Sample records for develop physical models

  1. Models in Physics, Models for Physics Learning, and Why the Distinction May Matter in the Case of Electric Circuits

    ERIC Educational Resources Information Center

    Hart, Christina

    2008-01-01

    Models are important both in the development of physics itself and in teaching physics. Historically, the consensus models of physics have come to embody particular ontological assumptions and epistemological commitments. Educators have generally assumed that the consensus models of physics, which have stood the test of time, will also work well…

  2. A Bayesian network approach to predicting nest presence of thefederally-threatened piping plover (Charadrius melodus) using barrier island features

    USGS Publications Warehouse

    Gieder, Katherina D.; Karpanty, Sarah M.; Fraser, James D.; Catlin, Daniel H.; Gutierrez, Benjamin T.; Plant, Nathaniel G.; Turecek, Aaron M.; Thieler, E. Robert

    2014-01-01

    Sea-level rise and human development pose significant threats to shorebirds, particularly for species that utilize barrier island habitat. The piping plover (Charadrius melodus) is a federally-listed shorebird that nests on barrier islands and rapidly responds to changes in its physical environment, making it an excellent species with which to model how shorebird species may respond to habitat change related to sea-level rise and human development. The uncertainty and complexity in predicting sea-level rise, the responses of barrier island habitats to sea-level rise, and the responses of species to sea-level rise and human development necessitate a modelling approach that can link species to the physical habitat features that will be altered by changes in sea level and human development. We used a Bayesian network framework to develop a model that links piping plover nest presence to the physical features of their nesting habitat on a barrier island that is impacted by sea-level rise and human development, using three years of data (1999, 2002, and 2008) from Assateague Island National Seashore in Maryland. Our model performance results showed that we were able to successfully predict nest presence given a wide range of physical conditions within the model’s dataset. We found that model predictions were more successful when the range of physical conditions included in model development was varied rather than when those physical conditions were narrow. We also found that all model predictions had fewer false negatives (nests predicted to be absent when they were actually present in the dataset) than false positives (nests predicted to be present when they were actually absent in the dataset), indicating that our model correctly predicted nest presence better than nest absence. These results indicated that our approach of using a Bayesian network to link specific physical features to nest presence will be useful for modelling impacts of sea-level rise- or human-related habitat change on barrier islands. We recommend that potential users of this method utilize multiple years of data that represent a wide range of physical conditions in model development, because the model performed less well when constructed using a narrow range of physical conditions. Further, given that there will always be some uncertainty in predictions of future physical habitat conditions related to sea-level rise and/or human development, predictive models will perform best when developed using multiple, varied years of data input.

  3. A model teaching session for the hypothesis-driven physical examination.

    PubMed

    Nishigori, Hiroshi; Masuda, Kozo; Kikukawa, Makoto; Kawashima, Atsushi; Yudkowsky, Rachel; Bordage, Georges; Otaki, Junji

    2011-01-01

    The physical examination is an essential clinical competence for all physicians. Most medical schools have students who learn the physical examination maneuvers using a head-to-toe approach. However, this promotes a rote approach to the physical exam, and it is not uncommon for students later on to fail to appreciate the meaning of abnormal findings and their contribution to the diagnostic reasoning process. The purpose of the project was to develop a model teaching session for the hypothesis-driven physical examination (HDPE) approach in which students could practice the physical examination in the context of diagnostic reasoning. We used an action research methodology to create this HDPE model by developing a teaching session, implementing it over 100 times with approximately 700 students, conducting internal reflection and external evaluations, and making adjustments as needed. A model nine-step HDPE teaching session was developed, including: (1) orientation, (2) anticipation, (3) preparation, (4) role play, (5) discussion-1, (6) answers, (7) discussion-2, (8) demonstration and (9) reflection. A structured model HDPE teaching session and tutor guide were developed into a workable instructional intervention. Faculty members are invited to teach the physical examination using this model.

  4. A Theoretical Model of Children's Storytelling Using Physically-Oriented Technologies (SPOT)

    ERIC Educational Resources Information Center

    Guha, Mona Leigh; Druin, Allison; Montemayor, Jaime; Chipman, Gene; Farber, Allison

    2007-01-01

    This paper develops a model of children's storytelling using Physically-Oriented Technology (SPOT). The SPOT model draws upon literature regarding current physical storytelling technologies and was developed using a grounded theory approach to qualitative research. This empirical work focused on the experiences of 18 children, ages 5-6, who worked…

  5. Engaging Students In Modeling Instruction for Introductory Physics

    NASA Astrophysics Data System (ADS)

    Brewe, Eric

    2016-05-01

    Teaching introductory physics is arguably one of the most important things that a physics department does. It is the primary way that students from other science disciplines engage with physics and it is the introduction to physics for majors. Modeling instruction is an active learning strategy for introductory physics built on the premise that science proceeds through the iterative process of model construction, development, deployment, and revision. We describe the role that participating in authentic modeling has in learning and then explore how students engage in this process in the classroom. In this presentation, we provide a theoretical background on models and modeling and describe how these theoretical elements are enacted in the introductory university physics classroom. We provide both quantitative and video data to link the development of a conceptual model to the design of the learning environment and to student outcomes. This work is supported in part by DUE #1140706.

  6. Intentional Development: A Model to Guide Lifelong Physical Activity

    ERIC Educational Resources Information Center

    Cherubini, Jeffrey M.

    2009-01-01

    Framed in the context of researching influences on physical activity and actually working with individuals and groups seeking to initiate, increase or maintain physical activity, the purpose of this review is to present the model of Intentional Development as a multi-theoretical approach to guide research and applied work in physical activity.…

  7. Pre-Service Physics Teachers' Argumentation in a Model Rocketry Physics Experience

    ERIC Educational Resources Information Center

    Gürel, Cem; Süzük, Erol

    2017-01-01

    This study investigates the quality of argumentation developed by a group of pre-service physics teachers' (PSPT) as an indicator of subject matter knowledge on model rocketry physics. The structure of arguments and scientific credibility model was used as a design framework in the study. The inquiry of model rocketry physics was employed in…

  8. Development , Implementation and Evaluation of a Physics-Base Windblown Dust Emission Model

    EPA Science Inventory

    A physics-based windblown dust emission parametrization scheme is developed and implemented in the CMAQ modeling system. A distinct feature of the present model includes the incorporation of a newly developed, dynamic relation for the surface roughness length, which is important ...

  9. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    ERIC Educational Resources Information Center

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life…

  10. Development of the physics driver in NOAA Environmental Modeling System (NEMS)

    NASA Astrophysics Data System (ADS)

    Lei, H.; Iredell, M.; Tripp, P.

    2016-12-01

    As a key component of the Next Generation Global Prediction System (NGGPS), a physics driver is developed in the NOAA Environmental Modeling System (NEMS) in order to facilitate the research, development, and transition to operations of innovations in atmospheric physical parameterizations. The physics driver connects the atmospheric dynamic core, the Common Community Physics Package and the other NEMS-based forecast components (land, ocean, sea ice, wave, and space weather). In current global forecasting system, the physics driver has incorporated major existing physics packages including radiation, surface physics, cloud and microphysics, ozone, and stochastic physics. The physics driver is also applicable to external physics packages. The structure adjustment in NEMS by separating the PHYS trunk is to create an open physics package pool. This open platform is beneficial to the enhancement of U.S. weather forecast ability. In addition, with the universal physics driver, the NEMS can also be used for specific functions by connecting external target physics packages through physics driver. The test of its function is to connect a physics dust-radiation model in the system. Then the modified system can be used for dust storm prediction and forecast. The physics driver is also developed into a standalone form. This is to facilitate the development works on physics packages. The developers can save instant fields of meteorology data and snapshots from the running system , and then used them as offline driving data fields to test the new individual physics modules or small modifications to current modules. This prevents the run of whole system for every test.

  11. Meta II: Multi-Model Language Suite for Cyber Physical Systems

    DTIC Science & Technology

    2013-03-01

    AVM META) projects have developed tools for designing cyber physical (or Mechatronic ) Systems . These systems are increasingly complex, take much...projects have developed tools for designing cyber physical (CPS) (or Mechatronic ) systems . Exemplified by modern amphibious and ground military...and parametric interface of Simulink models and defines associations with CyPhy components and component interfaces. 2. Embedded Systems Modeling

  12. A model for the development of university curricula in nanoelectronics

    NASA Astrophysics Data System (ADS)

    Bruun, E.; Nielsen, I.

    2010-12-01

    Nanotechnology is having an increasing impact on university curricula in electrical engineering and in physics. Major influencers affecting developments in university programmes related to nanoelectronics are discussed and a model for university programme development is described. The model takes into account that nanotechnology affects not only physics but also electrical engineering and computer engineering because of the advent of new nanoelectronics devices. The model suggests that curriculum development tends to follow one of three major tracks: physics; electrical engineering; computer engineering. Examples of European curricula following this framework are identified and described. These examples may serve as sources of inspiration for future developments and the model presented may provide guidelines for a systematic selection of topics in the university programmes.

  13. Spiral-syllabus course in wave phenomena to introduce majors and nonmajors to physics

    NASA Astrophysics Data System (ADS)

    Touger, Jerold S.

    1981-09-01

    A single course to introduce physics to both nonscience and physics majors has been developed, dealing with light, sound, and signal, transmission and reception, and emphasizing wave aspects of these phenomena. Themes such as the observational basis of physics, the progression from qualitative observation to measurement, physical models, mathematical modeling, and the utility of models in developing technology are stressed. Modes of presentation, consistent with the notion of a spiral syllabus, are explained with reference to the cognitive and educational theories of Bruner and Piaget. Reasons are discussed for choosing this subject matter in preference to Newtonian mechanics as a starting point for physics majors.

  14. Testing a Theoretical Model of Immigration Transition and Physical Activity.

    PubMed

    Chang, Sun Ju; Im, Eun-Ok

    2015-01-01

    The purposes of the study were to develop a theoretical model to explain the relationships between immigration transition and midlife women's physical activity and test the relationships among the major variables of the model. A theoretical model, which was developed based on transitions theory and the midlife women's attitudes toward physical activity theory, consists of 4 major variables, including length of stay in the United States, country of birth, level of acculturation, and midlife women's physical activity. To test the theoretical model, a secondary analysis with data from 127 Hispanic women and 123 non-Hispanic (NH) Asian women in a national Internet study was used. Among the major variables of the model, length of stay in the United States was negatively associated with physical activity in Hispanic women. Level of acculturation in NH Asian women was positively correlated with women's physical activity. Country of birth and level of acculturation were significant factors that influenced physical activity in both Hispanic and NH Asian women. The findings support the theoretical model that was developed to examine relationships between immigration transition and physical activity; it shows that immigration transition can play an essential role in influencing health behaviors of immigrant populations in the United States. The NH theoretical model can be widely used in nursing practice and research that focus on immigrant women and their health behaviors. Health care providers need to consider the influences of immigration transition to promote immigrant women's physical activity.

  15. The effectiveness of CCDSR learning model to improve skills of creating lesson plan and worksheet science process skill (SPS) for pre-service physics teacher

    NASA Astrophysics Data System (ADS)

    Limatahu, I.; Sutoyo, S.; Wasis; Prahani, B. K.

    2018-03-01

    In the previous research, CCDSR (Condition, Construction, Development, Simulation, and Reflection) learning model has been developed to improve science process skills for pre-service physics teacher. This research is aimed to analyze the effectiveness of CCDSR learning model towards the improvement skills of creating lesson plan and worksheet of Science Process Skill (SPS) for pre-service physics teacher in academic year 2016/2017. This research used one group pre-test and post-test design on 12 pre-service physics teacher at Physics Education, University of Khairun. Data collection was conducted through test and observation. Creating lesson plan and worksheet SPS skills of pre-service physics teacher measurement were conducted through Science Process Skill Evaluation Sheet (SPSES). The data analysis technique was done by Wilcoxon t-test and n-gain. The CCDSR learning model consists of 5 phases, including (1) Condition, (2) Construction, (3) Development, (4) Simulation, and (5) Reflection. The results showed that there was a significant increase in creating lesson plan and worksheet SPS skills of pre-service physics teacher at α = 5% and n-gain average of moderate category. Thus, the CCDSR learning model is effective for improving skills of creating lesson plan and worksheet SPS for pre-service physics teacher.

  16. Development and evaluation of a physics-based windblown dust emission scheme implemented in the CMAQ modeling system

    EPA Science Inventory

    A new windblown dust emission treatment was incorporated in the Community Multiscale Air Quality (CMAQ) modeling system. This new model treatment has been built upon previously developed physics-based parameterization schemes from the literature. A distinct and novel feature of t...

  17. Toward University Modeling Instruction—Biology: Adapting Curricular Frameworks from Physics to Biology

    PubMed Central

    Manthey, Seth; Brewe, Eric

    2013-01-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence. PMID:23737628

  18. Toward university modeling instruction--biology: adapting curricular frameworks from physics to biology.

    PubMed

    Manthey, Seth; Brewe, Eric

    2013-06-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence.

  19. Why Don't They Understand Us?

    NASA Astrophysics Data System (ADS)

    Kvasz, Ladislav

    The aim of the article is to provide teachers some ideas about the development of physical knowledge and to make them more receptive to the differences between their and the students thinking. I want to show, that these differences lie not only in the richness of experience, but also in the structure of this experience. I try to point to some of these differences lying in the content, form and meaningfulness. The article is based on an adapted version of Piaget's model of the growth of physical knowledge. The model represents the changes of semantic understanding, formal language and logical structure of a theory during its historical development. I illustrate the model on the development of classical mechanics, but similar changes can be found also in the history of electrodynamics or quantum mechanics. The central idea of the paper is to use this model of the historical development of physical knowledge in analysis of the cognitive processes in physics education.

  20. A Study of the Nature of Students' Models of Microscopic Processes in the Context of Modern Physics Experiments.

    ERIC Educational Resources Information Center

    Thacker, Beth Ann

    2003-01-01

    Interviews university students in modern physics about their understanding of three fundamental experiments. Explores their development of models of microscopic processes. Uses interactive demonstrations to probe student understanding of modern physics experiments in two high school physics classes. Analyzes the nature of students' models and the…

  1. A methodology for reduced order modeling and calibration of the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Mehta, Piyush M.; Linares, Richard

    2017-10-01

    Atmospheric drag is the largest source of uncertainty in accurately predicting the orbit of satellites in low Earth orbit (LEO). Accurately predicting drag for objects that traverse LEO is critical to space situational awareness. Atmospheric models used for orbital drag calculations can be characterized either as empirical or physics-based (first principles based). Empirical models are fast to evaluate but offer limited real-time predictive/forecasting ability, while physics based models offer greater predictive/forecasting ability but require dedicated parallel computational resources. Also, calibration with accurate data is required for either type of models. This paper presents a new methodology based on proper orthogonal decomposition toward development of a quasi-physical, predictive, reduced order model that combines the speed of empirical and the predictive/forecasting capabilities of physics-based models. The methodology is developed to reduce the high dimensionality of physics-based models while maintaining its capabilities. We develop the methodology using the Naval Research Lab's Mass Spectrometer Incoherent Scatter model and show that the diurnal and seasonal variations can be captured using a small number of modes and parameters. We also present calibration of the reduced order model using the CHAMP and GRACE accelerometer-derived densities. Results show that the method performs well for modeling and calibration of the upper atmosphere.

  2. Scalable Methods for Uncertainty Quantification, Data Assimilation and Target Accuracy Assessment for Multi-Physics Advanced Simulation of Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Khuwaileh, Bassam

    High fidelity simulation of nuclear reactors entails large scale applications characterized with high dimensionality and tremendous complexity where various physics models are integrated in the form of coupled models (e.g. neutronic with thermal-hydraulic feedback). Each of the coupled modules represents a high fidelity formulation of the first principles governing the physics of interest. Therefore, new developments in high fidelity multi-physics simulation and the corresponding sensitivity/uncertainty quantification analysis are paramount to the development and competitiveness of reactors achieved through enhanced understanding of the design and safety margins. Accordingly, this dissertation introduces efficient and scalable algorithms for performing efficient Uncertainty Quantification (UQ), Data Assimilation (DA) and Target Accuracy Assessment (TAA) for large scale, multi-physics reactor design and safety problems. This dissertation builds upon previous efforts for adaptive core simulation and reduced order modeling algorithms and extends these efforts towards coupled multi-physics models with feedback. The core idea is to recast the reactor physics analysis in terms of reduced order models. This can be achieved via identifying the important/influential degrees of freedom (DoF) via the subspace analysis, such that the required analysis can be recast by considering the important DoF only. In this dissertation, efficient algorithms for lower dimensional subspace construction have been developed for single physics and multi-physics applications with feedback. Then the reduced subspace is used to solve realistic, large scale forward (UQ) and inverse problems (DA and TAA). Once the elite set of DoF is determined, the uncertainty/sensitivity/target accuracy assessment and data assimilation analysis can be performed accurately and efficiently for large scale, high dimensional multi-physics nuclear engineering applications. Hence, in this work a Karhunen-Loeve (KL) based algorithm previously developed to quantify the uncertainty for single physics models is extended for large scale multi-physics coupled problems with feedback effect. Moreover, a non-linear surrogate based UQ approach is developed, used and compared to performance of the KL approach and brute force Monte Carlo (MC) approach. On the other hand, an efficient Data Assimilation (DA) algorithm is developed to assess information about model's parameters: nuclear data cross-sections and thermal-hydraulics parameters. Two improvements are introduced in order to perform DA on the high dimensional problems. First, a goal-oriented surrogate model can be used to replace the original models in the depletion sequence (MPACT -- COBRA-TF - ORIGEN). Second, approximating the complex and high dimensional solution space with a lower dimensional subspace makes the sampling process necessary for DA possible for high dimensional problems. Moreover, safety analysis and design optimization depend on the accurate prediction of various reactor attributes. Predictions can be enhanced by reducing the uncertainty associated with the attributes of interest. Accordingly, an inverse problem can be defined and solved to assess the contributions from sources of uncertainty; and experimental effort can be subsequently directed to further improve the uncertainty associated with these sources. In this dissertation a subspace-based gradient-free and nonlinear algorithm for inverse uncertainty quantification namely the Target Accuracy Assessment (TAA) has been developed and tested. The ideas proposed in this dissertation were first validated using lattice physics applications simulated using SCALE6.1 package (Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lattice models). Ultimately, the algorithms proposed her were applied to perform UQ and DA for assembly level (CASL progression problem number 6) and core wide problems representing Watts Bar Nuclear 1 (WBN1) for cycle 1 of depletion (CASL Progression Problem Number 9) modeled via simulated using VERA-CS which consists of several multi-physics coupled models. The analysis and algorithms developed in this dissertation were encoded and implemented in a newly developed tool kit algorithms for Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE).

  3. Physically-Derived Dynamical Cores in Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Lin, Shian-Jiann

    1999-01-01

    The algorithm chosen to represent the advection in atmospheric models is often used as the primary attribute to classify the model. Meteorological models are generally classified as spectral or grid point, with the term grid point implying discretization using finite differences. These traditional approaches have a number of shortcomings that render them non-physical. That is, they provide approximate solutions to the conservation equations that do not obey the fundamental laws of physics. The most commonly discussed shortcomings are overshoots and undershoots which manifest themselves most overtly in the constituent continuity equation. For this reason many climate models have special algorithms to model water vapor advection. This talk focuses on the development of an atmospheric general circulation model which uses a consistent physically-based advection algorithm in all aspects of the model formulation. The shallow-water model is generalized to three dimensions and combined with the physics parameterizations of NCAR's Community Climate Model. The scientific motivation for the development is to increase the integrity of the underlying fluid dynamics so that the physics terms can be more effectively isolated, examined, and improved. The expected benefits of the new model are discussed and results from the initial integrations will be presented.

  4. Physically-Derived Dynamical Cores in Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Lin, Shian-Kiann

    1999-01-01

    The algorithm chosen to represent the advection in atmospheric models is often used as the primary attribute to classify the model. Meteorological models are generally classified as spectral or grid point, with the term grid point implying discretization using finite differences. These traditional approaches have a number of shortcomings that render them non-physical. That is, they provide approximate solutions to the conservation equations that do not obey the fundamental laws of physics. The most commonly discussed shortcomings are overshoots and undershoots which manifest themselves most overtly in the constituent continuity equation. For this reason many climate models have special algorithms to model water vapor advection. This talk focuses on the development of an atmospheric general circulation model which uses a consistent physically-based advection algorithm in all aspects of the model formulation. The shallow-water model of Lin and Rood (QJRMS, 1997) is generalized to three dimensions and combined with the physics parameterizations of NCAR's Community Climate Model. The scientific motivation for the development is to increase the integrity of the underlying fluid dynamics so that the physics terms can be more effectively isolated, examined, and improved. The expected benefits of the new model are discussed and results from the initial integrations will be presented.

  5. Model-Based Reasoning in Upper-division Lab Courses

    NASA Astrophysics Data System (ADS)

    Lewandowski, Heather

    2015-05-01

    Modeling, which includes developing, testing, and refining models, is a central activity in physics. Well-known examples from AMO physics include everything from the Bohr model of the hydrogen atom to the Bose-Hubbard model of interacting bosons in a lattice. Modeling, while typically considered a theoretical activity, is most fully represented in the laboratory where measurements of real phenomena intersect with theoretical models, leading to refinement of models and experimental apparatus. However, experimental physicists use models in complex ways and the process is often not made explicit in physics laboratory courses. We have developed a framework to describe the modeling process in physics laboratory activities. The framework attempts to abstract and simplify the complex modeling process undertaken by expert experimentalists. The framework can be applied to understand typical processes such the modeling of the measurement tools, modeling ``black boxes,'' and signal processing. We demonstrate that the framework captures several important features of model-based reasoning in a way that can reveal common student difficulties in the lab and guide the development of curricula that emphasize modeling in the laboratory. We also use the framework to examine troubleshooting in the lab and guide students to effective methods and strategies.

  6. Solar Physics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The areas of emphasis are: (1) develop theoretical models of the transient release of magnetic energy in the solar atmosphere, e.g., in solar flares, eruptive prominences, coronal mass ejections, etc.; (2) investigate the role of the Sun's magnetic field in the structuring of solar corona by the development of three-dimensional numerical models that describe the field configuration at various heights in the solar atmosphere by extrapolating the field at the photospheric level; (3) develop numerical models to investigate the physical parameters obtained by the ULYSSES mission; (4) develop numerical and theoretical models to investigate solar activity effects on the solar wind characteristics for the establishment of the solar-interplanetary transmission line; and (5) develop new instruments to measure solar magnetic fields and other features in the photosphere, chromosphere transition region and corona. We focused our investigation on the fundamental physical processes in solar atmosphere which directly effect our Planet Earth. The overall goal is to establish the physical process for the Sun-Earth connections.

  7. Development of physical and mathematical models for the Porous Ceramic Tube Plant Nutrification System (PCTPNS)

    NASA Technical Reports Server (NTRS)

    Tsao, D. Teh-Wei; Okos, M. R.; Sager, J. C.; Dreschel, T. W.

    1992-01-01

    A physical model of the Porous Ceramic Tube Plant Nutrification System (PCTPNS) was developed through microscopic observations of the tube surface under various operational conditions. In addition, a mathematical model of this system was developed which incorporated the effects of the applied suction pressure, surface tension, and gravitational forces as well as the porosity and physical dimensions of the tubes. The flow of liquid through the PCTPNS was thus characterized for non-biological situations. One of the key factors in the verification of these models is the accurate and rapid measurement of the 'wetness' or holding capacity of the ceramic tubes. This study evaluated a thermistor based moisture sensor device and recommendations for future research on alternative sensing devices are proposed. In addition, extensions of the physical and mathematical models to include the effects of plant physiology and growth are also discussed for future research.

  8. The Global Modeling Test Bed - Building a New National Capability for Advancing Operational Global Modeling in the United States.

    NASA Astrophysics Data System (ADS)

    Toepfer, F.; Cortinas, J. V., Jr.; Kuo, W.; Tallapragada, V.; Stajner, I.; Nance, L. B.; Kelleher, K. E.; Firl, G.; Bernardet, L.

    2017-12-01

    NOAA develops, operates, and maintains an operational global modeling capability for weather, sub seasonal and seasonal prediction for the protection of life and property and fostering the US economy. In order to substantially improve the overall performance and accelerate advancements of the operational modeling suite, NOAA is partnering with NCAR to design and build the Global Modeling Test Bed (GMTB). The GMTB has been established to provide a platform and a capability for researchers to contribute to the advancement primarily through the development of physical parameterizations needed to improve operational NWP. The strategy to achieve this goal relies on effectively leveraging global expertise through a modern collaborative software development framework. This framework consists of a repository of vetted and supported physical parameterizations known as the Common Community Physics Package (CCPP), a common well-documented interface known as the Interoperable Physics Driver (IPD) for combining schemes into suites and for their configuration and connection to dynamic cores, and an open evidence-based governance process for managing the development and evolution of CCPP. In addition, a physics test harness designed to work within this framework has been established in order to facilitate easier like-to-like comparison of physics advancements. This paper will present an overview of the design of the CCPP and test platform. Additionally, an overview of potential new opportunities of how physics developers can engage in the process, from implementing code for CCPP/IPD compliance to testing their development within an operational-like software environment, will be presented. In addition, insight will be given as to how development gets elevated to CPPP-supported status, the pre-cursor to broad availability and use within operational NWP. An overview of how the GMTB can be expanded to support other global or regional modeling capabilities will also be presented.

  9. Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Hoversten, G.M.

    2011-09-15

    Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmann’s equations and Archie’s law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy tomore » derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.« less

  10. Development of CAG Model for Developing Instructional Materials for Teaching Physical Science Concepts for Grade 8 Students.

    ERIC Educational Resources Information Center

    Hse, Shun-Yi

    1991-01-01

    The development of an instructional model based on a learning cycle including correlation, analysis, and generalization (CAG) is described. A module developed for heat and temperature was administered to test its effects by comparing its use with the same unit in the New Physical Science Curriculum (NPSC). The methodology, results, and discussion…

  11. A proposed application programming interface for a physical volume repository

    NASA Technical Reports Server (NTRS)

    Jones, Merritt; Williams, Joel; Wrenn, Richard

    1996-01-01

    The IEEE Storage System Standards Working Group (SSSWG) has developed the Reference Model for Open Storage Systems Interconnection, Mass Storage System Reference Model Version 5. This document, provides the framework for a series of standards for application and user interfaces to open storage systems. More recently, the SSSWG has been developing Application Programming Interfaces (APIs) for the individual components defined by the model. The API for the Physical Volume Repository is the most fully developed, but work is being done on APIs for the Physical Volume Library and for the Mover also. The SSSWG meets every other month, and meetings are open to all interested parties. The Physical Volume Repository (PVR) is responsible for managing the storage of removable media cartridges and for mounting and dismounting these cartridges onto drives. This document describes a model which defines a Physical Volume Repository, and gives a brief summary of the Application Programming Interface (API) which the IEEE Storage Systems Standards Working Group (SSSWG) is proposing as the standard interface for the PVR.

  12. Methodology for Physics and Engineering of Reliable Products

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Gibbel, Mark

    1996-01-01

    Physics of failure approaches have gained wide spread acceptance within the electronic reliability community. These methodologies involve identifying root cause failure mechanisms, developing associated models, and utilizing these models to inprove time to market, lower development and build costs and higher reliability. The methodology outlined herein sets forth a process, based on integration of both physics and engineering principles, for achieving the same goals.

  13. Improved Characters and Student Learning Outcomes through Development of Character Education Based General Physics Learning Model

    ERIC Educational Resources Information Center

    Derlina; Sabani; Mihardi, Satria

    2015-01-01

    Education Research in Indonesia has begun to lead to the development of character education and is no longer fixated on the outcomes of cognitive learning. This study purposed to produce character education based general physics learning model (CEBGP Learning Model) and with valid, effective and practical peripheral devices to improve character…

  14. USE OF TRANS-CONTEXTUAL MODEL-BASED PHYSICAL ACTIVITY COURSE IN DEVELOPING LEISURE-TIME PHYSICAL ACTIVITY BEHAVIOR OF UNIVERSITY STUDENTS.

    PubMed

    Müftüler, Mine; İnce, Mustafa Levent

    2015-08-01

    This study examined how a physical activity course based on the Trans-Contextual Model affected the variables of perceived autonomy support, autonomous motivation, determinants of leisure-time physical activity behavior, basic psychological needs satisfaction, and leisure-time physical activity behaviors. The participants were 70 Turkish university students (M age=23.3 yr., SD=3.2). A pre-test-post-test control group design was constructed. Initially, the participants were randomly assigned into an experimental (n=35) and a control (n=35) group. The experimental group followed a 12 wk. trans-contextual model-based intervention. The participants were pre- and post-tested in terms of Trans-Contextual Model constructs and of self-reported leisure-time physical activity behaviors. Multivariate analyses showed significant increases over the 12 wk. period for perceived autonomy support from instructor and peers, autonomous motivation in leisure-time physical activity setting, positive intention and perceived behavioral control over leisure-time physical activity behavior, more fulfillment of psychological needs, and more engagement in leisure-time physical activity behavior in the experimental group. These results indicated that the intervention was effective in developing leisure-time physical activity and indicated that the Trans-Contextual Model is a useful way to conceptualize these relationships.

  15. A new method for teaching physical examination to junior medical students.

    PubMed

    Sayma, Meelad; Williams, Hywel Rhys

    2016-01-01

    Teaching effective physical examination is a key component in the education of medical students. Preclinical medical students often have insufficient clinical knowledge to apply to physical examination recall, which may hinder their learning when taught through certain understanding-based models. This pilot project aimed to develop a method to teach physical examination to preclinical medical students using "core clinical cases", overcoming the need for "rote" learning. This project was developed utilizing three cycles of planning, action, and reflection. Thematic analysis of feedback was used to improve this model, and ensure it met student expectations. A model core clinical case developed in this project is described, with gout as the basis for a "foot and ankle" examination. Key limitations and difficulties encountered on implementation of this pilot are discussed for future users, including the difficulty encountered in "content overload". This approach aims to teach junior medical students physical examination through understanding, using a simulated patient environment. Robust research is now required to demonstrate efficacy and repeatability in the physical examination of other systems.

  16. Engineered Barrier System: Physical and Chemical Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming bymore » deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.« less

  17. Informatics and physics intersubject communications in the 7th and 8th grades of the basics level by means of computer modeling

    NASA Astrophysics Data System (ADS)

    Vasina, A. V.

    2017-01-01

    The author of the article imparts pedagogical experience of realization of intersubject communications of school basic courses of informatics, technology and physics through research activity of students with the use of specialized programs for the development and studying of computer models of physical processes. The considered technique is based on the principles of independent scholar activity of students, intersubject communications such as educational disciplines of technology, physics and informatics; it helps to develop the research activity of students and a professional and practical orientation of education. As an example the lesson of modeling of flotation with the use of the environment "1C Physical simulator" is considered.

  18. Development and Evaluation of the Effectiveness of Computer-Assisted Physics Instruction

    ERIC Educational Resources Information Center

    Rahman, Mohd. Jasmy Abd; Ismail, Mohd. Arif. Hj.; Nasir, Muhammad

    2014-01-01

    This study aims to design and develop an interactive software for teaching and learning physics about motion and vectors analysis. This study also assesses its effectiveness in classroom and assesses the learning motivation of SMA Pekanbaru's students. The software is developed using ADDIE Model design and Life Cycle Model and built using the…

  19. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications

    PubMed Central

    2016-01-01

    Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena. PMID:26815602

  20. Implementing a modeling software for animated protein-complex interactions using a physics simulation library.

    PubMed

    Ueno, Yutaka; Ito, Shuntaro; Konagaya, Akihiko

    2014-12-01

    To better understand the behaviors and structural dynamics of proteins within a cell, novel software tools are being developed that can create molecular animations based on the findings of structural biology. This study proposes our method developed based on our prototypes to detect collisions and examine the soft-body dynamics of molecular models. The code was implemented with a software development toolkit for rigid-body dynamics simulation and a three-dimensional graphics library. The essential functions of the target software system included the basic molecular modeling environment, collision detection in the molecular models, and physical simulations of the movement of the model. Taking advantage of recent software technologies such as physics simulation modules and interpreted scripting language, the functions required for accurate and meaningful molecular animation were implemented efficiently.

  1. Assessing Students' Deep Conceptual Understanding in Physical Sciences: An Example on Sinking and Floating

    ERIC Educational Resources Information Center

    Shen, Ji; Liu, Ou Lydia; Chang, Hsin-Yi

    2017-01-01

    This paper presents a transformative modeling framework that guides the development of assessment to measure students' deep understanding in physical sciences. The framework emphasizes 3 types of connections that students need to make when learning physical sciences: (1) linking physical states, processes, and explanatory models, (2) integrating…

  2. 3D physical modeling for patterning process development

    NASA Astrophysics Data System (ADS)

    Sarma, Chandra; Abdo, Amr; Bailey, Todd; Conley, Will; Dunn, Derren; Marokkey, Sajan; Talbi, Mohamed

    2010-03-01

    In this paper we will demonstrate how a 3D physical patterning model can act as a forensic tool for OPC and ground-rule development. We discuss examples where the 2D modeling shows no issues in printing gate lines but 3D modeling shows severe resist loss in the middle. In absence of corrective measure, there is a high likelihood of line discontinuity post etch. Such early insight into process limitations of prospective ground rules can be invaluable for early technology development. We will also demonstrate how the root cause of broken poly-line after etch could be traced to resist necking in the region of STI step with the help of 3D models. We discuss different cases of metal and contact layouts where 3D modeling gives an early insight in to technology limitations. In addition such a 3D physical model could be used for early resist evaluation and selection for required ground-rule challenges, which can substantially reduce the cycle time for process development.

  3. The Development of Open University New Generation Learning Model Using Research and Development for Atomic Physics Course PEFI4421

    ERIC Educational Resources Information Center

    Prayekti

    2017-01-01

    This research was aimed at developing printed teaching materials of Atomic Physics PEFI4421 Course using Research and Development (R & D) model; which consisted of three major set of activities. The first set consisted of seven stages, the second set consisted of one stage, and the third set consisted of seven stages. This research study was…

  4. Development Instrument’s Learning of Physics Through Scientific Inquiry Model Based Batak Culture to Improve Science Process Skill and Student’s Curiosity

    NASA Astrophysics Data System (ADS)

    Nasution, Derlina; Syahreni Harahap, Putri; Harahap, Marabangun

    2018-03-01

    This research aims to: (1) developed a instrument’s learning (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) of physics learning through scientific inquiry learning model based Batak culture to achieve skills improvement process of science students and the students’ curiosity; (2) describe the quality of the result of develop instrument’s learning in high school using scientific inquiry learning model based Batak culture (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) to achieve the science process skill improvement of students and the student curiosity. This research is research development. This research developed a instrument’s learning of physics by using a development model that is adapted from the development model Thiagarajan, Semmel, and Semmel. The stages are traversed until retrieved a valid physics instrument’s learning, practical, and effective includes :(1) definition phase, (2) the planning phase, and (3) stages of development. Test performed include expert test/validation testing experts, small groups, and test classes is limited. Test classes are limited to do in SMAN 1 Padang Bolak alternating on a class X MIA. This research resulted in: 1) the learning of physics static fluid material specially for high school grade 10th consisted of (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) and quality worthy of use in the learning process; 2) each component of the instrument’s learning meet the criteria have valid learning, practical, and effective way to reach the science process skill improvement and curiosity in students.

  5. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F.

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two typesmore » of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.« less

  6. Materials used to simulate physical properties of human skin.

    PubMed

    Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M

    2016-02-01

    For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The Spinal Cord Injury- Functional Index: Item Banks to Measure Physical Functioning of Individuals with Spinal Cord Injury

    PubMed Central

    Tulsky, David S.; Jette, Alan; Kisala, Pamela A.; Kalpakjian, Claire; Dijkers, Marcel P.; Whiteneck, Gale; Ni, Pengsheng; Kirshblum, Steven; Charlifue, Susan; Heinemann, Allen W.; Forchheimer, Martin; Slavin, Mary; Houlihan, Bethlyn; Tate, Denise; Dyson-Hudson, Trevor; Fyffe, Denise; Williams, Steve; Zanca, Jeanne

    2012-01-01

    Objective To develop a comprehensive set of patient reported items to assess multiple aspects of physical functioning relevant to the lives of people with spinal cord injury (SCI) and to evaluate the underlying structure of physical functioning. Design Cross-sectional Setting Inpatient and community Participants Item pools of physical functioning were developed, refined and field tested in a large sample of 855 individuals with traumatic spinal cord injury stratified by diagnosis, severity, and time since injury Interventions None Main Outcome Measure SCI-FI measurement system Results Confirmatory factor analysis (CFA) indicated that a 5-factor model, including basic mobility, ambulation, wheelchair mobility, self care, and fine motor, had the best model fit and was most closely aligned conceptually with feedback received from individuals with SCI and SCI clinicians. When just the items making up basic mobility were tested in CFA, the fit statistics indicate strong support for a unidimensional model. Similar results were demonstrated for each of the other four factors indicating unidimensional models. Conclusions Though unidimensional or 2-factor (mobility and upper extremity) models of physical functioning make up outcomes measures in the general population, the underlying structure of physical function in SCI is more complex. A 5-factor solution allows for comprehensive assessment of key domain areas of physical functioning. These results informed the structure and development of the SCI-FI measurement system of physical functioning. PMID:22609299

  8. Development of a Conceptual Model to Predict Physical Activity Participation in Adults with Brain Injuries

    ERIC Educational Resources Information Center

    Driver, Simon

    2008-01-01

    The purpose was to examine psychosocial factors that influence the physical activity behaviors of adults with brain injuries. Two differing models, based on Harter's model of self-worth, were proposed to examine the relationship between perceived competence, social support, physical self-worth, affect, and motivation. Adults numbering 384 with…

  9. "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.

    PubMed

    Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. © 2013 American Association of Anatomists.

  10. Long-term athletic development- part 1: a pathway for all youth.

    PubMed

    Lloyd, Rhodri S; Oliver, Jon L; Faigenbaum, Avery D; Howard, Rick; De Ste Croix, Mark B A; Williams, Craig A; Best, Thomas M; Alvar, Brent A; Micheli, Lyle J; Thomas, D Phillip; Hatfield, Disa L; Cronin, John B; Myer, Gregory D

    2015-05-01

    The concept of developing talent and athleticism in youth is the goal of many coaches and sports systems. Consequently, an increasing number of sporting organizations have adopted long-term athletic development models in an attempt to provide a structured approach to the training of youth. It is clear that maximizing sporting talent is an important goal of long-term athletic development models. However, ensuring that youth of all ages and abilities are provided with a strategic plan for the development of their health and physical fitness is also important to maximize physical activity participation rates, reduce the risk of sport- and activity-related injury, and to ensure long-term health and well-being. Critical reviews of independent models of long-term athletic development are already present within the literature; however, to the best of our knowledge, a comprehensive examination and review of the most prominent models does not exist. Additionally, considerations of modern day issues that may impact on the success of any long-term athletic development model are lacking, as are proposed solutions to address such issues. Therefore, within this 2-part commentary, Part 1 provides a critical review of existing models of practice for long-term athletic development and introduces a composite youth development model that includes the integration of talent, psychosocial and physical development across maturation. Part 2 identifies limiting factors that may restrict the success of such models and offers potential solutions.

  11. Using Machine Learning as a fast emulator of physical processes within the Met Office's Unified Model

    NASA Astrophysics Data System (ADS)

    Prudden, R.; Arribas, A.; Tomlinson, J.; Robinson, N.

    2017-12-01

    The Unified Model is a numerical model of the atmosphere used at the UK Met Office (and numerous partner organisations including Korean Meteorological Agency, Australian Bureau of Meteorology and US Air Force) for both weather and climate applications.Especifically, dynamical models such as the Unified Model are now a central part of weather forecasting. Starting from basic physical laws, these models make it possible to predict events such as storms before they have even begun to form. The Unified Model can be simply described as having two components: one component solves the navier-stokes equations (usually referred to as the "dynamics"); the other solves relevant sub-grid physical processes (usually referred to as the "physics"). Running weather forecasts requires substantial computing resources - for example, the UK Met Office operates the largest operational High Performance Computer in Europe - and the cost of a typical simulation is spent roughly 50% in the "dynamics" and 50% in the "physics". Therefore there is a high incentive to reduce cost of weather forecasts and Machine Learning is a possible option because, once a machine learning model has been trained, it is often much faster to run than a full simulation. This is the motivation for a technique called model emulation, the idea being to build a fast statistical model which closely approximates a far more expensive simulation. In this paper we discuss the use of Machine Learning as an emulator to replace the "physics" component of the Unified Model. Various approaches and options will be presented and the implications for further model development, operational running of forecasting systems, development of data assimilation schemes, and development of ensemble prediction techniques will be discussed.

  12. Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks

    NASA Astrophysics Data System (ADS)

    Karpatne, A.; Kumar, V.

    2017-12-01

    Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.

  13. Design and implementation of space physics multi-model application integration based on web

    NASA Astrophysics Data System (ADS)

    Jiang, Wenping; Zou, Ziming

    With the development of research on space environment and space science, how to develop network online computing environment of space weather, space environment and space physics models for Chinese scientific community is becoming more and more important in recent years. Currently, There are two software modes on space physics multi-model application integrated system (SPMAIS) such as C/S and B/S. the C/S mode which is traditional and stand-alone, demands a team or workshop from many disciplines and specialties to build their own multi-model application integrated system, that requires the client must be deployed in different physical regions when user visits the integrated system. Thus, this requirement brings two shortcomings: reducing the efficiency of researchers who use the models to compute; inconvenience of accessing the data. Therefore, it is necessary to create a shared network resource access environment which could help users to visit the computing resources of space physics models through the terminal quickly for conducting space science research and forecasting spatial environment. The SPMAIS develops high-performance, first-principles in B/S mode based on computational models of the space environment and uses these models to predict "Space Weather", to understand space mission data and to further our understanding of the solar system. the main goal of space physics multi-model application integration system (SPMAIS) is to provide an easily and convenient user-driven online models operating environment. up to now, the SPMAIS have contained dozens of space environment models , including international AP8/AE8 IGRF T96 models and solar proton prediction model geomagnetic transmission model etc. which are developed by Chinese scientists. another function of SPMAIS is to integrate space observation data sets which offers input data for models online high-speed computing. In this paper, service-oriented architecture (SOA) concept that divides system into independent modules according to different business needs is applied to solve the problem of the independence of the physical space between multiple models. The classic MVC(Model View Controller) software design pattern is concerned to build the architecture of space physics multi-model application integrated system. The JSP+servlet+javabean technology is used to integrate the web application programs of space physics multi-model. It solves the problem of multi-user requesting the same job of model computing and effectively balances each server computing tasks. In addition, we also complete follow tasks: establishing standard graphical user interface based on Java Applet application program; Designing the interface between model computing and model computing results visualization; Realizing three-dimensional network visualization without plug-ins; Using Java3D technology to achieve a three-dimensional network scene interaction; Improved ability to interact with web pages and dynamic execution capabilities, including rendering three-dimensional graphics, fonts and color control. Through the design and implementation of the SPMAIS based on Web, we provide an online computing and application runtime environment of space physics multi-model. The practical application improves that researchers could be benefit from our system in space physics research and engineering applications.

  14. Assessing the Integration of Computational Modeling and ASU Modeling Instruction in the High School Physics Classroom

    NASA Astrophysics Data System (ADS)

    Aiken, John; Schatz, Michael; Burk, John; Caballero, Marcos; Thoms, Brian

    2012-03-01

    We describe the assessment of computational modeling in a ninth grade classroom in the context of the Arizona Modeling Instruction physics curriculum. Using a high-level programming environment (VPython), students develop computational models to predict the motion of objects under a variety of physical situations (e.g., constant net force), to simulate real world phenomenon (e.g., car crash), and to visualize abstract quantities (e.g., acceleration). The impact of teaching computation is evaluated through a proctored assignment that asks the students to complete a provided program to represent the correct motion. Using questions isomorphic to the Force Concept Inventory we gauge students understanding of force in relation to the simulation. The students are given an open ended essay question that asks them to explain the steps they would use to model a physical situation. We also investigate the attitudes and prior experiences of each student using the Computation Modeling in Physics Attitudinal Student Survey (COMPASS) developed at Georgia Tech as well as a prior computational experiences survey.

  15. A MEDL Collection Showcase: A Collection of Hands-on Physical Analog Models and Demonstrations From the Department of Geosciences MEDL at Virginia Tech

    NASA Astrophysics Data System (ADS)

    Glesener, G. B.

    2017-12-01

    The Geosciences Modeling and Educational Demonstrations Laboratory (MEDL) will present a suite of hands-on physical analog models from our curriculum materials collection used to teach about a wide range of geoscience processes. Many of the models will be equipped with Vernier data collection sensors, which visitors will be encouraged to explore on-site. Our goal is to spark interest and discussion around the affordances of these kinds of curriculum materials. Important topics to discuss will include: (1) How can having a collection of hands-on physical analog models be used to effectively produce successful broader impacts activities for research proposals? (2) What kinds of learning outcomes have instructors observed when teaching about temporally and spatially challenging concepts using physical analog models? (3) What does it take for an institution to develop their own MEDL collection? and (4) How can we develop a community of individuals who provide on-the-ground support for instructors who use physical analog models in their classroom.

  16. Technical Manual for the SAM Physical Trough Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, M. J.; Gilman, P.

    2011-06-01

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field,more » power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.« less

  17. Perceived sports competence mediates the relationship between childhood motor skill proficiency and adolescent physical activity and fitness: a longitudinal assessment.

    PubMed

    Barnett, Lisa M; Morgan, Philip J; van Beurden, Eric; Beard, John R

    2008-08-08

    The purpose of this paper was to investigate whether perceived sports competence mediates the relationship between childhood motor skill proficiency and subsequent adolescent physical activity and fitness. In 2000, children's motor skill proficiency was assessed as part of a school-based physical activity intervention. In 2006/07, participants were followed up as part of the Physical Activity and Skills Study and completed assessments for perceived sports competence (Physical Self-Perception Profile), physical activity (Adolescent Physical Activity Recall Questionnaire) and cardiorespiratory fitness (Multistage Fitness Test). Structural equation modelling techniques were used to determine whether perceived sports competence mediated between childhood object control skill proficiency (composite score of kick, catch and overhand throw), and subsequent adolescent self-reported time in moderate-to-vigorous physical activity and cardiorespiratory fitness. Of 928 original intervention participants, 481 were located in 28 schools and 276 (57%) were assessed with at least one follow-up measure. Slightly more than half were female (52.4%) with a mean age of 16.4 years (range 14.2 to 18.3 yrs). Relevant assessments were completed by 250 (90.6%) students for the Physical Activity Model and 227 (82.3%) for the Fitness Model. Both hypothesised mediation models had a good fit to the observed data, with the Physical Activity Model accounting for 18% (R2 = 0.18) of physical activity variance and the Fitness Model accounting for 30% (R2 = 0.30) of fitness variance. Sex did not act as a moderator in either model. Developing a high perceived sports competence through object control skill development in childhood is important for both boys and girls in determining adolescent physical activity participation and fitness. Our findings highlight the need for interventions to target and improve the perceived sports competence of youth.

  18. Development of the Instructional Model of Reading English Strategies for Enhancing Sophomore Students' Learning Achievements in the Institute of Physical Education in the Northeastern Region of Thailand

    ERIC Educational Resources Information Center

    Whankhom, Prawit; Phusawisot, Pilanut; Sayankena, Patcharanon

    2016-01-01

    The aim of this research is to develop and verify the effectiveness of an instructional model of reading English strategies for students of Mahasarakham Institute of Physical Education in the Northeastern region through survey. Classroom action research techniques with the two groups of sample sizes of 34 sophomore physical students as a control…

  19. Promote Physical Activity--It's Proactive Guidance

    ERIC Educational Resources Information Center

    Gartrell, Dan; Sonsteng, Kathleen

    2008-01-01

    Healthy child development relies on physical activity. New curriculum models are effectively integrating physical activity in education programs. The authors describe three such models: S.M.A.R.T. (Stimulating Maturity through Accelerated Readiness Training); Kids in Action, incorporating cardiovascular endurance, muscle strength and endurance,…

  20. Coupling System Dynamics and Physically-based Models for Participatory Water Management - A Methodological Framework, with Two Case Studies: Water Quality in Quebec, and Soil Salinity in Pakistan

    NASA Astrophysics Data System (ADS)

    Boisvert-Chouinard, J.; Halbe, J.; Baig, A. I.; Adamowski, J. F.

    2014-12-01

    The principles of Integrated Water Resource Management outline the importance of stakeholder participation in water management processes, but in practice, there is a lack of meaningful engagement in water planning and implementation, and participation is often limited to public consultation and education. When models are used to support water planning, stakeholders are usually not involved in their development and use, and the models commonly fail to represent important feedbacks between socio-economic and physical processes. This paper presents the development of holistic models of the Du Chêne basin in Quebec, and the Rechna Doab basin in Pakistan, that simulate socio-economic and physical processes related to, respectively, water quality management, and soil salinity management. The models each consists of two sub-components: a System Dynamics (SD) model, and a physically based model. The SD component was developed in collaboration with key stakeholders in the basins. The Du Chêne SD model was coupled with a Soil and Water Assessment Tool (SWAT) model, while the Rechna Doab SD model was coupled with SahysMod, a soil salinity model. The coupled models were used to assess the environmental and socio-economic impacts of different management scenarios proposed by stakeholders. Results indicate that coupled SD - physically-based models can be used as effective tools for participatory water planning and implementation. The participatory modeling process provides a structure for meaningful stakeholder engagement, and the models themselves can be used to transparently and coherently assess and compare different management options.

  1. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; hide

    2008-01-01

    Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.

  2. Modelling of the Thermo-Physical and Physical Properties for Solidification of Al-Alloys

    NASA Astrophysics Data System (ADS)

    Saunders, N.; Li, X.; Miodownik, A. P.; Schillé, J.-P.

    The thermo-physical and physical properties of the liquid and solid phases are critical components in casting simulations. Such properties include the fraction solid transformed, enthalpy release, thermal conductivity, volume and density, all as a function of temperature. Due to the difficulty in experimentally determining such properties at solidification temperatures, little information exists for multi-component alloys. As part of the development of a new computer program for modelling of materials properties (JMatPro) extensive work has been carried out on the development of sound, physically based models for these properties. Wide ranging results will presented for Al-based alloys, which will include more detailed information concerning the density change of the liquid that intrinsically occurs during solidification due to its change in composition.

  3. A Simulation Model for Studying Effects of Pollution and Freshwater Inflow on Secondary Productivity in an Ecosystem. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1974-01-01

    A mathematical model of an ecosystem is developed. Secondary productivity is evaluated in terms of man related and controllable factors. Information from an existing physical parameters model is used as well as pertinent biological measurements. Predictive information of value to estuarine management is presented. Biological, chemical, and physical parameters measured in order to develop models of ecosystems are identified.

  4. Coal conversion systems design and process modeling. Volume 1: Application of MPPR and Aspen computer models

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of a coal gasification system design and mass and energy balance simulation program for the TVA and other similar facilities is described. The materials-process-product model (MPPM) and the advanced system for process engineering (ASPEN) computer program were selected from available steady state and dynamic models. The MPPM was selected to serve as the basis for development of system level design model structure because it provided the capability for process block material and energy balance and high-level systems sizing and costing. The ASPEN simulation serves as the basis for assessing detailed component models for the system design modeling program. The ASPEN components were analyzed to identify particular process blocks and data packages (physical properties) which could be extracted and used in the system design modeling program. While ASPEN physical properties calculation routines are capable of generating physical properties required for process simulation, not all required physical property data are available, and must be user-entered.

  5. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    NASA Astrophysics Data System (ADS)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  6. Stochastic Human Exposure and Dose Simulation Model for Pesticides

    EPA Science Inventory

    SHEDS-Pesticides (Stochastic Human Exposure and Dose Simulation Model for Pesticides) is a physically-based stochastic model developed to quantify exposure and dose of humans to multimedia, multipathway pollutants. Probabilistic inputs are combined in physical/mechanistic algorit...

  7. High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters

    DTIC Science & Technology

    2016-06-01

    space propulsion . This effort consists of numerical model development, physical model development, and systematic studies of the non-linear plasma...studies of the physical characteristics of Field Reversed Configuration (FRC) plasma for advanced space propulsion . This effort consists of numerical...FRCs for propulsion application. Two of the most advanced designs are based on the theta-pinch formation and the RMF formation mechanism, which

  8. A Conceptual Foundation for Measures of Physical Function and Behavioral Health Function for Social Security Work Disability Evaluation

    PubMed Central

    Marfeo, Elizabeth E.; Haley, Stephen M.; Jette, Alan M.; Eisen, Susan V.; Ni, Pengsheng; Bogusz, Kara; Meterko, Mark; McDonough, Christine M.; Chan, Leighton; Brandt, Diane E.; Rasch, Elizabeth K.

    2014-01-01

    Physical and mental impairments represent the two largest health condition categories for which workers receive Social Security disability benefits. Comprehensive assessment of physical and mental impairments should include aspects beyond medical conditions such as a person’s underlying capabilities as well as activity demands relevant to the context of work. The objective of this paper is to describe the initial conceptual stages of developing new measurement instruments of behavioral health and physical functioning relevant for Social Security work disability evaluation purposes. To outline a clear conceptualization of the constructs to be measured, two content models were developed using structured and informal qualitative approaches. We performed a structured literature review focusing on work disability and incorporating aspects of the International Classification of Functioning, Disability, and Health (ICF) as a unifying taxonomy for framework development. Expert interviews provided advice and consultation to enhance face validity of the resulting content models. The content model for work-related behavioral health function identifies five major domains (1) Behavior Control, (2) Basic Interactions, (3) Temperament and Personality, (4) Adaptability, and (5) Workplace Behaviors. The content model describing physical functioning includes three domains (1) Changing and Maintaining Body Position, (2) Whole Body Mobility, and (3) Carrying, Moving and Handling Objects. These content models informed subsequent measurement properties including item development, measurement scale construction, and provided conceptual coherence guiding future empirical inquiry. The proposed measurement approaches show promise to comprehensively and systematically assess physical and behavioral health functioning relevant to work. PMID:23548543

  9. Establishing the Common Community Physics Package by Transitioning the GFS Physics to a Collaborative Software Framework

    NASA Astrophysics Data System (ADS)

    Xue, L.; Firl, G.; Zhang, M.; Jimenez, P. A.; Gill, D.; Carson, L.; Bernardet, L.; Brown, T.; Dudhia, J.; Nance, L. B.; Stark, D. R.

    2017-12-01

    The Global Model Test Bed (GMTB) has been established to support the evolution of atmospheric physical parameterizations in NCEP global modeling applications. To accelerate the transition to the Next Generation Global Prediction System (NGGPS), a collaborative model development framework known as the Common Community Physics Package (CCPP) is created within the GMTB to facilitate engagement from the broad community on physics experimentation and development. A key component to this Research to Operation (R2O) software framework is the Interoperable Physics Driver (IPD) that hooks the physics parameterizations from one end to the dynamical cores on the other end with minimum implementation effort. To initiate the CCPP, scientists and engineers from the GMTB separated and refactored the GFS physics. This exercise demonstrated the process of creating IPD-compliant code and can serve as an example for other physics schemes to do the same and be considered for inclusion into the CCPP. Further benefits to this process include run-time physics suite configuration and considerably reduced effort for testing modifications to physics suites through GMTB's physics test harness. The implementation will be described and the preliminary results will be presented at the conference.

  10. Development of Foundational Movement Skills: A Conceptual Model for Physical Activity Across the Lifespan.

    PubMed

    Hulteen, Ryan M; Morgan, Philip J; Barnett, Lisa M; Stodden, David F; Lubans, David R

    2018-03-09

    Evidence supports a positive association between competence in fundamental movement skills (e.g., kicking, jumping) and physical activity in young people. Whilst important, fundamental movement skills do not reflect the broad diversity of skills utilized in physical activity pursuits across the lifespan. Debate surrounds the question of what are the most salient skills to be learned which facilitate physical activity participation across the lifespan. In this paper, it is proposed that the term 'fundamental movement skills' be replaced with 'foundational movement skills'. The term 'foundational movement skills' better reflects the broad range of movement forms that increase in complexity and specificity and can be applied in a variety of settings. Thus, 'foundational movement skills' includes both traditionally conceptualized 'fundamental' movement skills and other skills (e.g., bodyweight squat, cycling, swimming strokes) that support physical activity engagement across the lifespan. A proposed conceptual model outlines how foundational movement skill competency can provide a direct or indirect pathway, via specialized movement skills, to a lifetime of physical activity. Foundational movement skill development is hypothesized to vary according to culture and/or geographical location. Further, skill development may be hindered or enhanced by physical (i.e., fitness, weight status) and psychological (i.e., perceived competence, self-efficacy) attributes. This conceptual model may advance the application of motor development principles within the public health domain. Additionally, it promotes the continued development of human movement in the context of how it leads to skillful performance and how movement skill development supports and maintains a lifetime of physical activity engagement.

  11. 2016 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrington, David Bradley; Waters, Jiajia

    Los Alamos National Laboratory and its collaborators are facilitating engine modeling by improving accuracy and robustness of the modeling, and improving the robustness of software. We also continue to improve the physical modeling methods. We are developing and implementing new mathematical algorithms, those that represent the physics within an engine. We provide software that others may use directly or that they may alter with various models e.g., sophisticated chemical kinetics, different turbulent closure methods or other fuel injection and spray systems.

  12. Physical characteristics of shrub and conifer fuels for fire behavior models

    Treesearch

    Jonathan R. Gallacher; Thomas H. Fletcher; Victoria Lansinger; Sydney Hansen; Taylor Ellsworth; David R. Weise

    2017-01-01

    The physical properties and dimensions of foliage are necessary inputs for some fire spread models. Currently, almost no data exist on these plant characteristics to fill this need. In this report, we measured the physical properties and dimensions of the foliage from 10 live shrub and conifer fuels throughout a 1-year period. We developed models to predict relative...

  13. A new method for teaching physical examination to junior medical students

    PubMed Central

    Sayma, Meelad; Williams, Hywel Rhys

    2016-01-01

    Introduction Teaching effective physical examination is a key component in the education of medical students. Preclinical medical students often have insufficient clinical knowledge to apply to physical examination recall, which may hinder their learning when taught through certain understanding-based models. This pilot project aimed to develop a method to teach physical examination to preclinical medical students using “core clinical cases”, overcoming the need for “rote” learning. Methods This project was developed utilizing three cycles of planning, action, and reflection. Thematic analysis of feedback was used to improve this model, and ensure it met student expectations. Results and discussion A model core clinical case developed in this project is described, with gout as the basis for a “foot and ankle” examination. Key limitations and difficulties encountered on implementation of this pilot are discussed for future users, including the difficulty encountered in “content overload”. Conclusion This approach aims to teach junior medical students physical examination through understanding, using a simulated patient environment. Robust research is now required to demonstrate efficacy and repeatability in the physical examination of other systems. PMID:26937208

  14. Inhibitors to Responsibility-Based Professional Development with In-Service Teachers

    ERIC Educational Resources Information Center

    Hemphill, Michael A.

    2015-01-01

    Researchers of continuing professional development (CPD) in physical education have called for new models that move beyond the traditional CPD model. The outcomes of CPD protocols are hard to predict even when they align with the best practices. Responsibility-based CPD has become the focus of recent attention to assist physical educators in…

  15. Presentation on the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC): A Working Model and Progress Report

    NASA Astrophysics Data System (ADS)

    Glesener, G. B.; Vican, L.

    2015-12-01

    Physical analog models and demonstrations can be effective educational tools for helping instructors teach abstract concepts in the Earth, planetary, and space sciences. Reducing the learning challenges for students using physical analog models and demonstrations, however, can often increase instructors' workload and budget because the cost and time needed to produce and maintain such curriculum materials is substantial. First, this presentation describes a working model for the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC) to support instructors' use of physical analog models and demonstrations in the science classroom. The working model is based on a combination of instructional resource models developed by the Association of College & Research Libraries and by the Physics Instructional Resource Association. The MEDL-CMC aims to make the curriculum materials available for all science courses and outreach programs within the institution where the MEDL-CMC resides. The sustainability and value of the MEDL-CMC comes from its ability to provide and maintain a variety of physical analog models and demonstrations in a wide range of science disciplines. Second, the presentation then reports on the development, progress, and future of the MEDL-CMC at the University of California Los Angeles (UCLA). Development of the UCLA MEDL-CMC was funded by a grant from UCLA's Office of Instructional Development and is supported by the Department of Earth, Planetary, and Space Sciences. Other UCLA science departments have recently shown interest in the UCLA MEDL-CMC services, and therefore, preparations are currently underway to increase our capacity for providing interdepartmental service. The presentation concludes with recommendations and suggestions for other institutions that wish to start their own MEDL-CMC in order to increase educational effectiveness and decrease instructor workload. We welcome an interuniversity collaboration to further develop the MEDL-CMC model.

  16. A novel medical image data-based multi-physics simulation platform for computational life sciences.

    PubMed

    Neufeld, Esra; Szczerba, Dominik; Chavannes, Nicolas; Kuster, Niels

    2013-04-06

    Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e.g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a Python scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models.

  17. Model-based reasoning in the physics laboratory: Framework and initial results

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin M.; Hu, Dehui; Finkelstein, Noah; Lewandowski, H. J.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We review and extend existing frameworks on modeling to develop a new framework that describes model-based reasoning in introductory and upper-division physics laboratories. Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable process, within physics education, it has been preferentially applied to the iterative development of broadly applicable principles (e.g., Newton's laws of motion in introductory mechanics). A significant feature of the new framework is that measurement tools (in addition to the physical system being studied) are subjected to the process of modeling. Think-aloud interviews were used to refine the framework and demonstrate its utility by documenting examples of model-based reasoning in the laboratory. When applied to the think-aloud interviews, the framework captures and differentiates students' model-based reasoning and helps identify areas of future research. The interviews showed how students productively applied similar facets of modeling to the physical system and measurement tools: construction, prediction, interpretation of data, identification of model limitations, and revision. Finally, we document students' challenges in explicitly articulating assumptions when constructing models of experimental systems and further challenges in model construction due to students' insufficient prior conceptual understanding. A modeling perspective reframes many of the seemingly arbitrary technical details of measurement tools and apparatus as an opportunity for authentic and engaging scientific sense making.

  18. The Modular Modeling System (MMS): User's Manual

    USGS Publications Warehouse

    Leavesley, G.H.; Restrepo, Pedro J.; Markstrom, S.L.; Dixon, M.; Stannard, L.G.

    1996-01-01

    The Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide the research and operational framework needed to support development, testing, and evaluation of physical-process algorithms and to facilitate integration of user-selected sets of algorithms into operational physical-process models. MMS uses a module library that contains modules for simulating a variety of water, energy, and biogeochemical processes. A model is created by selectively coupling the most appropriate modules from the library to create a 'suitable' model for the desired application. Where existing modules do not provide appropriate process algorithms, new modules can be developed. The MMS user's manual provides installation instructions and a detailed discussion of system concepts, module development, and model development and application using the MMS graphical user interface.

  19. Development of the Mathematical Model for Ingot Quality Forecasting with Consideration of Thermal and Physical Characteristics of Mould Powder

    NASA Astrophysics Data System (ADS)

    Anisimov, K. N.; Loginov, A. M.; Gusev, M. P.; Zarubin, S. V.; Nikonov, S. V.; Krasnov, A. V.

    2017-12-01

    This paper presents the results of physical modelling of the mould powder skull in the gap between an ingot and the mould. Based on the results obtained from this and previous works, the mathematical model of mould powder behaviour in the gap and its influence on formation of surface defects was developed. The results of modelling satisfactorily conform to the industrial data on ingot surface defects.

  20. Development of new physical activity and sedentary behavior change self-efficacy questionnaires using item response modeling

    USDA-ARS?s Scientific Manuscript database

    Theoretically, increased levels of physical activity self-efficacy (PASE) should lead to increased physical activity, but few studies have reported this effect among youth. This failure may be at least partially attributable to measurement limitations. In this study, Item Response Modeling (IRM) was...

  1. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    ERIC Educational Resources Information Center

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  2. Physical Models that Provide Guidance in Visualization Deconstruction in an Inorganic Context

    ERIC Educational Resources Information Center

    Schiltz, Holly K.; Oliver-Hoyo, Maria T.

    2012-01-01

    Three physical model systems have been developed to help students deconstruct the visualization needed when learning symmetry and group theory. The systems provide students with physical and visual frames of reference to facilitate the complex visualization involved in symmetry concepts. The permanent reflection plane demonstration presents an…

  3. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality

    NASA Astrophysics Data System (ADS)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.

    2017-12-01

    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  4. Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management - Part 1: Model development

    NASA Astrophysics Data System (ADS)

    Inam, Azhar; Adamowski, Jan; Prasher, Shiv; Halbe, Johannes; Malard, Julien; Albano, Raffaele

    2017-08-01

    Effective policies, leading to sustainable management solutions for land and water resources, require a full understanding of interactions between socio-economic and physical processes. However, the complex nature of these interactions, combined with limited stakeholder engagement, hinders the incorporation of socio-economic components into physical models. The present study addresses this challenge by integrating the physical Spatial Agro Hydro Salinity Model (SAHYSMOD) with a participatory group-built system dynamics model (GBSDM) that includes socio-economic factors. A stepwise process to quantify the GBSDM is presented, along with governing equations and model assumptions. Sub-modules of the GBSDM, describing agricultural, economic, water and farm management factors, are linked together with feedbacks and finally coupled with the physically based SAHYSMOD model through commonly used tools (i.e., MS Excel and a Python script). The overall integrated model (GBSDM-SAHYSMOD) can be used to help facilitate the role of stakeholders with limited expertise and resources in model and policy development and implementation. Following the development of the integrated model, a testing methodology was used to validate the structure and behavior of the integrated model. Model robustness under different operating conditions was also assessed. The model structure was able to produce anticipated real behaviours under the tested scenarios, from which it can be concluded that the formulated structures generate the right behaviour for the right reasons.

  5. Model-Based Reasoning in the Physics Laboratory: Framework and Initial Results

    ERIC Educational Resources Information Center

    Zwickl, Benjamin M.; Hu, Dehui; Finkelstein, Noah; Lewandowski, H. J.

    2015-01-01

    We review and extend existing frameworks on modeling to develop a new framework that describes model-based reasoning in introductory and upper-division physics laboratories. Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable…

  6. A Study of Physics Faculty's Instructional Practices: Implications for Experiential STEM Faculty Development Model

    NASA Astrophysics Data System (ADS)

    Soto, Marissa; Suskavcevic, Miliana; Forrest, Rebecca; Cheung, Margaret; Kapral, Andrew; Khon, Lawrence

    When teaching physics, many factors determine the final impact the course will have on a student. Using STEP, a teacher content professional development program, we are studying the incorporation of inquiry-based teaching strategies in the professional development of university professors through an active engagement program. Through the professors' involvement in the program, they gain experience with inquiry-based instruction that can be put into effect in their own classrooms to possibly create a shift in understanding and success ratesat physics undergraduate courses. This model consists of faculty peer mentoring, facilitating instruction within a community of practice, and implementation of undergraduate inquiry-based physics teaching strategies. Here, professors are facilitating the physics lessons to in-service high school teachers while using inquiry strategies and interactive activities rather than traditional lecture. This project aided the creation of an undergraduate inquiry-based physics course at the University of Houston. It could lead to a new form of professor professional development workshop that does not only benefit the professor, but also highschoolteachers not properly trained in the field of physics.

  7. Moment-Based Physical Models of Broadband Clutter due to Aggregations of Fish

    DTIC Science & Technology

    2013-09-30

    statistical models for signal-processing algorithm development. These in turn will help to develop a capability to statistically forecast the impact of...aggregations of fish based on higher-order statistical measures describable in terms of physical and system parameters. Environmentally , these models...processing. In this experiment, we had good ground truth on (1) and (2), and had control over (3) and (4) except for environmentally -imposed restrictions

  8. Towards using musculoskeletal models for intelligent control of physically assistive robots.

    PubMed

    Carmichael, Marc G; Liu, Dikai

    2011-01-01

    With the increasing number of robots being developed to physically assist humans in tasks such as rehabilitation and assistive living, more intelligent and personalized control systems are desired. In this paper we propose the use of a musculoskeletal model to estimate the strength of the user, from which information can be utilized to improve control schemes in which robots physically assist humans. An optimization model is developed utilizing a musculoskeletal model to estimate human strength in a specified dynamic state. Results of this optimization as well as methods of using it to observe muscle-based weaknesses in task space are presented. Lastly potential methods and problems in incorporating this model into a robot control system are discussed.

  9. Simplified Physics Based Models Research Topical Report on Task #2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Srikanta; Ganesh, Priya

    We present a simplified-physics based approach, where only the most important physical processes are modeled, to develop and validate simplified predictive models of CO2 sequestration in deep saline formation. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. We use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and themore » nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Similar correlations are also developed to predict the average pressure within the injection reservoir, and the pressure buildup within the caprock.« less

  10. Body composition, muscle capacity, and physical function in older adults: an integrated conceptual model.

    PubMed

    Brady, Anne O; Straight, Chad R; Evans, Ellen M

    2014-07-01

    The aging process leads to adverse changes in body composition (increases in fat mass and decreases in skeletal muscle mass), declines in physical function (PF), and ultimately increased risk for disability and loss of independence. Specific components of body composition or muscle capacity (strength and power) may be useful in predicting PF; however, findings have been mixed regarding the most salient predictor of PF. The development of a conceptual model potentially aids in understanding the interrelated factors contributing to PF with the factors of interest being physical activity, body composition, and muscle capacity. This article also highlights sex differences in these domains. Finally, factors known to affect PF, such as sleep, depression, fatigue, and self-efficacy, are discussed. Development of a comprehensive conceptual model is needed to better characterize the most salient factors contributing to PF and to subsequently inform the development of interventions to reduce physical disability in older adults.

  11. Mediated Modeling in Science Education

    NASA Astrophysics Data System (ADS)

    Halloun, Ibrahim A.

    2007-08-01

    Following two decades of corroboration, modeling theory is presented as a pedagogical theory that promotes mediated experiential learning of model-laden theory and inquiry in science education. Students develop experiential knowledge about physical realities through interplay between their own ideas about the physical world and particular patterns in this world. Under teacher mediation, they represent each pattern with a particular model that they develop through a five-phase learning cycle, following particular modeling schemata of well-defined dimensions and rules of engagement. Significantly greater student achievement has been increasingly demonstrated under mediated modeling than under conventional instruction of lecture and demonstration, especially in secondary school and university physics courses. The improved achievement is reflected in more meaningful understanding of course materials, better learning styles, higher success rates, lower attrition rates and narrower gaps between students of different backgrounds.

  12. Counseling through Physical Fitness and Exercise.

    ERIC Educational Resources Information Center

    Carlson, Jon

    1990-01-01

    Discusses health, emotional, cognitive, social, and behavioral benefits of physical exercise. Discusses applications of physical exercise and diet in counseling children. Concludes counselors need to develop physical fitness levels and diets for their clients to model. (ABL)

  13. Role of conceptual models in a physical therapy curriculum: application of an integrated model of theory, research, and clinical practice.

    PubMed

    Darrah, Johanna; Loomis, Joan; Manns, Patricia; Norton, Barbara; May, Laura

    2006-11-01

    The Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada, recently implemented a Master of Physical Therapy (MPT) entry-level degree program. As part of the curriculum design, two models were developed, a Model of Best Practice and the Clinical Decision-Making Model. Both models incorporate four key concepts of the new curriculum: 1) the concept that theory, research, and clinical practice are interdependent and inform each other; 2) the importance of client-centered practice; 3) the terminology and philosophical framework of the World Health Organization's International Classification of Functioning, Disability, and Health; and 4) the importance of evidence-based practice. In this article the general purposes of models for learning are described; the two models developed for the MPT program are described; and examples of their use with curriculum design and teaching are provided. Our experiences with both the development and use of models of practice have been positive. The models have provided both faculty and students with a simple, systematic structured framework to organize teaching and learning in the MPT program.

  14. Shift scheduling model considering workload and worker’s preference for security department

    NASA Astrophysics Data System (ADS)

    Herawati, A.; Yuniartha, D. R.; Purnama, I. L. I.; Dewi, LT

    2018-04-01

    Security department operates for 24 hours and applies shift scheduling to organize its workers as well as in hotel industry. This research has been conducted to develop shift scheduling model considering the workers physical workload using rating of perceived exertion (RPE) Borg’s Scale and workers’ preference to accommodate schedule flexibility. The mathematic model is developed in integer linear programming and results optimal solution for simple problem. Resulting shift schedule of the developed model has equally distribution shift allocation among workers to balance the physical workload and give flexibility for workers in working hours arrangement.

  15. Promoting Lifelong Physical Activity and High Level Performance: Realising an Achievable Aim for Physical Education

    ERIC Educational Resources Information Center

    MacNamara, Aine; Collins, Dave; Bailey, Richard; Toms, Martin; Ford, Paul; Pearce, Gemma

    2011-01-01

    Background: Even though all school-aged children in most countries experience some form of curricular physical education many do not maintain a lifelong involvement in sport or physical activity. From a theoretical perspective, the development models that dominate sport are limited by their staged and linear approaches to development (e.g. Cote's…

  16. High School Physical Education Students and Experiential Learning in the Community: A Classroom Assignment

    ERIC Educational Resources Information Center

    Tapps, Tyler; Passmore, Tim; Lindenmeier, Donna; Kensinger, Weston

    2014-01-01

    The experiential learning model for students working with community groups was developed for specific experiential learning experiences involving 40 hours of actual experience for high school physical education students working with groups in the community. This article discusses the development and specific segments of the model, as well as how…

  17. Importance of Nuclear Physics to NASA's Space Missions

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    We show that nuclear physics is extremely important for accurate risk assessments for space missions. Due to paucity of experimental input radiation interaction information it is imperative to develop reliable accurate models for the interaction of radiation with matter. State-of-the-art nuclear cross sections models have been developed at the NASA Langley Research center and are discussed.

  18. Increasing Pupil Physical Activity: A Comprehensive Professional Development Effort

    ERIC Educational Resources Information Center

    Kulinna, Pamela Hodges

    2012-01-01

    Study aim: To determine if pupil physical activity and Body Mass Index classifications maintained or improved after a one-year professional development program involving both classroom and physical education teachers. Guskey's model of teacher change guided this study. Material and methods: Indigenous children from ten schools (N = 320) in grades…

  19. Quantum Mechanics for Beginning Physics Students

    ERIC Educational Resources Information Center

    Schneider, Mark B.

    2010-01-01

    The past two decades of attention to introductory physics education has emphasized enhanced development of conceptual understanding to accompany calculational ability. Given this, it is surprising that current texts continue to rely on the Bohr model to develop a flawed intuition, and introduce correct atomic physics on an ad hoc basis. For…

  20. Quantitative Comparisons to Promote Inquiry in the Introductory Physics Lab

    ERIC Educational Resources Information Center

    Holmes, N. G.; Bonn, D. A.

    2015-01-01

    In a recent report, the American Association of Physics Teachers has developed an updated set of recommendations for curriculum of undergraduate physics labs. This document focuses on six major themes: constructing knowledge, modeling, designing experiments, developing technical and practical laboratory skills, analyzing and visualizing data, and…

  1. An ethnographic study: Becoming a physics expert in a biophysics research group

    NASA Astrophysics Data System (ADS)

    Rodriguez, Idaykis

    Expertise in physics has been traditionally studied in cognitive science, where physics expertise is understood through the difference between novice and expert problem solving skills. The cognitive perspective of physics experts only create a partial model of physics expertise and does not take into account the development of physics experts in the natural context of research. This dissertation takes a social and cultural perspective of learning through apprenticeship to model the development of physics expertise of physics graduate students in a research group. I use a qualitative methodological approach of an ethnographic case study to observe and video record the common practices of graduate students in their biophysics weekly research group meetings. I recorded notes on observations and conduct interviews with all participants of the biophysics research group for a period of eight months. I apply the theoretical framework of Communities of Practice to distinguish the cultural norms of the group that cultivate physics expert practices. Results indicate that physics expertise is specific to a topic or subfield and it is established through effectively publishing research in the larger biophysics research community. The participant biophysics research group follows a learning trajectory for its students to contribute to research and learn to communicate their research in the larger biophysics community. In this learning trajectory students develop expert member competencies to learn to communicate their research and to learn the standards and trends of research in the larger research community. Findings from this dissertation expand the model of physics expertise beyond the cognitive realm and add the social and cultural nature of physics expertise development. This research also addresses ways to increase physics graduate student success towards their PhD. and decrease the 48% attrition rate of physics graduate students. Cultivating effective research experiences that give graduate students agency and autonomy beyond their research groups gives students the motivation to finish graduate school and establish their physics expertise.

  2. Conceptual foundation for measures of physical function and behavioral health function for Social Security work disability evaluation.

    PubMed

    Marfeo, Elizabeth E; Haley, Stephen M; Jette, Alan M; Eisen, Susan V; Ni, Pengsheng; Bogusz, Kara; Meterko, Mark; McDonough, Christine M; Chan, Leighton; Brandt, Diane E; Rasch, Elizabeth K

    2013-09-01

    Physical and mental impairments represent the 2 largest health condition categories for which workers receive Social Security disability benefits. Comprehensive assessment of physical and mental impairments should include aspects beyond medical conditions such as a person's underlying capabilities as well as activity demands relevant to the context of work. The objective of this article is to describe the initial conceptual stages of developing new measurement instruments of behavioral health and physical functioning relevant for Social Security work disability evaluation purposes. To outline a clear conceptualization of the constructs to be measured, 2 content models were developed using structured and informal qualitative approaches. We performed a structured literature review focusing on work disability and incorporating aspects of the International Classification of Functioning, Disability and Health as a unifying taxonomy for framework development. Expert interviews provided advice and consultation to enhance face validity of the resulting content models. The content model for work-related behavioral health function identifies 5 major domains: (1) behavior control, (2) basic interactions, (3) temperament and personality, (4) adaptability, and (5) workplace behaviors. The content model describing physical functioning includes 3 domains: (1) changing and maintaining body position, (2) whole-body mobility, and (3) carrying, moving, and handling objects. These content models informed subsequent measurement properties including item development and measurement scale construction, and provided conceptual coherence guiding future empirical inquiry. The proposed measurement approaches show promise to comprehensively and systematically assess physical and behavioral health functioning relevant to work. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Planning Model of Physics Learning In Senior High School To Develop Problem Solving Creativity Based On National Standard Of Education

    NASA Astrophysics Data System (ADS)

    Putra, A.; Masril, M.; Yurnetti, Y.

    2018-04-01

    One of the causes of low achievement of student’s competence in physics learning in high school is the process which they have not been able to develop student’s creativity in problem solving. This is shown that the teacher’s learning plan is not accordance with the National Eduction Standard. This study aims to produce a reconstruction model of physics learning that fullfil the competency standards, content standards, and assessment standards in accordance with applicable curriculum standards. The development process follows: Needs analysis, product design, product development, implementation, and product evaluation. The research process involves 2 peers judgment, 4 experts judgment and two study groups of high school students in Padang. The data obtained, in the form of qualitative and quantitative data that collected through documentation, observation, questionnaires, and tests. The result of this research up to the product development stage that obtained the physics learning plan model that meets the validity of the content and the validity of the construction in terms of the fulfillment of Basic Competence, Content Standards, Process Standards and Assessment Standards.

  4. Neighborhood Design, Physical Activity, and Wellbeing: Applying the Walkability Model.

    PubMed

    Zuniga-Teran, Adriana A; Orr, Barron J; Gimblett, Randy H; Chalfoun, Nader V; Guertin, David P; Marsh, Stuart E

    2017-01-13

    Neighborhood design affects lifestyle physical activity, and ultimately human wellbeing. There are, however, a limited number of studies that examine neighborhood design types. In this research, we examine four types of neighborhood designs: traditional development, suburban development, enclosed community, and cluster housing development, and assess their level of walkability and their effects on physical activity and wellbeing. We examine significant associations through a questionnaire ( n = 486) distributed in Tucson, Arizona using the Walkability Model. Among the tested neighborhood design types, traditional development showed significant associations and the highest value for walkability, as well as for each of the two types of walking (recreation and transportation) representing physical activity. Suburban development showed significant associations and the highest mean values for mental health and wellbeing. Cluster housing showed significant associations and the highest mean value for social interactions with neighbors and for perceived safety from crime. Enclosed community did not obtain the highest means for any wellbeing benefit. The Walkability Model proved useful in identifying the walkability categories associated with physical activity and perceived crime. For example, the experience category was strongly and inversely associated with perceived crime. This study provides empirical evidence of the importance of including vegetation, particularly trees, throughout neighborhoods in order to increase physical activity and wellbeing. Likewise, the results suggest that regular maintenance is an important strategy to improve mental health and overall wellbeing in cities.

  5. Neighborhood Design, Physical Activity, and Wellbeing: Applying the Walkability Model

    PubMed Central

    Zuniga-Teran, Adriana A.; Orr, Barron J.; Gimblett, Randy H.; Chalfoun, Nader V.; Guertin, David P.; Marsh, Stuart E.

    2017-01-01

    Neighborhood design affects lifestyle physical activity, and ultimately human wellbeing. There are, however, a limited number of studies that examine neighborhood design types. In this research, we examine four types of neighborhood designs: traditional development, suburban development, enclosed community, and cluster housing development, and assess their level of walkability and their effects on physical activity and wellbeing. We examine significant associations through a questionnaire (n = 486) distributed in Tucson, Arizona using the Walkability Model. Among the tested neighborhood design types, traditional development showed significant associations and the highest value for walkability, as well as for each of the two types of walking (recreation and transportation) representing physical activity. Suburban development showed significant associations and the highest mean values for mental health and wellbeing. Cluster housing showed significant associations and the highest mean value for social interactions with neighbors and for perceived safety from crime. Enclosed community did not obtain the highest means for any wellbeing benefit. The Walkability Model proved useful in identifying the walkability categories associated with physical activity and perceived crime. For example, the experience category was strongly and inversely associated with perceived crime. This study provides empirical evidence of the importance of including vegetation, particularly trees, throughout neighborhoods in order to increase physical activity and wellbeing. Likewise, the results suggest that regular maintenance is an important strategy to improve mental health and overall wellbeing in cities. PMID:28098785

  6. Investigation of model-based physical design restrictions (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Lucas, Kevin; Baron, Stanislas; Belledent, Jerome; Boone, Robert; Borjon, Amandine; Couderc, Christophe; Patterson, Kyle; Riviere-Cazaux, Lionel; Rody, Yves; Sundermann, Frank; Toublan, Olivier; Trouiller, Yorick; Urbani, Jean-Christophe; Wimmer, Karl

    2005-05-01

    As lithography and other patterning processes become more complex and more non-linear with each generation, the task of physical design rules necessarily increases in complexity also. The goal of the physical design rules is to define the boundary between the physical layout structures which will yield well from those which will not. This is essentially a rule-based pre-silicon guarantee of layout correctness. However the rapid increase in design rule requirement complexity has created logistical problems for both the design and process functions. Therefore, similar to the semiconductor industry's transition from rule-based to model-based optical proximity correction (OPC) due to increased patterning complexity, opportunities for improving physical design restrictions by implementing model-based physical design methods are evident. In this paper we analyze the possible need and applications for model-based physical design restrictions (MBPDR). We first analyze the traditional design rule evolution, development and usage methodologies for semiconductor manufacturers. Next we discuss examples of specific design rule challenges requiring new solution methods in the patterning regime of low K1 lithography and highly complex RET. We then evaluate possible working strategies for MBPDR in the process development and product design flows, including examples of recent model-based pre-silicon verification techniques. Finally we summarize with a proposed flow and key considerations for MBPDR implementation.

  7. Validating an operational physical method to compute surface radiation from geostationary satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Dhere, Neelkanth G.; Wohlgemuth, John H.

    We developed models to compute global horizontal irradiance (GHI) and direct normal irradiance (DNI) over the last three decades. These models can be classified as empirical or physical based on the approach. Empirical models relate ground-based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the physics behind the radiation received at the satellite and create retrievals to estimate surface radiation. Furthermore, while empirical methods have been traditionally used for computing surface radiation for the solar energy industry, the advent of faster computing has made operational physical models viable. The Global Solar Insolation Projectmore » (GSIP) is a physical model that computes DNI and GHI using the visible and infrared channel measurements from a weather satellite. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate GHI and DNI. Developed for polar orbiting satellites, GSIP has been adapted to NOAA's Geostationary Operation Environmental Satellite series and can run operationally at high spatial resolutions. Our method holds the possibility of creating high quality datasets of GHI and DNI for use by the solar energy industry. We present an outline of the methodology and results from running the model as well as a validation study using ground-based instruments.« less

  8. Development and evaluation of social cognitive measures related to adolescent physical activity.

    PubMed

    Dewar, Deborah L; Lubans, David Revalds; Morgan, Philip James; Plotnikoff, Ronald C

    2013-05-01

    This study aimed to develop and evaluate the construct validity and reliability of modernized social cognitive measures relating to physical activity behaviors in adolescents. An instrument was developed based on constructs from Bandura's Social Cognitive Theory and included the following scales: self-efficacy, situation (perceived physical environment), social support, behavioral strategies, and outcome expectations and expectancies. The questionnaire was administered in a sample of 171 adolescents (age = 13.6 ± 1.2 years, females = 61%). Confirmatory factor analysis was employed to examine model-fit for each scale using multiple indices, including chi-square index, comparative-fit index (CFI), goodness-of-fit index (GFI), and the root mean square error of approximation (RMSEA). Reliability properties were also examined (ICC and Cronbach's alpha). Each scale represented a statistically sound measure: fit indices indicated each model to be an adequate-to-exact fit to the data; internal consistency was acceptable to good (α = 0.63-0.79); rank order repeatability was strong (ICC = 0.82-0.91). Results support the validity and reliability of social cognitive scales relating to physical activity among adolescents. As such, the developed scales have utility for the identification of potential social cognitive correlates of youth physical activity, mediators of physical activity behavior changes and the testing of theoretical models based on Social Cognitive Theory.

  9. Final Report Collaborative Project. Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Frank; Dennis, John; MacCready, Parker

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation. The main computational objectives were: 1. To develop computationally efficient, but physically based, parameterizations of estuary and continental shelf mixing processes for use in an Earth System Model (CESM). 2. Tomore » develop a two-way nested regional modeling framework in order to dynamically downscale the climate response of particular coastal ocean regions and to upscale the impact of the regional coastal processes to the global climate in an Earth System Model (CESM). 3. To develop computational infrastructure to enhance the efficiency of data transfer between specific sources and destinations, i.e., a point-to-point communication capability, (used in objective 1) within POP, the ocean component of CESM.« less

  10. Novel residual-based large eddy simulation turbulence models for incompressible magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Sondak, David

    The goal of this work was to develop, introduce, and test a promising computational paradigm for the development of turbulence models for incompressible magnetohydrodynamics (MHD). MHD governs the behavior of an electrically conducting fluid in the presence of an external electromagnetic (EM) field. The incompressible MHD model is used in many engineering and scientific disciplines from the development of nuclear fusion as a sustainable energy source to the study of space weather and solar physics. Many interesting MHD systems exhibit the phenomenon of turbulence which remains an elusive problem from all scientific perspectives. This work focuses on the computational perspective and proposes techniques that enable the study of systems involving MHD turbulence. Direct numerical simulation (DNS) is not a feasible approach for studying MHD turbulence. In this work, turbulence models for incompressible MHD were developed from the variational multiscale (VMS) formulation wherein the solution fields were decomposed into resolved and unresolved components. The unresolved components were modeled with a term that is proportional to the residual of the resolved scales. Two additional MHD models were developed based off of the VMS formulation: a residual-based eddy viscosity (RBEV) model and a mixed model that partners the VMS formulation with the RBEV model. These models are endowed with several special numerical and physics features. Included in the numerical features is the internal numerical consistency of each of the models. Physically, the new models are able to capture desirable MHD physics such as the inverse cascade of magnetic energy and the subgrid dynamo effect. The models were tested with a Fourier-spectral numerical method and the finite element method (FEM). The primary test problem was the Taylor-Green vortex. Results comparing the performance of the new models to DNS were obtained. The performance of the new models was compared to classic and cutting-edge dynamic Smagorinsky eddy viscosity (DSEV) models. The new models typically outperform the classical models.

  11. Developing the Practising Model in Physical Education: An Expository Outline Focusing on Movement Capability

    ERIC Educational Resources Information Center

    Barker, D. M.; Aggerholm, K.; Standal, O.; Larsson, H.

    2018-01-01

    Background: Physical educators currently have a number of pedagogical (or curricular) models at their disposal. While existing models have been well-received in educational contexts, these models seek to extend students' capacities within a limited number of "human activities" (Arendt, 1958). The activity of "human practising,"…

  12. Including Overweight or Obese Students in Physical Education: A Social Ecological Constraint Model

    ERIC Educational Resources Information Center

    Li, Weidong; Rukavina, Paul

    2012-01-01

    In this review, we propose a social ecological constraint model to study inclusion of overweight or obese students in physical education by integrating key concepts and assumptions from ecological constraint theory in motor development and social ecological models in health promotion and behavior. The social ecological constraint model proposes…

  13. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2010-01-01

    A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems. In addition, high - resolution (spatial. 2km, and temporal, I minute) visualization showing the model results will be presented.

  14. A consistent approach to estimate the breakdown voltage of high voltage electrodes under positive switching impulses

    NASA Astrophysics Data System (ADS)

    Arevalo, L.; Wu, D.; Jacobson, B.

    2013-08-01

    The main propose of this paper is to present a physical model of long air gap electrical discharges under positive switching impulses. The development and progression of discharges in long air gaps are attributable to two intertwined physical phenomena, namely, the leader channel and the streamer zone. Experimental studies have been used to develop empirical and physical models capable to represent the streamer zone and the leader channel. The empirical ones have led to improvements in the electrical design of high voltage apparatus and insulation distances, but they cannot take into account factors associated with fundamental physics and/or the behavior of materials. The physical models have been used to describe and understand the discharge phenomena of laboratory and lightning discharges. However, because of the complex simulations necessary to reproduce real cases, they are not in widespread use in the engineering of practical applications. Hence, the aim of the work presented here is to develop a model based on physics of the discharge capable to validate and complement the existing engineering models. The model presented here proposes a new geometrical approximation for the representation of the streamer and the calculation of the accumulated electrical charge. The model considers a variable streamer region that changes with the temporal and spatial variations of the electric field. The leader channel is modeled using the non local thermo-equilibrium equations. Furthermore, statistical delays before the inception of the first corona, and random distributions to represent the tortuous nature of the path taken by the leader channel were included based on the behavior observed in experimental tests, with the intention of ensuring the discharge behaved in a realistic manner. For comparison purposes, two different gap configurations were simulated. A reasonable agreement was found between the physical model and the experimental test results.

  15. Model-Based Detection of Radioactive Contraband for Harbor Defense Incorporating Compton Scattering Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J V; Chambers, D H; Breitfeller, E F

    2010-03-02

    The detection of radioactive contraband is a critical problem is maintaining national security for any country. Photon emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. This problem becomes especially important when ships are intercepted by U.S. Coast Guard harbor patrols searching for contraband. The development of a sequential model-based processor that captures both the underlying transport physics of gamma-ray emissions including Compton scattering and the measurement of photon energies offers a physics-based approach to attack this challenging problem. The inclusion of a basic radionuclide representationmore » of absorbed/scattered photons at a given energy along with interarrival times is used to extract the physics information available from the noisy measurements portable radiation detection systems used to interdict contraband. It is shown that this physics representation can incorporated scattering physics leading to an 'extended' model-based structure that can be used to develop an effective sequential detection technique. The resulting model-based processor is shown to perform quite well based on data obtained from a controlled experiment.« less

  16. Multi-physics CFD simulations in engineering

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto

    2013-08-01

    Nowadays Computational Fluid Dynamics (CFD) software is adopted as a design and analysis tool in a great number of engineering fields. We can say that single-physics CFD has been sufficiently matured in the practical point of view. The main target of existing CFD software is single-phase flows such as water and air. However, many multi-physics problems exist in engineering. Most of them consist of flow and other physics, and the interactions between different physics are very important. Obviously, multi-physics phenomena are critical in developing machines and processes. A multi-physics phenomenon seems to be very complex, and it is so difficult to be predicted by adding other physics to flow phenomenon. Therefore, multi-physics CFD techniques are still under research and development. This would be caused from the facts that processing speed of current computers is not fast enough for conducting a multi-physics simulation, and furthermore physical models except for flow physics have not been suitably established. Therefore, in near future, we have to develop various physical models and efficient CFD techniques, in order to success multi-physics simulations in engineering. In the present paper, I will describe the present states of multi-physics CFD simulations, and then show some numerical results such as ice accretion and electro-chemical machining process of a three-dimensional compressor blade which were obtained in my laboratory. Multi-physics CFD simulations would be a key technology in near future.

  17. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    NASA Astrophysics Data System (ADS)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  18. Perceived sports competence mediates the relationship between childhood motor skill proficiency and adolescent physical activity and fitness: a longitudinal assessment

    PubMed Central

    Barnett, Lisa M; Morgan, Philip J; van Beurden, Eric; Beard, John R

    2008-01-01

    Background The purpose of this paper was to investigate whether perceived sports competence mediates the relationship between childhood motor skill proficiency and subsequent adolescent physical activity and fitness. Methods In 2000, children's motor skill proficiency was assessed as part of a school-based physical activity intervention. In 2006/07, participants were followed up as part of the Physical Activity and Skills Study and completed assessments for perceived sports competence (Physical Self-Perception Profile), physical activity (Adolescent Physical Activity Recall Questionnaire) and cardiorespiratory fitness (Multistage Fitness Test). Structural equation modelling techniques were used to determine whether perceived sports competence mediated between childhood object control skill proficiency (composite score of kick, catch and overhand throw), and subsequent adolescent self-reported time in moderate-to-vigorous physical activity and cardiorespiratory fitness. Results Of 928 original intervention participants, 481 were located in 28 schools and 276 (57%) were assessed with at least one follow-up measure. Slightly more than half were female (52.4%) with a mean age of 16.4 years (range 14.2 to 18.3 yrs). Relevant assessments were completed by 250 (90.6%) students for the Physical Activity Model and 227 (82.3%) for the Fitness Model. Both hypothesised mediation models had a good fit to the observed data, with the Physical Activity Model accounting for 18% (R2 = 0.18) of physical activity variance and the Fitness Model accounting for 30% (R2 = 0.30) of fitness variance. Sex did not act as a moderator in either model. Conclusion Developing a high perceived sports competence through object control skill development in childhood is important for both boys and girls in determining adolescent physical activity participation and fitness. Our findings highlight the need for interventions to target and improve the perceived sports competence of youth. PMID:18687148

  19. The Goddard Snow Radiance Assimilation Project: An Integrated Snow Radiance and Snow Physics Modeling Framework for Snow/cold Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Kim, E.; Tedesco, M.; Reichle, R.; Choudhury, B.; Peters-Lidard C.; Foster, J.; Hall, D.; Riggs, G.

    2006-01-01

    Microwave-based retrievals of snow parameters from satellite observations have a long heritage and have so far been generated primarily by regression-based empirical "inversion" methods based on snapshots in time. Direct assimilation of microwave radiance into physical land surface models can be used to avoid errors associated with such retrieval/inversion methods, instead utilizing more straightforward forward models and temporal information. This approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success. Recent developments in forward radiative transfer modeling, physical land surface modeling, and land data assimilation are converging to allow the assembly of an integrated framework for snow/cold lands modeling and radiance assimilation. The objective of the Goddard snow radiance assimilation project is to develop such a framework and explore its capabilities. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. In fact, multiple models are available for each element enabling optimization to match the needs of a particular study. Together these form a modular and flexible framework for self-consistent, physically-based remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster. Capabilities for assimilation of snow retrieval products are already under development for LIS. We will describe plans to add radiance-based assimilation capabilities. Plans for validation activities using field measurements will also be discussed.

  20. A Complex Approach to UXO Discrimination: Combining Advanced EMI Forward Models and Statistical Signal Processing

    DTIC Science & Technology

    2012-01-01

    discrimination at live-UXO sites. Namely, under this project first we developed and implemented advanced, physically complete forward EMI models such as, the...detection and discrimination at live-UXO sites. Namely, under this project first we developed and implemented advanced, physically complete forward EMI...Shubitidze of Sky Research and Dartmouth College, conceived, implemented , and tested most of the approaches presented in this report. He developed

  1. Fish Passage in Large Culverts with Low Flows

    DOT National Transportation Integrated Search

    2014-08-01

    A series of physical and numerical modeling runs were completed to support the development of a design procedure for characterizing the variation in velocity within non-embedded and embedded culverts. Physical modeling of symmetrical half-section cir...

  2. Alaska Elementary Physical Education Model Curriculum Guide. Second Edition.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    Guidelines are offered in this manual for developing a physical education curriculum for grades one through eight. The primary objective for the curriculum is the development of physical fitness, and also motor and life skills in students. Activities are recommended in the areas of team and individual sports, aquatics, and rhythm and dance. The…

  3. A gender study investigating physics self-efficacy

    NASA Astrophysics Data System (ADS)

    Sawtelle, Vashti

    The underrepresentation of women in physics has been well documented and a source of concern for both policy makers and educators. My dissertation focuses on understanding the role self-efficacy plays in retaining students, particularly women, in introductory physics. I use an explanatory mixed methods approach to first investigate quantitatively the influence of self-efficacy in predicting success and then to qualitatively explore the development of self-efficacy. In the initial quantitative studies, I explore the utility of self-efficacy in predicting the success of introductory physics students, both women and men. Results indicate that self-efficacy is a significant predictor of success for all students. I then disaggregate the data to examine how self-efficacy develops differently for women and men in the introductory physics course. Results show women rely on different sources of self-efficacy than do men, and that a particular instructional environment, Modeling Instruction, has a positive impact on these sources of self-efficacy. In the qualitative phase of the project, this dissertation focuses on the development of self-efficacy. Using the qualitative tool of microanalysis, I introduce a methodology for understanding how self-efficacy develops moment-by-moment using the lens of self-efficacy opportunities. I then use the characterizations of self-efficacy opportunities to focus on a particular course environment and to identify and describe a mechanism by which Modeling Instruction impacts student self-efficacy. Results indicate that the emphasizing the development and deployment of models affords opportunities to impact self-efficacy. The findings of this dissertation indicate that introducing key elements into the classroom, such as cooperative group work, model development and deployment, and interaction with the instructor, create a mechanism by which instructors can impact the self-efficacy of their students. Results from this study indicate that creating a model to impact the retention rates of women in physics should include attending to self-efficacy and designing activities in the classroom that create self-efficacy opportunities.

  4. Prediction modeling of physiological responses and human performance in the heat with application to space operations

    NASA Technical Reports Server (NTRS)

    Pandolf, Kent B.; Stroschein, Leander A.; Gonzalez, Richard R.; Sawka, Michael N.

    1994-01-01

    This institute has developed a comprehensive USARIEM heat strain model for predicting physiological responses and soldier performance in the heat which has been programmed for use by hand-held calculators, personal computers, and incorporated into the development of a heat strain decision aid. This model deals directly with five major inputs: the clothing worn, the physical work intensity, the state of heat acclimation, the ambient environment (air temperature, relative humidity, wind speed, and solar load), and the accepted heat casualty level. In addition to predicting rectal temperature, heart rate, and sweat loss given the above inputs, our model predicts the expected physical work/rest cycle, the maximum safe physical work time, the estimated recovery time from maximal physical work, and the drinking water requirements associated with each of these situations. This model provides heat injury risk management guidance based on thermal strain predictions from the user specified environmental conditions, soldier characteristics, clothing worn, and the physical work intensity. If heat transfer values for space operations' clothing are known, NASA can use this prediction model to help avoid undue heat strain in astronauts during space flight.

  5. Soil moisture modeling review

    NASA Technical Reports Server (NTRS)

    Hildreth, W. W.

    1978-01-01

    A determination of the state of the art in soil moisture transport modeling based on physical or physiological principles was made. It was found that soil moisture models based on physical principles have been under development for more than 10 years. However, these models were shown to represent infiltration and redistribution of soil moisture quite well. Evapotranspiration has not been as adequately incorporated into the models.

  6. Performance Assessment of New Land-Surface and Planetary Boundary Layer Physics in the WRF-ARW

    EPA Science Inventory

    The Pleim-Xiu land surface model, Pleim surface layer scheme, and Asymmetric Convective Model (version 2) are now options in version 3.0 of the Weather Research and Forecasting model (WRF) Advanced Research WRF (ARW) core. These physics parameterizations were developed for the f...

  7. Progress on Implementing Additional Physics Schemes into MPAS-A v5.1 for Next Generation Air Quality Modeling

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) has a team of scientists developing a next generation air quality modeling system employing the Model for Prediction Across Scales – Atmosphere (MPAS-A) as its meteorological foundation. Several preferred physics schemes and ...

  8. Prediction of physical workload in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Goldberg, Joseph H.

    1987-01-01

    The background, development, and application of a methodology to predict human energy expenditure and physical workload in low gravity environments, such as a Lunar or Martian base, is described. Based on a validated model to predict energy expenditures in Earth-based industrial jobs, the model relies on an elemental analysis of the proposed job. Because the job itself need not physically exist, many alternative job designs may be compared in their physical workload. The feasibility of using the model for prediction of low gravity work was evaluated by lowering body and load weights, while maintaining basal energy expenditure. Comparison of model results was made both with simulated low gravity energy expenditure studies and with reported Apollo 14 Lunar EVA expenditure. Prediction accuracy was very good for walking and for cart pulling on slopes less than 15 deg, but the model underpredicted the most difficult work conditions. This model was applied to example core sampling and facility construction jobs, as presently conceptualized for a Lunar or Martian base. Resultant energy expenditures and suggested work-rest cycles were well within the range of moderate work difficulty. Future model development requirements were also discussed.

  9. A physics department's role in preparing physics teachers: The Colorado learning assistant model

    NASA Astrophysics Data System (ADS)

    Otero, Valerie; Pollock, Steven; Finkelstein, Noah

    2010-11-01

    In response to substantial evidence that many U.S. students are inadequately prepared in science and mathematics, we have developed an effective and adaptable model that improves the education of all students in introductory physics and increases the numbers of talented physics majors becoming certified to teach physics. We report on the Colorado Learning Assistant model and discuss its effectiveness at a large research university. Since its inception in 2003, we have increased the pool of well-qualified K-12 physics teachers by a factor of approximately three, engaged scientists significantly in the recruiting and preparation of future teachers, and improved the introductory physics sequence so that students' learning gains are typically double the traditional average.

  10. Students' Views on Physical Development and Physical Self-Concept in Adventure-Physical Education

    ERIC Educational Resources Information Center

    Gehris, Jeffrey; Kress, Jeff; Swalm, Ricky

    2010-01-01

    This study investigated 10th-grade students' views concerning the physical effects of an adventure-physical education curriculum and the potential of such a curriculum to enhance components of a multidimensional model of physical self-concept. Semistructured interviews were used to obtain students' views and participant observations were conducted…

  11. Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, Joseph J.; Golovkin, I. E.; Woodruff, P. R.

    2009-08-07

    This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’smore » PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for more comprehensive and accurate atomic databases that feed into the radiation physics modeling (spectral simulations and opacity tables). Developed polarization spectroscopy modeling techniques suitable for diagnosing energetic particle characteristics in HEDP experiments. A description of these items is provided in this report. The above efforts lay the groundwork for utilizing the LSP and SPECT3D codes in providing simulation support for DOE-sponsored HEDP experiments, such as plasma jet and fast ignition physics experiments. We believe that taken together, the LSP and SPECT3D codes have unique capabilities for advancing our understanding of the physics of these HEDP plasmas. Based on conversations early in this project with our DOE program manager, Dr. Francis Thio, our efforts emphasized developing radiation physics and atomic modeling capabilities that can be utilized in the LSP PIC code, and performing radiation physics studies for plasma jets. A relatively minor component focused on the development of methods to diagnose energetic particle characteristics in short-pulse laser experiments related to fast ignition physics. The period of performance for the grant was extended by one year to August 2009 with a one-year no-cost extension, at the request of subcontractor University of Nevada-Reno.« less

  12. Illness in the Family: Old Myths and New Truths! Unit for Child Studies. Selected Papers Number 19.

    ERIC Educational Resources Information Center

    Perkins, Richard; Oldenburg, Brian

    A multifactorial model of phases in the development and progress of physical illness is described, and the model's utility is illustrated. The model consists of antecedent and concurrent conditions and consequences related to physical, psychological, and social factors and their interaction. The application of the model is illustrated by a…

  13. Exploring Behavioral Markers of Long-Term Physical Activity Maintenance: A Case Study of System Identification Modeling within a Behavioral Intervention

    ERIC Educational Resources Information Center

    Hekler, Eric B.; Buman, Matthew P.; Poothakandiyil, Nikhil; Rivera, Daniel E.; Dzierzewski, Joseph M.; Aiken Morgan, Adrienne; McCrae, Christina S.; Roberts, Beverly L.; Marsiske, Michael; Giacobbi, Peter R., Jr.

    2013-01-01

    Efficacious interventions to promote long-term maintenance of physical activity are not well understood. Engineers have developed methods to create dynamical system models for modeling idiographic (i.e., within-person) relationships within systems. In behavioral research, dynamical systems modeling may assist in decomposing intervention effects…

  14. Comparison of CdZnTe neutron detector models using MCNP6 and Geant4

    NASA Astrophysics Data System (ADS)

    Wilson, Emma; Anderson, Mike; Prendergasty, David; Cheneler, David

    2018-01-01

    The production of accurate detector models is of high importance in the development and use of detectors. Initially, MCNP and Geant were developed to specialise in neutral particle models and accelerator models, respectively; there is now a greater overlap of the capabilities of both, and it is therefore useful to produce comparative models to evaluate detector characteristics. In a collaboration between Lancaster University, UK, and Innovative Physics Ltd., UK, models have been developed in both MCNP6 and Geant4 of Cadmium Zinc Telluride (CdZnTe) detectors developed by Innovative Physics Ltd. Herein, a comparison is made of the relative strengths of MCNP6 and Geant4 for modelling neutron flux and secondary γ-ray emission. Given the increasing overlap of the modelling capabilities of MCNP6 and Geant4, it is worthwhile to comment on differences in results for simulations which have similarities in terms of geometries and source configurations.

  15. Otago Exercise Program in the United States: Comparison of 2 Implementation Models.

    PubMed

    Shubert, Tiffany E; Smith, Matthew L; Goto, Lavina; Jiang, Luohua; Ory, Marcia G

    2017-02-01

    The Otago Exercise Program (OEP) is an evidence-based fall prevention program delivered by a physical therapist in 6 visits over a year. Despite documented effectiveness, there has been limited adoption of the OEP by physical therapists in the United States. To facilitate dissemination, 2 models have been developed: (1) the US OEP provided by a physical therapist or physical therapist assistant in the home or outpatient setting and (2) the community OEP provided by a non–physical therapist and a physical therapist consultant. It is unknown whether such modifications result in similar outcomes. The aims of this study were to identify the components of these 2 models, to compare participant characteristics for those components reached by each model, and to examine outcome changes by model and between models. This was a translational cohort study with physical therapists implementing the US OEP and trained providers implementing the community OEP. Data for physical performance, sociodemographic characteristics, and self-perception of function were collected at baseline and at 8 weeks. Participants in the community OEP were significantly younger and reported more falls compared with those in US OEP. Both sites reported significant improvements in most physical and self-reported measures of function, with larger effect sizes reported by the community OEP for the Timed “Up & Go” Test. There was no significant difference in improvements in outcome measures between sites. This was an evaluation of a translational research project with limited control over delivery processes. The sample was 96% white, which may limit application to a more diverse population. Alternative, less expensive implementation models of the OEP can achieve results similar to those achieved with traditional methods, especially improvements in Timed “Up & Go” Test scores. The data suggest that the action of doing the exercises may be the essential element of the OEP, providing opportunities to develop and test new delivery models to ensure that the best outcomes are achieved by participants. © 2017 American Physical Therapy Association

  16. Adult Development. Trends and Issues Alert No. 22.

    ERIC Educational Resources Information Center

    Imel, Susan

    Theories about adult development have been grouped into four models: biological, psychological, sociocultural, and integrative. Biological models (those that are concerned with how physical changes affect development) and psychological models (those that view development as either sequential--defined by life events-- or as a series of transitions…

  17. Physical Education Model Curriculum Standards. Grades Nine through Twelve.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    These physical education standards were designed to ensure that each student achieve the following goals: (1) physical activity--students develop interest and proficiency in movement skills and understand the importance of lifelong participation in daily physical activity; (2) physical fitness and wellness--students increase understanding of basic…

  18. Case Study of an Institutionalized Urban Comprehensive School Physical Activity Program

    ERIC Educational Resources Information Center

    Doolittle, Sarah A.; Rukavina, Paul B.

    2014-01-01

    This single case study (Yin, 2009) compares an established urban physical education/ sport/physical activity program with two models: Comprehensive School Physical Activity Program/CSPAP (AAHPERD, 2013; CDC, 2013); and Lawson's propositions (2005) for sport, exercise and physical education for empowerment and community development to determine…

  19. The Development of Cooperative Learning Model Based on Local Wisdom of Bali for Physical Education, Sport and Health Subject in Junior High School

    NASA Astrophysics Data System (ADS)

    Yoda, I. K.

    2017-03-01

    The purpose of this research is to develop a cooperative learning model based on local wisdom (PKBKL) of Bali (Tri Pramana’s concept), for physical education, sport, and health learning in VII grade of Junior High School in Singaraja-Buleleng Bali. This research is the development research of the development design chosen refers to the development proposed by Dick and Carey. The development of model and learning devices was conducted through four stages, namely: (1) identification and needs analysis stage (2) the development of design and draft of PKBKL and RPP models, (3) testing stage (expert review, try out, and implementation). Small group try out was conducted on VII-3 grade of Undiksha Laboratory Junior High School in the academic year 2013/2014, large group try out was conducted on VIIb of Santo Paulus Junior High School Singaraja in the academic year 2014/2015, and the implementation of the model was conducted on three (3) schools namely SMPN 2 Singaraja, SMPN 3 Singaraja, and Undiksha laboratory Junior High School in the academic year 2014/2015. Data were collected using documentation, testing, non-testing, questionnaire, and observation. The data were analyzed descriptively. The findings of this research indicate that: (1) PKBKL model has met the criteria of the operation of a learning model namely: syntax, social system, principles of reaction, support system, as well as instructional and nurturing effects, (2) PKBKL model is a valid, practical, and effective model, (3) the practicality of the learning devices (RPP), is at the high category. Based on the research results, there are two things recommended: (1) in order that learning stages (syntax) of PKBKL model can be performed well, then teachers need to have an understanding of the cooperative learning model of Student Team Achievement Division (STAD) type and the concepts of scientifically approach well, (2) PKBKL model can be performed well on physical education, sport and health learning, if the teachers understand the concept of Tri Pramana, therefore if the physical education, sport and health teachers want to apply this PKBKL model, they must first learn and master the concept of Tri Pramana well.

  20. Physics in the Ionosphere.

    ERIC Educational Resources Information Center

    Murket, A. J.

    1979-01-01

    Develops a simple model of radio wave propagation and illustrates how basic physical concepts such as refractive index, refraction, reflection and dispersion can be applied to a situation normally not met in introductory physics courses. (Author/GA)

  1. The AAPT/ComPADRE Digital Library: Supporting Physics Education at All Levels

    NASA Astrophysics Data System (ADS)

    Mason, Bruce

    For more than a decade, the AAPT/ComPADRE Digital Library has been providing online resources, tools, and services that support broad communities of physics faculty and physics education researchers. This online library provides vetted resources for teachers and students, an environment for authors and developers to share their work, and the collaboration tools for a diverse set of users. This talk will focus on the recent collaborations and developments being hosted on or developed with ComPADRE. Examples include PhysPort, making the tools and resources developed by physics education researchers more accessible, the Open Source Physics project, expanding the use of numerical modeling at all levels of physics education, and PICUP, a community for those promoting computation in the physics curriculum. NSF-0435336, 0532798, 0840768, 0937836.

  2. A test harness for accelerating physics parameterization advancements into operations

    NASA Astrophysics Data System (ADS)

    Firl, G. J.; Bernardet, L.; Harrold, M.; Henderson, J.; Wolff, J.; Zhang, M.

    2017-12-01

    The process of transitioning advances in parameterization of sub-grid scale processes from initial idea to implementation is often much quicker than the transition from implementation to use in an operational setting. After all, considerable work must be undertaken by operational centers to fully test, evaluate, and implement new physics. The process is complicated by the scarcity of like-to-like comparisons, availability of HPC resources, and the ``tuning problem" whereby advances in physics schemes are difficult to properly evaluate without first undertaking the expensive and time-consuming process of tuning to other schemes within a suite. To address this process shortcoming, the Global Model TestBed (GMTB), supported by the NWS NGGPS project and undertaken by the Developmental Testbed Center, has developed a physics test harness. It implements the concept of hierarchical testing, where the same code can be tested in model configurations of varying complexity from single column models (SCM) to fully coupled, cycled global simulations. Developers and users may choose at which level of complexity to engage. Several components of the physics test harness have been implemented, including a SCM and an end-to-end workflow that expands upon the one used at NOAA/EMC to run the GFS operationally, although the testbed components will necessarily morph to coincide with changes to the operational configuration (FV3-GFS). A standard, relatively user-friendly interface known as the Interoperable Physics Driver (IPD) is available for physics developers to connect their codes. This prerequisite exercise allows access to the testbed tools and removes a technical hurdle for potential inclusion into the Common Community Physics Package (CCPP). The testbed offers users the opportunity to conduct like-to-like comparisons between the operational physics suite and new development as well as among multiple developments. GMTB staff have demonstrated use of the testbed through a comparison between the 2017 operational GFS suite and one containing the Grell-Freitas convective parameterization. An overview of the physics test harness and its early use will be presented.

  3. Global Precipitation Measurement (GPM) Ground Validation (GV) Science Implementation Plan

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Hou, Arthur Y.

    2008-01-01

    For pre-launch algorithm development and post-launch product evaluation Global Precipitation Measurement (GPM) Ground Validation (GV) goes beyond direct comparisons of surface rain rates between ground and satellite measurements to provide the means for improving retrieval algorithms and model applications.Three approaches to GPM GV include direct statistical validation (at the surface), precipitation physics validation (in a vertical columns), and integrated science validation (4-dimensional). These three approaches support five themes: core satellite error characterization; constellation satellites validation; development of physical models of snow, cloud water, and mixed phase; development of cloud-resolving model (CRM) and land-surface models to bridge observations and algorithms; and, development of coupled CRM-land surface modeling for basin-scale water budget studies and natural hazard prediction. This presentation describes the implementation of these approaches.

  4. Alternative model for administration and analysis of research-based assessments

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.; Zwickl, Benjamin M.; Hobbs, Robert D.; Aiken, John M.; Welch, Nathan M.; Lewandowski, H. J.

    2016-06-01

    Research-based assessments represent a valuable tool for both instructors and researchers interested in improving undergraduate physics education. However, the historical model for disseminating and propagating conceptual and attitudinal assessments developed by the physics education research (PER) community has not resulted in widespread adoption of these assessments within the broader community of physics instructors. Within this historical model, assessment developers create high quality, validated assessments, make them available for a wide range of instructors to use, and provide minimal (if any) support to assist with administration or analysis of the results. Here, we present and discuss an alternative model for assessment dissemination, which is characterized by centralized data collection and analysis. This model provides a greater degree of support for both researchers and instructors in order to more explicitly support adoption of research-based assessments. Specifically, we describe our experiences developing a centralized, automated system for an attitudinal assessment we previously created to examine students' epistemologies and expectations about experimental physics. This system provides a proof of concept that we use to discuss the advantages associated with centralized administration and data collection for research-based assessments in PER. We also discuss the challenges that we encountered while developing, maintaining, and automating this system. Ultimately, we argue that centralized administration and data collection for standardized assessments is a viable and potentially advantageous alternative to the default model characterized by decentralized administration and analysis. Moreover, with the help of online administration and automation, this model can support the long-term sustainability of centralized assessment systems.

  5. A new physically-based windblown dust emission ...

    EPA Pesticide Factsheets

    Dust has significant impacts on weather and climate, air quality and visibility, and human health; therefore, it is important to include a windblown dust emission module in atmospheric and air quality models. In this presentation, we summarize our efforts in development of a physics-based windblown dust emission scheme and its implementation in the CMAQ modeling system. The new model incorporates the effect of the surface wind speed, soil texture, soil moisture, and surface roughness in a physically sound manner. Specifically, a newly developed dynamic relation for the surface roughness length in this model is believed to adequately represent the physics of the surface processes involved in the dust generation. Furthermore, careful attention is paid in integrating the new windblown dust module within the CMAQ to ensure that the required input parameters are correctly configured. The new model is evaluated for the case studies including the continental United States and the Northern hemisphere, and is shown to be able to capture the occurrence of the dust outbreak and the level of the soil concentration. We discuss the uncertainties and limitations of the model and briefly describe our path forward for further improvements. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based

  6. Physically based modeling in catchment hydrology at 50: Survey and outlook

    NASA Astrophysics Data System (ADS)

    Paniconi, Claudio; Putti, Mario

    2015-09-01

    Integrated, process-based numerical models in hydrology are rapidly evolving, spurred by novel theories in mathematical physics, advances in computational methods, insights from laboratory and field experiments, and the need to better understand and predict the potential impacts of population, land use, and climate change on our water resources. At the catchment scale, these simulation models are commonly based on conservation principles for surface and subsurface water flow and solute transport (e.g., the Richards, shallow water, and advection-dispersion equations), and they require robust numerical techniques for their resolution. Traditional (and still open) challenges in developing reliable and efficient models are associated with heterogeneity and variability in parameters and state variables; nonlinearities and scale effects in process dynamics; and complex or poorly known boundary conditions and initial system states. As catchment modeling enters a highly interdisciplinary era, new challenges arise from the need to maintain physical and numerical consistency in the description of multiple processes that interact over a range of scales and across different compartments of an overall system. This paper first gives an historical overview (past 50 years) of some of the key developments in physically based hydrological modeling, emphasizing how the interplay between theory, experiments, and modeling has contributed to advancing the state of the art. The second part of the paper examines some outstanding problems in integrated catchment modeling from the perspective of recent developments in mathematical and computational science.

  7. [Design of a communicative model from a social perspective oriented toward physical activity].

    PubMed

    Prieto-Rodríguez, Adriana; Moreno-Angarita, Marisol; Cardozo-Vásquez, Yency S

    2006-12-01

    A communication model was designed and put into practice, in the form of a Network throughout three regions in Colombia; Bogotá, Antioquia and Quindío. Based on a macro-intentional model, this network was aimed at strengthening understanding around the subject of physical activity among those people affected by the issue, from a multidimensional perspective. The test population was defined and working groups were formed around three strategies: social production, transmission and democratization, during a three-month period. RESULTS Messages were developed based around the ideas of the community producers themselves; the initial concepts were widened to include the body, self care, physical activity and health. Communication models related to health, aimed at developing personal skills including the ability to communicate and build shared experience, can be assimilated and incorporated into broadcasts on health issues. This model serves as a communication strategy which strengthens the building of shared broadcasts on health issues. This kind of focus requires the development of local activity and capacity-building within the community.

  8. Study on seepage characteristics of inclined wall dam after heavy drought

    NASA Astrophysics Data System (ADS)

    Wei, YE; Fuheng, MA

    2018-05-01

    For seepage of the dam slope with cracks after drought, there are two methods to study including the physical model test and numerical calculation. However, the physical model test can not visualize the seepage field in the dam body intuitively, and the mathematical model is not accurate because of the precision of the parameter. So in this paper, combined physical model with mathematical model, the surface crack development on the dam slope and the changes of pore water pressure were studied through the physical model test, and then numerical calculation was carried out to analyze the internal seepage of the dam body. The results showed that cracks were more likely to develop at middle of the upstream dam slope and dam heel, and cracks for different degrees appeared at different parts of the dam slope after drought. The development of cracks provided a preferential permeable channel which caused that the area near the crack was easily to become saturated. The saturated zone kept expanding leading the infiltration line to be close to the transition layer and the infiltration line was no longer a smooth curve. There were seepage damages and landslide hazards existing with such seepage characteristics, which would threaten the safety of the dam.

  9. Personal Accomplishment, Resilience, and Perceived Mattering as Inhibitors of Physical Educators' Perceptions of Marginalization and Isolation

    ERIC Educational Resources Information Center

    Richards, K. Andrew R.; Gaudreault, Karen Lux; Woods, Amelia Mays

    2018-01-01

    Purpose: This study sought to develop a quantitative understanding of factors that reduce perceived isolation and marginalization among physical educators. A conceptual model for the relationships among study variables was developed. Method: Data were collected through an online survey completed by 419 inservice physical educators (210 females,…

  10. Sixty-Year Career in Solar Physics

    NASA Astrophysics Data System (ADS)

    Fang, C.

    2018-05-01

    This memoir reviews my academic career in solar physics for 60 years, including my research on non-LTE modeling, white-light flares, and small-scale solar activities. Through this narrative, the reader can catch a glimpse of the development of solar physics research in mainland China from scratch. In the end, some prospects for future development are given.

  11. Numerical modeling tools for chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J.; Childs, Edward P.

    1992-01-01

    Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.

  12. Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, J.R.; et al.

    This Report summarizes the proceedings of the 2017 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) theoretical uncertainties and dataset dependence of parton distribution functions, (III) new developments in jet substructure techniques, (IV) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (V) phenomenological studies essential for comparing LHC data from Run II with theoretical predictions and projections for future measurements, and (VI) new developments in Monte Carlo event generators.

  13. Exploring the Relevance of the Personal and Social Responsibility Model in Adapted Physical Activity: A Collective Case Study

    ERIC Educational Resources Information Center

    Wright, Paul M.; White, Katherine; Gaebler-Spira, Deborah

    2004-01-01

    The purpose of this study was to examine the application of the Personal and Social Responsibility Model (PSRM) in an adapted physical activity program. Although the PSRM was developed for use with underserved youth, scholars in the field of adapted physical activity have noted its potential relevance for children with disabilities. Using a…

  14. Ohio Teacher Professional Development in the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Cervenec, Jason; Harper, Kathleen A.

    2006-02-01

    An in-service teacher program held during the summers of 2004 and 2005 is described. This program, sponsored with state funds, drew a varied group of participants to learn Modeling Instruction in physics. The workshop leaders used the state science proficiency standards and physics education research (PER) results to guide many of the workshop's activities. In 2004, the participants experienced the Modeling mechanics curriculum while pretending to be students; in 2005, the teachers worked in small teams to develop Modeling-consistent units in other areas, often utilizing PER-based materials. Indications are that the experience was valuable to the teachers and that the workshop series should be offered for a new cohort.

  15. A physically based analytical spatial air temperature and humidity model

    Treesearch

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2013-01-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...

  16. One-Dimensional Collision Carts Computer Model and Its Design Ideas for Productive Experiential Learning

    ERIC Educational Resources Information Center

    Wee, Loo Kang

    2012-01-01

    We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In designing the simulations, we discuss briefly three pedagogical considerations namely (1) a…

  17. Lumped Parameter Models for Predicting Nitrogen Transport in Lower Coastal Plain Watersheds

    Treesearch

    Devendra M. Amatya; George M. Chescheir; Glen P. Fernandez; R. Wayne Skaggs; F. Birgand; J.W. Gilliam

    2003-01-01

    hl recent years physically based comprehensive disfributed watershed scale hydrologic/water quality models have been developed and applied 10 evaluate cumulative effects of land arld water management practices on receiving waters, Although fhesc complex physically based models are capable of simulating the impacts ofthese changes in large watersheds, they are often...

  18. QUANTIFYING AGGREGATE CHLORPYRIFOS EXPOSURE AND DOSE TO CHILDREN USING A PHYSICALLY-BASED TWO-STAGE MONTE CARLO PROBABILISTIC MODEL

    EPA Science Inventory

    To help address the Food Quality Protection Act of 1996, a physically-based, two-stage Monte Carlo probabilistic model has been developed to quantify and analyze aggregate exposure and dose to pesticides via multiple routes and pathways. To illustrate model capabilities and ide...

  19. A 3-D Approach for Teaching and Learning about Surface Water Systems through Computational Thinking, Data Visualization and Physical Models

    NASA Astrophysics Data System (ADS)

    Caplan, B.; Morrison, A.; Moore, J. C.; Berkowitz, A. R.

    2017-12-01

    Understanding water is central to understanding environmental challenges. Scientists use `big data' and computational models to develop knowledge about the structure and function of complex systems, and to make predictions about changes in climate, weather, hydrology, and ecology. Large environmental systems-related data sets and simulation models are difficult for high school teachers and students to access and make sense of. Comp Hydro, a collaboration across four states and multiple school districts, integrates computational thinking and data-related science practices into water systems instruction to enhance development of scientific model-based reasoning, through curriculum, assessment and teacher professional development. Comp Hydro addresses the need for 1) teaching materials for using data and physical models of hydrological phenomena, 2) building teachers' and students' comfort or familiarity with data analysis and modeling, and 3) infusing the computational knowledge and practices necessary to model and visualize hydrologic processes into instruction. Comp Hydro teams in Baltimore, MD and Fort Collins, CO are integrating teaching about surface water systems into high school courses focusing on flooding (MD) and surface water reservoirs (CO). This interactive session will highlight the successes and challenges of our physical and simulation models in helping teachers and students develop proficiency with computational thinking about surface water. We also will share insights from comparing teacher-led vs. project-led development of curriculum and our simulations.

  20. Graphene growth process modeling: a physical-statistical approach

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Huang, Qiang

    2014-09-01

    As a zero-band semiconductor, graphene is an attractive material for a wide variety of applications such as optoelectronics. Among various techniques developed for graphene synthesis, chemical vapor deposition on copper foils shows high potential for producing few-layer and large-area graphene. Since fabrication of high-quality graphene sheets requires the understanding of growth mechanisms, and methods of characterization and control of grain size of graphene flakes, analytical modeling of graphene growth process is therefore essential for controlled fabrication. The graphene growth process starts with randomly nucleated islands that gradually develop into complex shapes, grow in size, and eventually connect together to cover the copper foil. To model this complex process, we develop a physical-statistical approach under the assumption of self-similarity during graphene growth. The growth kinetics is uncovered by separating island shapes from area growth rate. We propose to characterize the area growth velocity using a confined exponential model, which not only has clear physical explanation, but also fits the real data well. For the shape modeling, we develop a parametric shape model which can be well explained by the angular-dependent growth rate. This work can provide useful information for the control and optimization of graphene growth process on Cu foil.

  1. An Analysis of the Educational Value of Low-Fidelity Anatomy Models as External Representations

    ERIC Educational Resources Information Center

    Chan, Lap Ki; Cheng, Maurice M. W.

    2011-01-01

    Although high-fidelity digital models of human anatomy based on actual cross-sectional images of the human body have been developed, reports on the use of physical models in anatomy teaching continue to appear. This article aims to examine the common features shared by these physical models and analyze their educational value based on the…

  2. Modeling Instruction in AP Physics C: Mechanics and Electricity and Magnetism

    NASA Astrophysics Data System (ADS)

    Belcher, Nathan Tillman

    This action research study used data from multiple assessments in Mechanics and Electricity and Magnetism to determine the viability of Modeling Instruction as a pedagogy for students in AP Physics C: Mechanics and Electricity and Magnetism. Modeling Instruction is a guided-inquiry approach to teaching science in which students progress through the Modeling Cycle to develop a fully-constructed model for a scientific concept. AP Physics C: Mechanics and Electricity and Magnetism are calculus-based physics courses, approximately equivalent to first-year calculus-based physics courses at the collegiate level. Using a one-group pretest-posttest design, students were assessed in Mechanics using the Force Concept Inventory, Mechanics Baseline Test, and 2015 AP Physics C: Mechanics Practice Exam. With the same design, students were assessed in Electricity and Magnetism on the Brief Electricity and Magnetism Assessment, Electricity and Magnetism Conceptual Assessment, and 2015 AP Physics C: Electricity and Magnetism Practice Exam. In a one-shot case study design, student scores were collected from the 2017 AP Physics C: Mechanics and Electricity and Magnetism Exams. Students performed moderately well on the assessments in Mechanics and Electricity and Magnetism, demonstrating that Modeling Instruction is a viable pedagogy in AP Physics C: Electricity and Magnetism.

  3. Automated method for the systematic interpretation of resonance peaks in spectrum data

    DOEpatents

    Damiano, B.; Wood, R.T.

    1997-04-22

    A method is described for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical model. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system. 1 fig.

  4. Next Generation Community Based Unified Global Modeling System Development and Operational Implementation Strategies at NCEP

    NASA Astrophysics Data System (ADS)

    Tallapragada, V.

    2017-12-01

    NOAA's Next Generation Global Prediction System (NGGPS) has provided the unique opportunity to develop and implement a non-hydrostatic global model based on Geophysical Fluid Dynamics Laboratory (GFDL) Finite Volume Cubed Sphere (FV3) Dynamic Core at National Centers for Environmental Prediction (NCEP), making a leap-step advancement in seamless prediction capabilities across all spatial and temporal scales. Model development efforts are centralized with unified model development in the NOAA Environmental Modeling System (NEMS) infrastructure based on Earth System Modeling Framework (ESMF). A more sophisticated coupling among various earth system components is being enabled within NEMS following National Unified Operational Prediction Capability (NUOPC) standards. The eventual goal of unifying global and regional models will enable operational global models operating at convective resolving scales. Apart from the advanced non-hydrostatic dynamic core and coupling to various earth system components, advanced physics and data assimilation techniques are essential for improved forecast skill. NGGPS is spearheading ambitious physics and data assimilation strategies, concentrating on creation of a Common Community Physics Package (CCPP) and Joint Effort for Data Assimilation Integration (JEDI). Both initiatives are expected to be community developed, with emphasis on research transitioning to operations (R2O). The unified modeling system is being built to support the needs of both operations and research. Different layers of community partners are also established with specific roles/responsibilities for researchers, core development partners, trusted super-users, and operations. Stakeholders are engaged at all stages to help drive the direction of development, resources allocations and prioritization. This talk presents the current and future plans of unified model development at NCEP for weather, sub-seasonal, and seasonal climate prediction applications with special emphasis on implementation of NCEP FV3 Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS) into operations by 2019.

  5. Efficient physics-based tracking of heart surface motion for beating heart surgery robotic systems.

    PubMed

    Bogatyrenko, Evgeniya; Pompey, Pascal; Hanebeck, Uwe D

    2011-05-01

    Tracking of beating heart motion in a robotic surgery system is required for complex cardiovascular interventions. A heart surface motion tracking method is developed, including a stochastic physics-based heart surface model and an efficient reconstruction algorithm. The algorithm uses the constraints provided by the model that exploits the physical characteristics of the heart. The main advantage of the model is that it is more realistic than most standard heart models. Additionally, no explicit matching between the measurements and the model is required. The application of meshless methods significantly reduces the complexity of physics-based tracking. Based on the stochastic physical model of the heart surface, this approach considers the motion of the intervention area and is robust to occlusions and reflections. The tracking algorithm is evaluated in simulations and experiments on an artificial heart. Providing higher accuracy than the standard model-based methods, it successfully copes with occlusions and provides high performance even when all measurements are not available. Combining the physical and stochastic description of the heart surface motion ensures physically correct and accurate prediction. Automatic initialization of the physics-based cardiac motion tracking enables system evaluation in a clinical environment.

  6. Inquiry-Oriented Learning Material to Increased General Physics Competence Achievement

    ERIC Educational Resources Information Center

    Sinuraya, Jurubahasa

    2016-01-01

    This study aims to produce inquiry-oriented general physics learning material to improve student learning outcome. Development steps of learning materials were adapted from the design model of Dick and Carey. Stages of development consists of three phases: planning, development, and formative evaluation and revision. Implementation of formative…

  7. Modeling of the radiation belt megnetosphere in decisional timeframes

    DOEpatents

    Koller, Josef; Reeves, Geoffrey D; Friedel, Reiner H.W.

    2013-04-23

    Systems and methods for calculating L* in the magnetosphere with essentially the same accuracy as with a physics based model at many times the speed by developing a surrogate trained to be a surrogate for the physics-based model. The trained model can then beneficially process input data falling within the training range of the surrogate model. The surrogate model can be a feedforward neural network and the physics-based model can be the TSK03 model. Operatively, the surrogate model can use parameters on which the physics-based model was based, and/or spatial data for the location where L* is to be calculated. Surrogate models should be provided for each of a plurality of pitch angles. Accordingly, a surrogate model having a closed drift shell can be used from the plurality of models. The feedforward neural network can have a plurality of input-layer units, there being at least one input-layer unit for each physics-based model parameter, a plurality of hidden layer units and at least one output unit for the value of L*.

  8. MO-DE-BRA-05: Developing Effective Medical Physics Knowledge Structures: Models and Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprawls, P

    Purpose: Develop a method and supporting online resources to be used by medical physics educators for teaching medical imaging professionals and trainees so they develop highly-effective physics knowledge structures that can contribute to improved diagnostic image quality on a global basis. Methods: The different types of mental knowledge structures were analyzed and modeled with respect to both the learning and teaching process for their development and the functions or tasks that can be performed with the knowledge. While symbolic verbal and mathematical knowledge structures are very important in medical physics for many purposes, the tasks of applying physics in clinicalmore » imaging--especially to optimize image quality and diagnostic accuracy--requires a sensory conceptual knowledge structure, specifically, an interconnected network of visually based concepts. This type of knowledge supports tasks such as analysis, evaluation, problem solving, interacting, and creating solutions. Traditional educational methods including lectures, online modules, and many texts are serial procedures and limited with respect to developing interconnected conceptual networks. A method consisting of the synergistic combination of on-site medical physics teachers and the online resource, CONET (Concept network developer), has been developed and made available for the topic Radiographic Image Quality. This was selected as the inaugural topic, others to follow, because it can be used by medical physicists teaching the large population of medical imaging professionals, such as radiology residents, who can apply the knowledge. Results: Tutorials for medical physics educators on developing effective knowledge structures are being presented and published and CONET is available with open access for all to use. Conclusion: An adjunct to traditional medical physics educational methods with the added focus on sensory concept development provides opportunities for medical physics teachers to share their knowledge and experience at a higher cognitive level and produce medical professionals with the enhanced ability to apply physics to clinical procedures.« less

  9. Dilution physics modeling: Dissolution/precipitation chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affectmore » safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics.« less

  10. A model for undergraduate physics major outcomes objectives

    NASA Astrophysics Data System (ADS)

    Taylor, G. R.; Erwin, T. Dary

    1989-06-01

    Concern with assessment of student outcomes of undergraduate physics major programs is rapidly rising. The Southern Association of Colleges and Schools and many other regional and state organizations are requiring explicit outcomes assessment in the accrediting process. The first step in this assessment process for major programs is the establishment of student outcomes objectives. A model and set of physics outcomes (educational) objectives that were developed by the faculty in the Physics Department at James Madison University are presented.

  11. CALCULATING PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FOR ENVIRONMENTAL MODELING FROM MOLECULAR STRUCTURE

    EPA Science Inventory

    Mathematical models for predicting the transport and fate of pollutants in the environment require reactivity parameter values-- that is value of the physical and chemical constants that govern reactivity. Although empirical structure activity relationships have been developed t...

  12. Terminator field-aligned current system: A new finding from model-assimilated data set (MADS)

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Gardner, L. C.; Eccles, J. V.; Rice, D.

    2013-12-01

    Physics-based data assimilation models have been recognized by the space science community as the most accurate approach to specify and forecast the space weather of the solar-terrestrial environment. The model-assimilated data sets (MADS) produced by these models constitute an internally consistent time series of global three-dimensional fields whose accuracy can be estimated. Because of its internal consistency of physics and completeness of descriptions on the status of global systems, the MADS has also been a powerful tool to identify the systematic errors in measurements, reveal the missing physics in physical models, and discover the important dynamical physical processes that are inadequately observed or missed by measurements due to observational limitations. In the past years, we developed a data assimilation model for the high-latitude ionospheric plasma dynamics and electrodynamics. With a set of physical models, an ensemble Kalman filter, and the ingestion of data from multiple observations, the data assimilation model can produce a self-consistent time-series of the complete descriptions of the global high-latitude ionosphere, which includes the convection electric field, horizontal and field-aligned currents, conductivity, as well as 3-D plasma densities and temperatures, In this presentation, we will show a new field-aligned current system discovered from the analysis of the MADS produced by our data assimilation model. This new current system appears and develops near the ionospheric terminator. The dynamical features of this current system will be described and its connection to the active role of the ionosphere in the M-I coupling will be discussed.

  13. PHYSICAL COAL-CLEANING/FLUE GAS DESULFURIZATION COMPUTER MODEL

    EPA Science Inventory

    The model consists of four programs: (1) one, initially developed by Battell-Columbus Laboratories, obtained from Versar, Inc.; (2) one developed by TVA; and (3,4) two developed by TVA and Bechtel National, Inc. The model produces design performance criteria and estimates of capi...

  14. A simple and fast physics-based analytical method to calculate therapeutic and stray doses from external beam, megavoltage x-ray therapy

    PubMed Central

    Wilson, Lydia J; Newhauser, Wayne D

    2015-01-01

    State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 minutes. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models. PMID:26040833

  15. A simple and fast physics-based analytical method to calculate therapeutic and stray doses from external beam, megavoltage x-ray therapy.

    PubMed

    Jagetic, Lydia J; Newhauser, Wayne D

    2015-06-21

    State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 min. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models.

  16. Contribution of Submarine Groundwater on the Water-Food Nexus in Coastal Ecosystems: Effects on Biodiversity and Fishery Production

    NASA Astrophysics Data System (ADS)

    Shoji, J.; Sugimoto, R.; Honda, H.; Tominaga, O.; Taniguchi, M.

    2014-12-01

    In the past decade, machine-learning methods for empirical rainfall-runoff modeling have seen extensive development. However, the majority of research has focused on a small number of methods, such as artificial neural networks, while not considering other approaches for non-parametric regression that have been developed in recent years. These methods may be able to achieve comparable predictive accuracy to ANN's and more easily provide physical insights into the system of interest through evaluation of covariate influence. Additionally, these methods could provide a straightforward, computationally efficient way of evaluating climate change impacts in basins where data to support physical hydrologic models is limited. In this paper, we use multiple regression and machine-learning approaches to predict monthly streamflow in five highly-seasonal rivers in the highlands of Ethiopia. We find that generalized additive models, random forests, and cubist models achieve better predictive accuracy than ANNs in many basins assessed and are also able to outperform physical models developed for the same region. We discuss some challenges that could hinder the use of such models for climate impact assessment, such as biases resulting from model formulation and prediction under extreme climate conditions, and suggest methods for preventing and addressing these challenges. Finally, we demonstrate how predictor variable influence can be assessed to provide insights into the physical functioning of data-sparse watersheds.

  17. Prediction of objectively measured physical activity and sedentariness among blue-collar workers using survey questionnaires.

    PubMed

    Gupta, Nidhi; Heiden, Marina; Mathiassen, Svend Erik; Holtermann, Andreas

    2016-05-01

    We aimed at developing and evaluating statistical models predicting objectively measured occupational time spent sedentary or in physical activity from self-reported information available in large epidemiological studies and surveys. Two-hundred-and-fourteen blue-collar workers responded to a questionnaire containing information about personal and work related variables, available in most large epidemiological studies and surveys. Workers also wore accelerometers for 1-4 days measuring time spent sedentary and in physical activity, defined as non-sedentary time. Least-squares linear regression models were developed, predicting objectively measured exposures from selected predictors in the questionnaire. A full prediction model based on age, gender, body mass index, job group, self-reported occupational physical activity (OPA), and self-reported occupational sedentary time (OST) explained 63% (R (2)adjusted) of the variance of both objectively measured time spent sedentary and in physical activity since these two exposures were complementary. Single-predictor models based only on self-reported information about either OPA or OST explained 21% and 38%, respectively, of the variance of the objectively measured exposures. Internal validation using bootstrapping suggested that the full and single-predictor models would show almost the same performance in new datasets as in that used for modelling. Both full and single-predictor models based on self-reported information typically available in most large epidemiological studies and surveys were able to predict objectively measured occupational time spent sedentary or in physical activity, with explained variances ranging from 21-63%.

  18. Simulating Coupling Complexity in Space Plasmas: First Results from a new code

    NASA Astrophysics Data System (ADS)

    Kryukov, I.; Zank, G. P.; Pogorelov, N. V.; Raeder, J.; Ciardo, G.; Florinski, V. A.; Heerikhuisen, J.; Li, G.; Petrini, F.; Shematovich, V. I.; Winske, D.; Shaikh, D.; Webb, G. M.; Yee, H. M.

    2005-12-01

    The development of codes that embrace 'coupling complexity' via the self-consistent incorporation of multiple physical scales and multiple physical processes in models has been identified by the NRC Decadal Survey in Solar and Space Physics as a crucial necessary development in simulation/modeling technology for the coming decade. The National Science Foundation, through its Information Technology Research (ITR) Program, is supporting our efforts to develop a new class of computational code for plasmas and neutral gases that integrates multiple scales and multiple physical processes and descriptions. We are developing a highly modular, parallelized, scalable code that incorporates multiple scales by synthesizing 3 simulation technologies: 1) Computational fluid dynamics (hydrodynamics or magneto-hydrodynamics-MHD) for the large-scale plasma; 2) direct Monte Carlo simulation of atoms/neutral gas, and 3) transport code solvers to model highly energetic particle distributions. We are constructing the code so that a fourth simulation technology, hybrid simulations for microscale structures and particle distributions, can be incorporated in future work, but for the present, this aspect will be addressed at a test-particle level. This synthesis we will provide a computational tool that will advance our understanding of the physics of neutral and charged gases enormously. Besides making major advances in basic plasma physics and neutral gas problems, this project will address 3 Grand Challenge space physics problems that reflect our research interests: 1) To develop a temporal global heliospheric model which includes the interaction of solar and interstellar plasma with neutral populations (hydrogen, helium, etc., and dust), test-particle kinetic pickup ion acceleration at the termination shock, anomalous cosmic ray production, interaction with galactic cosmic rays, while incorporating the time variability of the solar wind and the solar cycle. 2) To develop a coronal mass ejection and interplanetary shock propagation model for the inner and outer heliosphere, including, at a test-particle level, wave-particle interactions and particle acceleration at traveling shock waves and compression regions. 3) To develop an advanced Geospace General Circulation Model (GGCM) capable of realistically modeling space weather events, in particular the interaction with CMEs and geomagnetic storms. Furthermore, by implementing scalable run-time supports and sophisticated off- and on-line prediction algorithms, we anticipate important advances in the development of automatic and intelligent system software to optimize a wide variety of 'embedded' computations on parallel computers. Finally, public domain MHD and hydrodynamic codes had a transforming effect on space and astrophysics. We expect that our new generation, open source, public domain multi-scale code will have a similar transformational effect in a variety of disciplines, opening up new classes of problems to physicists and engineers alike.

  19. Statistical models for sediment/detritus and dissolved absorption coefficients in coastal waters of the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Green, Rebecca E.; Gould, Richard W., Jr.; Ko, Dong S.

    2008-06-01

    We developed statistically-based, optical models to estimate tripton (sediment/detrital) and colored dissolved organic matter (CDOM) absorption coefficients ( a sd, a g) from physical hydrographic and atmospheric properties. The models were developed for northern Gulf of Mexico shelf waters using multi-year satellite and physical data. First, empirical algorithms for satellite-derived a sd and a g were developed, based on comparison with a large data set of cruise measurements from northern Gulf shelf waters; these algorithms were then applied to a time series of ocean color (SeaWiFS) satellite imagery for 2002-2005. Unique seasonal timing was observed in satellite-derived optical properties, with a sd peaking most often in fall/winter on the shelf, in contrast to summertime peaks observed in a g. Next, the satellite-derived values were coupled with the physical data to form multiple regression models. A suite of physical forcing variables were tested for inclusion in the models: discharge from the Mississippi River and Mobile Bay, Alabama; gridded fields for winds, precipitation, solar radiation, sea surface temperature and height (SST, SSH); and modeled surface salinity and currents (Navy Coastal Ocean Model, NCOM). For satellite-derived a sd and a g time series (2002-2004), correlation and stepwise regression analyses revealed the most important physical forcing variables. Over our region of interest, the best predictors of tripton absorption were wind speed, river discharge, and SST, whereas dissolved absorption was best predicted by east-west wind speed, river discharge, and river discharge lagged by 1 month. These results suggest the importance of vertical mixing (as a function of winds and thermal stratification) in controlling a sd distribution patterns over large regions of the shelf, in comparison to advection as the most important control on a g. The multiple linear regression models for estimating a sd and a g were applied on a pixel-by-pixel basis and results were compared to monthly SeaWiFS composite imagery. The models performed well in resolving seasonal and interannual optical variability in model development years (2002-2004) (mean error of 32% for a sd and 29% for a g) and in predicting shelfwide optical patterns in a year independent of model development (2005; mean error of 41% for a sd and 46% for a g). The models provide insight into the dominant processes controlling optical distributions in this region, and they can be used to predict the optical fields from the physical properties at monthly timescales.

  20. Specification of the Surface Charging Environment with SHIELDS

    NASA Astrophysics Data System (ADS)

    Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, J. D.; Vernon, L.; Woodroffe, J. R.; Brito, T.; Toth, G.; Welling, D. T.; Yu, Y.; Albert, J.; Birn, J.; Borovsky, J.; Denton, M.; Horne, R. B.; Lemon, C.; Markidis, S.; Thomsen, M. F.; Young, S. L.

    2016-12-01

    Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. "space weather", remains a big space physics challenge. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and microscale. Important physics questions related to rapid particle injection and acceleration associated with magnetospheric storms and substorms as well as plasma waves are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. In addition to physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed. Simulations with the SHIELDS framework of the near-Earth space environment where operational satellites reside are presented. Further model development and the organization of a "Spacecraft Charging Environment Challenge" by the SHIELDS project at LANL in collaboration with the NSF Geospace Environment Modeling (GEM) Workshop and the multi-agency Community Coordinated Modeling Center (CCMC) to assess the accuracy of SCE predictions are discussed.

  1. Modeling the Water Balloon Slingshot

    NASA Astrophysics Data System (ADS)

    Bousquet, Benjamin D.; Figura, Charles C.

    2013-01-01

    In the introductory physics courses at Wartburg College, we have been working to create a lab experience focused on the scientific process itself rather than verification of physical laws presented in the classroom or textbook. To this end, we have developed a number of open-ended modeling exercises suitable for a variety of learning environments, from non-science major classes to algebra-based and calculus-based introductory physics classes.

  2. Automated method for the systematic interpretation of resonance peaks in spectrum data

    DOEpatents

    Damiano, Brian; Wood, Richard T.

    1997-01-01

    A method for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system.

  3. Astroparticle physics and cosmology.

    PubMed

    Mitton, Simon

    2006-05-20

    Astroparticle physics is an interdisciplinary field that explores the connections between the physics of elementary particles and the large-scale properties of the universe. Particle physicists have developed a standard model to describe the properties of matter in the quantum world. This model explains the bewildering array of particles in terms of constructs made from two or three quarks. Quarks, leptons, and three of the fundamental forces of physics are the main components of this standard model. Cosmologists have also developed a standard model to describe the bulk properties of the universe. In this new framework, ordinary matter, such as stars and galaxies, makes up only around 4% of the material universe. The bulk of the universe is dark matter (roughly 23%) and dark energy (about 73%). This dark energy drives an acceleration that means that the expanding universe will grow ever larger. String theory, in which the universe has several invisible dimensions, might offer an opportunity to unite the quantum description of the particle world with the gravitational properties of the large-scale universe.

  4. A Tale of Two Trails: Exploring Different Paths to Success

    PubMed Central

    Walker, Jennifer G.; Evenson, Kelly R.; Davis, William J.; Bors, Philip; Rodríguez, Daniel A.

    2016-01-01

    Background This comparative case study investigates 2 successful community trail initiatives, using the Active Living By Design (ALBD) Community Action Model as an analytical framework. The model includes 5 strategies: preparation, promotion, programs, policy, and physical projects. Methods Key stakeholders at 2 sites participated in in-depth interviews (N = 14). Data were analyzed for content using Atlas Ti and grouped according to the 5 strategies. Results Preparation Securing trail resources was challenging, but shared responsibilities facilitated trail development. Promotions The initiatives demonstrated minimal physical activity encouragement strategies. Programs Community stakeholders did not coordinate programmatic opportunities for routine physical activity. Policy Trails’ inclusion in regional greenway master plans contributed to trail funding and development. Policies that were formally institutionalized and enforced led to more consistent trail construction and safer conditions for users. Physical Projects Consistent standards for way finding signage and design safety features enhanced trail usability and safety. Conclusions Communities with different levels of government support contributed unique lessons to inform best practices of trail initiatives. This study revealed a disparity between trail development and use-encouragement strategies, which may limit trails’ impact on physical activity. The ALBD Community Action Model provided a viable framework to structure cross-disciplinary community trail initiatives. PMID:21597125

  5. Physics Based Model for Cryogenic Chilldown and Loading. Part I: Algorithm

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dmitry G.; Smelyanskiy, Vadim N.; Brown, Barbara

    2014-01-01

    We report the progress in the development of the physics based model for cryogenic chilldown and loading. The chilldown and loading is model as fully separated non-equilibrium two-phase flow of cryogenic fluid thermally coupled to the pipe walls. The solution follow closely nearly-implicit and semi-implicit algorithms developed for autonomous control of thermal-hydraulic systems developed by Idaho National Laboratory. A special attention is paid to the treatment of instabilities. The model is applied to the analysis of chilldown in rapid loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The numerical predictions are in reasonable agreement with the experimental time traces. The obtained results pave the way to the development of autonomous loading operation on the ground and space.

  6. Integration of the social environment in a mobility ontology for people with motor disabilities.

    PubMed

    Gharebaghi, Amin; Mostafavi, Mir-Abolfazl; Edwards, Geoffrey; Fougeyrollas, Patrick; Gamache, Stéphanie; Grenier, Yan

    2017-07-07

    Our contemporary understanding of disability is rooted in the idea that disability is the product of human-environment interaction processes. People may be functionally limited, but this becomes a disability only when they engage with their immediate social and physical environments. Any attempt to address issues of mobility in relation to people with disabilities should be grounded in an ontology that encompasses this understanding. The objective of this study is to provide a methodology to integrate the social and physical environments in the development of a mobility ontology for people with motor disabilities (PWMD). We propose to create subclasses of concepts based on a Nature-Development distinction rather than creating separate social and physical subclasses. This allows the relationships between social and physical elements to be modelled in a more compact and efficient way by specifying them locally within each entity, and better accommodates the complexities of the human-environment interaction as well. Based on this approach, an ontology for mobility of PWMD considering four main elements - the social and physical environmental factors, human factors, life habits related to mobility and possible goals of mobility - is presented. We demonstrate that employing the Nature-Development perspective facilitates the process of developing useful ontologies, especially for defining the relationships between the social and physical parts of the environment. This is a fundamental issue for modelling the interaction between humans and their social and physical environments for a broad range of applications, including the development of geospatial assistive technologies for navigation of PWMD. Implications for rehabilitation The proposed perspective may actually have much broader interests beyond the issue of disability - much of the interesting dynamics in city development arises from the interaction between human-developed components - the built environment and its associated entities - and natural or organic components. The proposed approach facilitates the process of developing useful ontologies, especially for defining the relationships between the social and physical parts of the environment. This is a fundamental issue for modeling the interaction between human -specially people with disabilities -and his social and physical environments in a broad range of domains and applications, such as Geographic Information Systems and the development of geospatial assistive technologies for navigation of people with disabilities, respectively.

  7. Workforce Projections 2010-2020: Annual Supply and Demand Forecasting Models for Physical Therapists Across the United States.

    PubMed

    Landry, Michel D; Hack, Laurita M; Coulson, Elizabeth; Freburger, Janet; Johnson, Michael P; Katz, Richard; Kerwin, Joanne; Smith, Megan H; Wessman, Henry C Bud; Venskus, Diana G; Sinnott, Patricia L; Goldstein, Marc

    2016-01-01

    Health human resources continue to emerge as a critical health policy issue across the United States. The purpose of this study was to develop a strategy for modeling future workforce projections to serve as a basis for analyzing annual supply of and demand for physical therapists across the United States into 2020. A traditional stock-and-flow methodology or model was developed and populated with publicly available data to produce estimates of supply and demand for physical therapists by 2020. Supply was determined by adding the estimated number of physical therapists and the approximation of new graduates to the number of physical therapists who immigrated, minus US graduates who never passed the licensure examination, and an estimated attrition rate in any given year. Demand was determined by using projected US population with health care insurance multiplied by a demand ratio in any given year. The difference between projected supply and demand represented a shortage or surplus of physical therapists. Three separate projection models were developed based on best available data in the years 2011, 2012, and 2013, respectively. Based on these projections, demand for physical therapists in the United States outstrips supply under most assumptions. Workforce projection methodology research is based on assumptions using imperfect data; therefore, the results must be interpreted in terms of overall trends rather than as precise actuarial data-generated absolute numbers from specified forecasting. Outcomes of this projection study provide a foundation for discussion and debate regarding the most effective and efficient ways to influence supply-side variables so as to position physical therapists to meet current and future population demand. Attrition rates or permanent exits out of the profession can have important supply-side effects and appear to have an effect on predicting future shortage or surplus of physical therapists. © 2016 American Physical Therapy Association.

  8. Reflection processing of the large-N seismic data from the Source Physics Experiment (SPE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paschall, Olivia C.

    2016-07-18

    The purpose of the SPE is to develop a more physics-based model for nuclear explosion identification to understand the development of S-waves from explosion sources in order to enhance nuclear test ban treaty monitoring.

  9. Introduction to Elementary Particle Physics

    NASA Astrophysics Data System (ADS)

    Bettini, Alessandro

    The Standard Model is the most comprehensive physical theory ever developed. This textbook conveys the basic elements of the Standard Model using elementary concepts, without the theoretical rigor found in most other texts on this subject. It contains examples of basic experiments, allowing readers to see how measurements and theory interplay in the development of physics. The author examines leptons, hadrons and quarks, before presenting the dynamics and the surprising properties of the charges of the different forces. The textbook concludes with a brief discussion on the recent discoveries of physics beyond the Standard Model, and its connections with cosmology. Quantitative examples are given, and the reader is guided through the necessary calculations. Each chapter ends in the exercises, and solutions to some problems are included in the book. Complete solutions are available to instructors at www.cambridge.org/9780521880213. This textbook is suitable for advanced undergraduate students and graduate students.

  10. Motivation and learning physics

    NASA Astrophysics Data System (ADS)

    Fischer, Hans Ernst; Horstendahl, Michaela

    1997-09-01

    Being involved in science education we cannot avoid confronting the problem of students' waning interest in physics. Therefore, we want to focus on arguments developed by new theoretical work in the field of motivation. Especially, we are attracted by the theory of motivation featured by Deci and Ryan, because it is related to an assumptions of human development similar to our own approach. Beneath elements of cognitive development, motivation is seen as a basic concept to describe students' learning in a physics classroom. German students at lower and upper secondary level regard physics as very difficult to learn, very abstract and dominated by male students. As a result physics at school continuously loses importance and acceptance although a lot of work has been done to modernise and develop the related physics courses. We assume that knowing about the influence of motivation on learning physics may lead to new insights in the design of classroom settings. Referring to Deci and Ryan, we use a model of motivation to describe the influence of two different teaching strategies (teacher and discourse oriented) on learning. Electrostatics was taught in year 8. The outcomes of a questionnaire which is able to evaluate defined, motivational states are compared with the interpretation of the same student's interaction in the related situation of the physics classroom. The scales of the questionnaire and the categories of analysis of the video-recording are derived from the same model of motivation.

  11. Competency based teaching of college physics: The philosophy and the practice

    NASA Astrophysics Data System (ADS)

    Rajapaksha, Ajith; Hirsch, Andrew S.

    2017-12-01

    The practice of learning physics contributes to the development of many transdisciplinary skills learners are able to exercise independent of the physics discipline. However, the standard practices of physics instruction do not explicitly include the monitoring or evaluation of these skills. In a competency-based (CB) learning model, the skills (competencies) are clearly defined and evaluated. We envisioned that a CB approach, where the underlying competencies are highlighted within the instructional process, would be more suitable to teaching physics to learners with diversified disciplinary interests. A model CB course curriculum was developed and practiced at Purdue University to teach introductory college physics to learners who were majoring in the technology disciplines. The experiment took place from the spring semester in 2015 until the spring semester in 2017. The practice provided a means to monitor and evaluate a set of developmental transdisciplinary competencies that underlie the learning of force and motion concepts in classical physics. Additionally, the CB practice contributed to produce substantial physics learning outcomes among learners who were underprepared to learn physics in college.

  12. Combining Statistics and Physics to Improve Climate Downscaling

    NASA Astrophysics Data System (ADS)

    Gutmann, E. D.; Eidhammer, T.; Arnold, J.; Nowak, K.; Clark, M. P.

    2017-12-01

    Getting useful information from climate models is an ongoing problem that has plagued climate science and hydrologic prediction for decades. While it is possible to develop statistical corrections for climate models that mimic current climate almost perfectly, this does not necessarily guarantee that future changes are portrayed correctly. In contrast, convection permitting regional climate models (RCMs) have begun to provide an excellent representation of the regional climate system purely from first principles, providing greater confidence in their change signal. However, the computational cost of such RCMs prohibits the generation of ensembles of simulations or long time periods, thus limiting their applicability for hydrologic applications. Here we discuss a new approach combining statistical corrections with physical relationships for a modest computational cost. We have developed the Intermediate Complexity Atmospheric Research model (ICAR) to provide a climate and weather downscaling option that is based primarily on physics for a fraction of the computational requirements of a traditional regional climate model. ICAR also enables the incorporation of statistical adjustments directly within the model. We demonstrate that applying even simple corrections to precipitation while the model is running can improve the simulation of land atmosphere feedbacks in ICAR. For example, by incorporating statistical corrections earlier in the modeling chain, we permit the model physics to better represent the effect of mountain snowpack on air temperature changes.

  13. Microphysics in Multi-scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  14. Children's motivation in elementary physical education: an expectancy-value model of achievement choice.

    PubMed

    Xiang, Ping; McBride, Ron; Guan, Jianmin; Solmon, Melinda

    2003-03-01

    This study examined children's motivation in elementary physical education within an expectancy-value model developed by Eccles and her colleagues. Four hundred fourteen students in second and fourth grades completed questionnaires assessing their expectancy-related beliefs, subjective task values, and intention for future participation in physical education. Results indicated that expectancy-related beliefs and subjective task values were clearly distinguishable from one another across physical education and throwing. The two constructs were related to each other positively. Children's intention for future participation in physical education was positively associated with their subjective task values and/or expectancy-related beliefs. Younger children had higher motivation for learning in physical education than older children. Gender differences emerged and the findings provided empirical evidence supporting the validity of the expectancy-value model in elementary physical education.

  15. Spontaneous appetence for wheel-running: a model of dependency on physical activity in rat.

    PubMed

    Ferreira, Anthony; Lamarque, Stéphanie; Boyer, Patrice; Perez-Diaz, Fernando; Jouvent, Roland; Cohen-Salmon, Charles

    2006-12-01

    According to human observations of a syndrome of physical activity dependence and its consequences, we tried to examine if running activity in a free activity paradigm, where rats had a free access to activity wheel, may present a valuable animal model for physical activity dependence and most generally to behavioral dependence. The pertinence of reactivity to novelty, a well-known pharmacological dependence predictor was also tested. Given the close linkage observed in human between physical activity and drugs use and abuse, the influence of free activity in activity wheels on reactivity to amphetamine injection and reactivity to novelty were also assessed. It appeared that (1) free access to wheel may be used as a valuable model for physical activity addiction, (2) two populations differing in activity amount also differed in dependence to wheel-running. (3) Reactivity to novelty did not appeared as a predictive factor for physical activity dependence (4) activity modified novelty reactivity and (5) subjects who exhibited a high appetence to wheel-running, presented a strong reactivity to amphetamine. These results propose a model of dependency on physical activity without any pharmacological intervention, and demonstrate the existence of individual differences in the development of this addiction. In addition, these data highlight the development of a likely vulnerability to pharmacological addiction after intense and sustained physical activity, as also described in man. This model could therefore prove pertinent for studying behavioral dependencies and the underlying neurobiological mechanisms. These results may influence the way psychiatrists view behavioral dependencies and phenomena such as doping in sport or addiction to sport itself.

  16. A model for promoting physical activity among rural South African adolescent girls

    PubMed Central

    Kinsman, John; Norris, Shane A.; Kahn, Kathleen; Twine, Rhian; Riggle, Kari; Edin, Kerstin; Mathebula, Jennifer; Ngobeni, Sizzy; Monareng, Nester; Micklesfield, Lisa K.

    2015-01-01

    Background In South Africa, the expanding epidemic of non-communicable diseases is partly fuelled by high levels of physical inactivity and sedentary behaviour. Women especially are at high risk, and interventions promoting physical activity are urgently needed for girls in their adolescence, as this is the time when many girls adopt unhealthy lifestyles. Objective This qualitative study aimed to identify and describe facilitating factors and barriers that are associated with physical activity among adolescent girls in rural, north-eastern South Africa and, based on these, to develop a model for promoting leisure-time physical activity within this population. Design The study was conducted in and around three secondary schools. Six focus group discussions were conducted with adolescent girls from the schools, and seven qualitative interviews were held with sports teachers and youth leaders. The data were subjected to thematic analysis. Results Seven thematic areas were identified, each of which was associated with the girls’ self-reported levels of physical activity. The thematic areas are 1) poverty, 2) body image ideals, 3) gender, 4) parents and home life, 5) demographic factors, 6) perceived health effects of physical activity, and 7) human and infrastructural resources. More barriers to physical activity were reported than facilitating factors. Conclusions Analysis of the barriers found in the different themes indicated potential remedial actions that could be taken, and these were synthesised into a model for promoting physical activity among South African adolescent girls in resource-poor environments. The model presents a series of action points, seen both from the ‘supply-side’ perspective (such as the provision of resources and training for the individuals, schools, and organisations which facilitate the activities) and from the ‘demand-side’ perspective (such as the development of empowering messages about body image for teenage girls, and encouraging more parental involvement). The development of physical activity interventions that incorporate this supply- and demand-side model would represent an additional tool for ongoing efforts aimed at tackling the expanding non-communicable disease epidemic in South Africa, and in other resource-constrained settings undergoing rapid health transitions. PMID:26685095

  17. A Model for the Development of University Curricula in Nanoelectronics

    ERIC Educational Resources Information Center

    Bruun, E.; Nielsen, I.

    2010-01-01

    Nanotechnology is having an increasing impact on university curricula in electrical engineering and in physics. Major influencers affecting developments in university programmes related to nanoelectronics are discussed and a model for university programme development is described. The model takes into account that nanotechnology affects not only…

  18. Individual Differences in Boys' and Girls' Timing and Tempo of Puberty: Modeling Development with Nonlinear Growth Models

    ERIC Educational Resources Information Center

    Marceau, Kristine; Ram, Nilam; Houts, Renate M.; Grimm, Kevin J.; Susman, Elizabeth J.

    2011-01-01

    Pubertal development is a nonlinear process progressing from prepubescent beginnings through biological, physical, and psychological changes to full sexual maturity. To tether theoretical concepts of puberty with sophisticated longitudinal, analytical models capable of articulating pubertal development more accurately, we used nonlinear…

  19. Students' Mathematical Modeling of Motion

    ERIC Educational Resources Information Center

    Marshall, Jill A.; Carrejo, David J.

    2008-01-01

    We present results of an investigation of university students' development of mathematical models of motion in a physical science course for preservice teachers and graduate students in science and mathematics education. Although some students were familiar with the standard concepts of position, velocity, and acceleration from physics classes,…

  20. Alternative Model for Administration and Analysis of Research-Based Assessments

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Zwickl, Benjamin M.; Hobbs, Robert D.; Aiken, John M.; Welch, Nathan M.; Lewandowski, H. J.

    2016-01-01

    Research-based assessments represent a valuable tool for both instructors and researchers interested in improving undergraduate physics education. However, the historical model for disseminating and propagating conceptual and attitudinal assessments developed by the physics education research (PER) community has not resulted in widespread adoption…

  1. Estimation of Physical Properties and Chemical Reactivity Parameters of Organic Compounds for Environmental Modeling by SPARC

    EPA Science Inventory

    Mathematical models for predicting the transport and fate of pollutants in the environment require reactivity parameter values that is value of the physical and chemical constants that govern reactivity. Although empirical structure activity relationships have been developed th...

  2. On the Developing Role of Physical Models in Engineering Design Education

    ERIC Educational Resources Information Center

    Green, Graham; Smrcek, Ladislav

    2006-01-01

    Recent research, undertaken using participative observation methods within the Leonardo Da Vinci project "Open-Dynamic-Design", provides evidence that EU industrial practice continues to value the flexibility of physical models across a range of disciplines. This research is placed within the philosophical educational framework…

  3. Flipping the Physical Examination: Web-Based Instruction and Live Assessment of Bedside Technique.

    PubMed

    Williams, Dustyn E; Thornton, John W

    2016-01-01

    The skill of physicians teaching the physical examination skill has decreased, with newer faculty underperforming compared to their seniors. Improved methods of instruction with an emphasis on physical examinations are necessary to both improve the quality of medical education and alleviate the teaching burden of faculty physicians. We developed a curriculum that combines web-based instruction with real-life practice and features individualized feedback. This innovative medical education model should allow the physical examination to be taught and assessed in an effective manner. The model is under study at Baton Rouge General Medical Center. Our goals are to limit faculty burden, maximize student involvement as learners and evaluators, and effectively develop students' critical skills in performing bedside assessments.

  4. The effectiveness of collaborative problem based physics learning (CPBPL) model to improve student’s self-confidence on physics learning

    NASA Astrophysics Data System (ADS)

    Prahani, B. K.; Suprapto, N.; Suliyanah; Lestari, N. A.; Jauhariyah, M. N. R.; Admoko, S.; Wahyuni, S.

    2018-03-01

    In the previous research, Collaborative Problem Based Physic Learning (CPBPL) model has been developed to improve student’s science process skills, collaborative problem solving, and self-confidence on physics learning. This research is aimed to analyze the effectiveness of CPBPL model towards the improvement of student’s self-confidence on physics learning. This research implemented quasi experimental design on 140 senior high school students who were divided into 4 groups. Data collection was conducted through questionnaire, observation, and interview. Self-confidence measurement was conducted through Self-Confidence Evaluation Sheet (SCES). The data was analyzed using Wilcoxon test, n-gain, and Kruskal Wallis test. Result shows that: (1) There is a significant score improvement on student’s self-confidence on physics learning (α=5%), (2) n-gain value student’s self-confidence on physics learning is high, and (3) n-gain average student’s self-confidence on physics learning was consistent throughout all groups. It can be concluded that CPBPL model is effective to improve student’s self-confidence on physics learning.

  5. Effect of the science teaching advancement through modeling physical science professional development workshop on teachers' attitudes, beliefs and content knowledge and students' content knowledge

    NASA Astrophysics Data System (ADS)

    Dietz, Laura

    The Science Teaching Advancement through Modeling Physical Science (STAMPS) professional development workshop was evaluated for effectiveness in improving teachers' and students' content knowledge. Previous research has shown modeling to be an effective method of instruction for improving student and teacher content knowledge, evidenced by assessment scores. Data includes teacher scores on the Force Concept Inventory (FCI; Hestenes, Wells, & Swackhamer, 1992) and the Chemistry Concept Inventory (CCI; Jenkins, Birk, Bauer, Krause, & Pavelich, 2004), as well as student scores on a physics and chemistry assessment. Quantitative data is supported by teacher responses to a post workshop survey and classroom observations. Evaluation of the data shows that the STAMPS professional development workshop was successful in improving both student and teacher content knowledge. Conclusions and suggestions for future study are also included.

  6. Development of property-transfer models for estimating the hydraulic properties of deep sediments at the Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Winfield, Kari A.

    2005-01-01

    Because characterizing the unsaturated hydraulic properties of sediments over large areas or depths is costly and time consuming, development of models that predict these properties from more easily measured bulk-physical properties is desirable. At the Idaho National Engineering and Environmental Laboratory, the unsaturated zone is composed of thick basalt flow sequences interbedded with thinner sedimentary layers. Determining the unsaturated hydraulic properties of sedimentary layers is one step in understanding water flow and solute transport processes through this complex unsaturated system. Multiple linear regression was used to construct simple property-transfer models for estimating the water-retention curve and saturated hydraulic conductivity of deep sediments at the Idaho National Engineering and Environmental Laboratory. The regression models were developed from 109 core sample subsets with laboratory measurements of hydraulic and bulk-physical properties. The core samples were collected at depths of 9 to 175 meters at two facilities within the southwestern portion of the Idaho National Engineering and Environmental Laboratory-the Radioactive Waste Management Complex, and the Vadose Zone Research Park southwest of the Idaho Nuclear Technology and Engineering Center. Four regression models were developed using bulk-physical property measurements (bulk density, particle density, and particle size) as the potential explanatory variables. Three representations of the particle-size distribution were compared: (1) textural-class percentages (gravel, sand, silt, and clay), (2) geometric statistics (mean and standard deviation), and (3) graphical statistics (median and uniformity coefficient). The four response variables, estimated from linear combinations of the bulk-physical properties, included saturated hydraulic conductivity and three parameters that define the water-retention curve. For each core sample,values of each water-retention parameter were estimated from the appropriate regression equation and used to calculate an estimated water-retention curve. The degree to which the estimated curve approximated the measured curve was quantified using a goodness-of-fit indicator, the root-mean-square error. Comparison of the root-mean-square-error distributions for each alternative particle-size model showed that the estimated water-retention curves were insensitive to the way the particle-size distribution was represented. Bulk density, the median particle diameter, and the uniformity coefficient were chosen as input parameters for the final models. The property-transfer models developed in this study allow easy determination of hydraulic properties without need for their direct measurement. Additionally, the models provide the basis for development of theoretical models that rely on physical relationships between the pore-size distribution and the bulk-physical properties of the media. With this adaptation, the property-transfer models should have greater application throughout the Idaho National Engineering and Environmental Laboratory and other geographic locations.

  7. PHYS-MA-TECH. An Integrated Partnership.

    ERIC Educational Resources Information Center

    Scarborough, Jule Dee

    This document contains 45 integrated physics, mathematics, and technology curriculum modules developed by teachers at 5 Illinois schools. An introduction discusses the collaborative project, in which teams of one mathematics, physics, and technology teacher from each school developed innovative instructional delivery models that enabled the three…

  8. Development of a Logic Model for a Physical Activity–Based Employee Wellness Program for Mass Transit Workers

    PubMed Central

    Petruzzello, Steven J.; Ryan, Katherine E.

    2014-01-01

    Transportation workers, who constitute a large sector of the workforce, have worksite factors that harm their health. Worksite wellness programs must target this at-risk population. Although physical activity is often a component of worksite wellness logic models, we consider it the cornerstone for improving the health of mass transit employees. Program theory was based on in-person interviews and focus groups of employees. We identified 4 short-term outcome categories, which provided a chain of responses based on the program activities that should lead to the desired end results. This logic model may have significant public health impact, because it can serve as a framework for other US mass transit districts and worksite populations that face similar barriers to wellness, including truck drivers, railroad employees, and pilots. The objective of this article is to discuss the development of a logic model for a physical activity–based mass-transit employee wellness program by describing the target population, program theory, the components of the logic model, and the process of its development. PMID:25032838

  9. Development of a logic model for a physical activity-based employee wellness program for mass transit workers.

    PubMed

    Das, Bhibha M; Petruzzello, Steven J; Ryan, Katherine E

    2014-07-17

    Transportation workers, who constitute a large sector of the workforce, have worksite factors that harm their health. Worksite wellness programs must target this at-risk population. Although physical activity is often a component of worksite wellness logic models, we consider it the cornerstone for improving the health of mass transit employees. Program theory was based on in-person interviews and focus groups of employees. We identified 4 short-term outcome categories, which provided a chain of responses based on the program activities that should lead to the desired end results. This logic model may have significant public health impact, because it can serve as a framework for other US mass transit districts and worksite populations that face similar barriers to wellness, including truck drivers, railroad employees, and pilots. The objective of this article is to discuss the development of a logic model for a physical activity-based mass-transit employee wellness program by describing the target population, program theory, the components of the logic model, and the process of its development.

  10. Modeling physical and chemical climate of the northeastern United States for a geographic information system

    Treesearch

    Scott V. Ollinger; John D. Aber; Anthony C. Federer; Gary M. Lovett; Jennifer M. Ellis

    1995-01-01

    A model of physical and chemical climate was developed for New York and New England that can be used in a GIs for integration with ecosystem models. The variables included are monthly average maximum and minimum daily temperatures, precipitation, humidity, and solar radiation, as well as annual atmospheric deposition of sulfur and nitrogen. Equations generated from...

  11. Atomistic Model of Physical Ageing in Se-rich As-Se Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovchak,R.; Shpotyuk, O.; Kozdras, A.

    2007-01-01

    Thermal, optical, X-ray excited and magnetic methods were used to develop a microstructural model of physical ageing in Se-rich glasses. The glass composition As10Se90, possessing a typical cross-linked chain structure, was chosen as a model object for the investigations. The effect of physical ageing in this glass was revealed by differential scanning calorimetry, whereas the corresponding changes in its atomic arrangement were studied by extended X-ray absorption fine structure, Raman and solid-state 77Se nuclear magnetic resonance spectroscopy. Straightening-shrinkage processes are shown to be responsible for the physical ageing in this Se-rich As-Se glass.

  12. Computer Animation with Adobe Flash Professional Cs6 in Newton’s Law

    NASA Astrophysics Data System (ADS)

    Aji, S. D.; Hudha, M. N.; Huda, C.; Gufran, G.

    2018-01-01

    The purpose of this research is to develop computer-based physics learning media with Adobe Flash Professional CS6 on Newton’s Law of physics subject for senior high school (SMA / MA) class X. Type of research applied is Research and Development with ADDIE development model covering 5 stages: Analysis (Analysis), Design (Design), Development (Production), Implementation (Implementation) and Evaluation (Evaluation). The results of this study were tested toward media experts, media specialists, physics teachers, and students test results with media outcomes that are declared very feasible.

  13. Scale Development for Perceived School Climate for Girls' Physical Activity

    ERIC Educational Resources Information Center

    Birnbaum, Amanda S.; Evenson, Kelly R.; Motl, Robert W.; Dishman, Rod K.; Voorhees, Carolyn C.; Sallis, James F.; Elder, John P.; Dowda, Marsha

    2005-01-01

    Objectives: To test an original scale assessing perceived school climate for girls' physical activity in middle school girls. Methods: Confirmatory factor analysis (CFA) and structural equation modeling (SEM). Results: CFA retained 5 of 14 original items. A model with 2 correlated factors, perceptions about teachers' and boys' behaviors,…

  14. Systems Models for Transportation Problems : Part 2. The Social Physics for Modern Societies - the Role of the Cities

    DOT National Transportation Integrated Search

    1977-09-01

    The objective of the research was to make use of a physically based social systems model, developed earlier, to study the determinants of city sizes and their national interactions. In particular, information on the role of a transportation system in...

  15. Using the PhysX engine for physics-based virtual surgery with force feedback.

    PubMed

    Maciel, Anderson; Halic, Tansel; Lu, Zhonghua; Nedel, Luciana P; De, Suvranu

    2009-09-01

    The development of modern surgical simulators is highly challenging, as they must support complex simulation environments. The demand for higher realism in such simulators has driven researchers to adopt physics-based models, which are computationally very demanding. This poses a major problem, since real-time interactions must permit graphical updates of 30 Hz and a much higher rate of 1 kHz for force feedback (haptics). Recently several physics engines have been developed which offer multi-physics simulation capabilities, including rigid and deformable bodies, cloth and fluids. While such physics engines provide unique opportunities for the development of surgical simulators, their higher latencies, compared to what is necessary for real-time graphics and haptics, offer significant barriers to their use in interactive simulation environments. In this work, we propose solutions to this problem and demonstrate how a multimodal surgical simulation environment may be developed based on NVIDIA's PhysX physics library. Hence, models that are undergoing relatively low-frequency updates in PhysX can exist in an environment that demands much higher frequency updates for haptics. We use a collision handling layer to interface between the physical response provided by PhysX and the haptic rendering device to provide both real-time tissue response and force feedback. Our simulator integrates a bimanual haptic interface for force feedback and per-pixel shaders for graphics realism in real time. To demonstrate the effectiveness of our approach, we present the simulation of the laparoscopic adjustable gastric banding (LAGB) procedure as a case study. To develop complex and realistic surgical trainers with realistic organ geometries and tissue properties demands stable physics-based deformation methods, which are not always compatible with the interaction level required for such trainers. We have shown that combining different modelling strategies for behaviour, collision and graphics is possible and desirable. Such multimodal environments enable suitable rates to simulate the major steps of the LAGB procedure.

  16. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    NASA Astrophysics Data System (ADS)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  17. Risk Management and Physical Modelling for Mountainous Natural Hazards

    NASA Astrophysics Data System (ADS)

    Lehning, Michael; Wilhelm, Christian

    Population growth and climate change cause rapid changes in mountainous regions resulting in increased risks of floods, avalanches, debris flows and other natural hazards. Xevents are of particular concern, since attempts to protect against them result in exponentially growing costs. In this contribution, we suggest an integral risk management approach to dealing with natural hazards that occur in mountainous areas. Using the example of a mountain pass road, which can be protected from the danger of an avalanche by engineering (galleries) and/or organisational (road closure) measures, we show the advantage of an optimal combination of both versus the traditional approach, which is to rely solely on engineering structures. Organisational measures become especially important for Xevents because engineering structures cannot be designed for those events. However, organisational measures need a reliable and objective forecast of the hazard. Therefore, we further suggest that such forecasts should be developed using physical numerical modelling. We present the status of current approaches to using physical modelling to predict snow cover stability for avalanche warnings and peak runoff from mountain catchments for flood warnings. While detailed physical models can already predict peak runoff reliably, they are only used to support avalanche warnings. With increased process knowledge and computer power, current developments should lead to a enhanced role for detailed physical models in natural mountain hazard prediction.

  18. A Diagnostic Model for Impending Death in Cancer Patients: Preliminary Report

    PubMed Central

    Hui, David; Hess, Kenneth; dos Santos, Renata; Chisholm, Gary; Bruera, Eduardo

    2015-01-01

    Background We recently identified several highly specific bedside physical signs associated with impending death within 3 days among patients with advanced cancer. In this study, we developed and assessed a diagnostic model for impending death based on these physical signs. Methods We systematically documented 62 physical signs every 12 hours from admission to death or discharge in 357 patients with advanced cancer admitted to acute palliative care units (APCUs) at two tertiary care cancer centers. We used recursive partitioning analysis (RPA) to develop a prediction model for impending death in 3 days using admission data. We validated the model with 5 iterations of 10-fold cross-validation, and also applied the model to APCU days 2/3/4/5/6. Results Among 322/357 (90%) patients with complete data for all signs, the 3-day mortality was 24% on admission. The final model was based on 2 variables (palliative performance scale [PPS] and drooping of nasolabial fold) and had 4 terminal leaves: PPS≤20% and drooping of nasolabial fold present, PPS≤20% and drooping of nasolabial fold absent, PPS 30–60% and PPS ≥ 70%, with 3-day mortality of 94%, 42%, 16% and 3%, respectively. The diagnostic accuracy was 81% for the original tree, 80% for cross-validation, and 79%–84% for subsequent APCU days. Conclusion(s) We developed a diagnostic model for impending death within 3 days based on 2 objective bedside physical signs. This model was applicable to both APCU admission and subsequent days. Upon further external validation, this model may help clinicians to formulate the diagnosis of impending death. PMID:26218612

  19. A Model-Based Prognostics Approach Applied to Pneumatic Valves

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Goebel, Kai

    2011-01-01

    Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain knowledge of the system, its components, and how they fail by casting the underlying physical phenomena in a physics-based model that is derived from first principles. Uncertainty cannot be avoided in prediction, therefore, algorithms are employed that help in managing these uncertainties. The particle filtering algorithm has become a popular choice for model-based prognostics due to its wide applicability, ease of implementation, and support for uncertainty management. We develop a general model-based prognostics methodology within a robust probabilistic framework using particle filters. As a case study, we consider a pneumatic valve from the Space Shuttle cryogenic refueling system. We develop a detailed physics-based model of the pneumatic valve, and perform comprehensive simulation experiments to illustrate our prognostics approach and evaluate its effectiveness and robustness. The approach is demonstrated using historical pneumatic valve data from the refueling system.

  20. Launch Vehicle Debris Models and Crew Vehicle Ascent Abort Risk

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Lawrence, Scott

    2013-01-01

    For manned space launch systems, a reliable abort system is required to reduce the risks associated with a launch vehicle failure during ascent. Understanding the risks associated with failure environments can be achieved through the use of physics-based models of these environments. Debris fields due to destruction of the launch vehicle is one such environment. To better analyze the risk posed by debris, a physics-based model for generating launch vehicle debris catalogs has been developed. The model predicts the mass distribution of the debris field based on formulae developed from analysis of explosions. Imparted velocity distributions are computed using a shock-physics code to model the explosions within the launch vehicle. A comparison of the debris catalog with an existing catalog for the Shuttle external tank show good comparison in the debris characteristics and the predicted debris strike probability. The model is used to analyze the effects of number of debris pieces and velocity distributions on the strike probability and risk.

  1. General form of a cooperative gradual maximal covering location problem

    NASA Astrophysics Data System (ADS)

    Bagherinejad, Jafar; Bashiri, Mahdi; Nikzad, Hamideh

    2018-07-01

    Cooperative and gradual covering are two new methods for developing covering location models. In this paper, a cooperative maximal covering location-allocation model is developed (CMCLAP). In addition, both cooperative and gradual covering concepts are applied to the maximal covering location simultaneously (CGMCLP). Then, we develop an integrated form of a cooperative gradual maximal covering location problem, which is called a general CGMCLP. By setting the model parameters, the proposed general model can easily be transformed into other existing models, facilitating general comparisons. The proposed models are developed without allocation for physical signals and with allocation for non-physical signals in discrete location space. Comparison of the previously introduced gradual maximal covering location problem (GMCLP) and cooperative maximal covering location problem (CMCLP) models with our proposed CGMCLP model in similar data sets shows that the proposed model can cover more demands and acts more efficiently. Sensitivity analyses are performed to show the effect of related parameters and the model's validity. Simulated annealing (SA) and a tabu search (TS) are proposed as solution algorithms for the developed models for large-sized instances. The results show that the proposed algorithms are efficient solution approaches, considering solution quality and running time.

  2. Chemistry Lectures and Laboratories. A Model to Improve Preservice Elementary Science Teacher Development. Volume III.

    ERIC Educational Resources Information Center

    Crosby, Glenn; And Others

    A group of scientists and science educators of Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Chemistry block of the physical science courses developed by the group. Included are…

  3. Geology Lectures and Laboratories. A Model to Improve Preservice Elementary Science Teacher Development. Volume IV.

    ERIC Educational Resources Information Center

    Webster, Gary

    A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Geology block of the physical science courses developed by the group. Included are…

  4. Astronomy Lectures and Laboratories. A Model to Improve Preservice Elementary Science Teacher Development. Volume I.

    ERIC Educational Resources Information Center

    Lutz, Julie H.; Orlich, Donald C.

    A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Astronomy block of the physical science courses developed by the group. Included are…

  5. Competency Based Teaching of College Physics: The Philosophy and The Practice

    ERIC Educational Resources Information Center

    Rajapaksha, Ajith; Hirsch, Andrew S.

    2017-01-01

    The practice of learning physics contributes to the development of many transdisciplinary skills learners are able to exercise independent of the physics discipline. However, the standard practices of physics instruction do not explicitly include the monitoring or evaluation of these skills. In a competency-based (CB) learning model, the skills…

  6. Les Houches 2017: Physics at TeV Colliders New Physics Working Group Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooijmans, G.; et al.

    We present the activities of the `New Physics' working group for the `Physics at TeV Colliders' workshop (Les Houches, France, 5--23 June, 2017). Our report includes new physics studies connected with the Higgs boson and its properties, direct search strategies, reinterpretation of the LHC results in the building of viable models and new computational tool developments.

  7. PREDICTION OF THE VAPOR PRESSURE, BOILING POINT, HEAT OF VAPORIZATION AND DIFFUSION COEFFICIENT OF ORGANIC COMPOUNDS

    EPA Science Inventory

    The prototype computer program SPARC has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC solute-solute physical process models have been developed and tested...

  8. Predicting Risk of Suicide Attempt Using History of Physical Illnesses From Electronic Medical Records

    PubMed Central

    Luo, Wei; Tran, Truyen; Berk, Michael; Venkatesh, Svetha

    2016-01-01

    Background Although physical illnesses, routinely documented in electronic medical records (EMR), have been found to be a contributing factor to suicides, no automated systems use this information to predict suicide risk. Objective The aim of this study is to quantify the impact of physical illnesses on suicide risk, and develop a predictive model that captures this relationship using EMR data. Methods We used history of physical illnesses (except chapter V: Mental and behavioral disorders) from EMR data over different time-periods to build a lookup table that contains the probability of suicide risk for each chapter of the International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10) codes. The lookup table was then used to predict the probability of suicide risk for any new assessment. Based on the different lengths of history of physical illnesses, we developed six different models to predict suicide risk. We tested the performance of developed models to predict 90-day risk using historical data over differing time-periods ranging from 3 to 48 months. A total of 16,858 assessments from 7399 mental health patients with at least one risk assessment was used for the validation of the developed model. The performance was measured using area under the receiver operating characteristic curve (AUC). Results The best predictive results were derived (AUC=0.71) using combined data across all time-periods, which significantly outperformed the clinical baseline derived from routine risk assessment (AUC=0.56). The proposed approach thus shows potential to be incorporated in the broader risk assessment processes used by clinicians. Conclusions This study provides a novel approach to exploit the history of physical illnesses extracted from EMR (ICD-10 codes without chapter V-mental and behavioral disorders) to predict suicide risk, and this model outperforms existing clinical assessments of suicide risk. PMID:27400764

  9. Early Childhood Development and Schooling Attainment: Longitudinal Evidence from British, Finnish and Philippine Birth Cohorts.

    PubMed

    Peet, Evan D; McCoy, Dana C; Danaei, Goodarz; Ezzati, Majid; Fawzi, Wafaie; Jarvelin, Marjo-Riitta; Pillas, Demetris; Fink, Günther

    2015-01-01

    While recent literature has highlighted the importance of early childhood development for later life outcomes, comparatively little is known regarding the relative importance of early physical and cognitive development in predicting educational attainment cross-culturally. We used prospective data from three birth cohorts: the Northern Finland Birth Cohort of 1986 (NFBC1986), the 1970 British Cohort Study (BCS1970), and the Cebu Longitudinal Health and Nutrition Survey of 1983 (CLHNS) to assess the association of height-for-age z-score (HAZ) and cognitive development measured prior to age 8 with schooling attainment. Multivariate linear regression models were used to estimate baseline and adjusted associations. Both physical and cognitive development were highly predictive of adult educational attainment conditional on parental characteristics. The largest positive associations between physical development and schooling were found in the CLHNS (β = 0.53, 95%-CI: [0.32, 0.74]) with substantially smaller associations in the BCS1970 (β = 0.10, 95% CI [0.04, 0.16]) and the NFBC1986 (β = 0.06, 95% CI [-0.05, 0.16]). Strong associations between cognitive development and educational attainment were found for all three cohorts (NFBC1986: β = 0.22, 95%-CI: [0.12, 0.31], BCS1970: β = 0.58, 95%-CI: [0.52, 0.64], CLHNS: β = 1.08, 95%-CI: [0.88, 1.27]). Models jointly estimating educational associations of physical and cognitive development demonstrated weaker associations for physical development and minimal changes for cognitive development. The results indicate that although physical and cognitive early development are both important predictors of educational attainment, cognitive development appears to play a particularly important role. The large degree of heterogeneity in the observed effect sizes suggest that the importance of early life physical growth and cognitive development is highly dependent on socioeconomic and institutional contexts.

  10. Direct modeling for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kun

    2015-06-01

    All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct construction of discrete numerical evolution equations, where the mesh size and time step will play dynamic roles in the modeling process. With the variation of the ratio between mesh size and local particle mean free path, the scheme will capture flow physics from the kinetic particle transport and collision to the hydrodynamic wave propagation. Based on the direct modeling, a continuous dynamics of flow motion will be captured in the unified gas-kinetic scheme. This scheme can be faithfully used to study the unexplored non-equilibrium flow physics in the transition regime.

  11. Next-Generation NATO Reference Mobility Model (NRMM) Development (Developpement de la nouvella generation du modele de mobilite de reference de l’OTAN (NRMM))

    DTIC Science & Technology

    2018-01-01

    Profile Database E-17 Attachment 2: NRMM Data Input Requirements E-25 Attachment 3: General Physics -Based Model Data Input Requirements E-28...E-15 Figure E-11 Examples of Unique Surface Types E-20 Figure E-12 Correlating Physical Testing with Simulation E-21 Figure E-13 Simplified Tire...Table 10-8 Scoring Values 10-19 Table 10-9 Accuracy – Physics -Based 10-20 Table 10-10 Accuracy – Validation Through Measurement 10-22 Table 10-11

  12. The limitations of mathematical modeling in high school physics education

    NASA Astrophysics Data System (ADS)

    Forjan, Matej

    The theme of the doctoral dissertation falls within the scope of didactics of physics. Theoretical analysis of the key constraints that occur in the transmission of mathematical modeling of dynamical systems into field of physics education in secondary schools is presented. In an effort to explore the extent to which current physics education promotes understanding of models and modeling, we analyze the curriculum and the three most commonly used textbooks for high school physics. We focus primarily on the representation of the various stages of modeling in the solved tasks in textbooks and on the presentation of certain simplifications and idealizations, which are in high school physics frequently used. We show that one of the textbooks in most cases fairly and reasonably presents the simplifications, while the other two half of the analyzed simplifications do not explain. It also turns out that the vast majority of solved tasks in all the textbooks do not explicitly represent model assumptions based on what we can conclude that in high school physics the students do not develop sufficiently a sense of simplification and idealizations, which is a key part of the conceptual phase of modeling. For the introduction of modeling of dynamical systems the knowledge of students is also important, therefore we performed an empirical study on the extent to which high school students are able to understand the time evolution of some dynamical systems in the field of physics. The research results show the students have a very weak understanding of the dynamics of systems in which the feedbacks are present. This is independent of the year or final grade in physics and mathematics. When modeling dynamical systems in high school physics we also encounter the limitations which result from the lack of mathematical knowledge of students, because they don't know how analytically solve the differential equations. We show that when dealing with one-dimensional dynamical systems geometrical approach to solving differential equations is appropriate, while in dynamical systems of higher dimensions mathematical constraints are avoided by using a graphical oriented programs for modeling. Because in dealing with dynamical systems with four or more dimensions we may encounter problems in numerical solving, we also show how to overcome them. In the case of electrostatic pendulum we show the process of modeling the real dynamical system and we put a particular emphasize on the different phases of modeling and on the way of overcoming constraints on which we encounter in the development of the model.

  13. Nonholonomic Hamiltonian Method for Meso-macroscale Simulations of Reacting Shocks

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric; Lee, Sangyup

    2015-06-01

    The seamless integration of macroscale, mesoscale, and molecular scale models of reacting shock physics has been hindered by dramatic differences in the model formulation techniques normally used at different scales. In recent research the authors have developed the first unified discrete Hamiltonian approach to multiscale simulation of reacting shock physics. Unlike previous work, the formulation employs reacting themomechanical Hamiltonian formulations at all scales, including the continuum. Unlike previous work, the formulation employs a nonholonomic modeling approach to systematically couple the models developed at all scales. Example applications of the method show meso-macroscale shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.

  14. Thermal barrier coating life prediction model development, phase 2

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Sheffler, Keith D.; Nissley, David M.

    1991-01-01

    The objective of this program was to generate a life prediction model for electron-beam-physical vapor deposited (EB-PVD) zirconia thermal barrier coating (TBC) on gas turbine engine components. Specific activities involved in development of the EB-PVD life prediction model included measurement of EB-PVD ceramic physical and mechanical properties and adherence strength, measurement of the thermally grown oxide (TGO) growth kinetics, generation of quantitative cyclic thermal spallation life data, and development of a spallation life prediction model. Life data useful for model development was obtained by exposing instrumented, EB-PVD ceramic coated cylindrical specimens in a jet fueled burner rig. Monotonic compression and tensile mechanical tests and physical property tests were conducted to obtain the EB-PVD ceramic behavior required for burner rig specimen analysis. As part of that effort, a nonlinear constitutive model was developed for the EB-PVD ceramic. Spallation failure of the EB-PVD TBC system consistently occurred at the TGO-metal interface. Calculated out-of-plane stresses were a small fraction of that required to statically fail the TGO. Thus, EB-PVD spallation was attributed to the interfacial cracking caused by in-plane TGO strains. Since TGO mechanical properties were not measured in this program, calculation of the burner rig specimen TGO in-plane strains was performed by using alumina properties. A life model based on maximum in-plane TGO tensile mechanical strain and TGO thickness correlated the burner rig specimen EB-PVD ceramic spallation lives within a factor of about plus or minus 2X.

  15. Development of an ESL curriculum to educate Chinese immigrants about physical activity.

    PubMed

    Taylor, Victoria M; Cripe, Swee May; Acorda, Elizabeth; Teh, Chong; Coronado, Gloria; Do, Hoai; Woodall, Erica; Hislop, T Gregory

    2008-08-01

    Regular physical activity reduces the risk of many chronic conditions. Multiple studies have shown that Asians in North America engage in less physical activity than the general population. One area for strategic development in the area of health education is the design and evaluation of English as a second language (ESL) curricula. The PRECEDE model and findings from focus groups were used to develop a physical activity ESL curriculum for Chinese immigrants. In general, focus group participants recognized that physical activity contributes to physical and mental wellbeing. However, the benefits of physical activity were most commonly described in terms of improved blood circulation, immune responses, digestion, and reflexes. The importance of peer pressure and the encouragement of friends in adhering to regular physical activity regimens were mentioned frequently. Reported barriers to regular physical activity included lack of time, weather conditions, and financial costs. The ESL curriculum aims to both promote physical activity and improve knowledge, and includes seven different ESL exercises. Our curriculum development methods could be replicated for other health education topics and in other limited English-speaking populations.

  16. DEVELOPMENT OF AN ESL CURRICULUM TO EDUCATE CHINESE IMMIGRANTS ABOUT PHYSICAL ACTIVITY

    PubMed Central

    Taylor, Victoria M.; Cripe, Swee May; Acorda, Elizabeth; Teh, Chong; Coronado, Gloria; Do, Hoai; Woodall, Erica; Hislop, T. Gregory

    2009-01-01

    Regular physical activity reduces the risk of many chronic conditions. Multiple studies have shown that Asians in North America engage in less physical activity than the general population. One area for strategic development in the area of health education is the design and evaluation of English as a second language (ESL) curricula. The PRECEDE model and findings from focus groups were used to develop a physical activity ESL curriculum for Chinese immigrants. In general, focus group participants recognized that physical activity contributes to physical and mental wellbeing. However, the benefits of physical activity were most commonly described in terms of improved blood circulation, immune responses, digestion, and reflexes. The importance of peer pressure and the encouragement of friends in adhering to regular physical activity regimens were mentioned frequently. Reported barriers to regular physical activity included lack of time, weather conditions, and financial costs. The ESL curriculum aims to both promote physical activity and improve knowledge, and includes seven different ESL exercises. Our curriculum development methods could be replicated for other health education topics and in other limited English-speaking populations. PMID:17943444

  17. Precision Cosmology: The First Half Million Years

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.

    2017-06-01

    Cosmology seeks to characterise our Universe in terms of models based on well-understood and tested physics. Today we know our Universe with a precision that once would have been unthinkable. This book develops the entire mathematical, physical and statistical framework within which this has been achieved. It tells the story of how we arrive at our profound conclusions, starting from the early twentieth century and following developments up to the latest data analysis of big astronomical datasets. It provides an enlightening description of the mathematical, physical and statistical basis for understanding and interpreting the results of key space- and ground-based data. Subjects covered include general relativity, cosmological models, the inhomogeneous Universe, physics of the cosmic background radiation, and methods and results of data analysis. Extensive online supplementary notes, exercises, teaching materials, and exercises in Python make this the perfect companion for researchers, teachers and students in physics, mathematics, and astrophysics.

  18. Service Learning In Physics: The Consultant Model

    NASA Astrophysics Data System (ADS)

    Guerra, David

    2005-04-01

    Each year thousands of students across the country and across the academic disciplines participate in service learning. Unfortunately, with no clear model for integrating community service into the physics curriculum, there are very few physics students engaged in service learning. To overcome this shortfall, a consultant based service-learning program has been developed and successfully implemented at Saint Anselm College (SAC). As consultants, students in upper level physics courses apply their problem solving skills in the service of others. Most recently, SAC students provided technical and managerial support to a group from Girl's Inc., a national empowerment program for girls in high-risk, underserved areas, who were participating in the national FIRST Lego League Robotics competition. In their role as consultants the SAC students provided technical information through brainstorming sessions and helped the girls stay on task with project management techniques, like milestone charting. This consultant model of service-learning, provides technical support to groups that may not have a great deal of resources and gives physics students a way to improve their interpersonal skills, test their technical expertise, and better define the marketable skill set they are developing through the physics curriculum.

  19. An appraisal of the literature on teaching physical examination skills.

    PubMed

    Easton, Graham; Stratford-Martin, James; Atherton, Helen

    2012-07-01

    To discover which models for teaching physical examination skills have been proposed, and to appraise the evidence for each. We conducted a narrative review of relevant literature from 1990-2010. We searched the databases MEDLINE, PsycINFO, and ERIC (The Education Resource Information Centre) for the terms: 'physical examination' AND 'teaching' as both MESH terms and keyword searches. We excluded web-based or video teaching, non-physical examination skills (e.g. communication skills), and articles about simulated patients or models. We identified five relevant articles. These five studies outlined several approaches to teaching physical examination skills, including Peyton's 4-step model, an adaptation of his model to a 6-step model; the silent run through; and collaborative discovery. There was little evidence to support one method over others. One controlled trial suggested that silent run-through could improve performance of complex motor tasks, and another suggested that collaborative discovery improves students' ability to recognise key findings in cardiac examinations. There are several models for teaching physical examinations, but few are designed specifically for that purpose and there is little evidence to back any one model over another. We propose an approach which adopts several key features of these models. Future research could usefully evaluate the effectiveness of the proposed models, or develop innovative practical models for teaching examination skills.

  20. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, H., E-mail: hengxiao@vt.edu; Wu, J.-L.; Wang, J.-X.

    Despite their well-known limitations, Reynolds-Averaged Navier–Stokes (RANS) models are still the workhorse tools for turbulent flow simulations in today's engineering analysis, design and optimization. While the predictive capability of RANS models depends on many factors, for many practical flows the turbulence models are by far the largest source of uncertainty. As RANS models are used in the design and safety evaluation of many mission-critical systems such as airplanes and nuclear power plants, quantifying their model-form uncertainties has significant implications in enabling risk-informed decision-making. In this work we develop a data-driven, physics-informed Bayesian framework for quantifying model-form uncertainties in RANS simulations.more » Uncertainties are introduced directly to the Reynolds stresses and are represented with compact parameterization accounting for empirical prior knowledge and physical constraints (e.g., realizability, smoothness, and symmetry). An iterative ensemble Kalman method is used to assimilate the prior knowledge and observation data in a Bayesian framework, and to propagate them to posterior distributions of velocities and other Quantities of Interest (QoIs). We use two representative cases, the flow over periodic hills and the flow in a square duct, to evaluate the performance of the proposed framework. Both cases are challenging for standard RANS turbulence models. Simulation results suggest that, even with very sparse observations, the obtained posterior mean velocities and other QoIs have significantly better agreement with the benchmark data compared to the baseline results. At most locations the posterior distribution adequately captures the true model error within the developed model form uncertainty bounds. The framework is a major improvement over existing black-box, physics-neutral methods for model-form uncertainty quantification, where prior knowledge and details of the models are not exploited. This approach has potential implications in many fields in which the governing equations are well understood but the model uncertainty comes from unresolved physical processes. - Highlights: • Proposed a physics–informed framework to quantify uncertainty in RANS simulations. • Framework incorporates physical prior knowledge and observation data. • Based on a rigorous Bayesian framework yet fully utilizes physical model. • Applicable for many complex physical systems beyond turbulent flows.« less

  1. Perspective: Reaches of chemical physics in biology.

    PubMed

    Gruebele, Martin; Thirumalai, D

    2013-09-28

    Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry.

  2. Perspective: Reaches of chemical physics in biology

    PubMed Central

    Gruebele, Martin; Thirumalai, D.

    2013-01-01

    Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry. PMID:24089712

  3. Designing for Sustained Adoption: A Model of Developing Educational Innovations for Successful Propagation

    ERIC Educational Resources Information Center

    Khatri, Raina; Henderson, Charles; Cole, Renée; Froyd, Jeffrey E.; Friedrichsen, Debra; Stanford, Courtney

    2016-01-01

    The physics education research community has produced a wealth of knowledge about effective teaching and learning of college level physics. Based on this knowledge, many research-proven instructional strategies and teaching materials have been developed and are currently available to instructors. Unfortunately, these intensive research and…

  4. Teaching Game Sense in Soccer

    ERIC Educational Resources Information Center

    Pill, Shane

    2012-01-01

    "Game sense" is a sport-specific iteration of the teaching games for understanding model, designed to balance physical development of motor skill and fitness with the development of game understanding. Game sense can foster a shared vision for sport learning that bridges school physical education and community sport. This article explains how to…

  5. Data assimilation of ground GPG total electron content into a physics-based ionosheric model by use of the Kalman filter

    NASA Technical Reports Server (NTRS)

    Hajj, G. A.; Wilson, B. D.; Wang, C.; Pi, X.; Rosen, I. G.

    2004-01-01

    A three-dimensional (3-D) Global Assimilative Ionospheric Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory (JPL) team. To estimate the electron density on a global grid, GAIM uses a first-principles ionospheric physics model and the Kalman filter as one of its possible estimation techniques.

  6. Spray combustion model improvement study, 1

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.

    1993-01-01

    This study involves the development of numerical and physical modeling in spray combustion. These modeling efforts are mainly motivated to improve the physical submodels of turbulence, combustion, atomization, dense spray effects, and group vaporization. The present mathematical formulation can be easily implemented in any time-marching multiple pressure correction methodologies such as MAST code. A sequence of validation cases includes the nonevaporating, evaporating and_burnin dense_sprays.

  7. High Frequency Acoustic Reflection and Transmission in Ocean Sediments

    DTIC Science & Technology

    2006-09-30

    06-1-0766 http://www.arlut.utexas.edu LONG-TERM GOALS Development of a physical model of high-frequency acoustic interaction with the...shallow water. OBJECTIVES 1) A comparative study of acoustic sediment interaction models including visco-elastic, Biot, BICSQS, and grain...experimental measurements of the bistatic return, for the purpose of defining the best physical model of high-frequency acoustic interaction with the ocean

  8. Excellence in Physics Education Award: Graduate Programs for Professional Development of Physics Teachers

    NASA Astrophysics Data System (ADS)

    Jackson, Jane

    2014-03-01

    The landscape for high school physics is changing rapidly, especially with the need to merge physics into a coherent STEM curriculum that smoothly integrates it with chemistry and biology. Accordingly, there is an urgent need for graduate professional development programs to help in-service teachers cope with these changes. One such program was created in 2001 by the physics department at Arizona State University after a decade of NSF funding for the Modeling Instruction Program. We discuss what has been learned from that experience with recommendations for creating similar programs at other universities.

  9. Evaluation of an Interdisciplinary, Physically Active Lifestyle Course Model

    ERIC Educational Resources Information Center

    Fede, Marybeth H.

    2009-01-01

    The purpose of this study was to evaluate a fit for life program at a university and to use the findings from an extensive literature review, consultations with formative and summative committees, and data collection to develop an interdisciplinary, physically active lifestyle (IPAL) course model. To address the 5 research questions examined in…

  10. Physical-Biological-Optics Model Development and Simulation for the Pacific Ocean and Monterey Bay, California

    DTIC Science & Technology

    2011-09-30

    and easy to apply in large-scale physical-biogeochemical simulations. We also collaborate with Dr. Curt Mobley at Sequoia Scientific for the second...we are collaborating with Dr. Curtis Mobley of Sequoia Scientific on improving the link between the radiative transfer model (EcoLight) within the

  11. On Practising in Physical Education: Outline for a Pedagogical Model

    ERIC Educational Resources Information Center

    Aggerholm, K.; Standal, O.; Barker, D. M.; Larsson, H.

    2018-01-01

    Background: Models-based approaches to physical education have in recent years developed as a way for teachers and students to concentrate on a manageable number of learning objectives, and align pedagogical approaches with learning subject matter and context. This paper draws on Hannah Arendt's account of "vita activa" to map existing…

  12. Modeling the Water Balloon Slingshot

    ERIC Educational Resources Information Center

    Bousquet, Benjamin D.; Figura, Charles C.

    2013-01-01

    In the introductory physics courses at Wartburg College, we have been working to create a lab experience focused on the scientific process itself rather than verification of physical laws presented in the classroom or textbook. To this end, we have developed a number of open-ended modeling exercises suitable for a variety of learning environments,…

  13. New model framework and structure and the commonality evaluation model. [concerning unmanned spacecraft projects

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The development of a framework and structure for shuttle era unmanned spacecraft projects and the development of a commonality evaluation model is documented. The methodology developed for model utilization in performing cost trades and comparative evaluations for commonality studies is discussed. The model framework consists of categories of activities associated with the spacecraft system's development process. The model structure describes the physical elements to be treated as separate identifiable entities. Cost estimating relationships for subsystem and program-level components were calculated.

  14. Mark Stock | NREL

    Science.gov Websites

    , he started the Boston Virtual Reality Meetup group, develops physics plugins for games and demos for physically accurate lighting model, Second Conference on Computational Semiotics for Games and New Media

  15. Toward a comprehensive hybrid physical-virtual reality simulator of peripheral anesthesia with ultrasound and neurostimulator guidance.

    PubMed

    Samosky, Joseph T; Allen, Pete; Boronyak, Steve; Branstetter, Barton; Hein, Steven; Juhas, Mark; Nelson, Douglas A; Orebaugh, Steven; Pinto, Rohan; Smelko, Adam; Thompson, Mitch; Weaver, Robert A

    2011-01-01

    We are developing a simulator of peripheral nerve block utilizing a mixed-reality approach: the combination of a physical model, an MRI-derived virtual model, mechatronics and spatial tracking. Our design uses tangible (physical) interfaces to simulate surface anatomy, haptic feedback during needle insertion, mechatronic display of muscle twitch corresponding to the specific nerve stimulated, and visual and haptic feedback for the injection syringe. The twitch response is calculated incorporating the sensed output of a real neurostimulator. The virtual model is isomorphic with the physical model and is derived from segmented MRI data. This model provides the subsurface anatomy and, combined with electromagnetic tracking of a sham ultrasound probe and a standard nerve block needle, supports simulated ultrasound display and measurement of needle location and proximity to nerves and vessels. The needle tracking and virtual model also support objective performance metrics of needle targeting technique.

  16. Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, J.R.; et al.

    This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators.

  17. The Interactions of Relationships, Interest, and Self-Efficacy in Undergraduate Physics

    NASA Astrophysics Data System (ADS)

    Dou, Remy

    This collected papers dissertation explores students' academic interactions in an active learning, introductory physics settings as they relate to the development of physics self-efficacy and interest. The motivation for this work extends from the national call to increase participation of students in the pursuit of science, technology, engineering, and mathematics (STEM) careers. Self-efficacy and interest are factors that play prominent roles in popular, evidence-based, career theories, including the Social cognitive career theory (SCCT) and the identity framework. Understanding how these constructs develop in light of the most pervasive characteristic of the active learning introductory physics classroom (i.e., peer-to-peer interactions) has implications on how students learn in a variety of introductory STEM classrooms and settings structured after constructivist and sociocultural learning theories. I collected data related to students' in-class interactions using the tools of social network analysis (SNA). Social network analysis has recently been shown to be an effective and useful way to examine the structure of student relationships that develop in and out of STEM classrooms. This set of studies furthers the implementation of SNA as a tool to examine self-efficacy and interest formation in the active learning physics classroom. Here I represent a variety of statistical applications of SNA, including bootstrapped linear regression (Chapter 2), structural equation modeling (Chapter 3), and hierarchical linear modeling for longitudinal analyses (Chapter 4). Self-efficacy data were collected using the Sources of Self-Efficacy for Science Courses - Physics survey (SOSESC-P), and interest data were collected using the physics identity survey. Data for these studies came from the Modeling Instruction sections of Introductory Physics with Calculus offered at Florida International University in the fall of 2014 and 2015. Analyses support the idea that students' perceptions of one another impact the development of their social network centrality, which in turn affects their self-efficacy building experiences and their overall self-efficacy. It was shown that unlike career theories that emphasize causal relationships between the development of self-efficacy and the subsequent growth of student interest, in this context student interest takes precedence before the development of student self-efficacy. This outcome also has various implications for career theories.

  18. In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation.

    PubMed

    Lim, Yi-Je; Deo, Dhanannjay; Singh, Tejinder P; Jones, Daniel B; De, Suvranu

    2009-06-01

    Development of a laparoscopic surgery simulator that delivers high-fidelity visual and haptic (force) feedback, based on the physical models of soft tissues, requires the use of empirical data on the mechanical behavior of intra-abdominal organs under the action of external forces. As experiments on live human patients present significant risks, the use of cadavers presents an alternative. We present techniques of measuring and modeling the mechanical response of human cadaveric tissue for the purpose of developing a realistic model. The major contribution of this paper is the development of physics-based models of soft tissues that range from linear elastic models to nonlinear viscoelastic models which are efficient for application within the framework of a real-time surgery simulator. To investigate the in situ mechanical, static, and dynamic properties of intra-abdominal organs, we have developed a high-precision instrument by retrofitting a robotic device from Sensable Technologies (position resolution of 0.03 mm) with a six-axis Nano 17 force-torque sensor from ATI Industrial Automation (force resolution of 1/1,280 N along each axis), and used it to apply precise displacement stimuli and record the force response of liver and stomach of ten fresh human cadavers. The mean elastic modulus of liver and stomach is estimated as 5.9359 kPa and 1.9119 kPa, respectively over the range of indentation depths tested. We have also obtained the parameters of a quasilinear viscoelastic (QLV) model to represent the nonlinear viscoelastic behavior of the cadaver stomach and liver over a range of indentation depths and speeds. The models are found to have an excellent goodness of fit (with R (2) > 0.99). The data and models presented in this paper together with additional ones based on the principles presented in this paper would result in realistic physics-based surgical simulators.

  19. Teachers' Views on the Construction, Management and Delivery of an Externally Prescribed Physical Education Curriculum: Higher Grade Physical Education

    ERIC Educational Resources Information Center

    MacPhail, Ann

    2007-01-01

    Background: The level of influence teachers have over changing developments in curricula to suit their individual schools is not matched by the influence they possess in the development of such curricula outside of the school context. Bernstein's model of the social construction of pedagogic discourse allows examination of the development,…

  20. Statistical and engineering methods for model enhancement

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Jung

    Models which describe the performance of physical process are essential for quality prediction, experimental planning, process control and optimization. Engineering models developed based on the underlying physics/mechanics of the process such as analytic models or finite element models are widely used to capture the deterministic trend of the process. However, there usually exists stochastic randomness in the system which may introduce the discrepancy between physics-based model predictions and observations in reality. Alternatively, statistical models can be used to develop models to obtain predictions purely based on the data generated from the process. However, such models tend to perform poorly when predictions are made away from the observed data points. This dissertation contributes to model enhancement research by integrating physics-based model and statistical model to mitigate the individual drawbacks and provide models with better accuracy by combining the strengths of both models. The proposed model enhancement methodologies including the following two streams: (1) data-driven enhancement approach and (2) engineering-driven enhancement approach. Through these efforts, more adequate models are obtained, which leads to better performance in system forecasting, process monitoring and decision optimization. Among different data-driven enhancement approaches, Gaussian Process (GP) model provides a powerful methodology for calibrating a physical model in the presence of model uncertainties. However, if the data contain systematic experimental errors, the GP model can lead to an unnecessarily complex adjustment of the physical model. In Chapter 2, we proposed a novel enhancement procedure, named as “Minimal Adjustment”, which brings the physical model closer to the data by making minimal changes to it. This is achieved by approximating the GP model by a linear regression model and then applying a simultaneous variable selection of the model and experimental bias terms. Two real examples and simulations are presented to demonstrate the advantages of the proposed approach. Different from enhancing the model based on data-driven perspective, an alternative approach is to focus on adjusting the model by incorporating the additional domain or engineering knowledge when available. This often leads to models that are very simple and easy to interpret. The concepts of engineering-driven enhancement are carried out through two applications to demonstrate the proposed methodologies. In the first application where polymer composite quality is focused, nanoparticle dispersion has been identified as a crucial factor affecting the mechanical properties. Transmission Electron Microscopy (TEM) images are commonly used to represent nanoparticle dispersion without further quantifications on its characteristics. In Chapter 3, we developed the engineering-driven nonhomogeneous Poisson random field modeling strategy to characterize nanoparticle dispersion status of nanocomposite polymer, which quantitatively represents the nanomaterial quality presented through image data. The model parameters are estimated through the Bayesian MCMC technique to overcome the challenge of limited amount of accessible data due to the time consuming sampling schemes. The second application is to calibrate the engineering-driven force models of laser-assisted micro milling (LAMM) process statistically, which facilitates a systematic understanding and optimization of targeted processes. In Chapter 4, the force prediction interval has been derived by incorporating the variability in the runout parameters as well as the variability in the measured cutting forces. The experimental results indicate that the model predicts the cutting force profile with good accuracy using a 95% confidence interval. To conclude, this dissertation is the research drawing attention to model enhancement, which has considerable impacts on modeling, design, and optimization of various processes and systems. The fundamental methodologies of model enhancement are developed and further applied to various applications. These research activities developed engineering compliant models for adequate system predictions based on observational data with complex variable relationships and uncertainty, which facilitate process planning, monitoring, and real-time control.

  1. The influence of a wind tunnel on helicopter rotational noise: Formulation of analysis

    NASA Technical Reports Server (NTRS)

    Mosher, M.

    1984-01-01

    An analytical model is discussed that can be used to examine the effects of wind tunnel walls on helicopter rotational noise. A complete physical model of an acoustic source in a wind tunnel is described and a simplified version is then developed. This simplified model retains the important physical processes involved, yet it is more amenable to analysis. The simplified physical model is then modeled as a mathematical problem. An inhomogeneous partial differential equation with mixed boundary conditions is set up and then transformed into an integral equation. Details of generating a suitable Green's function and integral equation are included and the equation is discussed and also given for a two-dimensional case.

  2. System Simulation Modeling: A Case Study Illustration of the Model Development Life Cycle

    Treesearch

    Janice K. Wiedenbeck; D. Earl Kline

    1994-01-01

    Systems simulation modeling techniques offer a method of representing the individual elements of a manufacturing system and their interactions. By developing and experimenting with simulation models, one can obtain a better understanding of the overall physical system. Forest products industries are beginning to understand the importance of simulation modeling to help...

  3. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    NASA Astrophysics Data System (ADS)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Philip LaRoche

    At the end of his life, Stephen Jay Kline, longtime professor of mechanical engineering at Stanford University, completed a book on how to address complex systems. The title of the book is 'Conceptual Foundations of Multi-Disciplinary Thinking' (1995), but the topic of the book is systems. Kline first establishes certain limits that are characteristic of our conscious minds. Kline then establishes a complexity measure for systems and uses that complexity measure to develop a hierarchy of systems. Kline then argues that our minds, due to their characteristic limitations, are unable to model the complex systems in that hierarchy. Computers aremore » of no help to us here. Our attempts at modeling these complex systems are based on the way we successfully model some simple systems, in particular, 'inert, naturally-occurring' objects and processes, such as what is the focus of physics. But complex systems overwhelm such attempts. As a result, the best we can do in working with these complex systems is to use a heuristic, what Kline calls the 'Guideline for Complex Systems.' Kline documents the problems that have developed due to 'oversimple' system models and from the inappropriate application of a system model from one domain to another. One prominent such problem is the Procrustean attempt to make the disciplines that deal with complex systems be 'physics-like.' Physics deals with simple systems, not complex ones, using Kline's complexity measure. The models that physics has developed are inappropriate for complex systems. Kline documents a number of the wasteful and dangerous fallacies of this type.« less

  5. Workshop Physics Activity Guide, Module 3: Heat Temperature and Nuclear Radiation, Thermodynamics, Kinetic Theory, Heat Engines, Nuclear Decay, and Random Monitoring (Units 16 - 18 & 28)

    NASA Astrophysics Data System (ADS)

    Laws, Priscilla W.

    2004-05-01

    The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research.

  6. An Integrated Approach to Laser Crystal Development

    NASA Technical Reports Server (NTRS)

    Ries, Heidi R.

    1996-01-01

    Norfolk State University has developed an integrated research program in the area of laser crystal development, including crystal modeling, crystal growth, spectroscopy, and laser modeling. This research program supports a new graduate program in Chemical Physics, designed in part to address the shortage of minority scientists.

  7. A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations

    NASA Astrophysics Data System (ADS)

    Messner, Mark C.; Rhee, Moono; Arsenlis, Athanasios; Barton, Nathan R.

    2017-06-01

    This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning—feature selection by regularized regression and cross-validation—to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.

  8. Advances in the physics basis for the European DEMO design

    NASA Astrophysics Data System (ADS)

    Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.

    2015-06-01

    In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.

  9. The development of early pulsation theory, or, how Cepheids are like steam engines"

    NASA Astrophysics Data System (ADS)

    Stanley, Matthew

    2011-05-01

    The pulsation theory of Cepheid variable stars was a major breakthrough of early twentieth-century astrophysics. At the beginning of that century, the basic physics of normal stars was very poorly understood, and variable stars were even more mysterious. Breaking with accepted explanations in terms of eclipsing binaries, Harlow Shapley and A.S. Eddington pioneered novel theories that considered Cepheids as pulsating spheres of gas. These theoretical models relied on highly speculative physics, but nonetheless returned very impressive results despite attacks from figures such as James Jeans. Surprisingly, the pulsation theory not only depended on developments in stellar physics, but also drove many of those developments. In particular, models of stars in radiative balance and theories of stellar energy were heavily inspired and shaped by ideas about variable stars. Further, the success of the pulsation theory helped justify the new approaches to astrophysics being developed before World War II.

  10. Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Sahagian, Dork

    1997-01-01

    The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.

  11. Survey of current situation in radiation belt modeling

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.

    2004-01-01

    The study of Earth's radiation belts is one of the oldest subjects in space physics. Despite the tremendous progress made in the last four decades, we still lack a complete understanding of the radiation belts in terms of their configurations, dynamics, and detailed physical accounts of their sources and sinks. The static nature of early empirical trapped radiation models, for examples, the NASA AP-8 and AE-8 models, renders those models inappropriate for predicting short-term radiation belt behaviors associated with geomagnetic storms and substorms. Due to incomplete data coverage, these models are also inaccurate at low altitudes (e.g., <1000 km) where many robotic and human space flights occur. The availability of radiation data from modern space missions and advancement in physical modeling and data management techniques have now allowed the development of new empirical and physical radiation belt models. In this paper, we will review the status of modern radiation belt modeling. Published by Elsevier Ltd on behalf of COSPAR.

  12. Developing model asphalt systems using molecular simulation : final model.

    DOT National Transportation Integrated Search

    2009-09-01

    Computer based molecular simulations have been used towards developing simple mixture compositions whose : physical properties resemble those of real asphalts. First, Monte Carlo simulations with the OPLS all-atom force : field were used to predict t...

  13. The Challenge of Grounding Planning in Simulation with an Interactive Model Development Environment

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Frank, Jeremy D.; Chachere, John M.; Smith, Tristan B.; Swanson, Keith J.

    2011-01-01

    A principal obstacle to fielding automated planning systems is the difficulty of modeling. Physical systems are modeled conventionally based on specification documents and the modeler's understanding of the system. Thus, the model is developed in a way that is disconnected from the system's actual behavior and is vulnerable to manual error. Another obstacle to fielding planners is testing and validation. For a space mission, generated plans must be validated often by translating them into command sequences that are run in a simulation testbed. Testing in this way is complex and onerous because of the large number of possible plans and states of the spacecraft. Though, if used as a source of domain knowledge, the simulator can ease validation. This paper poses a challenge: to ground planning models in the system physics represented by simulation. A proposed, interactive model development environment illustrates the integration of planning and simulation to meet the challenge. This integration reveals research paths for automated model construction and validation.

  14. A diagnostic model for impending death in cancer patients: Preliminary report.

    PubMed

    Hui, David; Hess, Kenneth; dos Santos, Renata; Chisholm, Gary; Bruera, Eduardo

    2015-11-01

    Several highly specific bedside physical signs associated with impending death within 3 days for patients with advanced cancer were recently identified. A diagnostic model for impending death based on these physical signs was developed and assessed. Sixty-two physical signs were systematically documented every 12 hours from admission to death or discharge for 357 patients with advanced cancer who were admitted to acute palliative care units (APCUs) at 2 tertiary care cancer centers. Recursive partitioning analysis was used to develop a prediction model for impending death within 3 days with admission data. The model was validated with 5 iterations of 10-fold cross-validation, and the model was also applied to APCU days 2 to 6. For the 322 of 357 patients (90%) with complete data for all signs, the 3-day mortality rate was 24% on admission. The final model was based on 2 variables (Palliative Performance Scale [PPS] and drooping of nasolabial folds) and had 4 terminal leaves: PPS score ≤ 20% and drooping of nasolabial folds present, PPS score ≤ 20% and drooping of nasolabial folds absent, PPS score of 30% to 60%, and PPS score ≥ 70%. The 3-day mortality rates were 94%, 42%, 16%, and 3%, respectively. The diagnostic accuracy was 81% for the original tree, 80% for cross-validation, and 79% to 84% for subsequent APCU days. Based on 2 objective bedside physical signs, a diagnostic model was developed for impending death within 3 days. This model was applicable to both APCU admission and subsequent days. Upon further external validation, this model may help clinicians to formulate the diagnosis of impending death. © 2015 American Cancer Society.

  15. Preliminary Development of a Computational Model of a Dielectric Barrier Discharge

    DTIC Science & Technology

    2004-12-01

    Gerhard Pietsch . "Microdischarges in Air-Fed Ozonizers," Journal of Physics D: Applied Physics, Vol 24, 1991, pp 564-572. 14 Baldur Eliasson. "Modeling...Gibalov and Gerhard Pietsch . "Two-dimensional Modeling of the Dielectric Barrier Discharge in Air," Plasma Sources Science Technology, 1 (1992), pp. 166...Computer Modeling," IEEE Transactions on Plasma Science, 27 (1), February 1999, pp 36-37. 19 Valentin I Gibalov and Gerhard J. Pietsch . "The

  16. Propulsion Physics Under the Changing Density Field Model

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  17. The effectiveness of CPI model to improve positive attitude toward science (PATS) for pre-service physics teacher

    NASA Astrophysics Data System (ADS)

    Sunarti, T.; Wasis; Madlazim; Suyidno; Prahani, B. K.

    2018-03-01

    In the previous research, learning material based Construction, Production, and Implementation (CPI) model has been developed to improve scientific literacy and positive attitude toward science for pre-service physics teacher. CPI model has 4 phases, included: 1) Motivation; 2) Construction (Cycle I); 3) Production (Cycle II); and 4) Evaluation. This research is aimed to analyze the effectiveness of CPI model towards the improvement Positive Attitude toward Science (PATS) for pre-service physics teacher. This research used one group pre-test and post-test design on 160 pre-service physics teacher divided into 4 groups at Lambung Mangkurat University and Surabaya State University (Indonesia), academic year 2016/2017. Data collection was conducted through questioner, observation, and interview. Positive attitude toward science for pre-service physics teacher measurement were conducted through Positive Attitude toward Science Evaluation Sheet (PATSES). The data analysis technique was done by using Wilcoxon test and n-gain. The results showed that there was a significant increase in positive attitude toward science for pre-service physics teacher at α = 5%, with n-gain average of high category. Thus, the CPI model is effective for improving positive attitude toward science for pre-service physics teacher.

  18. A physical model for dementia

    NASA Astrophysics Data System (ADS)

    Sotolongo-Costa, O.; Gaggero-Sager, L. M.; Becker, J. T.; Maestu, F.; Sotolongo-Grau, O.

    2017-04-01

    Aging associated brain decline often result in some kind of dementia. Even when this is a complex brain disorder a physical model can be used in order to describe its general behavior. A probabilistic model for the development of dementia is obtained and fitted to some experimental data obtained from the Alzheimer's Disease Neuroimaging Initiative. It is explained how dementia appears as a consequence of aging and why it is irreversible.

  19. The space shuttle payload planning working groups. Volume 8: Earth and ocean physics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings and recommendations of the Earth and Ocean Physics working group of the space shuttle payload planning activity are presented. The requirements for the space shuttle mission are defined as: (1) precision measurement for earth and ocean physics experiments, (2) development and demonstration of new and improved sensors and analytical techniques, (3) acquisition of surface truth data for evaluation of new measurement techniques, (4) conduct of critical experiments to validate geophysical phenomena and instrumental results, and (5) development and validation of analytical/experimental models for global ocean dynamics and solid earth dynamics/earthquake prediction. Tables of data are presented to show the flight schedule estimated costs, and the mission model.

  20. a Latent Variable Path Analysis Model of Secondary Physics Enrollments in New York State.

    NASA Astrophysics Data System (ADS)

    Sobolewski, Stanley John

    The Percentage of Enrollment in Physics (PEP) at the secondary level nationally has been approximately 20% for the past few decades. For a more scientifically literate citizenry as well as specialists to continue scientific research and development, it is desirable that more students enroll in physics. Some of the predictor variables for physics enrollment and physics achievement that have been identified previously includes a community's socioeconomic status, the availability of physics, the sex of the student, the curriculum, as well as teacher and student data. This study isolated and identified predictor variables for PEP of secondary schools in New York. Data gathered by the State Education Department for the 1990-1991 school year was used. The source of this data included surveys completed by teachers and administrators on student characteristics and school facilities. A data analysis similar to that done by Bryant (1974) was conducted to determine if the relationships between a set of predictor variables related to physics enrollment had changed in the past 20 years. Variables which were isolated included: community, facilities, teacher experience, number of type of science courses, school size and school science facilities. When these variables were isolated, latent variable path diagrams were proposed and verified by the Linear Structural Relations computer modeling program (LISREL). These diagrams differed from those developed by Bryant in that there were more manifest variables used which included achievement scores in the form of Regents exam results. Two criterion variables were used, percentage of students enrolled in physics (PEP) and percent of students enrolled passing the Regents physics exam (PPP). The first model treated school and community level variables as exogenous while the second model treated only the community level variables as exogenous. The goodness of fit indices for the models was 0.77 for the first model and 0.83 for the second model. No dramatic differences were found between the relationship of predictor variables to physics enrollment in 1972 and 1991. New models indicated that smaller school size, enrollment in previous science and math courses and other school variables were more related to high enrollment rather than achievement. Exogenous variables such as community size were related to achievement. It was shown that achievement and enrollment were related to a different set of predictor variables.

  1. Parametric modelling design applied to weft knitted surfaces and its effects in their physical properties

    NASA Astrophysics Data System (ADS)

    Oliveira, N. P.; Maciel, L.; Catarino, A. P.; Rocha, A. M.

    2017-10-01

    This work proposes the creation of models of surfaces using a parametric computer modelling software to obtain three-dimensional structures in weft knitted fabrics produced on single needle system machines. Digital prototyping, another feature of digital modelling software, was also explored in three-dimensional drawings generated using the Rhinoceros software. With this approach, different 3D structures were developed and produced. Physical characterization tests were then performed on the resulting 3D weft knitted structures to assess their ability to promote comfort. From the obtained results, it is apparent that the developed structures have potential for application in different market segments, such as clothing and interior textiles.

  2. Soil physics: a Moroccan perspective

    NASA Astrophysics Data System (ADS)

    Lahlou, Sabah; Mrabet, Rachid; Ouadia, Mohamed

    2004-06-01

    Research on environmental pollution and degradation of soil and water resources is now of highest priority worldwide. To address these problems, soil physics should be conceived as a central core to this research. This paper objectives are to: (1) address the role and importance of soil physics, (2) demonstrate progress in this discipline, and (3) present various uses of soil physics in research, environment and industry. The study of dynamic processes at and within the soil vadose zone (flow, dispersion, transport, sedimentation, etc.), and ephemeral phenomena (deformation, compaction, etc.), form an area of particular interest in soil physics. Soil physics has changed considerably over time. These changes are due to needed precision in data collection for accurate interpretation of space and time variation of soil properties. Soil physics interacts with other disciplines and sciences such as hydro(geo)logy, agronomy, environment, micro-meteorology, pedology, mathematics, physics, water sciences, etc. These interactions prompted the emergence of advanced theories and comprehensive mechanisms of most natural processes, development of new mathematical tools (modeling and computer simulation, fractals, geostatistics, transformations), creation of high precision instrumentation (computer assisted, less time constraint, increased number of measured parameters) and the scale sharpening of physical measurements which ranges from micro to watershed. The environment industry has contributed to an enlargement of many facets of soil physics. In other words, research demand in soil physics has increased considerably to satisfy specific and environmental problems (contamination of water resources, global warming, etc.). Soil physics research is still at an embryonic stage in Morocco. Consequently, soil physicists can take advantage of developments occurring overseas, and need to build up a database of soil static and dynamic properties and to revise developed models to meet our conditions. Large, but special, investment is required to promote research programs in soil physics, which consider developments in this discipline and respect Moroccan needs. These programs will be highlighted herein.

  3. Project X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, Steve; Alber, Russ; Asner, David

    2013-06-23

    Particle physics has made enormous progress in understanding the nature of matter and forces at a fundamental level and has unlocked many mysteries of our world. The development of the Standard Model of particle physics has been a magnificent achievement of the field. Many deep and important questions have been answered and yet many mysteries remain. The discovery of neutrino oscillations, discrepancies in some precision measurements of Standard-Model processes, observation of matter-antimatter asymmetry, the evidence for the existence of dark matter and dark energy, all point to new physics beyond the Standard Model. The pivotal developments of our field, includingmore » the latest discovery of the Higgs Boson, have progressed within three interlocking frontiers of research – the Energy, Intensity and Cosmic frontiers – where discoveries and insights in one frontier powerfully advance the other frontiers as well.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRISC is a developmental prototype for a nextgeneration “systems-level” integrated performance and safety code (IPSC) for nuclear reactors. Its development served to demonstrate how a lightweight multi-physics coupling approach can be used to tightly couple the physics models in several different physics codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled “burner” nuclear reactor. For example, the RIO Fluid Flow and Heat transfer code developed at Sandia (SNL: Chris Moen, Dept. 08005) is used in BRISC to model fluid flow and heat transfer, as well as conduction heat transfermore » in solids. Because BRISC is a prototype, its most practical application is as a foundation or starting point for developing a true production code. The sub-codes and the associated models and correlations currently employed within BRISC were chosen to cover the required application space and demonstrate feasibility, but were not optimized or validated against experimental data within the context of their use in BRISC.« less

  5. Development of a culturally appropriate, home-based nutrition and physical activity curriculum for Wisconsin American Indian families.

    PubMed

    LaRowe, Tara L; Wubben, Deborah P; Cronin, Kate A; Vannatter, SuAnne M; Adams, Alexandra K

    2007-10-01

    We designed an obesity prevention intervention for American Indian families called Healthy Children, Strong Families using a participatory approach involving three Wisconsin tribes. Healthy Children, Strong Families promotes healthy eating and physical activity for preschool children and their caregivers while respecting each community's cultural and structural framework. Academic researchers, tribal wellness staff, and American Indian community mentors participated in development of the Healthy Children, Strong Families educational curriculum. The curriculum is based on social cognitive and family systems theories as well as on community eating and activity patterns with adaptation to American Indian cultural values. The curricular materials, which were delivered through a home-based mentoring model, have been successfully received and are being modified so that they can be tailored to individual family needs. The curriculum can serve as a nutrition and physical activity model for health educators that can be adapted for other American Indian preschool children and their families or as a model for development of a culturally specific curriculum.

  6. Developing HALM Teaching Competencies in PETE Teacher Candidates

    ERIC Educational Resources Information Center

    Wilkinson, Carol; Prusak, Keven; Zanandrea, Maria

    2018-01-01

    The lifetime activities approach, which grew out of the lifetime physical activity model, has informed the practice of one physical education teacher education (PETE) program as it prepares teacher candidates to teach K-12 students about the importance of health, health-related fitness, and physical activity. Health-enhancing behaviors such as…

  7. Advanced Computing Tools and Models for Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  8. Physical Aggression and Expressive Vocabulary in 19-Month-Old Twins.

    ERIC Educational Resources Information Center

    Dionne, Ginette; Tremblay, Richard; Boivin, Michel; Laplante, David; Perusse, Daniel

    2003-01-01

    Used a genetic design to investigate association between physical aggression and language development in 19-month-old twins. Found a modest but significant correlation between aggression and expressive vocabulary. Substantial heritability was found for physical aggression. Quantitative genetic modeling suggested that the correlation could not be…

  9. Stopping Childhood Obesity before It Begins

    ERIC Educational Resources Information Center

    Mazzeo, Deborah; Arens, Sheila A.; Germeroth, Carrie; Hein, Heather

    2012-01-01

    Preschool is a crucial time for obesity prevention, as children are developing eating and physical activity habits. A lack of physical activity at preschool may contribute more to overweight children than parental influences such as modeling and supporting physical activity or providing fitness equipment in the home. Let Me Play is a comprehensive…

  10. Development of PCK for Novice and Experienced University Physics Instructors: A Case Study

    ERIC Educational Resources Information Center

    Jang, Syh-Jong; Tsai, Meng-Fang; Chen, Ho-Yuan

    2013-01-01

    The current study assessed and compared university students' perceptions' of a novice and an experienced physics instructor's Pedagogical Content Knowledge (PCK). Two college physics instructors and 116 students voluntarily participated in this study. The research model comprised three workshops, mid-term and final evaluations and instructor…

  11. Computer Simulations for Lab Experiences in Secondary Physics

    ERIC Educational Resources Information Center

    Murphy, David Shannon

    2012-01-01

    Physical science instruction often involves modeling natural systems, such as electricity that possess particles which are invisible to the unaided eye. The effect of these particles' motion is observable, but the particles are not directly observable to humans. Simulations have been developed in physics, chemistry and biology that, under certain…

  12. Quantitative critical thinking: Student activities using Bayesian updating

    NASA Astrophysics Data System (ADS)

    Warren, Aaron R.

    2018-05-01

    One of the central roles of physics education is the development of students' ability to evaluate proposed hypotheses and models. This ability is important not just for students' understanding of physics but also to prepare students for future learning beyond physics. In particular, it is often hoped that students will better understand the manner in which physicists leverage the availability of prior knowledge to guide and constrain the construction of new knowledge. Here, we discuss how the use of Bayes' Theorem to update the estimated likelihood of hypotheses and models can help achieve these educational goals through its integration with evaluative activities that use hypothetico-deductive reasoning. Several types of classroom and laboratory activities are presented that engage students in the practice of Bayesian likelihood updating on the basis of either consistency with experimental data or consistency with pre-established principles and models. This approach is sufficiently simple for introductory physics students while offering a robust mechanism to guide relatively sophisticated student reflection concerning models, hypotheses, and problem-solutions. A quasi-experimental study utilizing algebra-based introductory courses is presented to assess the impact of these activities on student epistemological development. The results indicate gains on the Epistemological Beliefs Assessment for Physical Science (EBAPS) at a minimal cost of class-time.

  13. Rocket exhaust ground cloud/atmospheric interactions

    NASA Technical Reports Server (NTRS)

    Hwang, B.; Gould, R. K.

    1978-01-01

    An attempt to identify and minimize the uncertainties and potential inaccuracies of the NASA Multilayer Diffusion Model (MDM) is performed using data from selected Titan 3 launches. The study is based on detailed parametric calculations using the MDM code and a comparative study of several other diffusion models, the NASA measurements, and the MDM. The results are discussed and evaluated. In addition, the physical/chemical processes taking place during the rocket cloud rise are analyzed. The exhaust properties and the deluge water effects are evaluated. A time-dependent model for two aerosol coagulations is developed and documented. Calculations using this model for dry deposition during cloud rise are made. A simple model for calculating physical properties such as temperature and air mass entrainment during cloud rise is also developed and incorporated with the aerosol model.

  14. Modeling discourse management compared to other classroom management styles in university physics

    NASA Astrophysics Data System (ADS)

    Desbien, Dwain Michael

    2002-01-01

    A classroom management technique called modeling discourse management was developed to enhance the modeling theory of physics. Modeling discourse management is a student-centered management that focuses on the epistemology of science. Modeling discourse is social constructivist in nature and was designed to encourage students to present classroom material to each other. In modeling discourse management, the instructor's primary role is of questioner rather than provider of knowledge. Literature is presented that helps validate the components of modeling discourse. Modeling discourse management was compared to other classroom management styles using multiple measures. Both regular and honors university physics classes were investigated. This style of management was found to enhance student understanding of forces, problem-solving skills, and student views of science compared to traditional classroom management styles for both honors and regular students. Compared to other reformed physics classrooms, modeling discourse classes performed as well or better on student understanding of forces. Outside evaluators viewed modeling discourse classes to be reformed, and it was determined that modeling discourse could be effectively disseminated.

  15. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacialmore » tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough and film-drainage in gas-invaded zones throughout the duration of the process. The partially-scaled physical model was used in a series of experiments to study the effects of wettability, gas-oil miscibility, secondary versus tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection mode, the partially-scaled physical model confirmed the positive influence of fractures and oil-wet characteristics in enhancing oil recoveries over those measured in the homogeneous (unfractured) water-wet models. An interesting observation was that a single logarithmic relationship between the oil recovery and the gravity number was obeyed by the physical model, the high-pressure corefloods and the field data.« less

  16. A Multivariate Model of Conceptual Change

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Heddy, Benjamin; Bailey, MarLynn; Farley, John

    2016-01-01

    The present study used the Cognitive Reconstruction of Knowledge Model (CRKM) model of conceptual change as a framework for developing and testing how key cognitive, motivational, and emotional variables are linked to conceptual change in physics. This study extends an earlier study developed by Taasoobshirazi and Sinatra ("J Res Sci…

  17. A Model of the Creative Process Based on Quantum Physics and Vedic Science.

    ERIC Educational Resources Information Center

    Rose, Laura Hall

    1988-01-01

    Using tenets from Vedic science and quantum physics, this model of the creative process suggests that the unified field of creation is pure consciousness, and that the development of the creative process within individuals mirrors the creative process within the universe. Rational and supra-rational creative thinking techniques are also described.…

  18. Physics Based Modeling in Design and Development for U.S. Defense Held in Denver, Colorado on November 14-17, 2011. Volume 2: Audio and Movie Files

    DTIC Science & Technology

    2011-11-17

    Mr. Frank Salvatore, High Performance Technologies FIXED AND ROTARY WING AIRCRAFT 13274 - “CREATE-AV DaVinci : Model-Based Engineering for Systems... Tools for Reliability Improvement and Addressing Modularity Issues in Evaluation and Physical Testing”, Dr. Richard Heine, Army Materiel Systems

  19. Pathways to Children's Academic Performance and Prosocial Behaviour: Roles of Physical Health Status, Environmental, Family, and Child Factors

    ERIC Educational Resources Information Center

    King, Gillian; McDougall, Janette; DeWit, David; Hong, Sungjin; Miller, Linda; Offord, David; Meyer, Katherine; LaPorta, John

    2005-01-01

    The objective of this article is to examine the pathways by which children's physical health status, environmental, family, and child factors affect children's academic performance and prosocial behaviour, using a theoretically-based and empirically-based model of competence development. The model proposes that 3 types of relational processes,…

  20. A multi-scale model for geared transmission aero-thermodynamics

    NASA Astrophysics Data System (ADS)

    McIntyre, Sean M.

    A multi-scale, multi-physics computational tool for the simulation of high-per- formance gearbox aero-thermodynamics was developed and applied to equilibrium and pathological loss-of-lubrication performance simulation. The physical processes at play in these systems include multiphase compressible ow of the air and lubricant within the gearbox, meshing kinematics and tribology, as well as heat transfer by conduction, and free and forced convection. These physics are coupled across their representative space and time scales in the computational framework developed in this dissertation. These scales span eight orders of magnitude, from the thermal response of the full gearbox O(100 m; 10 2 s), through effects at the tooth passage time scale O(10-2 m; 10-4 s), down to tribological effects on the meshing gear teeth O(10-6 m; 10-6 s). Direct numerical simulation of these coupled physics and scales is intractable. Accordingly, a scale-segregated simulation strategy was developed by partitioning and treating the contributing physical mechanisms as sub-problems, each with associated space and time scales, and appropriate coupling mechanisms. These are: (1) the long time scale thermal response of the system, (2) the multiphase (air, droplets, and film) aerodynamic flow and convective heat transfer within the gearbox, (3) the high-frequency, time-periodic thermal effects of gear tooth heating while in mesh and its subsequent cooling through the rest of rotation, (4) meshing effects including tribology and contact mechanics. The overarching goal of this dissertation was to develop software and analysis procedures for gearbox loss-of-lubrication performance. To accommodate these four physical effects and their coupling, each is treated in the CFD code as a sub problem. These physics modules are coupled algorithmically. Specifically, the high- frequency conduction analysis derives its local heat transfer coefficient and near-wall air temperature boundary conditions from a quasi-steady cyclic-symmetric simulation of the internal flow. This high-frequency conduction solution is coupled directly with a model for the meshing friction, developed by a collaborator, which was adapted for use in a finite-volume CFD code. The local surface heat flux on solid surfaces is calculated by time-averaging the heat flux in the high-frequency analysis. This serves as a fixed-flux boundary condition in the long time scale conduction module. The temperature distribution from this long time scale heat transfer calculation serves as a boundary condition for the internal convection simulation, and as the initial condition for the high-frequency heat transfer module. Using this multi-scale model, simulations were performed for equilibrium and loss-of-lubrication operation of the NASA Glenn Research Center test stand. Results were compared with experimental measurements. In addition to the multi-scale model itself, several other specific contributions were made. Eulerian models for droplets and wall-films were developed and im- plemented in the CFD code. A novel approach to retaining liquid film on the solid surfaces, and strategies for its mass exchange with droplets, were developed and verified. Models for interfacial transfer between droplets and wall-film were implemented, and include the effects of droplet deposition, splashing, bouncing, as well as film breakup. These models were validated against airfoil data. To mitigate the observed slow convergence of CFD simulations of the enclosed aerodynamic flows within gearboxes, Fourier stability analysis was applied to the SIMPLE-C fractional-step algorithm. From this, recommendations to accelerate the convergence rate through enhanced pressure-velocity coupling were made. These were shown to be effective. A fast-running finite-volume reduced-order-model of the gearbox aero-thermo- dynamics was developed, and coupled with the tribology model to investigate the sensitivity of loss-of-lubrication predictions to various model and physical param- eters. This sensitivity study was instrumental in guiding efforts toward improving the accuracy of the multi-scale model without undue increase in computational cost. In addition, the reduced-order model is now used extensively by a collaborator in tribology model development and testing. Experimental measurements of high-speed gear windage in partially and fully- shrouded configurations were performed to supplement the paucity of available validation data. This measurement program provided measurements of windage loss for a gear of design-relevant size and operating speed, as well as guidance for increasing the accuracy of future measurements.

  1. Coupled effects of vertical mixing and benthic grazing on phytoplankton populations in shallow, turbid estuaries

    USGS Publications Warehouse

    Koseff, Jeffrey R.; Holen, Jacqueline K.; Monismith, Stephen G.; Cloern, James E.

    1993-01-01

    Coastal ocean waters tend to have very different patterns of phytoplankton biomass variability from the open ocean, and the connections between physical variability and phytoplankton bloom dynamics are less well established for these shallow systems. Predictions of biological responses to physical variability in these environments is inherently difficult because the recurrent seasonal patterns of mixing are complicated by aperiodic fluctuations in river discharge and the high-frequency components of tidal variability. We might expect, then, less predictable and more complex bloom dynamics in these shallow coastal systems compared with the open ocean. Given this complex and dynamic physical environment, can we develop a quantitative framework to define the physical regimes necessary for bloom inception, and can we identify the important mechanisms of physical-biological coupling that lead to the initiation and termination of blooms in estuaries and shallow coastal waters? Numerical modeling provides one approach to address these questions. Here we present results of simulation experiments with a refined version of Cloern's (1991) model in which mixing processes are treated more realistically to reflect the dynamic nature of turbulence generation in estuaries. We investigated several simple models for the turbulent mixing coefficient. We found that the addition of diurnal tidal variation to Cloern's model greatly reduces biomass growth indicating that variations of mixing on the time scale of hours are crucial. Furthermore, we found that for conditions representative of South San Francisco Bay, numerical simulations only allowed for bloom development when the water column was stratified and when minimal mixing was prescribed in the upper layer. Stratification, however, itself is not sufficient to ensure that a bloom will develop: minimal wind stirring is a further prerequisite to bloom development in shallow turbid estuaries with abundant populations of benthic suspension feeders.

  2. Making it Easy to Construct Accurate Hydrological Models that Exploit High Performance Computers (Invited)

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Farthing, M. W.; Terrel, A.; Certik, O.; Seljebotn, D.

    2013-12-01

    This presentation will focus on two barriers to progress in the hydrological modeling community, and research and development conducted to lessen or eliminate them. The first is a barrier to sharing hydrological models among specialized scientists that is caused by intertwining the implementation of numerical methods with the implementation of abstract numerical modeling information. In the Proteus toolkit for computational methods and simulation, we have decoupled these two important parts of computational model through separate "physics" and "numerics" interfaces. More recently we have begun developing the Strong Form Language for easy and direct representation of the mathematical model formulation in a domain specific language embedded in Python. The second major barrier is sharing ANY scientific software tools that have complex library or module dependencies, as most parallel, multi-physics hydrological models must have. In this setting, users and developer are dependent on an entire distribution, possibly depending on multiple compilers and special instructions depending on the environment of the target machine. To solve these problem we have developed, hashdist, a stateless package management tool and a resulting portable, open source scientific software distribution.

  3. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2010-01-01

    A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the ph ysical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  4. Capabilities and performance of the new generation ice-sheet model Elmer/Ice

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Durand, G.; Favier, L.; de Fleurian, B.; Gillet-chaulet, F.; Seddik, H.; Greve, R.; Mallinen, M.; Martin, C.; Raback, P.; Ruokolainen, J.; Schäfer, M.; Thies, J.

    2012-12-01

    Since the Fourth IPCC Assessment Report, and its conclusion about the inability of ice-sheet flow models to forecast the current increase of polar ice sheet discharge and associated contribution to sea-level rise, a huge development effort has been undertaken by the glaciological community. All around the world, models have been improved and, interestingly, a significant number of new ice-sheet models have emerged. Among them, the parallel finite-element model Elmer/Ice (based on the open-source multi-physics code Elmer) was one of the first full-Stokes models used to make projections of the future of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve dedicated local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger scale problems, earning the status of an ice-sheet model. In this presentation, we summarise the almost 10 years of development performed by different groups. We present the components already included in Elmer/Ice, its numerical performance, selected applications, as well as developments planed for the future.

  5. Capabilities and performance of Elmer/Ice, a new generation ice-sheet model

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Gillet-Chaulet, F.; Durand, G.; Favier, L.; de Fleurian, B.; Greve, R.; Malinen, M.; Martín, C.; Råback, P.; Ruokolainen, J.; Sacchettini, M.; Schäfer, M.; Seddik, H.; Thies, J.

    2013-03-01

    The Fourth IPCC Assessment Report concluded that ice-sheet flow models are unable to forecast the current increase of polar ice sheet discharge and the associated contribution to sea-level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice-flow models, and as a result, a significant number of new ice-sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger scale problems, earning the status of an ice-sheet model. Here, we summarise almost 10 yr of development performed by different groups. We present the components already included in Elmer/Ice, its numerical performance, selected applications, as well as developments planned for the future.

  6. The role of recognition and interest in physics identity development

    NASA Astrophysics Data System (ADS)

    Lock, Robynne

    2016-03-01

    While the number of students earning bachelor's degrees in physics has increased in recent years, this number has only recently surpassed the peak value of the 1960s. Additionally, the percentage of women earning bachelor's degrees in physics has stagnated for the past 10 years and may even be declining. We use a physics identity framework consisting of three dimensions to understand how students make their initial career decisions at the end of high school and the beginning of college. The three dimensions consist of recognition (perception that teachers, parents, and peers see the student as a ``physics person''), interest (desire to learn more about physics), and performance/competence (perception of abilities to complete physics related tasks and to understand physics). Using data from the Sustainability and Gender in Engineering survey administered to a nationally representative sample of college students, we built a regression model to determine which identity dimensions have the largest effect on physics career choice and a structural equation model to understand how the identity dimensions are related. Additionally, we used regression models to identify teaching strategies that predict each identity dimension.

  7. Developing Model-Making and Model-Breaking Skills Using Direct Measurement Video-Based Activities

    ERIC Educational Resources Information Center

    Vonk, Matthew; Bohacek, Peter; Militello, Cheryl; Iverson, Ellen

    2017-01-01

    This study focuses on student development of two important laboratory skills in the context of introductory college-level physics. The first skill, which we call model making, is the ability to analyze a phenomenon in a way that produces a quantitative multimodal model. The second skill, which we call model breaking, is the ability to critically…

  8. Family characteristics and health behaviour as antecedents of school nurses' concerns about adolescents' health and development: a path model approach.

    PubMed

    Poutiainen, Hannele; Levälahti, Esko; Hakulinen-Viitanen, Tuovi; Laatikainen, Tiina

    2015-05-01

    Family socio-economic factors and parents' health behaviours have been shown to have an impact on the health and well-being of children and adolescents. Family characteristics have also been associated with school nurses' concerns, which arose during health examinations, about children's and adolescents' physical health and psychosocial development. Parental smoking has also been associated with smoking in adolescents. The aim of this study was to determine to what extent school nurses' concerns about adolescents' physical health and psychosocial development related to family characteristics are mediated through parents' and adolescents' own health behaviours (smoking). A path model approach using cross-sectional data was used. In 2008-2009, information about health and well-being of adolescents was gathered at health examinations of the Children's Health Monitoring Study. Altogether 1006 eighth and ninth grade pupils in Finland participated in the study. The associations between family characteristics, smoking among parents and adolescents and school nurses' concerns about adolescents' physical health and psychosocial development were examined using a structural equation model. Paternal education had a direct, and, through fathers' and boys' smoking, an indirect association with school nurses' concerns about the physical health of boys. Paternal labour market status and family income were only indirectly associated with concerns about the physical health of boys by having an effect on boys' smoking through paternal smoking, and a further indirect effect on concerns about boys' health. In girls, only having a single mother was strongly associated with school nurses' concerns about psychosocial development through maternal and adolescent girl smoking. Socio-economic family characteristics and parental smoking influence adolescent smoking and are associated with school nurses' concerns about adolescents' physical health and psychosocial development. The findings underline the importance of comprehensively taking into account adolescents' and parents' health behaviours and the family situation in health-care contacts when providing health counselling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Straddling Interdisciplinary Seams: Working Safely in the Field, Living Dangerously With a Model

    NASA Astrophysics Data System (ADS)

    Light, B.; Roberts, A.

    2016-12-01

    Many excellent proposals for observational work have included language detailing how the proposers will appropriately archive their data and publish their results in peer-reviewed literature so that they may be readily available to the modeling community for parameterization development. While such division of labor may be both practical and inevitable, the assimilation of observational results and the development of observationally-based parameterizations of physical processes require care and feeding. Key questions include: (1) Is an existing parameterization accurate, consistent, and general? If not, it may be ripe for additional physics. (2) Do there exist functional working relationships between human modeler and human observationalist? If not, one or more may need to be initiated and cultivated. (3) If empirical observation and model development are a chicken/egg problem, how, given our lack of prescience and foreknowledge, can we better design observational science plans to meet the eventual demands of model parameterization? (4) Will the addition of new physics "break" the model? If so, then the addition may be imperative. In the context of these questions, we will make retrospective and forward-looking assessments of a now-decade-old numerical parameterization to treat the partitioning of solar energy at the Earth's surface where sea ice is present. While this so called "Delta-Eddington Albedo Parameterization" is currently employed in the widely-used Los Alamos Sea Ice Model (CICE) and appears to be standing the tests of accuracy, consistency, and generality, we will highlight some ideas for its ongoing development and improvement.

  10. Formulating physical processes in a full-range model of soil water retention

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.

    2016-12-01

    Currently-used water retention models vary in how much their formulas correspond to controlling physical processes such as capillarity, adsorption, and air-trapping. In model development, realistic correspondence to physical processes has often been a lower priority than ease of use and compatibility with other models. For example, the wettest range is normally represented simplistically, as by a straight line of zero slope, or by default using the same formulation as for the middle range. The new model presented here recognizes dominant processes within three segments of the range from oven-dryness to saturation. The adsorption-dominated dry range is represented by a logarithmic relation used in earlier models. The middle range of capillary advance/retreat and Haines jumps is represented by a new adaptation of the lognormal distribution function. In the wet range, the expansion of trapped air in response to matric pressure change is important because (1) it displaces water, and (2) it triggers additional volume-adjusting processes such as the collapse of liquid bridges between air pockets. For this range, the model incorporates the Boyles' law inverse-proportionality of trapped air volume and pressure, amplified by an empirical factor to account for the additional processes. With their basis in processes, the model's parameters have a strong physical interpretation, and in many cases can be assigned values from knowledge of fundamental relationships or individual measurements. An advantage of the physically-plausible treatment of the wet range is that it avoids such problems as the blowing-up of derivatives on approach to saturation, enhancing the model's utility for important but challenging wet-range phenomena such as domain exchange between preferential flow paths and soil matrix. Further development might be able to accommodate hysteresis by a systematic adjustment of the relation between the wet and middle ranges.

  11. Model-assisted analysis of spatial and temporal variations in fruit temperature and transpiration highlighting the role of fruit development.

    PubMed

    Nordey, Thibault; Léchaudel, Mathieu; Saudreau, Marc; Joas, Jacques; Génard, Michel

    2014-01-01

    Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.

  12. Development of a Conceptual Model for Smoking Cessation: Physical Activity, Neurocognition, and Executive Functioning.

    PubMed

    Loprinzi, Paul D; Herod, Skyla M; Walker, Jerome F; Cardinal, Bradley J; Mahoney, Sara E; Kane, Christy

    2015-01-01

    Considerable research has shown adverse neurobiological effects of chronic alcohol use, including long-term and potentially permanent changes in the structure and function of the brain; however, much less is known about the neurobiological consequences of chronic smoking, as it has largely been ignored until recently. In this article, we present a conceptual model proposing the effects of smoking on neurocognition and the role that physical activity may play in this relationship as well as its role in smoking cessation. Pertinent published peer-reviewed articles deposited in PubMed delineating the pathways in the proposed model were reviewed. The proposed model, which is supported by emerging research, demonstrates a bidirectional relationship between smoking and executive functioning. In support of our conceptual model, physical activity may moderate this relationship and indirectly influence smoking behavior through physical activity-induced changes in executive functioning. Our model may have implications for aiding smoking cessation efforts through the promotion of physical activity as a mechanism for preventing smoking-induced deficits in neurocognition and executive function.

  13. Early motor skill competence as a mediator of child and adult physical activity

    PubMed Central

    Loprinzi, Paul D.; Davis, Robert E.; Fu, Yang-Chieh

    2015-01-01

    Objective: In order to effectively promote physical activity (PA) during childhood, and across the lifespan, a better understanding of the role of early motor skill development on child and adult PA is needed. Methods: Here, we propose a conceptual model delineating the hypothesized influence of motor skill development on child and adult PA, while providing an overview of the current empirical research related to this model. Results: There is consistent and emerging evidence showing that adequate motor skill competence, particularly locomotor and gross motor skills, is associated with increased PA levels during the preschool, child, and adolescent years, with early motor skill development also influencing enjoyment of PA as well as long-term PA and motor skill performance. The physical education setting appears to be a well-suited environment for motor skill development. Conclusion: Employing appropriate strategies to target motor skill development across the childhood years is of paramount interest in helping shape children's PA behavior, their experiences related to PA, as well as maintain their PA. PMID:26844157

  14. An Analysis of a Model for Developing Instructional Materials for Teaching Physical Science Concepts for Grade 8 Students in the Republic of China.

    ERIC Educational Resources Information Center

    Hsu, Shun-Yi

    An instructional model based on a learning cycle including correlation, analysis, and generalization (CAG) was developed and applied to design an instructional module for grade 8 students in Taiwan, Republic of China. The CAG model was based on Piagetian theory and a concept model (Pella, 1975). The module developed for heat and temperature was…

  15. Development and testing of a physically based model of streambank erosion for coupling with a basin-scale hydrologic model SWAT

    USDA-ARS?s Scientific Manuscript database

    A comprehensive stream bank erosion model based on excess shear stress has been developed and incorporated in the hydrological model Soil and Water Assessment Tool (SWAT). It takes into account processes such as weathering, vegetative cover, and channel meanders to adjust critical and effective str...

  16. Predictive Modeling of Polymer Mechanical Behavior Coupled to Chemical Change/ Technique Development for Measuring Polymer Physical Aging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kropka, Jamie Michael; Stavig, Mark E.; Arechederra, Gabe Kenneth

    Develop an understanding of the evolution of glassy polymer mechanical response during aging and the mechanisms associated with that evolution. That understanding will be used to develop constitutive models to assess the impact of stress evolution in encapsulants on NW designs.

  17. How human drivers control their vehicle

    NASA Astrophysics Data System (ADS)

    Wagner, P.

    2006-08-01

    The data presented here show that human drivers apply a discrete noisy control mechanism to drive their vehicle. A car-following model built on these observations, together with some physical limitations (crash-freeness, acceleration), lead to non-Gaussian probability distributions in the speed difference and distance which are in good agreement with empirical data. All model parameters have a clear physical meaning and can be measured. Despite its apparent complexity, this model is simple to understand and might serve as a starting point to develop even quantitatively correct models.

  18. Verification of Functional Fault Models and the Use of Resource Efficient Verification Tools

    NASA Technical Reports Server (NTRS)

    Bis, Rachael; Maul, William A.

    2015-01-01

    Functional fault models (FFMs) are a directed graph representation of the failure effect propagation paths within a system's physical architecture and are used to support development and real-time diagnostics of complex systems. Verification of these models is required to confirm that the FFMs are correctly built and accurately represent the underlying physical system. However, a manual, comprehensive verification process applied to the FFMs was found to be error prone due to the intensive and customized process necessary to verify each individual component model and to require a burdensome level of resources. To address this problem, automated verification tools have been developed and utilized to mitigate these key pitfalls. This paper discusses the verification of the FFMs and presents the tools that were developed to make the verification process more efficient and effective.

  19. The influence of wind-tunnel walls on discrete frequency noise

    NASA Technical Reports Server (NTRS)

    Mosher, M.

    1984-01-01

    This paper describes an analytical model that can be used to examine the effects of wind-tunnel walls on discrete frequency noise. First, a complete physical model of an acoustic source in a wind tunnel is described, and a simplified version is then developed. This simplified model retains the important physical processes involved, yet it is more amenable to analysis. Second, the simplified physical model is formulated as a mathematical problem. An inhomogeneous partial differential equation with mixed boundary conditions is set up and then transformed into an integral equation. The integral equation has been solved with a panel program on a computer. Preliminary results from a simple model problem will be shown and compared with the approximate analytic solution.

  20. Linking Statistically- and Physically-Based Models for Improved Streamflow Simulation in Gaged and Ungaged Areas

    NASA Astrophysics Data System (ADS)

    Lafontaine, J.; Hay, L.; Archfield, S. A.; Farmer, W. H.; Kiang, J. E.

    2014-12-01

    The U.S. Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the continental US. The portion of the NHM located within the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative (GCPO LCC) is being used to test the feasibility of improving streamflow simulations in gaged and ungaged watersheds by linking statistically- and physically-based hydrologic models. The GCPO LCC covers part or all of 12 states and 5 sub-geographies, totaling approximately 726,000 km2, and is centered on the lower Mississippi Alluvial Valley. A total of 346 USGS streamgages in the GCPO LCC region were selected to evaluate the performance of this new calibration methodology for the period 1980 to 2013. Initially, the physically-based models are calibrated to measured streamflow data to provide a baseline for comparison. An enhanced calibration procedure then is used to calibrate the physically-based models in the gaged and ungaged areas of the GCPO LCC using statistically-based estimates of streamflow. For this application, the calibration procedure is adjusted to address the limitations of the statistically generated time series to reproduce measured streamflow in gaged basins, primarily by incorporating error and bias estimates. As part of this effort, estimates of uncertainty in the model simulations are also computed for the gaged and ungaged watersheds.

  1. SF-FDTD analysis of a predictive physical model for parallel aligned liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Márquez, Andrés.; Francés, Jorge; Martínez, Francisco J.; Gallego, Sergi; Alvarez, Mariela L.; Calzado, Eva M.; Pascual, Inmaculada; Beléndez, Augusto

    2017-08-01

    Recently we demonstrated a novel and simplified model enabling to calculate the voltage dependent retardance provided by parallel aligned liquid crystal devices (PA-LCoS) for a very wide range of incidence angles and any wavelength in the visible. To our knowledge it represents the most simplified approach still showing predictive capability. Deeper insight into the physics behind the simplified model is necessary to understand if the parameters in the model are physically meaningful. Since the PA-LCoS is a black-box where we do not have information about the physical parameters of the device, we cannot perform this kind of analysis using the experimental retardance measurements. In this work we develop realistic simulations for the non-linear tilt of the liquid crystal director across the thickness of the liquid crystal layer in the PA devices. We consider these profiles to have a sine-like shape, which is a good approximation for typical ranges of applied voltage in commercial PA-LCoS microdisplays. For these simulations we develop a rigorous method based on the split-field finite difference time domain (SF-FDTD) technique which provides realistic retardance values. These values are used as the experimental measurements to which the simplified model is fitted. From this analysis we learn that the simplified model is very robust, providing unambiguous solutions when fitting its parameters. We also learn that two of the parameters in the model are physically meaningful, proving a useful reverse-engineering approach, with predictive capability, to probe into internal characteristics of the PA-LCoS device.

  2. Perceived Physical Availability of Alcohol at Work and Workplace Alcohol Use and Impairment: Testing a Structural Model

    PubMed Central

    Frone, Michael R.; Trinidad, Jonathan R.

    2014-01-01

    This study develops and tests a new conceptual model of perceived physical availability of alcohol at work that provides unique insight into three dimensions of workplace physical availability of alcohol and their direct and indirect relations to workplace alcohol use and impairment. Data were obtained from a national probability sample of 2,727 U.S. workers. The results support the proposed conceptual model and provide empirical support for a positive relation of perceived physical availability of alcohol at work to workplace alcohol use and two dimensions of workplace impairment (workplace intoxication and workplace hangover). Ultimately, the findings suggest that perceived physical availability of alcohol at work is a risk factor for alcohol use and impairment during the workday, and that this relation is more complex than previously hypothesized. PMID:25243831

  3. Advantages and challenges of using physics curricula as a model for reforming an undergraduate biology course.

    PubMed

    Donovan, D A; Atkins, L J; Salter, I Y; Gallagher, D J; Kratz, R F; Rousseau, J V; Nelson, G D

    2013-06-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists' Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics--for example, Newton's laws, magnetism, light--is a science of pairwise interaction, while introductory biology--for example, photosynthesis, evolution, cycling of matter in ecosystems--is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work.

  4. Modelling the vicious circle between obesity and physical activity in children and adolescents using a bivariate probit model with endogenous regressors.

    PubMed

    Yeh, C-Y; Chen, L-J; Ku, P-W; Chen, C-M

    2015-01-01

    The increasing prevalence of obesity in children and adolescents has become one of the most important public health issues around the world. Lack of physical activity is a risk factor for obesity, while being obese could reduce the likelihood of participating in physical activity. Failing to account for the endogeneity between obesity and physical activity would result in biased estimation. This study investigates the relationship between overweight and physical activity by taking endogeneity into consideration. It develops an endogenous bivariate probit model estimated by the maximum likelihood method. The data included 4008 boys and 4197 girls in the 5th-9th grades in Taiwan in 2007-2008. The relationship between overweight and physical activity is significantly negative in the endogenous model, but insignificant in the comparative exogenous model. This endogenous relationship presents a vicious circle in which lower levels of physical activity lead to overweight, while those who are already overweight engage in less physical activity. The results not only reveal the importance of endogenous treatment, but also demonstrate the robust negative relationship between these two factors. An emphasis should be put on overweight and obese children and adolescents in order to break the vicious circle. Promotion of physical activity by appropriate counselling programmes and peer support could be effective in reducing the prevalence of obesity in children and adolescents.

  5. Development of a dynamic framework to explain population patterns of leisure-time physical activity through agent-based modeling.

    PubMed

    Garcia, Leandro M T; Diez Roux, Ana V; Martins, André C R; Yang, Yong; Florindo, Alex A

    2017-08-22

    Despite the increasing body of evidences on the factors influencing leisure-time physical activity, our understanding of the mechanisms and interactions that lead to the formation and evolution of population patterns is still limited. Moreover, most frameworks in this field fail to capture dynamic processes. Our aim was to create a dynamic conceptual model depicting the interaction between key psychological attributes of individuals and main aspects of the built and social environments in which they live. This conceptual model will inform and support the development of an agent-based model aimed to explore how population patterns of LTPA in adults may emerge from the dynamic interplay between psychological traits and built and social environments. We integrated existing theories and models as well as available empirical data (both from literature reviews), and expert opinions (based on a systematic expert assessment of an intermediary version of the model). The model explicitly presents intention as the proximal determinant of leisure-time physical activity, a relationship dynamically moderated by the built environment (access, quality, and available activities) - with the strength of the moderation varying as a function of the person's intention- and influenced both by the social environment (proximal network's and community's behavior) and the person's behavior. Our conceptual model is well supported by evidence and experts' opinions and will inform the design of our agent-based model, as well as data collection and analysis of future investigations on population patterns of leisure-time physical activity among adults.

  6. Microphysics in the Multi-Scale Modeling Systems with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.

  7. Applicability of Satellite Freeze Forecasting and Cold Climate Mapping to the Other Parts of the United States

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Tasks performed to determine the value of using GOES satellite thermal imagery to enhance fruit crop production in Michigan are described. An overview is presented of the system developed for image processing and thermal image and surface environmental data bases prepared to assess the physical models developed in Florida. These data bases were used to identify correlations between satellite apparent temperatures patterns and Earth surface factors. Significant freeze events in 1981 and the physical models used to provide a perspective on how Florida models can be applied in the context of the Michigan environment are discussed.

  8. An Age of Change

    ERIC Educational Resources Information Center

    Koch, H. William

    1970-01-01

    Suggests that physics is undergoing important social changes. Its definition, education, information transfer, and research and development are all being modified. A systems model is proposed that applies to education, research, and information activities in physics. Bibliography. (LC)

  9. Exploring the Integration of Computational Modeling in the ASU Modeling Curriculum

    NASA Astrophysics Data System (ADS)

    Schatz, Michael; Aiken, John; Burk, John; Caballero, Marcos; Douglas, Scott; Thoms, Brian

    2012-03-01

    We describe the implementation of computational modeling in a ninth grade classroom in the context of the Arizona Modeling Instruction physics curriculum. Using a high-level programming environment (VPython), students develop computational models to predict the motion of objects under a variety of physical situations (e.g., constant net force), to simulate real world phenomenon (e.g., car crash), and to visualize abstract quantities (e.g., acceleration). We discuss how VPython allows students to utilize all four structures that describe a model as given by the ASU Modeling Instruction curriculum. Implications for future work will also be discussed.

  10. Shoreline Change and Storm-Induced Beach Erosion Modeling: A Collection of Seven Papers

    DTIC Science & Technology

    1990-03-01

    reducing, and analyzing the data in a systematic manner. Most physical data needed for evaluating and interpreting shoreline and beach evolution processes...proposed development concepts using both physical and numerical models. b. Analyzed and interpreted model results. c. Provided technical documentation of... interpret study results in the context required for "Confirmation" hearings. 26 The Corps of Engineers, Los Angeles District (SPL), has also begun studies

  11. Chaparral Model 60 Infrasound Sensor Evaluation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slad, George William; Merchant, Bion J.

    2016-03-01

    Sandia National Laboratories has tested and evaluated an infrasound sensor, the Model 60 manufactured by Chaparral Physics, a Division of Geophysical Institute of the University of Alaska, Fairbanks. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, dynamic range, and seismic sensitivity. The Model 60 infrasound sensor is a new sensor developed by Chaparral Physics intended to be a small, rugged sensor used in more flexible application conditions.

  12. Final Report, DOE Early Career Award: Predictive modeling of complex physical systems: new tools for statistical inference, uncertainty quantification, and experimental design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzouk, Youssef

    Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesianmore » inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.« less

  13. Physics Doctorates: Skills Used & Satisfaction with Employment. Data from the Degree Recipient Follow-Up Survey for the Classes of 2013 and 2014. Focus On

    ERIC Educational Resources Information Center

    Pold, Jack; Mulvey, Patrick

    2016-01-01

    By the time people earn physics PhDs, they have learned a great deal about physics and how research is conducted. However, physics PhDs also develop skills and knowledge in a number of related areas, such as advanced mathematics, programming, modeling, and technical writing. Physics PhDs draw upon an arsenal of skills and knowledge in their…

  14. OECD-NEA Expert Group on Multi-Physics Experimental Data, Benchmarks and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, Timothy; Rohatgi, Upendra S.

    High-fidelity, multi-physics modeling and simulation (M&S) tools are being developed and utilized for a variety of applications in nuclear science and technology and show great promise in their abilities to reproduce observed phenomena for many applications. Even with the increasing fidelity and sophistication of coupled multi-physics M&S tools, the underpinning models and data still need to be validated against experiments that may require a more complex array of validation data because of the great breadth of the time, energy and spatial domains of the physical phenomena that are being simulated. The Expert Group on Multi-Physics Experimental Data, Benchmarks and Validationmore » (MPEBV) of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) was formed to address the challenges with the validation of such tools. The work of the MPEBV expert group is shared among three task forces to fulfill its mandate and specific exercises are being developed to demonstrate validation principles for common industrial challenges. This paper describes the overall mission of the group, the specific objectives of the task forces, the linkages among the task forces, and the development of a validation exercise that focuses on a specific reactor challenge problem.« less

  15. Theory, development, and applicability of the surface water hydrologic model CASC2D

    NASA Astrophysics Data System (ADS)

    Downer, Charles W.; Ogden, Fred L.; Martin, William D.; Harmon, Russell S.

    2002-02-01

    Numerical tests indicate that Hortonian runoff mechanisms benefit from scaling effects that non-Hortonian runoff mechanisms do not share. This potentially makes Hortonian watersheds more amenable to physically based modelling provided that the physically based model employed properly accounts for rainfall distribution and initial soil moisture conditions, to which these types of model are highly sensitive. The distributed Hortonian runoff model CASC2D has been developed and tested for the US Army over the past decade. The purpose of the model is to provide the Army with superior predictions of runoff and stream-flow compared with the standard lumped parameter model HEC-1. The model is also to be used to help minimize negative effects on the landscape caused by US armed forces training activities. Development of the CASC2D model is complete and the model has been tested and applied at several locations. These applications indicate that the model can realistically reproduce hydrographs when properly applied. These applications also indicate that there may be many situations where the model is inadequate. Because of this, the Army is pursuing development of a new model, GSSHA, that will provide improved numerical stability and incorporate additional stream-flow-producing mechanisms and improved hydraulics.

  16. RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Andrs; Ray Berry; Derek Gaston

    The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7more » is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to evolve with time. RELAP-7 is a MOOSE-based application. MOOSE (Multiphysics Object-Oriented Simulation Environment) is a framework for solving computational engineering problems in a well-planned, managed, and coordinated way. By leveraging millions of lines of open source software packages, such as PETSC (a nonlinear solver developed at Argonne National Laboratory) and LibMesh (a Finite Element Analysis package developed at University of Texas), MOOSE significantly reduces the expense and time required to develop new applications. Numerical integration methods and mesh management for parallel computation are provided by MOOSE. Therefore RELAP-7 code developers only need to focus on physics and user experiences. By using the MOOSE development environment, RELAP-7 code is developed by following the same modern software design paradigms used for other MOOSE development efforts. There are currently over 20 different MOOSE based applications ranging from 3-D transient neutron transport, detailed 3-D transient fuel performance analysis, to long-term material aging. Multi-physics and multiple dimensional analyses capabilities can be obtained by coupling RELAP-7 and other MOOSE based applications and by leveraging with capabilities developed by other DOE programs. This allows restricting the focus of RELAP-7 to systems analysis-type simulations and gives priority to retain and significantly extend RELAP5's capabilities.« less

  17. Developing a Psychometric Instrument to Measure Physical Education Teachers' Job Demands and Resources

    ERIC Educational Resources Information Center

    Zhang, Tan; Chen, Ang

    2017-01-01

    Based on the job demands-resources model, the study developed and validated an instrument that measures physical education teachers' job demands-resources perception. Expert review established content validity with the average item rating of 3.6/5.0. Construct validity and reliability were determined with a teacher sample (n = 397). Exploratory…

  18. Exemplar: A Model for Social Studies Curriculum Development in Delaware, K-12.

    ERIC Educational Resources Information Center

    Delaware State Dept. of Public Instruction, Dover.

    GRADES OR AGES: Grades K-12. SUBJECT MATTER: Social studies. ORGANIZATION AND PHYSICAL APPEARANCE: The subject matter is divided into the following five themes: 1) Man develops within his physical and cultural environment. 2) Man functions within an interdependent society. 3) Man seeks justice and order. 4) Man experiences conflict and change. 5)…

  19. United Nations Sustainable Development Goals: Promoting Health and Well-Being through Physical Education Partnerships

    ERIC Educational Resources Information Center

    Lynch, Timothy

    2016-01-01

    This paper shares a health and wellbeing partnership, modelling implementation of physical education (PE) advocated by the United Nations (UN). The Sustainable Development Goals (SDGs) exemplifies global efforts towards equality, specifically Goal 3 and 4 address health and wellbeing. The purpose of this paper is to provide insights into cross…

  20. The Effect of Hints and Model Answers in a Student-Controlled Problem-Solving Program for Secondary Physics Education

    ERIC Educational Resources Information Center

    Pol, Henk J.; Harskamp, Egbert G.; Suhre, Cor J. M.; Goedhart, Martin J.

    2008-01-01

    Many students experience difficulties in solving applied physics problems. Most programs that want students to improve problem-solving skills are concerned with the development of content knowledge. Physhint is an example of a student-controlled computer program that supports students in developing their strategic knowledge in combination with…

  1. Overview of physical models of liquid entrainment in annular gas-liquid flow

    NASA Astrophysics Data System (ADS)

    Cherdantsev, Andrey V.

    2018-03-01

    A number of recent papers devoted to development of physically-based models for prediction of liquid entrainment in annular regime of two-phase flow are analyzed. In these models shearing-off the crests of disturbance waves by the gas drag force is supposed to be the physical mechanism of entrainment phenomenon. The models are based on a number of assumptions on wavy structure, including inception of disturbance waves due to Kelvin-Helmholtz instability, linear velocity profile inside liquid film and high degree of three-dimensionality of disturbance waves. Validity of the assumptions is analyzed by comparison to modern experimental observations. It was shown that nearly every assumption is in strong qualitative and quantitative disagreement with experiments, which leads to massive discrepancies between the modeled and real properties of the disturbance waves. As a result, such models over-predict the entrained fraction by several orders of magnitude. The discrepancy is usually reduced using various kinds of empirical corrections. This, combined with empiricism already included in the models, turns the models into another kind of empirical correlations rather than physically-based models.

  2. Laboratory and Physical Modelling of Building Ventilation Flows

    NASA Astrophysics Data System (ADS)

    Hunt, Gary

    2001-11-01

    Heating and ventilating buildings accounts for a significant fraction of the total energy budget of cities and an immediate challenge in building physics is for the design of sustainable, low-energy buildings. Natural ventilation provides a low-energy solution as it harness the buoyancy force associated with temperature differences between the internal and external environment, and the wind to drive a ventilating flow. Modern naturally-ventilated buildings use innovative design solutions, e.g. glazed atria and solar chimneys, to enhance the ventilation and demand for these and other designs has far outstripped our understanding of the fluid mechanics within these buildings. Developing an understanding of the thermal stratification and movement of air provides a considerable challenge as the flows involve interactions between stratification and turbulence and often in complex geometries. An approach that has provided significant new insight into these flows and which has led to the development of design guidelines for architects and ventilation engineers is laboratory modelling at small-scale in water tanks combined with physical modelling. Density differences to drive the flow in simplified plexiglass models of rooms or buildings are provided by fresh and salt water solutions, and wind flow is represented by a mean flow in a flume tank. In tandom with the experiments, theoretical models that capture the essential physics of these flows have been developed in order to generalise the experimental results to a wide range of typical building geometries and operating conditions. This paper describes the application and outcomes of these modelling techniques to the study of a variety of natural ventilation flows in buildings.

  3. Statistical analysis of target acquisition sensor modeling experiments

    NASA Astrophysics Data System (ADS)

    Deaver, Dawne M.; Moyer, Steve

    2015-05-01

    The U.S. Army RDECOM CERDEC NVESD Modeling and Simulation Division is charged with the development and advancement of military target acquisition models to estimate expected soldier performance when using all types of imaging sensors. Two elements of sensor modeling are (1) laboratory-based psychophysical experiments used to measure task performance and calibrate the various models and (2) field-based experiments used to verify the model estimates for specific sensors. In both types of experiments, it is common practice to control or measure environmental, sensor, and target physical parameters in order to minimize uncertainty of the physics based modeling. Predicting the minimum number of test subjects required to calibrate or validate the model should be, but is not always, done during test planning. The objective of this analysis is to develop guidelines for test planners which recommend the number and types of test samples required to yield a statistically significant result.

  4. Data Based Physical Education for the Severely Handicapped.

    ERIC Educational Resources Information Center

    Dunn, John M.; Morehouse, Jim W.

    The paper provides an overview of a data based physical education program for the severely handicapped which has been developed at Oregon State University's Department of Physical Education in cooperation with the Special Education Department of Teaching Research. Concepts which form the basis of the model include that there is no way of…

  5. How Fast Can You Go on a Bicycle?

    ERIC Educational Resources Information Center

    Dunning, R. B.

    2009-01-01

    The bicycle provides a context-rich problem accessible to students in a first-year physics course, encircling several core physics principles such as conservation of total energy and angular momentum, dissipative forces, and vectors. In this article, I develop a simple numerical model that can be used by any first-year physics student to…

  6. Alaska Secondary Physical Education Model Curriculum Guide. Second Edition.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    Guidelines are offered in this manual for develping a physical education curriculum for grades 9 through 12. The primary objective for the curriculum is the development of physical fitness, and motor and life skills in students. Activities are recommended in the areas of team and individual sports, aquatics and rhythm, and Alaska outdoor…

  7. Reflective Lesson Planning in Refresher Training Programs for Experienced Physics Teachers.

    ERIC Educational Resources Information Center

    Chung, C. M.; And Others

    1995-01-01

    Reports on a refresher training program that introduces experienced physics teachers to a reflective lesson-planning model and a more constructivist approach to physics teaching. Three instructional strategies developed by participants in the program and the corresponding suggestions made by their peers are presented and analyzed. (29 references)…

  8. Self-Concept and Role Modeling: Their Relationships to Secondary School Physical Education.

    ERIC Educational Resources Information Center

    Robbins, Stephen B.

    Theories of Piaget, Erickson, Freud, and other behavioral psychologists are reviewed in an examination of the development of adolescent self-concept. The implications, for the physical education teacher or athletic coach, of the adolescent's self-consciousness and egocentricity are discussed. It is suggested that the physical education teacher is…

  9. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes simulations: A data-driven, physics-informed Bayesian approach

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Wu, J.-L.; Wang, J.-X.; Sun, R.; Roy, C. J.

    2016-11-01

    Despite their well-known limitations, Reynolds-Averaged Navier-Stokes (RANS) models are still the workhorse tools for turbulent flow simulations in today's engineering analysis, design and optimization. While the predictive capability of RANS models depends on many factors, for many practical flows the turbulence models are by far the largest source of uncertainty. As RANS models are used in the design and safety evaluation of many mission-critical systems such as airplanes and nuclear power plants, quantifying their model-form uncertainties has significant implications in enabling risk-informed decision-making. In this work we develop a data-driven, physics-informed Bayesian framework for quantifying model-form uncertainties in RANS simulations. Uncertainties are introduced directly to the Reynolds stresses and are represented with compact parameterization accounting for empirical prior knowledge and physical constraints (e.g., realizability, smoothness, and symmetry). An iterative ensemble Kalman method is used to assimilate the prior knowledge and observation data in a Bayesian framework, and to propagate them to posterior distributions of velocities and other Quantities of Interest (QoIs). We use two representative cases, the flow over periodic hills and the flow in a square duct, to evaluate the performance of the proposed framework. Both cases are challenging for standard RANS turbulence models. Simulation results suggest that, even with very sparse observations, the obtained posterior mean velocities and other QoIs have significantly better agreement with the benchmark data compared to the baseline results. At most locations the posterior distribution adequately captures the true model error within the developed model form uncertainty bounds. The framework is a major improvement over existing black-box, physics-neutral methods for model-form uncertainty quantification, where prior knowledge and details of the models are not exploited. This approach has potential implications in many fields in which the governing equations are well understood but the model uncertainty comes from unresolved physical processes.

  10. Precision Higgs Boson Physics and Implications for Beyond the Standard Model Physics Theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, James

    The discovery of the Higgs boson is one of science's most impressive recent achievements. We have taken a leap forward in understanding what is at the heart of elementary particle mass generation. We now have a significant opportunity to develop even deeper understanding of how the fundamental laws of nature are constructed. As such, we need intense focus from the scientific community to put this discovery in its proper context, to realign and narrow our understanding of viable theory based on this positive discovery, and to detail the implications the discovery has for theories that attempt to answer questions beyondmore » what the Standard Model can explain. This project's first main object is to develop a state-of-the-art analysis of precision Higgs boson physics. This is to be done in the tradition of the electroweak precision measurements of the LEP/SLC era. Indeed, the electroweak precision studies of the past are necessary inputs to the full precision Higgs program. Calculations will be presented to the community of Higgs boson observables that detail just how well various couplings of the Higgs boson can be measured, and more. These will be carried out using state-of-the-art theory computations coupled with the new experimental results coming in from the LHC. The project's second main objective is to utilize the results obtained from LHC Higgs boson experiments and the precision analysis, along with the direct search studies at LHC, and discern viable theories of physics beyond the Standard Model that unify physics to a deeper level. Studies will be performed on supersymmetric theories, theories of extra spatial dimensions (and related theories, such as compositeness), and theories that contain hidden sector states uniquely accessible to the Higgs boson. In addition, if data becomes incompatible with the Standard Model's low-energy effective lagrangian, new physics theories will be developed that explain the anomaly and put it into a more unified framework beyond the Standard Model.« less

  11. Problem-Based Learning Model Used to Scientific Approach Based Worksheet for Physics to Develop Senior High School Students Characters

    NASA Astrophysics Data System (ADS)

    Yulianti, D.

    2017-04-01

    The purpose of this study is to explore the application of Problem Based Learning(PBL) model aided withscientific approach and character integrated physics worksheets (LKS). Another purpose is to investigate the increase in cognitive and psychomotor learning outcomes and to know the character development of students. The method used in this study was the quasi-experiment. The instruments were observation and cognitive test. Worksheets can improve students’ cognitive, psychomotor learning outcomes. Improvements in cognitive learning results of students who have learned using worksheets are higher than students who received learning without worksheets. LKS can also develop the students’ character.

  12. Development of 3-D Mechanical Models of Electric Circuits and Their Effect on Students' Understanding of Electric Potential Difference

    ERIC Educational Resources Information Center

    Balta, Nuri

    2015-01-01

    Visualizing physical concepts through models is an essential method in many sciences. While students are mostly proficient in handling mathematical aspects of problems, they frequently lack the ability to visualize and interpret abstract physical concepts in a meaningful way. In this paper, initially the electric circuits and related concepts were…

  13. New agrophysics divisions: application of ANFIS, fuzzy indicator modeling, physic-technical bases of plant breeding, and materials based on humic acids (review)

    USDA-ARS?s Scientific Manuscript database

    This work is devoted to review the new scientific divisions that emerged in agrophysics in the last 10-15 years. Among them are the following: 1) application of Adaptive Neuro-Fuzzy Inference System (ANFIS), 2) development and application of fuzzy indicator modeling, 3) agrophysical and physic-tech...

  14. Cellular Gauge Symmetry and the Li Organization Principle: A Mathematical Addendum. Quantifying energetic dynamics in physical and biological systems through a simple geometric tool and geodetic curves.

    PubMed

    Yurkin, Alexander; Tozzi, Arturo; Peters, James F; Marijuán, Pedro C

    2017-12-01

    The present Addendum complements the accompanying paper "Cellular Gauge Symmetry and the Li Organization Principle"; it illustrates a recently-developed geometrical physical model able to assess electronic movements and energetic paths in atomic shells. The model describes a multi-level system of circular, wavy and zigzag paths which can be projected onto a horizontal tape. This model ushers in a visual interpretation of the distribution of atomic electrons' energy levels and the corresponding quantum numbers through rather simple tools, such as compasses, rulers and straightforward calculations. Here we show how this geometrical model, with the due corrections, among them the use of geodetic curves, might be able to describe and quantify the structure and the temporal development of countless physical and biological systems, from Langevin equations for random paths, to symmetry breaks occurring ubiquitously in physical and biological phenomena, to the relationships among different frequencies of EEG electric spikes. Therefore, in our work we explore the possible association of binomial distribution and geodetic curves configuring a uniform approach for the research of natural phenomena, in biology, medicine or the neurosciences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Prediction of porosity of food materials during drying: Current challenges and directions.

    PubMed

    Joardder, Mohammad U H; Kumar, C; Karim, M A

    2017-07-18

    Pore formation in food samples is a common physical phenomenon observed during dehydration processes. The pore evolution during drying significantly affects the physical properties and quality of dried foods. Therefore, it should be taken into consideration when predicting transport processes in the drying sample. Characteristics of pore formation depend on the drying process parameters, product properties and processing time. Understanding the physics of pore formation and evolution during drying will assist in accurately predicting the drying kinetics and quality of food materials. Researchers have been trying to develop mathematical models to describe the pore formation and evolution during drying. In this study, existing porosity models are critically analysed and limitations are identified. Better insight into the factors affecting porosity is provided, and suggestions are proposed to overcome the limitations. These include considerations of process parameters such as glass transition temperature, sample temperature, and variable material properties in the porosity models. Several researchers have proposed models for porosity prediction of food materials during drying. However, these models are either very simplistic or empirical in nature and failed to consider relevant significant factors that influence porosity. In-depth understanding of characteristics of the pore is required for developing a generic model of porosity. A micro-level analysis of pore formation is presented for better understanding, which will help in developing an accurate and generic porosity model.

  16. Molecular mobility in amorphous state: Implications on physical stability

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Sunny Piyush

    Amorphous pharmaceuticals are desirable in drug development due to their advantageous biopharmaceutical properties of higher apparent aqueous solubility and dissolution rate. The main obstacle in their widespread use, however, is their higher physicochemical instability than their crystalline counterparts. The goal of the present research project was to investigate correlations between the molecular mobility and physical stability in model amorphous compounds. The objective was to identify the specific mobility which is responsible for the physical instability in each case. This will potentially enable the development of effective strategies for the stabilization of amorphous pharmaceuticals. Moreover, these correlations can be used to develop predictive models for the stability at the pharmaceutically relevant storage conditions. Subtraction of dc conductivity enabled the comprehensive characterization of molecular mobility in amorphous trehalose. This was followed by investigation of correlation between crystallization behavior and different relaxations. Global mobility was found to be strongly coupled to both crystallization onset time and rate. Different preparation methods imparted different mobility states to amorphous trehalose which was postulated to be the reason for the significant physical stability differences. Predictive models were developed and a good agreement was found between the predicted and the experimental crystallization onset times at temperatures around and below the glass transition temperature (Tg). Effect of annealing was investigated on water sorption, enthalpic recovery and dielectric relaxation times in amorphous trehalose. Global mobility was found to be linearly correlated to the water sorption potential which enabled the development of predictive models. Global mobility was also found to be strongly correlated to physical instability in amorphous itraconazole. Effect of polymer (PVP and HPMCAS) on itraconazole mobility and stability was also evaluated. Global mobility was found to be correlated to stability in both the solid dispersions. HPMCAS was found to be a better stabilizer than PVP due to its pronounced effect on global mobility.

  17. Scientific study in solar and plasma physics relative to rocket and balloon projects

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1993-01-01

    The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.

  18. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  19. Reactive solute transport in streams: 1. Development of an equilibrium- based model

    USGS Publications Warehouse

    Runkel, Robert L.; Bencala, Kenneth E.; Broshears, Robert E.; Chapra, Steven C.

    1996-01-01

    An equilibrium-based solute transport model is developed for the simulation of trace metal fate and transport in streams. The model is formed by coupling a solute transport model with a chemical equilibrium submodel based on MINTEQ. The solute transport model considers the physical processes of advection, dispersion, lateral inflow, and transient storage, while the equilibrium submodel considers the speciation and complexation of aqueous species, precipitation/dissolution and sorption. Within the model, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (water-borne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach.

  20. Development and Application of Numerical Models for Reactive Flows

    DTIC Science & Technology

    1990-08-15

    Shear Layers: Ill. Effect of Convective Mach number Raafat H. Guirguis Abstract Model This paper addresses some of the fundamental We have made the...OTIC FILE COPY / 0 00 DTIC N~l 9 ELECTE D CbBA9-OI Development and Application of Numerical Models for Reactive Flows Berkeley Research Associates...Laboratory for Computa- tional Physics (LCP), hav focused on developing mathematical and computational models which accurately and efficiently describe the

  1. A Model-Based Approach to Support Validation of Medical Cyber-Physical Systems.

    PubMed

    Silva, Lenardo C; Almeida, Hyggo O; Perkusich, Angelo; Perkusich, Mirko

    2015-10-30

    Medical Cyber-Physical Systems (MCPS) are context-aware, life-critical systems with patient safety as the main concern, demanding rigorous processes for validation to guarantee user requirement compliance and specification-oriented correctness. In this article, we propose a model-based approach for early validation of MCPS, focusing on promoting reusability and productivity. It enables system developers to build MCPS formal models based on a library of patient and medical device models, and simulate the MCPS to identify undesirable behaviors at design time. Our approach has been applied to three different clinical scenarios to evaluate its reusability potential for different contexts. We have also validated our approach through an empirical evaluation with developers to assess productivity and reusability. Finally, our models have been formally verified considering functional and safety requirements and model coverage.

  2. A Model-Based Approach to Support Validation of Medical Cyber-Physical Systems

    PubMed Central

    Silva, Lenardo C.; Almeida, Hyggo O.; Perkusich, Angelo; Perkusich, Mirko

    2015-01-01

    Medical Cyber-Physical Systems (MCPS) are context-aware, life-critical systems with patient safety as the main concern, demanding rigorous processes for validation to guarantee user requirement compliance and specification-oriented correctness. In this article, we propose a model-based approach for early validation of MCPS, focusing on promoting reusability and productivity. It enables system developers to build MCPS formal models based on a library of patient and medical device models, and simulate the MCPS to identify undesirable behaviors at design time. Our approach has been applied to three different clinical scenarios to evaluate its reusability potential for different contexts. We have also validated our approach through an empirical evaluation with developers to assess productivity and reusability. Finally, our models have been formally verified considering functional and safety requirements and model coverage. PMID:26528982

  3. Heterogenous Combustion of Porous Graphite Particles in Normal and Microgravity

    NASA Technical Reports Server (NTRS)

    Chelliah, Harsha K.; Miller, Fletcher J.; Delisle, Andrew J.

    2001-01-01

    Combustion of solid fuel particles has many important applications, including power generation and space propulsion systems. The current models available for describing the combustion process of these particles, especially porous solid particles, include various simplifying approximations. One of the most limiting approximations is the lumping of the physical properties of the porous fuel with the heterogeneous chemical reaction rate constants. The primary objective of the present work is to develop a rigorous model that could decouple such physical and chemical effects from the global heterogeneous reaction rates. For the purpose of validating this model, experiments with porous graphite particles of varying sizes and porosity are being performed. The details of this experimental and theoretical model development effort are described.

  4. Model-assisted probability of detection of flaws in aluminum blocks using polynomial chaos expansions

    NASA Astrophysics Data System (ADS)

    Du, Xiaosong; Leifsson, Leifur; Grandin, Robert; Meeker, William; Roberts, Ronald; Song, Jiming

    2018-04-01

    Probability of detection (POD) is widely used for measuring reliability of nondestructive testing (NDT) systems. Typically, POD is determined experimentally, while it can be enhanced by utilizing physics-based computational models in combination with model-assisted POD (MAPOD) methods. With the development of advanced physics-based methods, such as ultrasonic NDT testing, the empirical information, needed for POD methods, can be reduced. However, performing accurate numerical simulations can be prohibitively time-consuming, especially as part of stochastic analysis. In this work, stochastic surrogate models for computational physics-based measurement simulations are developed for cost savings of MAPOD methods while simultaneously ensuring sufficient accuracy. The stochastic surrogate is used to propagate the random input variables through the physics-based simulation model to obtain the joint probability distribution of the output. The POD curves are then generated based on those results. Here, the stochastic surrogates are constructed using non-intrusive polynomial chaos (NIPC) expansions. In particular, the NIPC methods used are the quadrature, ordinary least-squares (OLS), and least-angle regression sparse (LARS) techniques. The proposed approach is demonstrated on the ultrasonic testing simulation of a flat bottom hole flaw in an aluminum block. The results show that the stochastic surrogates have at least two orders of magnitude faster convergence on the statistics than direct Monte Carlo sampling (MCS). Moreover, the evaluation of the stochastic surrogate models is over three orders of magnitude faster than the underlying simulation model for this case, which is the UTSim2 model.

  5. High Frequency Acoustic Reflection and Transmission in Ocean Sediments

    DTIC Science & Technology

    2003-09-30

    Development of a physical model of high-frequency acoustic interaction with the ocean floor, including penetration through and reflection from smooth and...experiments and additional laboratory measurements in the ARL:UT sand tank, an improved model of sediment acoustics will be developed that is...distinct areas of concentration: development of a broadband the oretical model to describe the acoustic interaction with the ocean floor in littoral

  6. Current Status of Nuclear Physics Research

    NASA Astrophysics Data System (ADS)

    Bertulani, Carlos A.; Hussein, Mahir S.

    2015-12-01

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as 4He, 7Li, 9Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate students interested in pursuing a career in nuclear physics.

  7. Development of a pheromone elution rate physical model

    USDA-ARS?s Scientific Manuscript database

    A first principle modeling approach is applied to available data describing the elution of semiochemicals from pheromone dispensers. These data include field data for 27 products developed by several manufacturers, including homemade devices, as well as laboratory data collected on three semiochemi...

  8. Integrated Multimedia Modeling System Response to Regional Land Management Change

    EPA Science Inventory

    A multi-media system of nitrogen and co-pollutant models describing critical physical and chemical processes that cascade synergistically and competitively through the environment, the economy and society has been developed at the USEPA Office of research and development. It is ...

  9. Integrating professional behavior development across a professional allied health curriculum.

    PubMed

    Tsoumas, Linda J; Pelletier, Deborah

    2007-01-01

    Professional behaviors are an integral part of clinical practice in all allied health and medical fields. A systematic process for instruction, the education, and development of professional behaviors, cannot be taught in the same way that memorization of human anatomy or medical terminology is taught. One cannot expect professional behaviors to just appear in an individual upon graduation and entry into a health care field. Professional behavior development is an essential component of physical therapy professional education and is clearly defined through the guiding documents of the American Physical Therapy Association, which include 'A Normative Model of Physical Therapist Professional Education,' 'Evaluative Criteria for Accreditation of Education Programs for the Preparation of Physical Therapists,' and the 'Guide to Physical Therapist Practice.' Building a comprehensive and progressive curricular thread for professional behaviors can pose a challenge for a professional program and the core faculty. This paper will present a curricular model of weaving professional behaviors into a core entry-level professional curriculum using a specific curricular thread, activities for different levels of students, and assessment at each point in the path. This paper will demonstrate the potential for universal application of a professional behaviors.

  10. Designing for sustained adoption: A model of developing educational innovations for successful propagation

    NASA Astrophysics Data System (ADS)

    Khatri, Raina; Henderson, Charles; Cole, Renée; Froyd, Jeffrey E.; Friedrichsen, Debra; Stanford, Courtney

    2016-06-01

    [This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] The physics education research community has produced a wealth of knowledge about effective teaching and learning of college level physics. Based on this knowledge, many research-proven instructional strategies and teaching materials have been developed and are currently available to instructors. Unfortunately, these intensive research and development activities have failed to influence the teaching practices of many physics instructors. This paper describes interim results of a larger study to develop a model of designing materials for successful propagation. The larger study includes three phases, the first two of which are reported here. The goal of the first phase was to characterize typical propagation practices of education developers, using data from a survey of 1284 National Science Foundation (NSF) principal investigators and focus group data from eight disciplinary groups of NSF program directors. The goal of the second phase was to develop an understanding of successful practice by studying three instructional strategies that have been well propagated. The result of the first two phases is a tentative model of designing for successful propagation, which will be further validated in the third phase through purposeful sampling of additional well-propagated instructional strategies along with typical education development projects. We found that interaction with potential adopters was one of the key missing ingredients in typical education development activities. Education developers often develop a polished product before getting feedback, rely on mass-market communication channels for dissemination, and do not plan for supporting adopters during implementation. The tentative model resulting from this study identifies three key propagation activities: interactive development, interactive dissemination, and support of adopters. Interactive development uses significant feedback from potential adopters to develop a strong product suitable for use in many settings. Interactive dissemination uses personal interactions to reach and motivate potential users. Support of adopters is missing from typical propagation practice and is important to reduce the burden of implementation and increases the likelihood of successful adoption.

  11. Building a multiple modality, theory-based physical activity intervention: The development of CardiACTION!

    PubMed

    Estabrooks, Paul A; Glasgow, Russ E; Xu, Stan; Dzewaltowski, David A; Lee, Rebecca E; Thomas, Deborah; Almeida, Fabio A; Thayer, Amy N; Smith-Ray, Renae L

    2011-01-01

    OBJECTIVES: Despite the widely acknowledged benefits of regular physical activity (PA), specific goals for increased population levels of PA, and strongly recommended strategies to promote PA, there is no evidence suggesting that the prevalence of PA is improving. If PA intervention research is to be improved, theory should be used as the basis for intervention development, participant context or environment should be considered in the process, and intervention characteristics that will heighten the likelihood of translation into practice should be implemented (e.g., ease of implementation, low human resource costs). The purpose of this paper is to describe the implementation of the aforementioned concepts within the intervention development process associated with CardiACTION an ongoing randomized 2 × 2 factorial trial. METHODS: The Ecological Model of Physical Activity integrated with Protection Motivation Theory was used to inform the design of the interventions. This integrated model was selected to allow for the development of theory-based individual, environmental, and individually + environmentally targeted physical activity interventions. All intervention strategies were matched to proposed mediators of behavior change. Strategies were then matched to the most appropriate interactive technology (i.e., interactive computer session, automated telephone counseling, and tailored mailings) delivery channel. CONCLUSIONS: The potential implications of this study include determining the independent and combined influence of individual and environment mechanisms of behavior change on intervention effectiveness. In addition, all intervention models are developed to be scalable and disseminable to a broad audience at a low cost.

  12. Predictive and mechanistic multivariate linear regression models for reaction development

    PubMed Central

    Santiago, Celine B.; Guo, Jing-Yao

    2018-01-01

    Multivariate Linear Regression (MLR) models utilizing computationally-derived and empirically-derived physical organic molecular descriptors are described in this review. Several reports demonstrating the effectiveness of this methodological approach towards reaction optimization and mechanistic interrogation are discussed. A detailed protocol to access quantitative and predictive MLR models is provided as a guide for model development and parameter analysis. PMID:29719711

  13. The Rights and Freedoms Gradient of Health: Evidence from a Cross-National Study

    PubMed Central

    Bezo, Brent; Maggi, Stefania; Roberts, William L.

    2012-01-01

    This study examined the combined influences of national levels of socioeconomic status (SES), social capital, and rights and freedoms on population level physical and mental health outcomes. Indicators of mental health were suicide rates, alcohol consumption, and tobacco use. Indicators of physical health included life expectancy, infant mortality rates, and prevalence of HIV. Using pathway analysis on international data from a selected sample of European, North American, South American, and South Caucasus countries, similar models for mental health and physical health were developed. In the first model, the positive effects of SES and social capital on physical health were completely mediated via rights and freedoms. In the second model, the positive effect of SES on mental health was completely mediated, while the impact of social capital was partially mediated through rights and freedoms. We named the models, the “rights and freedoms gradient of health” in recognition of this latter construct’s crucial role in determining both physical and mental health. PMID:23162498

  14. A Novel Approach to Develop the Lower Order Model of Multi-Input Multi-Output System

    NASA Astrophysics Data System (ADS)

    Rajalakshmy, P.; Dharmalingam, S.; Jayakumar, J.

    2017-10-01

    A mathematical model is a virtual entity that uses mathematical language to describe the behavior of a system. Mathematical models are used particularly in the natural sciences and engineering disciplines like physics, biology, and electrical engineering as well as in the social sciences like economics, sociology and political science. Physicists, Engineers, Computer scientists, and Economists use mathematical models most extensively. With the advent of high performance processors and advanced mathematical computations, it is possible to develop high performing simulators for complicated Multi Input Multi Ouptut (MIMO) systems like Quadruple tank systems, Aircrafts, Boilers etc. This paper presents the development of the mathematical model of a 500 MW utility boiler which is a highly complex system. A synergistic combination of operational experience, system identification and lower order modeling philosophy has been effectively used to develop a simplified but accurate model of a circulation system of a utility boiler which is a MIMO system. The results obtained are found to be in good agreement with the physics of the process and with the results obtained through design procedure. The model obtained can be directly used for control system studies and to realize hardware simulators for boiler testing and operator training.

  15. The shallow water equations as a hybrid flow model for the numerical and experimental analysis of hydro power stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostermann, Lars; Seidel, Christian

    2015-03-10

    The numerical analysis of hydro power stations is an important method of the hydraulic design and is used for the development and optimisation of hydro power stations in addition to the experiments with the physical submodel of a full model in the hydraulic laboratory. For the numerical analysis, 2D and 3D models are appropriate and commonly used.The 2D models refer mainly to the shallow water equations (SWE), since for this flow model a large experience on a wide field of applications for the flow analysis of numerous problems in hydraulic engineering already exists. Often, the flow model is verified bymore » in situ measurements. In order to consider 3D flow phenomena close to singularities like weirs, hydro power stations etc. the development of a hybrid fluid model is advantageous to improve the quality and significance of the global model. Here, an extended hybrid flow model based on the principle of the SWE is presented. The hybrid flow model directly links the numerical model with the experimental data, which may originate from physical full models, physical submodels and in-situ measurements. Hence a wide field of application of the hybrid model emerges including the improvement of numerical models and the strong coupling of numerical and experimental analysis.« less

  16. Professional development workshops for physics education research

    NASA Astrophysics Data System (ADS)

    Sayre, Eleanor C.; Franklin, Scott V.; Kustusch, Mary Bridget

    2017-01-01

    Physics education research holds the promise of satisfying expectations of both scholarship, which is increasing at teaching-centric institutions, and teaching effectiveness, a concern at all institutions. Additionally, junior physics education researchers seek more diverse training in research methods and theories. Emerging education researchers need support as they develop their research programs and expand their theoretical and methodological expertise, and they benefit from the guidance of knowledgable peers and near-peers. Our two-part professional development model combines intensive in-person workshops with long-term remote activities. During a two-week in-person workshop, emerging and established education researchers work closely together to develop research questions, learn appropriate analytic techniques, and collect a corpus of data appropriate to their research questions. Afterwards, they meet biweekly in a distributed, mentored research group to share analyses and develop their ideas into publishable papers. In this talk, we discuss this model for professional development and show results from one three-year implementation in the IMPRESS program at the Rochester Institute of Technology. Partially funded by the PERTG of the AAPT.

  17. Verification of Electromagnetic Physics Models for Parallel Computing Architectures in the GeantV Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amadio, G.; et al.

    An intensive R&D and programming effort is required to accomplish new challenges posed by future experimental high-energy particle physics (HEP) programs. The GeantV project aims to narrow the gap between the performance of the existing HEP detector simulation software and the ideal performance achievable, exploiting latest advances in computing technology. The project has developed a particle detector simulation prototype capable of transporting in parallel particles in complex geometries exploiting instruction level microparallelism (SIMD and SIMT), task-level parallelism (multithreading) and high-level parallelism (MPI), leveraging both the multi-core and the many-core opportunities. We present preliminary verification results concerning the electromagnetic (EM) physicsmore » models developed for parallel computing architectures within the GeantV project. In order to exploit the potential of vectorization and accelerators and to make the physics model effectively parallelizable, advanced sampling techniques have been implemented and tested. In this paper we introduce a set of automated statistical tests in order to verify the vectorized models by checking their consistency with the corresponding Geant4 models and to validate them against experimental data.« less

  18. A conceptual model of children's cognitive adaptation to physical disability.

    PubMed

    Bernardo, M L

    1982-11-01

    Increasing numbers of children are being required to adapt to lifelong illness and disability. While numerous studies exist on theories of adaptation, reaction to illness, and children's concepts of self and of illness, an integrated view of children's ability to conceptualize themselves, their disabilities and possible adaptations has not been formulated. In this article an attempt has been made to integrate models of adaptation to disability and knowledge about children's cognitive development using Piagetian theory of cognitive development and Crate's stages of adaptation to chronic illness. This conceptually integrated model can be used as a departure point for studies to validate the applicability of Piaget's theory to the development of the physically disabled child and to clinically assess the adaptational stages available to the child at various developmental stages.

  19. Microstructure-based approach for predicting crack initiation and early growth in metals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, James V.; Emery, John M.; Brewer, Luke N.

    2009-09-01

    Fatigue cracking in metals has been and is an area of great importance to the science and technology of structural materials for quite some time. The earliest stages of fatigue crack nucleation and growth are dominated by the microstructure and yet few models are able to predict the fatigue behavior during these stages because of a lack of microstructural physics in the models. This program has developed several new simulation tools to increase the microstructural physics available for fatigue prediction. In addition, this program has extended and developed microscale experimental methods to allow the validation of new microstructural models formore » deformation in metals. We have applied these developments to fatigue experiments in metals where the microstructure has been intentionally varied.« less

  20. QSPR models for various physical properties of carbohydrates based on molecular mechanics and quantum chemical calculations.

    PubMed

    Dyekjaer, Jane Dannow; Jónsdóttir, Svava Osk

    2004-01-22

    Quantitative Structure-Property Relationships (QSPR) have been developed for a series of monosaccharides, including the physical properties of partial molar heat capacity, heat of solution, melting point, heat of fusion, glass-transition temperature, and solid state density. The models were based on molecular descriptors obtained from molecular mechanics and quantum chemical calculations, combined with other types of descriptors. Saccharides exhibit a large degree of conformational flexibility, therefore a methodology for selecting the energetically most favorable conformers has been developed, and was used for the development of the QSPR models. In most cases good correlations were obtained for monosaccharides. For five of the properties predictions were made for disaccharides, and the predicted values for the partial molar heat capacities were in excellent agreement with experimental values.

  1. Evaluation of a transient, simultaneous, arbitrary Lagrange-Euler based multi-physics method for simulating the mitral heart valve.

    PubMed

    Espino, Daniel M; Shepherd, Duncan E T; Hukins, David W L

    2014-01-01

    A transient multi-physics model of the mitral heart valve has been developed, which allows simultaneous calculation of fluid flow and structural deformation. A recently developed contact method has been applied to enable simulation of systole (the stage when blood pressure is elevated within the heart to pump blood to the body). The geometry was simplified to represent the mitral valve within the heart walls in two dimensions. Only the mitral valve undergoes deformation. A moving arbitrary Lagrange-Euler mesh is used to allow true fluid-structure interaction (FSI). The FSI model requires blood flow to induce valve closure by inducing strains in the region of 10-20%. Model predictions were found to be consistent with existing literature and will undergo further development.

  2. Collaborative Project: Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Frank; Dennis, John; MacCready, Parker

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  3. Final Report Collaborative Project: Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Frank; Dennis, John; MacCready, Parker

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  4. Limiting the development of riparian vegetation in the Isère River: physical and numerical modelling study

    NASA Astrophysics Data System (ADS)

    Claude, Nicolas; El Kadi Abderrezzak, Kamal; Duclercq, Marion; Tassi, Pablo; Leroux, Clément

    2017-04-01

    The Isère River (France) has been strongly impacted during the 19th and 20th centuries by human activities, such as channelization, sediment dredging and damming. The hydrology and river morphodynamic have been significantly altered, thereby leading to riverbed incision, a decrease in submersion frequency of gravel bars and an intense development of riparian vegetation on the bars. The flood risk has increased due to the reduction of the flow conveyance of the river, and the ecological status of the river has been degraded. To face these issues, a research program involving EDF and French state authorities has been recently initiated. Modification of the current hydrology, mainly controlled by dams, and definition of a new bed cross-sectional profile, are expected to foster the submersion frequency and mobility of the bars, thus limiting the riparian development. To assess the performance of these mitigating solutions, a physical and numerical modelling study has been conducted, applied to a 2 km long reach of the Isère River. The experimental setup consists of an undistorted movable bed designed to ensure the similarity of the Froude number and initial conditions for sediment particle motion. The resulting physical model is 35 m long and 2.6 m wide, with sand mixture composed of three grain size classes. The numerical simulations performed with the Telemac Modelling System (www.opentelemac.org) show, for the current morphology, a limited sediment mobility and submersion for flow discharge lower than 400 m3/s, confirming that the actual conditions in the Isère River promote the development of riparian vegetation. Different new bed geometry profiles have been evaluated using the numerical model. Then two configurations, one based on the creation of deflecting bedforms in the thalweg and one based on the transformation of the long bars into small central bars, have been selected and modelled with the physical model.

  5. Climate, weather, space weather: model development in an operational context

    NASA Astrophysics Data System (ADS)

    Folini, Doris

    2018-05-01

    Aspects of operational modeling for climate, weather, and space weather forecasts are contrasted, with a particular focus on the somewhat conflicting demands of "operational stability" versus "dynamic development" of the involved models. Some common key elements are identified, indicating potential for fruitful exchange across communities. Operational model development is compelling, driven by factors that broadly fall into four categories: model skill, basic physics, advances in computer architecture, and new aspects to be covered, from costumer needs over physics to observational data. Evaluation of model skill as part of the operational chain goes beyond an automated skill score. Permanent interaction between "pure research" and "operational forecast" people is beneficial to both sides. This includes joint model development projects, although ultimate responsibility for the operational code remains with the forecast provider. The pace of model development reflects operational lead times. The points are illustrated with selected examples, many of which reflect the author's background and personal contacts, notably with the Swiss Weather Service and the Max Planck Institute for Meteorology, Hamburg, Germany. In view of current and future challenges, large collaborations covering a range of expertise are a must - within and across climate, weather, and space weather. To profit from and cope with the rapid progress of computer architectures, supercompute centers must form part of the team.

  6. Development of a physically-based planar inductors VHDL-AMS model for integrated power converter design

    NASA Astrophysics Data System (ADS)

    Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé

    2014-05-01

    Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.

  7. Enhanced model of photovoltaic cell/panel/array considering the direct and reverse modes

    NASA Astrophysics Data System (ADS)

    Zegaoui, Abdallah; Boutoubat, Mohamed; Sawicki, Jean-Paul; Kessaissia, Fatma Zohra; Djahbar, Abdelkader; Aillerie, Michel

    2018-05-01

    This paper presents an improved generalized physical model for photovoltaic, PV cells, panels and arrays taking into account the behavior of these devices when considering their biasing existing in direct and reverse modes. Existing PV physical models generally are very efficient for simulating influence of irradiation changes on the short circuit current but they could not visualize the influences of temperature changes. The Enhanced Direct and Reverse Mode model, named EDRM model, enlightens the influence on the short-circuit current of both temperature and irradiation in the reverse mode of the considered PV devices. Due to its easy implementation, the proposed model can be a useful power tool for the development of new photovoltaic systems taking into account and in a more exhaustive manner, environmental conditions. The developed model was tested on a marketed PV panel and it gives a satisfactory results compared with parameters given in the manufacturer datasheet.

  8. Recent Physics Doctorates: Skills Used & Satisfaction with Employment. Data from the Degree Recipient Follow-Up Survey for the Classes of 2009 and 2010. Focus On

    ERIC Educational Resources Information Center

    Anderson, Garrett; Mulvey, Patrick

    2013-01-01

    By the time people earn physics PhDs, they have learned a great deal about physics and how research is conducted. However, physics PhDs also develop skills and knowledge in a number of related areas, such as advanced mathematics, programming, modeling, and technical writing. New physics PhDs draw upon an arsenal of skills and knowledge in their…

  9. Forecasting runout of rock and debris avalanches

    USGS Publications Warehouse

    Iverson, Richard M.; Evans, S.G.; Mugnozza, G.S.; Strom, A.; Hermanns, R.L.

    2006-01-01

    Physically based mathematical models and statistically based empirical equations each may provide useful means of forecasting runout of rock and debris avalanches. This paper compares the foundations, strengths, and limitations of a physically based model and a statistically based forecasting method, both of which were developed to predict runout across three-dimensional topography. The chief advantage of the physically based model results from its ties to physical conservation laws and well-tested axioms of soil and rock mechanics, such as the Coulomb friction rule and effective-stress principle. The output of this model provides detailed information about the dynamics of avalanche runout, at the expense of high demands for accurate input data, numerical computation, and experimental testing. In comparison, the statistical method requires relatively modest computation and no input data except identification of prospective avalanche source areas and a range of postulated avalanche volumes. Like the physically based model, the statistical method yields maps of predicted runout, but it provides no information on runout dynamics. Although the two methods differ significantly in their structure and objectives, insights gained from one method can aid refinement of the other.

  10. Meteorological Processes Affecting Air Quality – Research and Model Development Needs

    EPA Science Inventory

    Meteorology modeling is an important component of air quality modeling systems that defines the physical and dynamical environment for atmospheric chemistry. The meteorology models used for air quality applications are based on numerical weather prediction models that were devel...

  11. Analogical scaffolding: Making meaning in physics through representation and analogy

    NASA Astrophysics Data System (ADS)

    Podolefsky, Noah Solomon

    This work reviews the literature on analogy, introduces a new model of analogy, and presents a series of experiments that test and confirm the utility of this model to describe and predict student learning in physics with analogy. Pilot studies demonstrate that representations (e.g., diagrams) can play a key role in students' use of analogy. A new model of analogy, Analogical Scaffolding, is developed to explain these initial empirical results. This model will be described in detail, and then applied to describe and predict the outcomes of further experiments. Two large-scale (N>100) studies will demonstrate that: (1) students taught with analogies, according to the Analogical Scaffolding model, outperform students taught without analogies on pre-post assessments focused on electromagnetic waves; (2) the representational forms used to teach with analogy can play a significant role in student learning, with students in one treatment group outperforming students in other treatment groups by factors of two or three. It will be demonstrated that Analogical Scaffolding can be used to predict these results, as well as finer-grained results such as the types of distracters students choose in different treatment groups, and to describe and analyze student reasoning in interviews. Abstraction in physics is reconsidered using Analogical Scaffolding. An operational definition of abstraction is developed within the Analogical Scaffolding framework and employed to explain (a) why physicists consider some ideas more abstract than others in physics, and (b) how students conceptions of these ideas can be modeled. This new approach to abstraction suggests novel approaches to curriculum design in physics using Analogical Scaffolding.

  12. A Physics-Based Vibrotactile Feedback Library for Collision Events.

    PubMed

    Park, Gunhyuk; Choi, Seungmoon

    2017-01-01

    We present PhysVib: a software solution on the mobile platform extending an open-source physics engine in a multi-rate rendering architecture for automatic vibrotactile feedback upon collision events. PhysVib runs concurrently with a physics engine at a low update rate and generates vibrotactile feedback commands at a high update rate based on the simulation results of the physics engine using an exponentially-decaying sinusoidal model. We demonstrate through a user study that this vibration model is more appropriate to our purpose in terms of perceptual quality than more complex models based on sound synthesis. We also evaluated the perceptual performance of PhysVib by comparing eight vibrotactile rendering methods. Experimental results suggested that PhysVib enables more realistic vibrotactile feedback than the other methods as to perceived similarity to the visual events. PhysVib is an effective solution for providing physically plausible vibrotactile responses while reducing application development time to great extent.

  13. Social-relational risk factors for predicting elder physical abuse: an ecological bi-focal model.

    PubMed

    von Heydrich, Levente; Schiamberg, Lawrence B; Chee, Grace

    2012-01-01

    Annually in the United States, 1 to 5 million older adults, 65 and above, are physically or sexually injured or mistreated by their caregivers in family settings. This study examined the prevalence and risk factors involved in elder physical abuse by adult child caregivers, moving from the immediate elderly parent/adult child relationship context to more distal social support contexts, utilizing a subsample of 203 elderly participants from the Midlife Development in the United States study (MIDUS II, 2004-2006). LISREL modeling examined causal pathways between elderly demographic characteristics, physical/emotional health, and behavioral and contextual characteristics from an ecological perspective. Data modeling was accomplished using Mplus, PAXW, and SYSTAT statistical software packages. Results indicate that latent factors including older adult health, social isolation of the older adult, and adult child characteristics were significantly associated with elder physical abuse, as mediated by the quality of the elderly parent/adult child relationship.

  14. a Study of Ultrasonic Wave Propagation Through Parallel Arrays of Immersed Tubes

    NASA Astrophysics Data System (ADS)

    Cocker, R. P.; Challis, R. E.

    1996-06-01

    Tubular array structures are a very common component in industrial heat exchanging plant and the non-destructive testing of these arrays is essential. Acoustic methods using microphones or ultrasound are attractive but require a thorough understanding of the acoustic properties of tube arrays. This paper details the development and testing of a small-scale physical model of a tube array to verify the predictions of a theoretical model for acoustic propagation through tube arrays developed by Heckl, Mulholland, and Huang [1-5] as a basis for the consideration of small-scale physical models in the development of non-destructive testing procedures for tube arrays. Their model predicts transmission spectra for plane waves incident on an array of tubes arranged in straight rows. Relative transmission is frequency dependent with bands of high and low attenuation caused by resonances within individual tubes and between tubes in the array. As the number of rows in the array increases the relative transmission spectrum becomes more complex, with increasingly well-defined bands of high and low attenuation. Diffraction of acoustic waves with wavelengths less than the tube spacing is predicted and appears as step reductions in the transmission spectrum at frequencies corresponding to integer multiples of the tube spacing. Experiments with the physical model confirm the principle features of the theoretical treatment.

  15. Modeling MIC copper release from drinking water pipes.

    PubMed

    Pizarro, Gonzalo E; Vargas, Ignacio T; Pastén, Pablo A; Calle, Gustavo R

    2014-06-01

    Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Modelling Mathematical Reasoning in Physics Education

    NASA Astrophysics Data System (ADS)

    Uhden, Olaf; Karam, Ricardo; Pietrocola, Maurício; Pospiech, Gesche

    2012-04-01

    Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.

  17. Characterizing Touch Using Pressure Data and Auto Regressive Models

    PubMed Central

    Laufer, Shlomi; Pugh, Carla M.; Van Veen, Barry D.

    2014-01-01

    Palpation plays a critical role in medical physical exams. Despite the wide range of exams, there are several reproducible and subconscious sets of maneuvers that are common to examination by palpation. Previous studies by our group demonstrated the use of manikins and pressure sensors for measuring and quantifying how physicians palpate during different physical exams. In this study we develop mathematical models that describe some of these common maneuvers. Dynamic pressure data was measured using a simplified testbed and different autoregressive models were used to describe the motion of interest. The frequency, direction and type of motion used were identified from the models. We believe these models can a provide better understanding of how humans explore objects in general and more specifically give insights to understand medical physical exams. PMID:25570335

  18. Modified animal model and computer-assisted approach for dentoalveolar distraction osteogenesis to reconstruct unilateral maxillectomy defect.

    PubMed

    Feng, Zhihong; Zhao, Jinlong; Zhou, Libin; Dong, Yan; Zhao, Yimin

    2009-10-01

    The purpose of this report is to show the establishment of an animal model with a unilateral maxilla defect, application of virtual reality and rapid prototyping in the surgical planning for dentoalveolar distraction osteogenesis (DO). Two adult dogs were used to develop an animal model with a unilateral maxillary defect. The 3-dimensional model of the canine craniofacial skeleton was reconstructed with computed tomography data using the software Mimics, version 12.0 (Materialise Group, Leuven, Belgium). A virtual individual distractor was designed and transferred onto the model with the defect, and the osteotomies and distraction processes were simulated. A precise casting technique and numeric control technology were applied to produce the titanium distraction device, which was installed on the physical model with the defect, which was generated using Selective Laser Sintering technology, and the in vitro simulation of osteotomies and DO was done. The 2 dogs survived the operation and were lively. The osteotomies and distraction process were simulated successfully whether on the virtual or the physical model. The bone transport could be distracted to the desired position both in the virtual environment and on the physical model. The novel method to develop an animal model with a unilateral maxillary defect was feasible, and the animal model was suitable to develop the reconstruction method for unilateral maxillary defect cases with dentoalveolar DO. Computer-assisted surgical planning and simulation improved the reliability of the maxillofacial surgery, especially for the complex cases. The novel idea to reconstruct the unilateral maxillary defect with dentoalveolar DO was proved through the model experiment.

  19. Training Administrators in Anasynthesis

    ERIC Educational Resources Information Center

    Silvern, Leonard C.

    1971-01-01

    The author discusses the application of physical and mathematical systems to non-physical social systems; specifically education and cinema, the process of analysis, synthesis, modeling and simulation. The author describes the course he has developed to instruct students in anasynthesis. (Author/RR)

  20. News | Computing

    Science.gov Websites

    Support News Publications Computing for Experiments Computing for Neutrino and Muon Physics Computing for Collider Experiments Computing for Astrophysics Research and Development Accelerator Modeling ComPASS - Impact of Detector Simulation on Particle Physics Collider Experiments Daniel Elvira's paper "Impact

  1. Modelling strategies to predict the multi-scale effects of rural land management change

    NASA Astrophysics Data System (ADS)

    Bulygina, N.; Ballard, C. E.; Jackson, B. M.; McIntyre, N.; Marshall, M.; Reynolds, B.; Wheater, H. S.

    2011-12-01

    Changes to the rural landscape due to agricultural land management are ubiquitous, yet predicting the multi-scale effects of land management change on hydrological response remains an important scientific challenge. Much empirical research has been of little generic value due to inadequate design and funding of monitoring programmes, while the modelling issues challenge the capability of data-based, conceptual and physics-based modelling approaches. In this paper we report on a major UK research programme, motivated by a national need to quantify effects of agricultural intensification on flood risk. Working with a consortium of farmers in upland Wales, a multi-scale experimental programme (from experimental plots to 2nd order catchments) was developed to address issues of upland agricultural intensification. This provided data support for a multi-scale modelling programme, in which highly detailed physics-based models were conditioned on the experimental data and used to explore effects of potential field-scale interventions. A meta-modelling strategy was developed to represent detailed modelling in a computationally-efficient manner for catchment-scale simulation; this allowed catchment-scale quantification of potential management options. For more general application to data-sparse areas, alternative approaches were needed. Physics-based models were developed for a range of upland management problems, including the restoration of drained peatlands, afforestation, and changing grazing practices. Their performance was explored using literature and surrogate data; although subject to high levels of uncertainty, important insights were obtained, of practical relevance to management decisions. In parallel, regionalised conceptual modelling was used to explore the potential of indices of catchment response, conditioned on readily-available catchment characteristics, to represent ungauged catchments subject to land management change. Although based in part on speculative relationships, significant predictive power was derived from this approach. Finally, using a formal Bayesian procedure, these different sources of information were combined with local flow data in a catchment-scale conceptual model application , i.e. using small-scale physical properties, regionalised signatures of flow and available flow measurements.

  2. Development of a 3D coupled physical-biogeochemical model for the Marseille coastal area (NW Mediterranean Sea): what complexity is required in the coastal zone?

    PubMed

    Fraysse, Marion; Pinazo, Christel; Faure, Vincent Martin; Fuchs, Rosalie; Lazzari, Paolo; Raimbault, Patrick; Pairaud, Ivane

    2013-01-01

    Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007-2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model.

  3. Development of a 3D Coupled Physical-Biogeochemical Model for the Marseille Coastal Area (NW Mediterranean Sea): What Complexity Is Required in the Coastal Zone?

    PubMed Central

    Fraysse, Marion; Pinazo, Christel; Faure, Vincent Martin; Fuchs, Rosalie; Lazzari, Paolo; Raimbault, Patrick; Pairaud, Ivane

    2013-01-01

    Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007–2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model. PMID:24324589

  4. Using Performance Assessment Model in Physics Laboratory to Increase Students’ Critical Thinking Disposition

    NASA Astrophysics Data System (ADS)

    Emiliannur, E.; Hamidah, I.; Zainul, A.; Wulan, A. R.

    2017-09-01

    Performance Assessment Model (PAM) has been developed to represent the physics concepts which able to be devided into five experiments: 1) acceleration due to gravity; 2) Hooke’s law; 3) simple harmonic motion; 4) work-energy concepts; and 5) the law of momentum conservation. The aim of this study was to determine the contribution of PAM in physics laboratory to increase students’ Critical Thinking Disposition (CTD) at senior high school. Subject of the study were 11th grade consist 32 students of a senior high school in Lubuk Sikaping, West Sumatera. The research used one group pretest-postest design. Data was collected through essay test and questionnaire about CTD. Data was analyzed using quantitative way with N-gain value. This study concluded that performance assessmet model effectively increases the N-gain at medium category. It means students’ critical thinking disposition significant increase after implementation of performance assessment model in physics laboratory.

  5. Autonomous Learner Model Resource Book

    ERIC Educational Resources Information Center

    Betts, George T.; Carey, Robin J.; Kapushion, Blanche M.

    2016-01-01

    "Autonomous Learner Model Resource Book" includes activities and strategies to support the development of autonomous learners. More than 40 activities are included, all geared to the emotional, social, cognitive, and physical development of students. Teachers may use these activities and strategies with the entire class, small groups, or…

  6. Heterogeneous scalable framework for multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Karla Vanessa

    2013-09-01

    Two categories of challenges confront the developer of computational spray models: those related to the computation and those related to the physics. Regarding the computation, the trend towards heterogeneous, multi- and many-core platforms will require considerable re-engineering of codes written for the current supercomputing platforms. Regarding the physics, accurate methods for transferring mass, momentum and energy from the dispersed phase onto the carrier fluid grid have so far eluded modelers. Significant challenges also lie at the intersection between these two categories. To be competitive, any physics model must be expressible in a parallel algorithm that performs well on evolving computermore » platforms. This work created an application based on a software architecture where the physics and software concerns are separated in a way that adds flexibility to both. The develop spray-tracking package includes an application programming interface (API) that abstracts away the platform-dependent parallelization concerns, enabling the scientific programmer to write serial code that the API resolves into parallel processes and threads of execution. The project also developed the infrastructure required to provide similar APIs to other application. The API allow object-oriented Fortran applications direct interaction with Trilinos to support memory management of distributed objects in central processing units (CPU) and graphic processing units (GPU) nodes for applications using C++.« less

  7. Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzari, E.; Shemon, E. R.; Yu, Y. Q.

    This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models ofmore » a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.« less

  8. Sport Education as a Pedagogical Application for Ethical Development in Physical Education and Youth Sport

    ERIC Educational Resources Information Center

    Harvey, Stephen; Kirk, David; O'Donovan, Toni M.

    2014-01-01

    The purpose of this paper is to consider four pedagogical applications within the Sport Education model to examine the ways in which a young person can become a literate sports person and develop ethical behaviour through engagement in physical education and youth sport. Through a systematic review of the Sport Education research literature we…

  9. Quark Physics without Quarks: A Review of Recent Developments in S-Matrix Theory.

    ERIC Educational Resources Information Center

    Capra, Fritjof

    1979-01-01

    Reviews the developments in S-matrix theory over the past five years which have made it possible to derive results characteristic of quark models without any need to postulate the existence of physical quarks. In the new approach, the quark patterns emerge as a consequence of combining the general S-matrix principles with the concept of order.…

  10. Simulation-based Education for Endoscopic Third Ventriculostomy: A Comparison Between Virtual and Physical Training Models.

    PubMed

    Breimer, Gerben E; Haji, Faizal A; Bodani, Vivek; Cunningham, Melissa S; Lopez-Rios, Adriana-Lucia; Okrainec, Allan; Drake, James M

    2017-02-01

    The relative educational benefits of virtual reality (VR) and physical simulation models for endoscopic third ventriculostomy (ETV) have not been evaluated "head to head." To compare and identify the relative utility of a physical and VR ETV simulation model for use in neurosurgical training. Twenty-three neurosurgical residents and 3 fellows performed an ETV on both a physical and VR simulation model. Trainees rated the models using 5-point Likert scales evaluating the domains of anatomy, instrument handling, procedural content, and the overall fidelity of the simulation. Paired t tests were performed for each domain's mean overall score and individual items. The VR model has relative benefits compared with the physical model with respect to realistic representation of intraventricular anatomy at the foramen of Monro (4.5, standard deviation [SD] = 0.7 vs 4.1, SD = 0.6; P = .04) and the third ventricle floor (4.4, SD = 0.6 vs 4.0, SD = 0.9; P = .03), although the overall anatomy score was similar (4.2, SD = 0.6 vs 4.0, SD = 0.6; P = .11). For overall instrument handling and procedural content, the physical simulator outperformed the VR model (3.7, SD = 0.8 vs 4.5; SD = 0.5, P < .001 and 3.9; SD = 0.8 vs 4.2, SD = 0.6; P = .02, respectively). Overall task fidelity across the 2 simulators was not perceived as significantly different. Simulation model selection should be based on educational objectives. Training focused on learning anatomy or decision-making for anatomic cues may be aided with the VR simulation model. A focus on developing manual dexterity and technical skills using endoscopic equipment in the operating room may be better learned on the physical simulation model. Copyright © 2016 by the Congress of Neurological Surgeons

  11. Individual Differences in Boys’ and Girls’ Timing and Tempo of Puberty: Modeling Development With Nonlinear Growth Models

    PubMed Central

    Marceau, Kristine; Ram, Nilam; Houts, Renate M.; Grimm, Kevin J.; Susman, Elizabeth J.

    2014-01-01

    Pubertal development is a nonlinear process progressing from prepubescent beginnings through biological, physical, and psychological changes to full sexual maturity. To tether theoretical concepts of puberty with sophisticated longitudinal, analytical models capable of articulating pubertal development more accurately, we used nonlinear mixed-effects models to describe both the timing and tempo of pubertal development in the sample of 364 White boys and 373 White girls measured across 6 years as part of the National Institute of Child Health and Human Development Study of Early Child Care and Youth Development. Individual differences in timing and tempo were extracted with models of logistic growth. Differential relations emerged for how boys’ and girls’ timing and tempo of development were related to physical characteristics (body mass index, height, and weight) and psychological outcomes (internalizing problems, externalizing problems, and risky sexual behavior). Timing and tempo are associated in boys but not girls. Pubertal timing and tempo are particularly important for predicting psychological outcomes in girls but only sparsely related to boys’ psychological outcomes. Results highlight the importance of considering the nonlinear nature of puberty and expand the repertoire of possibilities for examining important aspects of how and when pubertal processes contribute to development. PMID:21639623

  12. The Canadian Assessment of Physical Literacy: Development of a Model of Children's Capacity for a Healthy, Active Lifestyle Through a Delphi Process.

    PubMed

    Francis, Claire E; Longmuir, Patricia E; Boyer, Charles; Andersen, Lars Bo; Barnes, Joel D; Boiarskaia, Elena; Cairney, John; Faigenbaum, Avery D; Faulkner, Guy; Hands, Beth P; Hay, John A; Janssen, Ian; Katzmarzyk, Peter T; Kemper, Han C; Knudson, Duane; Lloyd, Meghann; McKenzie, Thomas L; Olds, Tim S; Sacheck, Jennifer M; Shephard, Roy J; Zhu, Weimo; Tremblay, Mark S

    2016-02-01

    The Canadian Assessment of Physical Literacy (CAPL) was conceptualized as a tool to monitor children's physical literacy. The original model (fitness, activity behavior, knowledge, motor skill) required revision and relative weights for calculating/interpreting scores were required. Nineteen childhood physical activity/fitness experts completed a 3-round Delphi process. Round 1 was open-ended questions. Subsequent rounds rated statements using a 5-point Likert scale. Recommendations were sought regarding protocol inclusion, relative importance within composite scores and score interpretation. Delphi participant consensus was achieved for 64% (47/73) of statement topics, including a revised conceptual model, specific assessment protocols, the importance of longitudinal tracking, and the relative importance of individual protocols and composite scores. Divergent opinions remained regarding the inclusion of sleep time, assessment/ scoring of the obstacle course assessment of motor skill, and the need for an overall physical literacy classification. The revised CAPL model (overlapping domains of physical competence, motivation, and knowledge, encompassed by daily behavior) is appropriate for monitoring the physical literacy of children aged 8 to 12 years. Objectively measured domains (daily behavior, physical competence) have higher relative importance. The interpretation of CAPL results should be reevaluated as more data become available.

  13. Challenging Situations when Teaching Children with Autism Spectrum Disorders in General Physical Education

    ERIC Educational Resources Information Center

    Obrusnikova, Iva; Dillon, Suzanna R.

    2011-01-01

    As the first step of an instrument development, teaching challenges that occur when students with autism spectrum disorders are educated in general physical education were elicited using Goldfried and D'Zurilla's (1969) behavioral-analytic model. Data were collected from a convenience sample of 43 certified physical educators (29 women and 14 men)…

  14. The SPARK Programs: A Public Health Model of Physical Education Research and Dissemination

    ERIC Educational Resources Information Center

    McKenzie, Thomas L.; Sallis, James F.; Rosengard, Paul; Ballard, Kymm

    2016-01-01

    SPARK [Sports, Play, and Active Recreation for Kids], in its current form, is a brand that represents a collection of exemplary, research-based, physical education and physical activity programs that emphasize a highly active curriculum, on-site staff development, and follow-up support. Given its complexity (e.g., multiple school levels, inclusion…

  15. Algorithm Development for the Two-Fluid Plasma Model

    DTIC Science & Technology

    2009-02-17

    P. Mulser. Physics Letters A, 205:388, 1995. [10] L. Chacon , D. C Barnes, D. A. Knoll, and G. H. Miley. Journal of Com- putational Physics, 157...618, 2000. 11] L. Chacon , D. C. Barnes, D. A. Knoll, and G. H. Miley. Journal of Com- putational Physics, 157:654, 2000. [12] C. K. Birdsall and A

  16. Perceptions and Practices of Adapted Physical Educators on the Teaching of Social Skills

    ERIC Educational Resources Information Center

    Samalot-Rivera, Amaury; Porretta, David L.

    2009-01-01

    The purpose of this study was to determine adapted physical educators' perceptions and practices about teaching social skills to students with disabilities. A questionnaire based on Bandura's social learning theory concept of modeling was developed and mailed to an entire frame of 426 adapted physical education teachers in the state of Ohio. Face…

  17. OpenFOAM: Open source CFD in research and industry

    NASA Astrophysics Data System (ADS)

    Jasak, Hrvoje

    2009-12-01

    The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries ofpractical engineering use in "non-traditional " areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form ofpartial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.

  18. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models.

    PubMed

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics--from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the 'Emerging Intelligence Market Hypothesis' to reconcile the pervasive presence of 'noise traders' with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

  19. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics—from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ‘Emerging Intelligence Market Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

  20. The 4C/ID-Model in Physics Education: Instructional Design of a Digital Learning Environment to Teach Electrical Circuits

    ERIC Educational Resources Information Center

    Melo, Mário

    2018-01-01

    In this paper, readers are guided through the design and development of educational programs based on the 4C/ID model. This was illustrated via a practical example in Physics education, to teach the theme "Electrical circuits" to students of the 9th grade of compulsory education. In the article, the followed steps are described, from…

  1. Toward Paradoxical Inconsistency in Electrostatics of Metallic Conductors

    DTIC Science & Technology

    Naturally, when dealing with fundamental problems, the V and V effort should include careful exploration and, if necessary, revision of the fundamentals...Current developments show a clear trend toward more serious efforts in validation and verification (V and V) of physical and engineering models...underlying the physics. With this understanding in mind, we review some fundamentals of the models of crystalline electric conductors and find a

  2. Toward an Integrated Design, Inspection and Redundancy Research Program.

    DTIC Science & Technology

    1984-01-01

    William Creelman William H. Silcox National Marine Service Standard Oil Company of California St. Louis, Missouri San Francisco, California .-- N...develop physical models and generic tools for analyzing the effects of redundancy, reserve strength, and residual strength on the system behavior of marine...probabilistic analyses to be applicable to real-world problems, this program needs to provide - the deterministic physical models and generic tools upon

  3. The development of global GRAPES 4DVAR

    NASA Astrophysics Data System (ADS)

    Liu, Yongzhu

    2017-04-01

    Four-dimensional variation data assimilation (4DVAR) has given a great contribution to the improvement of NWP system over the past twenty years. Therefore, our strategy is to develop an operational global 4D-Var system from the outset. The aim at the paper is to introduce the development of the global GRAPES four-dimensional variation data assimilation (4DVAR) using incremental analysis schemes and to presents results of a comparison between 4DVAR using 6-hour assimilation window and simplified physics during the minimization with three-dimensional variation data assimilation (3DVAR). The dynamical cores of the tangent-linear and adjoint models are developed directly based on the non-hydrostatic forecast model. In addition, the standard correctness checks have been performed. As well as the development adjoint codes, most of our work is focused on improving the computational efficiency since the bulk of the computational cost of 4D-Var is in the integration of the tangent-linear and adjoint models. In terms of tangent-linear model, the wall-clock time is reduced to about 1.2 times as much as one of nonlinear model through the optimizing of the software framework. The significant computational cost savings on adjoint model result from the removing the redundant recompilations of model trajectories. It is encouraging that the wall-clock time of adjoint model is less than 1.5 times as much as one of nonlinear model. The current difficulty is that the numerical scheme used within the linear model is based on strategically on the numeric of the corresponding nonlinear model. Further computational acceleration should be expected from the improvement on nonlinear numerical algorithm. A series of linearized physical parameterization schemes has been developed to improve the representation of perturbed fields in the linear model. It consists of horizontal and vertical diffusion, sub-grid scale orographic gravity wave drag, large-scale condensation and cumulus convection schemes. We also found the straightforward linearization based on the nonlinear physical scheme might lead to significant growing of spurious unstable perturbations. It is essential to simplify the linear physics with respect to the non-linear schemes. The improvement on the perturbed fields in the tangent-linear model is visible with the linear physics included, especially at the low level. GRAPES variation data assimilation system adopts the incremental approach. The work is ongoing to develop a pre-operational 4DVAR suite with 0.25° outer loop resolution and multiple outer-loops configurations. One 4DVAR analysis using 6-hour assimilation windows can be finished within 40-minutes when using the available conventional and satellite data. In summary, it was found that the analysis over the northern, southern hemispheres, tropical region and East Asian area of GRAPES 4DVAR performed better than GRAPES 3DVAR for one month experiments. Moreover, the forecast results show that northern and southern extra-tropical scores for GRAPES 4DVAR are already better than GRAPES 3DVAR, but the tropical performance needs further investigations. Therefore, the subsequent main improvements will aim to enhance its computational efficiency and accuracy in 2017. The global GRAPES 4DVAR is planned for operation in 2018.

  4. Determinants of physical activity in middle-aged woman in Isfahan using the health belief model.

    PubMed

    Hosseini, Habibollah; Moradi, Razieh; Kazemi, Ashraf; Shahshahani, Maryam Sadat

    2017-01-01

    Nowadays with respect to the automation of the lifestyle, immobility statistics in middle-aged women has increased and they are at risk for complications of immobility. One of the models used to identify factors associated with physical activity is Health Belief Model utilized in different age and different cultural backgrounds and different results have been obtained from those studies. The purpose of this study was to investigate the factors affecting on physical activity in middle-aged women using Health Belief Model. This descriptive-correlation study was conducted on 224 middle-aged women referring to health centers in Isfahan. Health Belief Model structures including perceived susceptibility and severity, perceived barriers and benefits, and self-efficacy were measured by questionnaire and physical activity was assessed using the international physical activity questionnaire. Collected data were analyzed using descriptive statistics and Pearson correlation coefficient test and regression analysis. There wasn't significant correlation between perceived susceptibility ( P = 0.263, r = 0.075) and perceived severity with physical activity duration ( P = 0.127, r = 0.058) but there was positive and weak correlation between physical activity duration with perceived benefits ( P = 0.001 and r = 0.26) and perceived self-efficacy ( P = 0.001, r = 0.54) and had weak and inverse correlation with perceived barriers ( P = 0.001, r = -0.25). Regression analysis also showed that from among all the Health Belief Model structures just self-efficacy structure has influenced on behavior independently and other structures are affected by it. The obtained results implied on a correlation between benefits, barriers and perceived self-efficacy with and moderate physical activity. Therefore it is necessary to develop appropriate educational programs with emphasis on structures of Health Belief Model that has the maximum impact on physical activity in middle-aged women.

  5. The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century

    DOE PAGES

    Abramoff, Rose; Xu, Xiaofeng; Hartman, Melannie; ...

    2017-12-20

    Soil organic carbon (SOC) can be defined by measurable chemical and physical pools, such as mineral-associated carbon, carbon physically entrapped in aggregates, dissolved carbon, and fragments of plant detritus. Yet, most soil models use conceptual rather than measurable SOC pools. What would the traditional pool-based soil model look like if it were built today, reflecting the latest understanding of biological, chemical, and physical transformations in soils? We propose a conceptual model—the Millennial model—that defines pools as measurable entities. First, we discuss relevant pool definitions conceptually and in terms of the measurements that can be used to quantify pool size, formation,more » and destabilization. Then, we develop a numerical model following the Millennial model conceptual framework to evaluate against the Century model, a widely-used standard for estimating SOC stocks across space and through time. The Millennial model predicts qualitatively similar changes in total SOC in response to single factor perturbations when compared to Century, but different responses to multiple factor perturbations. Finally, we review important conceptual and behavioral differences between the Millennial and Century modeling approaches, and the field and lab measurements needed to constrain parameter values. Here, we propose the Millennial model as a simple but comprehensive framework to model SOC pools and guide measurements for further model development.« less

  6. The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramoff, Rose; Xu, Xiaofeng; Hartman, Melannie

    Soil organic carbon (SOC) can be defined by measurable chemical and physical pools, such as mineral-associated carbon, carbon physically entrapped in aggregates, dissolved carbon, and fragments of plant detritus. Yet, most soil models use conceptual rather than measurable SOC pools. What would the traditional pool-based soil model look like if it were built today, reflecting the latest understanding of biological, chemical, and physical transformations in soils? We propose a conceptual model—the Millennial model—that defines pools as measurable entities. First, we discuss relevant pool definitions conceptually and in terms of the measurements that can be used to quantify pool size, formation,more » and destabilization. Then, we develop a numerical model following the Millennial model conceptual framework to evaluate against the Century model, a widely-used standard for estimating SOC stocks across space and through time. The Millennial model predicts qualitatively similar changes in total SOC in response to single factor perturbations when compared to Century, but different responses to multiple factor perturbations. Finally, we review important conceptual and behavioral differences between the Millennial and Century modeling approaches, and the field and lab measurements needed to constrain parameter values. Here, we propose the Millennial model as a simple but comprehensive framework to model SOC pools and guide measurements for further model development.« less

  7. Modeling Electrostatic Fields Generated by Internal Charging of Materials in Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2011-01-01

    Internal charging is a risk to spacecraft in energetic electron environments. DICTAT, NU MIT computational codes are the most widely used engineering tools for evaluating internal charging of insulator materials exposed to these environments. Engineering tools are designed for rapid evaluation of ESD threats, but there is a need for more physics based models for investigating the science of materials interactions with energetic electron environments. Current tools are limited by the physics included in the models and ease of user implementation .... additional development work is needed to improve models.

  8. Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabaras, Nicolas J.

    2016-11-08

    Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.

  9. Developing model-making and model-breaking skills using direct measurement video-based activities

    NASA Astrophysics Data System (ADS)

    Vonk, Matthew; Bohacek, Peter; Militello, Cheryl; Iverson, Ellen

    2017-12-01

    This study focuses on student development of two important laboratory skills in the context of introductory college-level physics. The first skill, which we call model making, is the ability to analyze a phenomenon in a way that produces a quantitative multimodal model. The second skill, which we call model breaking, is the ability to critically evaluate if the behavior of a system is consistent with a given model. This study involved 116 introductory physics students in four different sections, each taught by a different instructor. All of the students within a given class section participated in the same instruction (including labs) with the exception of five activities performed throughout the semester. For those five activities, each class section was split into two groups; one group was scaffolded to focus on model-making skills and the other was scaffolded to focus on model-breaking skills. Both conditions involved direct measurement videos. In some cases, students could vary important experimental parameters within the video like mass, frequency, and tension. Data collected at the end of the semester indicate that students in the model-making treatment group significantly outperformed the other group on the model-making skill despite the fact that both groups shared a common physical lab experience. Likewise, the model-breaking treatment group significantly outperformed the other group on the model-breaking skill. This is important because it shows that direct measurement video-based instruction can help students acquire science-process skills, which are critical for scientists, and which are a key part of current science education approaches such as the Next Generation Science Standards and the Advanced Placement Physics 1 course.

  10. The Physics of Boundary-Layer Aero-Optic Effects

    DTIC Science & Technology

    2012-09-01

    various models to predict aero-optical effects for both subsonic and supersonic Mach numbers, laser beam sizes and non- adiabatic walls. The developed...models to predict aero-optical effects for both subsonic and supersonic Mach numbers, laser beam sizes and non- adiabatic walls. The developed models were... Supersonic Facilities .................................................................................................... 8 3.3 2-D Wavefront Data

  11. Needed: A Standard Information Processing Model of Learning and Learning Processes.

    ERIC Educational Resources Information Center

    Carifio, James

    One strategy to prevent confusion as new paradigms emerge is to have professionals in the area develop and use a standard model of the phenomenon in question. The development and use of standard models in physics, genetics, archaeology, and cosmology have been very productive. The cognitive revolution in psychology and education has produced a…

  12. A spatial model of land use change for western Oregon and western Washington.

    Treesearch

    Jeffrey D. Kline; Ralph J. Alig

    2001-01-01

    We developed an empirical model describing the probability that forests and farmland in western Oregon and western Washington were developed for residential, commercial, or industrial uses during a 30-year period, as a function of spatial socioeconomic variables, ownership, and geographic and physical land characteristics. The empirical model is based on a conceptual...

  13. Detailed Modeling of Physical Processes in Electron Sources for Accelerator Applications

    NASA Astrophysics Data System (ADS)

    Chubenko, Oksana; Afanasev, Andrei

    2017-01-01

    At present, electron sources are essential in a wide range of applications - from common technical use to exploring the nature of matter. Depending on the application requirements, different methods and materials are used to generate electrons. State-of-the-art accelerator applications set a number of often-conflicting requirements for electron sources (e.g., quantum efficiency vs. polarization, current density vs. lifetime, etc). Development of advanced electron sources includes modeling and design of cathodes, material growth, fabrication of cathodes, and cathode testing. The detailed simulation and modeling of physical processes is required in order to shed light on the exact mechanisms of electron emission and to develop new-generation electron sources with optimized efficiency. The purpose of the present work is to study physical processes in advanced electron sources and develop scientific tools, which could be used to predict electron emission from novel nano-structured materials. In particular, the area of interest includes bulk/superlattice gallium arsenide (bulk/SL GaAs) photo-emitters and nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) photo/field-emitters. Work supported by The George Washington University and Euclid TechLabs LLC.

  14. Development of 3-axis precise positioning seismic physical modeling system in the simulation of marine seismic exploration

    NASA Astrophysics Data System (ADS)

    Kim, D.; Shin, S.; Ha, J.; Lee, D.; Lim, Y.; Chung, W.

    2017-12-01

    Seismic physical modeling is a laboratory-scale experiment that deals with the actual and physical phenomena that may occur in the field. In seismic physical modeling, field conditions are downscaled and used. For this reason, even a small error may lead to a big error in an actual field. Accordingly, the positions of the source and the receiver must be precisely controlled in scale modeling. In this study, we have developed a seismic physical modeling system capable of precisely controlling the 3-axis position. For automatic and precise position control of an ultrasonic transducer(source and receiver) in the directions of the three axes(x, y, and z), a motor was mounted on each of the three axes. The motor can automatically and precisely control the positions with positional precision of 2''; for the x and y axes and 0.05 mm for the z axis. As it can automatically and precisely control the positions in the directions of the three axes, it has an advantage in that simulations can be carried out using the latest exploration techniques, such as OBS and Broadband Seismic. For the signal generation section, a waveform generator that can produce a maximum of two sources was used, and for the data acquisition section, which receives and stores reflected signals, an A/D converter that can receive a maximum of four signals was used. As multiple sources and receivers could be used at the same time, the system was set up in such a way that diverse exploration methods, such as single channel, multichannel, and 3-D exploration, could be realized. A computer control program based on LabVIEW was created, so that it could control the position of the transducer, determine the data acquisition parameters, and check the exploration data and progress in real time. A marine environment was simulated using a water tank 1 m wide, 1 m long, and 0.9 m high. To evaluate the performance and applicability of the seismic physical modeling system developed in this study, single channel and multichannel explorations were carried out in the marine environment and the accuracy of the modeling system was verified by comparatively analyzing the exploration data and the numerical modeling data acquired.

  15. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Chu, S. Reynold; Allen, Chris

    2009-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.

  16. Development of a transient, lumped hydrologic model for geomorphologic units in a geomorphology based rainfall-runoff modelling framework

    NASA Astrophysics Data System (ADS)

    Vannametee, E.; Karssenberg, D.; Hendriks, M. R.; de Jong, S. M.; Bierkens, M. F. P.

    2010-05-01

    We propose a modelling framework for distributed hydrological modelling of 103-105 km2 catchments by discretizing the catchment in geomorphologic units. Each of these units is modelled using a lumped model representative for the processes in the unit. Here, we focus on the development and parameterization of this lumped model as a component of our framework. The development of the lumped model requires rainfall-runoff data for an extensive set of geomorphological units. Because such large observational data sets do not exist, we create artificial data. With a high-resolution, physically-based, rainfall-runoff model, we create artificial rainfall events and resulting hydrographs for an extensive set of different geomorphological units. This data set is used to identify the lumped model of geomorphologic units. The advantage of this approach is that it results in a lumped model with a physical basis, with representative parameters that can be derived from point-scale measurable physical parameters. The approach starts with the development of the high-resolution rainfall-runoff model that generates an artificial discharge dataset from rainfall inputs as a surrogate of a real-world dataset. The model is run for approximately 105 scenarios that describe different characteristics of rainfall, properties of the geomorphologic units (i.e. slope gradient, unit length and regolith properties), antecedent moisture conditions and flow patterns. For each scenario-run, the results of the high-resolution model (i.e. runoff and state variables) at selected simulation time steps are stored in a database. The second step is to develop the lumped model of a geomorphological unit. This forward model consists of a set of simple equations that calculate Hortonian runoff and state variables of the geomorphologic unit over time. The lumped model contains only three parameters: a ponding factor, a linear reservoir parameter, and a lag time. The model is capable of giving an appropriate representation of the transient rainfall-runoff relations that exist in the artificial data set generated with the high-resolution model. The third step is to find the values of empirical parameters in the lumped forward model using the artificial dataset. For each scenario of the high-resolution model run, a set of lumped model parameters is determined with a fitting method using the corresponding time series of state variables and outputs retrieved from the database. Thus, the parameters in the lumped model can be estimated by using the artificial data set. The fourth step is to develop an approach to assign lumped model parameters based upon the properties of the geomorphological unit. This is done by finding relationships between the measurable physical properties of geomorphologic units (i.e. slope gradient, unit length, and regolith properties) and the lumped forward model parameters using multiple regression techniques. In this way, a set of lumped forward model parameters can be estimated as a function of morphology and physical properties of the geomorphologic units. The lumped forward model can then be applied to different geomorphologic units. Finally, the performance of the lumped forward model is evaluated; the outputs of the lumped forward model are compared with the results of the high-resolution model. Our results show that the lumped forward model gives the best estimates of total discharge volumes and peak discharges when rain intensities are not significantly larger than the infiltration capacities of the units and when the units are small with a flat gradient. Hydrograph shapes are fairly well reproduced for most cases except for flat and elongated units with large runoff volumes. The results of this study provide a first step towards developing low-dimensional models for large ungauged basins.

  17. Development of a Three-Dimensional Spectral Element Model for NWP: Idealized Simulations on the Sphere

    NASA Astrophysics Data System (ADS)

    Viner, K.; Reinecke, P. A.; Gabersek, S.; Flagg, D. D.; Doyle, J. D.; Martini, M.; Ryglicki, D.; Michalakes, J.; Giraldo, F.

    2016-12-01

    NEPTUNE: the Navy Environmental Prediction sysTem Using the NUMA*corE, is a 3D spectral element atmospheric model composed of a full suite of physics parameterizations and pre- and post-processing infrastructure with plans for data assimilation and coupling components to a variety of Earth-system models. This talk will focus on the initial struggles and solutions in adapting NUMA for stable and accurate integration on the sphere using both the deep atmosphere equations and a newly developed shallow-atmosphere approximation, as demonstrated through idealized test cases. In addition, details of the physics-dynamics coupling methodology will be discussed. NEPTUNE results for test cases from the 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) will be shown and discussed. *NUMA: Nonhydrostatic Unified Model of the Atmosphere; Kelly and Giraldo 2012, JCP

  18. Deep Learning Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Barati Farimani, Amir; Gomes, Joseph; Pande, Vijay

    2017-11-01

    We have developed a new data-driven model paradigm for the rapid inference and solution of the constitutive equations of fluid mechanic by deep learning models. Using generative adversarial networks (GAN), we train models for the direct generation of solutions to steady state heat conduction and incompressible fluid flow without knowledge of the underlying governing equations. Rather than using artificial neural networks to approximate the solution of the constitutive equations, GANs can directly generate the solutions to these equations conditional upon an arbitrary set of boundary conditions. Both models predict temperature, velocity and pressure fields with great test accuracy (>99.5%). The application of our framework for inferring and generating the solutions of partial differential equations can be applied to any physical phenomena and can be used to learn directly from experiments where the underlying physical model is complex or unknown. We also have shown that our framework can be used to couple multiple physics simultaneously, making it amenable to tackle multi-physics problems.

  19. Solitons for Describing 3-D Physical Reality:. the Current Frontier

    NASA Astrophysics Data System (ADS)

    Werbos, Paul J.

    2013-01-01

    This chapter begins with a review and assessment of four key frontiers for the fields of memristors, neural networks and chaos: (1) use of learning architectures to expand the possible markets for dense memristor chips, crucial to applications such as power grid intelligent enough to improve the economics of renewable energy; (2) advanced modeling and hardware to build such chips, from graphene to magnetoresistance; (3) second generation quantum computing; and (4) development and use of chaotic soliton models to rebuild the foundations of physics. Current more detailed reviews of the first three frontiers are summarized. The bulk of the paper discusses how a "soliton" model of the electron can fill outstanding gaps in basic physics, such as explanation of the mass and radius of the electron without a need for renormalization. It reviews the two soliton models most widely discussed in physics today, the Skyrme model and the BPS monopole, and proposes alternative Lagrangians starting from the bosonic sector of electroweak theory which may have the required properties.

  20. Role of Physical Therapists in Reducing Hospital Readmissions: Optimizing Outcomes for Older Adults During Care Transitions From Hospital to Community.

    PubMed

    Falvey, Jason R; Burke, Robert E; Malone, Daniel; Ridgeway, Kyle J; McManus, Beth M; Stevens-Lapsley, Jennifer E

    2016-08-01

    Hospital readmissions in older adult populations are an emerging quality indicator for acute care hospitals. Recent evidence has linked functional decline during and after hospitalization with an elevated risk of hospital readmission. However, models of care that have been developed to reduce hospital readmission rates do not adequately address functional deficits. Physical therapists, as experts in optimizing physical function, have a strong opportunity to contribute meaningfully to care transition models and demonstrate the value of physical therapy interventions in reducing readmissions. Thus, the purposes of this perspective article are: (1) to describe the need for physical therapist input during care transitions for older adults and (2) to outline strategies for expanding physical therapy participation in care transitions for older adults, with an overall goal of reducing avoidable 30-day hospital readmissions. © 2016 American Physical Therapy Association.

  1. Self-efficacy and physical activity in adolescent and parent dyads.

    PubMed

    Rutkowski, Elaine M; Connelly, Cynthia D

    2012-01-01

    The study examined the relationships between self-efficacy and physical activity in adolescent and parent dyads. A cross-sectional, correlational design was used to explore the relationships among levels of parent physical activity, parent-adolescent self-efficacy, and adolescent physical activity. Descriptive and multivariate regression analyses were conducted in a purposive sample of 94 adolescent/parent dyads. Regression results indicated the overall model significantly predicted adolescent physical activity (R(2) = .20, R(2)(adj) = .14, F[5, 70]= 3.28, p= .01). Only one of the five predictor variables significantly contributed to the model. Higher levels of adolescent self-efficacy was positively related to greater levels of adolescent physical activity (β= .29, p= .01). Practitioners are encouraged to examine the level of self-efficacy and physical activity in families in an effort to develop strategies that impact these areas and ultimately to mediate obesity-related challenges in families seeking care. © 2011, Wiley Periodicals, Inc.

  2. Advanced solar irradiances applied to satellite and ionospheric operational systems

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Schunk, Robert; Eccles, Vince; Bouwer, Dave

    Satellite and ionospheric operational systems require solar irradiances in a variety of time scales and spectral formats. We describe the development of a system using operational grade solar irradiances that are applied to empirical thermospheric density models and physics-based ionospheric models used by operational systems that require a space weather characterization. The SOLAR2000 (S2K) and SOLARFLARE (SFLR) models developed by Space Environment Technologies (SET) provide solar irradiances from the soft X-rays (XUV) through the Far Ultraviolet (FUV) spectrum. The irradiances are provided as integrated indices for the JB2006 empirical atmosphere density models and as line/band spectral irradiances for the physics-based Ionosphere Forecast Model (IFM) developed by the Space Environment Corporation (SEC). We describe the integration of these irradiances in historical, current epoch, and forecast modes through the Communication Alert and Prediction System (CAPS). CAPS provides real-time and forecast HF radio availability for global and regional users and global total electron content (TEC) conditions.

  3. Overview of lower length scale model development for accident tolerant fuels regarding U3Si2 fuel and FeCrAl cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng

    2016-09-01

    U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significantmore » progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.« less

  4. An architecture for the development of real-time fault diagnosis systems using model-based reasoning

    NASA Technical Reports Server (NTRS)

    Hall, Gardiner A.; Schuetzle, James; Lavallee, David; Gupta, Uday

    1992-01-01

    Presented here is an architecture for implementing real-time telemetry based diagnostic systems using model-based reasoning. First, we describe Paragon, a knowledge acquisition tool for offline entry and validation of physical system models. Paragon provides domain experts with a structured editing capability to capture the physical component's structure, behavior, and causal relationships. We next describe the architecture of the run time diagnostic system. The diagnostic system, written entirely in Ada, uses the behavioral model developed offline by Paragon to simulate expected component states as reflected in the telemetry stream. The diagnostic algorithm traces causal relationships contained within the model to isolate system faults. Since the diagnostic process relies exclusively on the behavioral model and is implemented without the use of heuristic rules, it can be used to isolate unpredicted faults in a wide variety of systems. Finally, we discuss the implementation of a prototype system constructed using this technique for diagnosing faults in a science instrument. The prototype demonstrates the use of model-based reasoning to develop maintainable systems with greater diagnostic capabilities at a lower cost.

  5. Developing + Using Models in Physics

    ERIC Educational Resources Information Center

    Campbell, Todd; Neilson, Drew; Oh, Phil Seok

    2013-01-01

    Of the eight practices of science identified in "A Framework for K-12 Science Education" (NRC 2012), helping students develop and use models has been identified by many as an anchor (Schwarz and Passmore 2012; Windschitl 2012). In instruction, disciplinary core ideas, crosscutting concepts, and scientific practices can be meaningfully…

  6. Semi-supervised Machine Learning for Analysis of Hydrogeochemical Data and Models

    NASA Astrophysics Data System (ADS)

    Vesselinov, Velimir; O'Malley, Daniel; Alexandrov, Boian; Moore, Bryan

    2017-04-01

    Data- and model-based analyses such as uncertainty quantification, sensitivity analysis, and decision support using complex physics models with numerous model parameters and typically require a huge number of model evaluations (on order of 10^6). Furthermore, model simulations of complex physics may require substantial computational time. For example, accounting for simultaneously occurring physical processes such as fluid flow and biogeochemical reactions in heterogeneous porous medium may require several hours of wall-clock computational time. To address these issues, we have developed a novel methodology for semi-supervised machine learning based on Non-negative Matrix Factorization (NMF) coupled with customized k-means clustering. The algorithm allows for automated, robust Blind Source Separation (BSS) of groundwater types (contamination sources) based on model-free analyses of observed hydrogeochemical data. We have also developed reduced order modeling tools, which coupling support vector regression (SVR), genetic algorithms (GA) and artificial and convolutional neural network (ANN/CNN). SVR is applied to predict the model behavior within prior uncertainty ranges associated with the model parameters. ANN and CNN procedures are applied to upscale heterogeneity of the porous medium. In the upscaling process, fine-scale high-resolution models of heterogeneity are applied to inform coarse-resolution models which have improved computational efficiency while capturing the impact of fine-scale effects at the course scale of interest. These techniques are tested independently on a series of synthetic problems. We also present a decision analysis related to contaminant remediation where the developed reduced order models are applied to reproduce groundwater flow and contaminant transport in a synthetic heterogeneous aquifer. The tools are coded in Julia and are a part of the MADS high-performance computational framework (https://github.com/madsjulia/Mads.jl).

  7. Gray-Box Approach for Thermal Modelling of Buildings for Applications in District Heating and Cooling Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saurav, Kumar; Chandan, Vikas

    District-heating-and-cooling (DHC) systems are a proven energy solution that has been deployed for many years in a growing number of urban areas worldwide. They comprise a variety of technologies that seek to develop synergies between the production and supply of heat, cooling, domestic hot water and electricity. Although the benefits of DHC systems are significant and have been widely acclaimed, yet the full potential of modern DHC systems remains largely untapped. There are several opportunities for development of energy efficient DHC systems, which will enable the effective exploitation of alternative renewable resources, waste heat recovery, etc., in order to increasemore » the overall efficiency and facilitate the transition towards the next generation of DHC systems. This motivated the need for modelling these complex systems. Large-scale modelling of DHC-networks is challenging, as it has several components such as buildings, pipes, valves, heating source, etc., interacting with each other. In this paper, we focus on building modelling. In particular, we present a gray-box methodology for thermal modelling of buildings. Gray-box modelling is a hybrid of data driven and physics based models where, coefficients of the equations from physics based models are learned using data. This approach allows us to capture the dynamics of the buildings more effectively as compared to pure data driven approach. Additionally, this approach results in a simpler models as compared to pure physics based models. We first develop the individual components of the building such as temperature evolution, flow controller, etc. These individual models are then integrated in to the complete gray-box model for the building. The model is validated using data collected from one of the buildings at Lule{\\aa}, a city on the coast of northern Sweden.« less

  8. A Toolkit to Study Sensitivity of the Geant4 Predictions to the Variations of the Physics Model Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, Laura; Genser, Krzysztof; Hatcher, Robert

    Geant4 is the leading detector simulation toolkit used in high energy physics to design detectors and to optimize calibration and reconstruction software. It employs a set of carefully validated physics models to simulate interactions of particles with matter across a wide range of interaction energies. These models, especially the hadronic ones, rely largely on directly measured cross-sections and phenomenological predictions with physically motivated parameters estimated by theoretical calculation or measurement. Because these models are tuned to cover a very wide range of possible simulation tasks, they may not always be optimized for a given process or a given material. Thismore » raises several critical questions, e.g. how sensitive Geant4 predictions are to the variations of the model parameters, or what uncertainties are associated with a particular tune of a Geant4 physics model, or a group of models, or how to consistently derive guidance for Geant4 model development and improvement from a wide range of available experimental data. We have designed and implemented a comprehensive, modular, user-friendly software toolkit to study and address such questions. It allows one to easily modify parameters of one or several Geant4 physics models involved in the simulation, and to perform collective analysis of multiple variants of the resulting physics observables of interest and comparison against a variety of corresponding experimental data. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. flexible run-time configurable workflow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented and illustrated with results obtained with Geant4 key hadronic models.« less

  9. Tampa Bay Water Clarity Model (TBWCM): As a Predictive Tool

    EPA Science Inventory

    The Tampa Bay Water Clarity Model was developed as a predictive tool for estimating the impact of changing nutrient loads on water clarity as measured by secchi depth. The model combines a physical mixing model with an irradiance model and nutrient cycling model. A 10 segment bi...

  10. Direct modeling parameter signature analysis and failure mode prediction of physical systems using hybrid computer optimization

    NASA Technical Reports Server (NTRS)

    Drake, R. L.; Duvoisin, P. F.; Asthana, A.; Mather, T. W.

    1971-01-01

    High speed automated identification and design of dynamic systems, both linear and nonlinear, are discussed. Special emphasis is placed on developing hardware and techniques which are applicable to practical problems. The basic modeling experiment and new results are described. Using the improvements developed successful identification of several systems, including a physical example as well as simulated systems, was obtained. The advantages of parameter signature analysis over signal signature analysis in go-no go testing of operational systems were demonstrated. The feasibility of using these ideas in failure mode prediction in operating systems was also investigated. An improved digital controlled nonlinear function generator was developed, de-bugged, and completely documented.

  11. Spatial Modeling for Resources Framework (SMRF): A modular framework for developing spatial forcing data for snow modeling in mountain basins

    NASA Astrophysics Data System (ADS)

    Havens, Scott; Marks, Danny; Kormos, Patrick; Hedrick, Andrew

    2017-12-01

    In the Western US and many mountainous regions of the world, critical water resources and climate conditions are difficult to monitor because the observation network is generally very sparse. The critical resource from the mountain snowpack is water flowing into streams and reservoirs that will provide for irrigation, flood control, power generation, and ecosystem services. Water supply forecasting in a rapidly changing climate has become increasingly difficult because of non-stationary conditions. In response, operational water supply managers have begun to move from statistical techniques towards the use of physically based models. As we begin to transition physically based models from research to operational use, we must address the most difficult and time-consuming aspect of model initiation: the need for robust methods to develop and distribute the input forcing data. In this paper, we present a new open source framework, the Spatial Modeling for Resources Framework (SMRF), which automates and simplifies the common forcing data distribution methods. It is computationally efficient and can be implemented for both research and operational applications. We present an example of how SMRF is able to generate all of the forcing data required to a run physically based snow model at 50-100 m resolution over regions of 1000-7000 km2. The approach has been successfully applied in real time and historical applications for both the Boise River Basin in Idaho, USA and the Tuolumne River Basin in California, USA. These applications use meteorological station measurements and numerical weather prediction model outputs as input. SMRF has significantly streamlined the modeling workflow, decreased model set up time from weeks to days, and made near real-time application of a physically based snow model possible.

  12. Mathematization in introductory physics

    NASA Astrophysics Data System (ADS)

    Brahmia, Suzanne M.

    Mathematization is central to STEM disciplines as a cornerstone of the quantitative reasoning that characterizes these fields. Introductory physics is required for most STEM majors in part so that students develop expert-like mathematization. This dissertation describes coordinated research and curriculum development for strengthening mathematization in introductory physics; it blends scholarship in physics and mathematics education in the form of three papers. The first paper explores mathematization in the context of physics, and makes an original contribution to the measurement of physics students' struggle to mathematize. Instructors naturally assume students have a conceptual mastery of algebra before embarking on a college physics course because these students are enrolled in math courses beyond algebra. This paper provides evidence that refutes the validity of this assumption and categorizes some of the barriers students commonly encounter with quantification and representing ideas symbolically. The second paper develops a model of instruction that can help students progress from their starting points to their instructor's desired endpoints. Instructors recognize that the introductory physics course introduces new ideas at an astonishing rate. More than most physicists realize, however, the way that mathematics is used in the course is foreign to a large portion of class. This paper puts forth an instructional model that can move all students toward better quantitative and physical reasoning, despite the substantial variability of those students' initial states. The third paper describes the design and testing of curricular materials that foster mathematical creativity to prepare students to better understand physics reasoning. Few students enter introductory physics with experience generating equations in response to specific challenges involving unfamiliar quantities and units, yet this generative use of mathematics is typical of the thinking involved in doing physics. It contrasts with their more common experience with mathematics as the practice of specified procedures to improve efficiency. This paper describes new curricular materials based on invention instruction provide students with opportunities to generate mathematical relationships in physics, and the paper presents preliminary evidence of the effectiveness of this method with mathematically underprepared engineering students.

  13. Ontology of physics for biology: representing physical dependencies as a basis for biological processes.

    PubMed

    Cook, Daniel L; Neal, Maxwell L; Bookstein, Fred L; Gennari, John H

    2013-12-02

    In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale "physiome" projects such as the EU's Virtual Physiological Human (VPH) and NIH's Virtual Physiological Rat (VPR). Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the "rules" by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm's law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke's law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. We have developed the OPB and annotation methods to represent the meaning-the biophysical semantics-of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes.

  14. Motor Skills and Free-Living Physical Activity Showed No Association Among Preschoolers in 2012 U.S. National Youth Fitness Survey.

    PubMed

    Loprinzi, Paul D; Frith, Emily

    2017-04-01

    Albeit limited, some emerging work, using convenience-based samples, has demonstrated that greater motor skill development is associated with higher physical activity among preschool-aged children. The purpose of this study was to evaluate this topic using data from the 2012 National Youth Fitness Survey that included 329 preschool-aged children (3-5 years). Parents proxy-reported their child's physical activity, with motor skill level assessed from the Test of Gross Motor Development-Second Edition (TGMD2). Motor skill levels (Gross Motor Quotient, locomotor or object control) were not associated with preschool free-living physical activity in any analytic model. Thus, in this large sample of preschoolers, contrary to research with older children, motor skill level was not associated with physical activity. Findings are discussed in terms of study limitations of (a) a reliance on parent report of children's physical activity levels and (b) the possibility that physical activity data within the national survey were too limited in range to show possible associations to motor skill development with higher levels of free-living physical activity in preschoolers.

  15. Design and development of Building energy simulation Software for prefabricated cabin type of industrial building (PCES)

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Ri Yi

    2018-06-01

    Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.

  16. Modeling the Effects of Lipid Composition on Stratum Corneum Bilayers Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Huzil, J. Torin; Sivaloganathan, Siv; Kohandel, Mohammad; Foldvari, Marianna

    2011-11-01

    The advancement of dermal and transdermal drug delivery requires the development of delivery systems that are suitable for large protein and nucleic acid-based therapeutic agents. However, a complete mechanistic understanding of the physical barrier properties associated with the epidermis, specifically the membrane structures within the stratum corneum, has yet to be developed. Here, we describe the assembly and computational modeling of stratum corneum lipid bilayers constructed from varying ratios of their constituent lipids (ceramide, free fatty acids and cholesterol) to determine if there is a difference in the physical properties of stratum corneum compositions.

  17. Computational Labs Using VPython Complement Conventional Labs in Online and Regular Physics Classes

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.

    2009-03-01

    Fairmont State University has developed online physics classes for the high-school teaching certificate based on the text book Matter and Interaction by Chabay and Sherwood. This lead to using computational VPython labs also in the traditional class room setting to complement conventional labs. The computational modeling process has proven to provide an excellent basis for the subsequent conventional lab and allows for a concrete experience of the difference between behavior according to a model and realistic behavior. Observations in the regular class room setting feed back into the development of the online classes.

  18. Challenging traditional assumptions of high school science through the physics and Everyday Thinking Curriculum(TM)

    NASA Astrophysics Data System (ADS)

    Ross, Michael J.

    Science education in the U.S. has failed for over a century to bring the experience of scientific induction to classrooms, from elementary science to undergraduate courses. The achievement of American students on international comparisons of science proficiency is unacceptable, and the disparities between groups underrepresented in STEM and others are large and resistant to reform efforts. This study investigated the enactment of a physics curriculum designed upon the inductive method in a high school serving mostly students from groups underrepresented in science. The Physics and Everyday Thinking curriculum was designed to model the central practices of science and to provide opportunities for students to both extract general principles of physics and to develop scientific models from laboratory evidence. The findings of this study suggest that scientific induction is not only a process that is well within the capacity of high school students, but they enjoy it as well. Students that engaged in the central practices of science through the inductive method reported a new sense of agency and control in their learning. These findings suggest that modeling the pedagogy of the science classroom upon the epistemology of science can result in a mode of learning that can lead to positive identification with physics and the development of scientific literacy.

  19. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    PubMed Central

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists’ Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics—for example, Newton's laws, magnetism, light—is a science of pairwise interaction, while introductory biology—for example, photosynthesis, evolution, cycling of matter in ecosystems—is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work. PMID:23737629

  20. Hunting Solomonoff's Swans: Exploring the Boundary Between Physics and Statistics in Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Nearing, G. S.

    2014-12-01

    Statistical models consistently out-perform conceptual models in the short term, however to account for a nonstationary future (or an unobserved past) scientists prefer to base predictions on unchanging and commutable properties of the universe - i.e., physics. The problem with physically-based hydrology models is, of course, that they aren't really based on physics - they are based on statistical approximations of physical interactions, and we almost uniformly lack an understanding of the entropy associated with these approximations. Thermodynamics is successful precisely because entropy statistics are computable for homogeneous (well-mixed) systems, and ergodic arguments explain the success of Newton's laws to describe systems that are fundamentally quantum in nature. Unfortunately, similar arguments do not hold for systems like watersheds that are heterogeneous at a wide range of scales. Ray Solomonoff formalized the situation in 1968 by showing that given infinite evidence, simultaneously minimizing model complexity and entropy in predictions always leads to the best possible model. The open question in hydrology is about what happens when we don't have infinite evidence - for example, when the future will not look like the past, or when one watershed does not behave like another. How do we isolate stationary and commutable components of watershed behavior? I propose that one possible answer to this dilemma lies in a formal combination of physics and statistics. In this talk I outline my recent analogue (Solomonoff's theorem was digital) of Solomonoff's idea that allows us to quantify the complexity/entropy tradeoff in a way that is intuitive to physical scientists. I show how to formally combine "physical" and statistical methods for model development in a way that allows us to derive the theoretically best possible model given any given physics approximation(s) and available observations. Finally, I apply an analogue of Solomonoff's theorem to evaluate the tradeoff between model complexity and prediction power.

  1. Spiro K. Antiochos Receives 2013 John Adam Fleming Medal: Citation

    NASA Astrophysics Data System (ADS)

    Klimchuk, James A.

    2014-01-01

    The John Adam Fleming Medal is awarded for "original research and technical leadership in geomagnetism, atmospheric electricity, aeronomy, space physics, and related sciences." Originality and technical leadership are exactly the characteristics that distinguish the research of Spiro K. Antiochos. Spiro possesses a truly unique combination of physical insight, creativity, and mastery of the concepts and mathematical and numerical tools of space physics. These talents have allowed him to develop completely original theories for major observational problems and to test and refine those theories using sophisticated numerical simulation codes that he himself helped to develop. Spiro's physical insight is especially impressive. He has an uncanny ability to identify the fundamental aspects of complex problems and to see physical connections where others do not. This can sometimes involve ideas that may initially seem counterintuitive to those with less creativity. Many of Spiro's revolutionary advances have opened up whole new areas of study and shaped the course of space physics. Examples include the breakout model for coronal mass ejections (CMEs), the S-web model for the slow solar wind, and the thermal nonequilibrium model for solar prominences. The breakout model is of special significance to AGU as it strives to promote science for the betterment of humanity. CMEs are enormous explosions on the Sun that can have major "space weather" impacts here on Earth. They affect technologies ranging from communication and navigation systems to electrical power grids. Breakout is the leading theory for why CMEs occur and may one day be the foundation for more accurate space weather forecasting.

  2. Development of Predictive Models of Injury for the Lower Extremity, Lumbar, and Thoracic Spine after discharge from Physical Rehabilitation

    DTIC Science & Technology

    2017-10-01

    discharge from Physical Rehabilitation PRINCIPAL INVESTIGATOR: MAJ Daniel Rhon CONTRACTING ORGANIZATION: The Geneva Foundation Tacoma, WA 98402...and Thoracic Spine after discharge from Physical Rehabilitation 5b. GRANT NUMBER W81XWH-14-2-0141 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...The objective and overall hypothesis is that service member performance on a battery of physical performance tests performed upon discharge from

  3. Physical, policy, and sociocultural characteristics of the primary school environment are positively associated with children's physical activity during class time.

    PubMed

    Martin, Karen; Bremner, Alexandra; Salmon, Jo; Rosenberg, Michael; Giles-Corti, Billie

    2014-03-01

    The objective of this study was to develop a multidomain model to identify key characteristics of the primary school environment associated with children's physical activity (PA) during class-time. Accelerometers were used to calculate time spent in moderate-to-vigorous physical activity during class-time (CMVPA) of 408 sixth-grade children (mean ± SD age 11.1 ± 0.43 years) attending 27 metropolitan primary schools in Perth Western Australia. Child and staff self-report instruments and a school physical environment scan administered by the research team were used to collect data about children and the class and school environments. Hierarchical modeling identified key variables associated with CMVPA. The final multilevel model explained 49% of CMVPA. A physically active physical education (PE) coordinator, fitness sessions incorporated into PE sessions and either a trained PE specialist, classroom teacher or nobody coordinating PE in the school, rather than the deputy principal, were associated with higher CMVPA. The amount of grassed area per student and sporting apparatus on grass were also associated with higher CMVPA. These results highlight the relevance of the school's sociocultural, policy and physical environments in supporting class-based PA. Interventions testing optimization of the school physical, sociocultural and policy environments to support physical activity are warranted.

  4. Mapping university students' epistemic framing of computational physics using network analysis

    NASA Astrophysics Data System (ADS)

    Bodin, Madelen

    2012-06-01

    Solving physics problem in university physics education using a computational approach requires knowledge and skills in several domains, for example, physics, mathematics, programming, and modeling. These competences are in turn related to students’ beliefs about the domains as well as about learning. These knowledge and beliefs components are referred to here as epistemic elements, which together represent the students’ epistemic framing of the situation. The purpose of this study was to investigate university physics students’ epistemic framing when solving and visualizing a physics problem using a particle-spring model system. Students’ epistemic framings are analyzed before and after the task using a network analysis approach on interview transcripts, producing visual representations as epistemic networks. The results show that students change their epistemic framing from a modeling task, with expectancies about learning programming, to a physics task, in which they are challenged to use physics principles and conservation laws in order to troubleshoot and understand their simulations. This implies that the task, even though it is not introducing any new physics, helps the students to develop a more coherent view of the importance of using physics principles in problem solving. The network analysis method used in this study is shown to give intelligible representations of the students’ epistemic framing and is proposed as a useful method of analysis of textual data.

  5. An evidential reasoning extension to quantitative model-based failure diagnosis

    NASA Technical Reports Server (NTRS)

    Gertler, Janos J.; Anderson, Kenneth C.

    1992-01-01

    The detection and diagnosis of failures in physical systems characterized by continuous-time operation are studied. A quantitative diagnostic methodology has been developed that utilizes the mathematical model of the physical system. On the basis of the latter, diagnostic models are derived each of which comprises a set of orthogonal parity equations. To improve the robustness of the algorithm, several models may be used in parallel, providing potentially incomplete and/or conflicting inferences. Dempster's rule of combination is used to integrate evidence from the different models. The basic probability measures are assigned utilizing quantitative information extracted from the mathematical model and from online computation performed therewith.

  6. Capstone: A Geometry-Centric Platform to Enable Physics-Based Simulation and Design of Systems

    DTIC Science & Technology

    2015-10-05

    foundation for the air-vehicle early design tool DaVinci being developed by CREATETM-AV project to enable development of associative models of air...CREATETM-AV solvers Kestrel [11] and Helios [16,17]. Furthermore, it is the foundation for the CREATETM-AV’s DaVinci [9] tool that provides a... Tools and Environments (CREATETM) program [6] aimed at developing a suite of high- performance physics-based computational tools addressing the needs

  7. The effects of recurrent physical abuse on the co-development of behavior problems and posttraumatic stress symptoms among child welfare-involved youth.

    PubMed

    Yoon, Susan; Barnhart, Sheila; Cage, Jamie

    2018-04-27

    The primary aim of the current study was to examine the longitudinal effects of ongoing physical abuse on the co-development of externalizing behavior problems and posttraumatic stress (PTS) symptoms among child welfare-involved adolescents. Using three waves of data from the National Survey of Child and Adolescent Well-Being, we performed unconditional and conditional parallel process latent growth curve modeling in a structural equation modeling framework. The study sample included 491 adolescents who were between 11 and 13 years of age at baseline. Higher levels of initial PTS symptoms were associated with higher levels of externalizing behavior problems, but the rate of change in PTS symptoms were not significantly associated with the rate of change in externalizing behavior problems over time. Although physical abuse was concurrently associated with both externalizing behavior problems and PTS symptoms at all assessment points, there were no lagged effects. Additionally, we found that physical abuse indirectly affects subsequent development of externalizing behavior problems and PTS symptoms through ongoing physical abuse. Findings highlight the comorbidity of externalizing behaviors and PTS symptoms among early adolescents in the child welfare system, underlining the importance of screening for and addressing these problems simultaneously. Findings also point to the need for continued assessment of and protection from ongoing physical abuse during adolescence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Lan; Marquis, Emmanuelle A., E-mail: emarq@umich.edu; Withrow, Travis

    2015-12-14

    Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit formore » spatial resolution.« less

  9. Electromagnetic Physics Models for Parallel Computing Architectures

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.

    2016-10-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.

  10. Aerosol physical properties from satellite horizon inversion

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Malchow, H. L.; Merritt, D. C.; Var, R. E.; Whitney, C. K.

    1973-01-01

    The feasibility is investigated of determining the physical properties of aerosols globally in the altitude region of 10 to 100 km from a satellite horizon scanning experiment. The investigation utilizes a horizon inversion technique previously developed and extended. Aerosol physical properties such as number density, size distribution, and the real and imaginary components of the index of refraction are demonstrated to be invertible in the aerosol size ranges (0.01-0.1 microns), (0.1-1.0 microns), (1.0-10 microns). Extensions of previously developed radiative transfer models and recursive inversion algorithms are displayed.

  11. The Hydra model - a model for what?

    PubMed

    Gierer, Alfred

    2012-01-01

    The introductory personal remarks refer to my motivations for choosing research projects, and for moving from physics to molecular biology and then to development, with Hydra as a model system. Historically, Trembley's discovery of Hydra regeneration in 1744 was the beginning of developmental biology as we understand it, with passionate debates about preformation versus de novo generation, mechanisms versus organisms. In fact, seemingly conflicting bottom-up and top-down concepts are both required in combination to understand development. In modern terms, this means analysing the molecules involved, as well as searching for physical principles underlying development within systems of molecules, cells and tissues. During the last decade, molecular biology has provided surprising and impressive evidence that the same types of molecules and molecular systems are involved in pattern formation in a wide range of organisms, including coelenterates like Hydra, and thus appear to have been "invented" early in evolution. Likewise, the features of certain systems, especially those of developmental regulation, are found in many different organisms. This includes the generation of spatial structures by the interplay of self-enhancing activation and "lateral" inhibitory effects of wider range, which is a main topic of my essay. Hydra regeneration is a particularly clear model for the formation of defined patterns within initially near-uniform tissues. In conclusion, this essay emphasizes the analysis of development in terms of physical laws, including the application of mathematics, and insists that Hydra was, and will continue to be, a rewarding model for understanding general features of embryogenesis and regeneration.

  12. Evaluation of Cirrus Cloud Simulations using ARM Data-Development of Case Study Data Set

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Demoz, Belay; Wang, Yansen; Lin, Ruei-Fong; Lare, Andrew; Mace, Jay; Poellot, Michael; Sassen, Kenneth; Brown, Philip

    2002-01-01

    Cloud-resolving models (CRMs) are being increasingly used to develop parametric treatments of clouds and related processes for use in global climate models (GCMs). CRMs represent the integrated knowledge of the physical processes acting to determine cloud system lifecycle and are well matched to typical observational data in terms of physical parameters/measurables and scale-resolved physical processes. Thus, they are suitable for direct comparison to field observations for model validation and improvement. The goal of this project is to improve state-of-the-art CRMs used for studies of cirrus clouds and to establish a relative calibration with GCMs through comparisons among CRMs, single column model (SCM) versions of the GCMs, and observations. The objective is to compare and evaluate a variety of CRMs and SCMs, under the auspices of the GEWEX Cloud Systems Study (GCSS) Working Group on Cirrus Cloud Systems (WG2), using ARM data acquired at the Southern Great Plains (SGP) site. This poster will report on progress in developing a suitable WG2 case study data set based on the September 26, 1996 ARM IOP case - the Hurricane Nora outflow case. Progress is assessing cloud and other environmental conditions will be described. Results of preliminary simulations using a regional cloud system model (MM5) and a CRM will be discussed. Focal science questions for the model comparison are strongly based on results of the idealized GCSS WG2 cirrus cloud model comparison projects (Idealized Cirrus Cloud Model Comparison Project and Cirrus Parcel Model Comparison Project), which will also be briefly summarized.

  13. Building Better Beginnings: A Case Study of How a Daily Physical Skills Session Is Supporting Overall Learning and Development for Young Boys

    ERIC Educational Resources Information Center

    Chalke, Joy

    2016-01-01

    This case study argues for the consideration of an adult-directed physical skills session as an approach to supporting boys learning in the Early Years Foundation Stage in England. It exemplifies a model of professional development that utilises the individual knowledge and expertise of practitioners to support and extend others' practice. It…

  14. Analysis of a hydraulic a scaled asymmetric labyrinth weir with Ansys-Fluent

    NASA Astrophysics Data System (ADS)

    Otálora Carmona, Andrés Humberto; Santos Granados, Germán Ricardo

    2017-04-01

    This document presents the three dimensional computational modeling of a labyrinth weir, using the version 17.0 of the Computational Fluid Dynamics (CFD) software ANSYS - FLUENT. The computational characteristics of the model such as the geometry consideration, the mesh sensitivity, the numerical scheme, and the turbulence modeling parameters. The volume fraction of the water mixture - air, the velocity profile, the jet trajectory, the discharge coefficient and the velocity field are analyzed. With the purpose of evaluating the hydraulic behavior of the labyrinth weir of the Naveta's hydroelectric, in Apulo - Cundinamarca, was development a 1:21 scale model of the original structure, which was tested in the laboratory of the hydraulic studies in the Escuela Colombiana de Ingeniería Julio Garavito. The scale model of the structure was initially developed to determine the variability of the discharge coefficient with respect to the flow rate and their influence on the water level. It was elaborate because the original weir (labyrinth weir with not symmetrical rectangular section), did not have the capacity to work with the design flow of 31 m3/s, because over 15 m3/s, there were overflows in the adduction channel. This variation of efficiency was due to the thickening of the lateral walls by structural requirements. During the physical modeling doing by Rodríguez, H. and Matamoros H. (2015) in the test channel, it was found that, with the increase in the width of the side walls, the discharge coefficient is reduced an average by 34%, generating an increase of the water level by 0.26 m above the structure. This document aims to develop a splicing methodology between the physical models of a labyrinth weir and numerical modeling, using concepts of computational fluid dynamics and finite volume theories. For this, was carried out a detailed analysis of the variations in the different directions of the main hydraulic variables involved in the behavior, such as, the components of the velocity and the distribution of pressures, For the numerical development, we worked with ANSYS - FLUENT software modeling version 17.0. Initially, a digital model of a conventional triangular weir with a vertical angle of 102° was developed in order to find the most appropriate numerical scheme and conditions. The numerical results were compared with conventional theories, evaluating the path and discharge coefficient. Subsequently, one of the five cycles that compose the labyrinth weir was simulated, evaluating the behavior of the discharge coefficient, the water level, the streamline and the velocity field, with the purpose of understanding the hydraulic variables that are related in these geometries. According to the previous results, the numerical modeling of labyrinth weir was performed, comparing the obtained results with the data of the physical scale model, analyzing the variation of the discharge coefficient, the streamline, velocity field, pressure distribution and shear stress. Finally, based on the lessons learned from physical and numerical modeling, a methodological guide was created for any user with a computational and hydraulic fluid mechanics knowledge to develop a good practice of a computational and physical modeling.

  15. Modeling of laser interactions with composite materials

    DOE PAGES

    Rubenchik, Alexander M.; Boley, Charles D.

    2013-05-07

    In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

  16. Progress in Development of the ITER Plasma Control System Simulation Platform

    NASA Astrophysics Data System (ADS)

    Walker, Michael; Humphreys, David; Sammuli, Brian; Ambrosino, Giuseppe; de Tommasi, Gianmaria; Mattei, Massimiliano; Raupp, Gerhard; Treutterer, Wolfgang; Winter, Axel

    2017-10-01

    We report on progress made and expected uses of the Plasma Control System Simulation Platform (PCSSP), the primary test environment for development of the ITER Plasma Control System (PCS). PCSSP will be used for verification and validation of the ITER PCS Final Design for First Plasma, to be completed in 2020. We discuss the objectives of PCSSP, its overall structure, selected features, application to existing devices, and expected evolution over the lifetime of the ITER PCS. We describe an archiving solution for simulation results, methods for incorporating physics models of the plasma and physical plant (tokamak, actuator, and diagnostic systems) into PCSSP, and defining characteristics of models suitable for a plasma control development environment such as PCSSP. Applications of PCSSP simulation models including resistive plasma equilibrium evolution are demonstrated. PCSSP development supported by ITER Organization under ITER/CTS/6000000037. Resistive evolution code developed under General Atomics' Internal funding. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

  17. Transition Models for Engineering Calculations

    NASA Technical Reports Server (NTRS)

    Fraser, C. J.

    2007-01-01

    While future theoretical and conceptual developments may promote a better understanding of the physical processes involved in the latter stages of boundary layer transition, the designers of rotodynamic machinery and other fluid dynamic devices need effective transition models now. This presentation will therefore center around the development of of some transition models which have been developed as design aids to improve the prediction codes used in the performance evaluation of gas turbine blading. All models are based on Narasimba's concentrated breakdown and spot growth.

  18. Basic research on design analysis methods for rotorcraft vibrations

    NASA Technical Reports Server (NTRS)

    Hanagud, S.

    1991-01-01

    The objective of the present work was to develop a method for identifying physically plausible finite element system models of airframe structures from test data. The assumed models were based on linear elastic behavior with general (nonproportional) damping. Physical plausibility of the identified system matrices was insured by restricting the identification process to designated physical parameters only and not simply to the elements of the system matrices themselves. For example, in a large finite element model the identified parameters might be restricted to the moduli for each of the different materials used in the structure. In the case of damping, a restricted set of damping values might be assigned to finite elements based on the material type and on the fabrication processes used. In this case, different damping values might be associated with riveted, bolted and bonded elements. The method itself is developed first, and several approaches are outlined for computing the identified parameter values. The method is applied first to a simple structure for which the 'measured' response is actually synthesized from an assumed model. Both stiffness and damping parameter values are accurately identified. The true test, however, is the application to a full-scale airframe structure. In this case, a NASTRAN model and actual measured modal parameters formed the basis for the identification of a restricted set of physically plausible stiffness and damping parameters.

  19. A grounded theory of how social support influences physical activity in adolescent girls

    PubMed Central

    Fawkner, Samantha

    2018-01-01

    ABSTRACT Purpose: Adolescent girls are not sufficiently active to achieve health benefits. Social support from friends and family has been positively associated with physical activity in adolescent girls; however it is unclear how social support influences physical activity behaviour. This study aimed to develop a grounded theory of how social support influences physical activity in adolescent girls. Methods: A qualitative, constructivist grounded theory approach was adopted. Individual interviews explored adolescent girls’ perspectives of how significant others’ influenced their physical activity through providing social support, and through modelling physical activity. Results: Participants perceived social support to influence physical activity behaviour through performance improvements, self-efficacy, enjoyment, motivation and by enabling physical activity. Improvements in performance and self-efficacy were also linked to motivation to be active. Girls perceived modelling to influence behaviour through providing opportunities for them to be physically active, and by inspiring them to be active. Conclusion: The grounded theory outlines adolescent girls’ perceptions of how significant others influence their physical activity and provides a framework for future research examining the role of social support on physical activity. PMID:29405881

  20. A grounded theory of how social support influences physical activity in adolescent girls.

    PubMed

    Laird, Yvonne; Fawkner, Samantha; Niven, Ailsa

    2018-12-01

    Adolescent girls are not sufficiently active to achieve health benefits. Social support from friends and family has been positively associated with physical activity in adolescent girls; however it is unclear how social support influences physical activity behaviour. This study aimed to develop a grounded theory of how social support influences physical activity in adolescent girls. A qualitative, constructivist grounded theory approach was adopted. Individual interviews explored adolescent girls' perspectives of how significant others' influenced their physical activity through providing social support, and through modelling physical activity. Participants perceived social support to influence physical activity behaviour through performance improvements, self-efficacy, enjoyment, motivation and by enabling physical activity. Improvements in performance and self-efficacy were also linked to motivation to be active. Girls perceived modelling to influence behaviour through providing opportunities for them to be physically active, and by inspiring them to be active. The grounded theory outlines adolescent girls' perceptions of how significant others influence their physical activity and provides a framework for future research examining the role of social support on physical activity.

  1. Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models

    USGS Publications Warehouse

    Hooten, Mevin B.; Leeds, William B.; Fiechter, Jerome; Wikle, Christopher K.

    2011-01-01

    We present an approach for estimating physical parameters in nonlinear models that relies on an approximation to the mechanistic model itself for computational efficiency. The proposed methodology is validated and applied in two different modeling scenarios: (a) Simulation and (b) lower trophic level ocean ecosystem model. The approach we develop relies on the ability to predict right singular vectors (resulting from a decomposition of computer model experimental output) based on the computer model input and an experimental set of parameters. Critically, we model the right singular vectors in terms of the model parameters via a nonlinear statistical model. Specifically, we focus our attention on first-order models of these right singular vectors rather than the second-order (covariance) structure.

  2. Research-Design Model for Professional Development of Teachers: Designing Lessons with Physics Education Research

    ERIC Educational Resources Information Center

    Eylon, Bat-Sheva; Bagno, Esther

    2006-01-01

    How can one increase the awareness of teachers to the existence and importance of knowledge gained through physics education research (PER) and provide them with capabilities to use it? How can one enrich teachers' physics knowledge and the related pedagogical content knowledge of topics singled out by PER? In this paper we describe a professional…

  3. A Model for Implementing the Project Physics Course for Independent Study. Final Report.

    ERIC Educational Resources Information Center

    Bolin, Calvin

    Included are results of a study conducted to assess the possibilities and effectiveness of learning physics at high school level via independent study. The sample was drawn from a regular high school physics class. During the experiment, no instruction was carried out by any teacher. An auto-instructional system was developed and provided for use…

  4. Using Conceptual Metaphor and Functional Grammar to Explore How Language Used in Physics Affects Student Learning

    ERIC Educational Resources Information Center

    Brookes, David T.; Etkina, Eugenia

    2007-01-01

    This paper introduces a theory about the role of language in learning physics. The theory is developed in the context of physics students and physicists talking and writing about the subject of quantum mechanics. We found that physicists' language encodes different varieties of analogical models through the use of grammar and conceptual metaphor.…

  5. A Useful Demonstration of Calculus in a Physics High School Laboratory

    ERIC Educational Resources Information Center

    Alvarez, Gustavo; Schulte, Jurgen; Stockton, Geoffrey; Wheeler, David

    2018-01-01

    The real power of calculus is revealed when it is applied to actual physical problems. In this paper, we present a calculus inspired physics experiment suitable for high school and undergraduate programs. A model for the theory of the terminal velocity of a falling body subject to a resistive force is developed and its validity tested in an…

  6. Proceedings from Statewide Conference on Physical Education for Handicapped Children and Youth (1st, Ithaca, New York, October 1-3, 1972).

    ERIC Educational Resources Information Center

    Ithaca Coll., NY.

    The conference attempted to improve experiences in physical education and recreation for all children, regardless of handicap, through the preparation and demonstration of model instructional units. The 38 units reported are in the areas of perceptual-motor development, physical fitness, aquatics, basic conditioning exercises for gymnastics,…

  7. The Real and the Mathematical in Quantum Modeling: From Principles to Models and from Models to Principles

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2017-06-01

    The history of mathematical modeling outside physics has been dominated by the use of classical mathematical models, C-models, primarily those of a probabilistic or statistical nature. More recently, however, quantum mathematical models, Q-models, based in the mathematical formalism of quantum theory have become more prominent in psychology, economics, and decision science. The use of Q-models in these fields remains controversial, in part because it is not entirely clear whether Q-models are necessary for dealing with the phenomena in question or whether C-models would still suffice. My aim, however, is not to assess the necessity of Q-models in these fields, but instead to reflect on what the possible applicability of Q-models may tell us about the corresponding phenomena there, vis-à-vis quantum phenomena in physics. In order to do so, I shall first discuss the key reasons for the use of Q-models in physics. In particular, I shall examine the fundamental principles that led to the development of quantum mechanics. Then I shall consider a possible role of similar principles in using Q-models outside physics. Psychology, economics, and decision science borrow already available Q-models from quantum theory, rather than derive them from their own internal principles, while quantum mechanics was derived from such principles, because there was no readily available mathematical model to handle quantum phenomena, although the mathematics ultimately used in quantum did in fact exist then. I shall argue, however, that the principle perspective on mathematical modeling outside physics might help us to understand better the role of Q-models in these fields and possibly to envision new models, conceptually analogous to but mathematically different from those of quantum theory, helpful or even necessary there or in physics itself. I shall suggest one possible type of such models, singularized probabilistic, SP, models, some of which are time-dependent, TDSP-models. The necessity of using such models may change the nature of mathematical modeling in science and, thus, the nature of science, as it happened in the case of Q-models, which not only led to a revolutionary transformation of physics but also opened new possibilities for scientific thinking and mathematical modeling beyond physics.

  8. The Effects of Computer-Assisted Instruction Designed According to 7E Model of Constructivist Learning on Physics Student Teachers' Achievement, Concept Learning, Self-Efficacy Perceptions and Attitudes

    ERIC Educational Resources Information Center

    Kocakaya, Serhat; Gonen, Selahattin

    2010-01-01

    The purpose of this study was to investigate the effects of a Computer-Assisted Instruction designed according to 7E model of constructivist learning(CAI7E) related to "electrostatic'' topic on physics student teachers' cognitive development, misconceptions, self-efficacy perceptions and attitudes. The study was conducted in 2006-2007…

  9. Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer-Indian Ocean METOC Imager (GIFTS-IOMI) Hyperspectral Data

    DTIC Science & Technology

    2002-09-30

    Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer-Indian Ocean METOC Imager ( GIFTS -IOMI) Hyperspectral Data...water quality assessment. OBJECTIVES The objective of this DoD research effort is to develop and demonstrate a fully functional GIFTS - IOMI...environment once GIFTS -IOMI is stationed over the Indian Ocean. The system will provide specialized methods for the characterization of the atmospheric

  10. Response of a One-Biosphere Nutrient Modeling System to Regional Land Use and Management Change

    EPA Science Inventory

    A multi-media system of nitrogen and co-pollutant models describing critical physical and chemical processes that cascade synergistically and competitively through the environment, the economy and society has been developed at the USEPA Office of Research and Development (see fig...

  11. Numerical Modeling of the Hall Thruster Discharge

    DTIC Science & Technology

    2005-04-01

    This collection of seven previously published papers performed under Grant No. FA8655-04-1-3003 provide the background for the development of a new version of the HPHall hybrid code (HPHallv.2) for the numerical modeling of Hall Thruster discharge and new insights on discharge physics obtained during the development.

  12. Systems Engineering of Education I: The Evolution of Systems Thinking in Education, 2nd Edition.

    ERIC Educational Resources Information Center

    Silvern, Leonard C.

    This document methodically traces the development of the fundamental concepts of systems thinking in education from Harbert to contemporary innovators. The discussion explains narrative models, concentrating on educational flowcharting techniques and mathematical models related to developments in engineering and physical science. The presentation…

  13. Mechanobiology by the numbers: a close relationship between biology and physics.

    PubMed

    Schwarz, Ulrich S

    2017-12-01

    Studies of mechanobiology lie at the interface of various scientific disciplines from biology to physics. Accordingly, quantification and mathematical modelling have been instrumental in fuelling the progress in this rapidly developing research field, assisting experimental work on many levels.

  14. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    PubMed

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Summer Institute for Physical Science Teachers

    NASA Astrophysics Data System (ADS)

    Maheswaranathan, Ponn; Calloway, Cliff

    2007-04-01

    A summer institute for physical science teachers was conducted at Winthrop University, June 19-29, 2006. Ninth grade physical science teachers at schools within a 50-mile radius from Winthrop were targeted. We developed a graduate level physics professional development course covering selected topics from both the physics and chemistry content areas of the South Carolina Science Standards. Delivery of the material included traditional lectures and the following new approaches in science teaching: hands-on experiments, group activities, computer based data collection, computer modeling, with group discussions & presentations. Two experienced master teachers assisted us during the delivery of the course. The institute was funded by the South Carolina Department of Education. The requested funds were used for the following: faculty salaries, the University contract course fee, some of the participants' room and board, startup equipment for each teacher, and indirect costs to Winthrop University. Startup equipment included a Pasco stand-alone, portable Xplorer GLX interface with sensors (temperature, voltage, pH, pressure, motion, and sound), and modeling software (Wavefunction's Spartan Student and Odyssey). What we learned and ideas for future K-12 teacher preparation initiatives will be presented.

  16. Patient experiences of burn scars in adults and children and development of a health-related quality of life conceptual model: A qualitative study.

    PubMed

    Simons, Megan; Price, Nathaniel; Kimble, Roy; Tyack, Zephanie

    2016-05-01

    The aim of this study was to understand the impact of burn scars on health-related quality of life (HRQOL) from the perspective of adults and children with burn scars, and caregivers to inform the development of a conceptual model of burn scar HRQOL. Twenty-one participants (adults and children) with burn scars and nine caregivers participated in semi-structured, face-to-face interviews between 2012 and 2013. During the interviews, participants were asked to describe features about their (or their child's) burn scars and its impact on everyday life. Two coders conducted thematic analysis, with consensus achieved through discussion and review with a third coder. The literature on HRQOL models was then reviewed to further inform the development of a conceptual model of burn scar HRQOL. Five themes emerged from the qualitative data: 'physical and sensory symptoms', 'impact of burn scar interventions', 'impact of burn scar symptoms', 'personal factors' and 'change over time'. Caregivers offered further insights into family functioning after burn, and the impacts of burn scars and burn scar interventions on family life. In the conceptual model, symptoms (sensory and physical) of burn scars are considered proximal to HRQOL, with distal indicators including functioning (physical, emotional, social, cognitive), individual factors and the environment. Overall quality of life was affected by HRQOL. Understanding the impact of burn scars on HRQOL and the development of a conceptual model will inform future burn scar research and clinical practice. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  17. Viscoplastic Model Development with an Eye Toward Characterization

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Walker, Kevin P.

    1995-01-01

    A viscoplastic theory is developed that reduces analytically to creep theory under steady-state conditions. A viscoplastic model is constructed within this theoretical framework by defining material functions that have close ties to the physics of inelasticity. As a consequence, this model is easily characterized-only steady-state creep data, monotonic stress-strain curves, and saturated stress-strain hysteresis loops are required.

  18. Developing and applying habitat models using forest inventory data: an example using a terrestrial salamander

    Treesearch

    Hartwell H. Welsh Jr; Jeffrey R. Dunk; William J. Zielinski

    2004-01-01

    We provide a framework for developing predictive species habitat models using preexisting vegetation, physical, and spatial data in association with animal sampling data. The resulting models are used to evaluate questions relevant to species conservation, in particular, comparing occurrence estimates in reserved and unreserved lands. We used an information–theoretic...

  19. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Allen, Christopher; Chu, S. Reynold

    2008-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles to ensure compliance with acoustic requirements and thus provide a safe and habitable acoustic environment for the crews, and to validate developed models via building physical mockups and conducting acoustic measurements.

  20. Rich context information for just-in-time adaptive intervention promoting physical activity.

    PubMed

    Cruciani, F; Nugent, C; Cleland, I; McCullagh, P

    2017-07-01

    Sedentary lifestyle and inadequate levels of physical activity represent two serious health risk factors. Nevertheless, within developed countries, 60% of people aged over 60 are deemed to be sedentary. Consequently, interest in behavior change to promote physical activity is increasing. In particular, the role of emerging mobile apps to facilitate behavior change has shown promising results. Smart technologies can help in providing rich context information including an objective assessment of the level of physical activity and information on the emotional and physiological state of the person. Collectively, this can be used to develop innovative persuasive solutions for adaptive behavior change. Such solutions offer potential in reducing levels of sedentary behavior. This work presents a study exploring new ways of employing smart technologies to facilitate behavior change. It is achieved by means of (i) developing a knowledge base on sedentary behaviors and recommended physical activity guidelines, and (ii) a context model able to combine information on physical activity, location, and a user's diary to develop a context-aware virtual coach with the ability to select the most appropriate behavior change strategy on a case by case basis.

Top