquot. In summary, our simple and inexpensive experiment demonstrates that at least in some samples, significant air contamination is added after dredge retrieval from the ocean floor. Bottling samples in ultrapure N2 upon dredge retrieval can largely eliminate this component of shallow-level air contamination. As a result, the number of step crushes required to characterize a sample decreases and estimating the mantle source compositions of the basalts becomes significantly easier, which in turn leads to more refined estimates of mantle degassing and regassing rates.

  17. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  18. Noble Gas Signatures in Groundwater and Rainwater on the Island of Maui, Hawaii - Developing a New Noble Gas Application in Fractured, Volcanic Systems

    NASA Astrophysics Data System (ADS)

    Castro, M. C.; Niu, Y.; Warrier, R. B.; Hall, C. M.; Gingerich, S. B.; Scholl, M. A.; Bouvier, L.

    2014-12-01

    Recent work in the Galapagos Islands suggests that noble gas temperatures (NGTs) in fractured groundwater systems reflect the temperature of the ground surface at the time of infiltration rather than the mean annual air temperature (MAAT) value as commonly assumed in sedimentary systems where NGTs are typically used as indicators of past climate. This suggests that noble gases in fractured areas may record seasonality, and thus, provide information about timing of recharge in addition to location. Calculation of NGTs assumes that rain-derived recharge at the water table is in equilibrium with ground air. Lack of noble gas equilibration with respect to surface conditions, however, was observed in high-altitude springs in the Galapagos Islands and in a rainwater pilot study in Michigan, supporting the NGT seasonality hypothesis. Developing this new NGT application will lead to a better understanding of fractured groundwater flow systems and will contribute to improved water resource management plans. This study, carried out on Maui, Hawaii, is meant to test these hypotheses while improving knowledge of this island's groundwater flow system where limited hydrologic data are available. Here, we present the first results of noble gas analyses from samples collected in springs, groundwater wells and rainwater on northeast Maui. Results show that like most Michigan rainwater samples, rainwater from Maui is in disequilibrium with surface conditions and follows a mass-dependent pattern. Spring samples follow a similar pattern to that of rainwater and suggest that spring water originates directly from rainfall. These findings further support the hypothesis of NGT seasonality. However, while the atmospheric composition of noble gases points to direct supply from rainfall to spring aquifer systems, a direct connection between spring water and deeper aquifer levels or the mantle is apparent from He isotopic ratios which display an almost pure He mantle component in some springs.

  19. Experimental studies and model analysis of noble gas fractionation in low-permeability porous media

    NASA Astrophysics Data System (ADS)

    Ding, Xin; Mack Kennedy, B.; Molins, Sergi; Kneafsey, Timothy; Evans, William C.

    2017-05-01

    Gas flow through the vadose zone from sources at depth involves fractionation effects that can obscure the nature of transport and even the identity of the source. Transport processes are particularly complex in low permeability media but as shown in this study, can be elucidated by measuring the atmospheric noble gases. A series of laboratory column experiments was conducted to evaluate the movement of noble gas from the atmosphere into soil in the presence of a net efflux of CO2, a process that leads to fractionation of the noble gases from their atmospheric abundance ratios. The column packings were designed to simulate natural sedimentary deposition by interlayering low permeability ceramic plates and high permeability beach sand. Gas samples were collected at different depths at CO2 fluxes high enough to cause extreme fractionation of the noble gases (4He/36Ar > 20 times the air ratio). The experimental noble gas fractionation-depth profiles were in good agreement with those predicted by the dusty gas (DG) model, demonstrating the applicability of the DG model across a broad spectrum of environmental conditions. A governing equation based on the dusty gas model was developed to specifically describe noble gas fractionation at each depth that is controlled by the binary diffusion coefficient, Knudsen diffusion coefficient and the ratio of total advection flux to total flux. Finally, the governing equation was used to derive the noble gas fractionation pattern and illustrate how it is influenced by soil CO2 flux, sedimentary sequence, thickness of each sedimentary layer and each layer's physical parameters. Three potential applications of noble gas fractionation are provided: evaluating soil attributes in the path of gas flow from a source at depth to the atmosphere, testing leakage through low permeability barriers used to isolate buried waste, and tracking biological methanogenesis and methane oxidation associated with hydrocarbon degradation.

  20. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  1. Noble metal superparticles and methods of preparation thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yugang; Hu, Yongxing

    A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution ismore » cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.« less

  2. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    EPA Science Inventory

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  3. Cultivating Noble Purpose in Urban Middle Schools: A Missing Piece in School Transformation

    ERIC Educational Resources Information Center

    Hatchimonji, Danielle R.; Linsky, Arielle V.; Elias, Maurice J.

    2017-01-01

    In urban schools overwhelmed by increasing demands to raise test scores, exclusive focus on increasing academic competencies has proven ineffective. School-wide, comprehensive social-emotional and character development (SECD), focused on the cultivation of Noble Purpose, provides an alternative pathway toward life, college, and career success. We…

  4. A noble metal-free proton-exchange membrane fuel cell based on bio-inspired molecular catalysts.

    PubMed

    Tran, P D; Morozan, A; Archambault, S; Heidkamp, J; Chenevier, P; Dau, H; Fontecave, M; Martinent, A; Jousselme, B; Artero, V

    2015-03-01

    Hydrogen is a promising energy vector for storing renewable energies: obtained from water-splitting, in electrolysers or photoelectrochemical cells, it can be turned back to electricity on demand in fuel cells (FCs). Proton exchange membrane (PEM) devices with low internal resistance, high compactness and stability are an attractive technology optimized over decades, affording fast start-up times and low operating temperatures. However, they rely on the powerful catalytic properties of noble metals such as platinum, while lower cost, more abundant materials would be needed for economic viability. Replacing these noble metals at both electrodes has long proven to be a difficult task, so far incompatible with PEM technologies. Here we take advantage of newly developed bio-inspired molecular H 2 oxidation catalysts and noble metal-free O 2 -reducing materials, to fabricate a noble metal-free PEMFC, with an 0.74 V open circuit voltage and a 23 μW cm -2 output power under technologically relevant conditions. X-ray absorption spectroscopy measurements confirm that the catalysts are stable and retain their structure during turnover.

  5. Noble gas Records of Early Evolution of the Earth

    NASA Astrophysics Data System (ADS)

    Ozima, M.; Podoesk, F. A.

    2001-12-01

    Comparison between atmospheric noble gases (except for He) and solar (or meteoritic) noble gases clearly suggests that the Earth should have much more Xe than is present in air, and thus that up to about 90 percent of terrestrial Xe is missing from the Earth (1). In this report, we discuss implications of these observations on I-Pu chronology of the Earth and on the origin of terrestrial He3. Whetherill (2) first noted that an estimated I129/I127 ratio (3x10-6) in the proto-Earth was about two orders of magnitude smaller than values commonly observed in meteorites (10-4), and pointed out the possibility that Earth formation postdated meteorites by about 100Ma. Ozima and Podosek (1999) came to a similar conclusion on the basis of I129/I127-Pu244/U238 systematics (1). In this report, we reexamine I-Pu systematics with new data for crustal I content (295 ppb for a bulk crust, (3)). With imposition of an estimated value of 86 percent missing Xe as a constraint on terrestrial Xe inventory, we conclude that the best estimate for a formation age of the Earth is about 28Ma after the initial condensation of the solar nebula (at 4.57Ga). The formation age thus estimated is significantly later than the generally assumed age of meteorites. We also argue from the I-Pu systematics that the missing Xe became missing place about 120Ma after Earth formation. Assuming that the Earth is mostly degassed, the I-Pu formation age of the Earth can be reasonably assumed to represent a whole Earth event. Therefore, we interpret that the I-Pu age of the Earth represents the time when the Earth started to retain noble gases. More specifically, this may correspond to the time when the proto-Earth attained a sufficient size to exert the necessary gravitational force. A giant impact could be another possibility, but it remains to be seen whether or not a giant impact could quantitatively remove heavier noble gases from the Earth. It is interesting to speculate that missing Xe was sequestered in the core during core formation. Core formation time would then be related to the time of the missing Xe event. The above estimated missing Xe age is close to the core formation age suggested from Nb-Zr systematics (4) and from U-Pb systematics (5), but considerably later than that suggested from Hf-W systematics (6). From a comparison of relative elemental abundance of noble gases between the Earth and the solar composition, we show that terrestrial He3 may be totally unrelated to heavier noble gases. This requires independent origin of terrestrial He3 from heavy noble gases. 1.Ozima M. and Podosek F.A. (1999) JGR, 104(BII), 25493. 2.Whetherill G.W. (1975) Ann. Rev. Nuclear Science, 25, 283. 3.Muramatsu Y. and Wedepohl K.H. (1998) Chemical Geology, 147, 201. 4. Jacobsen S.B. and Yin Q.Z. (2001) Lunar Planetary Science, XXXII, 1961.pdf (abstract). 5.Galer S.J.G. and Goldstein S.L. (1995) in Geophysical Monograph 95, 75-98, AGU. 6.Halliday A.N., Lee D.-C. and Jacobsen S.B. (2000) in Origin of the Earth and Moon, 45-62, Univ. Arizona Press.

  6. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals

    PubMed Central

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron–phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron–phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals. PMID:26033445

  7. The Noble Path: Buddhist Art of South Asia and Tibet. Teacher's Packet.

    ERIC Educational Resources Information Center

    Sierra Community Coll., Rocklin, CA. Mathematics Dept.

    A teaching packet was developed in association with the exhibition, "The Noble Path: Buddhist Art of South Asia and Tibet," held at the Arthur M. Sackler Gallery, Smithsonian Institution, Washington, D.C., from October 1, 1989 to March 31, 1990. The packet aims to provide students in middle and secondary schools with introductory…

  8. The UKB prescription and the heavy atom effects on the nuclear magnetic shielding of vicinal heavy atoms.

    PubMed

    Maldonado, Alejandro F; Aucar, Gustavo A

    2009-07-21

    Fully relativistic calculations of NMR magnetic shielding on XYH3 (X = C, Si, Ge and Sn; Y = Br, I), XHn (n = 1-4) molecular systems and noble gases performed with a fully relativistic polarization propagator formalism at the RPA level of approach are presented. The rate of convergence (size of basis set and time involved) for calculations with both kinetic balance prescriptions, RKB and UKB, were investigated. Calculations with UKB makes it feasible to obtain reliable results for two or more heavy-atom-containing molecules. For such XYH3 systems, the influence of heavy vicinal halogen atoms on sigma(X) is such that heavy atom effects on heavy atoms (vicinal plus their own effects or HAVHA + HAHA effects) amount to 30.50% for X = Sn and Y = I; being the HAHA effect of the order of 25%. So the vicinal effect alone is of the order of 5.5%. The vicinal heavy atom effect on light atoms (HALA effect) is of the order of 28% for X = C and Y = I. A similar behaviour, but of opposite sign, is observed for sigma(Y) for which sigmaR-NR (I; X = C) (HAHA effect) is around 27% and sigmaR-NR(I; X = Sn) (HAVHA + HAHA effects) is close to 21%. Its electronic origin is paramagnetic for halogen atoms but both dia- and paramagnetic for central atoms. The effect on two bond distant hydrogen atoms is such that the largest variation of sigma(H) within the same family of XYH3 molecules appears for X = Si and Y = I: around 20%. In this case sigma(H; X = Sn, Y = I) = 33.45 ppm and sigma(H; X = Sn, Y = H) = 27.82 ppm.

  9. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen.

    PubMed

    Buchheit, R G; Schreiner, H R; Doebbler, G F

    1966-02-01

    Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622-627. 1966.-Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically "inert gas" present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar > Ne > He. Nitrogen (N(2)) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He ( approximately 300 atm). With respect to inhibition of growth, the noble gases and N(2) differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O(2)-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases.

  10. Users guide for noble fir bough cruiser.

    Treesearch

    Roger D. Fight; Keith A. Blatner; Roger C. Chapman; William E. Schlosser

    2005-01-01

    The bough cruiser spreadsheet was developed to provide a method for cruising noble fir (Abies procera Rehd.) stands to estimate the weight of boughs that might be harvested. No boughs are cut as part of the cruise process. The approach is based on a two-stage sample. The first stage consists of fixed-radius plots that are used to estimate the...

  11. Elemental and isotopic compositions of noble gases in the mantle: Pete's path

    NASA Astrophysics Data System (ADS)

    Moreira, Manuel; Péron, Sandrine; Colin, Aurélia

    2016-04-01

    Noble gases are tracers of the origin of the volatiles on Earth and other terrestrial planets. The determination of their isotopic compositions in oceanic basalts allows discriminating between different possible scenarios for the origin of volatiles (chondritic, solar, cometary). However, oceanic basalts show a ubiquitous component having atmospheric noble gas compositions, which reflects a shallow air contamination. This component masks the mantle composition and only step crushing is able to (partially) remove it. Nevertheless, the exact mantle composition is always unconstrained due to the uncertainty on its complete removal. Developed by Pete Burnard (Burnard et al., 1997; Burnard, 1999), single vesicle analysis using laser ablation is a challenging technique to determine the mantle composition, free of atmospheric contamination. We have used this technique to measure He, Ne, Ar isotopes and CO2 in single vesicles from both MORB and OIB (Galapagos, Iceland). Vesicles are located using microtomography and the noble gases are measured using the Noblesse mass spectrometer from IPGP using an Excimer laser to open the vesicles. Both Galapagos and Iceland samples show that the 20Ne/22Ne ratio is limited to ~12.8 in the primitive mantle, suggesting that the origin of the light noble gases can be attributed to irradiated material instead of a simple dissolution of solar gases into a magma ocean (Moreira and Charnoz, 2016). Such a scenario of incorporation of light noble gases by irradiation also explains the terrestrial argon isotopic composition. However, the Kr and Xe contribution of implanted solar wind is small and these two noble gases were carried on Earth by chondrites and/or cometary material. Burnard, P., D. Graham and G. Turner (1997). "Vesicle-specific noble gas analyses of « popping rock »: implications for primordial noble gases in the Earth." Science 276: 568-571. Burnard, P. (1999). "The bubble-by-bubble volatile evolution of two mid-ocean ridge basalts." Earth and Planetary Science Letters 174: 199-211. Moreira, M. and S. Charnoz (2016). "The origin of the neon isotopes in chondrites and Earth." Earth and Planetary Science Letters 433: 249-256.

  12. Release of radiogenic noble gases as a new signal of rock deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.; Gardner, W. Payton; Lee, Hyunwoo

    In this paper we investigate the release of radiogenic noble gas isotopes during mechanical deformation. We developed an analytical system for dynamic mass spectrometry of noble gas composition and helium release rate of gas produced during mechanical deformation of rocks. Our results indicate that rocks release accumulated radiogenic helium and argon from mineral grains as they undergo deformation. We found that the release of accumulated 4He and 40Ar from rocks follows a reproducible pattern and can provide insight into the deformation process. Increased gas release can be observed before dilation, and macroscopic failure is observed during high-pressure triaxial rock deformationmore » experiments. Accumulated radiogenic noble gases can be released due to fracturing of mineral grains during small-scale strain in Earth materials. Helium and argon are highly mobile, conservative species and could be used to provide information on changes in the state of stress and strain in Earth materials, and as an early warning signal of macroscopic failure. These results pave the way for the use of noble gases to trace and monitor rock deformation for earthquake prediction and a variety of other subsurface engineering projects.« less

  13. Release of radiogenic noble gases as a new signal of rock deformation

    DOE PAGES

    Bauer, Stephen J.; Gardner, W. Payton; Lee, Hyunwoo

    2016-10-09

    In this paper we investigate the release of radiogenic noble gas isotopes during mechanical deformation. We developed an analytical system for dynamic mass spectrometry of noble gas composition and helium release rate of gas produced during mechanical deformation of rocks. Our results indicate that rocks release accumulated radiogenic helium and argon from mineral grains as they undergo deformation. We found that the release of accumulated 4He and 40Ar from rocks follows a reproducible pattern and can provide insight into the deformation process. Increased gas release can be observed before dilation, and macroscopic failure is observed during high-pressure triaxial rock deformationmore » experiments. Accumulated radiogenic noble gases can be released due to fracturing of mineral grains during small-scale strain in Earth materials. Helium and argon are highly mobile, conservative species and could be used to provide information on changes in the state of stress and strain in Earth materials, and as an early warning signal of macroscopic failure. These results pave the way for the use of noble gases to trace and monitor rock deformation for earthquake prediction and a variety of other subsurface engineering projects.« less

  14. A noble metal-free proton-exchange membrane fuel cell based on bio-inspired molecular catalysts† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc03774j Click here for additional data file.

    PubMed Central

    Tran, P. D.; Morozan, A.; Archambault, S.; Heidkamp, J.; Chenevier, P.; Dau, H.; Fontecave, M.

    2015-01-01

    Hydrogen is a promising energy vector for storing renewable energies: obtained from water-splitting, in electrolysers or photoelectrochemical cells, it can be turned back to electricity on demand in fuel cells (FCs). Proton exchange membrane (PEM) devices with low internal resistance, high compactness and stability are an attractive technology optimized over decades, affording fast start-up times and low operating temperatures. However, they rely on the powerful catalytic properties of noble metals such as platinum, while lower cost, more abundant materials would be needed for economic viability. Replacing these noble metals at both electrodes has long proven to be a difficult task, so far incompatible with PEM technologies. Here we take advantage of newly developed bio-inspired molecular H2 oxidation catalysts and noble metal-free O2-reducing materials, to fabricate a noble metal-free PEMFC, with an 0.74 V open circuit voltage and a 23 μW cm–2 output power under technologically relevant conditions. X-ray absorption spectroscopy measurements confirm that the catalysts are stable and retain their structure during turnover. PMID:29142673

  15. Evolution of the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Pepin, R. O.

    1993-01-01

    Evolution of Mars' noble gases through two stages of hydrodynamic escape early in planetary history has been proposed previously by the author. In the first evolutionary stage of this earlier model, beginning at a solar age of approximately 50 m.y., fractionating escape of a H2-rich primordial atmosphere containing CO2, N2, and the noble gases in roughly the proportions found in primitive carbonaceous (CI) chondrites is driven by intense extreme-ultraviolet (EUV) leads to a long (approximately 80 m.y.) period of quiescence, followed by an abrupt degassing of remnant H2, CO2, and N2 from the mantle and of solar-composition noble gases lighter than Xe from the planet's volatile-rich accretional core. Degassed H refuels hydrodynamic loss in a waning but still potent solar EUV flux. Atmospheric Xe, Kr, and Ar remaining at the end of this second escape stage, approximately 4.2 G.y. ago, have evolved to their present-day abundances and compositions. Residual Ne continues to be modified by accretion of solar wind gases throughout the later history of the planet. This model does not address a number of processes that now appear germane to Martian atmospheric history. One, gas loss and fractionation by sputtering, has recently been shown to be relevant. Another, atmospheric erosion, appears increasingly important. In the absence then of a plausible mechanism, the model did not consider the possibility of isotopic evolution of noble gases heavier than Ne after the termination of hydrodynamic escape. Subsequent non-thermal loss of N was assumed, in an unspecified way, to account for the elevation of N from the model value of approximately 250 percent at the end of the second escape stage to approximately 620 percent today. Only qualitative attention was paid to the eroding effects of impact on abundances of all atmophilic species prior to the end of heavy bombardment approximately 3.8 G.y. ago. No attempt was made to include precipitation and recycling of carbonates in tracking the pressure and isotopic history of CO2.

  16. The Saturn Probe Interior and aTmosphere Explorer (SPRITE) Mission

    NASA Astrophysics Data System (ADS)

    Simon, Amy; Banfield, Donald; Atkinson, David; SPRITE Science Team

    2018-01-01

    A key question in planetary science is how the planets formed in our Solar System, and, by extension, in exoplanet systems. The abundances of the noble gases (He, Ne, Ar, Kr, Xe), heavy elements (C, N, O, S), and their isotopes provide important forensic clues as to location and time of formation in the early Solar System. Jupiter and Saturn contain most of the planetary mass in our solar system, and their chemical fingerprints will distinguish between competing models of the formation of all the planets. After the end of the Cassini mission, some of these elements have only ambiguous values above the cloud tops, while others (particularly the noble gases) have not been measured at all. Resolving this requires direct in situ measurements. The proposed NASA New Frontiers Saturn PRobe Interior and aTmosphere Explorer (SPRITE) mission delivers an instrumented entry probe from a carrier relay spacecraft that also provides context imaging. The powerful probe instrument suite is comprised of a Quadrupole Mass Spectrometer, a Tunable Laser Spectrometer, and an Atmospheric Structure Instrument including a Doppler Wind Experiment and a simple backscatter nephelometer. These instruments measure the elemental and isotopic abundances of helium, the heavier noble gases, and the major elements, as well as constraining cloud properties, 3-D atmospheric dynamics, and disequilibrium chemistry to at least 10 bars in Saturn's troposphere. In situ measurements of Saturn's atmosphere by SPRITE will provide a significantly improved context for interpreting the results from the Galileo probe, Juno, and Cassini missions. SPRITE will revolutionize our understanding of the formation and evolution of the gas giant planets, and ultimately the present-day structure of the Solar System.

  17. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver, that...

  18. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver, that...

  19. Nanocomposite Strain Gauges Having Small TCRs

    NASA Technical Reports Server (NTRS)

    Gregory, Otto; Chen, Ximing

    2009-01-01

    Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500 F (about 816 C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate straingauge materials having TCRs as small as possible so as to minimize apparent strain. Most metals exhibit positive TCRs, while most semiconductors, including ITO, exhibit negative TCRs. The present development is based on the idea of using the negative TCR of ITO to counter the positive TCRs of noble metals and of obtaining the benefit of the ability of both ITO and noble metals to endure high temperatures. The noble metal used in this development thus far has been platinum. Combinatorial libraries of many ceramic strain gauges containing nanocomposites of various proportions of ITO and platinum were fabricated by reactive co-sputtering from ITO and platinum targets onto alumina- and zirconia-based substrates mounted at various positions between the targets.

  20. Growth Responses of Neurospora crassa to Increased Partial Pressures of the Noble Gases and Nitrogen

    PubMed Central

    Buchheit, R. G.; Schreiner, H. R.; Doebbler, G. F.

    1966-01-01

    Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622–627. 1966.—Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically “inert gas” present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar ≫ Ne ≫ He. Nitrogen (N2) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He (∼ 300 atm). With respect to inhibition of growth, the noble gases and N2 differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O2-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases. PMID:5883104

  1. The Noble Gas Record of Gas-Water Phase Interaction in the Tight-Gas-Sand Reservoirs of the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ballentine, C. J.; Zhou, Z.; Harris, N. B.

    2015-12-01

    The mass of hydrocarbons that have migrated through tight-gas-sandstone systems before the permeability reduces to trap the hydrocarbon gases provides critical information in the hydrocarbon potential analysis of a basin. The noble gas content (Ne, Ar, Kr, Xe) of the groundwater has a unique isotopic and elemental composition. As gas migrates through the water column, the groundwater-derived noble gases partition into the hydrocarbon phase. Determination of the noble gases in the produced hydrocarbon phase then provides a record of the type of interaction (simple phase equilibrium or open system Rayleigh fractionation). The tight-gas-sand reservoirs of the Rocky Mountains represent one of the most significant gas resources in the United States. The producing reservoirs are generally developed in low permeability (averaging <0.1mD) Upper Cretaceous fluvial to marginal marine sandstones and commonly form isolated overpressured reservoir bodies encased in even lower permeability muddy sediments. We present noble gas data from producing fields in the Greater Green River Basin, Wyoming; the the Piceance Basin, Colorado; and in the Uinta Basin, Utah. The data is consistent from all three basins. We show how in each basin the noble gases record open system gas migration through a water column at maximum basin burial. The data within an open system model indicates that the gas now in-place represents the last ~10% of hydrocarbon gas to have passed through the water column, most likely prior to permeability closedown.

  2. Investigating the Origin and Evolution of Venus with In Situ Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Trainer, M. G.; Mahaffy, P. R.; Brinckerhoff, W. B.; Johnson, N. M.; Glaze, L. S.

    2015-01-01

    Measurement of noble gas abundances on Venus remain a high priority for planetary science. These studies are only possible through in situ measurement, and can be accomplished by a modern neutral mass spectrometer (NMS) such as that developed at NASA Goddard, based on flight-proven technology. Here we show how the measurement of noble gases can be secured using demonstrated enrichment techniques.

  3. Development of top heights and corresponding diameters in high-elevation noble fir plantations

    Treesearch

    Robert O. Curtis

    2015-01-01

    Height and diameter growth of noble fir (Abies procera Rehd.) trees included in the largest 40 stems per acre were compared in a study that included five precommercial thinning spacings plus no thinning, in each of eight replications, at elevations from 2,200 to 4,100 feet in the western Cascade Mountains of Washington and Oregon. Height growth rates were not affected...

  4. Development of Knowledge, Awareness, Global Warming Decreasing Behavior and Critical Thinking of Grade 11 Students Using the Four Noble Truths Method with Meta-Cognitive Techniques

    ERIC Educational Resources Information Center

    Chattuchai, Sakkarin; Singseewo, Adisak; Suksringarm, Paitool

    2015-01-01

    This study aims to investigate the effects of learning environmental education on the knowledge, awareness, global warming decreasing behavior, and critical thinking of eighty grade 11 students from two classes. The Four Noble Truths method with metacognitive techniques and traditional teaching method were used for the investigation. The sample…

  5. Establishment of the Co-C Eutectic Fixed-Point Cell for Thermocouple Calibrations at NIMT

    NASA Astrophysics Data System (ADS)

    Ongrai, O.; Elliott, C. J.

    2017-08-01

    In 2015, NIMT first established a Co-C eutectic temperature reference (fixed-point) cell measurement capability for thermocouple calibration to support the requirements of Thailand's heavy industries and secondary laboratories. The Co-C eutectic fixed-point cell is a facility transferred from NPL, where the design was developed through European and UK national measurement system projects. In this paper, we describe the establishment of a Co-C eutectic fixed-point cell for thermocouple calibration at NIMT. This paper demonstrates achievement of the required furnace uniformity, the Co-C plateau realization and the comparison data between NIMT and NPL Co-C cells by using the same standard Pt/Pd thermocouple, demonstrating traceability. The NIMT measurement capability for noble metal type thermocouples at the new Co-C eutectic fixed point (1324.06°C) is estimated to be within ± 0.60 K (k=2). This meets the needs of Thailand's high-temperature thermocouple users—for which previously there has been no traceable calibration facility.

  6. Volatile inventory and early evolution of the planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Marov, Mikhail Ya.; Ipatov, Sergei I.

    Formation of atmospheres of the inner planets involved the concurrent processes of mantle degassing and collisions that culminated during the heavy bombardment. Volatile-rich icy planetesimals impacting on the planets as a late veneer strongly contributed to the volatile inventory. Icy remnants of the outer planet accretion significantly complemented the accumulation of the lithophile and atmophile elements forced out onto the surface of the inner planets from silicate basaltic magma enriched in volatiles. Orbital dynamics of small bodies, including near-Earth asteroids, comets, and bodies from the Edgeworth-Kuiper belt evolving to become inner planet crossers, is addressed to examine different plausible amounts of volatile accretion. The relative importance of comets and chondrites in the delivery of volatiles is constrained by the observed fractionation pattern of noble gas abundances in the atmospheres of inner planets. The following development of the early atmospheres depended on the amount of volatiles expelled from the interiors and deposited by impactors, while the position of the planet relative to the Sun and its mass affected its climatic evolution.

  7. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal... “Class II Special Controls Guidance Document: Dental Noble Metal Alloys.” The devices are exempt from the...

  8. Theoretical study of metal noble-gas positive ions

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1989-01-01

    Theoretical calculations have been performed to determine the spectroscopic constant for the ground and selected low-lying electronic states of the transition-metal noble-gas ions Var(+), FeAr(+), CoAr(+), CuHe(+), CuAr(+), and CuKr(+). Analogous calculations have been performed for the ground states of the alkali noble-gas ions LiAr(+), LiKr(+), NaAr(+), and KAr(+) and the alkaline-earth noble-gas ion MgAr(+) to contrast the difference in binding energies between the simple and transition-metal noble-gas ions. The binding energies increase with increasing polarizability of the noble-gas ions, as expected for a charge-induced dipole bonding mechanism. It is found that the spectroscopic constants of the X 1Sigma(+) states of the alkali noble-gas ions are well described at the self-consistent field level. In contrast, the binding energies of the transition-metal noble-gas ions are substantially increased by electron correlation.

  9. Solubility of noble gases in serpentine - Implications for meteoritic noble gas abundances

    NASA Technical Reports Server (NTRS)

    Zaikowski, A.; Schaeffer, O. A.

    1979-01-01

    An investigation of the solubilities of the noble gases from synthesis and solubility studies of the sheet silicate mineral serpentine in carbonaceous chondrites is presented. Hydrothermal synthesis and exchange experiments were made at 340C and 1 kbar with noble gas partial pressures from 2 times 10 to the -8th power to 0.1 atm. The measured distribution coefficients for noble gases are not sufficiently high to account for the trapped noble gases in carbonaceous chondrites by exchange in solar nebula if meteoritic minerals have comparable distribution coefficients. Also, serpentine gains and loses noble gases to approach equilibrium values with the terrestrial atmosphere, indicating that this exposure may have influenced the noble gas abundances in phyllosilicate minerals of these chondrites. The dispersion of K-Ar ages of carbonaceous chondrites could be the result of phyllosilicates approaching equilibrium solubility of atmospheric Ar-40.

  10. Noble Gases Trace Earth's Subducted Water Flux

    NASA Astrophysics Data System (ADS)

    Smye, A.; Jackson, C.; Konrad-Schmolke, M.; Parman, S. W.; Ballentine, C. J.

    2016-12-01

    Volatile elements are transported from Earth's surface reservoirs back into the mantle during subduction of oceanic lithosphere [e.g. 1]. Here, we investigate the degree to which the fate of slab-bound noble gases and water are linked through the subduction process. Both water and noble gases are soluble in ring-structured minerals, such as amphibole, that are common constituents of subducted oceanic lithosphere. Heating and burial during subduction liberates noble gases and water from minerals through a combination of diffusion and dissolution. Combining a kinetic model, parameterized for noble gas fractionation in amphibole [2], with thermodynamic phase equilibria calculations, we quantify the effect of subduction dehydration on the elemental composition of slab-bound noble gases. Results show that post-arc slab water and noble gas fluxes are highly correlated. Hot subduction zones, which likely dominate over geologic history, efficiently remove noble gases and water from the down-going slab; furthermore, kinetic fractionation of noble gases is predicted to occur beneath the forearc. Conversely, hydrated portions of slab mantle in cold subduction zones transport noble gases and water to depths exceeding 200 km. Preservation of seawater-like abundances of Ar, Kr and Xe in the convecting mantle [1] implies that recycling of noble gases and water occurred during cold subduction and that the subduction efficiency of these volatile elements has increased over geological time, driven by secular cooling of the mantle. [1] Holland, G. and Ballentine, C. (2006). Nature 441, 186-191. [2] Jackson et al. (2013). Nat.Geosci. 6, 562-565.

  11. Howardite Noble Gases as Indicators of Asteroid Surface Processing

    NASA Technical Reports Server (NTRS)

    Cartwright, J. A.; Mittlefehldt, D. W.; Herrin, J. S.; Ott, U.

    2011-01-01

    The HED (Howardite, Eucrite and Diogenite) group meteorites likely or iginate from the Asteroid 4 Vesta - one of two asteroid targets of NA SA's Dawn mission. Whilst Howardites are polymict breccias of eucriti c and diogenitic material that often contain "regolithic" petrologica l features, neither their exact regolithic nature nor their formation processes are well defined. As the Solar Wind (SW) noble gas compon ent is implanted onto surfaces of solar system bodies, noble gas anal yses of Howardites provides a key indicator of regolithic origin. In addition to SW, previous work by suggested that restricted Ni (300-12 00 micro g/g) and Al2O3 (8-9 wt%) contents may indicate an ancient we ll-mixed regolith. Our research combines petrological, compositional and noble gas analyses to help improve understanding of asteroid reg olith formation processes, which will play an intergral part in the i nterpretation of Dawn mission data. Following compositional and petrological analyses, we developed a regolith grading scheme for our sampl e set of 30 Howardites and polymict Eucrites. In order to test the r egolith indicators suggested by, our 8 selected samples exhibited a r ange of Ni, Al2O3 contents and regolithic grades. Noble gas analyses were performed using furnace stepheating on our MAP 215-50 noble gas mass spectrometer. Of our 8 howardites, only 3 showed evidence of SW noble gases (e.g approaching Ne-20/Ne-22 approximately equals 13.75, Ne-21/Ne-22 approximately equals 0.033). As these samples display low regolithic grades and a range of Ni and Al2O3 contents, so far we are unable to find any correlation between these indicators and "regolit hic" origin. These results have a number of implications for both Ho wardite and Vesta formation, and may suggest complex surface stratigr aphies and surface-gardening processes.

  12. Engineering noble metal nanomaterials for environmental applications

    NASA Astrophysics Data System (ADS)

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-04-01

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  13. Engineering noble metal nanomaterials for environmental applications.

    PubMed

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-05-07

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  14. Detection of Noble Gas Radionuclides from an Underground Nuclear Explosion During a CTBT On-Site Inspection

    NASA Astrophysics Data System (ADS)

    Carrigan, Charles R.; Sun, Yunwei

    2014-03-01

    The development of a technically sound approach to detecting the subsurface release of noble gas radionuclides is a critical component of the on-site inspection (OSI) protocol under the Comprehensive Nuclear Test Ban Treaty. In this context, we are investigating a variety of technical challenges that have a significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments—a lesson we learned previously from the non-proliferation experiment (NPE). Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied by field experiments, making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated and complete the discussion of these issues with a description of a preliminary design for subsurface sampling that addresses some of the sampling challenges discussed here.

  15. Early evolution of Martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny

    NASA Astrophysics Data System (ADS)

    Mathew, K. J.; Marti, K.

    2001-01-01

    Studies on SNC meteorites have permitted the characterization of modern Martian atmospheric components as well as indigenous Martian nitrogen and solar-type xenon. New isotopic and elemental abundances of noble gases and nitrogen in ALH84001 and Chassigny provide important constraints on the early evolution of the planet. A primitive solar Xe component (Chass-S) and an evolved Xe component (Chass-E), augmented with fission Xe are identified in Chassigny. Both components represent interior reservoirs of Mars and are characterized by low 129Xe/132Xe (<1.07) and by distinct elemental ratios 36Ar/132Xe<5 and >130, respectively. Light nitrogen (δ15N=-30‰) is associated with the Chass-S component and is enriched in melt inclusions in olivine. An ancient (presumably incorporated ~4 Gyr ago) evolved Martian atmospheric component is identified in ALH84001 and has the following signatures: 129Xe/132Xe=2.16, 36Ar/38Ar>=5.0, 36Ar/132Xe=~50, 84Kr/132Xe=~6, and δ15N=7‰. The trapped Xe component in ALH84001 is not isotopically fractionated. We observe major shifts in nitrogen signatures due to cosmogenic N component in both Chassigny and ALH84001. A heavy nitrogen component of comparable magnitude (δ15N>150‰) has previously been interpreted as (heavy) Martian atmospheric N. In situ produced fission Xe components, due to 244Pu in ALH84001 and due to 238U in Chassigny, are identified. The ALH84001 data strongly constrain exchanges of Martian atmospheric and interior reservoirs. Mars retained abundant fission Xe components, and this may account for the low observed fission Xe component in the modern Martian atmosphere. Chronometric information regarding the evolution of the early Martian atmosphere can be secured from the relative abundances of radiogenic and fission Xe, as ~80% of the Martian 129Xer is observed in the atmospheric 129Xe/132Xe ratio ~ 4 Gyr ago.

  16. 77 FR 70159 - Marble River, LLC v. Noble Clinton Windpark I, LLC, Noble Ellenburg Windpark, LLC, Noble...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL13-20-000] Marble River... Commission's (Commission) Rules of Practice and Procedure, Marble River, LLC (Marble River or Complainant.... (NYISO or Respondent), alleging that Noble failed to pay Marble River for headroom created by common...

  17. A mass spectrometric line for tritium analysis of water and noble gas measurements from different water amounts in the range of microlitres and millilitres.

    PubMed

    Papp, Laszlo; Palcsu, Laszlo; Major, Zoltan; Rinyu, Laszlo; Tóth, Istvan

    2012-01-01

    This paper describes the procedure followed for noble gas measurements for litres, millilitres and microlitres of water samples in our laboratory, including sample preparation, mass spectrometric measurement procedure, and the complete calibrations. The preparation line extracts dissolved gases from water samples of volumes of 0.2 μ l to 3 l and it separates them as noble and other chemically active gases. Our compact system handles the following measurements: (i) determination of tritium concentration of environmental water samples by the (3)He ingrowth method; (ii) noble gas measurements from surface water and groundwater; and (iii) noble gas measurements from fluid inclusions of solid geological archives (e.g. speleothems). As a result, the tritium measurements have a detection limit of 0.012 TU, and the expectation value (between 1 and 20 TU) is within 0.2 % of the real concentrations with a standard deviation of 2.4 %. The reproducibility of noble gas measurements for water samples of 20-40 ml allows us to determine solubility temperatures by an uncertainty better than 0.5 °C. Moreover, noble gas measurements for tiny water amounts (in the microlitre range) show that the results of the performed calibration measurements for most noble gas isotopes occur with a deviation of less than 2 %. Theoretically, these precisions for noble gas concentrations obtained from measurements of waters samples of a few microlitres allow us to determine noble gas temperatures by an uncertainty of less than 1 °C. Here, we present the first noble gas measurements of tiny amounts of artificial water samples prepared under laboratory conditions.

  18. Investigation of the noble gas solubility in H 2O-CO 2 bearing silicate liquids at moderate pressure II: the extended ionic porosity (EIP) model

    NASA Astrophysics Data System (ADS)

    Nuccio, P. M.; Paonita, A.

    2000-12-01

    A semi-theoretical model is proposed to predict partitioning of noble gases between any silicate liquid and a H 2O-CO 2 gas phase with noble gas as a minor component, in a large range of pressures (at least up to 300 MPa). The model is based on the relationship between the concentration of dissolved noble gas and ionic porosity of the melt, found by Carroll and Stolper [Geochim. Cosmochim. Acta 57 (1993) 5039-5051] for H 2O-CO 2 free melts. It evaluates the effect of dissolved H 2O and CO 2 on the melt ionic porosity and, consequently on Henry's constants of noble gases. The fugacities of the noble gases in the H 2O-CO 2-noble gas mixtures are also considered in our equilibrium calculations of dissolved gas by using a modified Redlich-Kwong equation of state for the H 2O-CO 2-noble gas system. The formulated model (referred to as the extended ionic porosity model) clearly predicts a positive dependence of noble gas solubility on dissolved H 2O in melt, which becomes negligible when water concentration is higher than 3 wt%. Oppositely, noble gas solubility decreases as a consequence of increasing CO 2 in both basaltic and rhyolitic melts. The increase of noble gas solubility as a consequence of H 2O addition to the melt grows exponentially with the increase of the noble gas atomic size. As a result, although xenon solubility is much lower than the helium solubility in anhydrous melts, they become almost comparable at several percent of dissolved H 2O in the melt. On this basis, an exponential augmentation of the number of large free spaces in silicate liquid can be inferred in relation to increasing dissolved H 2O. Comparison between our predicted values and available experimental data [A. Paonita et al., Earth Planet. Sci. Lett. 181 (2000) 595-604] shows good agreement. At present, the EIP model is the unique tool which predicts how the main volatiles in magmatic systems affect the noble gas solubility in silicate melts, therefore it should be taken into account for future studies of noble gas fractionation in degassing natural magmas.

  19. Using Heavy Noble Gases to Help Determine Mantle vs Lithospheric Contributions and CO2 Residence Times in Southwestern US Hot Springs

    NASA Astrophysics Data System (ADS)

    Whyte, C. J.; Karlstrom, K. E.; Crossey, L. J.; Darrah, T.

    2017-12-01

    Climate change has placed a particular importance on the understanding of carbon cycling, especially on continental scales, resulting in the necessity to quantify the rates and timing on which CO2 is released into the atmosphere by volcanic and tectonic processes. Recent studies have identified mantle-derived 3He and excess CO2 in springs and groundwaters across the conterminous US, suggesting that there may be great unknowns in the rates and scales of magmatic CO2 release in the global carbon budget. Further, it remains uncertain if these fluids are merely passive remnants of past magmatic events or instead result from ongoing mantle degassing. Understanding these processes and timescales by studying CO2 fluxes alone can be challenging because CO2 is highly reactive in the subsurface. CO2 is both formed and degraded by microbial processes, rapidly dissolves into waters, and can be readily released from carbonate-rich lithologies by water-rock interactions. By comparison, chemically-inert tracers such as noble gases provide one potential technique for identifying and constraining fluid sources and migration histories in the subsurface. Primordial isotopes (e.g., 3He and 129Xe) provide unambiguous indications of mantle-derived fluids, and heavier noble gases (e.g., Ne, Ar, Kr, Xe) provide a suite of potential tracers that can help de-convolve the extent of mixing between crust and mantle and discern between lithospheric and asthenospheric mantle fluids. Additionally, the low production rate of the radiogenic xenon isotopes (e.g., 134Xe, 136Xe) may help determine the relative residence time of mantle CO2 degassing in continental settings, providing important constraints on CO2 storage in the mantle and lithosphere in quiescent tectonic settings. To test these hypotheses, we analyzed a suite of noble gas isotopic compositions in hot springs in the Colorado Plateau and Rocky Mountains, US. Many samples display resolvable excesses in 3He and 129Xe relative to air-saturated water with variable excesses in 40Ar* and radiogenic xenon isotopes. Excess 3He and 129Xe are consistent with mantle contributions, while variable abundances of radiogenic gases reflect the relative mixtures of air-saturated water, mantle, lithosphere, and the crust providing insight on their history during crustal emplacement.

  20. Primordial domains in the depleted upper mantle identified by noble gases in MORBs

    NASA Astrophysics Data System (ADS)

    Tucker, J.; Mukhopadhyay, S.; Langmuir, C. H.; Hamelin, C.; Fuentes, J.

    2017-12-01

    The distribution of noble gas isotopic compositions in the mantle provides important constraints on the large-scale mantle evolution, as noble gases can trace the interaction between degassed, or processed, mantle domains and undegassed, or primitive, mantle domains. Data from the radiogenic He, Ne, Ar and Xe isotopic systems have shown that plume-related lavas sample relatively undegassed mantle domains, and the recent identification of isotopic anomalies in the short-lived I-Xe and Hf-W isotopic systems in plume-related lavas further suggests that these domains may be ancient, dating back to Earth's accretion. However, little is known about the potential variability of the heavy noble gas systems and the distribution of undegassed domains in the ambient upper mantle not influenced by plumes. Here, we present new high-precision He, Ne, Ar, and Xe isotopic data for a series of MORBs from a depleted section of the subtropical north Mid-Atlantic Ridge, distant from any known plume influence. Some samples have extremely low (unradiogenic) 4He/3He, 21Ne/22Ne, 40Ar/36Ar, and 129Xe/130Xe ratios, including some of the lowest values ever determined for MORBs. Such unradiogenic compositions are reminiscent of OIBs and plume-influenced E-MORBs, suggesting the presence of a relatively undegassed or primitive reservoir in the source of these depleted MORBs. The He, Ne, and Ar isotopic systems are sensitive to the long-term degassing history, suggesting that this domain in the MORB source is ancient. The 129Xe/130Xe ratio is sensitive to degassing only during the first 100 Ma of Earth history, suggesting that some of the isotopic character of these samples has been preserved since Earth's accretion. Together, these observations suggest that primordial or undegassed material is not only sampled in plumes-related lavas, but also normal, depleted MORBs. Along with data from E-MORBs in the southern EPR (Kurz et al., 2005), southern MAR (Sarda et al., 2000), and equatorial MAR (Tucker et al., 2012), our new data suggest that primordial material may be present throughout the MORB source. Such material could either have been stored for a long term in the upper mantle, or recently mixed into the upper mantle from a deeper reservoir.

  1. Sedimentary halogens and noble gases within Western Antarctic xenoliths: Implications of extensive volatile recycling to the sub continental lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Broadley, Michael W.; Ballentine, Chris J.; Chavrit, Déborah; Dallai, Luigi; Burgess, Ray

    2016-03-01

    Recycling of marine volatiles back into the mantle at subduction zones has a profound, yet poorly constrained impact on the geochemical evolution of the Earth's mantle. Here we present a combined noble gas and halogen study on mantle xenoliths from the Western Antarctic Rift System (WARS) to better understand the flux of subducted volatiles to the sub continental lithospheric mantle (SCLM) and assess the impact this has on mantle chemistry. The xenoliths are extremely enriched in the heavy halogens (Br and I), with I concentrations up to 1 ppm and maximum measured I/Cl ratios (85.2 × 10-3) being ∼2000 times greater than mid ocean ridge basalts (MORB). The Br/Cl and I/Cl ratios of the xenoliths span a range from MORB-like ratios to values similar to marine pore fluids and serpentinites, whilst the 84Kr/36Ar and 130Xe/36Ar ratios range from modern atmosphere to oceanic sediments. This indicates that marine derived volatiles have been incorporated into the SCLM during an episode of subduction related metasomatism. Helium isotopic analysis of the xenoliths show average 3He/4He ratios of 7.5 ± 0.5 RA (where RA is the 3He/4He ratio of air = 1.39 × 10-6), similar to that of MORB. The 3He/4He ratios within the xenoliths are higher than expected for the xenoliths originating from the SCLM which has been extensively modified by the addition of subducted volatiles, indicating that the SCLM beneath the WARS must have seen a secondary alteration from the infiltration and rise of asthenospheric fluids/melts as a consequence of rifting and lithospheric thinning. Noble gases and halogens within these xenoliths have recorded past episodes of volatile interaction within the SCLM and can be used to reconstruct a tectonic history of the WARS. Marine halogen and noble gas signatures within the SCLM xenoliths provide evidence for the introduction and retention of recycled volatiles within the SCLM by subduction related metasomatism, signifying that not all volatiles that survive subduction are mixed efficiently through the convecting mantle. The global SCLM therefore represents a potentially important reservoir for the long term residence of subducted volatiles.

  2. Venus, Earth, Xenon

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2013-12-01

    Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with the chondrites, with Earth, or with none of the above. Modern spacecraft mass spectrometers are at least 100-fold more sensitive to noble gases. Sending such an instrument to Venus may be the last best hope for decrypting what Earth's noble gases have been trying to tell us.

  3. Noble gas storage and delivery system for ion propulsion

    NASA Technical Reports Server (NTRS)

    Back, Dwight Douglas (Inventor); Ramos, Charlie (Inventor)

    2001-01-01

    A method and system for storing and delivering a noble gas for an ion propulsion system where an adsorbent bearing a noble gas is heated within a storage vessel to desorb the noble gas which is then flowed through a pressure reduction device to a thruster assembly. The pressure and flow is controlled using a flow restrictor and low wattage heater which heats an adsorbent bed containing the noble gas propellant at low pressures. Flow rates of 5-60 sccm can be controlled to within about 0.5% or less and the required input power is generally less than 50 W. This noble gas storage and delivery system and method can be used for earth orbit satellites, and lunar or planetary space missions.

  4. Non-Adiabatic Atomic Transitions: Computational Cross Section Calculations of Alkali Metal-Noble Gas Collisions

    DTIC Science & Technology

    2011-09-01

    there a one time transfer of prob- ability between Coriolis coupled states. One possible way to answer this question would be to literally create and... time -dependent numerical algorithm was developed using FORTRAN 90 to predict S-Matrix elements for alkali metal - noble gas (MNg) collisions. The...committee and the physics department for their time and effort to see me through the completion of my doctorate degree. Charlton D. Lewis, II v Table of

  5. Noble gases as tracers of the origin and evolution of the Martian atmosphere and the degassing history of the planet

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.

    1988-01-01

    Noble gas analysis of Martian samples can provide answers to a number of crucial questions. Some of the most obvious benefits will be in Martian chronology, using techniques that have been applied to lunar samples. However, these are by no means the only relevant noble gas studies possible. Since Mars has a substantial atmosphere, noble gases can be used to study the origin and evolution of that atmosphere, including the degassing history of the planet. This type of study can provide constraints on: (1) the total noble gas inventory of the planet, (2) the number of noble gas reservoirs existing, and (3) the exchange of gases between these reservoirs. How to achieve these goals are examined.

  6. LaRC results on nuclear pumped noble gas lasers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.

    1979-01-01

    The recent experiment and theoretical results obtained for noble gas nuclear laser systems are presented. It is shown that the noble gas lasers are among the easiest systems to pump by nuclear excitation and as a result, all of the noble gases except He have lased under nuclear excitation. The noble gas systems are not ideal for high-power applications but they do give valuable insight into the operation and pumping mechanisms associated with nuclear lasers. At present, the Ar-Xe system is the best noble gas candidate for (U-235)F6 pumping. It appears that the quenching of Ar-Xe lasing is a result of the fluorine and not the uranium or fission fragments themselves. Thus, to achieve lasing with UF6, a fluorine compatible system must be found.

  7. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  8. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  9. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    DOEpatents

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  10. Surface Plasmon Resonance or Biocompatibility—Key Properties for Determining the Applicability of Noble Metal Nanoparticles

    PubMed Central

    Craciun, Ana Maria; Focsan, Monica; Vulpoi, Adriana

    2017-01-01

    Metal and in particular noble metal nanoparticles represent a very special class of materials which can be applied as prepared or as composite materials. In most of the cases, two main properties are exploited in a vast number of publications: biocompatibility and surface plasmon resonance (SPR). For instance, these two important properties are exploitable in plasmonic diagnostics, bioactive glasses/glass ceramics and catalysis. The most frequently applied noble metal nanoparticle that is universally applicable in all the previously mentioned research areas is gold, although in the case of bioactive glasses/glass ceramics, silver and copper nanoparticles are more frequently applied. The composite partners/supports/matrix/scaffolds for these nanoparticles can vary depending on the chosen application (biopolymers, semiconductor-based composites: TiO2, WO3, Bi2WO6, biomaterials: SiO2 or P2O5-based glasses and glass ceramics, polymers: polyvinyl alcohol (PVA), Gelatin, polyethylene glycol (PEG), polylactic acid (PLA), etc.). The scientific works on these materials’ applicability and the development of new approaches will be targeted in the present review, focusing in several cases on the functioning mechanism and on the role of the noble metal. PMID:28773196

  11. Consent Decree for Noble Energy

    EPA Pesticide Factsheets

    Noble Energy, Inc. (Noble) that comprehensively identifies and addresses issues with vapor control systems at Noble’s condensate storage tank batteries in the Denver-area 8-hour ozone marginal nonattainment area (nonattainment area).

  12. A long-term change of the AR/KR/XE fractionation in the solar corpuscular radiation

    NASA Technical Reports Server (NTRS)

    Wieler, R.; Baur, H.; Signer, P.

    1993-01-01

    Solar noble gases in an ilmenite separate from breccia 79035 (antiquity greater than 1 Ga) were analyzed by closed system stepped etching (CSSE). All five gases show the familiar two-component structure: first solar-wind (SW) gases are released, followed by gases from solar energetic particles (SEP). Element patterns in 79035 are similar to those of 71501 ilmenite. SW-He-Ne were partly lost, but SEP-He-Ne-Ar are retained (nearly) unfractionated. Constant Ar/Kr/Xe ratios indicate that ilmenites contain an unfractionated sample of the heavy SW-SEP noble gases. Ar/Kr/Xe ratios in the solar corpuscular radiation are, however, different from 'solar system' values, whereby the Kr/Xe difference in 79035 is about twice as large as in 71501. We propose that Xe is less fractionated than Kr and Ar, though its first ionization potential (FIP) is higher than the 'cutoff' at approximately 11.5 eV, above which all elements in SEP are usually assumed to be depleted by a roughly constant factor. SW-Ne may be isotopically slightly heavier in the ancient SW trapped by 79035, as proposed earlier. In this work we extend our previous CSSE studies of solar noble gases including Kr and Xe to a lunar sample irradiated at least 1 Ga ago (breccia 79035, ilmenite separate, 42-64 microns). This sample was particularly gently etched in the first steps. Surprisingly, the first three steps, each releasing less than or equal to 0.5% of the total 36-Ar, showed an SEP-like trapped component plus relatively large concentrations of cosmogenic gases. Steps 4ff contain much less cosmogenic and more solar gas with a SW-like isotope pattern. Thus, a very minor easily etchable phase that has completely lost its SW-gases must be responsible for steps 1-3. We will not discuss these steps here and refer to the actual step 4 as the 'initial' etching step.

  13. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source.

    PubMed

    Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-01

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  14. SNO+ Scintillator Purification and Assay

    NASA Astrophysics Data System (ADS)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  15. Noble metal nanostructures in optical biosensors: Basics, and their introduction to anti-doping detection.

    PubMed

    Malekzad, Hedieh; Zangabad, Parham Sahandi; Mohammadi, Hadi; Sadroddini, Mohsen; Jafari, Zahra; Mahlooji, Niloofar; Abbaspour, Somaye; Gholami, Somaye; Ghanbarpoor, Mana; Pashazadeh, Rahim; Beyzavi, Ali; Karimi, Mahdi; Hamblin, Michael R

    2018-03-01

    Nanotechnology has illustrated significant potentials in biomolecular-sensing applications; particularly its introduction to anti-doping detection is of great importance. Illicit recreational drugs, substances that can be potentially abused, and drugs with dosage limitations according to the prohibited lists announced by the World Antidoping Agency (WADA) are becoming of increasing interest to forensic chemists. In this review, the theoretical principles of optical biosensors based on noble metal nanoparticles, and the transduction mechanism of commonly-applied plasmonic biosensors are covered. We review different classes of recently-developed plasmonic biosensors for analytic determination and quantification of illicit drugs in anti-doping applications. The important classes of illicit drugs include anabolic steroids, opioids, stimulants, and peptide hormones. The main emphasis is on the advantages that noble metal nano-particles bring to optical biosensors for signal enhancement and the development of highly sensitive (label-free) biosensors. In the near future, such optical biosensors may be an invaluable substitute for conventional anti-doping detection methods such as chromatography-based approaches, and may even be commercialized for routine anti-doping tests.

  16. Mechanistic insights into plasmonic photocatalysts in utilizing visible light.

    PubMed

    Leong, Kah Hon; Aziz, Azrina Abd; Sim, Lan Ching; Saravanan, Pichiah; Jang, Min; Bahnemann, Detlef

    2018-01-01

    The utilisation of sunlight as an abundant and renewable resource has motivated the development of sustainable photocatalysts that can collectively harvest visible light. However, the bottleneck in utilising the low energy photons has led to the discovery of plasmonic photocatalysts. The presence of noble metal on the plasmonic photocatalyst enables the harvesting of visible light through the unique characteristic features of the noble metal nanomaterials. Moreover, the formation of interfaces between noble metal particles and semiconductor materials further results in the formation of a Schottky junction. Thereby, the plasmonic characteristics have opened up a new direction in promoting an alternative path that can be of value to the society through sustainable development derived through energy available for all for diverse applications. We have comprehensively prepared this review to specifically focus on fundamental insights into plasmonic photocatalysts, various synthesis routes, together with their strengths and weaknesses, and the interaction of the plasmonic photocatalyst with pollutants as well as the role of active radical generation and identification. The review ends with a pinnacle insight into future perspectives regarding realistic applications of plasmonic photocatalysts.

  17. a Chirped Pulse Fourier Transform Microwave Cp-Ftmw Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal Clusters

    NASA Astrophysics Data System (ADS)

    Marshall, Frank E.; Gillcrist, David Joseph; Persinger, Thomas D.; Moon, Nicole; Grubbs, G. S., II

    2016-06-01

    Microwave spectroscopic techniques have traditionally been part of the foundation of molecular structure and this conference. Instrumental developments by Brooks Pate and sourcing developments by Steve Cooke on these instruments have allowed for the dawning of a new era in modern microwave spectroscopic techniques. With these advances and the growth of powerful computational approaches, microwave spectroscopists can now search for molecules and/or cluster systems of actinide and noble metal-containing species with increasing certainty in molecular assignment even with the difficulties presented with spin-orbit coupling and relativistic effects. Spectrometer and ablation design will be presented along with any preliminary results on actinide-containing molecules or noble metal clusters or interactions. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, B. H. Pate, Rev. Sci. Instrum. 79 (2008) 053103-1 - 053103-13 G. S. Grubbs II, C. T. Dewberry, K. C. Etchison, K. E. Kerr, S. A. Cooke, Rev. Sci. Instrum. 78 (2007) 096106-1 - 096106-3

  18. Development of a Liquefied Noble Gas Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Lesser, Ezra; White, Aaron; Aidala, Christine

    2015-10-01

    Liquefied noble gas detectors have been used for various applications in recent years for detecting neutrinos, neutrons, photons, and potentially dark matter. The University of Michigan is developing a detector with liquid argon to produce scintillation light and ionization electrons. Our data collection method will allow high-resolution energy measurement and spatial reconstruction of detected particles by using multi-pixel silicon photomultipliers (SiPM) and a cylindrical time projection chamber (TPC) with a multi-wire endplate. We have already designed a liquid argon condenser and purification unit surrounded by an insulating vacuum, constructed circuitry for temperature and pressure sensors, and created software to obtain high-accuracy sensor readouts. The status of detector development will be presented. Funded through the Michigan Memorial Phoenix Project.

  19. Noble gas systematics of the Skaergaard intrusion

    NASA Astrophysics Data System (ADS)

    Horton, F.; Farley, K. A.; Taylor, H. P.

    2017-12-01

    The noble gas isotopic compositions of olivines from the Skaergaard layered mafic intrusion in Greenland reveal that magmas readily exchange noble gases with their environment after emplacement. Although Skaergaard magmas are thought to have derived from the upper mantle, all of the olivine separates we analyzed have 3He/4He ratios less than that of the upper mantle ( 8 Ra, where Ra = 3He/4He of the atmosphere, 1.39 x 10-6). This suggests that crustal and/or atmospheric noble gases have contaminated all Skaergaard magmas to some extent. We obtained the highest 3He/4He ratios ( 2 Ra) from olivines found in the lowermost exposed layers of the intrusion away from the margins. Excess radiogenic 4He (indicated by Ra<1) along the margin of the intrusion indicates that noble gases from the Archean host-rock were incorporated into the cooling magma chamber, probably via magmatic assimilation. Noble gases in olivines from the upper portions of the intrusion have atmospheric isotopic compositions, but higher relative helium abundances than the atmosphere. We suggest that post-crystallization hydrothermal circulation introduced atmosphere-derived noble gases into uppermost layers of the intrusion. Such high temperature exchanges of volatiles between plutons and their immediate surroundings may help explain why so few mantle-derived rocks retain mantle-like noble gas signatures.

  20. Noble gas loss may indicate groundwater flow across flow barriers in southern Nevada

    USGS Publications Warehouse

    Thomas, J.M.; Bryant, Hudson G.; Stute, M.; Clark, J.F.

    2003-01-01

    Average calculated noble gas temperatures increase from 10 to 22oC in groundwater from recharge to discharge areas in carbonate-rock aquifers of southern Nevada. Loss of noble gases from groundwater in these regional flow systems at flow barriers is the likely process that produces an increase in recharge noble gas temperatures. Emplacement of low permeability rock into high permeability aquifer rock and the presence of low permeability shear zones reduce aquifer thickness from thousands to tens of meters. At these flow barriers, which are more than 1,000 m lower than the average recharge altitude, noble gases exsolve from the groundwater by inclusion in gas bubbles formed near the barriers because of greatly reduced hydrostatic pressure. However, re-equilibration of noble gases in the groundwater with atmospheric air at the low altitude spring discharge area, at the terminus of the regional flow system, cannot be ruled out. Molecular diffusion is not an important process for removing noble gases from groundwater in the carbonate-rock aquifers because concentration gradients are small.

  1. Noble-gas-rich separates from the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Ott, U.; Mack, R.; Chang, S.

    1981-01-01

    Predominantly carbonaceous HF/HCl-resistant residues from the Allende meteorite are studied. Samples are characterized by SEM/EDXA, X-ray diffraction, INAA, C, S, H, N, and noble gas analyses. Isotopic data for carbon show variations no greater than 5%, while isotopic data from noble gases confirm previously established systematics. Noble gas abundances correlate with those of C and N, and concomitant partial loss of C and normal trapped gas occur during treatments with oxidizing acids. HF/HCl demineralization of bulk meteorite results in similar fractional losses of C and trapped noble gases, which leads to the conclusion that various macromolecular carbonaceous substances serve as the main host phase for normal trapped noble gases and anomalous gases in acid-resistant residues, and as the carrier of the major part of trapped noble gases lost during HF/HCl demineralization. Limits on the possible abundances of dense mineralic host phases in the residues are obtained, and considerations of the nucleogenetic origin for CCF-XE indicate that carbonaceous host phases and various forms of organic matter in carbonaceous meteorites may have a presolar origin.

  2. Filamentous fungi associated with natural infection of noble rot on withered grapes.

    PubMed

    Lorenzini, M; Simonato, B; Favati, F; Bernardi, P; Sbarbati, A; Zapparoli, G

    2018-05-02

    The effects of noble rot infection of grapes on the characteristics of different types of wine, including Italian passito wine, are well known. Nevertheless, there is still little information on filamentous fungi associated with noble-rotten grapes. In this study, withered Garganega grapes for passito wine production, naturally infected by noble rot, were analyzed and compared to sound grapes. Skin morphology and fungal population on berry surfaces were analyzed. Scanning electron microscopy analysis revealed microcracks, germination conidia and branched hyphae on noble-rotten berries. Penicillium, Aureobasidium and Cladosporium were the most frequent genera present. Analysis of single berries displayed higher heterogeneity of epiphytic fungi in those infected by noble-rot than in sound berries. Penicillium adametzoides, Cladosporium cladospoirioides and Coniochaeta polymorpha were recovered. These, to the best of our knowledge, had never been previously isolated from withered grapes and, for C. polymorpha, from grapevine. This study provided novel data on noble rot mycobiota and suggests that fungi that co-habit with B. cinerea could have an important role on grape and wine quality. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Using noble gases measured in spring discharge to trace hydrothermal processes in the Norris Geyser Basin, Yellowstone National Park, U.S.A.

    USGS Publications Warehouse

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.

    2010-01-01

    Dissolved noble gas concentrations in springs are used to investigate boiling of hydrothermal water and mixing of hydrothermal and shallow cool water in the Norris Geyser Basin area. Noble gas concentrations in water are modeled for single stage and continuous steam removal. Limitations on boiling using noble gas concentrations are then used to estimate the isotopic effect of boiling on hydrothermal water, allowing the isotopic composition of the parent hydrothermal water to be determined from that measured in spring. In neutral chloride springs of the Norris Geyser Basin, steam loss since the last addition of noble gas charged water is less than 30% of the total hydrothermal discharge, which results in an isotopic shift due to boiling of ?? 2.5% ??D. Noble gas concentrations in water rapidly and predictably change in dual phase systems, making them invaluable tracers of gas-liquid interaction in hydrothermal systems. By combining traditional tracers of hydrothermal flow such as deuterium with dissolved noble gas measurements, more complex hydrothermal processes can be interpreted. ?? 2010 Elsevier B.V.

  4. Issues Involving The OSI Concept of Operation For Noble Gas Radionuclide Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrigan, C R; Sun, Y

    2011-01-21

    The development of a technically sound protocol for detecting the subsurface release of noble gas radionuclides is critical to the successful operation of an on site inspection (OSI) under the CTBT and has broad ramifications for all aspects of the OSI regime including the setting of specifications for both sampling and analysis equipment used during an OSI. With NA-24 support, we are investigating a variety of issues and concerns that have significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work at LLNLmore » focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments - a lesson we learned previously from the LLNL Non-Proliferation Experiment (NPE). Evaluation of a number of important noble gas detection issues, potentially affecting OSI policy, has awaited the US re-engagement with the OSI technical community. Thus, there have been numerous issues to address during the past 18 months. Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of LLNL computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied in the field making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated during the past year. We complete the discussion of these issues with a description of a preliminary design for subsurface sampling that is intended to be a practical solution to most if not all the challenges addressed here.« less

  5. Chondritic Xenon in the Earth's mantle: new constrains on a mantle plume below central Europe

    NASA Astrophysics Data System (ADS)

    Caracausi, Antonio; Avice, Guillaume; Bernard, Peter; Furi, Evelin; Marty, Bernard

    2016-04-01

    Due to their inertness, their low abundances, and the presence of several different radiochronometers in their isotope systematics, the noble gases are excellent tracers of mantle dynamics, heterogeneity and differentiation with respect to the atmosphere. Xenon deserves particular attention because its isotope systematic can be related to specific processes during terrestrial accretion (e.g., Marty, 1989; Mukhopadhyay, 2012). The origin of heavy noble gases in the Earth's mantle is still debated, and might not be solar (Holland et al., 2009). Mantle-derived CO2-rich gases are particularly powerful resources for investigating mantle-derived noble gases as large quantities of these elements are available and permit high precision isotope analysis. Here, we report high precision xenon isotopic measurements in gases from a CO2 well in the Eifel volcanic region (Germany), where volcanic activity occurred between 700 ka and 11 ka years ago. Our Xe isotope data (normalized to 130Xe) show deviations at all masses compared to the Xe isotope composition of the modern atmosphere. The improved analytical precision of the present study, and the nature of the sample, constrains the primordial Xe end-member as being "chondritic", and not solar, in the Eifel mantle source. This is consistent with an asteroidal origin for the volatile elements in Earth's mantle and it implies that volatiles in the atmosphere and in the mantle originated from distinct cosmochemical sources. Despite a significant fraction of recycled atmospheric xenon in the mantle, primordial Xe signatures still survive in the mantle. This is also a demonstration of a primordial component in a plume reservoir. Our data also show that the reservoir below the Eifel region contains heavy-radiogenic/fissiogenic xenon isotopes, whose ratios are typical of plume-derived reservoirs. The fissiogenic Pu-Xe contribution is 2.26±0.28 %, the UXe contribution is negligible, the remainder being atmospheric plus primordial. Our data support the notion that the fraction of plutonium-derived Xe in plume sources (oceanic as well as continental) is higher than in the MORB source reservoir. Hence, the MORB - type reservoirs appear to be well distinguished and more degassed than the plume sources (oceanic as well as continental) supporting the heterogeneity of Earth's mantle. Finally this study highlights that xenon isotopes in the Eifel gas have preserved a chemical signature that is characteristic of other mantle plume sources. This is very intriguing because the presence of a mantle plume in this sector of Central Europe was already inferred from geophysical and geochemical studies(Buikin et al., 2005; Goes et al., 1999). Notably, tomographic images show a low-velocity structure down to 2000 km depth, representing deep mantle upwelling under central Europe, that may feed smaller upper-mantle plumes (Eifel volcanic district-Germany). References Buikin A., Trieloff M., HoppJ., Althaus T., Korochantseva E., Schwarz W.H. &Altherr R., (2005), Noble gas isotopessuggestdeepmantleplume source of late Cenozoicmaficalkalinevolcanism in Europe, Earth Planet. Sci. Lett. 230, 143-162. Goes S., Spakman W. &BijwaardH., (1999), A lowermantle source for centraleuropeanvolcanism, Science, 286, 1928-1931.G. Holland, M. Cassidy, C.J. Ballentine, Meteorite Kr in the Earth's mantle suggests a late accretionary source for the atmosphere, Science, 326, 1522-1525, (2009). Marty, B. Neon and xenon isotopes in MORB: implications for the Earth-atmosphere evolution. Earth Planet. Sci. Lett. 94, 45-56 (1989). Mukhopadhyay S., Early differentiation and volatile accretion recorded in deep-mantle neon and xenon Nature, 486, 101-106, (2013).

  6. TiO2 structures doped with noble metals and/or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid.

    PubMed

    Ribao, Paula; Rivero, Maria J; Ortiz, Inmaculada

    2017-05-01

    Noble metals have been used to improve the photocatalytic activity of TiO 2 . Noble metal nanoparticles prevent charge recombination, facilitating electron transport due to the equilibration of the Fermi levels. Furthermore, noble metal nanoparticles show an absorption band in the visible region due to a high localized surface plasmon resonance (LSPR) effect, which contributes to additional electron movements. Moreover, systems based on graphene, titanium dioxide, and noble metals have been used, considering that graphene sheets can carry charges, thereby reducing electron-hole recombination, and can be used as substrates of atomic thickness. In this work, TiO 2 -based nanocomposites were prepared by blending TiO 2 with noble metals (Pt and Ag) and/or graphene oxide (GO). The nanocomposites were mainly characterized via transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR), Raman spectroscopy, and photocurrent analysis. Here, the photocatalytic performance of the composites was analyzed via oxidizing dichloroacetic acid (DCA) model solutions. The influence of the noble metal load on the composite and the ability of the graphene sheets to improve the photocatalytic activity were studied, and the composites doped with different noble metals were compared. The results indicated that the platinum structures show the best photocatalytic degradation, and, although the presence of graphene oxide in the composites is supposed to enhance their photocatalytic performance, graphene oxide does not always improve the photocatalytic process. Graphical abstract It is a schematic diagram. Where NM is Noble Metal and LSPR means Localized Surface Plasmon Resonance.

  7. Noble Gas Release Signal as a Precursor to Fracture

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.; Lee, H.; Gardner, W. P.

    2017-12-01

    We present empirical results of rock strain, microfracturing, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite, basalt, shale and bedded rock salt. Noble gases are released and measured real-time during deformation using mass spectrometry. The gas release represents a precursive signal to macrofracture. Gas release is associated with increased acoustic emissions indicating that microfracturing is required to release gas and create pathways for the gas to be sensed. The gas released depends on initial gas content, pore structure and its evolution during deformation, the deformation amount, matrix permeability, deformation style and the stress/strain history. Gases are released from inter and intracrystalline sites; release rate increases as strain and microfracturing increases. The gas composition depends on lithology, geologic history and age, fluids present, and radioisotope concentrations that affect radiogenic noble gas isotope (e.g. 4He,40Ar) production. Noble gas emission and its relationship to crustal processes such as seismicity and volcanism, tectonic velocities, qualitative estimates of deep permeability, age dating of groundwater, and a signature of nuclear weapon detonation. Our result show that mechanical deformation of crustal materials is an important process controlling gas release from rocks and minerals, and should be considered in techniques which utilize gas release and/or accumulation. We propose using noble gas release to signal rock deformation in boreholes, mines and waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress, strain, and/or permanent deformation dependent. Calibration of such relationships, for example relating gas release per rock unit volume to strain may be used to quantify rock deformation and develop predictive models.Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-7823A

  8. Noble gas trapping and fractionation during synthesis of carbonaceous matter. [in meteorites

    NASA Technical Reports Server (NTRS)

    Frick, U.; Mack, R.; Chang, S.

    1979-01-01

    An investigation of noble gas entrapment during synthesis of carbonaceous, macromolecular, and kerogen-like substances is presented. High molecular weight organic matter synthesized in aqueous condensation reactions contained little gas, and the composition was consistent with fractionation due to noble gas solubility in water; however, propane soot produced during a modified Miller-Urey experiment in an aritificial gas mixture contained high concentrations of trapped noble gases that displayed strong elemental fractionation from their reservoirs. It is concluded that theses experiemnts show that processes exist for synthesis of carbonaceous carriers that result in high noble gas concentrations and strong elemental fractionation at temperatures well above those required by absorption to achieve similar effects.

  9. Noble Gas Temperature Proxy for Climate Change

    EPA Science Inventory

    Noble gases in groundwater appear to offer a practical approach for quantitatively determining past surface air temperatures over recharge areas for any watershed. The noble gas temperature (NGT) proxy should then permit a paleothermometry of a region over time. This terrestria...

  10. Closed System Step Etching of CI chondrite Ivuna reveals primordial noble gases in the HF-solubles

    NASA Astrophysics Data System (ADS)

    Riebe, My E. I.; Busemann, Henner; Wieler, Rainer; Maden, Colin

    2017-05-01

    We analyzed all the noble gases in HF-soluble phases in the CI chondrite Ivuna by in-vacuum gas release using the "Closed System Step Etching" (CSSE) technique, which allows for direct noble gas measurements of acid-soluble phases. The main motivation was to investigate if there are primordial noble gases in HF-soluble phases in Ivuna, something that has not been done before in CI chondrites, as most primordial noble gases are known to reside in HF-resistant phases. The first steps under mild etching released He, Ne, and Ar with solar-like elemental and isotopic compositions, confirming that Ivuna contains implanted solar wind (SW) noble gases acquired in the parent body regolith. The SW component released in some etch steps was elementally unfractionated. This is unusual as trapped SW noble gases are elementally fractionated in most meteoritic material. In the intermediate etch steps under slightly harsher etching, cosmogenic noble gases were more prominent than SW noble gases. The HF-soluble portion of Ivuna contained primordial Ne and Xe, that was most visible in the last etch steps after all cosmogenic and most SW gases had been released. The primordial Ne and Xe in the HF-solubles have isotopic and elemental ratios readily explained as a mixture of the two most abundant primordial noble gas components in Ivuna bulk samples: HL and Q. Only small fractions of the total HL and Q in Ivuna were released during CSSE analysis; ∼3% of 20NeHL and ∼4% of 132XeQ. HL is known to reside in nanodiamond-rich separates and Q-gases are most likely carried by a carbonaceous phase known as phase Q. Q-gases were likely released from an HF-soluble portion of phase Q. However, nanodiamonds might not be the source of the HL-gases released upon etching, since nanodiamond-rich separates are very HF-resistant and the less tightly bound nanodiamond component P3 was not detected.

  11. Exotic species with explicit noble metal-noble gas-noble metal linkages.

    PubMed

    Moreno, Norberto; Restrepo, Albeiro; Hadad, C Z

    2018-02-14

    We present a study of the isoelectronic Pt 2 Ng 2 F 4 and [Au 2 Ng 2 F 4 ] 2+ species with noble gas atoms (Ng = Kr, Xe, Rn) acting as links bridging the two noble metal atoms. The stability of the species is investigated using several thermodynamic, kinetic and reactivity indicators. The results are compared against [AuXe 4 ] 2+ , which is thermodynamically unstable in the gas phase but is stabilized in the solid state to the point that it has been experimentally detected as [AuXe 4 ](Sb 2 F 11 ) 2 (S. Seidel and K. Seppelt, Science, 2000, 290, 117-118). Our results indicate that improving upon [AuXe 4 ] 2+ , these exotic combinations between the a priori non-reactive noble metals and noble gases lead to metastable species, and, therefore, they have the possibility of existing in the solid state under adequate conditions. Our calculations include accurate energies and geometries at both the CCSD/SDDALL and MP2/SDDALL levels. We offer a detailed description of the nature of the bonding interactions using orbital and density-based analyses. The computational evidence suggests partially covalent and ionic interactions as the stabilization factors.

  12. Signal-to-noise ratio comparison of encoding methods for hyperpolarized noble gas MRI

    NASA Technical Reports Server (NTRS)

    Zhao, L.; Venkatesh, A. K.; Albert, M. S.; Panych, L. P.

    2001-01-01

    Some non-Fourier encoding methods such as wavelet and direct encoding use spatially localized bases. The spatial localization feature of these methods enables optimized encoding for improved spatial and temporal resolution during dynamically adaptive MR imaging. These spatially localized bases, however, have inherently reduced image signal-to-noise ratio compared with Fourier or Hadamad encoding for proton imaging. Hyperpolarized noble gases, on the other hand, have quite different MR properties compared to proton, primarily the nonrenewability of the signal. It could be expected, therefore, that the characteristics of image SNR with respect to encoding method will also be very different from hyperpolarized noble gas MRI compared to proton MRI. In this article, hyperpolarized noble gas image SNRs of different encoding methods are compared theoretically using a matrix description of the encoding process. It is shown that image SNR for hyperpolarized noble gas imaging is maximized for any orthonormal encoding method. Methods are then proposed for designing RF pulses to achieve normalized encoding profiles using Fourier, Hadamard, wavelet, and direct encoding methods for hyperpolarized noble gases. Theoretical results are confirmed with hyperpolarized noble gas MRI experiments. Copyright 2001 Academic Press.

  13. HIMU-type Mid-Ocean Ridge Basalts Incorporate a Primitive Component

    NASA Astrophysics Data System (ADS)

    Tucker, J.; Mukhopadhyay, S.; Schilling, J. E.

    2011-12-01

    Samples from 5°N to 7°S along the MAR axis span a range of compositions from depleted MORB (La/SmN ~0.5, 206Pb/204Pb ~18) to very enriched MORB (La/SmN ~3, 206Pb/204Pb ~20). The measured 206Pb/204Pb in the enriched samples are among the highest measured MORB values and are thought to represent a HIMU type mantle (high μ where μ is the U/Pb ratio). Therefore, the enriched samples provide a unique opportunity to characterize the heavy noble gas composition of the HIMU mantle. If HIMU mantle is related to recycled crust, then the noble gas measurements can also provide insights into recycling of atmospheric noble gases back into the mantle. Additionally, the depleted equatorial samples provide an opportunity to characterize the Ar and Xe composition of the N-MORB source for comparison to the 14°N E-MORB popping rock. Finally, the large variations in lithophile isotopes over a geographically short distance affords the opportunity to study the nature of coupling between the noble gases and lithophile tracers, and understand the origin of the heterogeneities in the MORB source. Stepwise crushing and rare gas analysis (He, Ne, Ar, Xe) was undertaken for both enriched and depleted samples. Many of the crushing steps yielded 20Ne/22Ne > 12, and good correlations between Ne, Ar, and Xe isotopes allow for mantle source compositions of Ar and Xe to be determined by extrapolating the measured values to a mantle 20Ne/22Ne of 12.5. The highest measured values of Ar and Xe in a depleted N-MORB are comparable to measured values of the E-MORB popping rock (40Ar/36Ar ~28,000, 129Xe/130Xe ~7.7). When extrapolated to a mantle 20Ne/22Ne of 12.5, the depleted MORB sample indicates a 40Ar/36Ar of ~43,000 (higher than popping rock) and 129Xe/130Xe of ~7.8. Enriched MORB samples from this suite, thought to represent the HIMU mantle, have the same He and Ne characteristics as HIMU basalts from the Cook and Austral Islands; more radiogenic He than MORBs is accompanied by less nucleogenic Ne than MORBs. Additionally, the enriched MORB samples also constrain the HIMU mantle 40Ar/36Ar to ~20,000 and 129Xe/130Xe ~7.3-7.5, significantly lower than the depleted MORBs. Like the HIMU basalts from the Cook and Austral Islands, a less degassed reservoir than the MORB source must be invoked to explain the He and Ne systematics in the HIMU-type MORBs. If HIMU represents recycled crust, then it must have entrained or been entrained by a less degassed mantle from the deep interior. This less degassed reservoir would also explain the good correspondence between low 21Ne/22Ne, low 40Ar/36Ar and low 129Xe/130Xe in the HIMU-type samples. While we cannot rule out recycling of atmospheric noble gases to explain the low 40Ar/36Ar and 129Xe/130Xe, involvement of a source less degassed in He and Ne would also be accompanied by a less degassed Ar and Xe isotopic signature. Therefore the simplest explanation of the covariation between the noble gases and lithophile isotopes involves a mixture of a less processed and hence more primitive component, a degassed recycled component, and depleted MORB mantle beneath the equatorial Mid-Atlantic Ridge.

  14. Noble gases in the moon

    NASA Technical Reports Server (NTRS)

    Manuel, O. K.; Srinivasan, B.; Hennecke, E. W.; Sinclair, D. E.

    1972-01-01

    The abundance and isotopic composition of helium, neon, argon, krypton, and xenon which were released by stepwise heating of lunar fines (15601.64) and (15271.65) were measured spectrometrically. The results of a composition of noble gases released from the lunar fines with noble gases in meteorites and in the earth are presented along with the isotopic composition of noble gases in lunar fines, in meteorites, and in the atmosphere. A study of two isotopically distinct components of trapped xenon in carbonaceous chondrites is also included.

  15. Incorporation of noble metals into aerogels

    DOEpatents

    Hair, L.M.; Sanner, R.D.; Coronado, P.R.

    1998-12-22

    Aerogels or xerogels containing atomically dispersed noble metals for applications such as environmental remediation are disclosed. New noble metal precursors, such as Pt--Si or Pd(Si--P){sub 2}, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.

  16. Incorporation of noble metals into aerogels

    DOEpatents

    Hair, Lucy M.; Sanner, Robert D.; Coronado, Paul R.

    1998-01-01

    Aerogels or xerogels containing atomically dispersed noble metals for applications such environmental remediation. New noble metal precursors, such as Pt--Si or Pd(Si--P).sub.2, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.

  17. Separation efficiency of the MASHA facility for short-lived mercury isotopes

    NASA Astrophysics Data System (ADS)

    Rodin, A. M.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Itkis, M. G.; Kliman, J.; Kondratiev, N. A.; Krupa, L.; Novoselov, A. S.; Oganessian, Yu. Ts.; Podshibyakin, A. V.; Salamatin, V. S.; Siváček, I.; Stepantsov, S. V.; Vanin, D. V.; Vedeneev, V. Yu.; Yukhimchuk, S. A.; Granja, C.; Pospisil, S.

    2014-06-01

    The mass-separator MASHA built to identify Super Heavy Elements by their mass-to-charge ratios is described. The results of the off- and on-line measurements of its separation efficiency are presented. In the former case four calibrated leaks of noble gases were used. In the latter the efficiency was measured via 284 MeV Ar beam and with using the hot catcher. The ECR ion source was used in both cases. The -radioactive isotopes of mercury produced in the complete fusion reaction Ar+SmHg+xn were detected at the mass-separator focal plane. The half-lives and the separation efficiency for the short-lived mercury isotopes were measured. Potentialities of the MEDIPIX detector system have been demonstrated for future use at the mass-separator MASHA.

  18. Ultralow Thermal Conductivity in Full Heusler Semiconductors.

    PubMed

    He, Jiangang; Amsler, Maximilian; Xia, Yi; Naghavi, S Shahab; Hegde, Vinay I; Hao, Shiqiang; Goedecker, Stefan; Ozoliņš, Vidvuds; Wolverton, Chris

    2016-07-22

    Semiconducting half and, to a lesser extent, full Heusler compounds are promising thermoelectric materials due to their compelling electronic properties with large power factors. However, intrinsically high thermal conductivity resulting in a limited thermoelectric efficiency has so far impeded their widespread use in practical applications. Here, we report the computational discovery of a class of hitherto unknown stable semiconducting full Heusler compounds with ten valence electrons (X_{2}YZ, X=Ca, Sr, and Ba; Y=Au and Hg; Z=Sn, Pb, As, Sb, and Bi) through high-throughput ab initio screening. These new compounds exhibit ultralow lattice thermal conductivity κ_{L} close to the theoretical minimum due to strong anharmonic rattling of the heavy noble metals, while preserving high power factors, thus resulting in excellent phonon-glass electron-crystal materials.

  19. Comparison of the tensile bond strength of high-noble, noble, and base metal alloys bonded to enamel.

    PubMed

    Sen, D; Nayir, E; Pamuk, S

    2000-11-01

    Although the bond strengths of various resin composite luting materials have been reported in the literature, the evaluation of these systems with various cast alloys of different compositions has not been completely clarified. To evaluate the tensile bond strength of sandblasted high-noble, noble, and base metal alloys bonded to etched enamel by 2 different bonding agents of different chemical composition: Panavia-Ex (BIS-GMA) and Super-Bond (4-META acrylic). Flat enamel surfaces were prepared on buccal surfaces of 60 extracted noncarious human incisors. Teeth were divided into 3 groups of 20 each. Twenty circular disks of 5 mm diameter were prepared for casting for each group. Group I was cast with a high-noble, group II with a noble, and group III with a base metal alloy. The surfaces of the disks were sandblasted with 250 microm Al(2)O(3). Ten disks of each group were bonded to exposed enamel surfaces with Super-Bond and 10 disks with Panavia-Ex as recommended by the manufacturer. The tensile bond strength was measured with an Instron universal testing machine with a crosshead speed of 0.5 mm/min until failure occurred. Two-way ANOVA was used to evaluate the results. The differences in bond strengths of Super-Bond and Panavia-Ex with different alloys were not significant. The highest bond strengths were obtained in base metal alloys, followed by noble and high-noble alloys. These results were significant. Panavia-Ex and Super-Bond exhibited comparable tensile bond strengths. For both luting agents, the highest bond strengths were achieved with base metal alloys and the lowest with high-noble alloys.

  20. Neutron detection with noble gas scintillation: a review of recent results

    NASA Astrophysics Data System (ADS)

    Lavelle, C. M.; Coplan, Michael; Miller, Eric C.; Thompson, Alan K.; Kowler, Alex; Vest, Rob; Yue, Andrew; Koeth, Tim; Al-Sheikhly, Mohammad; Clark, Charles

    2015-08-01

    Thermal neutron detection is of vital importance to many disciplines, including neutron scattering, workplace monitoring, and homeland protection. We survey recent results from our collaboration which couple low-pressure noble gas scintillation with novel approaches to neutron absorbing materials and geometries to achieve potentially advantageous detector concepts. Noble gas scintillators were used for neutron detection as early as the late 1950's. Modern use of noble gas scintillation includes liquid and solid forms of argon and xenon in the dark matter and neutron physics experiments and commercially available high pressure applications have achieved high resolution gamma ray spectroscopy. Little attention has been paid to the overlap between low pressure noble gas scintillation and thermal neutron detection, for which there are many potential benefits.

  1. Performance evaluation of a biodiesel fuelled transportation engine retrofitted with a non-noble metal catalysed diesel oxidation catalyst for controlling unregulated emissions.

    PubMed

    Shukla, Pravesh Chandra; Gupta, Tarun; Agarwal, Avinash Kumar

    2018-02-15

    In present study, engine exhaust was sampled for measurement and analysis of unregulated emissions from a four cylinder transportation diesel engine using a state-of-the-art FTIR (Fourier transform infrared spectroscopy) emission analyzer. Test fuels used were Karanja biodiesel blend (B20) and baseline mineral diesel. Real-time emission measurements were performed for raw exhaust as well as exhaust sampled downstream of the two in-house prepared non-noble metal based diesel oxidation catalysts (DOCs) and a baseline commercial DOC based on noble metals. Two prepared non-noble metal based DOCs were based on Co-Ce mixed oxide and Lanthanum based perovskite catalysts. Perovskite based DOC performed superior compared to Co-Ce mixed oxide catalyst based DOC. Commercial noble metal based DOC was found to be the most effective in reducing unregulated hydrocarbon emissions in the engine exhaust, followed by the two in-house prepared non-noble metal based DOCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VIImore » of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.« less

  3. Exploring the Effects on Lipid Bilayer Induced by Noble Gases via Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Chen, Junlang; Chen, Liang; Wang, Yu; Wang, Xiaogang; Zeng, Songwei

    2015-11-01

    Noble gases seem to have no significant effect on the anesthetic targets due to their simple, spherical shape. However, xenon has strong narcotic efficacy and can be used clinically, while other noble gases cannot. The mechanism remains unclear. Here, we performed molecular dynamics simulations on phospholipid bilayers with four kinds of noble gases to elucidate the difference of their effects on the membrane. Our results showed that the sequence of effects on membrane exerted by noble gases from weak to strong was Ne, Ar, Kr and Xe, the same order as their relative narcotic potencies as well as their lipid/water partition percentages. Compared with the other three kinds of noble gases, more xenon molecules were distributed between the lipid tails and headgroups, resulting in membrane’s lateral expansion and lipid tail disorder. It may contribute to xenon’s strong anesthetic potency. The results are well consistent with the membrane mediated mechanism of general anesthesia.

  4. New approaches for the chemical and physical characterization of aerosols using a single particle mass spectrometry based technique

    NASA Astrophysics Data System (ADS)

    Spencer, Matthew Todd

    Aerosols affect the lives of people every day. They can decrease visibility, alter cloud formation and cloud lifetimes, change the energy balance of the earth and are implicated in causing numerous health problems. Measuring the physical and chemical properties of aerosols is essential to understand and mitigate any negative impacts that aerosols might have on climate and human health. Aerosol time-of-flight mass spectrometry (ATOFMS) is a technique that measures the size and chemical composition of individual particles in real time. The goal of this dissertation is to develop new and useful approaches for measuring the physical and/or chemical properties of particles using ATOFMS. This has been accomplished using laboratory experiments, ambient field measurements and sometimes comparisons between them. A comparison of mass spectra generated from petrochemical particles was made to light duty vehicle (LDV) and heavy duty diesel vehicle (HDDV) particle mass spectra. This comparison has given us new insight into how to differentiate between particles from these two sources. A method for coating elemental carbon (EC) particles with organic carbon (OC) was used to generate a calibration curve for quantifying the fraction of organic carbon and elemental carbon on particles using ATOFMS. This work demonstrates that it is possible to obtain quantitative chemical information with regards to EC and OC using ATOFMS. The relationship between electrical mobility diameter and aerodynamic diameter is used to develop a tandem differential mobility analyzer-ATOFMS technique to measure the effective density, size and chemical composition of particles. The method is applied in the field and gives new insight into the physical/chemical properties of particles. The size resolved chemical composition of aerosols was measured in the Indian Ocean during the monsoonal transition period. This field work shows that a significant fraction of aerosol transported from India was from biomass burning and appeared to be internally mixed with sulfate which suggests it was cloud processed during transport. Lastly, noble metal nanoparticles are explored as potential matrices for visible wavelength single particle matrix assisted laser desorption/ionization mass spectrometry (VIS-MALDI). This work demonstrates that noble metal nanoparticle matrices can be used for VIS-MALDI analysis.

  5. Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish

    2013-10-01

    Epsilon metal (ε-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilonmore » metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000°C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).« less

  6. Epsilon metal waste form for immobilization of noble metals from used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Crum, Jarrod V.; Strachan, Denis; Rohatgi, Aashish; Zumhoff, Mac

    2013-10-01

    Epsilon metal (ɛ-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass, thus the processing problems related to their insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high alloying temperatures, expected to be 1500-2000 °C, making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

  7. Recent Experimental Advances to Determine (noble) Gases in Waters

    NASA Astrophysics Data System (ADS)

    Kipfer, R.; Brennwald, M. S.; Huxol, S.; Mächler, L.; Maden, C.; Vogel, N.; Tomonaga, Y.

    2013-12-01

    In aquatic systems noble gases, radon, and bio-geochemically conservative transient trace gases (SF6, CFCs) are frequently applied to determine water residence times and to reconstruct past environmental and climatic conditions. Recent experimental breakthroughs now enable ● to apply the well-established concepts of terrestrial noble gas geochemistry in waters to the minute water amounts stored in sediment pore space and in fluid inclusions (A), ● to determine gas exchange processes on the bio-geochemical relevant time scales of minutes - hours (B), and ● to separate diffusive and advective gas transport in soil air (C). A. Noble-gas analysis in water samples (< 1 g) facilitates determining the solute transport in the pore space and identifying the origin of bio- and geogenic fluids in (un) consolidated sediments [1]. Advanced techniques that combine crushing and sieving speleothem samples in ultra-high-vacuum to a specific grain size allow to separate air and water-bearing fluid inclusions and thus enables noble-gas-based reconstruction of environmental conditions from water masses as small as 1mg [2]. B. The coupling of noble gas analysis with approaches of gas chromatography permits combined analysis of noble gases and other gases species (e.g., SF6, CFCs, O2, N2) from a single water sample. The new method substantially improves ground water dating by SF6 and CFCs as excess air is quantified from the same sample and hence can adequately be corrected for [3]. Portable membrane-inlet mass spectrometers enable the quasi-continuous and real-time analysis of noble gases and other dissolved gases directly in the field, allowing, for instance, quantification of O2 turnover rates on small time scales [4]. C. New technical developments perfect 222Rn analysis in water by the synchronous the determination of the short-lived 220Rn. The combined 220,222Rn analysis sheds light on the emanation behaviour of radon by identifying soil water content to be the crucial control of 220Rn occurrence in the environment, e.g., making an argument why 220Rn is not detectable in water, but in soil air. As 220Rn occurrence is of 'very local origin' the combined analysis of 220,222Rn in soil air allows differentiating between advective and diffusive soil gas transport [5]. By discussing these recent achievements, we intend to stimulate a broader discussion to identify future applications of noble and other gases in (un) conventional aquatic systems, such as blood. [1] Tomonaga et al. (2011) Limnol. Oceanogr. Methods, 9, 42-49, doi:10:4319/lom.2011.9.42. [2] Vogel et al. (2013) Geochem. Geophys. Geosyst., 14, doi:10.1002/ggge.20164. [3] Brennwald et al. (2013) Environ. Sci. Technol., Article ASAP, DOI: 10.1021/es401698p. [4] Mächler et al. (2012) Environ. Sci. Technol., 47, 7060-7066. [5] Huxol et al. Environ. Sci. Technol., in revision.

  8. Simulating the VUV photochemistry of the upper atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Tigrine, Sarah; Carrasco, Nathalie; Vettier, Ludovic; Chitarra, Olivia; Cernogora, Guy

    2016-10-01

    The Cassini mission around Titan revealed that the interaction between the N2 and CH4 molecules and the solar VUV radiation leads to a complex chemistry above an altitude of 800km with the detection of heavy organic molecules like benzene (C6H6). This is consistent with an initiation of the aerosols in Titan's upper atmosphere. The presence of those molecules makes Titan a natural laboratory to witness and understand prebiotic-like chemistry but despite all the data collected, all the possible photochemical processes in such a hydrocarbon-nitrogen-rich environment are not precisely understood.This is why Titan's atmospheric chemistry experiments are of high interest, especially those focusing on the photochemistry as most of the Titan-like experiments are based on N2-CH4 plasma techniques. In order to reproduce this VUV photochemistry of N2 and CH4, we designed a photochemical reactor named APSIS which is to be coupled window-less with a VUV photon source as N2 needs wavelengths shorter than 100 nm in order to be dissociated. Those wavelengths are available at synchrotron beamlines but are challenging to obtain with common laboratory discharge lamps. At LATMOS, we developed a table-top VUV window-less source using noble gases for the micro-wave discharge. We started with Neon, as it has two resonance lines at 73.6 and 74.3 nm which allow us to dissociate and/or ionize both CH4 and N2.We will present here our first experimental results obtained with APSIS coupled with this VUV source. A range of different pressures below 1 mbar is tested, in parallel to different methane ratio. Moreover, other wavelengths are injected by adding some other noble gases in the MO discharge (He, Kr, Xe, Ar). We will review the mass spectra obtained in those different conditions and then discuss them regarding the Cassini data and other previous laboratory photochemical studies.

  9. RISK REDUCTION VIA GREENER SYNTHESIS OF NOBLE METAL NANOSTRUCTURES AND NANOCOMPOSITES

    EPA Science Inventory

    Aqueous preparation of nanoparticles using vitamins B2 and C which can function both as reducing and capping agents are described. Bulk and shape-controlled synthesis of noble nanostructures via microwave (MW)-assisted spontaneous reduction of noble metal salts using a-D-glucose,...

  10. 77 FR 41976 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ...-2200-002; ER12-1716-001. Applicants: Noble Americas Gas & Power Corp., Noble Americas Energy Solutions LLC, Your Energy Holdings, LLC. Description: Notice of Change in Status of Noble Americas Gas & Power...-004. Applicants: EDF Trading North America, LLC, EDF Industrial Power Services (IL), LLC, EDF...

  11. 75 FR 12737 - Applications To Export Electric Energy; Noble Energy Marketing and Trade Corp.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ...; Noble Energy Marketing and Trade Corp. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Under two separate applications, Noble Energy Marketing... power marketing agencies, and other entities within the United States. NEMT has requested electricity...

  12. Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component on the Moon

    NASA Astrophysics Data System (ADS)

    Bekaert, David V.; Avice, Guillaume; Marty, Bernard; Henderson, Bryana; Gudipati, Murthy S.

    2017-12-01

    Despite extensive effort during the last four decades, no clear signature of a lunar indigenous noble gas component has been found. In order to further investigate the possible occurrence of indigenous volatiles in the Moon, we have re-analyzed the noble gas and nitrogen isotopic compositions in three anorthosite samples. Lunar anorthosites 60025, 60215 and 65315 have the lowest exposure duration (∼2 Ma) among Apollo samples and consequently contain only limited cosmogenic (e.g. 124,126Xe) and solar wind (SW) noble gases. Furthermore, anorthosites have negligible contributions of fissiogenic Xe isotopes because of their very low Pu and U contents. As observed in previous studies (Lightner and Marti, 1974; Leich and Niemeyer, 1975), lunar anorthosite Xe presents an isotopic composition very close to that of terrestrial atmospheric Xe, previously attributed to ;anomalous adsorption; of terrestrial Xe after sample return. The presumed atmospheric Xe contamination can only be removed by heating the samples at medium to high temperatures under vacuum, and is therefore different from common adsorption. To test this hypothesis, we monitored the adsorption of Xe onto lunar anorthositic powder using infrared reflectance spectroscopy. A clear shift in the anorthosite IR absorbance peaks is detected when comparing the IR absorbance spectra of the lunar anorthositic powder before and after exposure to a neutral Xe-rich atmosphere. This observation accounts for the chemical bonding (chemisorption) of Xe onto anorthosite, which is stronger than the common physical bonding (physisorption) and could account for the anomalous adsorption of Xe onto lunar samples. Our high precision Xe isotope analyses show slight mass fractionation patterns across 128-136Xe isotopes with systematic deficits in the heavy Xe isotopes (mostly 136Xe and marginally 134Xe) that have not previously been observed. This composition could be the result of mixing between an irreversibly adsorbed terrestrial contaminant that is mostly released at high temperature and an additional signature. Solar Wind (SW) Xe contents, estimated from SW-Ne and SW-Ar concentrations and SW-Ne/Ar/Xe elemental ratios, do not support SW as the additional contribution. Using a χ2 test, the latter is best accounted for by cometary Xe as measured in the coma of Comet 67P/Churyumov-Gerasimenko (Marty et al., 2017) or by the primordial U-Xe composition inferred to be the precursor of atmospheric Xe (Pepin, 1994; Avice et al., 2017). It could have been contributed to the lunar budget by volatile-rich bodies that participated to the building of the terrestrial atmosphere inventory (Marty et al., 2017).

  13. The Thermochemical Stability of Ionic Noble Gas Compounds.

    ERIC Educational Resources Information Center

    Purser, Gordon H.

    1988-01-01

    Presents calculations that suggest stoichiometric, ionic, and noble gas-metal compounds may be stable. Bases calculations on estimated values of electron affinity, anionic radius for the noble gases and for the Born exponents of resulting crystals. Suggests the desirability of experiments designed to prepare compounds containing anionic,…

  14. Chemical plating method of preparing radiation source material

    DOEpatents

    Smith, P.K.; Huntoon, R.T.; Mosley, W.C. Jr.

    1973-12-11

    A uniform dispersion of a radioisotope within a noble metal matrix is provided by chemically plating a noble metal coating onto particles including a dissociable compound of the mdioisotope. A suspension of the dissociable compound in a chemically reductive solution is prepared and noble metal cations added to produce the noble metal coatings. The coated particles are filtered, dried and heated to calcine the dissociable compound to a refractory powder. The powder can be encapsulated in measured portions or consolidated and shaped into an elongated form for easy apportionnnent as radiation source material. (Official Gazette)

  15. Negligible fractionation of Kr and Xe isotopes by molecular diffusion in water

    NASA Astrophysics Data System (ADS)

    Tyroller, Lina; Brennwald, Matthias S.; Busemann, Henner; Maden, Colin; Baur, Heinrich; Kipfer, Rolf

    2018-06-01

    Molecular diffusion is a key transport process for noble gases in water. Such diffusive transport is often thought to cause a mass-dependent fractionation of noble gas isotopes that is inversely proportional to the square root of the ratio of their atomic mass, referred to as the square root relation. Previous studies, challenged the commonly held assumption that the square root relation adequately describes the behaviour of noble gas isotopes diffusing through water. However, the effect of diffusion on noble gas isotopes has only been determined experimentally for He, Ne and Ar to date, whereas the extent of fractionation of Kr and Xe has not been measured. In the present study the fractionation of Kr and Xe isotopes diffusing through water immobilised by adding agar was quantified through measuring the respective isotope ratio after diffusing through the immobilised water. No fractionation of Kr and Xe isotopes was observed, even using high-precision noble gas analytics. These results complement our current understanding on isotopic fractionation of noble gases diffusing through water. Therefore this complete data set builds a robust basis to describe molecular diffusion of noble gases in water in a physical sound manner which is fundamental to assess the physical aspects of gas dynamics in aquatic systems.

  16. Noble magnetic barriers in the ASDEX UG tokamak

    NASA Astrophysics Data System (ADS)

    Ali, Halima; Punjabi, Alkesh; Vazquez, Justin

    2010-02-01

    The second-order perturbation method of creating invariant tori inside chaos in Hamiltonian systems (Ali, H.; Punjabi, A. Plasma Phys. Contr. F. 2007, 49, 1565-1582) is applied to the axially symmetric divertor experiment upgrade (ASDEX UG) tokamak to build noble irrational magnetic barriers inside chaos created by resonant magnetic perturbations (m, n)=(3, 2)+(4, 3), with m and n the poloidal and toroidal mode numbers of the Fourier expansion of the magnetic perturbation. The radial dependence of the Fourier modes is ignored. The modes are considered to be locked and have the same amplitude δ. A symplectic mathematical mapping in magnetic coordinates is used to integrate magnetic field line trajectories in the ASDEX UG. Tori with noble irrational rotational transform are the last ones to be destroyed by perturbation in Hamiltonian systems. For this reason, noble irrational magnetic barriers are built inside chaos, and the strongest noble irrational barrier is identified. Three candidate locations for the strongest noble barrier in ASDEX UG are selected. All three candidate locations are chosen to be roughly midway between the resonant rational surfaces ψ32 and ψ43. ψ is the magnetic coordinate of the flux surface. The three candidate surfaces are the noble irrational surfaces close to the surface with q value that is a mediant of q=3/2 and 4/3, q value of the physical midpoint of the two resonant surfaces, and the q value of the surface where the islands of the two perturbing modes just overlap. These q values of the candidate surfaces are denoted by q MED, q MID, and q OVERLAP. The strongest noble barrier close to q MED has the continued fraction representation (CFR) [1;2,2,1∞] and exists for δ≤2.6599×10-4; the strongest noble barrier close to q MID has CFR [1;2,2,2,1∞] and exists for δ≤4.6311×10-4; and the strongest noble barrier close to q OVERLAP has CFR [1;2,2,6,2,1∞] and exists for δ≤1.367770×10-4. From these results, the strongest noble barrier is found to be close to the surface that is located physically exactly in the middle of the two resonant surfaces.

  17. Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring.

    PubMed

    Khrustalev, K; Popov, V Yu; Popov, Yu S

    2017-08-01

    We present a new second generation SiPIN based electron-photon coincidence detector system developed by Lares Ltd. for use in the Noble Gas measurement systems of the International Monitoring System and the On-site Inspection verification regimes of the Comprehensive Nuclear-Test Ban Treaty (CTBT). The SiPIN provide superior energy resolution for electrons. Our work describes the improvements made in the second generation detector cells and the potential use of such detector systems for other applications such as In-Situ Kr-85 measurements for non-proliferation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. NOBLE and EXCEL: The debate for excellence in dealing with left main stenosis.

    PubMed

    Kindi, Hamood Al; Samaan, Amir; Hosny, Hatem

    2018-03-14

    Left main coronary artery (LMCA) disease is associated with increased morbidity and mortality. Coronary artery bypass grafting surgery (CABG) has always been the standard revascularization strategy for this group of patients. However, with the recent developments in stents design and medical therapy over the past decade, several trials have been designed to evaluate the safety and efficacy of percutaneous coronary intervention (PCI) as an alternative to CABG surgery in patients with LMCA disease. Recently, the results of two major trials, EXCEL and NOBLE, comparing CABG versus PCI in this patient population have been released. In fact, the results of both trials might appear contradictory at first glance. While the EXCEL trial showed that PCI was non-inferior to CABG surgery, the NOBLE trial suggested that CABG surgery is a better option. In the following review, we will discuss some of the similarities and contrasts between these two trials and conclude with lessons to be learned to our daily practice.

  19. NOBLE and EXCEL: The debate for excellence in dealing with left main stenosis

    PubMed Central

    Kindi, Hamood Al; Samaan, Amir

    Left main coronary artery (LMCA) disease is associated with increased morbidity and mortality. Coronary artery bypass grafting surgery (CABG) has always been the standard revascularization strategy for this group of patients. However, with the recent developments in stents design and medical therapy over the past decade, several trials have been designed to evaluate the safety and efficacy of percutaneous coronary intervention (PCI) as an alternative to CABG surgery in patients with LMCA disease. Recently, the results of two major trials, EXCEL and NOBLE, comparing CABG versus PCI in this patient population have been released. In fact, the results of both trials might appear contradictory at first glance. While the EXCEL trial showed that PCI was non-inferior to CABG surgery, the NOBLE trial suggested that CABG surgery is a better option. In the following review, we will discuss some of the similarities and contrasts between these two trials and conclude with lessons to be learned to our daily practice. PMID:29644230

  20. Heteroatom-Doped Carbon Materials for Electrocatalysis.

    PubMed

    Asefa, Tewodros; Huang, Xiaoxi

    2017-08-10

    Fuel cells, water electrolyzers, and metal-air batteries are important energy systems that have started to play some roles in our renewable energy landscapes. However, despite much research works carried out on them, they have not yet found large-scale applications, mainly due to the unavailability of sustainable catalysts that can catalyze the reactions employed in them. Currently, noble metal-based materials are the ones that are commonly used as catalysts in most commercial fuel cells, electrolyzers, and metal-air batteries. Hence, there has been considerable research efforts worldwide to find alternative noble metal-free and metal-free catalysts composed of inexpensive, earth-abundant elements for use in the catalytic reactions employed in these energy systems. In this concept paper, a brief introduction on catalysis in renewable energy systems, followed by the recent efforts to develop sustainable, heteroatom-doped carbon and non-noble metal-based electrocatalysts, the challenges to unravel their structure-catalytic activity relationships, and the authors' perspectives on these topics and materials, are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Noble-Metal-Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production.

    PubMed

    Yuan, Yong-Jun; Lu, Hong-Wei; Yu, Zhen-Tao; Zou, Zhi-Gang

    2015-12-21

    Photocatalytic water splitting using powered semiconductors as photocatalysts represents a promising strategy for clean, low-cost, and environmentally friendly production of H2 utilizing solar energy. The loading of noble-metal cocatalysts on semiconductors can significantly enhance the solar-to-H2 conversion efficiency. However, the high cost and scarcity of noble metals counter their extensive utilization. Therefore, the use of alternative cocatalysts based on non-precious metal materials is pursued. Nanosized MoS2 cocatalysts have attracted considerable attention in the last decade as a viable alternative to improve solar-to-H2 conversion efficiency because of its superb catalytic activity, excellent stability, low cost, availability, environmental friendliness, and chemical inertness. In this perspective, the design, structures, synthesis, and application of MoS2 -based composite photocatalysts for solar H2 generation are summarized, compared, and discussed. Finally, this Review concludes with a summary and remarks on some challenges and opportunities for the future development of MoS2 -based photocatalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Defining Noble Gas Partitioning for Carbon Capture and Storage Environments

    NASA Astrophysics Data System (ADS)

    Warr, O.; Masters, A.; Rochelle, C.; Ballentine, C. J.

    2014-12-01

    For viable CCS implementation variables such as CO2 dissolution rates, reactions with the host rock and the extent of groundwater interaction must be accurately constrained. Noble gases play an important role in these systems [e.g. 1,2]. Their application, however, requires accurate Henry's constants within dense CO2-H2O systems. Current interpretations use pure noble gas-H2O partitioning data [3,4] and assume CO2-noble gas interactions are negligible, even at high (>700 kg/m3) CO2 densities [2]. To test this assumption we experimentally determined noble gas CO2-H2O partitioning for the 170-656 kg/m3 CO2 density range; representative of most CCS environments. Contrary to assumption, CO2 density significantly affected noble gas partition coefficients. For helium, increasing CO2 density resulted in a negative deviation trend from CO2-free values whilst for argon, krypton and xenon strong, positive deviations were observed. At 656 kg/m3 these deviations were -35%, 74%, 114% and 321% respectively. This is interpreted as the CO2 phase acting as a polar solvent inducing polarisation in the noble gases. Deviation trends are well defined using a 2nd order polynomial. The effect of a dense CO2 phase can now be incorporated into existing noble gas models. We also present results from a Gibbs-Ensemble Monte Carlo molecular simulation to model partitioning for this binary system. This fundamental technique makes predictions based on the pair-potentials of interaction between the molecules. Here it gives the phase compositions and Henry coefficients for noble gases. With a proven ability in accurately replicating both the CO2-H2O system and low pressure noble gas Henry constants the focus is now on fully optimising the model to match high pressure observations. [1] Gilfillan et al. (2009) Nature 458 614-618 [2] Gilfillan et al. (2008) GCA 72 1174-1198 [3] Crovetto et al. (1982) J.Chem.Phys. 76 1077-1086 [4] Ballentine et al. in Porcelli et al. (eds.) (2002) Rev.Min.Geo. 47 539-614.

  3. Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems

    USGS Publications Warehouse

    Niu, Yi; Castro, M. Clara; Hall, Chris M.; Gingerich, Stephen B.; Scholl, Martha A.; Warrier, Rohit B.

    2017-01-01

    Uneven distribution of rainfall and freshwater scarcity in populated areas in the Island of Maui, Hawaii, renders water resources management a challenge in this complex and ill-defined hydrological system. A previous study in the Galapagos Islands suggests that noble gas temperatures (NGTs) record seasonality in that fractured, rapid infiltration groundwater system rather than the commonly observed mean annual air temperature (MAAT) in sedimentary systems where infiltration is slower thus, providing information on recharge sources and potential flow paths. Here we report noble gas results from the basal aquifer, springs, and rainwater in Maui to explore the potential for noble gases in characterizing this type of complex fractured hydrologic systems. Most samples display a mass-dependent depletion pattern with respect to surface conditions consistent with previous observations both in the Galapagos Islands and Michigan rainwater. Basal aquifer and rainwater noble gas patterns are similar and suggest direct, fast recharge from precipitation to the basal aquifer. In contrast, multiple springs, representative of perched aquifers, display highly variable noble gas concentrations suggesting recharge from a variety of sources. The distinct noble gas patterns for the basal aquifer and springs suggest that basal and perched aquifers are separate entities. Maui rainwater displays high apparent NGTs, incompatible with surface conditions, pointing either to an origin at high altitudes with the presence of ice or an ice-like source of undetermined origin. Overall, noble gas signatures in Maui reflect the source of recharge rather than the expected altitude/temperature relationship commonly observed in sedimentary systems.

  4. Noble Gas Thermometry and Hydrologic Ages: Evidence for Late Holocene Warming in Southwest Texas

    NASA Astrophysics Data System (ADS)

    Castro, M.; Goblet, P.

    2003-12-01

    Paleoclimatic reconstruction through the use of noble gases dissolved in groundwater has been the object of numerous studies in recent years. Unlike many other continental temperature proxies, noble gases have the advantage of providing direct information on atmospheric temperatures at the time rainwater penetrated the ground and joined a particular groundwater reservoir. In recent years, new methods for determination of noble gas temperatures have been developed, which provide a high level of accuracy on such temperature estimations. The issue of paleoclimatic reconstruction through noble gases however, is not only one of accurate temperature determination, but also one of accurate water age estimation so that a correct correspondence between noble gas temperatures and groundwater age can be established and proper paleoclimatic reconstruction attempted. The typical approach to estimate groundwater ages has been based on computing water travel times along streamlines from the recharge to the observation point taking into account only advection. This approach is limited because, like any other tracer, the movement of water in porous media is also affected by cinematic dispersion and molecular diffusion. We have therefore undertaken the formulation of hydrologic models that yield significantly better constraints on groundwater ages in the Carrizo aquifer and surrounding formations of south Texas, where noble gas temperatures have already been determined. To account for groundwater mixing we treat age as one would treat a solute concentration. In order to simulate groundwater ages we used a finite element model of groundwater flow that has been validated by 4He and 3He. The finite model spans a 120.6 Km cross-section between altitudes of +220m and -2210 m, and comprises 58,968 elements and 31,949 nodes. Combination of these newly calculated water ages and previously reported noble gas temperatures reveals new aspects of late Pleistocene and Holocene climate in southwestern Texas, in particular, an abrupt late Holocene temperature increase previously unidentified through 14C dating. Temperature increased by up to 3.4° C in the first half of the last millennium and by 1.5° C between ˜5.6 and 3.7 kyrs BP. More important than the resolution of individual paleoclimate episodes is the identification of a slow cooling trend between ˜1,200 kyrs and ˜200 kyrs, a trend that accelerates during the late Pleistocene and early Holocene. This cooling trend gives way to an extremely rapid increase in temperature in the late Holocene. Such abrupt warming seems to have accelerated in the last millennium and seems to continue at present. This temperature increase is the most striking feature arising from the determination of new groundwater ages.

  5. David Noble's Battle to Defend the 'Sacred Space' of the Classroom.

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    2000-01-01

    Reports on the crusade of David F. Noble, a history professor at York University (Ontario), against distance education, which he sees as the latest episode in the saga of the corporatization of American higher education. Notes Noble's views on the relationship between politics and technology, intellectual property issues of courseware, and the…

  6. Metal-organic frameworks for adsorption and separation of noble gases

    DOEpatents

    Allendorf, Mark D.; Greathouse, Jeffery A.; Staiger, Chad

    2017-05-30

    A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.

  7. Noble Gas Isotopic Signatures and X-Ray and Electron Diffraction Characteristics of Tagish Lake Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Noguchi, T.; Zolensky, M. E.; Takaoka, N.

    2001-01-01

    Noble gas isotopic signatures and X-ray and electron diffraction characteristics of Tagish Lake indicate that it is a unique carbonaceous chondrite rich in saponite, Fe-Mg-Ca carbonate, primordial noble gases, and presolar grains. Additional information is contained in the original extended abstract.

  8. Noble Gas Analysis for Mars Robotic Missions: Evaluating K-Ar Age Dating for Mars Rock Analogs and Martian Shergottites

    NASA Technical Reports Server (NTRS)

    Park, J.; Ming, D. W.; Garrison, D. H.; Jones, J. H.; Bogard, D. D.; Nagao, K.

    2009-01-01

    The purpose of this noble gas investigation was to evaluate the possibility of measuring noble gases in martian rocks and air by future robotic missions such as the Mars Science Laboratory (MSL). The MSL mission has, as part of its payload, the Sample Analysis at Mars (SAM) instrument, which consists of a pyrolysis oven integrated with a GCMS. The MSL SAM instrument has the capability to measure noble gas compositions of martian rocks and atmosphere. Here we suggest the possibility of K-Ar age dating based on noble gas release of martian rocks by conducting laboratory simulation experiments on terrestrial basalts and martian meteorites. We provide requirements for the SAM instrument to obtain adequate noble gas abundances and compositions within the current SAM instrumental operating conditions, especially, a power limit that prevents heating the furnace above approx.1100 C. In addition, Martian meteorite analyses from NASA-JSC will be used as ground truth to evaluate the feasibility of robotic experiments to constrain the ages of martian surface rocks.

  9. Applicability of Monte-Carlo Simulation to Equipment Design of Radioactive Noble Gas Monitor

    NASA Astrophysics Data System (ADS)

    Sakai, Hirotaka; Hattori, Kanako; Umemura, Norihiro

    In the nuclear facilities, radioactive noble gas is continuously monitored by using the radioactive noble gas monitor with beta-sensitive plastic scintillation radiation detector. The detection efficiency of the monitor is generally calibrated by using a calibration loop and standard radioactive noble gases such as 85Kr. In this study, the applicability of PHITS to the equipment design of the radioactive noble gas monitor was evaluated by comparing the calculated results to the test results obtained by actual calibration loop tests to simplify the radiation monitor design evaluation. It was confirmed that the calculated results were well matched to the test results of the monitor after the modeling. In addition, the key parameters for equipment design, such as thickness of detector window or depth of the sampler, were also specified and evaluated.

  10. Electrochemical synthesis of elongated noble metal nanoparticles, such as nanowires and nanorods, on high-surface area carbon supports

    DOEpatents

    Adzic, Radoslav; Blyznakov, Stoyan; Vukmirovic, Miomir

    2015-08-04

    Elongated noble-metal nanoparticles and methods for their manufacture are disclosed. The method involves the formation of a plurality of elongated noble-metal nanoparticles by electrochemical deposition of the noble metal on a high surface area carbon support, such as carbon nanoparticles. Prior to electrochemical deposition, the carbon support may be functionalized by oxidation, thus making the manufacturing process simple and cost-effective. The generated elongated nanoparticles are covalently bound to the carbon support and can be used directly in electrocatalysis. The process provides elongated noble-metal nanoparticles with high catalytic activities and improved durability in combination with high catalyst utilization since the nanoparticles are deposited and covalently bound to the carbon support in their final position and will not change in forming an electrode assembly.

  11. Fate of Noble Metals during the Pyroprocessing of Spent Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.R. Westphal; D. Vaden; S.X. Li

    During the pyroprocessing of spent nuclear fuel by electrochemical techniques, fission products are separated as the fuel is oxidized at the anode and refined uranium is deposited at the cathode. Those fission products that are oxidized into the molten salt electrolyte are considered active metals while those that do not react are considered noble metals. The primary noble metals encountered during pyroprocessing are molybdenum, zirconium, ruthenium, rhodium, palladium, and technetium. Pyroprocessing of spent fuel to date has involved two distinctly different electrorefiner designs, in particular the anode to cathode configuration. For one electrorefiner, the anode and cathode collector are horizontallymore » displaced such that uranium is transported across the electrolyte medium. As expected, the noble metal removal from the uranium during refining is very high, typically in excess of 99%. For the other electrorefiner, the anode and cathode collector are vertically collocated to maximize uranium throughput. This arrangement results in significantly less noble metals removal from the uranium during refining, typically no better than 20%. In addition to electrorefiner design, operating parameters can also influence the retention of noble metals, albeit at the cost of uranium recovery. Experiments performed to date have shown that as much as 100% of the noble metals can be retained by the cladding hulls while affecting the uranium recovery by only 6%. However, it is likely that commercial pyroprocessing of spent fuel will require the uranium recovery to be much closer to 100%. The above mentioned design and operational issues will likely be driven by the effects of noble metal contamination on fuel fabrication and performance. These effects will be presented in terms of thermal properties (expansion, conductivity, and fusion) and radioactivity considerations. Ultimately, the incorporation of minor amounts of noble metals from pyroprocessing into fast reactor metallic fuel will be shown to be of no consequence to reactor performance.« less

  12. Hydrocarbon-Rich Groundwater above Shale-Gas Formations: A Karoo Basin Case Study.

    PubMed

    Eymold, William K; Swana, Kelley; Moore, Myles T; Whyte, Colin J; Harkness, Jennifer S; Talma, Siep; Murray, Ricky; Moortgat, Joachim B; Miller, Jodie; Vengosh, Avner; Darrah, Thomas H

    2018-03-01

    Horizontal drilling and hydraulic fracturing have enhanced unconventional hydrocarbon recovery but raised environmental concerns related to water quality. Because most basins targeted for shale-gas development in the USA have histories of both active and legacy petroleum extraction, confusion about the hydrogeological context of naturally occurring methane in shallow aquifers overlying shales remains. The Karoo Basin, located in South Africa, provides a near-pristine setting to evaluate these processes, without a history of conventional or unconventional energy extraction. We conducted a comprehensive pre-industrial evaluation of water quality and gas geochemistry in 22 groundwater samples across the Karoo Basin, including dissolved ions, water isotopes, hydrocarbon molecular and isotopic composition, and noble gases. Methane-rich samples were associated with high-salinity, NaCl-type groundwater and elevated levels of ethane, 4 He, and other noble gases produced by radioactive decay. This endmember displayed less negative δ 13 C-CH 4 and evidence of mixing between thermogenic natural gases and hydrogenotrophic methane. Atmospheric noble gases in the methane-rich samples record a history of fractionation during gas-phase migration from source rocks to shallow aquifers. Conversely, methane-poor samples have a paucity of ethane and 4 He, near saturation levels of atmospheric noble gases, and more negative δ 13 C-CH 4 ; methane in these samples is biogenic and produced by a mixture of hydrogenotrophic and acetoclastic sources. These geochemical observations are consistent with other basins targeted for unconventional energy extraction in the USA and contribute to a growing data base of naturally occurring methane in shallow aquifers globally, which provide a framework for evaluating environmental concerns related to unconventional energy development (e.g., stray gas). © 2018, National Ground Water Association.

  13. Characterizing the Noble Gas Isotopic Composition of the Barnett Shale and Strawn Group and Constraining the Source of Stray Gas in the Trinity Aquifer, North-Central Texas.

    PubMed

    Wen, Tao; Castro, M Clara; Nicot, Jean-Philippe; Hall, Chris M; Pinti, Daniele L; Mickler, Patrick; Darvari, Roxana; Larson, Toti

    2017-06-06

    This study presents the complete set of stable noble gases for Barnett Shale and Strawn Group production gas together with stray flowing gas in the Trinity Aquifer, Texas. It places new constraints on the source of this stray gas and further shows that Barnett and Strawn gas have distinct crustal and atmospheric noble gas signatures, allowing clear identification of these two sources. Like stray gas, Strawn gas is significantly more enriched in crustal 4 He*, 21 Ne*, and 40 Ar* than Barnett gas. The similarity of Strawn and stray gas crustal noble gas signatures suggests that the Strawn is the source of stray gas in the Trinity Aquifer. Atmospheric 22 Ne/ 36 Ar ratios of stray gas mimic also that of Strawn, further reinforcing the notion that the source of stray gas in this aquifer is the Strawn. While noble gas signatures of Strawn and stray gas are consistent with a single-stage water degassing model, a two-stage oil modified groundwater exsolution fractionation model is required to explain the light atmospheric noble gas signature of Barnett Shale production gas. These distinct Strawn and Barnett noble gas signatures are likely the reflection of distinct evolution histories with Strawn gas being possibly older than that of Barnett Shale.

  14. Barnett Shale or Strawn Group: Identifying the Source of Stray Gas through Noble Gases in the Trinity Aquifer, North-Central Texas

    NASA Astrophysics Data System (ADS)

    Wen, T.; Castro, M. C.; Nicot, J. P.; Hall, C. M.; Pinti, D. L.; Mickler, P. J.; Darvari, R.; Larson, T. E.

    2017-12-01

    The complete set of stable noble gases (He, Ne, Ar, Kr, Xe) is presented for Barnett Shale and Strawn Group production gas together with that of stray flowing gas present in the Trinity Aquifer, Texas. It places new constraints on the source of this stray gas and further shows that Barnett and Strawn gas have distinct crustal and atmospheric noble gas signatures, allowing clear identification of these two sources. Like Trinity Aquifer stray gas, Strawn gas is significantly more enriched in crustal 4He*, 21Ne*, and 40Ar* than Barnett gas. The similarity of Strawn and stray gas crustal noble gas signatures suggests that the Strawn is the source of stray gas in the Trinity Aquifer. Atmospheric 22Ne/36Ar ratios of stray gas mimic also that of Strawn, further reinforcing the notion that the source of stray gas in this aquifer is the Strawn. While noble gas signatures of Strawn and stray gas are consistent with a single-stage water degassing model, a two-stage oil modified groundwater exsolution fractionation model is required to explain the light atmospheric noble gas signature of Barnett Shale production gas. These distinct Strawn and Barnett noble gas signatures are likely the reflection of distinct evolution histories with Strawn gas being possibly older than that of Barnett Shale.

  15. Noble Gas Signatures in Antrim Shale Gas in the Michigan Basin - Assessing Compositional Variability and Transport Processes

    NASA Astrophysics Data System (ADS)

    Wen, T.; Castro, M. C.; Ellis, B. R.; Hall, C. M.; Lohmann, K. C.; Bouvier, L.

    2014-12-01

    Recent studies in the Michigan Basin looked at the atmospheric and terrigenic noble gas signatures of deep brines to place constraints on the past thermal history of the basin and to assess the extent of vertical transport processes within this sedimentary system. In this contribution, we present noble gas data of shale gas samples from the Antrim shale formation in the Michigan Basin. The Antrim shale was one of the first economic shale-gas plays in the U.S. and has been actively developed since the 1980's. This study pioneers the use of noble gases in subsurface shale gas in the Michigan Basin to clarify the nature of vertical transport processes within the sedimentary sequence and to assess potential variability of noble gas signatures in shales. Antrim Shale gas samples were analyzed for all stable noble gases (He, Ne, Ar, Kr, Xe) from samples collected at depths between 300 and 500m. Preliminary results show R/Ra values (where R and Ra are the measured and atmospheric 3He/4He ratios, respectively) varying from 0.022 to 0.21. Although most samples fall within typical crustal R/Ra range values (~0.02-0.05), a few samples point to the presence of a mantle He component with higher R/Ra ratios. Samples with higher R/Ra values also display higher 20Ne/22Ne ratios, up to 10.4, and further point to the presence of mantle 20Ne. The presence of crustally produced nucleogenic 21Ne and radiogenic 40Ar is also apparent with 21Ne/22Ne ratios up to 0.033 and 40Ar/36Ar ratios up to 312. The presence of crustally produced 4He, 21Ne and 40Ar is not spatially homogeneous within the Antrim shale. Areas of higher crustal 4He production appear distinct to those of crustally produced 21Ne and 40Ar and are possibly related the presence of different production levels within the shale with varying concentrations of parent elements.

  16. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  17. A model to estimate noble fir bough weight.

    Treesearch

    Keith A. Blatner; Roger D. Fight; Nan Vance; Mark Savage; Roger. Chapman

    2005-01-01

    The harvesting of noble fir (Abies procera) for the production of Christmas wreaths and related products has been a mainstay of the nontimber forest products industry in the Pacific Northwest (PNW) for decades. Although noble fir is the single most important bough product harvested in the PNW, little or no work has been published concerning the...

  18. Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases

    USGS Publications Warehouse

    Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.

    2018-01-01

    Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.

  19. Subsurface dynamics of reactive and inert gases in the context of noble gases as environmental tracers in groundwater hydrology

    NASA Astrophysics Data System (ADS)

    Mayer, Simon; Jenner, Florian; Aeschbach, Werner

    2017-04-01

    Applications of inert gases in groundwater hydrology require a profound understanding of underlying biogeochemical processes. Some of these processes are, however, not well understood and therefore require further investigation. This is the first study simultaneously investigating soil air and groundwater in the context of noble gas tracer applications, accounting for seasonal effects in different climate regions. The sampled data confirm a general reliability of common assumptions proposed in the literature. In particular, a solubility-controlled description of excess air formation and of groundwater degassing can be confirmed. This study identifies certain effects which need to be taken into account to reliably evaluate noble gas patterns. First, long-term samplings suggest a permanent temperature-driven equilibration of shallow groundwater with entrapped air bubbles, even some years after recharge. Second, minor groundwater degassing is found to challenge existing excess air model approaches, depending on the amount and the fractionation of excess air. Third, soil air composition data of this study imply a potential bias of noble gas temperatures by up to about 2℃ due to microbial oxygen depletion and a reduced sum value of O2+CO2. This effect causes systematically lower noble gas temperatures in tropical groundwater samples and in shallow mid-latitude groundwater samples after strong recharge during the warm season. However, a general bias of noble gas temperatures in mid-latitudes is probably prevented by a predominant recharge during the cold season, accompanied by nearly atmospheric noble gas mixing ratios in the soil air. Findings of this study provide a remarkable contribution to the reliability of noble gas tracer applications in hydrology, in particular with regard to paleoclimate reconstructions and an understanding of subsurface gas dynamics.

  20. Experimental studies and model analysis of noble gas fractionation in porous media

    USGS Publications Warehouse

    Ding, Xin; Kennedy, B. Mack.; Evans, William C.; Stonestrom, David A.

    2016-01-01

    The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective–diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO2 was injected at the base of the column, providing a series of constant CO2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO2 and noble gas analyses, and ambient pressures were measured. Both the advection–diffusion and dusty gas models were used to simulate the behavior of CO2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 ´ 10−11 m2), Knudsen diffusion terms were small, and both the dusty gas model and the advection–diffusion model accurately predicted the concentration profiles of the CO2 and atmospheric noble gases across a range of CO2 flux from ?700 to 10,000 g m−2 d−1. The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO2) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation.

  1. Electronic, Mechanical, and Dielectric Properties of Two-Dimensional Atomic Layers of Noble Metals

    NASA Astrophysics Data System (ADS)

    Kapoor, Pooja; Kumar, Jagdish; Kumar, Arun; Kumar, Ashok; Ahluwalia, P. K.

    2017-01-01

    We present density functional theory-based electronic, mechanical, and dielectric properties of monolayers and bilayers of noble metals (Au, Ag, Cu, and Pt) taken with graphene-like hexagonal structure. The Au, Ag, and Pt bilayers stabilize in AA-stacked configuration, while the Cu bilayer favors the AB stacking pattern. The quantum ballistic conductance of the noble-metal mono- and bilayers is remarkably increased compared with their bulk counterparts. Among the studied systems, the tensile strength is found to be highest for the Pt monolayer and bilayer. The noble metals in mono- and bilayer form show distinctly different electron energy loss spectra and reflectance spectra due to the quantum confinement effect on going from bulk to the monolayer limit. Such tunability of the electronic and dielectric properties of noble metals by reducing the degrees of freedom of electrons offers promise for their use in nanoelectronics and optoelectronics applications.

  2. Gas geochemistry of Sierra Negra volcano, Galapagos hot spot

    NASA Astrophysics Data System (ADS)

    Taran, Y.; Christenson, B.; Sumino, H.; Kennedy, B.

    2010-12-01

    We report chemical and isotopic compositions of gases from the Mina Azufral fumarolic field of Sierra Negra volcano, Isabela Island, Galápagos, collected in 2004 and compare our data with the data by Giggenbach (unpublished) collected in 1990 and Goff et al. (2000) collected in 1995. New results include the noble gas elemental and isotope abundances and nitrogen isotope ratios for the discharges. Maximum fumarole temperatures and ratios of major components (C/S/Cl/N) changed very little between 1995 and 2004, but the water fraction varied significantly over this period (39 mol% in 1990; 77% in 1995 and 52% in 2004). Carbon and helium isotopic compositions were stable (-3 to -4‰ and 16-18Ra, respectively), and water isotopic composition showed a notable negative oxygen shift from the local meteoric water value depending on the relative water content and thus controlled by the H2O-CO2 oxygen isotope fractionation. In terms of the noble gas abundances and isotopic ratios, heavy noble gases (Kr and Xe) are mainly of the atmospheric origin. Ne isotopic ratios also show strong meteoric signatures, but fall along the 20Ne/22Ne - 21Ne/22Ne air-deep mantle mixing trend for Fernandina glasses (Kurz et al., 2009). 40Ar/36Ar ratios up to 400 show a notable contribution of radiogenic Ar, and 40Ar*/4He ~ 0.3 ratios are consistent with un-degassed upper mantle values. Despite the high He/Ne ratios in gases collected in 2004, and only trace air contamination attributable to sampling, the nitrogen isotope ratios (~ -1 ‰) show a high fraction of the air-saturated water in the volcanic vapor. The chemical composition of the parent magmatic gas is difficult to characterise due to significant interaction between magmatic and hydrothermal system fluids beneath the Sierra Negra caldera. Never-the-less, some important indicators can be estimated: CO2/3He ≈ 3.5x10^9; N2/He <30; CO2/N2 >500. The last value is much higher than the accepted value of ~ 100 for the upper mantle.

  3. Solar wind noble gases and nitrogen in metal from lunar soil 68501

    NASA Technical Reports Server (NTRS)

    Becker, Richard H.; Pepin, Robert O.

    1994-01-01

    Noble gases and N were analyzed in handpicked metal separates from lunar soil 68501 by a combination of step-wise combustions and pyrolyses. Helium and Ne were found to be unfractionated with respect to one another when normalized to solar abundances, for both the bulk sample and for all but the highest temperature steps. However, they are depleted relative to Ar, Kr and Xe by at least a factor of 5. The heavier gases exhibit mass-dependent fractionation relative to solar system abundance ratios but appear unfractionated, both in the bulk metal and in early temperature steps, when compared to relative abundances derived from lunar ilmenite 71501 by chemical etching, recently put forward as representing the abundance ratios in solar wind. Estimates of the contribution of solar energetic particles (SEP) to the originally implanted solar gases, derived from a basic interpretation of He and Ne isotopes, yield values of about 10%. Analysis of the Ar isotopes requires a minimum of 20% SEP, and Kr isotopes, using our preferred composition for solar wind Kr, yield a result that overlaps both these values. It is possible to reconcile the data from these gases if significant loss of solar wind Ar, Kr and presumably Xe has occurred relative to the SEP component, most likely by erosive processes that are mass independent, although mass-dependent losses (Ar greater than Kr greater than Xe) cannot be excluded. If such losses did occur, the SEP contribution to the solar implanted gases must have been no more than a few percent. Nitrogen is a mixture of indigenous meteoritic N, whose isotopic composition is inferred to be relatively light, and implanted solar N, which has probably undergone diffusive redistribution and fractionation. If the heavy noble gases have not undergone diffusive loss, then N/Ar in the solar wind can be inferred to be at least several times the accepted solar ratio. The solar wind N appears, even after correction for fractionation effects, to have a minimum delta N-15 value equal to or greater than +150% and a more probable value equal to or greater than +200%.

  4. Reconstructing mantle volatile contents through the veil of degassing

    NASA Astrophysics Data System (ADS)

    Tucker, J.; Mukhopadhyay, S.; Gonnermann, H. M.

    2014-12-01

    The abundance of volatile elements in the mantle reveals critical information about the Earth's origin and evolution such as the chemical constituents that built the Earth and material exchange between the mantle and exosphere. However, due to magmatic degassing, volatile element abundances measured in basalts usually do not represent those in undegassed magmas and hence in the mantle source of the basalts. While estimates of average mantle concentrations of some volatile species can be obtained, such as from the 3He flux into the oceans, volatile element variability within the mantle remains poorly constrained. Here, we use CO2-He-Ne-Ar-Xe measurements in basalts and a new degassing model to reconstruct the initial volatile contents of 8 MORBs from the Mid-Atlantic Ridge and Southwest Indian Ridge that span a wide geochemical range from depleted to enriched MORBs. We first show that equilibrium degassing (e.g. Rayleigh degassing), cannot simultaneously fit the measured CO2-He-Ne-Ar-Xe compositions in MORBs and argue that kinetic fractionation between bubbles and melt lowers the dissolved ratios of light to heavy noble gas species in the melt from that expected at equilibrium. We present a degassing model (after Gonnermann and Mukhopadhyay, 2007) that explicitly accounts for diffusive fractionation between melt and bubbles. The model computes the degassed composition based on an initial volatile composition and a diffusive timescale. To reconstruct the undegassed volatile content of a sample, we find the initial composition and degassing timescale which minimize the misfit between predicted and measured degassed compositions. Initial 3He contents calculated for the 8 MORB samples vary by a factor of ~7. We observe a correlation between initial 3He and CO2 contents, indicating relatively constant CO2/3He ratios despite the geochemical diversity and variable gas content in the basalts. Importantly, the gas-rich popping rock from the North Atlantic, as well as the average mantle ratio computed from the ridge 3He flux and independently estimated CO2 content fall along the same correlation. This observation suggests that undegassed CO2 and noble gas concentrations can be reconstructed in individual samples through measurement of noble gases and CO2 in erupted basalts.

  5. High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Moni Kanchan; Kadakia, Karan; Velikokhatnyi, Oleg I

    2013-01-01

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts comprising compositions with significantly reduced amounts of expensive noble metal contents (e.g. IrO{sub 2}, Pt) with comparable electrochemical performance to the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would signify a major breakthrough in hydrogen generation via water electrolysis. Development of such systems would lead to two primary outcomes: first, a reduction in the overall capital costs of PEM based water electrolyzers, and second, attainment of the targeted hydrogen production costs (<$3.00/gge delivered by 2015) comparable to conventional liquid fuels. In line with these goals,more » by exploiting a two-pronged theoretical first principles and experimental approach herein, we demonstrate for the very first time a solid solution of SnO{sub 2}:10 wt% F containing only 20 at.% IrO{sub 2} [e.g. (Sn{sub 0.80}Ir{sub 0.20})O{sub 2}:10F] displaying remarkably similar electrochemical activity and comparable or even much improved electrochemical durability compared to pure IrO{sub 2}, the accepted gold standard in oxygen evolution electro-catalysts for PEM based water electrolysis. We present the results of these studies.« less

  6. Bare and protected sputtered-noble-metal films for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Talaga, David; Bonhommeau, Sébastien

    2014-11-01

    Sputtered silver and gold films with different surface morphologies have been prepared and coated with a benzenethiol self-assembled monolayer. Rough noble metal films showed strong Raman features assigned to adsorbed benzenethiol molecules upon irradiation over a wide energy range in the visible spectrum, which disclosed the occurrence of a significant surface-enhanced Raman scattering with maximal enhancement factors as high as 6 × 106. In addition, the adsorption of ethanethiol onto silver surfaces hinders their corrosion over days while preserving mostly intact enhancement properties of naked silver. This study may be applied to develop stable and efficient metalized probes for tip-enhanced Raman spectroscopy.

  7. Solar composition from the Genesis Discovery Mission

    PubMed Central

    Burnett, D. S.; Team, Genesis Science

    2011-01-01

    Science results from the Genesis Mission illustrate the major advantages of sample return missions. (i) Important results not otherwise obtainable except by analysis in terrestrial laboratories: the isotopic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects. The N isotopic composition is the same as that of Jupiter. Genesis has resolved discrepancies in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments have been applied to Genesis samples, including some developed specifically for the mission. (iii) The N isotope result has been replicated with four different instruments. PMID:21555545

  8. A GREEN CHEMISTRY APPROACH TO PREPARATION OF CORE (FE OR CU)-SHELL (NOBLE METALS) NANOCOMPOSITES USING AQUEOUS ASCORBIC ACID

    EPA Science Inventory

    A greener method to fabricate novel core (Fe or Cu)-shell (noble metals) nanocomposites of transition metals such as Fe and Cu and noble metals such as Au, Pt, Pd, and Ag using aqueous ascorbic acid is described. Transition metal salts such as Cu and Fe were reduced using ascor...

  9. The MSFC Noble Gas Research Laboratory (MNGRL): A NASA Investigator Facility

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2016-01-01

    Noble-gas isotopes are a well-established technique for providing detailed temperature-time histories of rocks and meteorites. We have established the MSFC Noble Gas Research Laboratory (MNGRL) at Marshall Space Flight Center to serve as a NASA investigator facility in the wake of the closure of the JSC laboratory formerly run by Don Bogard. The MNGRL lab was constructed to be able to measure all the noble gases, particularly Ar-Ar and I-Xe radioactive dating to find the formation age of rocks and meteorites, and Ar/Kr/Ne cosmic-ray exposure ages to understand when the meteorites were launched from their parent planets.

  10. SISGR-Fundamental Experimental and Theoretical Studies on a Novel Family of Oxide Catalyst Supports for Water Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumta, Prashant

    2014-10-03

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it wasmore » demonstrated that fluorine doped IrO2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O2 thin films of different compositions FUNDAMENTAL STUDY OF NANOSTRUCTURED ELECTRO-CATALYSTS WITH REDUCED NOBLE METAL CONTENT FOR PEM BASED WATER ELECTROLYSIS 4 have also been studied. It has been shown that (Ir0.40Sn0.30Nb0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would potentially be preferred as OER electro-catalysts for PEM electrolysis. The excellent performance of the catalysts coupled with its robustness would make them great candidates for contributing to significant reduction in the overall capital costs of PEM based water electrolyzers. This s.thesis provides a detailed fundamental study of the synthesis, materials, characterization, theoretical studies and detailed electrochemical response and potential mechanisms of these novel electro-catalysts for OER processes.« less

  11. Ab initio theory of noble gas atoms in bcc transition metals.

    PubMed

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian

    2018-06-18

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.

  12. The diverse biological properties of the chemically inert noble gases.

    PubMed

    Winkler, David A; Thornton, Aaron; Farjot, Géraldine; Katz, Ira

    2016-04-01

    The noble gases represent an intriguing scientific paradox. They are extremely inert chemically but display a remarkable spectrum of clinically useful biological properties. Despite a relative paucity of knowledge of their mechanisms of action, some of the noble gases have been used successfully in the clinic. Studies with xenon have suggested that the noble gases as a class may exhibit valuable biological properties such as anaesthesia; amelioration of ischemic damage; tissue protection prior to transplantation; analgesic properties; and a potentially wide range of other clinically useful effects. Xenon has been shown to be safe in humans, and has useful pharmacokinetic properties such as rapid onset, fast wash out etc. The main limitations in wider use are that: many of the fundamental biochemical studies are still lacking; the lighter noble gases are likely to manifest their properties only under hyperbaric conditions, impractical in surgery; and administration of xenon using convectional gaseous anaesthesia equipment is inefficient, making its use very expensive. There is nonetheless a significant body of published literature on the biochemical, pharmacological, and clinical properties of noble gases but no comprehensive reviews exist that summarize their properties and the existing knowledge of their models of action at the molecular (atomic) level. This review provides such an up-to-date summary of the extensive, useful biological properties of noble gases as drugs and prospects for wider application of these atoms. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  13. Physiological response of rats to delivery of helium and xenon: implications for hyperpolarized noble gas imaging

    NASA Technical Reports Server (NTRS)

    Ramirez, M. P.; Sigaloff, K. C.; Kubatina, L. V.; Donahue, M. A.; Venkatesh, A. K.; Albert, M. S.; ALbert, M. S. (Principal Investigator)

    2000-01-01

    The physiological effects of various hyperpolarized helium and xenon MRI-compatible breathing protocols were investigated in 17 Sprague-Dawley rats, by continuous monitoring of blood oxygen saturation, heart rate, EKG, temperature and endotracheal pressure. The protocols included alternating breaths of pure noble gas and oxygen, continuous breaths of pure noble gas, breath-holds of pure noble gas for varying durations, and helium breath-holds preceded by two helium rinses. Alternate-breath protocols up to 128 breaths caused a decrease in oxygen saturation level of less than 5% for either helium or xenon, whereas 16 continuous-breaths caused a 31.5% +/- 2.3% decrease in oxygen saturation for helium and a 30.7% +/- 1. 3% decrease for xenon. Breath-hold protocols up to 25 s did not cause the oxygen saturation to fall below 90% for either of the noble gases. Oxygen saturation values below 90% are considered pathological. At 30 s of breath-hold, the blood oxygen saturation dropped precipitously to 82% +/- 0.6% for helium, and to 76.5% +/- 7. 4% for xenon. Breath-holds longer than 10 s preceded by pre-rinses caused oxygen saturation to drop below 90%. These findings demonstrate the need for standardized noble gas inhalation procedures that have been carefully tested, and for continuous physiological monitoring to ensure the safety of the subject. We find short breath-hold and alternate-breath protocols to be safe procedures for use in hyperpolarized noble gas MRI experiments. Copyright 2000 John Wiley & Sons, Ltd.

  14. Photosensitive dopants for liquid noble gases

    DOEpatents

    Anderson, David F.

    1988-01-01

    In an ionization type detector for high energy radiation wherein the energy of incident radiation is absorbed through the ionization of a liquid noble gas and resulting free charge is collected to form a signal indicative of the energy of the incident radiation, an improvement comprising doping the liquid noble gas with photosensitive molecules to convert scintillation light due to recombination of ions, to additional free charge.

  15. Physical conditions and chemical processes during single-bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Flannigan, David J.

    In order to gain insight into the physical conditions and chemical processes associated with single-bubble sonoluminescence (SBSL), nonvolatile liquids such as concentrated sulfuric acid (H2SO 4) were explored. The SBSL radiant powers from H2SO 4 aqueous solutions were found to be over 103 times larger than those typically observed for SBSL from water. In addition, the emission spectra contain extensive bands and lines from molecules, atoms, and ions. The population of high-energy states of atoms (20 eV) and ions (37 eV) provides definitive experimental evidence of the formation of a plasma. By using various techniques (e.g., small molecules and atoms as intra-cavity probes, standard methods of plasma diagnostics, and spectrometric methods of pyrometry), it was possible to quantify the heavy particle temperatures (15,000 K), heavy particle densities (1021 cm-3) and pressures (4,000 bar), and plasma electron densities (1018 cm -3) generated during SBSL from H2SO4. It was also found that SBSL from H2SO4 containing mixtures of noble gas and air was quenched up to a critical acoustic pressure, above which the radiant powers increased by 104. From the spectral profiles it was determined that the air limited heating and plasma formation by endothermic chemical reactions and energy-transfer reactions. Simultaneous stroboscopic and spectroscopic studies of SBSL in H2SO4 containing alkali-metal sulfates showed that dramatic changes in the bubble dynamics correlated with the onset of emission from nonvolatile species such as Na and K atoms. These effects were attributed to the development of interfacial instabilities with increasing translational velocity of the bubble.

  16. Non-solar noble gas abundances in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.; Stevenson, David J.

    1986-01-01

    The thermodynamic stability of clathrate hydrate is calculated to predict the formation conditions corresponding to a range of solar system parameters. The calculations were performed using the statistical mechanical theory developed by van der Waals and Platteeuw (1959) and existing experimental data concerning clathrate hydrate and its components. Dissociation pressures and partition functions (Langmuir constants) are predicted at low pressure for CO clathrate (hydrate) using the properties of chemicals similar to CO. It is argued that nonsolar but well constrained noble gas abundances may be measurable by the Galileo spacecraft in the Jovian atmosphere if the observed carbon enhancement is due to bombardment of the atmosphere by clathrate-bearing planetesimals sometime after planetary formation. The noble gas abundances of the Jovian satellite Titan are predicted, assuming that most of the methane in Titan is accreted as clathrate. It is suggested that under thermodynamically appropriate conditions, complete clathration of water ice could have occurred in high-pressure nebulas around giant planets, but probably not in the outer solar nebula. The stability of clathrate in other pressure ranges is also discussed.

  17. A simple route to diverse noble metal-decorated iron oxide nanoparticles for catalysis

    NASA Astrophysics Data System (ADS)

    Walker, Joan M.; Zaleski, Jeffrey M.

    2016-01-01

    Developing facile synthetic routes to multifunctional nanoparticles combining the magnetic properties of iron oxides with the optical and catalytic utility of noble metal particles remains an important goal in realizing the potential of hybrid nanomaterials. To this end, we have developed a single route to noble metal-decorated magnetic nanoparticles (Fe3O4@SiO2-M M = Au, Pd, Ag, and PtAg) and characterized them by HRTEM and STEM/EDX imaging to reveal their nanometer size (16 nm Fe3O4 and 1-5 nm M seeds) and uniformity. This represents one of the few examples of genuine multifunctional particles on the nanoscale. We show that these hybrid structures have excellent catalytic activity for the reduction of 4-nitrophenol (knorm = 2 × 107 s-1 mol(Pd)-1 5 × 106 s-1 mol(Au)-1 5 × 105 s-1 mol(PtAg)-1 7 × 105 s-1 mol(Ag)-1). These rates are the highest reported for nano-sized comparables, and are competitive with mesoparticles of similar composition. Due to their magnetic response, the particles are also suitable for magnetic recovery and maintain >99% conversion for at least four cycles. Using this synthetic route, Fe3O4@SiO2-M particles show great promise for further development as a precursor to complicated anisotropic materials or for applications ranging from nanocatalysis to biomedical sensing.Developing facile synthetic routes to multifunctional nanoparticles combining the magnetic properties of iron oxides with the optical and catalytic utility of noble metal particles remains an important goal in realizing the potential of hybrid nanomaterials. To this end, we have developed a single route to noble metal-decorated magnetic nanoparticles (Fe3O4@SiO2-M M = Au, Pd, Ag, and PtAg) and characterized them by HRTEM and STEM/EDX imaging to reveal their nanometer size (16 nm Fe3O4 and 1-5 nm M seeds) and uniformity. This represents one of the few examples of genuine multifunctional particles on the nanoscale. We show that these hybrid structures have excellent catalytic activity for the reduction of 4-nitrophenol (knorm = 2 × 107 s-1 mol(Pd)-1 5 × 106 s-1 mol(Au)-1 5 × 105 s-1 mol(PtAg)-1 7 × 105 s-1 mol(Ag)-1). These rates are the highest reported for nano-sized comparables, and are competitive with mesoparticles of similar composition. Due to their magnetic response, the particles are also suitable for magnetic recovery and maintain >99% conversion for at least four cycles. Using this synthetic route, Fe3O4@SiO2-M particles show great promise for further development as a precursor to complicated anisotropic materials or for applications ranging from nanocatalysis to biomedical sensing. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06700f

  18. Fundamentals of Hydrocarbon Upgrading to Liquid Fuels and Commodity Chemicals over Catalytic Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Tao

    Promising new technologies for biomass conversion into fuels and chemical feedstocks rely on the production of bio-oils, which need to be upgraded in order to remove oxygen-containing hydrocarbons and water. A high oxygen concentration makes bio-oils acidic and corrosive, unstable during storage, and less energetically valuable per unit weight than petroleum-derived hydrocarbons. Although there are efficient processes for the production of bio-oils, there are no efficient technologies for their upgrading. Current technologies utilize traditional petroleum refining catalysts, which are not optimized for biomass processing. New upgrading technologies are, therefore, urgently needed for development of sustainable energy resources. Development of such new technologies, however, is severely hindered by a lack of fundamental understanding of how oxygen and oxygen-containing hydrocarbons derived from biomass interact with promising noble-metal catalysts. In this study, kinetic reaction measurements, catalyst characterization and quantum chemical calculations using density functional theory were combined for determining adsorption modes and reaction mechanisms of hydrocarbons in the presence of oxygen on surfaces of catalytic noble-metal nanoparticles. The results were used for developing improved catalyst formulations and optimization of reaction conditions. The addition of molybdenum to platinum catalysts was shown to improve catalytic activity, stability, and selectivity in hydrodeoxygenation of acetic acid, which served as a model biomass compound. The fundamental results that describe interactions of oxygen and hydrocarbons with noble-metal catalysts were extended to other reactions and fields of study: evaluation of the reaction mechanism for hydrogen peroxide decomposition, development of improved hydrogenation catalysts and determination of adsorption modes of a spectroscopic probe molecule.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achey, R.; Rivera, O.; Wellons, M.

    Microporous zeolite adsorbent materials are widely used as a medium for separating gases. Adsorbent gas separation systems can run at ambient temperature and require minimal pressure to flow the input gas stream across the adsorbent bed. This allows for low energy consumption relative to other types of separation systems. Specific zeolites also have a high capacity and selectivity for the gases of interest, leading to compact and efficient separation systems. These characteristics are particularly advantageous for the application of signatures detection for non-proliferation, which often requires portable systems with low power draw. Savannah River National Laboratory currently is the leadermore » in using zeolites for noble gas sampling for non-proliferation detection platforms. However, there is a constant customer need for improved sampling capabilities. Development of improved zeolite materials will lead to improved sampling technology. Microwave-assisted and conventional hydrothermal synthesis have been used to make a variety of zeolites tailored for noble gas separation. Materials characterization data collected in this project has been used to help guide the synthesis of improved zeolite materials. Candidate materials have been down-selected based on highest available surface area, maximum overall capacity for gas adsorption and highest selectivity. The creation of improved adsorbent materials initiated in this project will lead to development of more compact, efficient and effective noble gas collectors and concentrators. The work performed in this project will be used as a foundation for funding proposals for further material development as well as possible industrial applications.« less

  20. Optimizing detection of noble gas emission at a former UNE site: sample strategy, collection, and analysis

    NASA Astrophysics Data System (ADS)

    Kirkham, R.; Olsen, K.; Hayes, J. C.; Emer, D. F.

    2013-12-01

    Underground nuclear tests may be first detected by seismic or air samplers operated by the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization). After initial detection of a suspicious event, member nations may call for an On-Site Inspection (OSI) that in part, will sample for localized releases of radioactive noble gases and particles. Although much of the commercially available equipment and methods used for surface and subsurface environmental sampling of gases can be used for an OSI scenario, on-site sampling conditions, required sampling volumes and establishment of background concentrations of noble gases require development of specialized methodologies. To facilitate development of sampling equipment and methodologies that address OSI sampling volume and detection objectives, and to collect information required for model development, a field test site was created at a former underground nuclear explosion site located in welded volcanic tuff. A mixture of SF-6, Xe127 and Ar37 was metered into 4400 m3 of air as it was injected into the top region of the UNE cavity. These tracers were expected to move towards the surface primarily in response to barometric pumping or through delayed cavity pressurization (accelerated transport to minimize source decay time). Sampling approaches compared during the field exercise included sampling at the soil surface, inside surface fractures, and at soil vapor extraction points at depths down to 2 m. Effectiveness of various sampling approaches and the results of tracer gas measurements will be presented.

  1. Improvement of spin-exchange optical pumping of xenon-129 using in situ NMR measurement in ultra-low magnetic field

    NASA Astrophysics Data System (ADS)

    Takeda, Shun; Kumagai, Hiroshi

    2018-02-01

    Hyperpolarized (HP) noble gas has attracted attention in NMR / MRI. In an ultra-low magnetic field, the effectiveness of signal enhancement by HP noble gas should be required because reduction of the signal intensity is serious. One method of generating HP noble gas is spin exchange optical pumping which uses selective excitation of electrons of alkali metal vapor and spin transfer to nuclear spin by collision to noble gas. Although SEOP does not require extreme cooling or strong magnetic field, generally it required large-scale equipment including high power light source to generate HP noble gas with high efficiency. In this study, we construct a simply generation system of HP xenon-129 by SEOP with an ultralow magnetic field (up to 1 mT) and small-scale light source (about 1W). In addition, we measure in situ NMR signal at the same time, and then examine efficient conditions for SEOP in ultra-low magnetic fields.

  2. Structural and plasmonic properties of noble metal doped ZnO nanomaterials

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok K.; Swart, H. C.; Kroon, R. E.

    2018-04-01

    Noble metal doped ZnO has been synthesized by the combustion method and the effect of different metals (Ag, Au, Pd) on the structural, morphological, optical, photoluminescence and localized surface plasmon resonance (LSPR) properties has been investigated. X-ray diffraction analysis revealed that the ZnO had a hexagonal wurtzite structure and the crystallite sizes were affected by the doping. The formation of noble metal nanoparticles (NPs) was investigated using transmission electron microscopy and diffuse reflectance spectra. The LSPR of the metallic NPs was predicted using Mie theory calculations. The absorption spectra were calculated using the Kubelka-Munk function and the optical bandgap varied from 3.06 to 3.18 eV for the different doping materials. The experimental results suggest that the origin of enhanced emission was due to direct interaction between the laser photons and the noble material NPs which in turn leads to photoemission transfer of electrons from the noble metals NPs to the conduction band of ZnO.

  3. Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard.

    PubMed

    Wang, Xing-Jie; Tao, Yong-Sheng; Wu, Yun; An, Rong-Yan; Yue, Zhuo-Ya

    2017-07-01

    Aroma characteristics and their impact volatile components of noble-rot wines elaborated from artificial botrytized Chardonnay grapes, obtained by spraying Botrytis cinerea suspension in Yuquan vineyard, Ningxia, China, were explored in this work. Dry white wine made from normal-harvested grapes and sweet wine produced from delay-harvested grapes were compared. Wine aromas were analysed by trained sensory panelists, and aroma compounds were determined by SPME-GC-MS. Results indicated that esters, fatty acids, thiols, lactones, volatile phenols and 2-nonanone increased markedly in noble-rot wines. In addition to typical aromas of noble-rot wines, artificial noble-rot wines were found to contain significant cream and dry apricot attributes. Partial Least-Squares Regression models of aroma characteristics against aroma components revealed that non-fermentative odorants were the primary contributor to dry apricot attribute, especially, thiols, C13-norisoprenoids, lactones, terpenols and phenolic acid derivatives, while cream attribute was dependent on both fermentative and non-fermentative volatile components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Detectability of Noble Gases in Jovian Atmospheres Utilizing Dimer Spectral Structures

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Min, Y.; Kim, Y.; Lee, Y.; Trafton, L.; Miller, S.; McKellar, A. R. W.

    1997-07-01

    The detection of jovian hydrogen-hydrogen dimers through the clear telluric 2-micron window (Kim et al. 1995; Trafton et al. 1997) suggests possibility to detect noble gases in the form of dimer with hydrogen in jovian atmospheres. Since noble gases do not have spectral structures in the infrared, it has been difficult to derive their abundances in the atmospheres of jovian planets. If there is a significant component of noble gases other than helium in the jovian atmospheres, it might be detected through its dimer spectrum with hydrogen molecule. The relatively sharp spectral structures of hydrogen-argon and hydrogen-neon dimers compared with those of hydrogen-hydrogen dimers are useful for the detection, if adequate S/N is obtained. However, these dimer structures should be much weaker than the nearby hydrogen-hydrogen features because noble gases are expected to be minor constituents of these atmospheres. We will discuss the detectability of these dimers based on laboratory measurements (McKellar, 1994; 1996), and current technology of infrared observations.

  5. Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures

    DOEpatents

    Adzic, Radoslav R.; Harris, Alexander

    2015-10-06

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The manufacturing process may involve initial oxidation of the carbon nanostructures followed by immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means and the nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. Subsequent film growth may be performed via the initial quasi-underpotential deposition of a non-noble metal followed by immersion in a solution comprising a more noble metal. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  6. Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures

    DOEpatents

    Adzic, Radoslav; Harris, Alexander

    2013-03-26

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means and the nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. Subsequent film growth may be performed via the initial quasi-underpotential deposition of a non-noble metal followed by immersion in a solution comprising a more noble metal. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  7. Infrared Matrix-Isolation Study of New Noble-Gas Compounds

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Räsänen, Markku; Khriachtchev, Leonid

    2016-06-01

    We identify new noble-gas compounds in solid matrices using IR spectroscopy. The compounds under study belong to two types: HNgY and YNgY' where Ng is a noble-gas atom and Y and Y' are electronegative fragments. The experimental assignments are supported by ab initio calculations at the MP2(full) and CCSD(T) levels of theory with the def2-TZVPPD basis set. We have prepared and characterized two new HNgY compounds (noble-gas hydrides): HKrCCCl in a Kr matrix and HXeCCCl in a Xe matrix.I The synthesis of these compounds includes two steps: UV photolysis of HCCCl in a noble-gas matrix to form the H + CCCl fragments and annealing of the matrix to mobilize H atoms and to promote the H + Ng + CCCl = HNgCCCl reaction. An interesting observation in the experiments on HXeCCCl in a Xe matrix is the temperature-induced transformation of the three H-Xe stretching bands. This observation is explained by temperature-induced changes of local matrix morphology around the embedded HXeCCCl molecule. In these experiments, we have also obtained the IR spectrum of the CCCl radical, which is produced by photodecomposition of HCCCl. We have identified three new YNgY' compounds (fluorinated noble-gas cyanides): FKrCN in a Kr matrix and FXeCN and FXeNC in a Xe matrix.II These molecule are formed by photolysis of FCN in a noble-gas matrix due to locality of this process. The amount of these molecules increases upon thermal mobilization of the F atoms in the photolyzed matrix featuring the F + Ng + CN reaction.

  8. Lamellar zirconium phosphates to host metals for catalytic purposes.

    PubMed

    Ballesteros-Plata, Daniel; Infantes-Molina, Antonia; Rodríguez-Aguado, Elena; Braos-García, Pilar; Rodríguez-Castellón, Enrique

    2018-02-27

    In the present study a porous lamellar zirconium phosphate heterostructure (PPH) formed from zirconium(iv) phosphate expanded with silica galleries (P/Zr molar ratio equal to 2 and (Si + Zr)/P equal to 3) was prepared to host noble metals. Textural and structural characterization of PPH-noble metal materials was carried out in order to elucidate the location and dispersion of the metallic particles and the properties of the resulting material to be used in catalytic processes. In the present paper, their activity in the catalytic hydrodeoxygenation (HDO) reaction of dibenzofuran (DBF) was evaluated. X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) evidenced that the structure of the pillared zirconium phosphate material was not modified by the incorporation of Pt and Pd. Moreover, transmission electron microscopy (TEM) showed a different dispersion of the noble metal. The acidity of the resulting PPH-noble metal materials also changed, although in all cases the acidity was of weak nature, and the incorporation of noble metals affected Brønsted acid sites as observed from 31 P NMR spectra. In general, the textural, structural and acidic properties of the resulting materials suggest that PPH can be considered a good candidate to be used as a catalytic support. Thus, the catalytic results of the PPH-noble metal samples indicated that the Pd sample showed a stable behavior probably ascribed to a high dispersion of the active phase. However, the Pt sample suffered from fast deactivation. The selectivity to the reaction products was strongly dependent on the noble metal employed.

  9. The noble gases: how their electronegativity and hardness determines their chemistry.

    PubMed

    Furtado, Jonathan; De Proft, Frank; Geerlings, Paul

    2015-02-26

    The establishment of an internally consistent scale of noble gas electronegativities is a long-standing problem. In the present study, the problem is attacked via the Mulliken definition, which in recent years gained widespread use to its natural appearance in the context of conceptual density functional theory. Basic ingredients of this scale are the electron affinity and the ionization potential. Whereas the latter can be computed routinely, the instability of the anion makes the judicious choice of computational technique for evaluating electron affinities much more tricky. We opted for Puiatti's approach, extrapolating the energy of high ε solvent stabilized anions to the ε = 1 (gas phase) case. The results give negative electron affinity values, monotonically increasing (except for helium which is an outlier in most of the story) to almost zero at eka-radon in agreement with high level calculations. The stability of the B3LYP results is successfully tested both via improving the level of theory (CCSD(T)) and expanding the basis set. Combined with the ionization energies (in good agreement with experiment), an electronegativity scale is obtained displaying (1) a monotonic decrease of χ when going down the periodic table, (2) top values not for the noble gases but for the halogens, as opposed to most (extrapolation) procedures of existing scales, invariably placing the noble gases on top, and (3) noble gases having electronegativities close to the chalcogens. In the accompanying hardness scale (hardly, if ever, discussed in the literature) the noble gases turn out to be by far the farthest the hardest elements, again with a continuous decrease with increasing Z. Combining χ value of the halogens and the noble gases the Ng(δ+)F(δ-) bond polarity emerging from ab initio calculations naturally emerges. In conclusion, the chemistry of the noble gases is for a large part determined by their extreme hardness, equivalent to a high resistance to change in its electronic population coupled to their high electronegativity.

  10. In Situ measurement of Kr and Xe in the atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Conrad, P. G.; Malespin, C.; Franz, H. B.; Trainer, M. G.; Pepin, R. O.; Schwenzer, S. P.; Manning, H. L.; Atreya, S. K.; Wong, M. H.; Jones, J. H.; Owen, T. C.; Mahaffy, P. R.

    2015-12-01

    Abstract: The Sample Analysis at Mars (SAM) investigation [1] on NASA's Mars Science Laboratory mission has measured the six stable isotopes of krypton and the nine stable isotopes of xenon from the surface of Mars. Using semi-static mass spectrometry (MS) to measure the Kr, and static MS experiments (first ever on another planet) to measure the xenon, we have obtained isotopic ratios of these heavy noble gas elements with greatly improved precision over the Viking Measurements. The Viking landers detected both Kr and Xe [2] with a reported precision of ±20%, insufficient for in situ isotope measurement. Using the Viking observation of high 129Xe relative to Earth or to solar wind, Bogard & Johnson [3] and Swindle et al. [4] recognized that Shergottite meteorites may hold trapped Martian atmosphere, from which Swindle's team later reported precise noble gas isotope ratios, solidifying the theory that these meteorites were of martian origin. Our data are in very good agreement with the Swindle et al. [4] analysis, and the isotopic distributions of Kr and Xe in present day Martian atmosphere support the Pepin [5] model of massive hydrodynamic escape of the martian atmosphere early after formation. References: [1] Mahaffy, Paul R., et al. Space Science Revs 170.1-4 (2012): 401-478. [2] Owen, T., et al. Science 194.4271 (1976): 1293-1295. [3] Bogard, D. D. & Johnson, P. (1983) Science, 221: 651-654. [4] Swindle, T. D., M. W. Caffee, and C. M. Hohenberg. Geochim et Cosmochim Acta 50.6 (1986): 1001-1015. [5] Pepin, Robert O. Icarus 111.2 (1994): 289-304.

  11. a Study of the Interferences with the On-Line Radioiodine Measurement Under Nuclear Accident Conditions

    NASA Astrophysics Data System (ADS)

    Tseng, Tung-Tse

    In this research the interferences with the on -line detection of radioiodines, under nuclear accident conditions, were studied. The special tool employed for this research is the developed on-line radioiodine monitor (the Penn State Radioiodine Monitor), which is capable of detecting low levels of radioiodine on-line in air containing orders of magnitude higher levels of radioactive noble gases. Most of the data reported in this thesis were collected during a series of experiments called "Source -Term Experiment Program (STEP)." The experiments were conducted at the Argonne National Laboratory's TREAT reactor located at the Idaho National Engineering Laboratory (INEL). In these tests, fission products were released from the Light Water Reactor (LWR) test fuels as a result of simulating a reactor accident. The Penn State Monitor was then used to sample the fission products accumulated in a large container which simulated the reactor containment building. The test results proved that the Penn State Monitor was not affected significantly by the passage of large amounts of noble gases through the system. Also, it confirmed the predicted results that the operation of conventional on-line radioiodine detectors would, under nuclear accident conditions, be seriously impaired by the passage of high concentrations of radioactive noble gases through such systems. This work also demonstrated that under conditions of high noble gas concentrations and low radioiodine concentrations, the formation of noble-gas-decayed alkali metals can seriously interfere with the on-line detection of radioiodine, especially during the 24 hours immediately after the accident. The decayed alkali metal particulates were also found to be much more penetrating than the ordinary type of particulates, since a large fraction (15%) of the particulates were found to penetrate through the commonly used High Efficiency Particulate Air (HEPA) filter (rated >99.97% for 0.3 (mu)m particulate). Also, a significant fraction ((TURN)40%) of these particles became deposited on silver zeolite iodine filters inside the counting chamber. Finally, the Penn State Monitor proved itself to be a powerful research tool for the on-line source term studies since it can easily produce near noble-gas-free spectra during the real time studies occurring under simulated nuclear accident conditions.

  12. Understanding the interaction of injected CO2 and reservoir fluids in the Cranfield enhanced oil recovery (EOR) field (MS, USA) by non-radiogenic noble gas isotopes

    NASA Astrophysics Data System (ADS)

    Gyore, Domokos; Stuart, Finlay; Gilfillan, Stuart

    2016-04-01

    Identifying the mechanism by which the injected CO2 is stored in underground reservoirs is a key challenge for carbon sequestration. Developing tracing tools that are universally deployable will increase confidence that CO2 remains safely stored. CO2 has been injected into the Cranfield enhanced oil recovery (EOR) field (MS, USA) since 2008 and significant amount of CO2 has remained (stored) in the reservoir. Noble gases (He, Ne, Ar, Kr, Xe) are present as minor natural components in the injected CO2. He, Ne and Ar previously have been shown to be powerful tracers of the CO2 injected in the field (Györe et al., 2015). It also has been implied that interaction with the formation water might have been responsible for the observed CO2 loss. Here we will present work, which examines the role of reservoir fluids as a CO2 sink by examining non-radiogenic noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe). Gas samples from injection and production wells were taken 18 and 45 months after the start of injection. We will show that the fractionation of noble gases relative to Ar is consistent with the different degrees of CO2 - fluid interaction in the individual samples. The early injection samples indicate that the CO2 injected is in contact with the formation water. The spatial distribution of the data reveal significant heterogeneity in the reservoir with some wells exhibiting a relatively free flow path, where little formation water is contacted. Significantly, in the samples, where CO2 loss has been previously identified show active and ongoing contact. Data from the later stage of the injection shows that the CO2 - oil interaction has became more important than the CO2 - formation water interaction in controlling the noble gas fingerprint. This potentially provides a means to estimate the oil displacement efficiency. This dataset is a demonstration that noble gases can resolve CO2 storage mechanisms and its interaction with the reservoir fluids with high resolution. References: Györe, D., Stuart, F.M., Gilfillan, S.M.V., Waldron, S., 2015. Tracing injected CO2 in the Cranfield enhanced oil recovery field (MS, USA) using He, Ne and Ar isotopes. Int. J. Greenh. Gas Con. 42, 554-561.

  13. Dy3+ doped tellurite glasses containing silver nanoparticles for lighting devices

    NASA Astrophysics Data System (ADS)

    Hua, Chenxiao; Shen, Lifan; Pun, Edwin Yue Bun; Li, Desheng; Lin, Hai

    2018-04-01

    Efficient warm yellowish-white fluorescence emissions of Dy3+ were observed in heavy metal germanium tellurite (HGT) glasses under the excitation of 454 nm. Further, the luminescence intensity of Dy3+ is increased by ∼29% accompanying the introduction of Ag NPs with diameter ∼7 nm when compared with that of the silver-free case, which is caused by the existence of localized surface plasmon resonance (LSPR). The larger net emission power, the more net emission photon number and the higher quantum yield in Dy2O3 doped HGT glasses containing Ag NPs (HGT-Ag) confirm the availability of utilizing laser. Presupposed fluorescence color trace reveals that white luminescence can be achieved when the intensity ratio between residual laser and Dy3+ emission reaches the appropriate range. The productive transition emissions and the tunable white fluorescence illustrate tellurite glasses embodying noble-metal NPs are a potential candidate for high-quality lighting devices.

  14. Application of nonlocal plasma technology for controlling plasma conductivity

    NASA Astrophysics Data System (ADS)

    Yuan, Chengxun; Demidov, V. I.; Kudryavtsev, A. A.; Kurlyandskaya, I. P.; Rudakova, T. V.; Zhou, Z. X.

    2017-10-01

    A promising approach for better control of the plasma parameters involves the exploitation of peculiarities of plasmas with a nonlocal electron energy distribution. Nonlocal plasma technology (NLP-technology) is based on the effect of energetic electrons in the plasma volume. In this work, an experimental study of influence of the chemo-ionization processes on non-stationary plasma conductivity has been conducted. Due to energetic, supra-thermal electrons, which appear in the chemo-ionization reactions, the highly non-equilibrium and time dependent nonlocal electron energy distribution function is formed. In such a plasma thermal electrons always have positive conductivity (mobility), while supra-thermal, energetic electrons may have negative conductivity in heavy (argon, krypton and xenon) noble gases dependently on conditions. Experiments demonstrate that this effect may lead to the non-monotonic temporal behavior of plasma conductivity and may potentially create the negative electron mobility.

  15. CO oxidation studies over supported noble metal catalysts and single crystals: A review

    NASA Technical Reports Server (NTRS)

    Boecker, Dirk; Gonzalez, Richard D.

    1987-01-01

    The catalytic oxidation of CO over noble metal catalysts is reviewed. Results obtained on supported noble metal catalysts and single crystals both at high pressures and under UHV conditions are compared. The underlying causes which result in surface instabilities and multiple steady-state oscillations are considered, in particular, the occurrence of hot spots. CO islands of reactivity, surface oxide formation and phase transformations under oscillatory conditions are discussed.

  16. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    DOEpatents

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  17. The spectrum of density fluctuations of noble gases probed by THz neutron and x-ray spectroscopy

    DOE PAGES

    Cunsolo, Alessandro

    2016-02-26

    Approximately 50 years of inelastic scattering studies of noble gases are reviewed to illustrate the main advances achieved in the understanding of the THz dynamics of simple systems. The gradual departure of the spectral shape from the hydrodynamic regime is discussed with an emphasis on the phenomenology of fast (sub- ps) relaxation processes. This review shows that relaxation phenomena in noble gases have an essentially collisional origin, which is also revealed by the parallelism between their characteristic timescale and the interatomic collision time. In addition, recent THz spectroscopy results on noble gases at extreme thermodynamic conditions are discussed to illustratemore » the need for a revision of our current understanding of the supercritical phase.« less

  18. It pays to be Herr Kaiser: Germans with noble-sounding surnames more often work as managers than as employees.

    PubMed

    Silberzahn, Raphael; Uhlmann, Eric Luis

    2013-12-01

    In the field study reported here (N = 222,924), we found that Germans with noble-sounding surnames, such as Kaiser ("emperor"), König ("king"), and Fürst ("prince"), more frequently hold managerial positions than Germans with last names that either refer to common everyday occupations, such as Koch ("cook"), Bauer ("farmer"), and Becker/Bäcker ("baker"), or do not refer to any social role. This phenomenon occurs despite the fact that noble-sounding surnames never indicated that the person actually held a noble title. Because of basic properties of associative cognition, the status linked to a name may spill over to its bearer and influence his or her occupational outcomes.

  19. Noble gas isotopes in mineral springs within the Cascadia Forearc, Wasihington and Oregon

    USGS Publications Warehouse

    McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.

    2014-01-01

    This U.S. Geological Survey report presents laboratory analyses along with field notes for a pilot study to document the relative abundance of noble gases in mineral springs within the Cascadia forearc of Washington and Oregon. Estimates of the depth to the underlying Juan de Fuca oceanic plate beneath the sample sites are derived from the McCrory and others (2012) slab model. Some of these springs have been previously sampled for chemical analyses (Mariner and others, 2006), but none currently have publicly available noble gas data. Helium isotope values as well as the noble gas values and ratios presented below will be used to determine the sources and mixing history of these mineral waters.

  20. Noble-gas-rich separates from ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Moniot, R. K.

    1980-02-01

    Acid-resistant residues were prepared by HCl-HF demineralization of three H-type ordinary chondrites: Brownfield 1937 (H3), Dimmitt (H3, 4), and Estacado (H6). These residues were found to contain a large proportion of the planetary-type trapped Ar, Kr, and Xe in the meteorites. The similarity of these acid residues to those from carbonaceous chondrites and LL-type ordinary chondrites suggests that the same phase carries the trapped noble gases in all these diverse meteorite types. Because the H group represents a large fraction of all meteorites, this result indicates that the gas-rich carrier phase is as universal as the trapped noble-gas component itself. When treated with an oxidizing etchant, the acid residues lost almost all their complement of noble gases.

  1. On Noble Gas Processing in the Solar Accretion Disk

    NASA Astrophysics Data System (ADS)

    Pepin, R. O.

    2003-04-01

    Two fractionation models are applied to the problem of generating the widely distributed “Q-component” noble gases in meteorites from the solar-like isotopic and elemental compositions that presumably characterized the early solar accretion disk. Noble gas fractionation by mass-dependent dissipation of the solar nebula, as suggested by Ozima et al. (1998), is examined in the context of a model developed by Johnstone et al. (1998) for accretion disk photoevaporation driven by intense UV radiation from a neighboring giant star. Hydrodynamic escape of heavier species entrained in hydrogen outflow from the UV-heated outer regions of the disk can generate substantial noble gas fractionations, but they do not match the observed Q-component isotopic pattern and moreover require the physically unrealistic assumption that the fractionated gases are confined to the heated disk boundary zone, without mixing with the interior nebula, for long periods of time. It seems more likely that hydrodynamic outflow is actually established below this zone, in the body of the disk. In this case fractionations are governed by Rayleigh distillation of the entire remaining nebula, and are negligible at the time when disk erosion is halted by the gravitational potential of the young sun embedded in the disk. A “local” model of noble gas fractionation by hydrodynamic blowoff of transient, methane-rich atmospheres outgassed from the interiors of large primitive planetesimals (Pepin, 1991) is updated and assessed against current data. Degassed atmospheres are assumed to contain isotopically solar noble gases except for an additional nucleogenic Xe component that contributes primarily to the two heaviest isotopes; there is evidence that this same component is present at varying levels in other solar-system volatile reservoirs, possibly reflecting a compositional change with time in the solar nebula. Single fixed values for the two free parameters in the blowoff modeling equations can generate fractionated Xe, Kr, Ar and Ne compositions in the residual atmosphere that closely match observed meteoritic isotopic distributions, and Q-gas elemental ratios are approximated by adsorption of fractionated gases on planetesimal surface grains using plausible values of relative Henry Law constants. Additional requirements for adsorption of sufficient absolute amounts of Q-gases on carrier grains, and their subsequent ejection to space, mixing in the nebula, and dispersal into meteorite bodies, are examined in the context of current models for body sizes and dynamical evolution in an early mass-rich asteroid belt (Chambers and Wetherill, 2001). Despite its ability to replicate isotopic compositions, uncertainties about the environments in which the blowoff model can successfully operate suggest that there is, as yet, no entirely satisfactory understanding of how the Q-component noble gases might have evolved from solar-like precursor compositions.

  2. Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Christoph; Vaikmae, Rein; Aeschbach, Werner

    Analyses for 81Kr and noble gases on groundwater from the deepest aquifer system of the Baltic Artesian Basin (BAB) were performed to determine groundwater ages and uncover the flow dynamics of the system on a timescale of several hundred thousand years. We find that the system is controlled by mixing of three distinct water masses: Interglacial or recent meteoric water (δ 18O ≈ –10.4‰) with a poorly evolved chemical and noble gas signature, glacial meltwater (δ 18O ≤ –18‰) with elevated noble gas concentrations, and an old, high-salinity brine component (δ 18O ≥ –4.5‰, ≥ 90 g Cl –/L) withmore » strongly depleted atmospheric noble gas concentrations. The 81Kr measurements are interpreted within this mixing framework to estimate the age of the end-members. Deconvoluted 81Kr ages range from 300 ka to 1.3 Ma for interglacial or recent meteoric water and glacial meltwater. For the brine component, ages exceed the dating range of the ATTA-3 instrument of 1.3 Ma. The radiogenic noble gas components 4He* and 40Ar* are less conclusive but also support an age of > 1 Ma for the brine. Based on the chemical and noble gas concentrations and the dating results, we conclude that the brine originates from evaporated seawater that has been modified by later water–rock interaction. Furthermore, as the obtained tracer ages cover several glacial cycles, we discuss the impact of the glacial cycles on flow patterns in the studied aquifer system.« less

  3. Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale

    DOE PAGES

    Gerber, Christoph; Vaikmae, Rein; Aeschbach, Werner; ...

    2017-01-31

    Analyses for 81Kr and noble gases on groundwater from the deepest aquifer system of the Baltic Artesian Basin (BAB) were performed to determine groundwater ages and uncover the flow dynamics of the system on a timescale of several hundred thousand years. We find that the system is controlled by mixing of three distinct water masses: Interglacial or recent meteoric water (δ 18O ≈ –10.4‰) with a poorly evolved chemical and noble gas signature, glacial meltwater (δ 18O ≤ –18‰) with elevated noble gas concentrations, and an old, high-salinity brine component (δ 18O ≥ –4.5‰, ≥ 90 g Cl –/L) withmore » strongly depleted atmospheric noble gas concentrations. The 81Kr measurements are interpreted within this mixing framework to estimate the age of the end-members. Deconvoluted 81Kr ages range from 300 ka to 1.3 Ma for interglacial or recent meteoric water and glacial meltwater. For the brine component, ages exceed the dating range of the ATTA-3 instrument of 1.3 Ma. The radiogenic noble gas components 4He* and 40Ar* are less conclusive but also support an age of > 1 Ma for the brine. Based on the chemical and noble gas concentrations and the dating results, we conclude that the brine originates from evaporated seawater that has been modified by later water–rock interaction. Furthermore, as the obtained tracer ages cover several glacial cycles, we discuss the impact of the glacial cycles on flow patterns in the studied aquifer system.« less

  4. Method and apparatus for noble gas atom detection with isotopic selectivity

    DOEpatents

    Hurst, G. Samuel; Payne, Marvin G.; Chen, Chung-Hsuan; Parks, James E.

    1984-01-01

    Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.

  5. NOBLE - Flexible concept recognition for large-scale biomedical natural language processing.

    PubMed

    Tseytlin, Eugene; Mitchell, Kevin; Legowski, Elizabeth; Corrigan, Julia; Chavan, Girish; Jacobson, Rebecca S

    2016-01-14

    Natural language processing (NLP) applications are increasingly important in biomedical data analysis, knowledge engineering, and decision support. Concept recognition is an important component task for NLP pipelines, and can be either general-purpose or domain-specific. We describe a novel, flexible, and general-purpose concept recognition component for NLP pipelines, and compare its speed and accuracy against five commonly used alternatives on both a biological and clinical corpus. NOBLE Coder implements a general algorithm for matching terms to concepts from an arbitrary vocabulary set. The system's matching options can be configured individually or in combination to yield specific system behavior for a variety of NLP tasks. The software is open source, freely available, and easily integrated into UIMA or GATE. We benchmarked speed and accuracy of the system against the CRAFT and ShARe corpora as reference standards and compared it to MMTx, MGrep, Concept Mapper, cTAKES Dictionary Lookup Annotator, and cTAKES Fast Dictionary Lookup Annotator. We describe key advantages of the NOBLE Coder system and associated tools, including its greedy algorithm, configurable matching strategies, and multiple terminology input formats. These features provide unique functionality when compared with existing alternatives, including state-of-the-art systems. On two benchmarking tasks, NOBLE's performance exceeded commonly used alternatives, performing almost as well as the most advanced systems. Error analysis revealed differences in error profiles among systems. NOBLE Coder is comparable to other widely used concept recognition systems in terms of accuracy and speed. Advantages of NOBLE Coder include its interactive terminology builder tool, ease of configuration, and adaptability to various domains and tasks. NOBLE provides a term-to-concept matching system suitable for general concept recognition in biomedical NLP pipelines.

  6. Optimizing Noble Gas-Water Interactions via Monte Carlo Simulations.

    PubMed

    Warr, Oliver; Ballentine, Chris J; Mu, Junju; Masters, Andrew

    2015-11-12

    In this work we present optimized noble gas-water Lennard-Jones 6-12 pair potentials for each noble gas. Given the significantly different atomic nature of water and the noble gases, the standard Lorentz-Berthelot mixing rules produce inaccurate unlike molecular interactions between these two species. Consequently, we find simulated Henry's coefficients deviate significantly from their experimental counterparts for the investigated thermodynamic range (293-353 K at 1 and 10 atm), due to a poor unlike potential well term (εij). Where εij is too high or low, so too is the strength of the resultant noble gas-water interaction. This observed inadequacy in using the Lorentz-Berthelot mixing rules is countered in this work by scaling εij for helium, neon, argon, and krypton by factors of 0.91, 0.8, 1.1, and 1.05, respectively, to reach a much improved agreement with experimental Henry's coefficients. Due to the highly sensitive nature of the xenon εij term, coupled with the reasonable agreement of the initial values, no scaling factor is applied for this noble gas. These resulting optimized pair potentials also accurately predict partitioning within a CO2-H2O binary phase system as well as diffusion coefficients in ambient water. This further supports the quality of these interaction potentials. Consequently, they can now form a well-grounded basis for the future molecular modeling of multiphase geological systems.

  7. Detection of gas atoms with carbon nanotubes

    PubMed Central

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  8. Environmental assessment and finding of no significant impact: Biorecycling Technologies, Inc., Noble Biogas and Fertilizer Plant, Fresno County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    The US Department of Energy (DOE) is considering a proposal from the California Energy Commission for partial funding up to $1,500,000 of the construction of the biorecycling Technologies, Inc., (BTI) Noble Biogas and Fertilizer Plant in Fresno County, California. BTI along with its contractors and business partners would develop the plant, which would use manure and green waste to produce biogas and a variety of organic fertilizer products. The California Energy Commission has requested funding from the DOE Commercialization Ventures program to assist in the construction of the plant, which would produce up to one megawatt of electricity by burningmore » biogas in a cogeneration unit. The purpose of this environmental assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with funding development of the proposed project.« less

  9. Noble-TLBO MPPT Technique and its Comparative Analysis with Conventional methods implemented on Solar Photo Voltaic System

    NASA Astrophysics Data System (ADS)

    Patsariya, Ajay; Rai, Shiwani; Kumar, Yogendra, Dr.; Kirar, Mukesh, Dr.

    2017-08-01

    The energy crisis particularly with developing GDPs, has bring up to a new panorama of sustainable power source like solar energy, which has encountered huge development. Progressively high infiltration level of photovoltaic (PV) era emerges in keen matrix. Sunlight based power is irregular and variable, as the sun based source at the ground level is exceedingly subject to overcast cover inconstancy, environmental vaporized levels, and other climate parameters. The inalienable inconstancy of substantial scale sun based era acquaints huge difficulties with keen lattice vitality administration. Exact determining of sun powered power/irradiance is basic to secure financial operation of the shrewd framework. In this paper a noble TLBO-MPPT technique has been proposed to address the vitality of solar energy. A comparative analysis has been presented between conventional PO, IC and the proposed MPPT technique. The research has been done on Matlab Simulink software version 2013.

  10. Coordination of ScO+ and YO+ by multiple Ar, Kr, and Xe atoms in noble gas matrixes: a matrix isolation infrared spectroscopic and theoretical study.

    PubMed

    Zhao, Yanying; Gong, Yu; Chen, Mohua; Ding, Chuanfan; Zhou, Mingfei

    2005-12-29

    The combination of matrix isolation infrared spectroscopic and quantum chemical calculation results provide strong evidence that scandium and yttrium monoxide cations, ScO+ and YO+, coordinate multiple noble gas atoms in forming noble gas complexes. The results showed that ScO+ coordinates five Ar, Kr, or Xe atoms, and YO+ coordinates six Ar or Kr and five Xe atoms in solid noble gas matrixes. Hence, the ScO+ and YO+ cations trapped in solid noble gas matrixes should be regarded as the [ScO(Ng)5]+ (Ng = Ar, Kr, or Xe), [YO(Ng)6]+ (Ng = Ar or Kr) or [YO(Xe)5]+ complexes. Experiments with dilute krypton or xenon in argon or krypton in xenon produced new IR bands, which are due to the stepwise formation of the [ScO(Ar)(5-n)(Kr)n]+, [ScO(Kr)(5-n)(Xe)n]+ (n = 1-5), [YO(Ar)(6-n)(Kr)n]+ (n = 1-6), and [YO(Ar)(6-n)(Xe)n]+ (n = 1-4) complexes.

  11. Computational investigation of noble gas adsorption and separation by nanoporous materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, Mark D.; Sanders, Joseph C.; Greathouse, Jeffery A.

    2008-10-01

    Molecular simulations are used to assess the ability of metal-organic framework (MOF) materials to store and separate noble gases. Specifically, grand canonical Monte Carlo simulation techniques are used to predict noble gas adsorption isotherms at room temperature. Experimental trends of noble gas inflation curves of a Zn-based material (IRMOF-1) are matched by the simulation results. The simulations also predict that IRMOF-1 selectively adsorbs Xe atoms in Xe/Kr and Xe/Ar mixtures at total feed gas pressures of 1 bar (14.7 psia) and 10 bar (147 psia). Finally, simulations of a copper-based MOF (Cu-BTC) predict this material's ability to selectively adsorb Xemore » and Kr atoms when present in trace amounts in atmospheric air samples. These preliminary results suggest that Cu-BTC may be an ideal candidate for the pre-concentration of noble gases from air samples. Additional simulations and experiments are needed to determine the saturation limit of Cu-BTC for xenon, and whether any krypton atoms would remain in the Cu-BTC pores upon saturation.« less

  12. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts

    DOE PAGES

    Hunt, Sean T.; Milina, Maria; Alba-Rubio, Ana C.; ...

    2016-05-20

    Here, we demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti 0.1W 0.9C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading,more » enhance the activity, and increase the stability of noble metal catalysts.« less

  13. Effective and Durable Co Single Atomic Cocatalysts for Photocatalytic Hydrogen Production.

    PubMed

    Zhao, Qi; Yao, Weifeng; Huang, Cunping; Wu, Qiang; Xu, Qunjie

    2017-12-13

    This research reports for the first time that single cobalt atoms anchored in nitrogen-doped graphene (Co-NG) can serve as a highly effective and durable cocatalyst for visible light photocatalytic hydrogen production from water. Results show that, under identical conditions, the hydrogen production rate (1382 μmol/h) for 0.25 wt % Co-NG-loaded CdS photocatalyst (0.25 wt % Co-NG/CdS) is 3.42 times greater than that of nitrogen-doped graphene (NG) loaded CdS photocatalyst (NG/CdS) and about 1.3 times greater than the greatest hydrogen production rate (1077 μmol/h) for 1.5 wt % Pt nanoparticle loaded CdS photocatalyst (1.5 wt % Pt-NPs/CdS). At 420 nm irradiation, the quantum efficiency of the 0.25 wt % Co-NG/CdS photocatalyst is 50.5%, the highest efficiency among those literature-reported non-noble metal cocatalysts. The Co-NG/CdS nanocomposite-based photocatalyst also has an extended durability. No activity decline was detected during three cyclic photocatalytic life span tests. The very low cocatalyst loading, along with the facile preparation technology for this non-noble metal cocatalyst, will significantly reduce the hydrogen production costs and finally lead to the commercialization of the solar catalytic hydrogen production process. Based on experimental results, we conclude that Co-NG can successfully replace noble metal cocatalysts as a highly effective and durable cocatalyst for renewable solar hydrogen production. This finding will point to a new way for the development of highly effective, long life span, non-noble metal-based cocatalysts for renewable and cost-effective hydrogen production.

  14. Halogens in chondritic meteorites and terrestrial accretion

    NASA Astrophysics Data System (ADS)

    Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.

    2017-11-01

    Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track with water, supports this requirement, and is consistent with volatile-rich or water-rich late-stage terrestrial accretion.

  15. Study of performance characteristics of noble metal thermocouple materials to 2000 C

    NASA Technical Reports Server (NTRS)

    Freeze, P. D.; Thomas, D.; Edelman, S.; Stern, J.

    1972-01-01

    Three performance characteristics of noble metal thermocouples in various environments are discussed. Catalytic effects cause significant errors when noble metal thermocouple materials are exposed to air containing unburned gases in temperature ranges from 25 C to 1500 C. The thermoelectric stability of the iridium 40 rhodium to iridium thermocouple system at 2000 C in an oxidizing medium is described. The effects of large and small temperature gradients on the accuracy and stability of temperature measurements are analyzed.

  16. Method for forming gold-containing catalyst with porous structure

    DOEpatents

    Biener, Juergen; Hamza, Alex V; Baeumer, Marcus; Schulz, Christian; Jurgens, Birte; Biener, Monika M.

    2014-07-22

    A method for forming a gold-containing catalyst with porous structure according to one embodiment of the present invention includes producing a starting alloy by melting together of gold and at least one less noble metal that is selected from the group consisting of silver, copper, rhodium, palladium, and platinum; and a dealloying step comprising at least partial removal of the less noble metal by dissolving the at least one less noble metal out of the starting alloy. Additional methods and products thereof are also presented.

  17. Isotopic abundance in atom trap trace analysis

    DOEpatents

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  18. Photo-reduced Cu/CuO nanoclusters on TiO2 nanotube arrays as highly efficient and reusable catalyst

    NASA Astrophysics Data System (ADS)

    Jin, Zhao; Liu, Chang; Qi, Kun; Cui, Xiaoqiang

    2017-01-01

    Non-noble metal nanoparticles are becoming more and more important in catalysis recently. Cu/CuO nanoclusters on highly ordered TiO2 nanotube arrays are successfully developed by a surfactant-free photoreduction method. This non-noble metal Cu/CuO-TiO2 catalyst exhibits excellent catalytic activity and stability for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with the presence of sodium borohydride (NaBH4). The rate constant of this low-cost Cu/CuO based catalyst is even higher than that of the noble metal nanoparticles decorated on the same TiO2 substrate. The conversion efficiency remains almost unchanged after 7 cycles of recycling. The recycle process of this Cu/CuO-TiO2 catalyst supported by Ti foil is very simple and convenient compared with that of the common powder catalysts. This catalyst also exhibited great catalytic activity to other organic dyes, such as methylene blue (MB), rhodamine B (RhB) and methyl orange (MO). This highly efficient, low-cost and easily reusable Cu/CuO-TiO2 catalyst is expected to be of great potential in catalysis in the future.

  19. Barium Tagging for nEXO

    NASA Astrophysics Data System (ADS)

    Fudenberg, Daniel; Brunner, Thomas; Varentsov, Victor; Devoe, Ralph; Dilling, Jens; Gratta, Giorgio; nEXO Collaboration

    2015-10-01

    nEXO is a next-generation experiment designed to search for 0 νββ -decay of Xe-136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the neutrino to be a Majorana particle In order to greatly reduce background contributions to this search, the collaboration is developing several ``barium tagging'' techniques to recover and identify the decay daughter, Ba-136. ``Tagging'' may be available for a 2nd phase of nEXO and will push the sensitivity beyond the inverted neutrino-mass hierarchy. Tagging methods in testing for this phase include Ba-ion capture on a probe with identification by resonance ionization laser spectroscopy, and Ba capture in solid xenon on a cold probe with identification by fluorescence. In addition, Ba tagging for a gas-phase detector, appropriate for a later stage, is being tested. Here efficient ion extraction from heavy carrier gases is key. Detailed gas-dynamic and ion transport calculations have been performed to optimize for ion extraction. An apparatus to extract Ba ions from up to 10 bar xenon gas into vacuum using an RF-only funnel has been constructed and demonstrates extraction of ions from noble gases. We will present this system's status along with results of this R&D program.

  20. Egg derived nitrogen-self-doped carbon/carbon nanotube hybrids as noble-metal-free catalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Wu, Siyu; Chen, Xu; Pan, Mu; Mu, Shichun

    2014-12-01

    Currently, the development of nitrogen (N) doped carbon based non-precious metal ORR catalysts has become one of the most attractive topics in low temperature fuel cells. Here, we demonstrate a green synthesis route of N-self-doped carbon materials by using eggs as N sources combining with iron sources and multi-walled carbon nanotubes (CE-Fe-MWNT). After carbonized, such hybrid materials possess an outstanding electrocatalytic activity towards ORR comparable to the commercial Pt/C catalyst in alkaline media, and both superior stability and fuel (methanol and CO) tolerance than the commercial Pt/C catalyst, which provide a promising alternative to noble metal catalysts by using abundant natural biological resources.

  1. In Situ Noble-Gas Based Chronology on Mars

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.

    2000-01-01

    Determining radiometric ages in situ on another planet's surface has never been done, and there are good reasons to think that it will be extremely difficult. It is certainly hard to imagine that such ages could be measured as precisely as they could be measured on returned samples in state-of-the-art terrestrial laboratories. However, it may be possible, by using simple noble-gas-based chronology techniques, to determine ages on Mars to a precision that is scientifically useful. This abstract will: (1) describe the techniques we envision; (2) give some examples of how such information might be scientifically useful; and (3) describe the system we are developing, including the requirements in terms of mass, power, volume, and sample selection and preparation.

  2. Recent advances of lanthanum-based perovskite oxides for catalysis

    DOE PAGES

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent developmentmore » of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.« less

  3. The Inherent Tracer Fingerprint of Captured CO2

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Gyore, Domokos; Stuart, Finlay; Boyce, Adrian; Haszeldine, Stuart; Chalaturnyk, Rick; Gilfillan, Stuart

    2017-04-01

    Inherent tracers, the isotopic and trace gas composition of captured CO2 streams, are potentially powerful tracers for use in CCS technology [1,2]. Despite this potential, the inherent tracer fingerprint in captured CO2 streams has yet to be robustly investigated and documented [3]. Here, we will present the first high quality systematic measurements of the carbon and oxygen isotopic and noble gas fingerprints measured in anthropogenic CO2 captured from combustion power stations and fertiliser plants, using amine capture, oxyfuel and gasification processes, and derived from coal, biomass and natural gas feedstocks. We will show that δ13C values are mostly controlled by the feedstock composition, as expected. The majority of the CO2 samples exhibit δ18O values similar to atmospheric O2 although captured CO2 samples from biomass and gas feedstocks at one location in the UK are significantly higher. Our measured noble gas concentrations in captured CO2 are generally as expected [2], typically being two orders of magnitude lower in concentration than in atmospheric air. Relative noble gas elemental abundances are variable and often show an opposite trend to that of a water in contact with the atmosphere. Expected enrichments in radiogenic noble gases (4He and 40Ar) for fossil fuel derived CO2 were not always observed due to dilution with atmospheric noble gases during the CO2 generation and capture process. Many noble gas isotope ratios indicate that isotopic fractionation takes place during the CO2 generation and capture processes, resulting in isotope ratios similar to fractionated air. We conclude that phase changes associated with CO2 transport and sampling may induce noble gas elemental and isotopic fractionation, due to different noble gas solubilities between high (liquid or supercritical) and low (gaseous) density CO2. Data from the Australian CO2CRC Otway test site show that δ13C of CO2 will change once injected into the storage reservoir, but that this change is small and can be quantitatively modelled in order to determine the proportion of CO2 that has dissolved into the formation waters. Furthermore, noble gas data from the Otway storage reservoir post-injection, shows evidence of noble gas stripping of formation water and contamination with Kr and Xe related to an earlier injection experiment. Importantly, He data from SaskPower's Aquistore illustrates that injected CO2 will inherit distinctive crustal radiogenic noble gas fingerprints from the subsurface once injected into an undisturbed geological storage reservoir, meaning this could be used to identify unplanned migration of the CO2 to the surface and shallow subsurface [4]. References [1] Mayer et al., (2015) IJGGC, Vol. 37, 46-60 http://dx.doi.org/10.1016/j.ijggc.2015.02.021 [2] Gilfillan et al., (2014) Energy Procedia, Vol. 63, 4123-4133 http://dx.doi.org/10.1016/j.egypro.2014.11.443 [3] Flude et al., (2016) Environ. Sci. Technol., 50 (15), pp 7939-7955 DOI: 10.1021/acs.est.6b01548 [4] Gilfillan et al., (2011) IJGGC, Vol. 5 (6) 1507-1516 http://dx.doi.org/10.1016/j.ijggc.2011.08.008

  4. Developing a Leadership Brand: The Heart of Effective School Leadership in Turbulent Times

    ERIC Educational Resources Information Center

    Davis, Stephen H.; Leon, Ronald J.

    2014-01-01

    Faced with scarce resources and high expectations, school principals must increasingly rely upon the power of persuasion to promote ongoing school improvement. We maintain that the development of a vibrant and tangible leadership brand constructed upon a principal's core values and noble character can motivate stakeholders and stimulate school…

  5. 77 FR 61466 - Oklahoma Disaster Number OK-00063

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    .../ 2012. Incident: Freedom and Noble Wildfires. Incident Period: 08/03/2012 and continuing through 08/14... incident for this disaster to include the Noble Wildfire. All other information in the original declaration...

  6. Atmospheric Ar and Ne returned from mantle depths to the Earth's surface by forearc recycling.

    PubMed

    Baldwin, Suzanne L; Das, J P

    2015-11-17

    In subduction zones, sediments, hydrothermally altered lithosphere, fluids, and atmospheric gases are transported into the mantle, where ultrahigh-pressure (UHP) metamorphism takes place. However, the extent to which atmospheric noble gases are trapped in minerals crystallized during UHP metamorphism is unknown. We measured Ar and Ne trapped in phengite and omphacite from the youngest known UHP terrane on Earth to determine the composition of Ar and Ne returned from mantle depths to the surface by forearc recycling. An (40)Ar/(39)Ar age [7.93 ± 0.10 My (1σ)] for phengite is interpreted as the timing of crystallization at mantle depths and indicates that (40)Ar/(39)Ar phengite ages reliably record the timing of UHP metamorphism. Both phengite and omphacite yielded atmospheric (38)Ar/(36)Ar and (20)Ne/(22)Ne. Our study provides the first documentation, to our knowledge, of entrapment of atmospheric Ar and Ne in phengite and omphacite. Results indicate that a subduction barrier for atmospheric-derived noble gases does not exist at mantle depths associated with UHP metamorphism. We show that the crystallization age together with the isotopic composition of nonradiogenic noble gases trapped in minerals formed during subsolidus crystallization at mantle depths can be used to unambiguously assess forearc recycling of atmospheric noble gases. The flux of atmospheric noble gas entering the deep Earth through subduction and returning to the surface cannot be fully realized until the abundances of atmospheric noble gases trapped in exhumed UHP rocks are known.

  7. Tracing time scales of fluid residence and migration in the crust (Invited)

    NASA Astrophysics Data System (ADS)

    Yokochi, R.; Sturchio, N. C.; Purtschert, R.; Jiang, W.; Lu, Z.; Müller, P.; Yang, G.; Kennedy, B. M.

    2013-12-01

    Crustal fluids (water, gas and oil) mediate chemical reactions, and they may transport, concentrate or disperse elements in the crust; the fluids are often valuable resources in their own right. In this context, determining the time scales of fluid transport and residence time is essential for understanding geochemical cycle of elements, as well as risk and resource management. Crustal fluids contain stable and radioactive noble gases indigenous to the fluid, which may be of magmatic or atmospheric origin of various ages. In addition, radiogenic and nucleogenic noble gases (both stable and radioactive) are continuously produced by the decay of U, Th and K and related nuclear reactions in the crust at known rates and in known relative proportions. They may be released from their production sites and incorporated into the fluid, acting as natural spikes to trace fluid flow. The concentrations of a noble gas isotope in a crustal fluid in a system devoid of phase separation or mixing varies as a function of decay time and supply from the production sites into the fluids. The release rate of noble gases from the production sites in minerals to the fluid phase may be determined uniquely through the studies of noble gas radionuclides (Yokochi et al., 2012), which is fundamental to the behavior of volatile elements in geochemistry. A pilot study of noble gas radionuclides in an active geothermal system was performed at Yellowstone National Park (Yokochi et al., 2013). Prior studies of the Yellowstone system using stable noble gas isotopes show that the thermal fluids contain a mixture of atmospheric, mantle, and crustal components. Noble gas radionuclide measurements provide new chronometric constraints regarding the subsurface residence times of Yellowstone thermal fluids. Upper limits on deep thermal fluid mean residence times, estimated from 39Ar/40Ar* ratios, range from 118 to 137 kyr for features in the Gibbon and Norris Geyser Basin areas, and are about 16 kyr in Lower Geyser Basin, with the key assumption that the fluid acquires its crustal component of Ar in Quaternary volcanic rock of the Yellowstone caldera. Krypton-81 isotopic abundances in the gas samples yield upper limits on residence time that are consistent with those obtained from 39Ar/40Ar* ratios. Young fluid components can also be determined by krypton-85 concentrations in the extracted gases. Better understanding of the production mechanisms of noble-gas radionuclides in reservoir rocks would significantly decrease the uncertainties in modeling fluid residence times.

  8. Initial results of noble gases in micrometeorites from the Transantarctic Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Baecker, B.; Cordier, C.; Folco, L.; Trieloff, M.; Ott, U.

    2012-12-01

    The bulk of extraterrestrial matter collected by Earth is in the form of micrometeorites, which have a main flux onto Earth at about 220 μm in diameter [1]. According to the petrographic and geochemical data, most of the small micrometeorites have been related to CM chondrites [2]. Recent studies suggest that larger micrometeorites (> 300μm) mostly derive from ordinary chondrite sources e.g. [3-5]. Following some models [6], they may have made important contributions to the volatile inventory of the Earth. We have initiated a coupled comprehensive survey of noble gas contents and petrography in micrometeorites. While helium and neon are generally dominated by the solar wind contribution, the inventory of heavy primordial noble gases has been hardly characterized so far. In particular, useful data are lacking on the diagnostic isotopic composition of xenon. We hope to fill this gap, since huge amounts of material are available. This might make a contribution towards understanding some aspects of the formation of the solar system and in particular the terrestrial atmosphere. We will present results obtained on "large" micrometeorites from Victoria Land, Transantarctic Mountains. These were collected during a PNRA (Programma Nazionale delle Ricerche in Antartide, Italy) expedition on top of the Miller Butte micrometeorite traps #45 b and c [7]. We reported first results in [8]. Our research includes however, also material from other collections, e.g. CONCORDIA [9, 10]. [1] Love, S.G., Brownlee, D.E. (1993) Science 262, 550-553. [2] Kurat, G. et al. (1994) Geochimica et Cosmochimica Acta 58, 3879-3904. [3] Genge, M.J. et al. (2008) Meteoritics & Planetary Science 43, 497-515. [4] Dobrica, E. et al. (2011) Meteoritics & Planetary Science 46, 1363-1375. [5] Van Ginneken M. et al. (2012) Meteoritics & Planetary Science 47, 228-247. [6] Maurette, M. et al. (2000) Planetary and Space Science 48, 1117-1137. [7] Rochette P. et al. (2008) Proceedings of the National Academy of Sciences , 105, 18206-18211. [8] Baecker B. et al. (2012) 43rd Lunar & Planetary Science Conference (abs. #1824). [9] Duprat J. et al. (2007) Advances in Space Research 39, 605-611. [10] Baecker B. et al. (2012) 75th Annual Meeting of the Meteoritical Society (abs. #5056).

  9. U.S. Geological Survey Noble Gas Laboratory’s standard operating procedures for the measurement of dissolved gas in water samples

    USGS Publications Warehouse

    Hunt, Andrew G.

    2015-08-12

    This report addresses the standard operating procedures used by the U.S. Geological Survey’s Noble Gas Laboratory in Denver, Colorado, U.S.A., for the measurement of dissolved gases (methane, nitrogen, oxygen, and carbon dioxide) and noble gas isotopes (helium-3, helium-4, neon-20, neon-21, neon-22, argon-36, argon-38, argon-40, kryton-84, krypton-86, xenon-103, and xenon-132) dissolved in water. A synopsis of the instrumentation used, procedures followed, calibration practices, standards used, and a quality assurance and quality control program is presented. The report outlines the day-to-day operation of the Residual Gas Analyzer Model 200, Mass Analyzer Products Model 215–50, and ultralow vacuum extraction line along with the sample handling procedures, noble gas extraction and purification, instrument measurement procedures, instrumental data acquisition, and calculations for the conversion of raw data from the mass spectrometer into noble gas concentrations per unit mass of water analyzed. Techniques for the preparation of artificial dissolved gas standards are detailed and coupled to a quality assurance and quality control program to present the accuracy of the procedures used in the laboratory.

  10. Plasmon-enhanced photocatalytic activity of Na0.9Mg0.45Ti3.55O8 loaded with noble metals directly observed with scanning Kelvin probe microscopy.

    PubMed

    Wang, Jing-Zhou; Guo, Ze-Qing; Zhou, Jian-Ping; Lei, Yu-Xi

    2018-07-27

    The noble metals Au, Ag and Pt were loaded onto Na 0.9 Mg 0.45 Ti 3.55 O 8 (NMTO) using a chemical bath deposition method devised in our recent work for the first time. The composite photocatalysts exhibit more effective photodegradation of methylene blue, due to the Schottky barrier built between NMTO and noble metal. Hot electrons generated during localized surface plasmon processes in metal nanoparticles transfer to the semiconductor, manifesting as a depression of surface potential directly detectable by scanning Kelvin probe microscopy. The key factor responsible for the improved ability of semiconductor-based photocatalysts is charge separation. The most effective weight concentrations of Au, Ag and Pt loaded onto NMTO were found to be 5.00%, 12.6% and 5.55% respectively. NMTO loaded with noble metals shows good photostability and recyclability for the degradation of methylene blue. A possible mechanism for the photodegradation of methylene blue over NMTO loaded with noble metals is proposed. This work highlights the potential application of NMTO-based photocatalysts, and provides an effective method to detect localized surface plasmons.

  11. A first-principles study on the interaction of biogas with noble metal (Rh, Pt, Pd) decorated nitrogen doped graphene as a gas sensor: A DFT study

    NASA Astrophysics Data System (ADS)

    Zhao, Chunjiang; Wu, Huarui

    2018-03-01

    Density functional theory calculations are carried out to investigate the adsorption characteristics of methane (CH4), carbon dioxide (CO2), hydrogen (H2), hydrogen sulfide (H2S), nitrogen (N2), and oxygen (O2) on the surface of pyridine-like nitrogen doped graphene (PNG) as well as noble metal (Rh, Pt, Pd) decorated PNG to elaborate their potentials as gas sensors. The adsorption intensities of biogas on noble metal (Rh, Pt, Pd) decorated PNG are in the order of O2> H2S> N2> CH4> CO2> H2, which are corresponded to the order of their sensitivity on surface. Compared with biogas adsorption on pristine PNG, there exist higher adsorption ability, higher charge transfer and higher orbital hybridization upon adsorption on noble metal (Rh, Pt, Pd) decorated PNG. Consequently, the noble metal (Rh, Pt, Pd) decorated PNG can transform the existence of CH4, CO2, H2, H2S, N2, and O2 molecules into electrical signal and they could potentially be used as ideal sensors for detection of biogas in ambient situation.

  12. Noble gas isotopic composition, cosmic ray exposure history, and terrestrial age of the meteorite Allan Hills A81005 from the moon

    NASA Astrophysics Data System (ADS)

    Eugster, O.; Geiss, J.; Kraehenbuehl, U.; Niedermann, S.

    1986-06-01

    A comprehensive study of the elemental and isotopic abundances of the noble gases He, Ne, Ar, Kr, and Xe in the meteorite Allan Hills A81005 from the moon is presented. In addition to a bulk sample, five grain-size fractions were analyzed. Chemical abundances relevant to the interpretation of the cosmic-ray-produced noble gases were determined and indicate that the grain size fractions are chemically uniform. Except for the fact that the trapped noble gas concentrations appear to be grain size correlated, the isotopic and elemental pattern of the trapped solar wind noble gases in A81005 are very similar to those observed in lunar soils and breccias. The A81005 material resided during (580 + or - 180) Myr in the nuclear active zone of the lunar regolith at an average shielding depth of about 40 g/sq cm. From literature data, it is concluded that the moon-earth transit time lasted less than a few million years. Finally, A81005 was captured by the earth more than 140,000 years ago, as indicated by the abundance of cosmic-ray-produced Kr-81.

  13. PD/MG BIMETALLIC CORROSION CELLS FOR DECHLORINATING PCBS

    EPA Science Inventory

    Two dissimilar metals immersed in a conducting solution develop different corrosion potentials forming a bimetallic corrosion cell. Enhanced corrosion of an active metal like Mg combined with catalytic hydrogenation properties of a noble metal like Pd in such bimetallic cells can...

  14. Noble gases in twenty Yamato H-chondrites: Comparison with Allan Hills chondrites and modern falls

    NASA Technical Reports Server (NTRS)

    Loeken, TH.; Scherer, P.; Schultz, L.

    1993-01-01

    Concentration and isotopic composition of noble gases have been measured in 20 H-chrondrites found on the Yamato Mountains ice fields in Antarctica. The distribution of exposure ages as well as of radiogenic He-4 contents is similar to that of H-chrondrites collected at the Allan Hills site. Furthermore, a comparison of the noble gas record of Antarctic H-chrondrites and finds or falls from non-Antarctic areas gives no support to the suggestion that Antarctic H-chrondrites and modern falls derive from differing interplanetary meteorite populations.

  15. New Noble Gas Studies on Popping Rocks from the Mid-Atlantic Ridge near 14°N

    NASA Astrophysics Data System (ADS)

    Kurz, M. D.; Curtice, J.; Jones, M.; Péron, S.; Wanless, V. D.; Mittelstaedt, E. L.; Soule, S. A.; Klein, F.; Fornari, D. J.

    2017-12-01

    New Popping Rocks were recovered in situ on the Mid-Atlantic Ridge (MAR) near 13.77° N, using HOV Alvin on cruise AT33-03 in 2016 on RV Atlantis. We report new helium, neon, argon, and CO2 step-crushing measurements on a subset of the glass samples, with a focus on a new procedure to collect seafloor samples with minimal exposure to air. Glassy seafloor basalts were collected in sealed containers using the Alvin mechanical arm and transported to the surface without atmospheric exposure. On the ship, the seawater was drained, the volcanic glass was transferred to stainless steel ultra-high-vacuum containers (in an oxygen-free glove box), which were then evacuated using a turbo-molecular pump and sealed for transport under vacuum. All processing was carried out under a nitrogen atmosphere. A control sample was collected from each pillow outcrop and processed normally in air. The preliminary step-crushing measurements show that the anaerobically collected samples have systematically higher 20Ne/22Ne, 21Ne/22Ne and 40Ar/36Ar than the control samples. Helium abundances and isotopes are consistent between anaerobically collected samples and control samples. These results suggest that minimizing atmospheric exposure during sample processing can significantly reduce air contamination for heavy noble gases, providing a new option for seafloor sampling. Higher vesicle abundances appear to yield a greater difference in neon and argon isotopes between the anaerobic and control samples, suggesting that atmospheric contamination is related to vesicle abundance, possibly through micro-fractures. The new data show variability in the maximum mantle neon and argon isotopic compositions, and abundance ratios, suggesting that the samples experienced variable outgassing prior to eruption, and may represent different phases of a single eruption, or multiple eruptions.

  16. The Noble Gas Fingerprint in a UK Unconventional Gas Reservoir

    NASA Astrophysics Data System (ADS)

    McKavney, Rory; Gilfillan, Stuart; Györe, Domokos; Stuart, Fin

    2016-04-01

    In the last decade, there has been an unprecedented expansion in the development of unconventional hydrocarbon resources. Concerns have arisen about the effect of this new industry on groundwater quality, particularly focussing on hydraulic fracturing, the technique used to increase the permeability of the targeted tight shale formations. Methane contamination of groundwater has been documented in areas of gas production1 but conclusively linking this to fugitive emissions from unconventional hydrocarbon production has been controversial2. A lack of baseline measurements taken before drilling, and the equivocal interpretation of geochemical data hamper the determination of possible contamination. Common techniques for "fingerprinting" gas from discrete sources rely on gas composition and isotopic ratios of elements within hydrocarbons (e.g. δ13CCH4), but the original signatures can be masked by biological and gas transport processes. The noble gases (He, Ne, Ar, Kr, Xe) are inert and controlled only by their physical properties. They exist in trace quantities in natural gases and are sourced from 3 isotopically distinct environments (atmosphere, crust and mantle)3. They are decoupled from the biosphere, and provide a separate toolbox to investigate the numerous sources and migration pathways of natural gases, and have found recent utility in the CCS4 and unconventional gas5 industries. Here we present a brief overview of noble gas data obtained from a new coal bed methane (CBM) field, Central Scotland. We show that the high concentration of helium is an ideal fingerprint for tracing fugitive gas migration to a shallow groundwater. The wells show variation in the noble gas signatures that can be attributed to differences in formation water pumping from the coal seams as the field has been explored for future commercial development. Dewatering the seams alters the gas/water ratio and the degree to which noble gases degas from the formation water. Additionally the helium and neon isotopic signatures exhibit a small but resolvable mantle input previously unseen onshore in the United Kingdom. We will outline the potential sources of this mantle input. 1. Osborn et al. (2011). Proc. Natl. Acad. Sci. U. S. A. 108, 10.1073/pnas.1100682108 2. Baldassare et al. (2014). Am. Assoc. Pet. Geol. Bull. 98, 10.1306/06111312178 3 .Ballentine et al. (2002). Rev. Min. Geochem. 47, 10.2138/rmg.2002.47.13 4. Gilfillan & Wilkinson (2011). Int. J. 5, 10.1016/j.ijggc.2011.08.008 5. Darrah et al. (2014). Proc. Natl. Acad. Sci. 111, 10.1073/pnas.1322107111

  17. Reducible oxide based catalysts

    DOEpatents

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  18. Shape tunable plasmonic nanoparticles

    DOEpatents

    El-Sayed, Mostafa A.; El-Sayed, Ivan Homer

    2017-03-07

    Noble metal nanoparticles and methods of their use are provided. Certain aspects provided solid noble metal nanoparticles tuned to the near infrared. The disclosed nanoparticles can be used in molecular imaging, diagnosis, and treatment. Methods for imaging cells are also provided.

  19. Friction and transfer of copper, silver, and gold to iron in the presence of various adsorbed surface films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with the noble metals copper, silver, and gold and two binary alloys of these metals contacting iron in the presence of various adsorbates including, oxygen, methyl mercaptan, and methyl chloride. A pin on disk specimen configuration was used with a load of 100 grams, sliding velocity of 60 mm/min; at 25 C with the surfaces saturated with the adsorbates. Auger emission spectroscopy was used to monitor surface films. Results of the experiments indicate that friction and transfer characteristics are highly specific with respect to both the noble metal and surface film present. With all three metals and films transfer of the noble metal to iron occurred very rapidly. With all metals and films transfer of the noble metal to iron continuously increased with repeated passes except for silver and copper sliding on iron sulfide.

  20. Method and apparatus for measuring purity of noble gases

    DOEpatents

    Austin, Robert

    2008-04-01

    A device for detecting impurities in a noble gas includes a detection chamber and a source of pulsed ultraviolet light. The pulse of the ultraviolet light is transferred into the detection chamber and onto a photocathode, thereby emitting a cloud of free electrons into the noble gas within the detection chamber. The cloud of electrons is attracted to the opposite end of the detection chamber by a high positive voltage potential at that end and focused onto a sensing anode. If there are impurities in the noble gas, some or all of the electrons within the cloud will bond with the impurity molecules and not reach the sensing anode. Therefore, measuring a lower signal at the sensing anode indicates a higher level of impurities while sensing a higher signal indicates fewer impurities. Impurities in the range of one part per billion can be measured by this device.

  1. CO-oxidation catalysts: Low-temperature CO oxidation over Noble-Metal Reducible Oxide (NMRO) catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1990-01-01

    Oxidation of CO to CO2 is an important reaction technologically and environmentally and a complex and interesting reaction scientifically. In most cases, the reaction is carried out in order to remove CO as an environmental hazard. A major application of heterogeneous catalysts is catalytic oxidation of CO in the exhaust of combustion devices. The reaction over catalysts in exhaust gas is fast and often mass-transfer-limited since exhaust gases are hot and O2/CO ratios are high. The main challenges to catalyst designers are to control thermal sintering and chemical poisoning of the active materials. The effect of the noble metal on the oxide is discussed, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form unique catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  2. Electrocatalyst for alcohol oxidation at fuel cell anodes

    DOEpatents

    Adzic, Radoslav [East Setauket, NY; Kowal, Andrzej [Cracow, PL

    2011-11-02

    In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.

  3. Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application

    PubMed Central

    Yang, Lili; Yang, Yong; Ma, Yunfeng; Li, Shuai; Wei, Yuquan; Huang, Zhengren; Long, Nguyen Viet

    2017-01-01

    Since the initial discovery of surface-enhanced Raman scattering (SERS) in the 1970s, it has exhibited a huge potential application in many fields due to its outstanding advantages. Since the ultra-sensitive noble metallic nanostructures have increasingly exposed themselves as having some problems during application, semiconductors have been gradually exploited as one of the critical SERS substrate materials due to their distinctive advantages when compared with noble metals. ZnO is one of the most representative metallic oxide semiconductors with an abundant reserve, various and cost-effective fabrication techniques, as well as special physical and chemical properties. Thanks to the varied morphologies, size-dependent exciton, good chemical stability, a tunable band gap, carrier concentration, and stoichiometry, ZnO nanostructures have the potential to be exploited as SERS substrates. Moreover, other distinctive properties possessed by ZnO such as biocompatibility, photocatcalysis and self-cleaning, and gas- and chemo-sensitivity can be synergistically integrated and exerted with SERS activity to realize the multifunctional potential of ZnO substrates. In this review, we discuss the inevitable development trend of exploiting the potential semiconductor ZnO as a SERS substrate. After clarifying the root cause of the great disparity between the enhancement factor (EF) of noble metals and that of ZnO nanostructures, two specific methods are put forward to improve the SERS activity of ZnO, namely: elemental doping and combination of ZnO with noble metals. Then, we introduce a distinctive advantage of ZnO as SERS substrate and illustrate the necessity of reporting a meaningful average EF. We also summarize some fabrication methods for ZnO nanostructures with varied dimensions (0–3 dimensions). Finally, we present an overview of ZnO nanostructures for the versatile SERS application. PMID:29156600

  4. Light Noble Gas Abundances in the Solar Wind Trapped by Chondritic Metal

    NASA Astrophysics Data System (ADS)

    Murer, Ch.; Bauer, H.; Wieler, R.

    1995-09-01

    The heavy solar noble gases Ar-Xe are retained elementally unfractionated relative to the incoming solar corpuscular radiation in lunar soils, as is shown by the flat profiles of Ar/Kr and Kr/Xe throughout closed system stepped etch extractions [1, 2]. In contrast, He/Ar and Ne/Ar reach present-day solar wind (SW) values only towards the end of the runs, indicating that the well known fractionating losses of solar He and Ne from lunar samples affect the shallowly sited SW component but not the more deeply implanted SEP (solar energetic particles). Rather flat He/Ar and Ne/Ar profiles were previously observed in stepped etchings of metallic Fe-Ni from solar-gas-rich meteorites [3-5], suggesting that Fe-Ni retains unfractionated He, Ne, and Ar from SW and SEP. Most runs showed some variation in elemental ratios, possibly due to i) experiment-induced fractionation, ii) the different penetration depths of the various gases [4], or iii) variable elemental abundances in SW and SEP. The results of a repeat run on a Fe-Ni separate from the H chondrite Fayetteville are shown in Fig. 1. The ^20Ne/^36Ar ratio is essentially flat and most values fall in the range of 48.5 +/- 7 of the modern SW [6]. The low values in the last three steps are presumably due to fractionated solar noble gases released from silicate impurities by copper-chloride in these final about 10 day extractions, since the lowest value is close to that in bulk samples. We thus cannot confirm a real variation of Ne/Ar with grain depth. The He/Ar pattern is similar to Ne/Ar except that the values of individual steps scatter considerably more. Flat profiles as in Fig. 1 strongly suggest that the average ratios deduced from meteoritic Fe-Ni (in some cases slightly corrected for e. g. contributions from silicates) yield good estimates of the relative light noble gas abundances in SW and SEP trapped by chondritic regoliths. Table 1 shows best values deduced from three chondrites (two runs each). These values differ by less than about 15% from those reported for present day SW and for solar gases in Acfer111 metal [4]. Remarkable is the good agreement of Ne/Ar deduced from meteorites with the SWC ratio, since the derivation of the latter value involved an about 40% correction for solar ^36Ar released from lunar soil and retrapped into the aluminium foils. References: [1] Wieler R. et al. (1993) LPS XXIV, 1519. [2] Wieler R. and Baur H. (1995) Astrophys. J., in press. [3] Murer Ch. et al. (1994) Meteoritics, 29, 506. [4] Pedroni A. and Begemann F. (1994) Meteoritics, 29, 632. [5] Murer Ch. (1995) Ph.D. thesis, ETH Zurich, #10964. [6] Cerutti H. (1974) Ph.D. thesis, Univ. Bern.

  5. Joven Noble: Evaluation of a Culturally Focused Youth Development Program

    ERIC Educational Resources Information Center

    Tello, Jerry; Cervantes, Richard C.; Cordova, David; Santos, Susana M.

    2010-01-01

    The purpose of this study was to describe and evaluate a promising program model, the Joven Nobel curriculum, for Latino male adolescents that promotes positive youth development and addresses prevention of a number of risk-related sexual behaviors within a cultural context. A quasi-experimental design was used that included a pre- and posttest…

  6. Atmospheric Ar and Ne returned from mantle depths to the Earth’s surface by forearc recycling

    PubMed Central

    Baldwin, Suzanne L.; Das, J. P.

    2015-01-01

    In subduction zones, sediments, hydrothermally altered lithosphere, fluids, and atmospheric gases are transported into the mantle, where ultrahigh-pressure (UHP) metamorphism takes place. However, the extent to which atmospheric noble gases are trapped in minerals crystallized during UHP metamorphism is unknown. We measured Ar and Ne trapped in phengite and omphacite from the youngest known UHP terrane on Earth to determine the composition of Ar and Ne returned from mantle depths to the surface by forearc recycling. An 40Ar/39Ar age [7.93 ± 0.10 My (1σ)] for phengite is interpreted as the timing of crystallization at mantle depths and indicates that 40Ar/39Ar phengite ages reliably record the timing of UHP metamorphism. Both phengite and omphacite yielded atmospheric 38Ar/36Ar and 20Ne/22Ne. Our study provides the first documentation, to our knowledge, of entrapment of atmospheric Ar and Ne in phengite and omphacite. Results indicate that a subduction barrier for atmospheric-derived noble gases does not exist at mantle depths associated with UHP metamorphism. We show that the crystallization age together with the isotopic composition of nonradiogenic noble gases trapped in minerals formed during subsolidus crystallization at mantle depths can be used to unambiguously assess forearc recycling of atmospheric noble gases. The flux of atmospheric noble gas entering the deep Earth through subduction and returning to the surface cannot be fully realized until the abundances of atmospheric noble gases trapped in exhumed UHP rocks are known. PMID:26542683

  7. Recycling of volatiles at subduction zones: Noble gas evidence from the Tabar-Lihir-Tanga-Feni arc of papua New Guinea

    NASA Technical Reports Server (NTRS)

    Farley, Kenneth; Mcinnes, Brent; Patterson, Desmond

    1994-01-01

    Convergent margin processes play an important but poorly understood role in the distribution of terrestrial volatile species. For example, subduction processes filter volatiles from the subducting package, thereby restricting their return to the mantle. In addition, once extracted from the downgoing slab, volatiles become an essential component in the petrogenesis of island arc magmas. The noble gases, with their systematic variation in physical properties and diversity of radiogenic isotopes, should carry a uniquely valuable record of these processes. However, thus far studies of noble gases in arc volcanics have achieved only limited success in this regard. Subduction-related lavas and geothermal fluids carry (3)He/(4)He ratios equal to or slightly lower than those found in the depleted upper mantle source of mid-ocean ridge basalts. Apparently slab-derived helium (which should have (3)He/(4)He much less than MORB) is extensively diluted by MORB-like helium from the mantle wedge, making it difficult to use helium as a tracer of convergent margin processes. Interpretation of the heavier noble gases (Ne-Ar-Kr-Xe) in arc lavas has also proven difficult, because the lavas carry low noble gas concentrations and hence are subject to pervasive atmospheric contamination. The low noble gas concentrations may be a consequence of degassing in the high level magma chambers characteristic of arc stratovolcanos. We have recently initiated a project to better constrain the behavior of volatiles in subduction zones through geochemical studies of the tectonically unusual volcanoes of the Tabar-Lihir-Tanga-Feni (TLTF) arc in the Bismarck Archipelago, Papua New Guinea.

  8. MICROWAVE-ASSISTED SYNTHESIS OF NOBLE NANOSTRUCTURES

    EPA Science Inventory

    Microwave-assisted (MW) spontaneous reduction of noble metal salts, silver (Ag), gold (Au), platinum (Pt) and palladium (Pd) is reported using sugar solutions such as -D glucose, sucrose and maltose, etc. to generate nanomaterials. These MW-assisted reactions, conducted in aqueo...

  9. Sustainable Synthesis of Nanomaterials Using Microwave irradiation

    EPA Science Inventory

    The presentation summarizes our recent activity in MW-assisted synthesis of nanomaterials under benign conditions. Shape-controlled aqueous synthesis of noble nanostructures via MW-assisted spontaneous reduction of noble metal salts using -D-glucose, sucrose, and maltose will be...

  10. Magneto-optical Kerr spectroscopy of noble metals

    NASA Astrophysics Data System (ADS)

    Uba, L.; Uba, S.; Antonov, V. N.

    2017-12-01

    Magneto-optical (MO) response of the noble metals Cu, Ag, and Au in the joint experimental and ab initio theoretical study is reported. The magneto-optical polar Kerr effect (MOKE) spectra of the noble-metal films were measured with the high sensitivity in the applied magnetic field of 1.5 T over the photon energy range 0.74-5.8 eV. Complete set of the optical conductivity tensor elements was determined precisely from the MOKE and the optical spectra measured at the same energy points. The importance of the off-diagonal intraband Drude-type transitions is demonstrated explicitly for each noble metal and found to be a substantial contribution to the observed spectra. It is shown that the first-principles calculations using the spin-polarized fully relativistic Dirac linear-muffin-tin-orbital method with the inclusion of correlation effects by GGA+U approach reproduce well the experimental spectra and allow to explain the microscopic origin of the noble metals' magneto-optical response in terms of interband transitions. Although the energy band structures of Cu, Ag, and Au are very similar, there are some distinctive differences in bandwidths and the energy positions of the bands (especially in X and L symmetry points), mainly due to different spin-orbit splitting and differences in the spatial extent of 3 d , 4 d , and 5 d valence wave functions of noble metals. It was found that the small differences in the band positions lead to significant differences in the MO properties of three noble metals. Although the spin-orbit interaction in Au is about six times larger than in Cu, and approximately two times larger than in Ag, the absolute value of Kerr rotation in Au is of the same magnitude as in Cu and one order of magnitude smaller as compared to Ag. The sharp Kerr effect spectral peak in Ag is not due to the electronic interband transitions, but rather to the plasma-edge splitting. The band-by-band decomposition of the Cu, Ag, and Au MO spectra is presented and the interband transitions responsible for the prominent structures in the spectra are identified. It has been found that main magneto-optical activity of noble metals in external magnetic field originates from interband transitions at well-defined small-volume regions of Brillouin zone located near the "neck" and "belly" of the Fermi surface.

  11. Assessment of Operational Progress of NASA Langley Developed Windshield and Microphone for Infrasound

    DTIC Science & Technology

    2013-04-01

    Assessment of Operational Progress of NASA Langley Developed Windshield and Microphone for Infrasound by W.C. Kirkpatrick Alberts, II...Windshield and Microphone for Infrasound W.C. Kirkpatrick Alberts, II, Stephen M. Tenney, and John M. Noble Sensors and Electron Devices Directorate...2013 4. TITLE AND SUBTITLE Assessment of Operational Progress of NASA Langley Developed Windshield and Microphone for Infrasound 5a. CONTRACT

  12. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    PubMed

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  13. Angular correlation studies in noble gases

    NASA Technical Reports Server (NTRS)

    Coleman, P. G.

    1990-01-01

    There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.

  14. Nitride stabilized core/shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.

    Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.

  15. Laboratory simulation of meteoritic noble gases. III - Sorption of neon, argon, krypton, and xenon on carbon - Elemental fractionation

    NASA Technical Reports Server (NTRS)

    Wacker, John F.

    1989-01-01

    The sorption of Ne, Ar, Kr, and Xe was studied in carbon black, acridine carbon, and diamond in an attempt to understand the origin of trapped noble gases in meteorites. The results support a model in which gases are physically adsorbed on interior surfaces formed by a pore labyrinth within amorphous carbons. The data show that: (1) the adsorption/desorption times are controlled by choke points that restrict the movement of noble gas atoms within the pore labyrinth, and (2) the physical adsorption controls the temperature behavior and elemental fractionation patterns.

  16. Noble gases as cardioprotectants – translatability and mechanism

    PubMed Central

    Smit, Kirsten F; Weber, Nina C; Hollmann, Markus W; Preckel, Benedikt

    2015-01-01

    Several noble gases, although classified as inert substances, exert a tissue-protective effect in different experimental models when applied before organ ischaemia as an early or late preconditioning stimulus, after ischaemia as a post-conditioning stimulus or when given in combination before, during and/or after ischaemia. A wide range of organs can be protected by these inert substances, in particular cardiac and neuronal tissue. In this review we summarize the data on noble gas-induced cardioprotection, focusing on the underlying protective mechanisms. We will also look at translatability of experimental data to the clinical situation. PMID:25363501

  17. Use of IMS data and its potential for research through global noble gases concentration maps

    NASA Astrophysics Data System (ADS)

    Terzi, Lucrezia; Kalinowski, Martin; Gueibe, Christophe; Camps, Johan; Gheddou, Abdelhakim; Kusmierczyk-Michulec, Jolanta; Schoeppner, Michael

    2017-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) established for verification purposes a global monitoring system for atmospheric radioisotopes and noble gas radioactivity. Daily activity concentrations have been collected worldwide for over 15 years providing unique data sets with long term time series that can be used for atmospheric circulation dynamics analysis. In this study, we want to emphasize the value of worldwide noble gas data by reconstructing global xenon concentration maps and comparing these observations with ATM simulations. By creating a residual plot, we can improve our understanding of our source estimation level for each region.

  18. The Effect of Dielectric Constants on Noble Metal/Semiconductor SERS Enhancement: FDTD Simulation and Experiment Validation of Ag/Ge and Ag/Si Substrates

    PubMed Central

    Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang

    2014-01-01

    The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 109) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 107 and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones. PMID:24514430

  19. Percutaneous coronary intervention versus coronary artery bypass grafting: where are we after NOBLE and EXCEL?

    PubMed

    Fortier, Jacqueline H; Shaw, Richard E; Glineur, David; Grau, Juan B

    2017-11-01

    The publication of the NOBLE and EXCEL trials, with seemingly conflicting results, brought into question whether percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG) is better for low-risk patients with left main coronary artery stenosis (LMCAS). This review appraises the methods and results of NOBLE and EXCEL, contextualizes them within the literature, and determines how they may affect clinical practice. We appraised the trials and describe differences in methodology and results. NOBLE recruited primarily isolated LMCAS, and found that CABG was superior to PCI. EXCEL's population included patients LMCAS in the context of multivessel CAD, and found PCI and CABG were comparable. Both trials enrolled young patients with few comorbidities, and there was more protocol-mandated consistency in the procedural techniques and medical therapy of patients receiving PCI. The generalizability of these trials is limited by the use of young, healthy patients at highly skilled centres that rarely reflect typical clinical practice. If these studies are to maintain relevance, trialists must address the lack of protocolization of surgical interventions and inconsistent medical therapies. Unfortunately, the limitations of NOBLE and EXCEL mean that we are no closer to answering the question of what is the optimal treatment for patients with LMCAS.

  20. Gas Release as a Deformation Signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.

    Radiogenic noble gases are contained in crustal rock at inter and intra granular sites. The gas composition depends on lithology, geologic history, fluid phases, and the aging effect by decay of U, Th, and K. The isotopic signature of noble gases found in rocks is vastly different than that of the atmosphere which is contributed by a variety of sources. When rock is subjected to stress conditions exceeding about half its yield strength, micro-cracks begin to form. As rock deformation progresses a fracture network evolves, releasing trapped noble gases and changing the transport properties to gas migration. Thus, changes inmore » gas emanation and noble gas composition from rocks could be used to infer changes in stress-state and deformation. The purpose of this study has been to evaluate the effect of deformation/strain rate upon noble gas release. Four triaxial experiments were attempted for a strain rate range of %7E10-8 /s (180,000s) to %7E 10-4/s (500s); the three fully successful experiments (at the faster strain rates) imply the following: (1) helium is measurably released for all strain rates during deformation, this release is in amounts 1-2 orders of magnitude greater than that present in the air, and (2) helium gas release increases with decreasing strain rate.« less

  1. Peptide-templated noble metal catalysts: syntheses and applications

    PubMed Central

    Wang, Wei; Anderson, Caleb F.; Wang, Zongyuan; Wu, Wei

    2017-01-01

    Noble metal catalysts have been widely used in many applications because of their high activity and selectivity. However, a controllable preparation of noble metal catalysts still remains as a significant challenge. To overcome this challenge, peptide templates can play a critical role in the controllable syntheses of catalysts owing to their flexible binding with specific metallic surfaces and self-assembly characteristics. By employing peptide templates, the size, shape, facet, structure, and composition of obtained catalysts can all be specifically controlled under the mild synthesis conditions. In addition, catalysts with spherical, nanofiber, and nanofilm structures can all be produced by associating with the self-assembly characteristics of peptide templates. Furthermore, the peptide-templated noble metal catalysts also reveal significantly enhanced catalytic behaviours compared with conventional catalysts because the electron conductivity, metal dispersion, and reactive site exposure can all be improved. In this review, we summarize the research progresses in the syntheses of peptide-templated noble metal catalysts. The applications of the peptide-templated catalysts in organic reactions, photocatalysis, and electrocatalysis are discussed, and the relationship between structure and activity of these catalysts are addressed. Future opportunities, including new catalytic materials designed by using biological principles, are indicated to achieve selective, eco-friendly, and energy neutral synthesis approaches. PMID:28507701

  2. The effect of dielectric constants on noble metal/semiconductor SERS enhancement: FDTD simulation and experiment validation of Ag/Ge and Ag/Si substrates.

    PubMed

    Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang

    2014-02-11

    The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 10(9)) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 10(7) and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones.

  3. Reactions in Portland cement-clay mixtures : final report.

    DOT National Transportation Integrated Search

    1970-01-01

    This study was an extension of earlier work by Sherwood and Noble to determine the nature of the clay content of common Virginia soils and the strength development of those soils in cement mixtures. In addition attempts were made (1) to study the rel...

  4. Developing Optimal Parameters for Hyperpolarized Noble Gas and Inert Fluorinated Gas MRI of Lung Disorders

    ClinicalTrials.gov

    2018-06-21

    Lung Transplant; Lung Resection; Lung Cancer; Asthma; Cystic Fibrosis; Chronic Obstructive Pulmonary Disease; Emphysema; Mesothelioma; Asbestosis; Pulmonary Embolism; Interstitial Lung Disease; Pulmonary Fibrosis; Bronchiectasis; Seasonal Allergies; Cold Virus; Lung Infection; Pulmonary Hypertension; Pulmonary Dysplasia; Obstructive Sleep Apnea

  5. High-performance reagent modes for flotation recovery of platiniferous copper and nickel sulfides from hard-to-beneficiate ores

    NASA Astrophysics Data System (ADS)

    Matveeva, T. N.; Chanturiya, V. A.

    2017-07-01

    The paper presents the results of the recent research performed in IPKON Russian Academy of Sciences that deals with development and substantiation of new selective reagents for effective flotation recovery of non-ferrous and noble metals from refractory ores. The choice and development of new selective reagents PTTC, OPDTC, modified butylxanthate (BXm) and modified diethyl-dithiocarbamate (DEDTCm) to float platiniferous copper and nickel sulfide minerals from hard-to-beneficiate ores is substantiated. The mechanism of reagents adsorption and regulation of minerals floatability is discussed. The study of reagent modes indicates that by combining PTTC with the modified xanthate results in 6 - 7 % increase in the recovery of copper, nickel and PGM in the flotation of the low-sulfide platiniferous Cu-Ni ore from the Fedorovo-Panskoye deposit. The substitution of OPDTC for BX makes it possible to increase recovery of Pt by 13 %, Pd by 9 % and 2 - 4 times the noble metal content in the flotation concentrate.

  6. Laser Polarized 129Xe Magnetic Resonance Imaging and Spectroscopy Studies: Development of a New Modality of Functional Imaging

    NASA Astrophysics Data System (ADS)

    Rosen, M.; Coulter, K. P.; Chupp, T. E.; Swanson, S. D.; Agranoff, B. W.

    1996-05-01

    One of the most exciting prospects for the application of laser polarized noble gas magnetic resonance imaging and spectroscopy of ^129Xe is the quantitative measurement of cerebral blood flow changes in response to various stimuli. Development of this new modality of functional imaging requires tracking the transport of inspirated laser polarized ^129Xe from the lungs to the blood and to the brain. We describe a series of experiments with rats that include producing noble gas magnetic resonance images and study of the uptake and transport of polarized ^129Xe in the blood and to the head. We have observed spectral components of the ^129Xe at about -200 ppm relative to the free gas and confirmed their transport to the head. The time dependence of this component in the head has been studied. Current efforts are to spatially localize the polarized ^129Xe and image the magnetization in the steady state.

  7. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.

    PubMed

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-06-09

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.

  8. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula

    PubMed Central

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-01-01

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)−CO−N2−noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system. PMID:26039983

  9. Noble Gases

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the Earth and the rest of the inner solar were made by collecting the solids, to the rather efficient exclusion of the gases. In this grand separation the noble gases, because they are noble, were partitioned strongly into the gas phase. The resultant generalization is that the noble gases are very scarce in the materials of the inner solar system, whence their common synonym "rare gases."This scarcity is probably the most important single feature to remember about noble-gas cosmochemistry. As illustration of the absolute quantities, for example, a meteorite that contains xenon at a concentration of order 10 -10 cm3STP g -1 (4×10-15 mol g-1) would be considered relatively rich in xenon. Yet this is only 0.6 ppt (part per trillion, fractional abundance 10-12) by mass. In most circumstances, an element would be considered efficiently excluded from some sample if its abundance, relative to cosmic proportions to some convenient reference element, were depleted by "several" orders of magnitude. But a noble gas would be considered to be present in quite high concentration if it were depleted by only four or five orders of magnitude (in the example above, 10-10 cm3STP g-1 of xenon corresponds to depletion by seven orders of magnitude), and one not uncommonly encounters noble-gas depletion of more than 10 orders of magnitude.The second most important feature to note about noble-gas cosmochemistry is that while a good deal of the attention given to noble gases really is about chemistry, traditionally a good deal of attention is also devoted to nuclear phenomena, much more so than for most other elements. This feature is a corollary of the first feature noted above, namely scarcity. A variety of nuclear transmutation processes - decay of natural radionuclides and energetic particle reactions - lead to the production of new nuclei that are often new elements. Most commonly, the quantity of new nuclei originating in nuclear transmutation is very small compared to the quantity already present in the sample in question, metaphorically a drop in the bucket. Thus, they are very difficult or impossible to detect and, therefore, in practical terms, attracting little or no interest. When the bucket is empty, or nearly so, however, the "drop" contributed by nuclear transmutations may become observable or even dominant. Traditionally there are two types of (nearly) empty buckets that are most suitable for revealing the effects of nuclear transmutations: short-lived radionuclides (e.g., 10Be and 26Al) which would be entirely absent except for recent nuclear reactions, and the noble gases, renowned for their scarcity.Emphasis on nuclear processes explains what sometimes seems to be an obsession with isotopes in noble-gas geo- and cosmochemistry. Different nuclear processes will produce different isotopes, singly or in suites with well-defined proportions (i.e., "components"), different from one process to another. Much of the traditional agenda of noble-gas geochemistry, and especially cosmochemistry, thus consists of isotopic analysis, and deconvolution of an observed isotopic spectrum into constituent components. (In most geochemical investigations, noble gases are detected by mass spectrometry, a technique that is inherently sensitive to specific isotopes, not just the chemical element. Isotopic data thus emerge naturally in most studies. Noble-gas mass spectrometry can be a much more sensitive technique than other traditional types of mass spectrometry because the gases are "noble," and therefore relatively easy to separate from other elements, and because they are scarce, so that they can be analyzed in "static"-mode (no pumping during analysis) gas-source spectrometers, permitting relatively high detection efficiency without overwhelming blanks.) In realistic terms, it is very difficult to appreciate noble-gas geo-/cosmochemistry without a basic familiarity with noble-gas isotopes: which isotopes occur in nature (i.e., which are stable), in what approximate abundance they are found, how they relate to non-noble neighbors, and, to some extent, how they are associated with specific nuclear processes. Figure 1 provides assistance in this regard. (6K)Figure 1. A display of the isotopes of the noble gases and neighboring isotopes in the familiar "chart of the nuclides" format. The abscissa is neutron number (N) and the ordinate is proton number (Z). The box corresponding to any pair (Z, N) represents an isotope; an element is represented by a horizontal row. Boxes for stable isotopes are shown with solid outline; for the noble gases, approximate solar (in the case of He, protosolar) isotope ratios are shown at the bottom of each box. Selected unstable isotopes are shown as boxes with broken line edges. The left-superscript isotope label is the atomic weight A (=Z+N). The five panels show regions around the five noble gases (excluding Rn). When the goal is to identify and quantify different noble-gas components that may be present in a sample or group of samples, a common approach to this goal is to try to unmix the components, at least partially, to provide some leverage. One path to this end, of course, is analysis of different samples that may contain the components in different proportions, and thus have different isotopic compositions. Another path, available in addition to or instead of the first, is stepwise heating analysis, which has traditionally been very extensively used in noble-gas studies. Noble gases may be released from solid samples by volume diffusion, or by reaction, recrystallization, melting, or even evaporation of their host phases. If different noble-gas components reside in physically distinct locations within a complex sample, they may be liberated, and thus become available for analysis, at different steps in a time-temperature heating sequence. Differential release of isotopically distinct components will then result in variation of the isotopic composition of gas released in different steps (e.g., see Figures 2 and 4). (12K)Figure 2. A three-isotope diagram illustrating compositional variations in lunar samples and meteorites, as observed in stepwise in vacuo etching and pyrolysis. Since the observed isotopic compositions do not lie on a single straight line, at least three isotopically distinct components must contribute in variable proportions. These data are interpreted as superposition of solar wind (SW), solar energetic particles (SEP), and galactic cosmic ray, i.e., spallation (GCR) Ne components (source Wieler, 1998). A common tool for visualization of isotopic variations is the so-called "three-isotope diagram," in which two isotope ratios, each with the same reference (denominator) isotope, are displayed on abscissa and ordinate (e.g., Figure 2). Two isotopically distinct components will plot at distinct points on a three-isotope diagram, and an often-used feature is that mixtures of the two components will plot on the straight line joining those two points. A lever rule applies: the greater the proportion that one component contributes to a mixture, the closer the point representing the mixture will lie to the point representing that end-member component, and there is a linear relationship between fractional distance from one end-member to the other and the fraction that each component contributes to the mixture (specifically to the reference isotope). If observed isotopic data are variable but the variations in two ratios are correlated, so as to be consistent with a straight line on a three-isotope diagram, it can be inferred that at least two components are present and it will often be hypothesized that only two components are present, in which case their compositions can be constrained to lie on the line, one on either side of the data field. If three components are present, not coincidentally collinear on this diagram, mixtures will occupy the triangular field defined by the three compositions, and conversely if observed data are not consistent with linear correlation it can be inferred that at least three components are contributing to the mix. The concept of the three-isotope diagram is readily generalized. Four isotopes defining three ratios (all with the same reference isotope), for example, will define a three-dimensional space in which mixture of two components will produce compositions lying along a straight line, and mixture of three components will produce compositions lying in a plane, etc. Generalization to more dimensions is mathematically straightforward, even if difficult to envision.

  10. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loui, A; McCall, S K

    2011-10-24

    The ability to monitor the integrity of gas volumes is of interest to the stockpile surveillance community. Specifically, the leak detection of noble gases, at relevant concentration ranges and distinguished from other chemical species that may be simultaneously present, is particularly challenging. Aside from the laboratory-based method of gas chromatography-mass spectrometry (GC-MS), where samples may be collected by solid-phase microextraction (SPME) or cryofocusing, the other major approaches for gas-phase detection employ lasers typically operating in the mid-infrared wavelength region. While mass spectrometry can readily detect noble gases - the helium leak detector is an obvious example - laser-based methods suchmore » as infrared (IR) or Raman spectroscopy are completely insensitive to them as their monatomic nature precludes a non-zero dipole moment or changes in polarizability upon excitation. Therefore, noble gases can only be detected by one of two methods: (1) atomic emission spectroscopies which require the generation of plasmas through laser-induced breakdown, electrical arcing, or similar means; (2) non-spectroscopic methods which measure one or more physical properties (e.g., mass, thermal conductivity, density). In this report, we present our progress during Fiscal Year 2011 (FY11) in the research and development of a non-spectroscopic method for noble gas detection. During Fiscal Year 2010 (FY10), we demonstrated via proof-of-concept experiments that the combination of thermal conductivity detection (TCD) and coating-free damped resonance detection (CFDRD) using micro-electromechanical systems (MEMS) could provide selective sensing of these inert species. Since the MEMS-based TCD technology was directly adapted from a brassboard prototype commissioned by a previous chemical sensing project, FY11 efforts focused on advancing the state of the newer CFDRD method. This work, guided by observations previously reported in the open literature, has not only resulted in a substantially measureable increase in selectivity but has also revealed a potential method for mitigating or eliminating thermal drift that does not require a secondary reference sensor. The design of an apparatus to test this drift compensation scheme will be described. We will conclude this report with a discussion of planned efforts in Fiscal Year 2012 (FY12).« less

  11. Noble Metal Decoration and Alignment of Carbon Nanotubes in Carboxymethyl Cellulose

    EPA Science Inventory

    A facile microwave (MW) method is described that accomplishes alignment and decoration of noble metals on carbon nanotubes wrapped with carboxymethyl cellulose (CMC). Carbon nanotubes (CNTs) such as single-wall (SWNT), multi-wall (MWNT) and Buckminsterfullerene (C-60) were well ...

  12. 75 FR 20989 - Combined Notice of Filings # 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... of Termination of the Etiwanda Exchange Agreement with California Department of Water Resources...: EC10-60-000. Applicants: New York State Electric & Gas Corp., Noble Wethersfield Windpark, LLC. Description: Application of New York State Electric & Gas Corporation and Noble Wethersfield Windpark, LLC...

  13. Generalizability of EXCEL and NOBLE results to a large registry population with unprotected left main coronary artery disease.

    PubMed

    Lee, Pil Hyung; Kang, Se Hun; Han, Seungbong; Ahn, Jung-Min; Bae, Jae Seok; Lee, Cheol Hyun; Kang, Soo-Jin; Lee, Seung-Whan; Kim, Young-Hak; Lee, Cheol Whan; Park, Seong-Wook; Park, Duk-Woo; Park, Seung-Jung

    2017-12-01

    The aim of this study was to determine how trial-based findings of EXCEL and NOBLE might be interpreted and generalizable in 'real-world' settings with comparison of data from the large-scaled, all-comer Interventional Research Incorporation Society-Left MAIN Revascularization (IRIS-MAIN) registry. We compared baseline clinical and procedural characteristics and also determined how the relative treatment effect of percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG) was different in EXCEL and NOBLE, compared with those of the multicenter, IRIS-MAIN registry (n=2481). The primary outcome for between-study comparison was a composite of death, myocardial infarction (MI), or stroke. There were between-study differences in patient risk profiles (age, BMI, diabetes, and clinical presentation), lesion complexities, and procedural characteristics (stent type, the use of off-pump surgery, and radial artery); the proportion of diabetes and acute coronary syndrome was particularly lower in NOBLE than in other studies. Although there was interstudy heterogeneity for the protocol definition of MI, the risks for serious composite outcome of death, MI, or stroke were similar between PCI and CABG in EXCEL [hazard ratio (HR): 1.00; 95% confidence interval (CI): 0.79-1.26; P=0.98] and in the matched cohort of IRIS-MAIN (HR: 1.08; 95%CI: 0.85-1.38; P=0.53), whereas it was significantly higher after PCI than after CABG in NOBLE (HR: 1.47; 95%CI: 1.06-2.05; P=0.02), which was driven by more common MI and stroke after PCI. In the comparison of a large-sized, all-comer registry, the EXCEL trial might represent better generalizability with respect to baseline characteristics and observed clinical outcomes compared with the NOBLE trial.

  14. Diverging effects of isotopic fractionation upon molecular diffusion of noble gases in water: mechanistic insights through ab initio molecular dynamics simulations.

    PubMed

    Pinto de Magalhães, Halua; Brennwald, Matthias S; Kipfer, Rolf

    2017-03-22

    Atmospheric noble gases are routinely used as natural tracers to analyze gas transfer processes in aquatic systems. Their isotopic ratios can be employed to discriminate between different physical transport mechanisms by comparison to the unfractionated atmospheric isotope composition. In many applications of aquatic systems molecular diffusion was thought to cause a mass dependent fractionation of noble gases and their isotopes according to the square root ratio of their masses. However, recent experiments focusing on isotopic fractionation within a single element challenged this broadly accepted assumption. The determined fractionation factors of Ne, Ar, Kr and Xe isotopes revealed that only Ar follows the prediction of the so-called square root relation, whereas within the Ne, Kr and Xe elements no mass-dependence was found. The reason for this unexpected divergence of Ar is not yet understood. The aim of our computational exercise is to establish the molecular-resolved mechanisms behind molecular diffusion of noble gases in water. We make the hypothesis that weak intermolecular interactions are relevant for the dynamical properties of noble gases dissolved in water. Therefore, we used ab initio molecular dynamics to explicitly account for the electronic degrees of freedom. Depending on the size and polarizability of the hydrophobic particles such as noble gases, their motion in dense and polar liquids like water is subject to different diffusive regimes: the inter-cavity hopping mechanism of small particles (He, Ne) breaks down if a critical particle size achieved. For the case of large particles (Kr, Xe), the motion through the water solvent is governed by mass-independent viscous friction leading to hydrodynamical diffusion. Finally, Ar falls in between the two diffusive regimes, where particle dispersion is propagated at the molecular collision time scale of the surrounding water molecules.

  15. Characterisation of an ion source on the Helix MC Plus noble gas mass spectrometer - pressure dependent mass discrimination

    NASA Astrophysics Data System (ADS)

    Zhang, X.

    2017-12-01

    Characterisation of an ion source on the Helix MC Plusnoble gas mass spectrometer - pressure dependent mass discrimination Xiaodong Zhang* dong.zhang@anu.edu.au Masahiko Honda Masahiko.honda@anu.edu.au Research School of Earth Sciences, The Australian National University, Canberra, Australia To obtain reliable measurements of noble gas elemental and isotopic abundances in a geological sample it is essential that the mass discrimination (instrument-induced isotope fractionation) of the mass spectrometer remain constant over the working range of noble gas partial pressures. It is known, however, that there are pressure-dependent variations in sensitivity and mass discrimination in conventional noble gas mass spectrometers [1, 2, 3]. In this study, we discuss a practical approach to ensuring that the pressure effect in the Helix MC Plus high resolution, multi-collector noble gas mass spectrometer is minimised. The isotopic composition of atmospheric Ar was measured under a range of operating conditions to test the effects of different parameters on Ar mass discrimination. It was found that the optimised ion source conditions for pressure independent mass discrimination for Ar were different from those for maximised Ar sensitivity. The optimisation can be achieved by mainly adjusting the repeller voltage. It is likely that different ion source settings will be required to minimise pressure-dependent mass discrimination for different noble gases. A recommended procedure for tuning an ion source to reduce pressure dependent mass discrimination will be presented. References: Honda M., et al., Geochim. Cosmochim. Acta, 57, 859 -874, 1993. Burnard P. G., and Farley K. A., Geochemistry Geophysics Geosystems, Volume 1, 2000GC00038, 2000. Mabry J., et al., Journal of Analytical Atomic Spectrometry, 27, 1012 - 1017, 2012.

  16. 77 FR 38790 - Noble Americas Gas & Power Corp., LNG Development Company, LLC, LNG Development Company, LLC (d/b...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ...: Office of Fossil Energy, Department of Energy (DOE). ACTION: Notice of orders. SUMMARY: The Office of Fossil Energy (FE) of the Department of Energy gives notice that during May 2012, it issued Orders... in the attached appendix and may be found on the FE Web site at http://www.fossil.energy.gov/programs...

  17. How Do Primary School Students Acquire the Skill of Making Hypothesis

    ERIC Educational Resources Information Center

    Darus, Faridah Binti; Saat, Rohaida Mohd

    2014-01-01

    Science education in Malaysia emphasizes three components: namely knowledge, scientific skills which include science process skills and manipulative skills; scientific attitudes; and noble values. The science process skills are important in enhancing students' cognitive development and also to facilitate students' active participation during the…

  18. 77 FR 3771 - Notice of Issuance of Final Outer Continental Shelf Air Permit for Shell Offshore, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... drilling vessels (the Transocean Deepwater Nautilus, the Noble Bully I or the Noble Bully II) and support vessels to conduct exploratory drilling for up to 150 days per year over five to ten years in multiple...

  19. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  20. Information Technology and Disabilities, 1997.

    ERIC Educational Resources Information Center

    McNulty, Tom, Ed.

    1997-01-01

    Articles published during 1997 include: "The Multi-Disability Workstation for Small Libraries" (Dick Banks and Steve Noble); "Talking Books: Toward a Digital Model" (John Cookson and others); "World Wide Access: Focus on Libraries" (Sheryl Burgstahler); "The Virtual Library: Collaborative Data Exchange and Electronic Text Delivery" (Steve Noble);…

  1. MICROWAVE-ASSISTED SYNTHESIS OF NOBLE NANOSTRUCTURES USING BIODEGRADABLE POLYMER CARBOXYMETHYL CELLULOSE

    EPA Science Inventory

    Microwave-assisted synthesis of noble nanostructures (Au, Pt, and Pd) using biodegradable polymer carboxymethyl cellulose (CMC) under microwave irradiation (MW) at 100 0C is reported. The reaction occurs within a few minutes, whereas at room temperature the reaction does not pro...

  2. 77 FR 58372 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    .... Docket Numbers: ER12-2621-000. Applicants: Wolverine Power Supply Cooperative, Inc. Description: Wolverine Power Supply Cooperative, Inc. submits tariff filing per 35: Re-File -Amend Filing FERC Rate...-2200-002; ER12-1716-001. Applicants: Noble Americas Gas & Power Corp., Noble Americas Energy Solutions...

  3. Near transferable phenomenological n-body potentials for noble metals

    NASA Astrophysics Data System (ADS)

    Pontikis, Vassilis; Baldinozzi, Gianguido; Luneville, Laurence; Simeone, David

    2017-09-01

    We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.

  4. Near transferable phenomenological n-body potentials for noble metals.

    PubMed

    Pontikis, Vassilis; Baldinozzi, Gianguido; Luneville, Laurence; Simeone, David

    2017-09-06

    We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.

  5. Lineage interests and nonreproductive strategies : An evolutionary approach to medieval religious women.

    PubMed

    Hill, E

    1999-06-01

    The nonreproductive role of religious women in the European Middle Ages presents the ideal forum for the discussion of elite family strategies within a historical context. I apply the evolutionary concept of kin selection to this group of women in order to explain how a social formation in which religious women failed to reproduce benefited medieval noble lineages. After a brief review of the roles of noble women in the later Middle Ages, I identify two benefits that nonreproductive women provided within a patrilineal inheritance system. First, spatial segregation and Christian ideology together served to curtail the production of offspring who could pose a threat to lineage interests. Second, cloistered noble women served as a strong political and economic bloc that could further lineage interests within a religious context. Finally, I discuss the evolutionary basis for the formation of groups of nonreproductive women. Using the foundation provided by animal behavioral studies, I apply the twin concepts of cooperative breeding and parental manipulation to noble lineages of the medieval period.

  6. Catalytic pyrolysis of wheat bran for hydrocarbons production in the presence of zeolites and noble-metals by using TGA-FTIR method.

    PubMed

    Lazdovica, K; Liepina, L; Kampars, V

    2016-05-01

    Pyrolysis of wheat bran with or without catalysts was investigated using TGA-FTIR method in order to determine the influence of zeolite and noble metal catalysts on the evolution profile and relative yield of the volatile compounds. The addition of all catalysts decreased the volatile matter of wheat bran from 76.3% to 75.9%, 73.9%, 73.5%, 69.7% and increased the solid residue from 18.0% to 18.4%, 20.4%, 20.8%, 24.6% under the catalyst of ZSM-5, 5% Pd/C, MCM-41, and 5% Pt/C. Noble-metal catalysts had higher activity for deoxygenation of compounds containing carbonyl, carboxyl, and hydroxyl groups than zeolites. Degradation of nitrogen containing compounds atom proceeded better in presence of zeolites. Noble-metal catalysts promoted formation of aromatics and changed the profiles of evolved compounds whereas zeolites advanced formation of aliphatics and olefins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Liu, Xiaoheng; Wang, Xin

    2011-12-01

    Herein, the generation of gold, silver, and silver-gold (Ag-Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV-visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device.

  8. Plasma treatment of polymers for improved adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelber, J.A.

    1988-01-01

    A variety of plasma treatments of polymer surfaces for improved adhesion are reviewed: noble and reactive gas treatment of fluoropolymers; noble and reactive treatment of polyolefins, and plasma-induced amination of polymer fibers. The plasma induced surface chemical and morphological changes are discussed, as are the mechanisms of adhesion to polymeric adhesives, particularly epoxy. Noble gas plasma etching of flouropolymers produces a partially defluorinated, textured surface. The mechanical interlocking of this textured surface is the primary cause of improved adhesion to epoxy. Reactive gas plasmas also induce defluorination, but oxygen containing gases cause continual ablation of the fluoropolymer surface. Noble andmore » reactive gas (exept for hydrogen) etching of polyolefins results in surface oxidation and improved adhesion via hydrogen bonding of these oxygen containing groups across the interface. The introduction of amine groups to a polymer surface by amonia or amine plasma treatment generally results in improved adhesion to epoxy. However, amine-epoxy ring interactions can be severely effected by steric factors due to chemical groups surrounding the amine. 41 refs.« less

  9. Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection

    PubMed Central

    Li, Zhenzhen; Xin, Yanmei; Zhang, Zhonghai; Wu, Hongjun; Wang, Peng

    2015-01-01

    One-dimensional nanocomposites of metal-oxide and noble metal were expected to present superior performance for nonenzymatic glucose detection due to its good conductivity and high catalytic activity inherited from noble metal and metal oxide respectively. As a proof of concept, we synthesized gold and copper oxide (Au/CuO) composite with unique one-dimensional nanocauliflowers structure. Due to the nature of the synthesis method, no any foreign binder was needed in keeping either Au or CuO in place. To the best of our knowledge, this is the first attempt in combining metal oxide and noble metal in a binder-free style for fabricating nonenzymatic glucose sensor. The Au/CuO nanocauliflowers with large electrochemical active surface and high electrolyte contact area would promise a wide linear range and high sensitive detection of glucose with good stability and reproducibility due to its good electrical conductivity of Au and high electrocatalytic activity of CuO. PMID:26068705

  10. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    PubMed Central

    2011-01-01

    Herein, the generation of gold, silver, and silver–gold (Ag–Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV–visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device. PMID:27502645

  11. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alterations in CNS Development

    DTIC Science & Technology

    2011-10-01

    the hypothesis that SJL mice would have impaired neuronal dendrite generation, as has been observed in autism . This was our prediction due to the...phenotype for Autism and related alterations in CNS development PRINCIPAL INVESTIGATOR: Mark D. Noble, Ph.D. CONTRACTING...SUBTITLE Redox abnormalities as a vulnerability phenotype for Autism 5a. CONTRACT NUMBER And related alterations in CNS development 5b. GRANT

  12. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.

    PubMed

    Quillin, M L; Breyer, W A; Griswold, I J; Matthews, B W

    2000-09-29

    To investigate the relative importance of size and polarizability in ligand binding within proteins, we have determined the crystal structures of pseudo wild-type and cavity-containing mutant phage T4 lysozymes in the presence of argon, krypton, and xenon. These proteins provide a representative sample of predominantly apolar cavities of varying size and shape. Even though the volumes of these cavities range up to the equivalent of five xenon atoms, the noble gases bind preferentially at highly localized sites that appear to be defined by constrictions in the walls of the cavities, coupled with the relatively large radii of the noble gases. The cavities within pseudo wild-type and L121A lysozymes each bind only a single atom of noble gas, while the cavities within mutants L133A and F153A have two independent binding sites, and the L99A cavity has three interacting sites. The binding of noble gases within two double mutants was studied to characterize the additivity of binding at such sites. In general, when a cavity in a protein is created by a "large-to-small" substitution, the surrounding residues relax somewhat to reduce the volume of the cavity. The binding of xenon and, to a lesser degree, krypton and argon, tend to expand the volume of the cavity and to return it closer to what it would have been had no relaxation occurred. In nearly all cases, the extent of binding of the noble gases follows the trend xenon>krypton>argon. Pressure titrations of the L99A mutant have confirmed that the crystallographic occupancies accurately reflect fractional saturation of the binding sites. The trend in noble gas affinity can be understood in terms of the effects of size and polarizability on the intermolecular potential. The plasticity of the protein matrix permits repulsion due to increased ligand size to be more than compensated for by attraction due to increased ligand polarizability. These results have implications for the mechanism of general anesthesia, the migration of small ligands within proteins, the detection of water molecules within apolar cavities and the determination of crystallographic phases. Copyright 2000 Academic Press.

  13. Late Impacts and the Origins of the Atmospheres on the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Stewart, S. T.; Lock, S. J.; Parai, R.; Tucker, J. M.

    2014-12-01

    Models for the origin of terrestrial atmospheres typically require an intricate sequence of events, including hydrodynamic escape, outgassing of mantle volatiles and late delivery. Here we discuss the origin of the atmospheres on the terrestrial planets in light of new ideas about the formation of the Moon, giant impact induced atmospheric loss and recent noble gas measurements. Our new measurements indicate that noble gases in the Earth's atmosphere cannot be derived from any combination of fractionation of a nebular-derived atmosphere followed by outgassing of deep or shallow mantle volatiles. While Ne in the mantle retains a nebular component, the present-day atmosphere has no memory of nebular gases. Rather, atmospheric noble gases have a close affinity to chondrites. On the other hand, Venus's atmosphere has 20 and 70 times higher abundance of 20Ne and 36Ar, respectively, and a 20Ne/22Ne ratio closer to the solar value than Earth's atmosphere. While the present atmosphere of Mars is significantly fractionated in the lighter noble gases due to long term atmospheric escape, the Kr isotopic ratios in Martian atmosphere are identical to solar. Thus, while Earth's atmosphere has no memory of accretion of nebular gases, atmospheres on both Venus and Mars preserve at least a component of nebular gases. To explain the above observations, we propose that a common set of processes operated on the terrestrial planets, and that their subsequent evolutionary divergence is simply explained by planetary size and the stochastic nature of giant impacts. We present geochemical observations and simulations of giant impacts to show that most of Earth's mantle was degassed and the outgassed volatiles were largely lost during the final sequence of giant impacts onto Earth. Earth's noble gases were therefore dominantly derived from late-accreting planetesimals. In contrast, Venus did not suffer substantial atmospheric loss by a late giant impact and retains a higher abundance of both nebular and chondritic noble gases compared to Earth. Fast-accreting Mars has a noble gas signature inherited from the solar nebula, and its low mass allowed for gravitational escape of the volatile components in late accreting planetesimals due to vaporization upon impact.

  14. The Potassium-Argon Laser Experiment (KArLE): In Situ Geochronology for Planetary Robotic Missions

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2016-01-01

    The Potassium (K) - Argon (Ar) Laser Experiment (KArLE) will make in situ noble-gas geochronology measurements aboard planetary robotic landers and roverss. Laser-Induced Breakdown Spectroscopy (LIBS) is used to measure the K abun-dance in a sample and to release its noble gases; the evolved Ar is measured by mass spectrometry (MS); and rela-tive K content is related to absolute Ar abundance by sample mass, determined by optical measurement of the ablated volume. KArLE measures a whole-rock K-Ar age to 10% or better for rocks 2 Ga or older, sufficient to resolve the absolute age of many planetary samples. The LIBS-MS approach is attractive because the analytical components have been flight proven, do not require further technical development, and provide complementary measurements as well as in situ geochronology.

  15. Geological structure and prospects of noble metal ore mineralization of the Khayrkhan gabbroid massif (Western Mongolia)

    NASA Astrophysics Data System (ADS)

    Kurumshieva, K. R.; Gertner, I. F.; Tishin, P. A.

    2017-12-01

    An analysis of the distribution of noble metals in zones of sulfide mineralization makes it possible to justify the isolation of four ore-bearing horizons with a specific geochemical zonation. A rise in the gold content relative to palladium and platinum is observed from the bottom upwards along the section of the stratified series of gabbroids. The study of the mineral phases of sulphides and the noble minerals itself indicates the evolution of hydrothermal solutions, which determines the different activity and mobility of the fluid (mercury, tellurium, sulfur) and ore (copper, nickel, iron, platinum, gold and silver) components.

  16. Trapped noble gases indicate lunar origin for Antarctic meteorite

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Johnson, P.

    1983-01-01

    The isotopic abundances of the noble gases (He, Ne, Ar, Kr, Xe) are reported for Antarctic ALHA 81005. It contains solar wind-implanted gases whose absolute and relative concentrations are quite similar to lunar regolith samples but not to other meteorites. ALHA 81005 also contains a large excess Ar-40 component which is identical to the component in lunar fines implanted from the lunar atmosphere. Large concentrations of cosmogenic Ne-21, Kr-82, and Xe-126 in ALHA 81005 indicate a total cosmic ray exposure age of at least 200 million years. The noble gas data alone are strong evidence for a lunar origin of this meteorite.

  17. Noble liquid detectors for fundamental physics and applications

    NASA Astrophysics Data System (ADS)

    Curioni, A.

    2009-12-01

    Noble liquid detectors come in many sizes and configurations and cover a lot of ground as particle and radiation detectors: from calorimeters for colliders to imaging detectors for neutrino physics and proton decay to WIMP Dark Matter detectors. It turns out that noble liquid detectors are a mature technology for imaging and spectroscopy of gamma rays and for neutron detection, a fact that makes them suitable for applications, e.g. cargo scanning and Homeland Security. In this short paper I will focus on liquid xenon and liquid argon, which make excellent detectors for hypothetical WIMP Dark Matter and neutrinos and for much less exotic gamma rays.

  18. Noble gas models of mantle structure and reservoir mass transfer

    NASA Astrophysics Data System (ADS)

    Harrison, Darrell; Ballentine, Chris J.

    Noble gas observations from different mantle samples have provided some of the key observational data used to develop and support the geochemical "layered" mantle model. This model has dominated our conceptual understanding of mantle structure and evolution for the last quarter of a century. Refinement in seismic tomography and numerical models of mantle convection have clearly shown that geochemical layering, at least at the 670 km phase change in the mantle, is no longer tenable. Recent adaptations of the mantle-layering model that more successfully reconcile whole-mantle convection with the simplest data have two common features: (i) the requirement for the noble gases in the convecting mantle to be sourced, or "fluxed", by a deep long-lived volatile-rich mantle reservoir; and (ii) the requirement for the deep mantle reservoirs to be seismically invisible. The fluxing requirement is derived from the low mid-ocean ridge basalt (MORB)-source mantle 3He concentration, in turn calculated from the present day 3He flux from mid-ocean ridges into the oceans (T½ ˜ 1,000 yr) and the ocean crust generation rate (T½ ˜ 108 yr). Because of these very different residence times we consider the 3He concentration constraint to be weak. Furthermore, data show 3He/22Ne ratios derived from different mantle reservoirs to be distinct and require additional complexities to be added to any model advocating fluxing of the convecting mantle from a volatile-rich mantle reservoir. Recent work also shows that the convecting mantle 20Ne/22Ne isotopic composition is derived from an implanted meteoritic source and is distinct from at least one plume source system. If Ne isotope heterogeneity between convecting mantle and plume source mantle is confirmed, this result then excludes all mantle fluxing models. While isotopic heterogeneity requires further quantification, it has been shown that higher 3He concentrations in the convecting mantle, by a factor of 3.5, remove the need for the noble gases in the convecting mantle to be sourced from such a deep hidden reservoir. This "zero paradox" concentration [Ballentine et al., 2002] is then consistent with the different mantle source 3He/22Ne and 20Ne/22Ne heterogeneities. Higher convecting mantle noble gas concentrations also eliminate the requirement for a hidden mantle 40Ar rich-reservoir and enables the heat/4He imbalance to be explained by temporal variance in the different mechanisms of heat vs. He removal from the mantle system—two other key arguments for mantle layering. Confirmation of higher average convecting mantle noble gas concentrations remains the key test of such a concept.

  19. MICROWAVE-ASSISTED SYNTHESIS OF NOBLE NANOSTRUCTURES USING BIODEGRADABLE POLYMER CARBOXYMETHYL CELLULOSE

    EPA Science Inventory

    Microwave-assisted (MW) synthesis of noble metals such as Au, Pt and Pd is reported using biodegradable polymer carboxymethyl cellulose (CMC) at 100°C within few seconds. The possible reduction entails the coupling of polar hydroxyl units in beta-glucopyranose units with micr...

  20. Noble Gas Proxy Evidence Of Holocene Climate Fluctuations In The Elwha Watershed, Olympic Mountains, Washington

    EPA Science Inventory

    Paleotempertures retrieved from the groundwater archives in the largest watershed (≈800 km2) in the Olympic Mountains suggest asynchronous Olympic Peninsula climate responses during the Everson interstade period after the last continental glacial maximum. Dissolved noble gases fr...

  1. Primordial Noble Gases from Earth's Core

    NASA Astrophysics Data System (ADS)

    Wang, K.; Lu, X.; Brodholt, J. P.

    2016-12-01

    Recent partitioning experiment suggests helium is more compatible in iron melt than in molten silicates at high pressures (> 10 GPa) (1), thus provide the possibility of the core as being the primordial noble gases warehouse that is responsible for the high primordial/radiogenic noble gas isotopic ratios observed in plume-related basalts. However, the possible transportation mechanism of the noble gases from the core to the overlying mantle is still ambiguous, understanding how this process would affect the noble gas isotopic characteristics of the mantle is critical to validate this core reservoir model. As diffusion is a dominant mass transport process that plays an important role in chemical exchange at the core-mantle boundary (CMB), we have determined the diffusion coefficients of helium, neon and argon in major lower mantle minerals, i.e. periclase (MgO), bridgemanite (MgSiO3-Pv) and post-perovskite (MgSiO3-PPv), by first-principles calculation based on density functional theory (DFT). As expected, the diffusion rate of helium is the fastest at the CMB, which is in the range of 3 × 10-10 to 1 × 10-8 m2/s. The neon diffusion is slightly slower, from 5 × 10-10 to 5 × 10-9 m2/s. Argon diffuses slowest at the rate from 1 × 10-10 to 2 × 10-10 m2/s. We have further simulated the evolution of noble gas isotopic ratios in the mantle near the CMB. Considering its close relationship with the mantle plumes and very likely to be the direct source of "hot-spot" basalts, we took a close investigation on the large low-shear-velocity provinces (LLSVPs). Under reasonable assumptions based on our diffusion parameters, the modelling results indicate that LLSVP is capable of generating all the noble gas isotope signals, e.g., 3He/4He = 55 Ra, 3He/22Ne = 3.1, 3He/36Ar = 0.82, 40Ar/36Ar = 9500, that are in good agreement with the observed values in "hot-spot" basalts (2). Therefore, this core-reservior hypothesis is a self-consistent model that can fits in multiple noble gas isotopic constrains. (1) Bouhifd, M.A., Jephcoat, A.P., Heber, V.S., Kelley, S.P., 2013. Helium in Earth's early core. Nat. Geosci. 6, 982-986. (2) Mukhopadhyay, S., 2012. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101-124.

  2. Exploring the work function variability and structural stability of VO2(1 1 0) surface upon noble metal (Ag, Au, Pt) adsorption and incorporation

    NASA Astrophysics Data System (ADS)

    Chen, Lanli; Cui, Yuanyuan; Shi, Siqi; Luo, Hongjie; Gao, Yanfeng

    2018-08-01

    Vanadium dioxide (VO2) has attracted great attention, with scientific and technological advances over the past few decades due to its reversible metal-insulator transition at 340 K. However, the high phase transition temperature (Tc) of VO2 limits its practical applications. Our first-principles calculations show that VO2(1 1 0) surfaces with adsorbed noble metals (Ag, Au, Pt) exhibit a lower work function compared with the clean surface and further induces a lower Tc due to charge transfer from the noble metals to the VO2(1 1 0) surface. However, the work functions of the VO2(1 1 0) surfaces after the incorporation of noble metals are higher than that of the clean surface. In addition, the results of formation energies of various configurations show that the VO2(1 1 0) surface with the adsorption and incorporation of Ag is energetically more favorable than those with Au and Pt. Therefore, it may be concluded that the adsorption and incorporation of noble metals can not only tailor the work function of VO2, in turn realizing the rational tuning of Tc of VO2, but also stabilize the structures of VO2 thin films. These results provide guidance for further exploration of VO2-based optical switching devices and smart windows.

  3. In vivo MRI Using Laser Polarized Noble Gases.

    NASA Astrophysics Data System (ADS)

    Cates, G. D.

    1996-03-01

    A new technique for magnetic resonance imaging (MRI) will be reviewed in which the noble gas nuclei ^3He and ^129Xe are used as the source of signal instead of the protons in water, as is the case in conventional MRI. The noble gas nuclei are polarized by spin exchange with laser optically pumped alkali-metal vapor. The noble gas, which under appropriate conditions can exhibit spin relaxation times of hours to days, can be inhaled, making it possible to obtain images of the gas space of the lungs of unprecedented resolution. In the case of ^129Xe, substantial quantities of gas dissolves into the blood, opening up the prospect of imaging other parts of the body such as the heart and the brain. Recent results will be reviewed, including lung images of both guinea pigs and humans from a Duke/Princeton collaboration, and spectroscopic measurements of ^129Xe that is dissolved in mouse blood, from the Stony Brook group. Other results will be reviewed as available. Attention will be given to the issues involved in producing large quantities of polarized noble gas for imaging, including a discussion of the use of high power diode laser arrays, a technology that has helped this new MRI technique grow quickly to be of potential clinical value. Finally, future prospects for the diagnosis of disease will be discussed.

  4. Unseen Differences: Cultural Diversity among Hispanic and Latino Students

    ERIC Educational Resources Information Center

    Rodriguez, Claudia; Parrish, Jesse; Parks, Rodney

    2017-01-01

    To promote inclusion and creating a welcoming environment for an increasingly diverse population of undergraduate students, many institutions invest heavily in the development of programs and resources that celebrate diversity and encourage meaningful interactions. Noble though they may be, these efforts often fail to account for the truly…

  5. Noble gases in CH 4-rich gas fields, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Hiyagon, H.; Kennedy, B. M.

    1992-04-01

    The elemental and isotopic compositions of helium, neon, argon, and xenon in twenty-one CH 4-rich natural gas samples from Cretaceous and Devonian reservoirs in the Alberta, Canada, sedimentary basin were measured. In all but a few cases, radiogenic ( 4He, 40Ar, and 131-136Xe) and nucleogenic ( 21,22Ne) isotopes dominated. Based solely on the noble gas composition, two types of natural gas reservoirs are identified. One (Group B) is highly enriched in radiogenic-nucleogenic noble gases and varies little in composition: 3He /4He = 1.5 ± 0.5 × 10 -8, 40Ar /36Ar = 5000-6500 , 40∗Ar /4He = 0.10 , 136∗Xe /4He ~ 0.7 × 10 -9, and 21∗Ne /22∗Ne = 0.452 ± 0.041 (∗ denotes radiogenic or nucleogenic origin; all 4He is radiogenic). High nitrogen content with 4He /N 2 ~ 0.06 is also characteristic of Group B samples. The remaining samples (Group A) contain a radiogenic-nucleogenic component with a different composition and, relative to Group B samples, the extent of enrichment in this component is less and more variable: 3He /4He = 10-70 × 10 -8, 40Ar /36Ar < 1550 , and 40∗Ar /4He ~ 0.25 . The composition of Group B radiogenic-nucleogenic noble gases is consistent with production in crust of average composition. Enrichment in Group B noble gases and nitrogen increases with proximity to the underlying Precambrian basement, consistent with a present-day mass flux into the overlying sedimentary basin. Inferred 40∗Ar /136∗Xe 4He ratios imply a basement source enriched in thorium relative to uranium and potassium (Th/U > 20). Combined, the overall lower total radiogenic-nucleogenic content of Group A reservoirs, the greater variability in composition, and the appearance of Group A noble gases in reservoirs higher in the sedimentary sequence relative to the underlying basement implies that the Group A radiogenic-nucleogenic noble gases are indigenous to the sediments. The most interesting aspect of the Group A noble gases are the very high 3He /4He ratios; ~ 10-70 times greater than expected if derived from average crust. The mantle, surface cosmogenic 3He production, cosmic dust, or production in a lithium-enriched environment as potential sources for the 3He excesses are evaluated. The present data set would seem to rule out cosmogenic 3He. The mantle, cosmic dust, or high Li, however, remain viable candidates. The relative abundances of the nonradiogenic, non-nucleogenic noble gases show no correlation with the Group A-B reservoir classification. Compositional variations indicate three-component mixing between air or an air-like component, 10°C air-saturated water, and a third component enriched in xenon. Apparently, the latter cannot be derived from equilibrium solubility degassing of air-saturated water or oil-water mixtures, and may have been derived from devolatilization of C-rich petroleum source sediments.

  6. Noble fir: a bibliography with abstracts.

    Treesearch

    Jerry F. Franklin

    1962-01-01

    This bibliography on noble fir (Abies procera Rehd.) includes both North American and European references. Its purpose is to list articles for those interested in the species; the most important references have been abstracted. An article concerning California red fir and one concerning Shasta red fir are included, as their silvical characteristics...

  7. MICROWAVE-ASSISTED SHAPE-CONTROLLED BULK SYNTHESIS OF NOBLE NANOCRYSTALS AND THEIR CATALYTIC PROPERTIES

    EPA Science Inventory

    Bulk and shape-controlled synthesis of gold (Au) nanostructures with various shapes such as prisms, cubes and hexagons is described that occurs via microwave-assisted spontaneous reduction of noble metal salts using an aqueous solution of α-D-glucose, sucrose and maltose. The exp...

  8. 171. Credit PG&E. Hamden Holmes Noble, founder of the Keswick ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    171. Credit PG&E. Hamden Holmes Noble, founder of the Keswick Electric Power Company. President of Keswick Power and its successor companies -- Northern California Power Company and Northern California Power Company, Consolidated (until 1915). - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  9. Inculcating Noble Values for Pre-Service Teachers

    ERIC Educational Resources Information Center

    Hasan, Anita Abu; Hamzah, Mohd Isa; Awang, Mohd Mahzan

    2014-01-01

    This study aims to identify the noble values that are being cultivated and practiced in the process of teaching and learning of Ethnic Relations Course for pre-service teachers. Element values investigated including the identity, loyalty, patriotism, tolerance, cooperation and pride as a Malaysian. This quantitative research employs a survey…

  10. Area-Selective Atomic Layer Deposition of Metal Oxides on Noble Metals through Catalytic Oxygen Activation

    PubMed Central

    2017-01-01

    Area-selective atomic layer deposition (ALD) is envisioned to play a key role in next-generation semiconductor processing and can also provide new opportunities in the field of catalysis. In this work, we developed an approach for the area-selective deposition of metal oxides on noble metals. Using O2 gas as co-reactant, area-selective ALD has been achieved by relying on the catalytic dissociation of the oxygen molecules on the noble metal surface, while no deposition takes place on inert surfaces that do not dissociate oxygen (i.e., SiO2, Al2O3, Au). The process is demonstrated for selective deposition of iron oxide and nickel oxide on platinum and iridium substrates. Characterization by in situ spectroscopic ellipsometry, transmission electron microscopy, scanning Auger electron spectroscopy, and X-ray photoelectron spectroscopy confirms a very high degree of selectivity, with a constant ALD growth rate on the catalytic metal substrates and no deposition on inert substrates, even after 300 ALD cycles. We demonstrate the area-selective ALD approach on planar and patterned substrates and use it to prepare Pt/Fe2O3 core/shell nanoparticles. Finally, the approach is proposed to be extendable beyond the materials presented here, specifically to other metal oxide ALD processes for which the precursor requires a strong oxidizing agent for growth. PMID:29503508

  11. Eco-friendly Synthesis of Organics and Nanomaterials ...

    EPA Pesticide Factsheets

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a variety of name reactions2 are the primary beneficiaries as exemplified by the synthesis of N-aryl azacycloalkanes, isoindoles, and dihydropyrazoles, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 1,3-dioxanes, pyrazoles, catalyzed by basic water or polystyrene sulfonic acid (PSSA) in conjunction with microwave (MW) irradiation.2 Vitamins B1, B2, C, and tea and wine polyphenols which function both as reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk quantities of nanomaterials in water.3a Shape-controlled synthesis of noble nanostructures via MW-assisted spontaneous reduction of noble metal salts using sugars will be presented.3b A general method has been developed for the cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic systems; bimetallic systems,3c and SWNT, MWNT, and C-60.3d The strategy is extended to the formation of biodegradable carboxymethylcellulose (CMC) composite films with noble nanometals;3e such metal decoration and alignment of carbon nanotubes in CMC is possible using MW approach3f which also enables the shape-controlled bulk synthesis of Ag and Fe nanorods in poly (ethylene glycol).3g MW hydrothermal process delivers m

  12. Solubilities of noble gases in magnetite - Implications for planetary gases in meteorites.

    NASA Technical Reports Server (NTRS)

    Lancet, M. S.; Anders, E.

    1973-01-01

    Solubilities of noble gases in magnetite were determined by growing magnetite in a noble-gas atmosphere between 450 and 700 K. Henry's law is obeyed at pressures up to .01 atm for He, Ne, Ar and up to .00001 atm for Kr, Xe, with the following distribution coefficients at 500 K: He 0.042, Ne 0.016, Ar 3.6, Kr 1.3, Xe 0.88, some 100 to 100,000 times higher than previous determinations on silicate and fluoride melts. Apparent heats of solution are in sharp contrast with earlier determinations on melts which were small and positive, but are comparable to the values for clathrates. Presumably the gases are held in anion vacancies.

  13. Relationship between self-fertility, allocation of growth, and inbreeding depression in three coniferous species.

    Treesearch

    Frank C. Sorensen

    1999-01-01

    Mortality and growth of self and outcross families of three wind-pollinated, mixed-mating, long-lived conifers, Douglas-fir (Pseudotsuga menziesii), ponderosa pine (Pinus ponderosa), and noble fir (Abies procera) were followed from outplanting to age 26 (25 for noble fir) in spaced plantings at a common...

  14. Holocene noble gas paleothermometry from springs in the Olympic Mountains, Washington.

    EPA Science Inventory

    Noble gas temperature proxies are examined from 52 springs in the Olympic Mountains, Washington. Groundwater flows from seeps to pooled springs at <0.1 L s-1 - 2.5 L s-1 in the Elwha watershed (≈692 km2). About 85% of sampled springs issue from confined fracture reservoirs preser...

  15. Ab initio theory of noble gas atoms in bcc transition metals

    DOE PAGES

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; ...

    2018-01-01

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe).

  16. The Origin of Noble Gas Isotopic Heterogeneity in Icelandic Basalts

    NASA Technical Reports Server (NTRS)

    Dixon, E. T.; Honda, M.; McDougall, I.

    2001-01-01

    Two models for generation of heterogeneous He, Ne and Ar isotopic ratios in Icelandic basalts are evaluated using a mixing model and the observed noble gas elemental ratios in Icelandic basalts,Ocean island Basalt (OIBs) and Mid-Ocean Ridge Basalt (MORBs). Additional information is contained in the original extended abstract.

  17. Noble Gases in the Hamlet Meteorite (LL4)

    NASA Astrophysics Data System (ADS)

    Amari, S.; Sabe, Y.; Shiraishi, T.; Matsuda, J.

    2014-09-01

    We analyzed noble gases in a bulk sample and an HF-HCl residue of Hamlet (LL4). The Xe composition of the residue shows that no diamond is contained in the residue. The 20Ne/22Ne ratio of Hamlet Ne-Q has been determined to be 11.0 ± 0.5.

  18. 75 FR 5782 - Noble Energy Marketing and Trade Corporation; Supplemental Notice That Initial Market-Based Rate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... Marketing and Trade Corporation; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...-referenced proceeding of Noble Energy Marketing and Trade Corporation's application for market- based rate... electronic submission of protests and interventions in lieu of paper, using the FERC Online links at http...

  19. The Case of the Noble Savage: The Myth That Governance Can Replace Leadership

    ERIC Educational Resources Information Center

    Warner, Linda Sue; Grint, Keith

    2012-01-01

    The presumption of American's noble savage provides the foundation for the creation of one of the world's most recognizable stereotypes--the American Indian. The stereotype, lodged in the minds of most Americans as the Plains Indian warrior, contributed to decades of misunderstanding about leadership in traditional American Indian societies and…

  20. Identification of kinship and occupant status in Mongolian noble burials of the Yuan Dynasty through a multidisciplinary approach

    PubMed Central

    Cui, Yinqiu; Song, Li; Wei, Dong; Pang, Yuhong; Wang, Ning; Ning, Chao; Li, Chunmei; Feng, Binxiao; Tang, Wentao; Li, Hongjie; Ren, Yashan; Zhang, Chunchang; Huang, Yanyi; Hu, Yaowu; Zhou, Hui

    2015-01-01

    The Yuan Dynasty (AD 1271–1368) was the first dynasty in Chinese history where a minority ethnic group (Mongols) ruled. Few cemeteries containing Mongolian nobles have been found owing to their tradition of keeping burial grounds secret and their lack of historical records. Archaeological excavations at the Shuzhuanglou site in the Hebei province of China led to the discovery of 13 skeletons in six separate tombs. The style of the artefacts and burials indicate the cemetery occupants were Mongol nobles. However, the origin, relationships and status of the chief occupant (M1m) are unclear. To shed light on the identity of the principal occupant and resolve the kin relationships between individuals, a multidisciplinary approach was adopted, combining archaeological information, stable isotope data and molecular genetic data. Analysis of autosomal, mitochondrial and Y-chromosomal DNA show that some of the occupants were related. The available evidence strongly suggests that the principal occupant may have been the Mongol noble Korguz. Our study demonstrates the power of a multidisciplinary approach in elucidating information about the inhabitants of ancient historical sites. PMID:25487330

  1. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric

    Super Lewis acids containing the triflate anion (e.g. Hf(OTf)4, Ln(OTf)3, Al(OTf)3) and noble metal catalysts (e.g. Ru/C, Ru/Al2O3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage via selective bonding to etheric oxygens while the noble metal catalysed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt% of the hydrocarbons produced with this catalyticmore » system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates via protonating hydroxyls and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalysed by super Lewis acids.« less

  2. Ab initio molecular orbital studies of the vibrational spectra of the van der Waals complexes of boron trifluoride with the noble gases.

    PubMed

    Ford, Thomas A

    2005-05-01

    The molecular structures, interaction energies, charge transfer properties and vibrational spectra of the van der Waals complexes formed between boron trifluoride and the noble gases neon, argon, krypton and xenon have been computed using second and fourth order Møller-Plesset perturbation theory and the Los Alamos National Laboratory LANL2DZ basis set. The complexes are all symmetric tops, with the noble gas atom acting as a sigma electron donor along the C3 axis of the BF3 molecule. The interaction energies are all vanishingly small, and the amount of charge transferred in each case is of the order of 0.01e. The directions of the wavenumber shifts of the symmetric bending (nu2) and antisymmetric stretching (nu3) modes of the BF3 fragment confirm those determined experimentally, and the shifts are shown to correlate well with the polarizability of the noble gas atom and the inverse sixth power of the intermonomer separation. The nu2 mode is substantially more sensitive to complexation than the nu3 vibration.

  3. A Rapid, Low-Cost Method to Determine Travel Times at Managed Aquifer Recharge Operations Using Noble Gas Tracers

    NASA Astrophysics Data System (ADS)

    Moran, J. E.; Visser, A.; Singleton, M. J.; Esser, B. K.; Halliwell, M.; Hillegonds, D. J.

    2012-12-01

    Managed aquifer recharge is a key component for the sustainable use of surface water and groundwater in the arid western U.S. When recycled water is a recharge water source, subsurface residence time, required for bacteria and virus deactivation, is best verified by application of an extrinsic tracer. Desirable tracer properties include: no real or perceived health risk, inexpensive even for a large volume of tagged water, large dynamic range, efficient introduction, convenient sampling methods, and rapid, low-cost analysis. We have developed and tested a dissolved noble gas tracer technique ideally suited for tracing large water volumes at managed aquifer recharge facilities. In an application of the method at a water district's facilities in the San Francisco Bay area, Xenon was introduced into a 106 m3 pond over a period of 7 days using a 300 m length of gas-permeable silicone tubing. Samples from the pond, near-field shallow monitoring wells, and production wells about 400 m from the recharge pond were analyzed for dissolved Xe by noble gas membrane inlet mass spectrometry (NGMIMS). The NGMIMS uses a syringe pump, gas-permeable membrane inlet, and quadrupole residual gas analyzer for measurement of noble gas concentrations. Samples are collected in VOA vials, and analysis can be carried out in real-time, with a measurement uncertainty of about 5% for Xe. Tracer first appeared in a production well 136 days after starting the tracer introduction at 0.7% (C/C0) of the peak pond xenon concentration. The cost of the tracer is about US650/106 m3 water, and the NGMIMS was assembled with parts totaling approximately US50,000, making application of the tracer method feasible for most managed aquifer recharge projects. This project is part of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Program.

  4. Fluorine substituted (Mn,Ir)O 2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis

    DOE PAGES

    Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan; ...

    2017-03-20

    Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less

  5. Fluorine substituted (Mn,Ir)O 2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan

    Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less

  6. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    NASA Astrophysics Data System (ADS)

    Fu, Li-juan; Rizzo, Antonio; Vaara, Juha

    2013-11-01

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: 21Ne, 83Kr, and 131Xe. The magnitude of the resulting ellipticities is predicted to be 10-4-10-6 rad/(M cm) for fully spin-polarized nuclei. These should be detectable in the Voigt setup. Particularly interesting is the case of 131Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.

  7. Structural Measurements from Images of Noble Gas Diffusion

    NASA Astrophysics Data System (ADS)

    Cadman, Robert V.; Kadlecek, Stephen J.; Emami, Kiarash; MacDuffie Woodburn, John; Vahdat, Vahid; Ishii, Masaru; Rizi, Rahim R.

    2009-03-01

    Magnetic resonance imaging of externally polarized noble gases such as ^3He has been used for pulmonary imaging for more than a decade. Because gas diffusion is impeded by the alveoli, the diffusion coefficient of gas in the lung, measured on a time scale of milliseconds, is reduced compared to that of the same gas mixture in the absence of restrictions. When the alveolar walls decay, as in emphysema, diffusivity in the lung increases. In this paper, the relationship between diffusion measurements and the size of the restricting structures will be discussed. The simple case of diffusion in an impermeable cylinder, a structure similar to the upper respiratory airways in mammals, has been studied. A procedure will be presented by which airways of order 2 mm in diameter may be accurately measured; demonstration experiments with plastic tubes will also be presented. The additional developments needed before this technique becomes practical will be briefly discussed.

  8. SBLOCA outside containment at Browns Ferry Unit One. Volume 2. Iodine, cesium, and noble gas distribution and release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.P.; Weber, C.F.; Wright, A.L.

    1983-09-01

    This is the second volume of a two-part study regarding the response of Browns Ferry Unit 1 to a postulated break in the scram discharge volume of the control rod drive hydraulic system immediately following a scram. The material in this second volume pertains to the second aspect of the study, the resultant transport of fission products from their original locations in the fuel to a series of repositories within the primary system, the primary and secondary containment structures, and ultimately the release of a small portion to the environment. Transport models are developed for the noble gases krypton andmore » xenon and for iodine and cesium to describe the release of these fission products from the overheated fuel and their subsequent movement under the conditions predicted to exist in the various repositories during the course of the accident.« less

  9. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    USGS Publications Warehouse

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-01-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  10. Primordial and cosmogenic noble gases in the Sutter's Mill CM chondrite

    NASA Astrophysics Data System (ADS)

    Okazaki, Ryuji; Nagao, Keisuke

    2017-04-01

    The Sutter's Mill (SM) CM chondrite fell in California in 2012. The CM chondrite group is one of the most primitive, consisting of unequilibrated minerals, but some of them have experienced complex processes occurring on their parent body, such as aqueous alteration, thermal metamorphism, brecciation, and solar wind implantation. We have determined noble gas concentrations and isotopic compositions for SM samples using a stepped heating gas extraction method, in addition to mineralogical observation of the specimens. The primordial noble gas abundances, especially the P3 component trapped in presolar diamonds, confirm the classification of SM as a CM chondrite. The mineralogical features of SM indicate that it experienced mild thermal alteration after aqueous alteration. The heating temperature is estimated to be <350 °C based on the release profile of primordial 36Ar. The presence of a Ni-rich Fe-Ni metal suggests that a minor part of SM has experienced heating at >500 °C. The variation in the heating temperature of thermal alteration is consistent with the texture as a breccia. The heterogeneous distribution of solar wind noble gases is also consistent with it. The cosmic-ray exposure (CRE) age for SM is calculated to be 0.059 ± 0.023 Myr based on cosmogenic 21Ne by considering trapped noble gases as solar wind, the terrestrial atmosphere, P1 (or Q), P3, A2, and G components. The CRE age lies at the shorter end of the CRE age distribution of the CM chondrite group.

  11. Fullerenes and interplanetary dust at the Permian-Triassic boundary.

    PubMed

    Poreda, Robert J; Becker, Luann

    2003-01-01

    We recently presented new evidence that an impact occurred approximately 250 million years ago at the Permian-Triassic boundary (PTB), triggering the most severe mass extinction in the history of life on Earth. We used a new extraterrestrial tracer, fullerene, a third carbon carrier of noble gases besides diamond and graphite. By exploiting the unique properties of this molecule to trap noble gases inside of its caged structure (helium, neon, argon), the origin of the fullerenes can be determined. Here, we present new evidence for fullerenes with extraterrestrial noble gases in the PTB at Graphite Peak, Antarctica, similar to PTB fullerenes from Meishan, China and Sasayama, Japan. In addition, we isolated a (3)He-rich magnetic carrier phase in three fractions from the Graphite Peak section. The noble gases in this magnetic fraction were similar to zero-age deep-sea interplanetary dust particles (IDPs) and some magnetic grains isolated from the Cretaceous-Tertiary boundary. The helium and neon isotopic compositions for both the bulk Graphite Peak sediments and an isolated magnetic fraction from the bulk material are consistent with solar-type gases measured in zero-age deep-sea sediments and point to a common source, namely, the flux of IDPs to the Earth's surface. In this instance, the IDP noble gas signature for the bulk sediment can be uniquely decoupled from fullerene, demonstrating that two separate tracers are present (direct flux of IDPs for (3)He vs. giant impact for fullerene).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, R.E.; Bennett, L.H.

    This review is concerned with similarities and differences between noble and transition metal alloying. Two classes of experiments are inspected: impurity Moessbauer isomer shifts and photoemission of core and valence electron levels. At first glance they would appear to be in conflict concerning the direction of any charge transfer. In noble metal alloys this is associated with changes in d-electron count which are compensated by the non-d electrons. The sign of the change in d occupation is readily understood in terms of d band hybridization. The normalized isomer shifts show that the balance of d and non-d transfer terms mustmore » vary across a transition metal row and that while the noble metals, when acting as impurities, act much like the transition elements immediately adjacent to them, the charge transfer, when the noble metals are hosts, is quite different. These observations, taken with recent band theory population analyses, indicate that three charge transfer terms, those associated with d, s and p-like charge, have visible effects on alloying properties. The review also considers the long standing discrepancy between the elemental fcc-bcc structural energy differences of Kaufman and Bernstein which are standardly employed in phase diagram constructs versus those appropriate to the Engel-Brewer model of transition and noble metals. Comparison with recent 5d metal estimates, based on electron band theory total energy calculations, show one region of agreement with the Engel-Brewer values and another of agreement with Kaufman and Bernstein.« less

  13. Reservoir Characterization using geostatistical and numerical modeling in GIS with noble gas geochemistry

    NASA Astrophysics Data System (ADS)

    Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.

    2013-12-01

    The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or other reserves) and improve oil field management (e.g. perforating, drilling, EOR and reserves estimation)

  14. Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts.

    PubMed

    Feng, Liang-Liang; Li, Guo-Dong; Liu, Yipu; Wu, Yuanyuan; Chen, Hui; Wang, Yun; Zou, Yong-Cun; Wang, Dejun; Zou, Xiaoxin

    2015-01-14

    Splitting water to produce hydrogen requires the development of non-noble-metal catalysts that are able to make this reaction feasible and energy efficient. Herein, we show that cobalt pentlandite (Co9S8) nanoparticles can serve as an electrochemically active, noble-metal-free material toward hydrogen evolution reaction, and they work stably in neutral solution (pH 7) but not in acidic (pH 0) and basic (pH 14) media. We, therefore, further present a carbon-armoring strategy to increase the durability and activity of Co9S8 over a wider pH range. In particular, carbon-armored Co9S8 nanoparticles (Co9S8@C) are prepared by direct thermal treatment of a mixture of cobalt nitrate and trithiocyanuric acid at 700 °C in N2 atmosphere. Trithiocyanuric acid functions as both sulfur and carbon sources in the reaction system. The resulting Co9S8@C material operates well with high activity over a broad pH range, from pH 0 to 14, and gives nearly 100% Faradaic yield during hydrogen evolution reaction under acidic (pH 0), neutral (pH 7), and basic (pH 14) media. To the best of our knowledge, this is the first time that a transition-metal chalcogenide material is shown to have all-pH efficient and durable electrocatalytic activity. Identifying Co9S8 as the catalytically active phase and developing carbon-armoring as the improvement strategy are anticipated to give a fresh impetus to rational design of high-performance noble-metal-free water splitting catalysts.

  15. Ni supported CdIn2S4 spongy-like spheres: a noble metal free high-performance sunlight driven photocatalyst for hydrogen production.

    PubMed

    Vu, Manh-Hiep; Nguyen, Chinh-Chien; Sakar, M; Do, Trong-On

    2017-11-08

    Nickel supported CdIn 2 S 4 (Ni-CIS) spongy-like spheres have been developed using alcoholysis followed by a sulfidation process. The formation of nanocrystalline-single phase CdIn 2 S 4 was confirmed using X-ray diffraction studies. Electron microscopy images showed that the spongy-like spheres are composed of CdIn 2 S 4 nanoparticles with average sizes of around 25 nm. X-ray photoelectron spectra indicated the presence of elements with their respective stable oxidation states that led to the formation of single phase CdIn 2 S 4 with enhanced structural integrity and chemical composition. The absorption spectra indicated the visible light activity of the material and the band gap energy is deduced to be 2.23 eV. The photocatalytic efficiency of the synthesized Ni-CIS in relation to its ability to produce hydrogen under solar light irradiation is estimated to be 1060 μmol g -1 h -1 , which is around 5.5 and 3.6 fold higher than that of Pt-CIS (180 μmol g -1 h -1 ) and Pd-CIS (290 μmol g -1 h -1 ), respectively, as obtained in this study. Accordingly, the mechanism of the observed efficiency of the Ni-CIS nanoparticles is also proposed. The recyclability test showed consistent hydrogen evolution efficiency over 3 cycles (9 h), which essentially revealed the excellent photo- and chemical-stability of the photocatalyst. The strategy to utilize non-noble metals such as Ni, rather than noble-metals, as a co-catalyst opens up a new possibility to develop low cost and high-performance sunlight-driven photocatalysts as achieved in this study.

  16. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alternations in CNS Development

    DTIC Science & Technology

    2009-10-01

    2004. MECP2 structural and 3’-UTR variants in schizophrenia , autism and other psychiatric diseases: a possible association with autism. Am J Med...inhibition, thus potentially enabling enhancement of remyelination. Role: PI Award letter dated 12/11/06 Noble (PI) Cure Autism Now Foundation 02/05

  17. Flexible, Carbon-Based Ohmic Contacts for Organic Transistors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik

    2005-01-01

    A low-temperature process for fabricating flexible, ohmic contacts for use in organic thin-film transistors (OTFTs) has been developed. Typical drainsource contact materials used previously for OTFTs include (1) vacuum-deposited noble-metal contacts and (2) solution-deposited intrinsically conducting molecular or polymeric contacts. Both of these approaches, however, have serious drawbacks.

  18. Investigation of the volatile species in the lunar soil

    NASA Astrophysics Data System (ADS)

    Wurz, Peter; Hofer, Lukas; Tulej, Marek; Lasi, Davide; Cabane, Michel; Cosica, David; Gerasimov, Mikhail; Rodinov, Daniel

    2013-04-01

    Two spacecraft, Luna-Glob and Luna-Resource of Roskosmos (Russia), will be landing on the lunar south pole in 2016 and 2018, respectively. These spacecraft will carry a complex scientific payload. Part of the scientific instrumentation is the gas-chromatographic mass-spectrometric complex, which combines a Thermal Differential Analyser (TDA), a Gas Chromatograph (GC), and a mass spectrometer (MS). This instrument is dedicated to the investigation of the volatiles in the lunar soil, its chemical composition, the fraction of water and organic species, and the identification of noble gases. Measurement of isotopic composition will be performed of CHON elements (13C/12C, D/H, 17O/16O, 18O/16O, 15N/14N) and noble gases. We developed a prototype GC-MS instrument for these missions where the GC part is heritage from the Phobos Grunt mission of Roskosmos and the MS part is a complete new development for the Luna missions. We have carried out several GC-MS measurements on calibration gas mixtures that demonstrate that this instrument fulfills the scientific requirements for the Luna missions.

  19. Development of high efficiency Versatile Arc Discharge Ion Source at CERN ISOLDE.

    PubMed

    Penescu, L; Catherall, R; Lettry, J; Stora, T

    2010-02-01

    We report here recent developments of Forced Electron Beam Induced Arc Discharge (FEBIAD) ion sources at the ISOLDE radioactive ion beam facility, hosted at the European Organization for Nuclear Research (CERN). As a result of the propositions to improve the ionization efficiency, two FEBIAD prototypes have been produced and successfully tested in 2008. Off-line studies showed that the 1+ ionization efficiencies for noble gases are 5-20 times larger than with the standard ISOLDE FEBIAD ion sources and reach 60% for radon, which allowed the identification at ISOLDE of (229)Rn, an isotope that had never previously been observed in the laboratory. A factor of 3 increase is also expected for the ionization efficiency of the other elements. The experimental and theoretical methodology is presented. The theoretical model, which gives precise insights on the processes affecting the ionization, is used to design optimal sources (grouped under the name of VADIS--Versatile Arc Discharge Ion Source) for the different chemical classes of the produced isotopes, as already demonstrated for the noble gases.

  20. Cucurbit[6]uril: A Possible Host for Noble Gas Atoms.

    PubMed

    Pan, Sudip; Mandal, Subhajit; Chattaraj, Pratim K

    2015-08-27

    Density functional and ab initio molecular dynamics studies are carried out to investigate the stability of noble gas encapsulated cucurbit[6]uril (CB[6]) systems. Interaction energy, dissociation energy and dissociation enthalpy are calculated to understand the efficacy of CB[6] in encapsulating noble gas atoms. CB[6] could encapsulate up to three Ne atoms having dissociation energy (zero-point energy corrected) in the range of 3.4-4.1 kcal/mol, whereas due to larger size, only one Ar or Kr atom encapsulated analogues would be viable. The dissociation energy value for the second Ar atom is only 1.0 kcal/mol. On the other hand, the same for the second Kr is -0.5 kcal/mol, implying the instability of the system. The noble gas dissociation processes are endothermic in nature, which increases gradually along Ne to Kr. Kr encapsulated analogue is found to be viable at room temperature. However, low temperature is needed for Ne and Ar encapsulated analogues. The temperature-pressure phase diagram highlights the region in which association and dissociation processes of Kr@CB[6] would be favorable. At ambient temperature and pressure, CB[6] may be used as an effective noble gas carrier. Wiberg bond indices, noncovalent interaction indices, electron density, and energy decomposition analyses are used to explore the nature of interaction between noble gas atoms and CB[6]. Dispersion interaction is found to be the most important term in the attraction energy. Ne and Ar atoms in one Ng entrapped analogue are found to stay inside the cavity of CB[6] throughout the simulation at 298 K. However, during simulation Ng2 units in Ng2@CB[6] flip toward the open faces of CB[6]. After 1 ps, one Ne atom of Ne3@CB[6] almost reaches the open face keeping other two Ne atoms inside. At lower temperature (77 K), all the Ng atoms in Ngn@CB[6] remain well inside the cavity of CB[6] throughout the simulation time (1 ps).

  1. Noble Gases as tracers of fluid migration in the Haynesville shale and overlying strata

    NASA Astrophysics Data System (ADS)

    Byrne, D. J.; Barry, P. H.; Lawson, M.; Ballentine, C. J.

    2017-12-01

    Noble gases are ideal tracers of physical processes and fluid provenance in crustal systems. Due to their inert nature, they are unaffected by chemical alteration, redox, or biological phenomena that fractionate other geochemical tracers. Noble gas analysis has been used to quantify fluid provenance, interactions, and ages in petroleum systems [1,2], but the effects of hydrocarbon migration on noble gas signatures have not been directly observed. The Haynesville Shale (East Texas & Louisiana), is exploited commercially for unconventional shale gas, but also acts as the source-rock for overlying conventional reservoirs. We present noble gas isotope and abundance data in samples collected from 9 natural gas wells sourced from the Haynesville Shale, as well as 21 from reservoirs in the overlying Cotton Valley (n=7), Travis Peak (n=9), and James (n=5) groups. Using a stratigraphic model, we observe systematic changes in the noble gas signatures as the fluids migrate from the Haynesville source rock to the overlying conventional accumulations. Helium isotope ratios (3He/4He) are strongly radiogenic in the Haynesville and stratigraphically older conventional reservoirs, with the younger reservoirs showing evidence of a mantle helium input. Argon isotope ratios (40Ar/36Ar) are strongly correlated with high 3He/4He, suggesting a similar provenance for radiogenic 40Ar and mantle 3He. Concentrations of groundwater-derived 36Ar are consistently higher in the conventional reservoirs than in the Haynesville shale, reflecting the greater interaction with groundwater during migration. However, 20Ne/36Ar ratios are not significantly different, suggesting that solubility-dependent partitioning is not simply dependent on vertical or horizontal migration distance. Krypton and xenon abundances are higher than expected for groundwater in all samples, a phenomenon that has been observed in many other hydrocarbon accumulations [3]. The excess Xe/Kr ratio is highest in the Haynesville itself, suggesting that this excess Xe and Kr originates from within the source-rock, and is subsequently shifted towards normal Xe/Kr values by mixing with groundwater-derived noble gases during migration. [1] Barry et al., 2016, GCA 194, 291-309; [2] Darrah et al., 2014, PNAS 111, 14076-81; [3] Zhou et al., 2005, GCA 69, 5413-28

  2. Hydration of the Atlantis Massif: Halogen, Noble Gas and In-Situ δ18O Constraints

    NASA Astrophysics Data System (ADS)

    Williams, M. J.; Kendrick, M. A.; Rubatto, D.

    2017-12-01

    A combination of halogen (Cl, Br, I), noble gases (He, Ne, Ar, Kr and Xe) and in situ oxygen isotope analysis have been utilized to investigate the fluid-mobile element record of hydration and alteration processes at the Atlantis Massif (30°N on the Mid-Atlantic Ridge). The sample suite investigated includes serpentinite, talc-amphibole ± chlorite schist and hydrated gabbro recovered by seafloor drilling undertaken at sites on a transect across the Atlantis Massif during IODP Expedition 357. Serpentine mesh and veins analysed in-situ by SHRIMP SI exhibit δ18O from 6‰ down to ≈0‰, suggesting serpentinization temperatures of 150 to >280°C and water/rock ratios >5. Differences of 1.5-2.5‰ are observed between adjacent generations of serpentine, but the δ18O range is similar at each investigated drilling site. Halogen and noble gas abundances in serpentinites, talc-amphibole schist and hydrated gabbro have been measured by noble gas mass spectrometry of both irradiated and non-irradiated samples. Serpentinites contain low abundances of halogens and noble gases (e.g. 70-430 ppm Cl, 4.7-12.2 x 10-14 mol/g 36Ar) relative to other seafloor serpentinites. The samples have systematically different Br/Cl and I/Cl ratios related to their mineralogy. Serpentinites retain mantle-like Br/Cl with a wide variation in I/Cl that stretches toward seawater values. Talc-amphibole schists exhibit depletion of Br and I relative to Cl with increasing Cl abundances, suggesting tremolite exerts strong control on halogen abundance ratios. Serpentinites show no evidence of interaction with halogen-rich sedimentary pore fluids. Iodine abundances are variable across serpentinites, and are decoupled from Br and Cl; iodine enrichment (up to 530 ppb) is observed within relatively oxidised and clay-bearing samples. Serpentinized harzburgites exhibit distinct depletion of Kr and Xe relative to atmospheric 36Ar in seawater. Oxygen isotope compositions and low abundances of both halogens and noble gases are consistent with high water/rock ratios. Successive generations of serpentine have δ18O trends suggesting exposure to higher W/R ratios during exhumation and deformation of the massif. Low noble gas abundances of may also be influenced by thermal loss related to impregnation and intrusion of the Massif by gabbros and dolerites.

  3. Diamond film growth from fullerene precursors

    DOEpatents

    Gruen, Dieter M.; Liu, Shengzhong; Krauss, Alan R.; Pan, Xianzheng

    1997-01-01

    A method and system for manufacturing diamond film. The method involves forming a fullerene vapor, providing a noble gas stream and combining the gas with the fullerene vapor, passing the combined fullerene vapor and noble gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the fullerene and deposition of a diamond film on a substrate.

  4. 77 FR 10707 - Safety Zone; NOBLE DISCOVERER, Outer Continental Shelf Drillship, Chukchi and Beaufort Seas, Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ...-AA00 Safety Zone; NOBLE DISCOVERER, Outer Continental Shelf Drillship, Chukchi and Beaufort Seas... Chukchi and Beaufort Seas Outer Continental Shelf, Alaska, from 12:01 a.m. on July 1, 2012 through 11:59 p... order to drill exploratory wells in several prospects located in the Chukchi and Beaufort Seas during...

  5. CONTROL ROD ALLOY CONTAINING NOBLE METAL ADDITIONS

    DOEpatents

    Anderson, W.K.; Ray, W.E.

    1960-05-01

    Silver-base alloys suitable for use in the fabrication of control rods for neutronic reactors are given. The alloy consists of from 0.5 wt.% to about 1.5 wt.% of a noble metal of platinum, ruthenium, rhodium, osmium, or palladium, up to 10 wt.% of cadmium, from 2 to 20 wt.% indium, the balance being silver.

  6. Natural Death and the Noble Savage.

    ERIC Educational Resources Information Center

    Walter, Tony

    1995-01-01

    The belief that dying and grieving are natural processes is widely held in modern bereavement care. Examines four assumption often made in this connection: (1) most primitive cultures deal with death in an accepting way; (2) this way is different than our own; (3) it is a good and noble way; and (4) traditional societies see death as natural. (JBJ)

  7. 77 FR 38718 - Safety Zone; NOBLE DISCOVERER, Outer Continental Shelf Drillship, Chukchi and/or Beaufort Seas, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Beaufort Seas, Alaska (See Table 1). Table 1--Prospect Locations Prospect Well Area Block Lease No... requirements. The planned exploration drilling in the identified lease blocks will be conducted with the NOBLE... outer boundaries of the safety zone to include the anchor chain extending from the OCS facilities; one...

  8. Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy

    DOEpatents

    Rhodes, Mark

    2013-12-17

    A method of measuring a temperature of a noble gas in a chamber includes providing the noble gas in the chamber. The noble gas is characterized by a pressure and a temperature. The method also includes directing a first laser beam into the chamber and directing a second laser beam into the chamber. The first laser beam is characterized by a first frequency and the second laser beam is characterized by a second frequency. The method further includes converting at least a portion of the first laser beam and the second laser beam into a coherent anti-Stokes beam, measuring a Doppler broadening of the coherent anti-Stokes beam, and computing the temperature using the Doppler broadening.

  9. Perspectives of hyperpolarized noble gas MRI beyond 3He

    PubMed Central

    Lilburn, David M.L.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-01-01

    Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp 3He. A particular focus are the many intriguing experiments with 129Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp 83Kr MRI is discussed. PMID:23290627

  10. Potential of metal-organic frameworks for separation of xenon and krypton.

    PubMed

    Banerjee, Debasis; Cairns, Amy J; Liu, Jian; Motkuri, Radha K; Nune, Satish K; Fernandez, Carlos A; Krishna, Rajamani; Strachan, Denis M; Thallapally, Praveen K

    2015-02-17

    CONSPECTUS: The total world energy demand is predicted to rise significantly over the next few decades, primarily driven by the continuous growth of the developing world. With rapid depletion of nonrenewable traditional fossil fuels, which currently account for almost 86% of the worldwide energy output, the search for viable alternative energy resources is becoming more important from a national security and economic development standpoint. Nuclear energy, an emission-free, high-energy-density source produced by means of controlled nuclear fission, is often considered as a clean, affordable alternative to fossil fuel. However, the successful installation of an efficient and economically viable industrial-scale process to properly sequester and mitigate the nuclear-fission-related, highly radioactive waste (e.g., used nuclear fuel (UNF)) is a prerequisite for any further development of nuclear energy in the near future. Reprocessing of UNF is often considered to be a logical way to minimize the volume of high-level radioactive waste, though the generation of volatile radionuclides during reprocessing raises a significant engineering challenge for its successful implementation. The volatile radionuclides include but are not limited to noble gases (predominately isotopes of Xe and Kr) and must be captured during the process to avoid being released into the environment. Currently, energy-intensive cryogenic distillation is the primary means to capture and separate radioactive noble gas isotopes during UNF reprocessing. A similar cryogenic process is implemented during commercial production of noble gases though removal from air. In light of their high commercial values, particularly in lighting and medical industries, and associated high production costs, alternate approaches for Xe/Kr capture and storage are of contemporary research interest. The proposed pathways for Xe/Kr removal and capture can essentially be divided in two categories: selective absorption by dissolution in solvents and physisorption on porous materials. Physisorption-based separation and adsorption on highly functional porous materials are promising alternatives to the energy-intensive cryogenic distillation process, where the adsorbents are characterized by high surface areas and thus high removal capacities and often can be chemically fine-tuned to enhance the adsorbate-adsorbent interactions for optimum selectivity. Several traditional porous adsorbents such as zeolites and activated carbon have been tested for noble gas capture but have shown low capacity, selectivity, and lack of modularity. Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are an emerging class of solid-state adsorbents that can be tailor-made for applications ranging from gas adsorption and separation to catalysis and sensing. Herein we give a concise summary of the background and development of Xe/Kr separation technologies with a focus on UNF reprocessing and the prospects of MOF-based adsorbents for that particular application.

  11. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cellmore » technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF[sub 2], ThO[sub 2], YDT(0.85ThO[sub 2]-0.15YO[sub 1.5]), and LDT(0.85ThO[sub 2]- 0.15LaO[sub 1.5]) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.« less

  12. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbinghaus, Bartley B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cellmore » technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF 2, ThO 2, YDT(0.85ThO 2-0.15YO 1.5), and LDT(0.85ThO 2- 0.15LaO 1.5) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.« less

  13. Modeling of carbon monoxide oxidation kinetics over NASA carbon dioxide laser catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1989-01-01

    The recombination of CO and O2 formed by the dissociation of CO2 in a sealed CO2 laser discharge zone is examined. Conventional base-metal-oxide catalysts and conventional noble-metal catalysts are not effective in recombining the low O2/CO ratio at the low temperatures used by the lasers. The use of Pt/SnO2 as the noble-metal reducible-oxide (NMRO), or other related materials from Group VIIIA and IB and SnO2 interact synergistically to produce a catalytic activity that is substantially higher than either componet separately. The Pt/SnO2 and Pd/SnO2 were reported to have significant reaction rates at temperatures as low as -27 C, conditions under which conventional catalysts are inactive. The gas temperature range of lasers is 0 + or - 40 C. There are three general ways in which the NMRO composite materials can interact synergistically: one component altering the properties of another component; the two components each providing independent catalytic functions in a complex reaction mechanism; and the formation of catalytic sites through the combination of two components at the atomic level. All three of these interactions may be important in low temperature CO oxidation over NMRO catalysts. The effect of the noble metal on the oxide is discussed first, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  14. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides.

    PubMed

    Kulesza, Pawel J; Pieta, Izabela S; Rutkowska, Iwona A; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A

    2013-11-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO 3 , MoO 3 , TiO 2 , ZrO 2 , V 2 O 5 , and CeO 2 ) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems.

  15. Separation of metallic residues from the dissolution of a high-burnup BWR fuel using nitrogen trifluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNamara, Bruce K.; Buck, Edgar C.; Soderquist, Chuck Z.

    2014-03-23

    Nitrogen trifluoride (NF 3) was used to fluorinate the metallic residue from the dissolution of a high burnup, boiling water reactor fuel (~70 MWd/kgU). The metallic residue included the noble metal phase (containing ruthenium, rhodium, palladium, technetium, and molybdenum), and smaller amounts of zirconium, selenium, tellurium, and silver. Exposing the noble metal phase to 10% NF 3 in argon between 400 and 550°C, removed molybdenum and technetium near 400°C as their volatile fluorides, and ruthenium near 500C as its volatile fluoride. The events were thermally and temporally distinct and the conditions specified are a recipe to separate these transition metalsmore » from each other and from the noble metal phase nonvolatile residue. Depletion of the volatile fluorides resulted in substantial exothermicity. Thermal excursion behavior was recorded under non-adiabatic, isothermal conditions that typically minimize heat release. Physical characterization of the metallic noble phase and its thermal behavior are consistent with high kinetic velocity reactions encouraged by the nanoparticulate phase or perhaps catalytic influences of the mixed platinum metals with nearly pure phase structure. Post-fluorination, only two phases were present in the residual nonvolatile fraction. These were identified as a nano-crystalline, metallic palladium cubic phase and a hexagonal rhodium trifluoride (RhF 3) phase. The two phases were distinct as the sub-µm crystallites of metallic palladium were in contrast to the RhF 3 phase, which grew from the parent nano-crystalline noble-metal phase during fluorination, to acicular crystals exceeding 20-µm in length.« less

  16. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides

    PubMed Central

    Kulesza, Pawel J.; Pieta, Izabela S.; Rutkowska, Iwona A.; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A.

    2013-01-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO3, MoO3, TiO2, ZrO2, V2O5, and CeO2) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems. PMID:24443590

  17. The Development of Fire Support Coordination for Amphibious Operations between World Wars I and II

    DTIC Science & Technology

    1987-06-05

    Thus I do not Intend to substitute " Invest -gative norms" or theoretical "research models" for basic research and deductive reasoning. Since the...Noble also stated that the doctrine which was prepared was fundemental and only I prescribed that something be accomplished. This meant that all

  18. PELS: A Noble Architecture and Framework for a Personal E-Learning System (PELS)

    ERIC Educational Resources Information Center

    Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn

    2014-01-01

    This article presents a personal e-learning system architecture in the context of a social network environment. The main objective of a personal e-learning system is to develop individual skills on a specific subject and share resources with peers. The authors' system architecture defines the organisation and management of a personal learning…

  19. The Brightly Illuminated Path: Facilitating an OER Program at Community College

    ERIC Educational Resources Information Center

    Blick, William; Marcus, Sandra

    2017-01-01

    The use of Open Education Resources represents a noble cause, but the idea often remains elusive for many faculty members. In 2015, librarians at Queensborough Community College of the City University of New York, implemented a campaign to promote and facilitate the use and development of OERs. The primary objective was to reduce the growing…

  20. Cultural Literacy Based Critical Reading Teaching Material with Active Reader Strategy for Junior High School

    ERIC Educational Resources Information Center

    Damaianti, Vismaia S.; Damaianti, Lira Fessia; Mulyati, Yeti

    2017-01-01

    This article describes the findings of a study aimed at producing a set of cultural literacy-oriented critical reading teaching material. This material is developed as a countermeasure to the increasingly thin sensitivity of society, especially the students toward noble values of religion, custom, and culture. With this material student get a…

  1. Diamond film growth from fullerene precursors

    DOEpatents

    Gruen, D.M.; Liu, S.; Krauss, A.R.; Pan, X.

    1997-04-15

    A method and system are disclosed for manufacturing diamond film. The method involves forming a fullerene vapor, providing a noble gas stream and combining the gas with the fullerene vapor, passing the combined fullerene vapor and noble gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the fullerene and deposition of a diamond film on a substrate. 10 figs.

  2. A Critique of Confucian Learning: On Learners and Knowledge

    ERIC Educational Resources Information Center

    Hung, Ruyu

    2016-01-01

    In Confucianism, the subject of learning is one of the most important concerns. For centuries, Confucian thinkers have been devoted to seeking answers to questions such as, how to be a morally noble and decent human being? (??), how to be a true and moral human being--a noble man? (junzi, ??) and how to learn to be a junzi? A "junzi" can…

  3. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  4. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    DOE PAGES

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric; ...

    2017-11-14

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4, Ln(OTf) 3, In(OTf) 3, Al(OTf) 3] and noble metal catalysts (e.g., Ru/C, Ru/Al2O 3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt %more » of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalyzed by super Lewis acids.« less

  5. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4, Ln(OTf) 3, In(OTf) 3, Al(OTf) 3] and noble metal catalysts (e.g., Ru/C, Ru/Al2O 3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt %more » of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalyzed by super Lewis acids.« less

  6. Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong

    2013-04-01

    Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  7. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE PAGES

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; ...

    2016-07-06

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  8. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    PubMed Central

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  9. Possible solar noble-gas component in Hawaiian basalts

    USGS Publications Warehouse

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.

    1991-01-01

    THE noble-gas elemental and isotopic composition in the Earth is significantly different from that of the present atmosphere, and provides an important clue to the origin and history of the Earth and its atmosphere. Possible candidates for the noble-gas composition of the primordial Earth include a solar-like component, a planetary-like component (as observed in primitive meteorites) and a component similar in composition to the present atmosphere. In an attempt to identify the contributions of such components, we have measured isotope ratios of helium and neon in fresh basaltic glasses dredged from Loihi seamount and the East Rift Zone of Kilauea1-3. We find a systematic enrichment in 20Ne and 21Ne relative to 22Ne, compared with atmospheric neon. The helium and neon isotope signatures observed in our samples can be explained by mixing of solar, present atmospheric, radiogenic and nucleogenic components. These data suggest that the noble-gas isotopic composition of the mantle source of the Hawaiian plume is different from that of the present atmosphere, and that it includes a significant solar-like component. We infer that this component was acquired during the formation of the Earth.

  10. Applications of UV/Vis Spectroscopy in Characterization and Catalytic Activity of Noble Metal Nanoparticles Fabricated in Responsive Polymer Microgels: A Review.

    PubMed

    Begum, Robina; Farooqi, Zahoor H; Naseem, Khalida; Ali, Faisal; Batool, Madeeha; Xiao, Jianliang; Irfan, Ahmad

    2018-11-02

    Noble metal nanoparticles loaded smart polymer microgels have gained much attention due to fascinating combination of their properties in a single system. These hybrid systems have been extensively used in biomedicines, photonics, and catalysis. Hybrid microgels are characterized by using various techniques but UV/Vis spectroscopy is an easily available technique for characterization of noble metal nanoparticles loaded microgels. This technique is widely used for determination of size and shape of metal nanoparticles. The tuning of optical properties of noble metal nanoparticles under various stimuli can be studied using UV/Vis spectroscopic method. Time course UV/Vis spectroscopy can also be used to monitor the kinetics of swelling and deswelling of microgels and hybrid microgels. Growth of metal nanoparticles in polymeric network or growth of polymeric network around metal nanoparticle core can be studied by using UV/Vis spectroscopy. This technique can also be used for investigation of various applications of hybrid materials in catalysis, photonics, and sensing. This tutorial review describes the uses of UV/Vis spectroscopy in characterization and catalytic applications of responsive hybrid microgels with respect to recent research progress in this area.

  11. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts.

    PubMed

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric; Tucker, Melvin P; Yang, Bin

    2018-01-10

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4 , Ln(OTf) 3 , In(OTf) 3 , Al(OTf) 3 ] and noble metal catalysts (e.g., Ru/C, Ru/Al 2 O 3 ) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf) 4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt % of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote deoxygenation reactions catalyzed by super Lewis acids. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Screening metal-organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology.

    PubMed

    Parkes, Marie V; Staiger, Chad L; Perry, John J; Allendorf, Mark D; Greathouse, Jeffery A

    2013-06-21

    The adsorption of noble gases and nitrogen by sixteen metal-organic frameworks (MOFs) was investigated using grand canonical Monte Carlo simulation. The MOFs were chosen to represent a variety of net topologies, pore dimensions, and metal centers. Three commercially available MOFs (HKUST-1, AlMIL-53, and ZIF-8) and PCN-14 were also included for comparison. Experimental adsorption isotherms, obtained from volumetric and gravimetric methods, were used to compare krypton, argon, and nitrogen uptake with the simulation results. Simulated trends in gas adsorption and predicted selectivities among the commercially available MOFs are in good agreement with experiment. In the low pressure regime, the expected trend of increasing adsorption with increasing noble gas polarizabilty is seen. For each noble gas, low pressure adsorption correlates with several MOF properties, including free volume, topology, and metal center. Additionally, a strong correlation exists between the Henry's constant and the isosteric heat of adsorption for all gases and MOFs considered. Finally, we note that the simulated and experimental gas selectivities demonstrated by this small set of MOFs show improved performance compared to similar values reported for zeolites.

  13. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    NASA Astrophysics Data System (ADS)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  14. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.

    PubMed

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N

    2016-07-06

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  15. Potential interstellar noble gas molecules: ArOH+ and NeOH+ rovibrational analysis from quantum chemical quartic force fields

    NASA Astrophysics Data System (ADS)

    Theis, Riley A.; Fortenberry, Ryan C.

    2016-03-01

    The discovery of ArH+ in the interstellar medium has shown that noble gas chemistry may be of more chemical significance than previously believed. The present work extends the known chemistry of small noble gas molecules to NeOH+ and ArOH+. Besides their respective neonium and argonium diatomic cation cousins, these hydroxyl cation molecules are the most stable small noble gas molecules analyzed of late. ArOH+ is once again more stable than the neon cation, but both are well-behaved enough for a complete quartic force field analysis of their rovibrational properties. The Ar-O bond in ArOH+ , for instance, is roughly three-quarters of the strength of the Ar-H bond in ArH+ highlighting the rigidity of this system. The rotational constants, geometries, and vibrational frequencies for both molecules and their various isotopologues are computed from ab initio quantum chemical theory at high-level, and it is shown that these cations may form in regions where peroxy or weakly-bound alcohols may be present. The resulting data should be of significant assistance for the laboratory or observational analysis of these potential interstellar molecules.

  16. Observations of mass fractionation of noble gases in synthetic methane hydrate

    USGS Publications Warehouse

    Hunt, Andrew G.; Pohlman, John; Stern, Laura A.; Ruppel, Carolyn D.; Moscati, Richard J.; Landis, Gary P.; Pinkston, John C.

    2011-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings are presently dissociating and releasing methane and other gases to the oceanatmosphere system. A key challenge in assessing the susceptibility of gas hydrates to warming climate is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sublake and subseafloor sediments, coalbeds, and other sources. Carbon and deuterium stable isotopic data provide only a first-order characterization of methane sources, while gas hydrate can sequester any type of methane. Here, we investigate the possibility of exploiting the pattern of noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under careful laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  17. Laser microprobe analyses of noble gas isotopes and halogens in fluid inclusions: Analyses of microstandards and synthetic inclusions in quartz

    USGS Publications Warehouse

    Böhlke, J.K.; Irwin, J.J.

    1992-01-01

    Ar, Kr, Xe, Cl, Br, I, and K abundances and isotopic compositions have been measured in microscopic fluid inclusions in minerals by noble gas mass spectrometry following neutron irradiation and laser extraction. The laser microprobe noble gas mass spectrometric (LMNGMS) technique was quantified by use of microstandards, including air-filled capillary tubes, synthetic basalt glass grains, standard hornblende grains, and synthetic fluid inclusions in quartz. Common natural concentrations of halogens (Cl, Br, and I) and noble gases (Ar and Kr) in trapped groundwaters and hydrothermal fluids can be analyzed simultaneously by LMNGMS in as little as 10−11 L of inclusion fluid, with accuracy and precision to within 5–10% for element and isotope ratios. Multicomponent element and isotope correlations indicate contaminants or persistent reservoirs of excess Xe and/or unfractionated air in some synthetic and natural fluid inclusion samples. LMNGMS analyses of natural fluid inclusions using the methods and calibrations reported here may be used to obtain unique information on sources of fluids, sources of fluid salinity, mixing, boiling (or unmixing), and water-rock interactions in ancient fluid flow systems.

  18. NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires with surface rich high valence state metal oxide as an efficient electrocatalyst for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yang, Liting; Chen, Lin; Yang, Dawen; Yu, Xu; Xue, Huaiguo; Feng, Ligang

    2018-07-01

    High valence transition metal oxide is significant for anode catalyst of proton membrane water electrolysis technique. Herein, we demonstrate NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires hierarchical nanocomposite catalyst with surface rich high valence metal oxide as an efficient catalyst for oxygen evolution reaction. A low overpotential of 310 mV is needed to drive a 10 mA cm-2 with a Tafel slope of 99 mV dec-1, and a remarkable stability during 8 h is demonstrated in a chronoamperometry test. Theoretical calculation displays the change in the rate-determining step on the nanocomposite electrode in comparison to NiCo2O4 nanowires alone. It is found high valence Ni and Mn oxide in the catalyst system can efficiently facilitate the charge transport across the electrode/electrolyte interface. The enhanced electrical conductivity, more accessible active sites and synergistic effects between NiMn layered double hydroxide nanosheets and NiCo2O4 nanowires can account for the excellent oxygen evolution reaction. The catalytic performance is comparable to most of the best non-noble catalysts and IrO2 noble catalyst, indicating the promising applications in water-splitting technology. It is an important step in the development of hierarchical nanocomposites by surface valence state tuning as an alternative to noble metals for oxygen evolution reaction.

  19. Nanoparticles of noble metals in the supergene zone

    NASA Astrophysics Data System (ADS)

    Zhmodik, S. M.; Kalinin, Yu. A.; Roslyakov, N. A.; Mironov, A. G.; Mikhlin, Yu. L.; Belyanin, D. K.; Nemirovskaya, N. A.; Spiridonov, A. M.; Nesterenko, G. V.; Airiyants, E. V.; Moroz, T. N.; Bul'bak, T. A.

    2012-04-01

    Formation of noble metal nanoparticles is related to various geological processes in the supergene zone. Dispersed mineral phases appear during weathering of rocks with active participation of microorganisms, formation of soil, in aqueous medium and atmosphere. Invisible gold and other noble metals are incorporated into oxides, hydroxides, and sulfides, as well as in dispersed organic and inorganic carbonic matter. Sulfide minerals that occur in bedrocks and ores unaltered by exogenic processes and in cementation zone are among the main concentrators of noble metal nanoparticles. The ability of gold particles to disaggregate is well-known and creates problems in technological and analytical practice. When Au and PGE nanoparticles and clusters occur, these problems are augmented because of their unusual reactions and physicochemical properties. The studied gold, magnetite, titanomagnetite and pyrite microspherules from cementation zone and clay minerals of laterites in Republic of Guinea widen the knowledge of their abundance and inferred formation conditions, in particular, in the contemporary supergene zone. Morphology and composition of micrometer-sized Au mineral spherules were studied with SEM and laser microprobe. The newly formed segregations of secondary gold on the surface of its residual grains were also an object of investigation. The character of such overgrowths is the most indicative for nanoparticles. The newly formed Au particles provide evidence for redistribution of ultradispersed gold during weathering. There are serious prerequisites to state that microorganisms substantially control unusual nano-sized microspherical morphology of gold particles in the supergene zone. This is supported by experiments indicating active absorption of gold by microorganisms and direct evidence for participation of Ralstonia metallidurans bacteria in the formation of peculiar corroded bacteriomorphic surface of gold grains. In addition, the areas enriched in carbon and nitrogen have been detected with SEM on the surface of gold spherules from Guinea. Such organic compounds as serine, alanine, and glycine are identified on their surface with Raman spectroscopy. The experiments have been carried out and new data have been obtained indicating the role of micromycetes in concentration and distribution of noble metals in ferromanganese nodules of the World Ocean. Au and Pt were detected in the system with radioisotopes. It has been established that two forms of gold distribution develop within pseudomorphs of fungi colonies: (1) as pseudomorphic concentrates and (2) dispersed form unrelated to the colony structure. Inhomogeneities in distribution of dispersed platinum are manifested in the form of linear anomalies with elevated concentrations at the margins of the colonies.

  20. Metal-dielectric-CNT nanowires for surface-enhanced Raman spectroscopy

    DOEpatents

    Bond, Tiziana C.; Altun, Ali; Park, Hyung Gyu

    2017-10-03

    A sensor with a substrate includes nanowires extending vertically from the substrate, a hafnia coating on the nanowires that provides hafnia coated nanowires, and a noble metal coating on the hafnia coated nanowires. The top of the hafnia and noble metal coated nanowires bent onto one another to create a canopy forest structure. There are numerous randomly arranged holes that let through scattered light. The many points of contact, hot spots, amplify signals. The methods include the steps of providing a Raman spectroscopy substrate, introducing nano crystals to the Raman spectroscopy substrate, growing a forest of nanowires from the nano crystals on the Raman spectroscopy substrate, coating the nanowires with hafnia providing hafnia coated nanowires, and coating the hafnia coated nanowires with a noble metal or other metal.

  1. Colloidally separated samples from Allende residues - Noble gases, carbon and an ESCA-study

    NASA Technical Reports Server (NTRS)

    Ott, U.; Kronenbitter, J.; Flores, J.; Chang, S.

    1984-01-01

    Results are presented which strengthen the hypothesis of heterogeneity among the carbon- and nitrogen-bearing phases of the Allende meteorite. These data also highlight the possibility of performing physical separations yielding samples in which some of the noble gas- and carbon-bearing phases are extraordinarily predominant over others. The conclusion, based on mass and isotope balance arguments, that a significant portion of the carbonaceous matter in Allende is likely to be gas-poor or gas-free need not weaken the case for carbonaceous carriers for the major noble gas components. The concept that acid-soluble carbonaceous phases contain a multiplicity of components, each of which may have formed under a multiplicity of different physical-chemical conditions, is reemphasized by the results of the present study.

  2. Ethics and experts.

    PubMed

    Noble, C N

    1982-06-01

    Cheryl Noble discusses the emergence of applied ethics as a subdiscipline and expresses skepticism about the role of the philosopher as a technical "expert" on social problems. Peter Singer applauds the renewed interest of philosophers in social issues and points out the special advantages they may contribute to discussions of such issues. Jerry Avorn, a physician, sees a useful role for ethicists as teachers and resources for medical practitioners trained as generalists responsible for a patient's care. Daniel Wikler accepts Noble's contention that ethicists are in danger of becoming defenders of conventional morality but argues that applied analytic philosophy has contributed logical precision and vigor of argument on a number of pressing social issues. Tom Beauchamp also acknowledges validity in some of Noble's criticisms while analyzing a variety of weaknesses in her arguments.

  3. A whiff of nebular gas in Titan's atmosphere - Potential implications for the conditions and timing of Titan's formation

    NASA Astrophysics Data System (ADS)

    Glein, Christopher R.

    2017-09-01

    In situ data from the GCMS instrument on the Huygens probe indicate that Titan's atmosphere contains small amounts of the primordial noble gases 36Ar and 22Ne (tentative detection), but it is unknown how they were obtained by the satellite. Based on the apparent similarity in the 22Ne/36Ar (atom) ratio between Titan's atmosphere and the solar composition, a previously neglected hypothesis for the origin of primordial noble gases in Titan's atmosphere is suggested - these species may have been acquired near the end of Titan's formation, when the moon could have gravitationally captured some nebular gas that would have been present in its formation environment (the Saturnian subnebula). These noble gases may be remnants of a primary atmosphere. This could be considered the simplest hypothesis to explain the 22Ne/36Ar ratio observed at Titan. However, the 22Ne/36Ar ratio may not be exactly solar if these species can be fractionated by external photoevaporation in the solar nebula, atmospheric escape from Titan, or sequestration on the surface of Titan. While the GCMS data are consistent with a 22Ne/36Ar ratio of 0.05 to 2.5 times solar (1σ range), simple estimates that attempt to account for some of the effects of these evolutionary processes suggest a sub-solar ratio, which may be depleted by approximately one order of magnitude. Models based on capture of nebular gas can explain why the GCMS did not detect any other primordial noble gas isotopes, as their predicted abundances are below the detection limits (especially for 84Kr and 132Xe). It is also predicted that atmospheric Xe on Titan should be dominated by radiogenic 129Xe if the source of primordial Xe is nebular gas. Of order 10-2-10-1 bar of primordial H2 may have been captured along with the noble gases from a gas-starved disk, but this H2 would have quickly escaped from the initial atmosphere. To have the opportunity to capture nebular gas, Titan should have formed within ∼10 Myr of the formation of the solar system, before the ultimate source of gas (the solar nebula) dissipated. More specifically, if photoevaporative fractionation happened, the time-evolution for the depletion of permanent gases in the solar nebula can be parameterized to the ∼3 times solar noble gas enrichments of Jupiter for an assumed Jupiter formation time of ∼2 Myr after calcium-aluminum-rich inclusions (CAIs). This allows the construction of a consistent chronology with a Titan formation time of ∼3-4 Myr after CAIs. Because the models presented in this work are pushing the limits of the data from Titan, future mass spectrometric measurements of the noble gases and their isotopes (to at least ppt sensitivity) will be essential to confirm the Huygens detection of 22Ne, and to constrain the roles of evolutionary processes and mixed sources in determining the noble gas geochemistry of Titan's atmosphere. The clearest indication of a nebular gas source for noble gases on Titan would be a solar-like isotopic ratio of 20Ne/22Ne ≈ 14.

  4. A Review of Iron Phosphate Glasses and Recommendations for Vitrifying Hanford Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delbert E. Ray; Chandra S. Ray

    2013-11-01

    This report contains a comprehensive review of the research conducted, world-wide, on iron phosphate glass over the past ~30 years. Special attention is devoted to those iron phosphate glass compositions which have been formulated for the purpose of vitrifying numerous types of nuclear waste, with special emphasis on the wastes stored in the underground tanks at Hanford WA. Data for the structural, chemical, and physical properties of iron phosphate waste forms are reviewed for the purpose of understanding their (a) outstanding chemical durability which meets all current DOE requirements, (b) high waste loadings which can exceed 40 wt% (up tomore » 75 wt%) for several Hanford wastes, (c) low melting temperatures, can be as low as 900°C for certain wastes, and (d) high tolerance for “problem” waste components such as sulfates, halides, and heavy metals (chromium, actinides, noble metals, etc.). Several recommendations are given for actions that are necessary to smoothly integrate iron phosphate glass technology into the present waste treatment plans and vitrification facilities at Hanford.« less

  5. Globalization and State Soverignty

    DTIC Science & Technology

    2003-04-07

    ENDNOTES 1 Amartya Sen (Noble Award Winner), “A World of Extremes: Ten Theses on Globalization,” Los Angeles Times, 17 July 2001, available from <http...Sylvia., “Globalization and the Nation States: Erosion from Above”, Timlin Lecture, University of Saskatchewan, February 1998. Sen , Amartya . (Noble...New York, January/ February 2001, available from http://proquest.umi.com; Internet; accessed 11 February 2003. 9 Hirst and Thompson. 10 Sen . 11 United

  6. Experimental/Computational Approach to Accommodation Coefficients and its Application to Noble Gases on Aluminum Surface (Preprint)

    DTIC Science & Technology

    2009-02-03

    computational approach to accommodation coefficients and its application to noble gases on aluminum surface Nathaniel Selden Uruversity of Southern Cahfornia, Los ...8217 ,. 0.’ a~ .......,..,P. • " ,,-0, "p"’U".. ,Po"D.’ 0.’P.... uro . P." FIG. 5: Experimental and computed radiometri~ force for argon (left), xenon

  7. The determination of accurate dipole polarizabilities alpha and gamma for the noble gases

    NASA Technical Reports Server (NTRS)

    Rice, Julia E.; Taylor, Peter R.; Lee, Timothy J.; Almlof, Jan

    1991-01-01

    Accurate static dipole polarizabilities alpha and gamma of the noble gases He through Xe were determined using wave functions of similar quality for each system. Good agreement with experimental data for the static polarizability gamma was obtained for Ne and Xe, but not for Ar and Kr. Calculations suggest that the experimental values for these latter ions are too low.

  8. A Complex Exposure History of the Gold Basin L4-Chondrite Shower from Cosmogenic Radionuclides and Noble Gases

    NASA Technical Reports Server (NTRS)

    Welten, K. C.; Nishiizumi, K.; Caffee, M. W.; Masarik, J.; Wieler, R.

    2001-01-01

    Cosmogenic radionuclides and noble gases in samples of the Gold Basin L-chondrite shower indicate a complex exposure history, with a first stage exposure on the parent body, followed by a second stage of approx. 19 Myr in a meteoroid 3-4 m in radius. Additional information is contained in the original extended abstract.

  9. The Canadian Legal System, the Robert Latimer Case, and the Rhetorical Construction of (Dis)ability: "Bodies that Matter?"

    ERIC Educational Resources Information Center

    Hayward, Sally

    2009-01-01

    This paper considers Judge Ted Noble's 1997 ruling of the Latimer case in terms of how it rhetorically constructs and privileges the normal, able-bodied status quo, while, at the same time, deconstructs and positions as inferior the "abnormal," dis-abled minority. In this case, Noble not only took the unprecedented step of granting…

  10. Incorporation of Solar Noble Gases from a Nebula-Derived Atmosphere During Magma Ocean Cooling

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Cassen, P.; Wasserburg, G. J.; Porcelli, D.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    The presence of solar noble gases in the deep interior of the Earth is inferred from the Ne isotopic compositions of MORB (Mid-ocean Ridge Basalts) and OIB (Oceanic Island Basalt); Ar data may also consistent with a solar component in the deep mantle. Models of the transport and distribution of noble gases in the earth's mantle allow for the presence of solar Ar/Ne and Xe/Ne ratios and permit the calculation of lower mantle noble gas concentrations. These mantle data and models also indicate that the Earth suffered early (0.7 to 2 x 10(exp 8) yr) and large (greater than 99 percent) losses of noble gases from the interior, a result previously concluded for atmospheric Xe. We have pursued the suggestion that solar noble gases were incorporated in the forming Earth from a massive, nebula-derived atmosphere which promoted large-scale melting, so that gases from this atmosphere dissolved in the magma ocean and were mixed downward. Models of a primitive atmosphere captured from the solar nebula and supported by accretion luminosity indicate that pressures at the Earth's surface were adequate (and largely more than the required 100 Atm) to dissolve sufficient gases. We have calculated the coupled evolution of the magma ocean and the overlying atmosphere under conditions corresponding to the cessation (or severe attenuation) of the sustaining accretion luminosity, prior to the complete removal of the solar nebula. Such a condition was likely to obtain, for instance, when most of the unaccumulated mass resided in large bodies which were only sporadically accreted. The luminosity supporting the atmosphere is then that provided by the cooling Earth, consideration of which sets a lower limit to the time required to solidify the mantle and terminate the incorporation of atmospheric gases within it. In our initial calculations, we have fixed the nebula temperature at To = 300K, a value likely to be appropriate for nebular temperatures at lAU in the early planet-building epoch. We treated the background (nebula) pressure as an adjustable, time-dependent parameter. Additional information is contained within the original extended abstract.

  11. [Analysis of heavy-metal-mediated disease and development of a novel remediation system based on fieldwork and experimental research].

    PubMed

    Yajima, Ichiro; Zou, Cunchao; Li, Xiang; Nakano, Chizuru; Omata, Yasuhiro; Kumasaka, Mayuko Y

    2015-01-01

    Heavy-metal pollution occurs in various environments, including water, air and soil, and has serious effects on human health. Since heavy-metal pollution in drinking water causes various diseases including skin cancer, it has become a global problem worldwide. However, there is limited information on the mechanism of development of heavy-metal-mediated disease. We performed both fieldwork and experimental studies to elucidate the levels of heavy-metal pollution and mechanisms of development of heavy-metal-related disease and to develop a novel remediation system. Our fieldwork in Bangladesh, Vietnam and Malaysia demonstrated that drinking well water in these countries was polluted with high concentrations of several heavy metals including arsenic, barium, iron and manganese. Our experimental studies based on the data from our fieldwork demonstrated that these heavy metals caused skin cancer and hearing loss. Further experimental studies resulted in the development of a novel remediation system with which toxic heavy metals were absorbed from polluted drinking water. Implementation of both fieldwork and experimental studies is important for prediction, prevention and therapy of heavy-metal-mediated diseases.

  12. Oriented conjugates of monoclonal and single-domain antibodies with quantum dots for flow cytometry and immunohistochemistry diagnostic applications

    NASA Astrophysics Data System (ADS)

    Sukhanova, Alyona; Even-Desrumeaux, Klervi; Millot, Jean-Marc; Chames, Patrick; Baty, Daniel; Artemyev, Mikhail; Oleinikov, Vladimir; Cohen, Jacques H. M.; Nabiev, Igor

    2012-03-01

    Ideal diagnostic nanoprobes should not exceed 15 nm in size and should contain high-affinity homogeneously oriented capture molecules on their surface. An advanced procedure for antibody (Ab) reduction was used to cleave each Ab into two functional half-Abs, 75-kDa heavy-light chain fragments, each containing an intact antigen-binding site. Affinity purification of half-Abs followed by their linkage to quantum dots (QDs) yielded oriented QD-Ab conjugates whose functionality was considerably improved compared to those obtained using the standard protocols. Ultrasmall diagnostic nanoprobes were engineered through oriented conjugation of QDs with 13-kDa single-domain Abs (sdAbs) derived from llama IgG. sdAbs were tagged with QDs via an additional cysteine residue specifically integrated into the C-terminal region of sdAb using genetic engineering. This approach made it possible to obtain sdAb-QD nanoprobes <12 nm in diameter comprising four copies of sdAbs linked to the same QD in an oriented manner. sdAb-QD conjugates against carcinoembryonic antigen (CEA) and HER2 exhibited an extremely high specificity in flow cytometry; the quality of immunohistochemical labeling of biopsy samples was found to be superior to that of labeling according to the current "gold standard" protocols of anatomo-pathological practice. The nano-bioengineering approaches developed can be extended to oriented conjugation of Abs and sdAbs with different semiconductor, noble metal, or magnetic nanoparticles.

  13. Optical properties of MgF2 nano-composite films dispersed with noble metal nanoparticles synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Wakaki, Moriaki; Soujima, Nobuaki; Shibuya, Takehisa

    2015-03-01

    Porous MgF2 films synthesized by a sol-gel method exhibit the lowest refractive index among the dielectric optical materials and are the most useful materials for the anti-reflection coatings. On the other hand, surface plasmon resonance (SPR) absorptions of noble metal nanoparticles in various solid matrices have been extensively studied. New functional materials like a SERS (Surface Enhanced Raman Spectroscopy) tips are expected by synthesizing composite materials between porous MgF2 films featured by the network of MgF2 nanoparticles and noble metal nanoparticles introduced within the network. In this study, fundamental physical properties including morphology and optical properties are characterized for these materials to make clear the potential of the composite system. Composite materials of MgF2 films dispersed with noble metal (Ag, Au) nanoparticles were prepared using the sol-gel technique with various annealing temperatures and densities of noble metal nanoparticles. The structural morphology was analyzed by an X-ray diffractometer (XRD) and a scanning electron microscope (SEM). The size and shape distributions of the metal nanoparticles were observed using a transmission electron microscope (TEM). The optical properties of fabricated composite films were characterized by UV-Vis-NIR and FT-IR spectrophotometers. The absorption spectra due to the surface plasmon resonance (SPR) of the metal nanoparticles were analyzed using the dielectric function considering the effective medium approximation, typically Maxwell-Garnett model. The Raman scattering spectra were also studied to check the enhancement effect of specimen dropped on the MgF2: Ag nano-composite films deposited on Si substrate. Enhancement of the Raman intensity of pyridine solution specimen was observed.

  14. MRI using hyperpolarized noble gases.

    PubMed

    Kauczor, H; Surkau, R; Roberts, T

    1998-01-01

    The aim of this study was to review the physical basis of MRI using hyperpolarized noble gases as well as the present status of preclinical and clinical applications. Non-radioactive noble gases with a nuclear spin 1/2 (He-3, Xe-129) can be hyperpolarized by optical pumping. Polarization is transferred from circularly polarized laser light to the noble-gas atoms via alkali-metal vapors (spin exchange) or metastable atoms (metastability exchange). Hyperpolarization results in a non-equilibrium polarization five orders of magnitude higher than the Boltzmann equilibrium compensating for the several 1000 times lower density of noble gases as compared with liquid state hydrogen concentrations in tissue and allows for short imaging times. Hyperpolarization can be stored sufficiently long (3 h to 6 days) to allow for transport and application. Magnetic resonance systems require a broadband radio-frequency system - which is generally available for MR spectroscopy - and dedicated coils. The hyperpolarized gases are administered as inhalative "contrast agents" allowing for imaging of the airways and airspaces. Besides the known anesthetic effect of xenon, no adverse effects are observed in volunteers or patients. Pulse sequences are optimized to effectively use the non-renewable hyperpolarization before it decays or is destroyed, using fast low-flip-angles strategies to allow for dynamic/breath-hold imaging of highly diffusible (He) or soluble (Xe) gases with in vivo T1-times well below 1 min. Since helium is not absorbed in considerable amounts, its application is restricted to the lung. Xe-129 is also under investigation for imaging of white matter disease and functional studies of cerebral perfusion. Magnetic resonance imaging using hyperpolarized gases is emerging as a technical challenge and opportunity for the MR community. Preliminary experience suggests potential for functional imaging of pulmonary ventilation and cerebral perfusion.

  15. Pathway to Cryogen Free Production of Hyperpolarized Krypton-83 and Xenon-129

    PubMed Central

    Six, Joseph S.; Hughes-Riley, Theodore; Stupic, Karl F.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2012-01-01

    Hyperpolarized (hp) 129Xe and hp 83Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp 129Xe MRI cumbersome. For hp 83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For 129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized 129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm3/min. For hp 83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D1 transition was observed and taken into account for the qualitative description of the SEOP process. PMID:23209620

  16. Reversibility of Noble Metal-Catalyzed Aprotic Li-O₂ Batteries.

    PubMed

    Ma, Shunchao; Wu, Yang; Wang, Jiawei; Zhang, Yelong; Zhang, Yantao; Yan, Xinxiu; Wei, Yang; Liu, Peng; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan; Xu, Ye; Peng, Zhangquan

    2015-12-09

    The aprotic Li-O2 battery has attracted a great deal of interest because, theoretically, it can store far more energy than today's batteries. Toward unlocking the energy capabilities of this neotype energy storage system, noble metal-catalyzed high surface area carbon materials have been widely used as the O2 cathodes, and some of them exhibit excellent electrochemical performances in terms of round-trip efficiency and cycle life. However, whether these outstanding electrochemical performances are backed by the reversible formation/decomposition of Li2O2, i.e., the desired Li-O2 electrochemistry, remains unclear due to a lack of quantitative assays for the Li-O2 cells. Here, noble metal (Ru and Pd)-catalyzed carbon nanotube (CNT) fabrics, prepared by magnetron sputtering, have been used as the O2 cathode in aprotic Li-O2 batteries. The catalyzed Li-O2 cells exhibited considerably high round-trip efficiency and prolonged cycle life, which could match or even surpass some of the best literature results. However, a combined analysis using differential electrochemical mass spectrometry and Fourier transform infrared spectroscopy, revealed that these catalyzed Li-O2 cells (particularly those based on Pd-CNT cathodes) did not work according to the desired Li-O2 electrochemistry. Instead the presence of noble metal catalysts impaired the cells' reversibility, as evidenced by the decreased O2 recovery efficiency (the ratio of the amount of O2 evolved during recharge/that consumed in the preceding discharge) coupled with increased CO2 evolution during charging. The results reported here provide new insights into the O2 electrochemistry in the aprotic Li-O2 batteries containing noble metal catalysts and exemplified the importance of the quantitative assays for the Li-O2 reactions in the course of pursuing truly rechargeable Li-O2 batteries.

  17. Introducing "Green" and "Nongreen" Aspects of Noble Metal Nanoparticle Synthesis: An Inquiry-Based Laboratory Experiment for Chemistry and Engineering Students

    ERIC Educational Resources Information Center

    Paluri, Sesha L. A.; Edwards, Michelle L.; Lam, Nhi H.; Williams, Elizabeth M.; Meyerhoefer, Allie; Pavel Sizemore, Ioana E.

    2015-01-01

    In recent years, nanoscience and nanotechnology have been drawing enormous attention due to the numerous applications of nanomaterials. In an attempt to nurture interest towards these areas in young minds and to develop the next generation of environmentally conscious scientists and engineers, this new laboratory module focuses on the green and…

  18. Mobile Learning Bridging the Gap in Agricultural Extension Service Delivery: Experiences from Sokoine University of Agriculture, Tanzania

    ERIC Educational Resources Information Center

    Sanga, Camilius; Mlozi, Malongo; Haug, Ruth; Tumbo, Siza

    2016-01-01

    The ubiquitous nature of mobile phones offers a noble environment where farmers can learn informally anywhere, anytime and at any location. This is an innovative way to address some of the weakness of conventional agricultural extension service. Few empirical studies have reported on the development of mobile phone application to support blended…

  19. Development and Validation of Yoga Video Package and Its Effectiveness on Depression, Anxiety and Stress of School Teachers

    ERIC Educational Resources Information Center

    Selvi, B. Tamil; Thangarajathi, S.

    2011-01-01

    Teaching once was considered as a noble job but, within the last decade it has become an increasingly stressful profession for school teachers. Increased work load, insufficient salary package, fast changing curriculum, increase in the responsibilities of the students, modern fast mechanical life, conflicts with the colleagues and with higher…

  20. Highly Fluorescent Noble Metal Quantum Dots

    PubMed Central

    Zheng, Jie; Nicovich, Philip R.; Dickson, Robert M.

    2009-01-01

    Highly fluorescent, water-soluble, few-atom noble metal quantum dots have been created that behave as multi-electron artificial atoms with discrete, size-tunable electronic transitions throughout the visible and near IR. These “molecular metals” exhibit highly polarizable transitions and scale in size according to the simple relation, Efermi/N1/3, predicted by the free electron model of metallic behavior. This simple scaling indicates that fluorescence arises from intraband transitions of free electrons and that these conduction electron transitions are the low number limit of the plasmon – the collective dipole oscillations occurring when a continuous density of states is reached. Providing the “missing link” between atomic and nanoparticle behavior in noble metals, these emissive, water-soluble Au nanoclusters open new opportunities for biological labels, energy transfer pairs, and light emitting sources in nanoscale optoelectronics. PMID:17105412

  1. Electron microscopy of carbonaceous matter in Allende acid residues

    NASA Technical Reports Server (NTRS)

    Lumpkin, G. R.

    1982-01-01

    On the basis of characteristic diffuse ring diffraction patterns, much of the carbonaceous matter in a large suite of Allende acid residues has been identified as a variety of turbostratic carbon. Crystallites of this phase contain randomly stacked sp(2) hybridized carbon layers and diffraction patterns resemble those from carbon black and glassy carbon. Carbynes are probably absent, and are certainly restricted to less than 0.5% of these acid residues. The work of Ott et al. (1981) provides a basis for the possibility that turbostratic carbon is a carrier of noble gases, but an additional component - amorphous carbon - may be necessary to explain the high release temperatures of noble gases as well as the glassy character of many of the carbonaceous particles. Carbynes are considered to be questionable as important carriers of noble gases in the Allende acid residues.

  2. Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites

    DOEpatents

    Podtburg, E.R.

    1999-06-22

    An oxide superconductor composite having improved texture and durability is disclosed. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor. 1 fig.

  3. Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites

    DOEpatents

    Podtburg, Eric R.

    1999-01-01

    An oxide superconductor composite having improved texture and durability. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor.

  4. Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience

    PubMed Central

    Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; Baksi, Ananya; Pradeep, Thalappil

    2012-01-01

    Noble metal quantum clusters (NMQCs) are the missing link between isolated noble metal atoms and nanoparticles. NMQCs are sub-nanometer core sized clusters composed of a group of atoms, most often luminescent in the visible region, and possess intriguing photo-physical and chemical properties. A trend is observed in the use of ligands, ranging from phosphines to functional proteins, for the synthesis of NMQCs in the liquid phase. In this review, we briefly overview recent advancements in the synthesis of protein protected NMQCs with special emphasis on their structural and photo-physical properties. In view of the protein protection, coupled with direct synthesis and easy functionalization, this hybrid QC-protein system is expected to have numerous optical and bioimaging applications in the future, pointers in this direction are visible in the literature. PMID:22312454

  5. Fe2Ni2N nanosheet array: an efficient non-noble-metal electrocatalyst for non-enzymatic glucose sensing

    NASA Astrophysics Data System (ADS)

    You, Chao; Dai, Rui; Cao, Xiaoqin; Ji, Yuyao; Qu, Fengli; Liu, Zhiang; Du, Gu; Asiri, Abdullah M.; Xiong, Xiaoli; Sun, Xuping; Huang, Ke

    2017-09-01

    It is very important to develop enhanced electrochemical sensing platforms for molecular detection and non-noble-metal nanoarray architecture, as electrochemical catalyst electrodes have attracted great attention due to their large specific surface area and easy accessibility to target molecules. In this paper, we demonstrate that an Fe2Ni2N nanosheet array grown on Ti mesh (Fe2Ni2N NS/TM) shows high electrocatalytic activity toward glucose electrooxidation in alkaline medium. As an electrochemical glucose sensor, such an Fe2Ni2N NS/TM catalyst electrode demonstrates superior sensing performance with a short response time of less than 5 s, a wide linear range of 0.05 μM-1.5 mM, a low detection limit of 0.038 μM (S/N = 3), a high sensitivity of 6250 μA mM-1 cm-2, as well as high selectivity and long-term stability.

  6. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution.

    PubMed

    Li, Ji-Sen; Wang, Yu; Liu, Chun-Hui; Li, Shun-Li; Wang, Yu-Guang; Dong, Long-Zhang; Dai, Zhi-Hui; Li, Ya-Fei; Lan, Ya-Qian

    2016-04-01

    Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyrrole/reduced graphene oxide nanocomposite as a precursor. The hybrid exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction and excellent stability in acidic media, which is, to the best of our knowledge, the best among these reported non-noble-metal catalysts. Theoretical calculations on the basis of density functional theory reveal that the active sites for hydrogen evolution stem from the pyridinic nitrogens, as well as the carbon atoms, in the graphene. In a proof-of-concept trial, an electrocatalyst for hydrogen evolution is fabricated, which may open new avenues for the design of nanomaterials utilizing POMs/conducting polymer/reduced-graphene oxide nanocomposites.

  7. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Li, Ji-Sen; Wang, Yu; Liu, Chun-Hui; Li, Shun-Li; Wang, Yu-Guang; Dong, Long-Zhang; Dai, Zhi-Hui; Li, Ya-Fei; Lan, Ya-Qian

    2016-04-01

    Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyrrole/reduced graphene oxide nanocomposite as a precursor. The hybrid exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction and excellent stability in acidic media, which is, to the best of our knowledge, the best among these reported non-noble-metal catalysts. Theoretical calculations on the basis of density functional theory reveal that the active sites for hydrogen evolution stem from the pyridinic nitrogens, as well as the carbon atoms, in the graphene. In a proof-of-concept trial, an electrocatalyst for hydrogen evolution is fabricated, which may open new avenues for the design of nanomaterials utilizing POMs/conducting polymer/reduced-graphene oxide nanocomposites.

  8. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria.

    PubMed

    Fang, Ge; Li, Weifeng; Shen, Xiaomei; Perez-Aguilar, Jose Manuel; Chong, Yu; Gao, Xingfa; Chai, Zhifang; Chen, Chunying; Ge, Cuicui; Zhou, Ruhong

    2018-01-09

    Noble metal-based nanomaterials have shown promise as potential enzyme mimetics, but the facet effect and underlying molecular mechanisms are largely unknown. Herein, with a combined experimental and theoretical approach, we unveil that palladium (Pd) nanocrystals exhibit facet-dependent oxidase and peroxidase-like activities that endow them with excellent antibacterial properties via generation of reactive oxygen species. The antibacterial efficiency of Pd nanocrystals against Gram-positive bacteria is consistent with the extent of their enzyme-like activity, that is {100}-faceted Pd cubes with higher activities kill bacteria more effectively than {111}-faceted Pd octahedrons. Surprisingly, a reverse trend of antibacterial activity is observed against Gram-negative bacteria, with Pd octahedrons displaying stronger penetration into bacterial membranes than Pd nanocubes, thereby exerting higher antibacterial activity than the latter. Our findings provide a deeper understanding of facet-dependent enzyme-like activities and might advance the development of noble metal-based nanomaterials with both enhanced and targeted antibacterial activities.

  9. Band-structure calculations of noble-gas and alkali halide solids using accurate Kohn-Sham potentials with self-interaction correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Krieger, J.B.; Norman, M.R.

    1991-11-15

    The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it ismore » believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP.« less

  10. Matrix-enhanced secondary ion mass spectrometry: The Alchemist's solution?

    NASA Astrophysics Data System (ADS)

    Delcorte, Arnaud

    2006-07-01

    Because of the requirements of large molecule characterization and high-lateral resolution SIMS imaging, the possibility of improving molecular ion yields by the use of specific sample preparation procedures has recently generated a renewed interest in the static SIMS community. In comparison with polyatomic projectiles, however, signal enhancement by a matrix might appear to some as the alchemist's versus the scientist's solution to the current problems of organic SIMS. In this contribution, I would like to discuss critically the pros and cons of matrix-enhanced SIMS procedures, in the new framework that includes polyatomic ion bombardment. This discussion is based on a short review of the experimental and theoretical developments achieved in the last decade with respect to the three following approaches: (i) blending the analyte with a low-molecular weight organic matrix (MALDI-type preparation procedure); (ii) mixing alkali/noble metal salts with the analyte; (iii) evaporating a noble metal layer on the analyte sample surface (organic molecules, polymers).

  11. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Li-juan; Vaara, Juha, E-mail: juha.vaara@iki.fi; Rizzo, Antonio

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: {sup 21}Ne, {sup 83}Kr, and {sup 131}Xe. The magnitude of the resulting ellipticities is predicted to be 10{sup −4}–10{sup −6} rad/(M cm) for fully spin-polarized nuclei.more » These should be detectable in the Voigt setup. Particularly interesting is the case of {sup 131}Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.« less

  12. Silica-Coated Plasmonic Metal Nanoparticles in Action.

    PubMed

    Hanske, Christoph; Sanz-Ortiz, Marta N; Liz-Marzán, Luis M

    2018-05-07

    Hybrid colloids consisting of noble metal cores and metal oxide shells have been under intense investigation for over two decades and have driven progress in diverse research lines including sensing, medicine, catalysis, and photovoltaics. Consequently, plasmonic core-shell particles have come to play a vital role in a plethora of applications. Here, an overview is provided of recent developments in the design and utilization of the most successful class of such hybrid materials, silica-coated plasmonic metal nanoparticles. Besides summarizing common simple approaches to silica shell growth, special emphasis is put on advanced synthesis routes that either overcome typical limitations of classical methods, such as stability issues and undefined silica porosity, or grant access to particularly sophisticated nanostructures. Hereby, a description is given, how different types of silica can be used to provide noble metal particles with specific functionalities. Finally, applications of such nanocomposites in ultrasensitive analyte detection, theranostics, catalysts, and thin-film solar cells are reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development of casting investment preventing blackening of noble metal alloys part 3. Effect of reducing agent addition on the strength and expansion of the investments.

    PubMed

    Meng, Yukun; Nakai, Akira; Ogura, Hideo

    2004-06-01

    Different reducing agents (B, Al, Si and Ti) were individually added to two gypsum-bonded investments to prepare investments preventing surface blackening of some noble cast alloys. The effect of different additive contents on green-body and burnout compressive strength, setting and thermal expansion of the investments were evaluated. The strength and expansion of the investments were changed by the additives. The compressive strength of Al-, Si- and Ti-added investments decreased with the increase of additive contents. The burnout strength of B-added investments significantly increased while green-body strength remained unchanged. The setting expansion of the B-added investments increased while those of the Al-, Si- and Ti-added investments decreased with the increase of additive contents. The thermal expansion of the Si- and Ti-added investments decreased, and that of the Al- and B-added investments remained unchanged. Further study is necessary to evaluate the effects of these additives on the accuracy of dental castings.

  14. Noble-metal-free NiO@Ni-ZnO/reduced graphene oxide/CdS heterostructure for efficient photocatalytic hydrogen generation

    NASA Astrophysics Data System (ADS)

    Chen, Fayun; Zhang, Laijun; Wang, Xuewen; Zhang, Rongbin

    2017-11-01

    Noble-metal-free semiconductor materials are widely used for photocatalytic hydrogen generation because of their low cost. ZnO-based heterostructures with synergistic effects exhibit an effective photocatalytic activity. In this work, NiO@Ni-ZnO/reduced graphene oxide (rGO)/CdS heterostructures are synthesized by a multi-step method. rGO nanosheets and CdS nanoparticles were introduced into the heterostructures via a redox reaction and light-assisted growth, respectively. A novel Ni-induced electrochemical growth method was developed to prepare ZnO rods from Zn powder. NiO@Ni-ZnO/rGO/CdS heterostructures with a wide visible-light absorption range exhibited highly photocatalytic hydrogen generation rates under UV-vis and visible light irradiation. The enhanced photocatalytic activity is attributed to the Ni nanoparticles that act as cocatalysts for capturing photoexcited electrons and the improved synergistic effect between ZnO and CdS due to the rGO nanosheets acting as photoexcited carrier transport channels.

  15. Growth and yield of a managed 30-year-old noble fir plantation.

    Treesearch

    Marshall D. Murray

    1988-01-01

    A thinned and fertilized noble fir plantation produced 3,450 cubic feet per acre 30 years after it was planted in western Washington. More than half of this volume was in trees with diameter at breast height of 10 inches and larger. Current annual increment the last 6 years was 295 cubic feet per acre. Ornamental boughs have been harvested annually for about a 15-year...

  16. Differentiated Ratings of Perceived Exertion during Physical Exercise

    DTIC Science & Technology

    1982-01-01

    the threshold Differentiated perceptions of exertion: part I. Mode of integration of anaerobic work. Int. Z. angew. Physiol. 27:311-328, 1969. of...a. (41) anaerobic metabolites Pandoll & Noble (43) se tiMs from muscles, joints, tendM Stamford & Noble (SO)* muscle temperature, mu lactate, EK pror...from a marathon run. Med. Set. leading to increased effort, leg fatigue, and respiratory distress during Sports 11:239-243, 1979. prolonged, strenuous

  17. Low-field MRI of laser polarized noble gas

    NASA Technical Reports Server (NTRS)

    Tseng, C. H.; Wong, G. P.; Pomeroy, V. R.; Mair, R. W.; Hinton, D. P.; Hoffmann, D.; Stoner, R. E.; Hersman, F. W.; Cory, D. G.; Walsworth, R. L.

    1998-01-01

    NMR images of laser polarized 3He gas were obtained at 21 G using a simple, homebuilt instrument. At such low fields magnetic resonance imaging (MRI) of thermally polarized samples (e.g., water) is not practical. Low-field noble gas MRI has novel scientific, engineering, and medical applications. Examples include portable systems for diagnosis of lung disease, as well as imaging of voids in porous media and within metallic systems.

  18. Wind Noise Suppression for Infrasound Sensors

    DTIC Science & Technology

    2014-03-01

    Wind Noise Suppression for Infrasound Sensors by John M. Noble, W.C. Kirkpatrick Alberts, II, Sandra L. Collier, Richard Raspet, and Mark A...Laboratory Adelphi, MD 20783-1197 ARL-TR-6873 March 2014 Wind Noise Suppression for Infrasound Sensors John M. Noble, Sandra L. Collier, and...DATES COVERED (From - To) October 2012 to September 2013 4. TITLE AND SUBTITLE Wind Noise Suppression for Infrasound Sensors 5a. CONTRACT NUMBER 5b

  19. Processes and catalysts for conducting fischer-tropsch synthesis in a slurry bubble column reactor

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    1999-01-01

    Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided.

  20. Noble gas evidence for the depositional and irradiational history of 60010-60009 core soils

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Hirsch, W. C.

    1977-01-01

    Isotopic abundances of the noble gases have been determined in grain size separates of eleven soils from different depths in the 60010-60009 double drive tube and in magnetic and plagioclase separates from a few of these soils. Data for the 60010 core are presented here. The entire core was deposited a maximum of approximately 125 m.y. ago as deduced from the Ar-38 cosmic ray exposure age of soil 60009,457. Soils in the topmost 12 cm of the core show loss of cosmogenic He-3 and Ne-21 and gain of trapped solar gases in proportion to the degree of surface reworking by micrometeorites as deduced from FMR data. A variety of compositional and irradiational evidence suggests that soils in the core were formed by mixing of three or more components during or immediately prior to core deposition less than about 125 m.y. ago. Based on cosmogenic noble gases and a variety of other data soils 60009,457 and 60010,3107 are similar (and possibly identical) to two of the end member soils which formed the mixture. More mature soils in the core, however, could not have matured in situ from these two soils because of significant differences in noble gas abundances and chemical composition.

  1. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC

    NASA Astrophysics Data System (ADS)

    Fashandi, Hossein; Dahlqvist, Martin; Lu, Jun; Palisaitis, Justinas; Simak, Sergei I.; Abrikosov, Igor A.; Rosen, Johanna; Hultman, Lars; Andersson, Mike; Lloyd Spetz, Anita; Eklund, Per

    2017-08-01

    The large class of layered ceramics encompasses both van der Waals (vdW) and non-vdW solids. While intercalation of noble metals in vdW solids is known, formation of compounds by incorporation of noble-metal layers in non-vdW layered solids is largely unexplored. Here, we show formation of Ti3AuC2 and Ti3Au2C2 phases with up to 31% lattice swelling by a substitutional solid-state reaction of Au into Ti3SiC2 single-crystal thin films with simultaneous out-diffusion of Si. Ti3IrC2 is subsequently produced by a substitution reaction of Ir for Au in Ti3Au2C2. These phases form Ohmic electrical contacts to SiC and remain stable after 1,000 h of ageing at 600 °C in air. The present results, by combined analytical electron microscopy and ab initio calculations, open avenues for processing of noble-metal-containing layered ceramics that have not been synthesized from elemental sources, along with tunable properties such as stable electrical contacts for high-temperature power electronics or gas sensors.

  2. Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation

    DOE PAGES

    Yoon, Kichul; Rahnamoun, Ali; Swett, Jacob L.; ...

    2016-08-17

    Despite the frequent use of noble gas ion irradiation of graphene, the atomistic-scale details, including the effects of dose, energy, and ion bombardment species on defect formation, and the associated dynamic processes involved in the irradiations and subsequent relaxation have not yet been thoroughly studied. Here, we simulated the irradiation of graphene with noble gas ions and the subsequent effects of annealing. Lattice defects, including nanopores, were generated after the annealing of the irradiated graphene, which was the result of structural relaxation that allowed the vacancy-type defects to coalesce into a larger defect. Larger nanopores were generated by irradiation withmore » a series of heavier noble gas ions, due to a larger collision cross section that led to more detrimental effects in the graphene, and by a higher ion dose that increased the chance of displacing the carbon atoms from graphene. Overall trends in the evolution of defects with respect to a dose, as well as the defect characteristics, were in good agreement with experimental results. In addition, the statistics in the defect types generated by different irradiating ions suggested that the most frequently observed defect types were Stone-Thrower-Wales (STW) defects for He + irradiation and monovacancy (MV) defects for all other ion irradiations.« less

  3. A review of noble gas geochemistry in relation to early Earth history

    NASA Technical Reports Server (NTRS)

    Kurz, M. D.

    1985-01-01

    One of the most fundamental noble gas constraints on early Earth history is derived from isotopic differences in (129)Xe/(130)Xe between various terrestrial materials. The short half life (17 m.y.) of extinct (129I, parent of (129)Xe, means that these differences must have been produced within the first 100 m.y. after terrestrial accretion. The identification of large anomalies in (129)Xe/(130)Xe in mid ocean ridge basalts (MORB), with respect to atmospheric xenon, suggests that the atmosphere and upper mantle have remained separate since that time. This alone is a very strong argument for early catastrophic degassing, which would be consistent with an early fractionation resulting in core formation. However, noble gas isotopic systematics of oceanic basalts show that the mantle cannot necessarily be regarded as a homogeneous system, since there are significant variations in (3)He/(4)He, (40)Ar/(36)Ar, and (129)Xe/(130)Xe. Therefore, the early degassing cannot be considered to have acted on the whole mantle. The specific mechanisms of degassing, in particular the thickness and growth of the early crust, is an important variable in understanding present day noble gas inventories. Another constraint can be obtained from rocks that are thought to be derived from near the lithosphere asthenosphere boundary: ultramafic xenoliths.

  4. Impact History on Vesta: Petrographic, Compositional and Future Chronological Studies of Melt Clasts in Howardites

    NASA Technical Reports Server (NTRS)

    Cartwright, J. A.; Mittlefehldt, D. W.; Hodges, K. V.; Wadhwa, M.

    2015-01-01

    Howardite meteorites are polymict breccias composed mainly of eucritic and diogenitic material that likely originate from the surface of the Asteroid 4 Vesta. They can be separated into two subtypes: Regolithic, which represent the lithified remains of the active vestan regolith; Fragmental, which represent simpler polymict breccias. Amongst the regolithic features observed in the former, melt clasts are particularly striking for their appearance and compositional variability. They range from glassy spherules to finely crystalline (i.e., devitrified) clasts, and clasts containing only relict mineral grains to those containing only phenocrysts. Glasses can be separated into compositional sub-types including those with low FeO/MgO ratios (less than 5) -low alkali glasses, K-rich (K2O greater than 0.2 wt.%), Na-rich (Na2O greater than 0.6 wt.%) and CaO-rich, and those with high FeO/MgO ratios (greater than 10). There is also a distinction to be made between primary volcanic melt clasts and those produced by impacts. While suggested that a lack of chemical homogeneity among their studied melt clasts ruled out a primary volcanic origin, the low siderophile element contents observed in such clasts suggest less compositional influence from impactors than commonly assumed. Studying the chronology of the impact melt clasts in howardites can help us to better determine the timing of impact events on Vesta and the asteroid belt. In this research, we are launching an investigation into the petrology, composition (major/trace element and noble gas) and chronology of melt clasts in howardites. We have selected a set of howardites known to contain large quantities of melt clasts, and have begun the petrological and compositional studies of these materials. Once the melt clasts have been fully classified, we aim to perform chronological studies of individual clasts using both the Ar-40/Ar-39 and Pb-Pb chronometers, as well as determine the noble gas components present. Of particular note, the study will take advantage of the laser ablation techniques associated with the noble gas facilities at ASU, which will allow high-resolution, in-situ analysis of individual clasts. The broader aim of this work is to ascertain whether the impact flux in the region of the asteroid belt was similar to that on the Moon. Our understanding of impact events in the inner Solar System relies heavily on our analyses of lunar meteorites and returned samples, and there is currently some debate regarding whether there was a "Lunar Cataclysm" event around approx. 3.9 Ga, or the end of an epoch of "Late Heavy Bombardment" (LHB) at this time. New and more comprehensive constraints on howardite melt clast ages may help determine whether the asteroid belt experienced such a cataclysm or LHB.

  5. Groundwater noble gas, age, and temperature signatures in an Alpine watershed: Valuable tools in conceptual model development

    USGS Publications Warehouse

    Manning, Andrew H.; Caine, Jonathan S.

    2007-01-01

    Bedrock groundwater in alpine watersheds is poorly understood, mainly because of a scarcity of wells in alpine settings. Groundwater noble gas, age, and temperature data were collected from springs and wells with depths of 3–342 m in Handcart Gulch, an alpine watershed in Colorado. Temperature profiles indicate active groundwater circulation to a maximum depth (aquifer thickness) of about 200 m, or about 150 m below the water table. Dissolved noble gas data show unusually high excess air concentrations (>0.02 cm3 STP/g, ΔNe > 170%) in the bedrock, consistent with unusually large seasonal water table fluctuations (up to 50 m) observed in the upper part of the watershed. Apparent 3H/3He ages are positively correlated with sample depth and excess air concentrations. Integrated samples were collected from artesian bedrock wells near the trunk stream and are assumed to approximate flow‐weighted samples reflecting bedrock aquifer mean residence times. Exponential mean ages for these integrated samples are remarkably consistent along the stream, four of five being from 8 to 11 years. The tracer data in combination with other hydrologic and geologic data support a relatively simple conceptual model of groundwater flow in the watershed in which (1) permeability is primarily a function of depth; (2) water table fluctuations increase with distance from the stream; and (3) recharge, aquifer thickness, and porosity are relatively uniform throughout the watershed in spite of the geological complexity of the Proterozoic crystalline rocks that underlie it.

  6. Global atmospheric monitoring of noble gases: insight into transport processes in the southern hemisphere.

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Kalinowski, M.; Bourgouin, P.; Schoeppner, M.

    2017-12-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which 31 stations are located in the Southern Hemisphere. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases supported by atmospheric transport modeling (ATM). The air mass trajectory provides a "link" between a radionuclide release and a detection confirmed by radionuclide measurements. One of the important noble gases, monitored on a daily basis, is xenon. It can be produced either during a nuclear explosion with a high fission yield, and thus be considered as an important tracer to prove the nuclear character of an explosion, or be emitted from nuclear power plants (NPPs) or from isotope production facilities (IPFs). On the southern hemisphere the number of IPF is rather limited in comparison to the northern hemisphere. Among the major sources are: the ANSTO facility in Sydney (Australia), CNEA in Ezeiza (Argentina), BaTek/INUKI in Jakarta (Indonesia) and NECSA in Pelindaba (South Africa). This study will demonstrate the examples of seasonal contribution of Xe-133 emissions from major sources as observed at selected IMS stations located in the southern hemisphere. It will show as well examples of the atmospheric transport from the northern to the southern hemisphere, and the influence of strong atmospheric convection.

  7. Noble Gases in the Chelyabinsk Meteorites

    NASA Technical Reports Server (NTRS)

    Haba, Makiko K.; Sumino, Hirochika; Nagao, Keisuke; Mikouchi, Takashi; Komatsu, Mutsumi; Zolensky, Michael E.

    2014-01-01

    The Chelyabinsk meteorite fell in Russia on February 15, 2013 and was classified as LL5 chondrite. The diameter before it entered the atmosphere has been estimated to be about 20 m [1]. Up to now, numerous fragments weighing much greater than 100 kg in total have been collected. In this study, all noble gases were measured for 13 fragments to investigate the exposure history of the Chelyabinsk meteorite and the thermal history of its parent asteroid.

  8. Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity.

    PubMed

    Langer, Robert; Diskin-Posner, Yael; Leitus, Gregory; Shimon, Linda J W; Ben-David, Yehoshoa; Milstein, David

    2011-10-10

    A highly active iron catalyst for the hydrogenation of carbon dioxide and bicarbonates works under remarkably low pressures and achieves activities similar to some of the best noble metal catalysts. A mechanism is proposed involving the direct attack of an iron trans-dihydride on carbon dioxide, followed by ligand exchange and dihydrogen coordination. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor

    DOEpatents

    Singleton, A.H.; Oukaci, R.; Goodwin, J.G.

    1999-08-17

    Processes and catalysts are disclosed for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided. 1 fig.

  10. USGS-NoGaDat - A global dataset of noble gas concentrations and their isotopic ratios in volcanic systems

    USGS Publications Warehouse

    Abedini, Atosa A.; Hurwitz, S.; Evans, William C.

    2006-01-01

    The database (Version 1.0) is a MS-Excel file that contains close to 5,000 entries of published information on noble gas concentrations and isotopic ratios from volcanic systems in Mid-Ocean ridges, ocean islands, seamounts, and oceanic and continental arcs (location map). Where they were available we also included the isotopic ratios of strontium, neodymium, and carbon. The database is sub-divided both into material sampled (e.g., volcanic glass, different minerals, fumarole, spring), and into different tectonic settings (MOR, ocean islands, volcanic arcs). Included is also a reference list in MS-Word and pdf from which the data was derived. The database extends previous compilations by Ozima (1994), Farley and Neroda (1998), and Graham (2002). The extended database allows scientists to test competing hypotheses, and it provides a framework for analysis of noble gas data during periods of volcanic unrest.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, W.; Korea Basic Science Institute; Stepanyan, S. S.

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping ismore » used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the {sup 3}He-N{sub 2} mixture. The cells could be refilled. The {sup 3}He reaches around 50% polarization in 5-15 hours.« less

  12. International comparison CCQM-K113—noble gas mixture

    NASA Astrophysics Data System (ADS)

    Lim, Jeong Sik; Lee, Jinbok; Moon, Dongmin; Tshilongo, James; Qiao, Han; Shuguo, Hu; Tiqiang, Zhang; Kelley, Michael E.; Rhoderick, George C.; Konopelko, L. A.; Kolobova, A. V.; Vasserman, I. I.; Zavyalov, S. V.; Gromova, E. V.; Efremova, O. V.

    2017-01-01

    Noble gases are one of the key elements used in the various processes of the bulbs industry, automotive industry, space industry, lasers industry, display industry as well as the semiconductor industry. Considering continuous growth, the provision of a reliable standard is required for those industries to improve their productivity. In this report, a result of the key comparison, CCQM-K113: noble gas mixture, is presented. Nominal amount-of-substance fractions of argon, neon, krypton, and xenon in helium are 20, 10, 2, and 1 cmol/mol, respectively. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  13. The 2014 Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty revisited: The case for data fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, Jonathan L.; Miley, Harry S.; Bowyer, Theodore W.

    The International Monitoring System of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) uses a global network of radionuclide monitoring stations to detect evidence of a nuclear explosion. The two radionuclide technologies employed—particulate and noble gas (radioxenon) detection—have applications for data fusion to improve detection of a nuclear explosion. Using the hypothetical 0.5 kT nuclear explosive test scenario of the CTBTO 2014 Integrated Field Exercise, the intrinsic relationship between particulate and noble gas signatures has been examined. This study shows that, depending upon the time of the radioxenon release, the particulate progeny can produce the more detectable signature.more » Thus, as both particulate and noble gas signatures are inherently coupled, the authors recommend that the sample categorization schemes should be linked.« less

  14. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodson, Boyd McLean

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permitmore » a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.« less

  15. The 2014 Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty revisited: The case for data fusion.

    PubMed

    Burnett, Jonathan L; Miley, Harry S; Bowyer, Theodore W; Cameron, Ian M

    2018-09-01

    The International Monitoring System of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) uses a global network of radionuclide monitoring stations to detect evidence of a nuclear explosion. The two radionuclide technologies employed-particulate and noble gas (radioxenon) detection-have applications for data fusion to improve detection of a nuclear explosion. Using the hypothetical 0.5 kT nuclear explosive test scenario of the CTBTO 2014 Integrated Field Exercise, the intrinsic relationship between particulate and noble gas signatures has been examined. This study shows that, depending upon the time of the radioxenon release, the particulate progeny can produce the more detectable signature. Thus, as both particulate and noble gas signatures are inherently coupled, the authors recommend that the sample categorization schemes should be linked. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Photosensitized Reduction of Carbon Dioxide in Solution Using Noble-Metal Clusters for Electron Transfer

    NASA Astrophysics Data System (ADS)

    Toshima, Naoki; Yamaji, Yumi; Teranishi, Toshiharu; Yonezawa, Tetsu

    1995-03-01

    Carbon dioxide was reduced to methane by visible-light irradiation of a solution composed of tris(bipyridine)ruthenium(III) as photosensitizer, ethylenediaminetetraacetic acid disodium salt as sacrificial reagent, methyl viologen as electron relay, and a colloidal dispersion of polymer-protected noble-metal clusters, prepared by alcohol-reduction, as catalyst. Among the noble-metal clusters examined, Pt clusters showed the highest activity for the formation of methane as well as hydrogen. In order to improve the activity, oxidized clusters and bimetallic clusters were also applied. For example, the CH4 yield in 3-h irradiation increased from 51 x 10-3 μmol with unoxidized Pt clusters to 72 x 10-3 μmol with partially oxidized ones. In the case of Pt/Ru bimetalic systems, the improvement of the catalytic activity by air treatment was much greater than in case of monometallic clusters.

  17. Optical Pumping Spin Exchange 3He Gas Cells for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.

    2009-08-01

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the 3He-N2 mixture. The cells could be refilled. The 3He reaches around 50% polarization in 5-15 hours.

  18. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    DOEpatents

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  19. Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer

    DOEpatents

    Adzic, Radoslav; Harris, Alexander

    2014-04-15

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  20. Method for low temperature preparation of a noble metal alloy

    DOEpatents

    Even, Jr., William R.

    2002-01-01

    A method for producing fine, essentially contamination free, noble metal alloys is disclosed. The alloys comprise particles in a size range of 5 to 500 nm. The method comprises 1. A method for preparing a noble metal alloy at low temperature, the method comprising the steps of forming solution of organometallic compounds by dissolving the compounds into a quantity of a compatible solvent medium capable of solvating the organometallic, mixing a portion of each solution to provide a desired molarity ratio of ions in the mixed solution, adding a support material, rapidly quenching droplets of the mixed solution to initiate a solute-solvent phase separation as the solvent freezes, removing said liquid cryogen, collecting and freezing drying the frozen droplets to produce a dry powder, and finally reducing the powder to a metal by flowing dry hydrogen over the powder while warming the powder to a temperature of about 150.degree. C.

  1. Comparison of the bonding between ML(+) and ML2(+) (M = metal, L = noble gas)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1990-01-01

    Ab initio calculations are reported of the spectroscopic constants for the low-lying states of the molecular ions ML2(+), where M = Li, Na, Mg, V, Fe, Co, Ni and Cu, and where L is usually Ar. Comparison with existing analogous calculations on the ML(+) ions shows how the bonding and binding energy change with the addition of a second noble gas atom. The second binding energy is predicted to be essentially the same as the first for the Li, Na, Mg, and V ions, but larger for the Fe, Co, Ni and Cu ions. The binding energies of the transition metal noble gas ions are not accurately predicted at the SCF level, because correlation is required to describe their M(0)Ln(+) character. All trends can be explained in terms of promotion and hybridization on the metal ion.

  2. Cosmic ray exposure histories of Apollo 14, Apollo 15, and Apollo 16 rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eugster, O.; Eberhardt, P.

    1984-02-15

    The regolith exposure history of six rocks returned by the Apollo 14, 15, and 16 missions is studied based on the cosmogenic noble gas isotopes. For each sample, the complete set of all stable noble gas isotopes and the radiaoctive isotope Kr-81 were measured. Kr-81-Kr exposure ages are calculated for rocks for which a single-stage exposure can be demonstrated. A two-stage model exposure history is derived for multistage-exposure basalt 14310 based on the amounts and isotopic ratios of the cosmogenic noble gases. The apparent Kr-81-Kr age, the depth-sensitive isostopic ratios, and fission Xe-136 results lead to the conclusion that thismore » sample was preexposed 1.75 AE ago to cosmic rays for a duration of 350 m.y. Basalt 15058 and anorthosite 15415 also reveal multistage exposures. 44 references.« less

  3. Fullerenes: An extraterrestrial carbon carrier phase for noble gases

    PubMed Central

    Becker, Luann; Poreda, Robert J.; Bunch, Ted E.

    2000-01-01

    In this work, we report on the discovery of naturally occurring fullerenes (C60 to C400) in the Allende and Murchison meteorites and some sediment samples from the 65 million-year-old Cretaceous/Tertiary boundary layer (KTB). Unlike the other pure forms of carbon (diamond and graphite), fullerenes are extractable in an organic solvent (e.g., toluene or 1,2,4-trichlorobenzene). The recognition of this unique property led to the detection and isolation of the higher fullerenes in the Kratschmer/Huffmann arc evaporated graphite soot and in the carbon material in the meteorite and impact deposits. By further exploiting the unique ability of the fullerene cage structure to encapsulate and retain noble gases, we have determined that both the Allende and Murchison fullerenes and the KTB fullerenes contain trapped noble gases with ratios that can only be described as extraterrestrial in origin. PMID:10725367

  4. The temperature and precipitation reconstructions on Swiss stalagmites with a special emphasis on altitude gradient using noble-gases, δO-18 and δD of fluid inclusions

    NASA Astrophysics Data System (ADS)

    Ghadiri, Elaheh; Brennwald, Matthias; Kipfer, Rolf

    2017-04-01

    We present the results of an application of 'Combined Vacuum Crushing and Sieving (CVCS)' system (e.g., allowing to crush samples to defined grain size in vacuum) for the first time to stalagmites grown in cold climates during the last glacial-interglacial transition, but at different altitudes. Recently, concentrations of dissolved atmospheric noble gases in fluid inclusions of stalagmites were used to reconstruct past ambient cave temperatures, the annual mean temperature and hydrological conditions when the water was trapped. To reconstruct temperatures from noble gases (noble gas temperature: NGT) in water-filled inclusions, we processed samples from Swiss stalagmites M6 from Milandre cave (400 m.a.s.l) and GEF1 from Grotte aux Fées cave (895 m.a.s.l) covering the climatic transitions Allerød-Younger Dryas-Holocene. Water content. The amount of water extracted per unit mass of calcite fabric (e.g., 'water yield': WT) was shown to be a measure of the total water content. The data shows that the WT systematically changes with δ18Ocalcite of the calcite. We therefore conclude that WT records can be linked on changes in drip rates and thus can be used to track changes of past precipitation even in cold regions. Noble gases. Noble gas analysis shows that the annual mean temperatures in Milandre cave were 2.2±2.0°C during the late Allerød and dropped to 0±2°C at the Younger Dryas. Such temperatures close 0°C indicate that drip water supply stopped in response to the formation of permafrost conditions around the cave preventing further stalagmite growth. However, one late Holocene sample gave a cave temperature of 8.7±1.4°C agreeing generally with present day annual mean temperature. The annual mean temperature of 5.7±1.3°C from GEF1 was determined for the early Holocene. The observed data show systematic variations with sample elevation, e.g., higher temperature from lower altitude and vice versa. Combining the isotopic composition of water in fluid inclusions (δ18Owater, δDwater) and the NGTs allows determining the δ18O-T relation ('laps rate') in the past as both δ18O and T scale with altitude. This calibration is key as paleo-temperatures are often reconstructed from δ18O, δD data whereby it is implicitly assumed that the modern Δ(δ18Owater, δDwater)-ΔT relation is also valid for the past. Our study makes an argument that noble gas analysis in stalagmites can also be a new route to address this fundamental hypothesis of past climate reconstruction.

  5. The Late Start and Amazing Upswing in Gold Chemistry

    ERIC Educational Resources Information Center

    Raubenheimer, Helgard G.; Schmidbaur, Hubert

    2014-01-01

    Probably owing to the prejudice that gold is a metal too noble to be used much in chemistry, the chemistry of this element has developed much later than that of its congeners and neighbors in the periodic table. In fact, before and after the time of alchemists, and up to the 20th century, all chemistry of gold was mainly performed in attempts to…

  6. JPRS Report, East Europe.

    DTIC Science & Technology

    1991-06-06

    Albanian Workers Party] [Text] Introduction Albania has entered into a new stage of political, eco- nomic, and social development which makes it...by the noble ideals of a free and demo- cratic society, in order to overthrow social injustice and establish justice and equality among people, in...political, and, especially, economic and social results. They are the result of deficiencies in the model of / , the economic, political, and social system

  7. The role of the electrolyte in the selective dissolution of metal alloys

    NASA Astrophysics Data System (ADS)

    Policastro, Steven A.

    Dealloying plays an important role in several corrosion processes, including pitting corrosion through the formation of local cathodes from the selective dissolution of intermetallic particles and stress-corrosion cracking in which it is responsible for injecting cracks from the surface into the undealloyed bulk material. Additionally, directed dealloying in the laboratory to form nanoporous structures has been the subject of much recent study because of the unique structural properties that the porous layer provides. In order to better understand the physical reasons for dealloying as well as understand the parameters that influence the evolution of the microstructure, several models have been proposed. Current theoretical descriptions of dealloying have been very successful in explaining some features of selective dissolution but additional behaviors can be included into the model to improve understanding of the dealloying process. In the present work, the effects of electrolyte component interactions, temperature, alloy cohesive energies, and applied potential on the development of nanoporosity via the selective dissolution of the less-noble component from binary and ternary alloys are considered. Both a kinetic Monte-Carlo (KMC) model of the behavior of the metal atoms and the electrolyte ions at the metal-solution interface and a phase-yield model of ligament coarsening are developed. By adding these additional parameters into the KMC model, a rich set of behaviors is observed in the simulation results. From the simulation results, it is suggested that selectively dissolving a binary alloy in a very aggressive electrolyte that targeted the LN atoms could provide a porous microstructure that retained a higher concentration of the LN atoms in its ligaments and thus retain more of the mechanical properties of the bulk alloy. In addition, by adding even a small fraction of a third, noble component to form a ternary alloy the dissolution kinetics of the least noble component can be dramatically altered, providing a means of controlling dealloying depth. Some molecular dynamics calculations are used to justify the assumptions of metal atom motion in the KMC model. A recently developed parameter-space exploration technique, COERCE, is employed to optimize the process of obtaining meaningful parameter values from the KMC simulation.

  8. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities. Electronic supplementary information (ESI) available: Synthesis and TEM images of pure ZnO nanocrystals. Photocatalytic testing procedures and degradation curves. SEM and TEM images, SAED pattern and EDS spectra and maps of parts of Cu-ZnO hybrid samples. A schematic image of coincident lattice matching between Cu and ZnO. STEM-EDS elemental maps and XRD pattern of the Cu@CuNi-ZnO sample. Comparative synthetic parameters. See DOI: 10.1039/c6nr02055k

  9. Investigation of Lung Structure-Function Relationships Using Hyperpolarized Noble Gases

    NASA Astrophysics Data System (ADS)

    Thomen, Robert P.

    Magnetic Resonance Imaging (MRI) is an application of the nuclear magnetic resonance (NMR) phenomenon to non-invasively generate 3D tomographic images. MRI is an emerging modality for the lung, but it suffers from low sensitivity due to inherent low tissue density and short T(*/2) . Hyperpolarization is a process by which the nuclear contribution to NMR signal is greatly enhanced to more than 100,000 times that of samples in thermal equilibrium. The noble gases 3He and 129Xe are most often hyperpolarized by transfer of light angular momentum through the electron of a vaporized alkali metal to the noble gas nucleus (called Spin Exchange Optical Pumping). The enhancement in NMR signal is so great that the gas itself can be imaged via MRI, and because noble gases are chemically inert, they can be safely inhaled by a subject, and the gas distribution within the interior of the lung can be imaged. The mechanics of respiration is an elegant physical process by which air is is brought into the distal airspaces of the lungs for oxygen/carbon dioxide gas exchange with blood. Therefore proper description of lung function is intricately related to its physical structure , and the basic mechanical operation of healthy lungs -- from pressure driven airflow, to alveolar airspace gas kinetics, to gas exchange by blood/gas concentration gradients, to elastic contraction of parenchymal tissue -- is a process decidedly governed by the laws of physics. This dissertation will describe experiments investigating the relationship of lung structure and function using hyperpolarized (HP) noble gas MRI. In particular HP gases will be applied to the study of several pulmonary diseases each of which demonstrates unique structure-function abnormalities: asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Successful implementation of an HP gas acquisition protocol for pulmonary studies is an involved and stratified undertaking which requires a solid theoretical foundation in NMR and hyperpolarization theory, construction of dedicated hardware, development of dedicated software, and appropriate image analysis techniques for all acquired data. The author has been actively involved in each of these and has dedicated specific chapters of this dissertation to their description. First, a brief description of lung structure-function investigations and pulmonary imaging will be given (chapter 1). Brief discussions of basic NMR, MRI, and hyperpolarization theory will be given (chapters 2 and 3) followed by their particular methods of implementation in this work (chapters 4 and 5). Analysis of acquired HP gas images will be discussed (chapter 6), and the investigational procedures and results for each lung disease examined will be detailed (chapter 7). Finally, a quick digression on the strengths and limitations of HP gas MRI will be provided (chapter 8).

  10. Noble gases in gas shales : Implications for gas retention and circulating fluids.

    NASA Astrophysics Data System (ADS)

    Basu, Sudeshna; Jones, Adrian; Verchovsky, Alexander

    2016-04-01

    Gas shales from three cores of Haynesville-Bossier formation have been analysed simultaneously for carbon, nitrogen and noble gases (He, Ne, Ar, Xe) to constrain their source compositions and identify signatures associated with high gas retention. Ten samples from varying depths of 11785 to 12223 feet from each core, retrieved from their centres, have been combusted from 200-1200°C in incremental steps of 100°C, using 5 - 10 mg of each sample. Typically, Xe is released at 200°C and is largely adsorbed, observed in two of the three cores. The third core lacked any measureable Xe. High 40Ar/36Ar ratio up to 8000, is associated with peak release of nitrogen with distinctive isotopic signature, related to breakdown of clay minerals at 500°C. He and Ne are also mostly released at the same temperature step and predominantly hosted in the pore spaces of the organic matter associated with the clay. He may be produced from the uranium related to the organic matter. The enrichment factors of noble gases defined as (iX/36Ar)sample/(iX/36Ar)air where iX denotes any noble gas isotope, show Ne and Xe enrichment observed commonly in sedimentary rocks including shales (Podosek et al., 1980; Bernatowicz et al., 1984). This can be related to interaction of the shales with circulating fluids and diffusive separation of gases (Torgersen and Kennedy, 1999), implying the possibility of loss of gases from these shales. Interaction with circulating fluids (e.g. crustal fluids) have been further confirmed using 20Ne/N2, 36Ar/N2 and 4He/N2 ratios. Deviations of measured 4He/40Ar* (where 40Ar* represents radiogenic 40Ar after correcting for contribution from atmospheric Ar) from expected values has been used to monitor gas loss by degassing. Bernatowicz, T., Podosek, F.A., Honda, M., Kramer, F.E., 1984. The Atmospheric Inventory of Xenon and Noble Gases in Shales: The Plastic Bag Experiment. Journal of Geophysical Research 89, 4597-4611. Podosek, F.A., Honda, M., Ozima, M., 1980. Sedimentary noble gases. Geochimica Cosmochimica Acta 44, 1875-1884. Torgersen, T., Kennedy, B.M., 1999. Air-Xe enrichments in Oil Field Gases and the Influence of Water during Oil Migration and Storage. Earth and Planetary Science Letters167, 239-253.

  11. Understanding and modulating the high-energy properties of noble-gas hydrides from their long-bonding: an NBO/NRT investigation on HNgCO+/CS+/OSi+ and HNgCN/NC (Ng = He, Ar, Kr, Xe, Rn) molecules.

    PubMed

    Zhang, Guiqiu; Song, Junjie; Fu, Lei; Tang, Kongshuang; Su, Yue; Chen, Dezhan

    2018-04-18

    The noble-gas hydrides, HNgX (X is an electronegative atom or fragment), represent potential high-energy materials because their two-body decomposition process, HNgX → Ng + HX, is strongly exoergic. Our previous studies have shown that each member of the HNgX (X = halogen atom or CN/NC fragment) molecules is composed of three leading resonance structures: two ω-bonding structures (H-Ng+ :X- and H:- Ng+-X) and one long-bonding structure (H∧X). The last one paints a novel [small sigma, Greek, circumflex]-type long-bonding picture. The present study focuses on the relationship between this novel bonding motif and the unusual energetic properties. We chose HNgCO+/CS+/OSi+/CN/NC, with the formula HNgAB (Ng = He, Ar, Kr, Xe, Rn; AB = CO+/CS+/OSi+/CN/NC) as the research system. We first investigated the bonding of HNgCO+ and its analogous HNgCS+/OSi+ species using NBO/NRT methods, and quantitatively compared the bonding with that in HNgCN/NC molecules. NBO/NRT results showed that each of the HNgCO+/CS+/OSi+ molecules could be better represented as a resonance hybrid of ω-bonding and long-bonding structures, but the long-bonding is much weaker than that in HNgCN/NC molecules. Furthermore, we introduced the long-bonding concept into the rationalization of the high-energy properties, and found a good correlation between the highly exothermic two-body dissociation channel and the long-bond order, bH-A. We also found that the long-bond order is highly tunable for these noble-gas hydrides due to its dependence on the nature of the electronegative AB fragments or the central noble-gas atoms, Ng. On the basis of these results, we could optimize the energetic properties by changing the long-bonding motif of our studied molecules. Overall, this study shows that the long-bonding model provides an easy way to rationalize and modulate the unusual energy properties of noble-gas hydrides, and that it is helpful to predict some noble-gas hydrides as potential energetic materials.

  12. Investigation of energy band alignments and interfacial properties of rutile NMO2/TiO2 (NM = Ru, Rh, Os, and Ir) by first-principles calculations.

    PubMed

    Yang, Chen; Zhao, Zong-Yan

    2017-11-08

    In the field of photocatalysis, constructing hetero-structures is an efficient strategy to improve quantum efficiency. However, a lattice mismatch often induces unfavorable interfacial states that can act as recombination centers for photo-generated electron-hole pairs. If the hetero-structure's components have the same crystal structure, this disadvantage can be easily avoided. Conversely, in the process of loading a noble metal co-catalyst onto the TiO 2 surface, a transition layer of noble metal oxides is often formed between the TiO 2 layer and the noble metal layer. In this article, interfacial properties of hetero-structures composed of a noble metal dioxide and TiO 2 with a rutile crystal structure have been systematically investigated using first-principles calculations. In particular, the Schottky barrier height, band bending, and energy band alignments are studied to provide evidence for practical applications. In all cases, no interfacial states exist in the forbidden band of TiO 2 , and the interfacial formation energy is very small. A strong internal electric field generated by interfacial electron transfer leads to an efficient separation of photo-generated carriers and band bending. Because of the differences in the atomic properties of the components, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures demonstrate band dividing, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures have a pseudo-gap near the Fermi energy level. Furthermore, NMO 2 /TiO 2 hetero-structures show upward band bending. Conversely, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures present a relatively strong infrared light absorption, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures show an obvious absorption edge in the visible light region. Overall, considering all aspects of their properties, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures are more suitable than others for improving the photocatalytic performance of TiO 2 . These findings will provide useful information for understanding the role and effects of a noble metal dioxide as a transition layer between a noble metal co-catalyst and a TiO 2 photocatalyst.

  13. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.

    PubMed

    Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Extraterrestrial Helium (He@C60) Trapped in Fullerenes in the Sudbury Impact Structure

    NASA Technical Reports Server (NTRS)

    Becker, L.; Bada, J. L.; Poreda, R. J.; Bunch, T. E.

    1997-01-01

    Fullerenes (C60 and C70) have recently been identified in a shock-produced breccia (Onaping Formation) associated with the 1.85-Ga Sudbury Impact Crater. The presence of parts-per-million levels of fullerenes in this impact structure raises interesting questions about the processes that led to the formation of fullerenes and the potential for delivery of intact organic material to the Earth by a large bolide (e.g., asteroid or comet). Two possible scenarios for the presence of fullerenes in the Sudbury impact deposits are that (1) fullerenes are synthesized within the impact plume from the C contained in the bolide; or (2) fullerenes are already present in the bolide and survived the impact event. The correlation of C and trapped noble gas atoms in meteorites is well established. Primitive meteorites contain several trapped noble gas components that have anomalous isotopic compositions, some of which may have a presolar origin. Several C-bearing phases, including SiC, graphite, and diamond, have been recognized as carriers of trapped noble gases. It has also been suggested that fullerenes (C60 and C70) might be a carrier of noble gas components in carbonaceous chondrites. Recently, fullerenes have been detected in separate samples in the Allende meteorite. Carbon-60 is large enough to enclose the noble gases He, Ne, Ar, Kr, and Xe, but it is too small to contain diatomic gases such as N2 or triatomic gases such as CO2. Recent experimental work has demonstrated that noble gases of a specific isotopic composition can be introduced into synthetic fullerenes at high temperatures and pressures; these encapsulated gases can then be released by the breaking of one or more C bonds during step-heating under vacuum. These thermal-release patterns for He encapsulated within the C60 molecule (He@C60) are similar to the patterns for acid residues of carbonaceous chondrites, suggesting that fullerenes could be an additional carrier of trapped noble gases in acid residues of meteorites. Analysis and Results: In order to characterize the noble gas compositions of the Sudbury fullerenes, we undertook a systematic study of acid-resistant residues throughout the C-rich layer (Black member) of the Onaping Formation. Samples were demineralized and extracted using standard techniques. The Onaping extracts were analyzed using several techniques, including UV-Vis adsorption, electro spray mass spectrometry, and laser desorption (linear and reflectron) time-of-flight (TOF) mass spectrometry (LDMS). The Sudbury fullerenes were then separated and purified using HPLC coupled with a photo diode array detector. The HPLC extracts containing the purified fullerenes were loaded into a metal tube furnace within a glove box under a N atmosphere in preparation for noble gas analyses. The 3-He and 4-He content of the fullerene extracts was measured using previously reported standard techniques . Discussion: Fullerenes (C60 and C70) in the Sudbury Impact Structure have been found to contain trapped He with a 3-He/4-He ratio greater than 5 x 10(exp -4). The 3-He/4-He ratio exceeds the accepted solar value by more than 30% and is more than 10x higher than the maximum reported mantle value. Terrestrial nuclear reactions or cosmic-my bombardment are not sufficient to generate such a high ratio. The 3-He/4-He ratios in the Sudbury fullerenes are similar to those determined for interplanetary dust particles. The greater-than-solar ratios of 3-He/4-He in the Sudbury fullerenes may indicate a presolar origin, although alternative mechanisms occurring in the ISM to explain these high ratios (e.g., spallation reactions, selective He implantation, etc.) cannot be entirely ruled out. We are currently attempting to isolate enough fullerene material to measure anomalous Ne (or Kr or Xe) contained within the C60 (e.g., the "pure" 22-Ne component) and thus determine whether the Sudbury fullerenes are indeed presolar in origin.

  15. Operational Art’s Historical Origins - The Sicilian Campaign of 415-413 B.C.

    DTIC Science & Technology

    2004-05-14

    historian, Plutarch , put it thusly, "Nicias, because of his experience, was looked upon as the fitter for the employment, and his wariness with the...Failed Leadership, (Carlisle Barracks, PA: U.S. Army War College Press, 10 April 2001), 18. 15 Plutarch . PLUTARCH : The Lives of the Noble Grecians and...Naval War College, College of Distant Education, Joint Maritime Operations, Block 1.4, AY 2004-2005. Plutarch . PLUTARCH : The Lives of the Noble

  16. Is xenon eldest?

    NASA Technical Reports Server (NTRS)

    Zahnle, K.

    1994-01-01

    It is well known that the solubility of noble gases in magmas decreases with increasing atomic weight. Xenon, the weightiest of the stable noble gases, is the least soluble atmospheric gas in magma. It is not unreasonable to suppose that the noble gases should have degassed from (or equilibrated with) a bubbling mantle in order of increasing solubility, such that xenon was the most rapidly degassed and helium the least. The apparent relative ages of the famous radiogenic noble gas isotopes agrees, at least qualitatively, with this premise. When atmospheric loss processes are assigned their proper place, several long-standing xenonological puzzles become added evidence for xenon's relative antiquity. Xenon being the afore-mentioned sense the oldest atmospheric gas, will have been most greatly subject to escape, be it impact-driven or EUV-driven. Nonradiogenic xenon's pronounced isotopic fractionation has already been attributed to escape; why it should be more fractionated than krypton would be assigned to xenon's greater atmospheric age. The small atmospheric inventory of xenon relative to the other nonradiogenic noblegases, known as the 'missing xenon' problem, could easily be explained by differential escape. The relatively tiny atmospheric inventories of the radiogenic daughter products of 129 Iodine and 244 Plutonium, both much smaller than would be expected from the inferred abundances of the parents in meteorites, offer a third and fourth data to support the hypothesis that Earth has lost most of its xenon.

  17. [Studies on high temperature oxidation of noble metal alloys for dental use. (III) On high temperature oxidation resistance of noble metal alloys by adding small amounts of alloying elements. (author's transl)].

    PubMed

    Ohno, H

    1976-11-01

    The previous report pointed out the undesirable effects of high temperature oxidation on the casting. The influence of small separate additions of Zn, Mg, Si, Be and Al on the high temperature oxidation of the noble metal alloys was examined. These alloying elements were chosen because their oxide have a high electrical resistivity and they have much higher affinity for oxygen than Cu. The casting were oxidized at 700 degrees C for 1 hour in air. The results obtained were as follows: 1. The Cu oxides are not observed on the as-cast surface of noble metal alloys containing small amounts of Zn, Mg, Si, Be, and Al. The castings have gold- or silver-colored surface. 2. After heating of the unpolished and polished castings, the additions of Si, Be and Al are effective in preventing oxidation of Cu in the 18 carats gold alloys. Especially the golden surface is obtained by adding Be and Al. But there is no oxidation-resistance on the polished castings in the alloys containing Zn and Mg. 3. The zinc oxide film formed on the as-cast specimen is effective in preventing of oxidation Cu in 18 carats gold alloys. 4. It seems that the addition of Al is most available in dental application.

  18. Mass fractionation of noble gases in synthetic methane hydrate: Implications for naturally occurring gas hydrate dissociation

    USGS Publications Warehouse

    Hunt, Andrew G.; Stern, Laura; Pohlman, John W.; Ruppel, Carolyn; Moscati, Richard J.; Landis, Gary P.

    2013-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean-atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  19. Completing and sustaining IMS network for the CTBT Verification Regime

    NASA Astrophysics Data System (ADS)

    Meral Ozel, N.

    2015-12-01

    The CTBT International Monitoring System is to be comprised of 337 facilities located all over the world for the purpose of detecting and locating nuclear test explosions. Major challenges remain, namely the completion of the network where most of the remaining stations have either environmental, logistical and/or political issues to surmont (89% of the stations have already been built) and the sustainment of a reliable and state-of the-art network covering 4 technologies - seismic, infrasound , hydroacoustic and radionuclide. To have a credible and trustworthy verification system ready for entry into force of the Treaty, the CTBTO is protecting and enhancing its investment of its global network of stations and is providing effective data to the International Data Centre (IDC) and Member States. Regarding the protection of the CTBTO's investment and enhanced sustainment of IMS station operations, the IMS Division is enhancing the capabilities of the monitoring system by applying advances in instrumentation and introducing new software applications that are fit for purpose. Some examples are the development of noble gas laboratory systems to process and analyse subsoil samples, development of a mobile noble gas system for onsite inspection purposes, optimization of Beta Gamma detectors for Xenon detection, assessing and improving the efficiency of wind noise reduction systems for infrasound stations, development and testing of infrasound stations with a self-calibrating capability, and research into the use of modular designs for the hydroacoustic network.

  20. Characterizing Uranus with an Ice giant Planetary Origins Probe (Ice-POP)

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.; Fortney, Jonathan; Nettelmann, Nadine; Zahnle, Kevin J.

    2013-01-01

    We now know from studies of planetary transits and microlensing that Neptune-mass planets are ubitquitous and may be the most common class of planets in the Galaxy. As such it is crucial that we understand the formation and evolution of the ice giant planets in our own solar system so that we can better understand planet formation throughout the galaxy. An entry probe mission to Uranus would help accomplish this goal. In fact the Planetary Decadal Survey recommended a Uranus orbiter with entry probe but did not explore in detail the specifications for the entry probe. NASA Ames is currently studying thermal protection system requirements for such a mission and this has led to questions regarding the minimum interesting science payload of such an entry probe. The single most important in-situ measurement for an ice giant entry probe is a measurement of atmospheric composition. For Uranus this would specifically include the methane and noble gas abundances. An in situ measurement of the methane abundance, from below the methane cloud, would constrain the atmospheric carbon abundance, which is believed to be roughly 30 to 50 times solar. There are hints from the transiting planets that extrasolar ice giants show comparable or even greater enhancements of heavy elements compared to their primary stars. However the origin of this carbon enhancement is controversial. Is Uranus a "failed core" of a larger gas giant or was the atmosphere enhanced by accretion of icy planetesimals' Constraining atmospheric abundances of C and perhaps S or even N from below 5 bars would provide badly needed data to address such issues. A measurement of the N abundance would provide clues on the origin of the planetesimals that formed Uranus. Low N-abundance indicates planetesimals from 'warmer' regions where N was mainly in form of NH3, whereas a strong enrichment could indicate planetesimals / cometary material from the colder outer regions of the nebula. Furthermore CO and HCN have been detected in Neptune but not in Uranus. A measurement of the abundance of either would constrain the source mechanisms for these molecules (exogenic or internal). A major surprise from the Galileo Entry Probe was that the heavier noble gases Ar, Kr, and Xe are enhanced in Jupiter's atmosphere at a level comparable to what was seen for the chemically active volatiles N, C, and S. It had been generally expected that Ar, Kr, and Xe would be present in solar abundances, as all were expected to accrete with hydrogen during the gravitational capture of nebular gases. Enhanced abundances of Ar, Kr, and Xe is equivalent to saying that these noble gases have been separated from hydrogen. There are several mechanisms that could accomplish this but these hypotheses require further testing. Measurement of noble gas abundances in an ice giant would constrain the planetary formation and nebular mechanisms responsible for this enhancement. Standard three-layer models of Uranus find that the outer, predominantly H/He layer of Uranus does not reach pressures high enough (approximately 1 Mbar) for H2 to transition to liquid metallic hydrogen. However, valid models can also be constructed with a smaller intermediate water-rich layer, with hydrogen then reaching the metallic hydrogen phase. If this occurs, He should phase separate from the hydrogen and ``rain out," taking along a substantial abundance of Ne, as suggested for Jupiter (and likely also for Saturn). Hence He and Ne depletions could be probes of the planet's structure in the much deeper interior. A determination of Uranus' atmospheric abundances, particularly of the noble gasses, is thus critical to understanding the formation of Uranus, and giant planets in general. These measurements can only be performed with an entry probe. The second key measurement would be a temperature-pressure sounding to provide ground truth for remote measurements of atmospheric temperature and composition and to constrain the internal heat flow. This would also establish that the methane abundance measurements have indeed been made below any possible methane cloud. Finally an ultra stable oscillator would measure wind speeds and constrain atmospheric dynamics. In our presentation we will discuss the importance of all of these measurements and argue that an entry probe is a crucial component of any ice giant mission.

Top