Sample records for develop robust algorithms

  1. Robust control algorithms for Mars aerobraking

    NASA Technical Reports Server (NTRS)

    Shipley, Buford W., Jr.; Ward, Donald T.

    1992-01-01

    Four atmospheric guidance concepts have been adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. The first two offer improvements to the Analytic Predictor Corrector (APC) to increase its robustness to density variations. The second two are variations of a new Liapunov tracking exit phase algorithm, developed to guide the vehicle along a reference trajectory. These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. MARSGRAM is used to develop realistic atmospheres for the study. When square wave density pulses perturb the atmosphere all four controllers are successful. The algorithms are tested against atmospheres where the inbound and outbound density functions are different. Square wave density pulses are again used, but only for the outbound leg of the trajectory. Additionally, sine waves are used to perturb the density function. The new algorithms are found to be more robust than any previously tested and a Liapunov controller is selected as the most robust control algorithm overall examined.

  2. Robust Control Systems.

    DTIC Science & Technology

    1981-12-01

    time control system algorithms that will perform adequately (i.e., at least maintain closed-loop system stability) when ucertain parameters in the...system design models vary significantly. Such a control algorithm is said to have stability robustness-or more simply is said to be "robust". This...cas6s above, the performance is analyzed using a covariance analysis. The development of all the controllers and the performance analysis algorithms is

  3. Robust consensus algorithm for multi-agent systems with exogenous disturbances under convergence conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Yulian; Liu, Jianchang; Tan, Shubin; Ming, Pingsong

    2014-09-01

    In this paper, a robust consensus algorithm is developed and sufficient conditions for convergence to consensus are proposed for a multi-agent system (MAS) with exogenous disturbances subject to partial information. By utilizing H∞ robust control, differential game theory and a design-based approach, the consensus problem of the MAS with exogenous bounded interference is resolved and the disturbances are restrained, simultaneously. Attention is focused on designing an H∞ robust controller (the robust consensus algorithm) based on minimisation of our proposed rational and individual cost functions according to goals of the MAS. Furthermore, sufficient conditions for convergence of the robust consensus algorithm are given. An example is employed to demonstrate that our results are effective and more capable to restrain exogenous disturbances than the existing literature.

  4. Unsupervised, Robust Estimation-based Clustering for Multispectral Images

    NASA Technical Reports Server (NTRS)

    Netanyahu, Nathan S.

    1997-01-01

    To prepare for the challenge of handling the archiving and querying of terabyte-sized scientific spatial databases, the NASA Goddard Space Flight Center's Applied Information Sciences Branch (AISB, Code 935) developed a number of characterization algorithms that rely on supervised clustering techniques. The research reported upon here has been aimed at continuing the evolution of some of these supervised techniques, namely the neural network and decision tree-based classifiers, plus extending the approach to incorporating unsupervised clustering algorithms, such as those based on robust estimation (RE) techniques. The algorithms developed under this task should be suited for use by the Intelligent Information Fusion System (IIFS) metadata extraction modules, and as such these algorithms must be fast, robust, and anytime in nature. Finally, so that the planner/schedule module of the IlFS can oversee the use and execution of these algorithms, all information required by the planner/scheduler must be provided to the IIFS development team to ensure the timely integration of these algorithms into the overall system.

  5. LMI-Based Generation of Feedback Laws for a Robust Model Predictive Control Algorithm

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Carson, John M., III

    2007-01-01

    This technical note provides a mathematical proof of Corollary 1 from the paper 'A Nonlinear Model Predictive Control Algorithm with Proven Robustness and Resolvability' that appeared in the 2006 Proceedings of the American Control Conference. The proof was omitted for brevity in the publication. The paper was based on algorithms developed for the FY2005 R&TD (Research and Technology Development) project for Small-body Guidance, Navigation, and Control [2].The framework established by the Corollary is for a robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems that guarantees the resolvability of the associated nite-horizon optimal control problem in a receding-horizon implementation. Additional details of the framework are available in the publication.

  6. Robust Kalman filter design for predictive wind shear detection

    NASA Technical Reports Server (NTRS)

    Stratton, Alexander D.; Stengel, Robert F.

    1991-01-01

    Severe, low-altitude wind shear is a threat to aviation safety. Airborne sensors under development measure the radial component of wind along a line directly in front of an aircraft. In this paper, optimal estimation theory is used to define a detection algorithm to warn of hazardous wind shear from these sensors. To achieve robustness, a wind shear detection algorithm must distinguish threatening wind shear from less hazardous gustiness, despite variations in wind shear structure. This paper presents statistical analysis methods to refine wind shear detection algorithm robustness. Computational methods predict the ability to warn of severe wind shear and avoid false warning. Comparative capability of the detection algorithm as a function of its design parameters is determined, identifying designs that provide robust detection of severe wind shear.

  7. Multicamera polarized vision for the orientation with the skylight polarization patterns

    NASA Astrophysics Data System (ADS)

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Zhang, Lilian; Wang, Yujie

    2018-04-01

    A robust orientation algorithm based on the skylight polarization patterns for the urban ground vehicle is presented. We present the orientation model with the Rayleigh scattering and propose the robust orientation algorithm with the total least square. The proposed algorithm can utilize the whole sky area polarization patterns for realizing a more robust and accurate orientation. To enhance the algorithm's robustness in the urban environment, we develop a real-time method that uses the gradient of the degree of the polarization to remove the obstacles in the polarization image. In addition, our algorithm can solve the ambiguity problem of the polarized orientation without any other sensors. We also conduct a static rotating and a dynamic car experiments to evaluate the algorithm. The results demonstrate that our proposed algorithm can provide an accurate orientation estimation for the ground vehicle in the open and urban environments-the root-mean-square error in the static experiment is 0.28 deg and in the dynamic experiment is 0.81 deg. Finally, we discuss insights gained with respect to further work in optics and robotics.

  8. A robust statistical estimation (RoSE) algorithm jointly recovers the 3D location and intensity of single molecules accurately and precisely

    NASA Astrophysics Data System (ADS)

    Mazidi, Hesam; Nehorai, Arye; Lew, Matthew D.

    2018-02-01

    In single-molecule (SM) super-resolution microscopy, the complexity of a biological structure, high molecular density, and a low signal-to-background ratio (SBR) may lead to imaging artifacts without a robust localization algorithm. Moreover, engineered point spread functions (PSFs) for 3D imaging pose difficulties due to their intricate features. We develop a Robust Statistical Estimation algorithm, called RoSE, that enables joint estimation of the 3D location and photon counts of SMs accurately and precisely using various PSFs under conditions of high molecular density and low SBR.

  9. A Robustly Stabilizing Model Predictive Control Algorithm

    NASA Technical Reports Server (NTRS)

    Ackmece, A. Behcet; Carson, John M., III

    2007-01-01

    A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.

  10. Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms

    PubMed Central

    Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon

    2011-01-01

    Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532

  11. Robust Vision-Based Pose Estimation Algorithm for AN Uav with Known Gravity Vector

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2016-06-01

    Accurate estimation of camera external orientation with respect to a known object is one of the central problems in photogrammetry and computer vision. In recent years this problem is gaining an increasing attention in the field of UAV autonomous flight. Such application requires a real-time performance and robustness of the external orientation estimation algorithm. The accuracy of the solution is strongly dependent on the number of reference points visible on the given image. The problem only has an analytical solution if 3 or more reference points are visible. However, in limited visibility conditions it is often needed to perform external orientation with only 2 visible reference points. In such case the solution could be found if the gravity vector direction in the camera coordinate system is known. A number of algorithms for external orientation estimation for the case of 2 known reference points and a gravity vector were developed to date. Most of these algorithms provide analytical solution in the form of polynomial equation that is subject to large errors in the case of complex reference points configurations. This paper is focused on the development of a new computationally effective and robust algorithm for external orientation based on positions of 2 known reference points and a gravity vector. The algorithm implementation for guidance of a Parrot AR.Drone 2.0 micro-UAV is discussed. The experimental evaluation of the algorithm proved its computational efficiency and robustness against errors in reference points positions and complex configurations.

  12. Robust Control Algorithm for a Two Cart System and an Inverted Pendulum

    NASA Technical Reports Server (NTRS)

    Wilson, Chris L.; Capo-Lugo, Pedro

    2011-01-01

    The Rectilinear Control System can be used to simulate a launch vehicle during liftoff. Several control schemes have been developed that can control different dynamic models of the rectilinear plant. A robust control algorithm was developed that can control a pendulum to maintain an inverted position. A fluid slosh tank will be attached to the pendulum in order to test robustness in the presence of unknown slosh characteristics. The rectilinear plant consists of a DC motor and three carts mounted in series. Each cart s weight can be adjusted with brass masses and the carts can be coupled with springs. The pendulum is mounted on the first cart and an adjustable air damper can be attached to the third cart if desired. Each cart and the pendulum have a quadrature encoder to determine position. Full state feedback was implemented in order to develop the control algorithm along with a state estimator to determine the velocity states of the system. A MATLAB program was used to convert the state space matrices from continuous time to discrete time. This program also used a desired phase margin and damping ratio to determine the feedback gain matrix that would be used in the LabVIEW program. This experiment will allow engineers to gain a better understanding of liquid propellant slosh dynamics, therefore enabling them to develop more robust control algorithms for launch vehicle systems

  13. A hybrid multi-objective imperialist competitive algorithm and Monte Carlo method for robust safety design of a rail vehicle

    NASA Astrophysics Data System (ADS)

    Nejlaoui, Mohamed; Houidi, Ajmi; Affi, Zouhaier; Romdhane, Lotfi

    2017-10-01

    This paper deals with the robust safety design optimization of a rail vehicle system moving in short radius curved tracks. A combined multi-objective imperialist competitive algorithm and Monte Carlo method is developed and used for the robust multi-objective optimization of the rail vehicle system. This robust optimization of rail vehicle safety considers simultaneously the derailment angle and its standard deviation where the design parameters uncertainties are considered. The obtained results showed that the robust design reduces significantly the sensitivity of the rail vehicle safety to the design parameters uncertainties compared to the determinist one and to the literature results.

  14. Statistics based sampling for controller and estimator design

    NASA Astrophysics Data System (ADS)

    Tenne, Dirk

    The purpose of this research is the development of statistical design tools for robust feed-forward/feedback controllers and nonlinear estimators. This dissertation is threefold and addresses the aforementioned topics nonlinear estimation, target tracking and robust control. To develop statistically robust controllers and nonlinear estimation algorithms, research has been performed to extend existing techniques, which propagate the statistics of the state, to achieve higher order accuracy. The so-called unscented transformation has been extended to capture higher order moments. Furthermore, higher order moment update algorithms based on a truncated power series have been developed. The proposed techniques are tested on various benchmark examples. Furthermore, the unscented transformation has been utilized to develop a three dimensional geometrically constrained target tracker. The proposed planar circular prediction algorithm has been developed in a local coordinate framework, which is amenable to extension of the tracking algorithm to three dimensional space. This tracker combines the predictions of a circular prediction algorithm and a constant velocity filter by utilizing the Covariance Intersection. This combined prediction can be updated with the subsequent measurement using a linear estimator. The proposed technique is illustrated on a 3D benchmark trajectory, which includes coordinated turns and straight line maneuvers. The third part of this dissertation addresses the design of controller which include knowledge of parametric uncertainties and their distributions. The parameter distributions are approximated by a finite set of points which are calculated by the unscented transformation. This set of points is used to design robust controllers which minimize a statistical performance of the plant over the domain of uncertainty consisting of a combination of the mean and variance. The proposed technique is illustrated on three benchmark problems. The first relates to the design of prefilters for a linear and nonlinear spring-mass-dashpot system and the second applies a feedback controller to a hovering helicopter. Lastly, the statistical robust controller design is devoted to a concurrent feed-forward/feedback controller structure for a high-speed low tension tape drive.

  15. A Robust Locally Preconditioned Semi-Coarsening Multigrid Algorithm for the 2-D Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Cain, Michael D.

    1999-01-01

    The goal of this thesis is to develop an efficient and robust locally preconditioned semi-coarsening multigrid algorithm for the two-dimensional Navier-Stokes equations. This thesis examines the performance of the multigrid algorithm with local preconditioning for an upwind-discretization of the Navier-Stokes equations. A block Jacobi iterative scheme is used because of its high frequency error mode damping ability. At low Mach numbers, the performance of a flux preconditioner is investigated. The flux preconditioner utilizes a new limiting technique based on local information that was developed by Siu. Full-coarsening and-semi-coarsening are examined as well as the multigrid V-cycle and full multigrid. The numerical tests were performed on a NACA 0012 airfoil at a range of Mach numbers. The tests show that semi-coarsening with flux preconditioning is the most efficient and robust combination of coarsening strategy, and iterative scheme - especially at low Mach numbers.

  16. Control design for robust stability in linear regulators: Application to aerospace flight control

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1986-01-01

    Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.

  17. Automatic Image Registration of Multimodal Remotely Sensed Data with Global Shearlet Features

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2015-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone.

  18. Automatic Image Registration of Multi-Modal Remotely Sensed Data with Global Shearlet Features

    PubMed Central

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2017-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone. PMID:29123329

  19. Fire flame detection based on GICA and target tracking

    NASA Astrophysics Data System (ADS)

    Rong, Jianzhong; Zhou, Dechuang; Yao, Wei; Gao, Wei; Chen, Juan; Wang, Jian

    2013-04-01

    To improve the video fire detection rate, a robust fire detection algorithm based on the color, motion and pattern characteristics of fire targets was proposed, which proved a satisfactory fire detection rate for different fire scenes. In this fire detection algorithm: (a) a rule-based generic color model was developed based on analysis on a large quantity of flame pixels; (b) from the traditional GICA (Geometrical Independent Component Analysis) model, a Cumulative Geometrical Independent Component Analysis (C-GICA) model was developed for motion detection without static background and (c) a BP neural network fire recognition model based on multi-features of the fire pattern was developed. Fire detection tests on benchmark fire video clips of different scenes have shown the robustness, accuracy and fast-response of the algorithm.

  20. Vehicle active steering control research based on two-DOF robust internal model control

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun

    2016-07-01

    Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.

  1. Robust spike classification based on frequency domain neural waveform features.

    PubMed

    Yang, Chenhui; Yuan, Yuan; Si, Jennie

    2013-12-01

    We introduce a new spike classification algorithm based on frequency domain features of the spike snippets. The goal for the algorithm is to provide high classification accuracy, low false misclassification, ease of implementation, robustness to signal degradation, and objectivity in classification outcomes. In this paper, we propose a spike classification algorithm based on frequency domain features (CFDF). It makes use of frequency domain contents of the recorded neural waveforms for spike classification. The self-organizing map (SOM) is used as a tool to determine the cluster number intuitively and directly by viewing the SOM output map. After that, spike classification can be easily performed using clustering algorithms such as the k-Means. In conjunction with our previously developed multiscale correlation of wavelet coefficient (MCWC) spike detection algorithm, we show that the MCWC and CFDF detection and classification system is robust when tested on several sets of artificial and real neural waveforms. The CFDF is comparable to or outperforms some popular automatic spike classification algorithms with artificial and real neural data. The detection and classification of neural action potentials or neural spikes is an important step in single-unit-based neuroscientific studies and applications. After the detection of neural snippets potentially containing neural spikes, a robust classification algorithm is applied for the analysis of the snippets to (1) extract similar waveforms into one class for them to be considered coming from one unit, and to (2) remove noise snippets if they do not contain any features of an action potential. Usually, a snippet is a small 2 or 3 ms segment of the recorded waveform, and differences in neural action potentials can be subtle from one unit to another. Therefore, a robust, high performance classification system like the CFDF is necessary. In addition, the proposed algorithm does not require any assumptions on statistical properties of the noise and proves to be robust under noise contamination.

  2. Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Buschek, Harald; Calise, Anthony J.

    1996-01-01

    Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.

  3. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series

    NASA Astrophysics Data System (ADS)

    Min, Min; Wu, Chunqiang; Li, Chuan; Liu, Hui; Xu, Na; Wu, Xiao; Chen, Lin; Wang, Fu; Sun, Fenglin; Qin, Danyu; Wang, Xi; Li, Bo; Zheng, Zhaojun; Cao, Guangzhen; Dong, Lixin

    2017-08-01

    Fengyun-4A (FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in 2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. To support the major objective of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group (AWG). Both testbeds, written in FORTRAN and C programming languages for Linux or UNIX systems, have been tested successfully by using Intel/g compilers. Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been retrieved successfully through using a proxy imager, Himawari-8/Advanced Himawari Imager (AHI), and sounder data, obtained from the Atmospheric InfraRed Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the imager testbed—a near real-time processing system for Himawari-8/AHI data for use by Chinese weather forecasters. Consequently, robust and flexible science product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.

  4. Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.

    PubMed

    Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi

    2013-01-01

    The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.

  5. Robust linearized image reconstruction for multifrequency EIT of the breast.

    PubMed

    Boverman, Gregory; Kao, Tzu-Jen; Kulkarni, Rujuta; Kim, Bong Seok; Isaacson, David; Saulnier, Gary J; Newell, Jonathan C

    2008-10-01

    Electrical impedance tomography (EIT) is a developing imaging modality that is beginning to show promise for detecting and characterizing tumors in the breast. At Rensselaer Polytechnic Institute, we have developed a combined EIT-tomosynthesis system that allows for the coregistered and simultaneous analysis of the breast using EIT and X-ray imaging. A significant challenge in EIT is the design of computationally efficient image reconstruction algorithms which are robust to various forms of model mismatch. Specifically, we have implemented a scaling procedure that is robust to the presence of a thin highly-resistive layer of skin at the boundary of the breast and we have developed an algorithm to detect and exclude from the image reconstruction electrodes that are in poor contact with the breast. In our initial clinical studies, it has been difficult to ensure that all electrodes make adequate contact with the breast, and thus procedures for the use of data sets containing poorly contacting electrodes are particularly important. We also present a novel, efficient method to compute the Jacobian matrix for our linearized image reconstruction algorithm by reducing the computation of the sensitivity for each voxel to a quadratic form. Initial clinical results are presented, showing the potential of our algorithms to detect and localize breast tumors.

  6. Robustness analysis of superpixel algorithms to image blur, additive Gaussian noise, and impulse noise

    NASA Astrophysics Data System (ADS)

    Brekhna, Brekhna; Mahmood, Arif; Zhou, Yuanfeng; Zhang, Caiming

    2017-11-01

    Superpixels have gradually become popular in computer vision and image processing applications. However, no comprehensive study has been performed to evaluate the robustness of superpixel algorithms in regard to common forms of noise in natural images. We evaluated the robustness of 11 recently proposed algorithms to different types of noise. The images were corrupted with various degrees of Gaussian blur, additive white Gaussian noise, and impulse noise that either made the object boundaries weak or added extra information to it. We performed a robustness analysis of simple linear iterative clustering (SLIC), Voronoi Cells (VCells), flooding-based superpixel generation (FCCS), bilateral geodesic distance (Bilateral-G), superpixel via geodesic distance (SSS-G), manifold SLIC (M-SLIC), Turbopixels, superpixels extracted via energy-driven sampling (SEEDS), lazy random walk (LRW), real-time superpixel segmentation by DBSCAN clustering, and video supervoxels using partially absorbing random walks (PARW) algorithms. The evaluation process was carried out both qualitatively and quantitatively. For quantitative performance comparison, we used achievable segmentation accuracy (ASA), compactness, under-segmentation error (USE), and boundary recall (BR) on the Berkeley image database. The results demonstrated that all algorithms suffered performance degradation due to noise. For Gaussian blur, Bilateral-G exhibited optimal results for ASA and USE measures, SLIC yielded optimal compactness, whereas FCCS and DBSCAN remained optimal for BR. For the case of additive Gaussian and impulse noises, FCCS exhibited optimal results for ASA, USE, and BR, whereas Bilateral-G remained a close competitor in ASA and USE for Gaussian noise only. Additionally, Turbopixel demonstrated optimal performance for compactness for both types of noise. Thus, no single algorithm was able to yield optimal results for all three types of noise across all performance measures. Conclusively, to solve real-world problems effectively, more robust superpixel algorithms must be developed.

  7. Chinese License Plates Recognition Method Based on A Robust and Efficient Feature Extraction and BPNN Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Xie, Fei; Zhao, Jing; Sun, Rui; Zhang, Lei; Zhang, Yue

    2018-04-01

    The prosperity of license plate recognition technology has made great contribution to the development of Intelligent Transport System (ITS). In this paper, a robust and efficient license plate recognition method is proposed which is based on a combined feature extraction model and BPNN (Back Propagation Neural Network) algorithm. Firstly, the candidate region of the license plate detection and segmentation method is developed. Secondly, a new feature extraction model is designed considering three sets of features combination. Thirdly, the license plates classification and recognition method using the combined feature model and BPNN algorithm is presented. Finally, the experimental results indicate that the license plate segmentation and recognition both can be achieved effectively by the proposed algorithm. Compared with three traditional methods, the recognition accuracy of the proposed method has increased to 95.7% and the consuming time has decreased to 51.4ms.

  8. Noise suppression methods for robust speech processing

    NASA Astrophysics Data System (ADS)

    Boll, S. F.; Ravindra, H.; Randall, G.; Armantrout, R.; Power, R.

    1980-05-01

    Robust speech processing in practical operating environments requires effective environmental and processor noise suppression. This report describes the technical findings and accomplishments during this reporting period for the research program funded to develop real time, compressed speech analysis synthesis algorithms whose performance in invariant under signal contamination. Fulfillment of this requirement is necessary to insure reliable secure compressed speech transmission within realistic military command and control environments. Overall contributions resulting from this research program include the understanding of how environmental noise degrades narrow band, coded speech, development of appropriate real time noise suppression algorithms, and development of speech parameter identification methods that consider signal contamination as a fundamental element in the estimation process. This report describes the current research and results in the areas of noise suppression using the dual input adaptive noise cancellation using the short time Fourier transform algorithms, articulation rate change techniques, and a description of an experiment which demonstrated that the spectral subtraction noise suppression algorithm can improve the intelligibility of 2400 bps, LPC 10 coded, helicopter speech by 10.6 point.

  9. New development of the image matching algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqiang; Feng, Zhao

    2018-04-01

    To study the image matching algorithm, algorithm four elements are described, i.e., similarity measurement, feature space, search space and search strategy. Four common indexes for evaluating the image matching algorithm are described, i.e., matching accuracy, matching efficiency, robustness and universality. Meanwhile, this paper describes the principle of image matching algorithm based on the gray value, image matching algorithm based on the feature, image matching algorithm based on the frequency domain analysis, image matching algorithm based on the neural network and image matching algorithm based on the semantic recognition, and analyzes their characteristics and latest research achievements. Finally, the development trend of image matching algorithm is discussed. This study is significant for the algorithm improvement, new algorithm design and algorithm selection in practice.

  10. Control algorithms for aerobraking in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Ward, Donald T.; Shipley, Buford W., Jr.

    1991-01-01

    The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC.

  11. Exploiting structure: Introduction and motivation

    NASA Technical Reports Server (NTRS)

    Xu, Zhong Ling

    1993-01-01

    Research activities performed during the period of 29 June 1993 through 31 Aug. 1993 are summarized. The Robust Stability of Systems where transfer function or characteristic polynomial are multilinear affine functions of parameters of interest in two directions, Algorithmic and Theoretical, was developed. In the algorithmic direction, a new approach that reduces the computational burden of checking the robust stability of the system with multilinear uncertainty is found. This technique is called 'Stability by linear process.' In fact, the 'Stability by linear process' described gives an algorithm. In analysis, we obtained a robustness criterion for the family of polynomials with coefficients of multilinear affine function in the coefficient space and obtained the result for the robust stability of diamond families of polynomials with complex coefficients also. We obtained the limited results for SPR design and we provide a framework for solving ACS. Finally, copies of the outline of our results are provided in the appendix. Also, there is an administration issue in the appendix.

  12. Many-objective robust decision making for water allocation under climate change.

    PubMed

    Yan, Dan; Ludwig, Fulco; Huang, He Qing; Werners, Saskia E

    2017-12-31

    Water allocation is facing profound challenges due to climate change uncertainties. To identify adaptive water allocation strategies that are robust to climate change uncertainties, a model framework combining many-objective robust decision making and biophysical modeling is developed for large rivers. The framework was applied to the Pearl River basin (PRB), China where sufficient flow to the delta is required to reduce saltwater intrusion in the dry season. Before identifying and assessing robust water allocation plans for the future, the performance of ten state-of-the-art MOEAs (multi-objective evolutionary algorithms) is evaluated for the water allocation problem in the PRB. The Borg multi-objective evolutionary algorithm (Borg MOEA), which is a self-adaptive optimization algorithm, has the best performance during the historical periods. Therefore it is selected to generate new water allocation plans for the future (2079-2099). This study shows that robust decision making using carefully selected MOEAs can help limit saltwater intrusion in the Pearl River Delta. However, the framework could perform poorly due to larger than expected climate change impacts on water availability. Results also show that subjective design choices from the researchers and/or water managers could potentially affect the ability of the model framework, and cause the most robust water allocation plans to fail under future climate change. Developing robust allocation plans in a river basin suffering from increasing water shortage requires the researchers and water managers to well characterize future climate change of the study regions and vulnerabilities of their tools. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Markov chain algorithms: a template for building future robust low-power systems

    PubMed Central

    Deka, Biplab; Birklykke, Alex A.; Duwe, Henry; Mansinghka, Vikash K.; Kumar, Rakesh

    2014-01-01

    Although computational systems are looking towards post CMOS devices in the pursuit of lower power, the expected inherent unreliability of such devices makes it difficult to design robust systems without additional power overheads for guaranteeing robustness. As such, algorithmic structures with inherent ability to tolerate computational errors are of significant interest. We propose to cast applications as stochastic algorithms based on Markov chains (MCs) as such algorithms are both sufficiently general and tolerant to transition errors. We show with four example applications—Boolean satisfiability, sorting, low-density parity-check decoding and clustering—how applications can be cast as MC algorithms. Using algorithmic fault injection techniques, we demonstrate the robustness of these implementations to transition errors with high error rates. Based on these results, we make a case for using MCs as an algorithmic template for future robust low-power systems. PMID:24842030

  14. A development of intelligent entertainment robot for home life

    NASA Astrophysics Data System (ADS)

    Kim, Cheoltaek; Lee, Ju-Jang

    2005-12-01

    The purpose of this paper was to present the study and design idea for entertainment robot with educational purpose (IRFEE). The robot has been designed for home life considering dependability and interaction. The developed robot has three objectives - 1. Develop autonomous robot, 2. Design robot considering mobility and robustness, 3. Develop robot interface and software considering entertainment and education functionalities. The autonomous navigation was implemented by active vision based SLAM and modified EPF algorithm. The two differential wheels, the pan-tilt were designed mobility and robustness and the exterior was designed considering esthetic element and minimizing interference. The speech and tracking algorithm provided the good interface with human. The image transfer and Internet site connection is needed for service of remote connection and educational purpose.

  15. Optimization-Based Robust Nonlinear Control

    DTIC Science & Technology

    2006-08-01

    ABSTRACT New control algorithms were developed for robust stabilization of nonlinear dynamical systems . Novel, linear matrix inequality-based synthesis...was to further advance optimization-based robust nonlinear control design, for general nonlinear systems (especially in discrete time ), for linear...Teel, IEEE Transactions on Control Systems Technology, vol. 14, no. 3, p. 398-407, May 2006. 3. "A unified framework for input-to-state stability in

  16. A robust data scaling algorithm to improve classification accuracies in biomedical data.

    PubMed

    Cao, Xi Hang; Stojkovic, Ivan; Obradovic, Zoran

    2016-09-09

    Machine learning models have been adapted in biomedical research and practice for knowledge discovery and decision support. While mainstream biomedical informatics research focuses on developing more accurate models, the importance of data preprocessing draws less attention. We propose the Generalized Logistic (GL) algorithm that scales data uniformly to an appropriate interval by learning a generalized logistic function to fit the empirical cumulative distribution function of the data. The GL algorithm is simple yet effective; it is intrinsically robust to outliers, so it is particularly suitable for diagnostic/classification models in clinical/medical applications where the number of samples is usually small; it scales the data in a nonlinear fashion, which leads to potential improvement in accuracy. To evaluate the effectiveness of the proposed algorithm, we conducted experiments on 16 binary classification tasks with different variable types and cover a wide range of applications. The resultant performance in terms of area under the receiver operation characteristic curve (AUROC) and percentage of correct classification showed that models learned using data scaled by the GL algorithm outperform the ones using data scaled by the Min-max and the Z-score algorithm, which are the most commonly used data scaling algorithms. The proposed GL algorithm is simple and effective. It is robust to outliers, so no additional denoising or outlier detection step is needed in data preprocessing. Empirical results also show models learned from data scaled by the GL algorithm have higher accuracy compared to the commonly used data scaling algorithms.

  17. Estimation of soil thermal properties using in-situ temperature measurements in the active layer and permafrost.

    Treesearch

    D.J. Nicolsky; V.E. Romanovsky; G.G. Panteleev

    2008-01-01

    A variational data assimilation algorithm is developed to reconstruct thermal properties, porosity, and parametrization of the unfrozen water content for fully saturated soils. The algorithm is tested with simulated synthetic temperatures. The simulations are performed to determine the robustness and sensitivity of algorithm to estimate soil properties from in-situ...

  18. FANSe2: a robust and cost-efficient alignment tool for quantitative next-generation sequencing applications.

    PubMed

    Xiao, Chuan-Le; Mai, Zhi-Biao; Lian, Xin-Lei; Zhong, Jia-Yong; Jin, Jing-Jie; He, Qing-Yu; Zhang, Gong

    2014-01-01

    Correct and bias-free interpretation of the deep sequencing data is inevitably dependent on the complete mapping of all mappable reads to the reference sequence, especially for quantitative RNA-seq applications. Seed-based algorithms are generally slow but robust, while Burrows-Wheeler Transform (BWT) based algorithms are fast but less robust. To have both advantages, we developed an algorithm FANSe2 with iterative mapping strategy based on the statistics of real-world sequencing error distribution to substantially accelerate the mapping without compromising the accuracy. Its sensitivity and accuracy are higher than the BWT-based algorithms in the tests using both prokaryotic and eukaryotic sequencing datasets. The gene identification results of FANSe2 is experimentally validated, while the previous algorithms have false positives and false negatives. FANSe2 showed remarkably better consistency to the microarray than most other algorithms in terms of gene expression quantifications. We implemented a scalable and almost maintenance-free parallelization method that can utilize the computational power of multiple office computers, a novel feature not present in any other mainstream algorithm. With three normal office computers, we demonstrated that FANSe2 mapped an RNA-seq dataset generated from an entire Illunima HiSeq 2000 flowcell (8 lanes, 608 M reads) to masked human genome within 4.1 hours with higher sensitivity than Bowtie/Bowtie2. FANSe2 thus provides robust accuracy, full indel sensitivity, fast speed, versatile compatibility and economical computational utilization, making it a useful and practical tool for deep sequencing applications. FANSe2 is freely available at http://bioinformatics.jnu.edu.cn/software/fanse2/.

  19. A robust multilevel simultaneous eigenvalue solver

    NASA Technical Reports Server (NTRS)

    Costiner, Sorin; Taasan, Shlomo

    1993-01-01

    Multilevel (ML) algorithms for eigenvalue problems are often faced with several types of difficulties such as: the mixing of approximated eigenvectors by the solution process, the approximation of incomplete clusters of eigenvectors, the poor representation of solution on coarse levels, and the existence of close or equal eigenvalues. Algorithms that do not treat appropriately these difficulties usually fail, or their performance degrades when facing them. These issues motivated the development of a robust adaptive ML algorithm which treats these difficulties, for the calculation of a few eigenvectors and their corresponding eigenvalues. The main techniques used in the new algorithm include: the adaptive completion and separation of the relevant clusters on different levels, the simultaneous treatment of solutions within each cluster, and the robustness tests which monitor the algorithm's efficiency and convergence. The eigenvectors' separation efficiency is based on a new ML projection technique generalizing the Rayleigh Ritz projection, combined with a technique, the backrotations. These separation techniques, when combined with an FMG formulation, in many cases lead to algorithms of O(qN) complexity, for q eigenvectors of size N on the finest level. Previously developed ML algorithms are less focused on the mentioned difficulties. Moreover, algorithms which employ fine level separation techniques are of O(q(sub 2)N) complexity and usually do not overcome all these difficulties. Computational examples are presented where Schrodinger type eigenvalue problems in 2-D and 3-D, having equal and closely clustered eigenvalues, are solved with the efficiency of the Poisson multigrid solver. A second order approximation is obtained in O(qN) work, where the total computational work is equivalent to only a few fine level relaxations per eigenvector.

  20. Robust Planning for Effects-Based Operations

    DTIC Science & Technology

    2006-06-01

    Algorithm ......................................... 34 2.6 Robust Optimization Literature ..................................... 36 2.6.1 Protecting Against...Model Formulation ...................... 55 3.1.5 Deterministic EBO Model Example and Performance ............. 59 3.1.6 Greedy Algorithm ...111 4.1.9 Conclusions on Robust EBO Model Performance .................... 116 4.2 Greedy Algorithm versus EBO Models

  1. Combining model based and data based techniques in a robust bridge health monitoring algorithm.

    DOT National Transportation Integrated Search

    2014-09-01

    Structural Health Monitoring (SHM) aims to analyze civil, mechanical and aerospace systems in order to assess : incipient damage occurrence. In this project, we are concerned with the development of an algorithm within the : SHM paradigm for applicat...

  2. Small Body GN&C Research Report: A Robust Model Predictive Control Algorithm with Guaranteed Resolvability

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet A.; Carson, John M., III

    2005-01-01

    A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees the resolvability of the associated finite-horizon optimal control problem in a receding-horizon implementation. The control consists of two components; (i) feedforward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives, and derivatives in polytopes. An illustrative numerical example is also provided.

  3. A robust model predictive control algorithm for uncertain nonlinear systems that guarantees resolvability

    NASA Technical Reports Server (NTRS)

    Acikmese, Ahmet Behcet; Carson, John M., III

    2006-01-01

    A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees resolvability. With resolvability, initial feasibility of the finite-horizon optimal control problem implies future feasibility in a receding-horizon framework. The control consists of two components; (i) feed-forward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives and derivatives in polytopes. An illustrative numerical example is also provided.

  4. 2016 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrington, David Bradley; Waters, Jiajia

    Los Alamos National Laboratory and its collaborators are facilitating engine modeling by improving accuracy and robustness of the modeling, and improving the robustness of software. We also continue to improve the physical modeling methods. We are developing and implementing new mathematical algorithms, those that represent the physics within an engine. We provide software that others may use directly or that they may alter with various models e.g., sophisticated chemical kinetics, different turbulent closure methods or other fuel injection and spray systems.

  5. Automatic target detection using binary template matching

    NASA Astrophysics Data System (ADS)

    Jun, Dong-San; Sun, Sun-Gu; Park, HyunWook

    2005-03-01

    This paper presents a new automatic target detection (ATD) algorithm to detect targets such as battle tanks and armored personal carriers in ground-to-ground scenarios. Whereas most ATD algorithms were developed for forward-looking infrared (FLIR) images, we have developed an ATD algorithm for charge-coupled device (CCD) images, which have superior quality to FLIR images in daylight. The proposed algorithm uses fast binary template matching with an adaptive binarization, which is robust to various light conditions in CCD images and saves computation time. Experimental results show that the proposed method has good detection performance.

  6. On the robustness of EC-PC spike detection method for online neural recording.

    PubMed

    Zhou, Yin; Wu, Tong; Rastegarnia, Amir; Guan, Cuntai; Keefer, Edward; Yang, Zhi

    2014-09-30

    Online spike detection is an important step to compress neural data and perform real-time neural information decoding. An unsupervised, automatic, yet robust signal processing is strongly desired, thus it can support a wide range of applications. We have developed a novel spike detection algorithm called "exponential component-polynomial component" (EC-PC) spike detection. We firstly evaluate the robustness of the EC-PC spike detector under different firing rates and SNRs. Secondly, we show that the detection Precision can be quantitatively derived without requiring additional user input parameters. We have realized the algorithm (including training) into a 0.13 μm CMOS chip, where an unsupervised, nonparametric operation has been demonstrated. Both simulated data and real data are used to evaluate the method under different firing rates (FRs), SNRs. The results show that the EC-PC spike detector is the most robust in comparison with some popular detectors. Moreover, the EC-PC detector can track changes in the background noise due to the ability to re-estimate the neural data distribution. Both real and synthesized data have been used for testing the proposed algorithm in comparison with other methods, including the absolute thresholding detector (AT), median absolute deviation detector (MAD), nonlinear energy operator detector (NEO), and continuous wavelet detector (CWD). Comparative testing results reveals that the EP-PC detection algorithm performs better than the other algorithms regardless of recording conditions. The EC-PC spike detector can be considered as an unsupervised and robust online spike detection. It is also suitable for hardware implementation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Aerocapture Guidance Algorithm Comparison Campaign

    NASA Technical Reports Server (NTRS)

    Rousseau, Stephane; Perot, Etienne; Graves, Claude; Masciarelli, James P.; Queen, Eric

    2002-01-01

    The aerocapture is a promising technique for the future human interplanetary missions. The Mars Sample Return was initially based on an insertion by aerocapture. A CNES orbiter Mars Premier was developed to demonstrate this concept. Mainly due to budget constraints, the aerocapture was cancelled for the French orbiter. A lot of studies were achieved during the three last years to develop and test different guidance algorithms (APC, EC, TPC, NPC). This work was shared between CNES and NASA, with a fruitful joint working group. To finish this study an evaluation campaign has been performed to test the different algorithms. The objective was to assess the robustness, accuracy, capability to limit the load, and the complexity of each algorithm. A simulation campaign has been specified and performed by CNES, with a similar activity on the NASA side to confirm the CNES results. This evaluation has demonstrated that the numerical guidance principal is not competitive compared to the analytical concepts. All the other algorithms are well adapted to guaranty the success of the aerocapture. The TPC appears to be the more robust, the APC the more accurate, and the EC appears to be a good compromise.

  8. Distribution path robust optimization of electric vehicle with multiple distribution centers

    PubMed Central

    Hao, Wei; He, Ruichun; Jia, Xiaoyan; Pan, Fuquan; Fan, Jing; Xiong, Ruiqi

    2018-01-01

    To identify electrical vehicle (EV) distribution paths with high robustness, insensitivity to uncertainty factors, and detailed road-by-road schemes, optimization of the distribution path problem of EV with multiple distribution centers and considering the charging facilities is necessary. With the minimum transport time as the goal, a robust optimization model of EV distribution path with adjustable robustness is established based on Bertsimas’ theory of robust discrete optimization. An enhanced three-segment genetic algorithm is also developed to solve the model, such that the optimal distribution scheme initially contains all road-by-road path data using the three-segment mixed coding and decoding method. During genetic manipulation, different interlacing and mutation operations are carried out on different chromosomes, while, during population evolution, the infeasible solution is naturally avoided. A part of the road network of Xifeng District in Qingyang City is taken as an example to test the model and the algorithm in this study, and the concrete transportation paths are utilized in the final distribution scheme. Therefore, more robust EV distribution paths with multiple distribution centers can be obtained using the robust optimization model. PMID:29518169

  9. Robust detection-isolation-accommodation for sensor failures

    NASA Technical Reports Server (NTRS)

    Weiss, J. L.; Pattipati, K. R.; Willsky, A. S.; Eterno, J. S.; Crawford, J. T.

    1985-01-01

    The results of a one year study to: (1) develop a theory for Robust Failure Detection and Identification (FDI) in the presence of model uncertainty, (2) develop a design methodology which utilizes the robust FDI ththeory, (3) apply the methodology to a sensor FDI problem for the F-100 jet engine, and (4) demonstrate the application of the theory to the evaluation of alternative FDI schemes are presented. Theoretical results in statistical discrimination are used to evaluate the robustness of residual signals (or parity relations) in terms of their usefulness for FDI. Furthermore, optimally robust parity relations are derived through the optimization of robustness metrics. The result is viewed as decentralization of the FDI process. A general structure for decentralized FDI is proposed and robustness metrics are used for determining various parameters of the algorithm.

  10. Constraint treatment techniques and parallel algorithms for multibody dynamic analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chiou, Jin-Chern

    1990-01-01

    Computational procedures for kinematic and dynamic analysis of three-dimensional multibody dynamic (MBD) systems are developed from the differential-algebraic equations (DAE's) viewpoint. Constraint violations during the time integration process are minimized and penalty constraint stabilization techniques and partitioning schemes are developed. The governing equations of motion, a two-stage staggered explicit-implicit numerical algorithm, are treated which takes advantage of a partitioned solution procedure. A robust and parallelizable integration algorithm is developed. This algorithm uses a two-stage staggered central difference algorithm to integrate the translational coordinates and the angular velocities. The angular orientations of bodies in MBD systems are then obtained by using an implicit algorithm via the kinematic relationship between Euler parameters and angular velocities. It is shown that the combination of the present solution procedures yields a computationally more accurate solution. To speed up the computational procedures, parallel implementation of the present constraint treatment techniques, the two-stage staggered explicit-implicit numerical algorithm was efficiently carried out. The DAE's and the constraint treatment techniques were transformed into arrowhead matrices to which Schur complement form was derived. By fully exploiting the sparse matrix structural analysis techniques, a parallel preconditioned conjugate gradient numerical algorithm is used to solve the systems equations written in Schur complement form. A software testbed was designed and implemented in both sequential and parallel computers. This testbed was used to demonstrate the robustness and efficiency of the constraint treatment techniques, the accuracy of the two-stage staggered explicit-implicit numerical algorithm, and the speed up of the Schur-complement-based parallel preconditioned conjugate gradient algorithm on a parallel computer.

  11. Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI.

    PubMed

    Kannan, S R; Ramathilagam, S; Devi, Pandiyarajan; Sathya, A

    2012-02-01

    Segmentation of medical images is a difficult and challenging problem due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. Many researchers have applied various techniques however fuzzy c-means (FCM) based algorithms is more effective compared to other methods. The objective of this work is to develop some robust fuzzy clustering segmentation systems for effective segmentation of DCE - breast MRI. This paper obtains the robust fuzzy clustering algorithms by incorporating kernel methods, penalty terms, tolerance of the neighborhood attraction, additional entropy term and fuzzy parameters. The initial centers are obtained using initialization algorithm to reduce the computation complexity and running time of proposed algorithms. Experimental works on breast images show that the proposed algorithms are effective to improve the similarity measurement, to handle large amount of noise, to have better results in dealing the data corrupted by noise, and other artifacts. The clustering results of proposed methods are validated using Silhouette Method.

  12. Space Launch System Implementation of Adaptive Augmenting Control

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Wall, John H.; Orr, Jeb S.

    2014-01-01

    Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to robustly demonstrate stable and high performance flight. On its development path to preliminary design review (PDR), the stability of the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant dynamics. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an adaptive augmenting control (AAC) algorithm previously presented by Orr and VanZwieten, has been shown to extend the envelope of failures and flight anomalies for which the SLS control system can accommodate while maintaining a direct link to flight control stability criteria (e.g. gain & phase margin). In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the SLS digital 3-axis autopilot, including existing load-relief elements, and necessary steps for integration with the production flight software prototype have been implemented. Several updates to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.

  13. TARCMO: Theory and Algorithms for Robust, Combinatorial, Multicriteria Optimization

    DTIC Science & Technology

    2016-11-28

    objective 9 4.6 On The Recoverable Robust Traveling Salesman Problem . . . . . 11 4.7 A Bicriteria Approach to Robust Optimization...be found. 4.6 On The Recoverable Robust Traveling Salesman Problem The traveling salesman problem (TSP) is a well-known combinatorial optimiza- tion...procedure for the robust traveling salesman problem . While this iterative algorithms results in an optimal solution to the robust TSP, computation

  14. Substructure System Identification for Finite Element Model Updating

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Blades, Eric L.

    1997-01-01

    This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.

  15. Integrated approaches to the application of advanced modeling technology in process development and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgor, R.J.; Feehery, W.F.; Tolsma, J.E.

    The batch process development problem serves as good candidate to guide the development of process modeling environments. It demonstrates that very robust numerical techniques are required within an environment that can collect, organize, and maintain the data and models required to address the batch process development problem. This paper focuses on improving the robustness and efficiency of the numerical algorithms required in such a modeling environment through the development of hybrid numerical and symbolic strategies.

  16. Method for hyperspectral imagery exploitation and pixel spectral unmixing

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2003-01-01

    An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.

  17. Algorithmic Coordination in Robotic Networks

    DTIC Science & Technology

    2010-11-29

    appropriate performance, robustness and scalability properties for various task allocation , surveillance, and information gathering applications is...networking, we envision designing and analyzing algorithms with appropriate performance, robustness and scalability properties for various task ...distributed algorithms for target assignments; based on the classic auction algorithms in static networks, we intend to design efficient algorithms in worst

  18. Robust optimization model and algorithm for railway freight center location problem in uncertain environment.

    PubMed

    Liu, Xing-Cai; He, Shi-Wei; Song, Rui; Sun, Yang; Li, Hao-Dong

    2014-01-01

    Railway freight center location problem is an important issue in railway freight transport programming. This paper focuses on the railway freight center location problem in uncertain environment. Seeing that the expected value model ignores the negative influence of disadvantageous scenarios, a robust optimization model was proposed. The robust optimization model takes expected cost and deviation value of the scenarios as the objective. A cloud adaptive clonal selection algorithm (C-ACSA) was presented. It combines adaptive clonal selection algorithm with Cloud Model which can improve the convergence rate. Design of the code and progress of the algorithm were proposed. Result of the example demonstrates the model and algorithm are effective. Compared with the expected value cases, the amount of disadvantageous scenarios in robust model reduces from 163 to 21, which prove the result of robust model is more reliable.

  19. Robust Global Image Registration Based on a Hybrid Algorithm Combining Fourier and Spatial Domain Techniques

    DTIC Science & Technology

    2012-09-01

    Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain techniques Peter N. Crabtree, Collin Seanor...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain...demonstrate performance of a hybrid algorithm . These results are from analysis of a set of images of an ISO 12233 [12] resolution chart captured in the

  20. A reliable algorithm for optimal control synthesis

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1992-01-01

    In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.

  1. An improved finger-vein recognition algorithm based on template matching

    NASA Astrophysics Data System (ADS)

    Liu, Yueyue; Di, Si; Jin, Jian; Huang, Daoping

    2016-10-01

    Finger-vein recognition has became the most popular biometric identify methods. The investigation on the recognition algorithms always is the key point in this field. So far, there are many applicable algorithms have been developed. However, there are still some problems in practice, such as the variance of the finger position which may lead to the image distortion and shifting; during the identification process, some matching parameters determined according to experience may also reduce the adaptability of algorithm. Focus on above mentioned problems, this paper proposes an improved finger-vein recognition algorithm based on template matching. In order to enhance the robustness of the algorithm for the image distortion, the least squares error method is adopted to correct the oblique finger. During the feature extraction, local adaptive threshold method is adopted. As regard as the matching scores, we optimized the translation preferences as well as matching distance between the input images and register images on the basis of Naoto Miura algorithm. Experimental results indicate that the proposed method can improve the robustness effectively under the finger shifting and rotation conditions.

  2. Optimal and robust control of transition

    NASA Technical Reports Server (NTRS)

    Bewley, T. R.; Agarwal, R.

    1996-01-01

    Optimal and robust control theories are used to determine feedback control rules that effectively stabilize a linearly unstable flow in a plane channel. Wall transpiration (unsteady blowing/suction) with zero net mass flux is used as the control. Control algorithms are considered that depend both on full flowfield information and on estimates of that flowfield based on wall skin-friction measurements only. The development of these control algorithms accounts for modeling errors and measurement noise in a rigorous fashion; these disturbances are considered in both a structured (Gaussian) and unstructured ('worst case') sense. The performance of these algorithms is analyzed in terms of the eigenmodes of the resulting controlled systems, and the sensitivity of individual eigenmodes to both control and observation is quantified.

  3. An advancing front Delaunay triangulation algorithm designed for robustness

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    A new algorithm is described for generating an unstructured mesh about an arbitrary two-dimensional configuration. Mesh points are generated automatically by the algorithm in a manner which ensures a smooth variation of elements, and the resulting triangulation constitutes the Delaunay triangulation of these points. The algorithm combines the mathematical elegance and efficiency of Delaunay triangulation algorithms with the desirable point placement features, boundary integrity, and robustness traditionally associated with advancing-front-type mesh generation strategies. The method offers increased robustness over previous algorithms in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell size distribution throughout the flow-field.

  4. Primal-dual convex optimization in large deformation diffeomorphic metric mapping: LDDMM meets robust regularizers

    NASA Astrophysics Data System (ADS)

    Hernandez, Monica

    2017-12-01

    This paper proposes a method for primal-dual convex optimization in variational large deformation diffeomorphic metric mapping problems formulated with robust regularizers and robust image similarity metrics. The method is based on Chambolle and Pock primal-dual algorithm for solving general convex optimization problems. Diagonal preconditioning is used to ensure the convergence of the algorithm to the global minimum. We consider three robust regularizers liable to provide acceptable results in diffeomorphic registration: Huber, V-Huber and total generalized variation. The Huber norm is used in the image similarity term. The primal-dual equations are derived for the stationary and the non-stationary parameterizations of diffeomorphisms. The resulting algorithms have been implemented for running in the GPU using Cuda. For the most memory consuming methods, we have developed a multi-GPU implementation. The GPU implementations allowed us to perform an exhaustive evaluation study in NIREP and LPBA40 databases. The experiments showed that, for all the considered regularizers, the proposed method converges to diffeomorphic solutions while better preserving discontinuities at the boundaries of the objects compared to baseline diffeomorphic registration methods. In most cases, the evaluation showed a competitive performance for the robust regularizers, close to the performance of the baseline diffeomorphic registration methods.

  5. On robust parameter estimation in brain-computer interfacing

    NASA Astrophysics Data System (ADS)

    Samek, Wojciech; Nakajima, Shinichi; Kawanabe, Motoaki; Müller, Klaus-Robert

    2017-12-01

    Objective. The reliable estimation of parameters such as mean or covariance matrix from noisy and high-dimensional observations is a prerequisite for successful application of signal processing and machine learning algorithms in brain-computer interfacing (BCI). This challenging task becomes significantly more difficult if the data set contains outliers, e.g. due to subject movements, eye blinks or loose electrodes, as they may heavily bias the estimation and the subsequent statistical analysis. Although various robust estimators have been developed to tackle the outlier problem, they ignore important structural information in the data and thus may not be optimal. Typical structural elements in BCI data are the trials consisting of a few hundred EEG samples and indicating the start and end of a task. Approach. This work discusses the parameter estimation problem in BCI and introduces a novel hierarchical view on robustness which naturally comprises different types of outlierness occurring in structured data. Furthermore, the class of minimum divergence estimators is reviewed and a robust mean and covariance estimator for structured data is derived and evaluated with simulations and on a benchmark data set. Main results. The results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters. Significance. Since parameter estimation is an integral part of various machine learning algorithms, the presented techniques are applicable to many problems beyond BCI.

  6. Unified framework for automated iris segmentation using distantly acquired face images.

    PubMed

    Tan, Chun-Wei; Kumar, Ajay

    2012-09-01

    Remote human identification using iris biometrics has high civilian and surveillance applications and its success requires the development of robust segmentation algorithm to automatically extract the iris region. This paper presents a new iris segmentation framework which can robustly segment the iris images acquired using near infrared or visible illumination. The proposed approach exploits multiple higher order local pixel dependencies to robustly classify the eye region pixels into iris or noniris regions. Face and eye detection modules have been incorporated in the unified framework to automatically provide the localized eye region from facial image for iris segmentation. We develop robust postprocessing operations algorithm to effectively mitigate the noisy pixels caused by the misclassification. Experimental results presented in this paper suggest significant improvement in the average segmentation errors over the previously proposed approaches, i.e., 47.5%, 34.1%, and 32.6% on UBIRIS.v2, FRGC, and CASIA.v4 at-a-distance databases, respectively. The usefulness of the proposed approach is also ascertained from recognition experiments on three different publicly available databases.

  7. A Study of Lane Detection Algorithm for Personal Vehicle

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazuyuki; Watanabe, Kajiro; Ohkubo, Tomoyuki; Kurihara, Yosuke

    By the word “Personal vehicle”, we mean a simple and lightweight vehicle expected to emerge as personal ground transportation devices. The motorcycle, electric wheelchair, motor-powered bicycle, etc. are examples of the personal vehicle and have been developed as the useful for transportation for a personal use. Recently, a new types of intelligent personal vehicle called the Segway has been developed which is controlled and stabilized by using on-board intelligent multiple sensors. The demand for needs for such personal vehicles are increasing, 1) to enhance human mobility, 2) to support mobility for elderly person, 3) reduction of environmental burdens. Since rapidly growing personal vehicles' market, a number of accidents caused by human error is also increasing. The accidents are caused by it's drive ability. To enhance or support drive ability as well as to prevent accidents, intelligent assistance is necessary. One of most important elemental functions for personal vehicle is robust lane detection. In this paper, we develop a robust lane detection method for personal vehicle at outdoor environments. The proposed lane detection method employing a 360 degree omni directional camera and unique robust image processing algorithm. In order to detect lanes, combination of template matching technique and Hough transform are employed. The validity of proposed lane detection algorithm is confirmed by actual developed vehicle at various type of sunshined outdoor conditions.

  8. Design of Robust Adaptive Unbalance Response Controllers for Rotors with Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Knospe, Carl R.; Tamer, Samir M.; Fedigan, Stephen J.

    1996-01-01

    Experimental results have recently demonstrated that an adaptive open loop control strategy can be highly effective in the suppression of unbalance induced vibration on rotors supported in active magnetic bearings. This algorithm, however, relies upon a predetermined gain matrix. Typically, this matrix is determined by an optimal control formulation resulting in the choice of the pseudo-inverse of the nominal influence coefficient matrix as the gain matrix. This solution may result in problems with stability and performance robustness since the estimated influence coefficient matrix is not equal to the actual influence coefficient matrix. Recently, analysis tools have been developed to examine the robustness of this control algorithm with respect to structured uncertainty. Herein, these tools are extended to produce a design procedure for determining the adaptive law's gain matrix. The resulting control algorithm has a guaranteed convergence rate and steady state performance in spite of the uncertainty in the rotor system. Several examples are presented which demonstrate the effectiveness of this approach and its advantages over the standard optimal control formulation.

  9. Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.; Valavani, L.; Athans, M.; Stein, G.

    1985-01-01

    This paper examines the robustness properties of existing adaptive control algorithms to unmodeled plant high-frequency dynamics and unmeasurable output disturbances. It is demonstrated that there exist two infinite-gain operators in the nonlinear dynamic system which determines the time-evolution of output and parameter errors. The pragmatic implications of the existence of such infinite-gain operators is that: (1) sinusoidal reference inputs at specific frequencies and/or (2) sinusoidal output disturbances at any frequency (including dc), can cause the loop gain to increase without bound, thereby exciting the unmodeled high-frequency dynamics, and yielding an unstable control system. Hence, it is concluded that existing adaptive control algorithms as they are presented in the literature referenced in this paper, cannot be used with confidence in practical designs where the plant contains unmodeled dynamics because instability is likely to result. Further understanding is required to ascertain how the currently implemented adaptive systems differ from the theoretical systems studied here and how further theoretical development can improve the robustness of adaptive controllers.

  10. Performance issues for iterative solvers in device simulation

    NASA Technical Reports Server (NTRS)

    Fan, Qing; Forsyth, P. A.; Mcmacken, J. R. F.; Tang, Wei-Pai

    1994-01-01

    Due to memory limitations, iterative methods have become the method of choice for large scale semiconductor device simulation. However, it is well known that these methods still suffer from reliability problems. The linear systems which appear in numerical simulation of semiconductor devices are notoriously ill-conditioned. In order to produce robust algorithms for practical problems, careful attention must be given to many implementation issues. This paper concentrates on strategies for developing robust preconditioners. In addition, effective data structures and convergence check issues are also discussed. These algorithms are compared with a standard direct sparse matrix solver on a variety of problems.

  11. Robust image modeling techniques with an image restoration application

    NASA Astrophysics Data System (ADS)

    Kashyap, Rangasami L.; Eom, Kie-Bum

    1988-08-01

    A robust parameter-estimation algorithm for a nonsymmetric half-plane (NSHP) autoregressive model, where the driving noise is a mixture of a Gaussian and an outlier process, is presented. The convergence of the estimation algorithm is proved. An algorithm to estimate parameters and original image intensity simultaneously from the impulse-noise-corrupted image, where the model governing the image is not available, is also presented. The robustness of the parameter estimates is demonstrated by simulation. Finally, an algorithm to restore realistic images is presented. The entire image generally does not obey a simple image model, but a small portion (e.g., 8 x 8) of the image is assumed to obey an NSHP model. The original image is divided into windows and the robust estimation algorithm is applied for each window. The restoration algorithm is tested by comparing it to traditional methods on several different images.

  12. Vectorial mask optimization methods for robust optical lithography

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Li, Yanqiu; Guo, Xuejia; Dong, Lisong; Arce, Gonzalo R.

    2012-10-01

    Continuous shrinkage of critical dimension in an integrated circuit impels the development of resolution enhancement techniques for low k1 lithography. Recently, several pixelated optical proximity correction (OPC) and phase-shifting mask (PSM) approaches were developed under scalar imaging models to account for the process variations. However, the lithography systems with larger-NA (NA>0.6) are predominant for current technology nodes, rendering the scalar models inadequate to describe the vector nature of the electromagnetic field that propagates through the optical lithography system. In addition, OPC and PSM algorithms based on scalar models can compensate for wavefront aberrations, but are incapable of mitigating polarization aberrations in practical lithography systems, which can only be dealt with under the vector model. To this end, we focus on developing robust pixelated gradient-based OPC and PSM optimization algorithms aimed at canceling defocus, dose variation, wavefront and polarization aberrations under a vector model. First, an integrative and analytic vector imaging model is applied to formulate the optimization problem, where the effects of process variations are explicitly incorporated in the optimization framework. A steepest descent algorithm is then used to iteratively optimize the mask patterns. Simulations show that the proposed algorithms can effectively improve the process windows of the optical lithography systems.

  13. Firefly algorithm with chaos

    NASA Astrophysics Data System (ADS)

    Gandomi, A. H.; Yang, X.-S.; Talatahari, S.; Alavi, A. H.

    2013-01-01

    A recently developed metaheuristic optimization algorithm, firefly algorithm (FA), mimics the social behavior of fireflies based on the flashing and attraction characteristics of fireflies. In the present study, we will introduce chaos into FA so as to increase its global search mobility for robust global optimization. Detailed studies are carried out on benchmark problems with different chaotic maps. Here, 12 different chaotic maps are utilized to tune the attractive movement of the fireflies in the algorithm. The results show that some chaotic FAs can clearly outperform the standard FA.

  14. Algorithmics - Is There Hope for a Unified Theory?

    NASA Astrophysics Data System (ADS)

    Hromkovič, Juraj

    Computer science was born with the formal definition of the notion of an algorithm. This definition provides clear limits of automatization, separating problems into algorithmically solvable problems and algorithmically unsolvable ones. The second big bang of computer science was the development of the concept of computational complexity. People recognized that problems that do not admit efficient algorithms are not solvable in practice. The search for a reasonable, clear and robust definition of the class of practically solvable algorithmic tasks started with the notion of the class {P} and of {NP}-completeness. In spite of the fact that this robust concept is still fundamental for judging the hardness of computational problems, a variety of approaches was developed for solving instances of {NP}-hard problems in many applications. Our 40-years short attempt to fix the fuzzy border between the practically solvable problems and the practically unsolvable ones partially reminds of the never-ending search for the definition of "life" in biology or for the definitions of matter and energy in physics. Can the search for the formal notion of "practical solvability" also become a never-ending story or is there hope for getting a well-accepted, robust definition of it? Hopefully, it is not surprising that we are not able to answer this question in this invited talk. But to deal with this question is of crucial importance, because only due to enormous effort scientists get a better and better feeling of what the fundamental notions of science like life and energy mean. In the flow of numerous technical results, we must not forget the fact that most of the essential revolutionary contributions to science were done by defining new concepts and notions.

  15. An intercomparison study of TSM, SEBS, and SEBAL using high-resolution imagery and lysimetric data

    USDA-ARS?s Scientific Manuscript database

    Over the past three decades, numerous remote sensing based ET mapping algorithms were developed. These algorithms provided a robust, economical, and efficient tool for ET estimations at field and regional scales. The Two Source Model (TSM), Surface Energy Balance System (SEBS), and Surface Energy Ba...

  16. Design of a broadband active silencer using μ-synthesis

    NASA Astrophysics Data System (ADS)

    Bai, Mingsian R.; Zeung, Pingshun

    2004-01-01

    A robust spatially feedforward controller is developed for broadband attenuation of noise in ducts. To meet the requirements of robust performance and robust stability in the presence of plant uncertainties, a μ-synthesis procedure via D- K iteration is exploited to obtain the optimal controller. This approach considers uncertainties as modelling errors of the nominal plant in high frequency and is implemented using a floating point digital signal processor (DSP). Experimental investigation was undertaken on a finite-length duct to justify the proposed controller. The μ- controller is compared to other control algorithms such as the H2 method, the H∞ method and the filtered-U least mean square (FULMS) algorithm. Experimental results indicate that the proposed system has attained 25.8 dB maximal attenuation in the band 250-650 Hz.

  17. Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems.

    PubMed

    Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek

    2014-01-01

    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.

  18. Revisiting QRS Detection Methodologies for Portable, Wearable, Battery-Operated, and Wireless ECG Systems

    PubMed Central

    Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek

    2014-01-01

    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices. PMID:24409290

  19. Robust Stability and Control of Multi-Body Ground Vehicles with Uncertain Dynamics and Failures

    DTIC Science & Technology

    2010-01-01

    and N. Zhang, 2008. “Robust stability control of vehicle rollover subject to actuator time delay”. Proc. IMechE Part I: J. of systems and control ...Dynamic Systems and Control Conference, Boston, MA, Sept 2010 R.K. Yedavalli,”Robust Stability of Linear Interval Parameter Matrix Family Problem...for control coupled output regulation for a class of systems is presented. In section 2.1.7, the control design algorithm developed in section

  20. Development of a new time domain-based algorithm for train detection and axle counting

    NASA Astrophysics Data System (ADS)

    Allotta, B.; D'Adamio, P.; Meli, E.; Pugi, L.

    2015-12-01

    This paper presents an innovative train detection algorithm, able to perform the train localisation and, at the same time, to estimate its speed, the crossing times on a fixed point of the track and the axle number. The proposed solution uses the same approach to evaluate all these quantities, starting from the knowledge of generic track inputs directly measured on the track (for example, the vertical forces on the sleepers, the rail deformation and the rail stress). More particularly, all the inputs are processed through cross-correlation operations to extract the required information in terms of speed, crossing time instants and axle counter. This approach has the advantage to be simple and less invasive than the standard ones (it requires less equipment) and represents a more reliable and robust solution against numerical noise because it exploits the whole shape of the input signal and not only the peak values. A suitable and accurate multibody model of railway vehicle and flexible track has also been developed by the authors to test the algorithm when experimental data are not available and in general, under any operating conditions (fundamental to verify the algorithm accuracy and robustness). The railway vehicle chosen as benchmark is the Manchester Wagon, modelled in the Adams VI-Rail environment. The physical model of the flexible track has been implemented in the Matlab and Comsol Multiphysics environments. A simulation campaign has been performed to verify the performance and the robustness of the proposed algorithm, and the results are quite promising. The research has been carried out in cooperation with Ansaldo STS and ECM Spa.

  1. Global motion compensated visual attention-based video watermarking

    NASA Astrophysics Data System (ADS)

    Oakes, Matthew; Bhowmik, Deepayan; Abhayaratne, Charith

    2016-11-01

    Imperceptibility and robustness are two key but complementary requirements of any watermarking algorithm. Low-strength watermarking yields high imperceptibility but exhibits poor robustness. High-strength watermarking schemes achieve good robustness but often suffer from embedding distortions resulting in poor visual quality in host media. This paper proposes a unique video watermarking algorithm that offers a fine balance between imperceptibility and robustness using motion compensated wavelet-based visual attention model (VAM). The proposed VAM includes spatial cues for visual saliency as well as temporal cues. The spatial modeling uses the spatial wavelet coefficients while the temporal modeling accounts for both local and global motion to arrive at the spatiotemporal VAM for video. The model is then used to develop a video watermarking algorithm, where a two-level watermarking weighting parameter map is generated from the VAM saliency maps using the saliency model and data are embedded into the host image according to the visual attentiveness of each region. By avoiding higher strength watermarking in the visually attentive region, the resulting watermarked video achieves high perceived visual quality while preserving high robustness. The proposed VAM outperforms the state-of-the-art video visual attention methods in joint saliency detection and low computational complexity performance. For the same embedding distortion, the proposed visual attention-based watermarking achieves up to 39% (nonblind) and 22% (blind) improvement in robustness against H.264/AVC compression, compared to existing watermarking methodology that does not use the VAM. The proposed visual attention-based video watermarking results in visual quality similar to that of low-strength watermarking and a robustness similar to those of high-strength watermarking.

  2. What does voice-processing technology support today?

    PubMed Central

    Nakatsu, R; Suzuki, Y

    1995-01-01

    This paper describes the state of the art in applications of voice-processing technologies. In the first part, technologies concerning the implementation of speech recognition and synthesis algorithms are described. Hardware technologies such as microprocessors and DSPs (digital signal processors) are discussed. Software development environment, which is a key technology in developing applications software, ranging from DSP software to support software also is described. In the second part, the state of the art of algorithms from the standpoint of applications is discussed. Several issues concerning evaluation of speech recognition/synthesis algorithms are covered, as well as issues concerning the robustness of algorithms in adverse conditions. Images Fig. 3 PMID:7479720

  3. Project risk management in the construction of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Titarenko, Boris; Hasnaoui, Amir; Titarenko, Roman; Buzuk, Liliya

    2018-03-01

    This paper shows the project risk management methods, which allow to better identify risks in the construction of high-rise buildings and to manage them throughout the life cycle of the project. One of the project risk management processes is a quantitative analysis of risks. The quantitative analysis usually includes the assessment of the potential impact of project risks and their probabilities. This paper shows the most popular methods of risk probability assessment and tries to indicate the advantages of the robust approach over the traditional methods. Within the framework of the project risk management model a robust approach of P. Huber is applied and expanded for the tasks of regression analysis of project data. The suggested algorithms used to assess the parameters in statistical models allow to obtain reliable estimates. A review of the theoretical problems of the development of robust models built on the methodology of the minimax estimates was done and the algorithm for the situation of asymmetric "contamination" was developed.

  4. Research on robust optimization of emergency logistics network considering the time dependence characteristic

    NASA Astrophysics Data System (ADS)

    WANG, Qingrong; ZHU, Changfeng; LI, Ying; ZHANG, Zhengkun

    2017-06-01

    Considering the time dependence of emergency logistic network and complexity of the environment that the network exists in, in this paper the time dependent network optimization theory and robust discrete optimization theory are combined, and the emergency logistics dynamic network optimization model with characteristics of robustness is built to maximize the timeliness of emergency logistics. On this basis, considering the complexity of dynamic network and the time dependence of edge weight, an improved ant colony algorithm is proposed to realize the coupling of the optimization algorithm and the network time dependence and robustness. Finally, a case study has been carried out in order to testify validity of this robustness optimization model and its algorithm, and the value of different regulation factors was analyzed considering the importance of the value of the control factor in solving the optimal path. Analysis results show that this model and its algorithm above-mentioned have good timeliness and strong robustness.

  5. Calculating the Mean Amplitude of Glycemic Excursions from Continuous Glucose Data Using an Open-Code Programmable Algorithm Based on the Integer Nonlinear Method.

    PubMed

    Yu, Xuefei; Lin, Liangzhuo; Shen, Jie; Chen, Zhi; Jian, Jun; Li, Bin; Xin, Sherman Xuegang

    2018-01-01

    The mean amplitude of glycemic excursions (MAGE) is an essential index for glycemic variability assessment, which is treated as a key reference for blood glucose controlling at clinic. However, the traditional "ruler and pencil" manual method for the calculation of MAGE is time-consuming and prone to error due to the huge data size, making the development of robust computer-aided program an urgent requirement. Although several software products are available instead of manual calculation, poor agreement among them is reported. Therefore, more studies are required in this field. In this paper, we developed a mathematical algorithm based on integer nonlinear programming. Following the proposed mathematical method, an open-code computer program named MAGECAA v1.0 was developed and validated. The results of the statistical analysis indicated that the developed program was robust compared to the manual method. The agreement among the developed program and currently available popular software is satisfied, indicating that the worry about the disagreement among different software products is not necessary. The open-code programmable algorithm is an extra resource for those peers who are interested in the related study on methodology in the future.

  6. Valiant load-balanced robust routing under hose model for WDM mesh networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoning; Li, Lemin; Wang, Sheng

    2006-09-01

    In this paper, we propose Valiant Load-Balanced robust routing scheme for WDM mesh networks under the model of polyhedral uncertainty (i.e., hose model), and the proposed routing scheme is implemented with traffic grooming approach. Our Objective is to maximize the hose model throughput. A mathematic formulation of Valiant Load-Balanced robust routing is presented and three fast heuristic algorithms are also proposed. When implementing Valiant Load-Balanced robust routing scheme to WDM mesh networks, a novel traffic-grooming algorithm called MHF (minimizing hop first) is proposed. We compare the three heuristic algorithms with the VPN tree under the hose model. Finally we demonstrate in the simulation results that MHF with Valiant Load-Balanced robust routing scheme outperforms the traditional traffic-grooming algorithm in terms of the throughput for the uniform/non-uniform traffic matrix under the hose model.

  7. Color object detection using spatial-color joint probability functions.

    PubMed

    Luo, Jiebo; Crandall, David

    2006-06-01

    Object detection in unconstrained images is an important image understanding problem with many potential applications. There has been little success in creating a single algorithm that can detect arbitrary objects in unconstrained images; instead, algorithms typically must be customized for each specific object. Consequently, it typically requires a large number of exemplars (for rigid objects) or a large amount of human intuition (for nonrigid objects) to develop a robust algorithm. We present a robust algorithm designed to detect a class of compound color objects given a single model image. A compound color object is defined as having a set of multiple, particular colors arranged spatially in a particular way, including flags, logos, cartoon characters, people in uniforms, etc. Our approach is based on a particular type of spatial-color joint probability function called the color edge co-occurrence histogram. In addition, our algorithm employs perceptual color naming to handle color variation, and prescreening to limit the search scope (i.e., size and location) for the object. Experimental results demonstrated that the proposed algorithm is insensitive to object rotation, scaling, partial occlusion, and folding, outperforming a closely related algorithm based on color co-occurrence histograms by a decisive margin.

  8. A New Approach to Aircraft Robust Performance Analysis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Tierno, Jorge E.

    2004-01-01

    A recently developed algorithm for nonlinear system performance analysis has been applied to an F16 aircraft to begin evaluating the suitability of the method for aerospace problems. The algorithm has a potential to be much more efficient than the current methods in performance analysis for aircraft. This paper is the initial step in evaluating this potential.

  9. Research on trust-region algorithms for nonlinear programming. Final technical report, 1 January 1990--31 December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, J.E. Jr.; Tapia, R.A.

    Goal of the research was to develop and test effective, robust algorithms for general nonlinear programming (NLP) problems, particularly large or otherwise expensive NLP problems. We discuss the research conducted over the 3-year period Jan. 1990-Dec. 1992. We also describe current and future directions of our research.

  10. MultiNest: Efficient and Robust Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Feroz, F.; Hobson, M. P.; Bridges, M.

    2011-09-01

    We present further development and the first public release of our multimodal nested sampling algorithm, called MultiNest. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson (2008), which itself significantly outperformed existing MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MultiNest algorithm is demonstrated by application to two toy problems and to a cosmological inference problem focusing on the extension of the vanilla LambdaCDM model to include spatial curvature and a varying equation of state for dark energy. The MultiNest software is fully parallelized using MPI and includes an interface to CosmoMC. It will also be released as part of the SuperBayeS package, for the analysis of supersymmetric theories of particle physics, at this http URL.

  11. Update on Development of Mesh Generation Algorithms in MeshKit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Rajeev; Vanderzee, Evan; Mahadevan, Vijay

    2015-09-30

    MeshKit uses a graph-based design for coding all its meshing algorithms, which includes the Reactor Geometry (and mesh) Generation (RGG) algorithms. This report highlights the developmental updates of all the algorithms, results and future work. Parallel versions of algorithms, documentation and performance results are reported. RGG GUI design was updated to incorporate new features requested by the users; boundary layer generation and parallel RGG support were added to the GUI. Key contributions to the release, upgrade and maintenance of other SIGMA1 libraries (CGM and MOAB) were made. Several fundamental meshing algorithms for creating a robust parallel meshing pipeline in MeshKitmore » are under development. Results and current status of automated, open-source and high quality nuclear reactor assembly mesh generation algorithms such as trimesher, quadmesher, interval matching and multi-sweeper are reported.« less

  12. Evolving Non-Dominated Parameter Sets for Computational Models from Multiple Experiments

    NASA Astrophysics Data System (ADS)

    Lane, Peter C. R.; Gobet, Fernand

    2013-03-01

    Creating robust, reproducible and optimal computational models is a key challenge for theorists in many sciences. Psychology and cognitive science face particular challenges as large amounts of data are collected and many models are not amenable to analytical techniques for calculating parameter sets. Particular problems are to locate the full range of acceptable model parameters for a given dataset, and to confirm the consistency of model parameters across different datasets. Resolving these problems will provide a better understanding of the behaviour of computational models, and so support the development of general and robust models. In this article, we address these problems using evolutionary algorithms to develop parameters for computational models against multiple sets of experimental data; in particular, we propose the `speciated non-dominated sorting genetic algorithm' for evolving models in several theories. We discuss the problem of developing a model of categorisation using twenty-nine sets of data and models drawn from four different theories. We find that the evolutionary algorithms generate high quality models, adapted to provide a good fit to all available data.

  13. DSP Synthesis Algorithm for Generating Florida Scrub Jay Calls

    NASA Technical Reports Server (NTRS)

    Lane, John; Pittman, Tyler

    2017-01-01

    A prototype digital signal processing (DSP) algorithm has been developed to approximate Florida scrub jay calls. The Florida scrub jay (Aphelocoma coerulescens), believed to have been in existence for 2 million years, living only in Florida, has a complicated social system that is evident by examining the spectrograms of its calls. Audio data was acquired at the Helen and Allan Cruickshank Sanctuary, Rockledge, Florida during the 2016 mating season using three digital recorders sampling at 44.1 kHz. The synthesis algorithm is a first step at developing a robust identification and call analysis algorithm. Since the Florida scrub jay is severely threatened by loss of habitat, it is important to develop effective methods to monitor their threatened population using autonomous means.

  14. Robust Adaptive Dynamic Programming of Two-Player Zero-Sum Games for Continuous-Time Linear Systems.

    PubMed

    Fu, Yue; Fu, Jun; Chai, Tianyou

    2015-12-01

    In this brief, an online robust adaptive dynamic programming algorithm is proposed for two-player zero-sum games of continuous-time unknown linear systems with matched uncertainties, which are functions of system outputs and states of a completely unknown exosystem. The online algorithm is developed using the policy iteration (PI) scheme with only one iteration loop. A new analytical method is proposed for convergence proof of the PI scheme. The sufficient conditions are given to guarantee globally asymptotic stability and suboptimal property of the closed-loop system. Simulation studies are conducted to illustrate the effectiveness of the proposed method.

  15. Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining.

    PubMed

    Cheng, Wenlong; Zhao, Mingbo; Xiong, Naixue; Chui, Kwok Tai

    2017-07-15

    Parsimony, including sparsity and low-rank, has shown great importance for data mining in social networks, particularly in tasks such as segmentation and recognition. Traditionally, such modeling approaches rely on an iterative algorithm that minimizes an objective function with convex l ₁-norm or nuclear norm constraints. However, the obtained results by convex optimization are usually suboptimal to solutions of original sparse or low-rank problems. In this paper, a novel robust subspace segmentation algorithm has been proposed by integrating l p -norm and Schatten p -norm constraints. Our so-obtained affinity graph can better capture local geometrical structure and the global information of the data. As a consequence, our algorithm is more generative, discriminative and robust. An efficient linearized alternating direction method is derived to realize our model. Extensive segmentation experiments are conducted on public datasets. The proposed algorithm is revealed to be more effective and robust compared to five existing algorithms.

  16. Robust Methods for Moderation Analysis with a Two-Level Regression Model.

    PubMed

    Yang, Miao; Yuan, Ke-Hai

    2016-01-01

    Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.

  17. Optimization of seasonal ARIMA models using differential evolution - simulated annealing (DESA) algorithm in forecasting dengue cases in Baguio City

    NASA Astrophysics Data System (ADS)

    Addawe, Rizavel C.; Addawe, Joel M.; Magadia, Joselito C.

    2016-10-01

    Accurate forecasting of dengue cases would significantly improve epidemic prevention and control capabilities. This paper attempts to provide useful models in forecasting dengue epidemic specific to the young and adult population of Baguio City. To capture the seasonal variations in dengue incidence, this paper develops a robust modeling approach to identify and estimate seasonal autoregressive integrated moving average (SARIMA) models in the presence of additive outliers. Since the least squares estimators are not robust in the presence of outliers, we suggest a robust estimation based on winsorized and reweighted least squares estimators. A hybrid algorithm, Differential Evolution - Simulated Annealing (DESA), is used to identify and estimate the parameters of the optimal SARIMA model. The method is applied to the monthly reported dengue cases in Baguio City, Philippines.

  18. Intelligent robust control for uncertain nonlinear time-varying systems and its application to robotic systems.

    PubMed

    Chang, Yeong-Chan

    2005-12-01

    This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.

  19. Quality Scalability Aware Watermarking for Visual Content.

    PubMed

    Bhowmik, Deepayan; Abhayaratne, Charith

    2016-11-01

    Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking.

  20. Spectral Diffusion: An Algorithm for Robust Material Decomposition of Spectral CT Data

    PubMed Central

    Clark, Darin P.; Badea, Cristian T.

    2014-01-01

    Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piece-wise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg/mL), gold (0.9 mg/mL), and gadolinium (2.9 mg/mL) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen. PMID:25296173

  1. Spectral diffusion: an algorithm for robust material decomposition of spectral CT data.

    PubMed

    Clark, Darin P; Badea, Cristian T

    2014-11-07

    Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piecewise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg mL(-1)), gold (0.9 mg mL(-1)), and gadolinium (2.9 mg mL(-1)) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen.

  2. Automated robust registration of grossly misregistered whole-slide images with varying stains

    NASA Astrophysics Data System (ADS)

    Litjens, G.; Safferling, K.; Grabe, N.

    2016-03-01

    Cancer diagnosis and pharmaceutical research increasingly depend on the accurate quantification of cancer biomarkers. Identification of biomarkers is usually performed through immunohistochemical staining of cancer sections on glass slides. However, combination of multiple biomarkers from a wide variety of immunohistochemically stained slides is a tedious process in traditional histopathology due to the switching of glass slides and re-identification of regions of interest by pathologists. Digital pathology now allows us to apply image registration algorithms to digitized whole-slides to align the differing immunohistochemical stains automatically. However, registration algorithms need to be robust to changes in color due to differing stains and severe changes in tissue content between slides. In this work we developed a robust registration methodology to allow for fast coarse alignment of multiple immunohistochemical stains to the base hematyoxylin and eosin stained image. We applied HSD color model conversion to obtain a less stain color dependent representation of the whole-slide images. Subsequently, optical density thresholding and connected component analysis were used to identify the relevant regions for registration. Template matching using normalized mutual information was applied to provide initial translation and rotation parameters, after which a cost function-driven affine registration was performed. The algorithm was validated using 40 slides from 10 prostate cancer patients, with landmark registration error as a metric. Median landmark registration error was around 180 microns, which indicates performance is adequate for practical application. None of the registrations failed, indicating the robustness of the algorithm.

  3. Robust integration schemes for generalized viscoplasticity with internal-state variables. Part 2: Algorithmic developments and implementation

    NASA Technical Reports Server (NTRS)

    Li, Wei; Saleeb, Atef F.

    1995-01-01

    This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present second part of the report, we focus on the specific details of the numerical schemes, and associated computer algorithms, for the finite-element implementation of GVIPS and NAV models.

  4. Road screening and distribution route multi-objective robust optimization for hazardous materials based on neural network and genetic algorithm.

    PubMed

    Ma, Changxi; Hao, Wei; Pan, Fuquan; Xiang, Wang

    2018-01-01

    Route optimization of hazardous materials transportation is one of the basic steps in ensuring the safety of hazardous materials transportation. The optimization scheme may be a security risk if road screening is not completed before the distribution route is optimized. For road screening issues of hazardous materials transportation, a road screening algorithm of hazardous materials transportation is built based on genetic algorithm and Levenberg-Marquardt neural network (GA-LM-NN) by analyzing 15 attributes data of each road network section. A multi-objective robust optimization model with adjustable robustness is constructed for the hazardous materials transportation problem of single distribution center to minimize transportation risk and time. A multi-objective genetic algorithm is designed to solve the problem according to the characteristics of the model. The algorithm uses an improved strategy to complete the selection operation, applies partial matching cross shift and single ortho swap methods to complete the crossover and mutation operation, and employs an exclusive method to construct Pareto optimal solutions. Studies show that the sets of hazardous materials transportation road can be found quickly through the proposed road screening algorithm based on GA-LM-NN, whereas the distribution route Pareto solutions with different levels of robustness can be found rapidly through the proposed multi-objective robust optimization model and algorithm.

  5. Novel Kalman filter algorithm for statistical monitoring of extensive landscapes with synoptic sensor data

    Treesearch

    Raymond L. Czaplewski

    2015-01-01

    Wall-to-wall remotely sensed data are increasingly available to monitor landscape dynamics over large geographic areas. However, statistical monitoring programs that use post-stratification cannot fully utilize those sensor data. The Kalman filter (KF) is an alternative statistical estimator. I develop a new KF algorithm that is numerically robust with large numbers of...

  6. Gait Event Detection in Real-World Environment for Long-Term Applications: Incorporating Domain Knowledge Into Time-Frequency Analysis.

    PubMed

    Khandelwal, Siddhartha; Wickstrom, Nicholas

    2016-12-01

    Detecting gait events is the key to many gait analysis applications that would benefit from continuous monitoring or long-term analysis. Most gait event detection algorithms using wearable sensors that offer a potential for use in daily living have been developed from data collected in controlled indoor experiments. However, for real-word applications, it is essential that the analysis is carried out in humans' natural environment; that involves different gait speeds, changing walking terrains, varying surface inclinations and regular turns among other factors. Existing domain knowledge in the form of principles or underlying fundamental gait relationships can be utilized to drive and support the data analysis in order to develop robust algorithms that can tackle real-world challenges in gait analysis. This paper presents a novel approach that exhibits how domain knowledge about human gait can be incorporated into time-frequency analysis to detect gait events from long-term accelerometer signals. The accuracy and robustness of the proposed algorithm are validated by experiments done in indoor and outdoor environments with approximately 93 600 gait events in total. The proposed algorithm exhibits consistently high performance scores across all datasets in both, indoor and outdoor environments.

  7. Performance analysis of visual tracking algorithms for motion-based user interfaces on mobile devices

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan; Rangaswamy, Karthik; Tedjokusumo, Jefry; Zhou, ZhiYing

    2008-02-01

    Determining the self-motion of a camera is useful for many applications. A number of visual motion-tracking algorithms have been developed till date, each with their own advantages and restrictions. Some of them have also made their foray into the mobile world, powering augmented reality-based applications on phones with inbuilt cameras. In this paper, we compare the performances of three feature or landmark-guided motion tracking algorithms, namely marker-based tracking with MXRToolkit, face tracking based on CamShift, and MonoSLAM. We analyze and compare the complexity, accuracy, sensitivity, robustness and restrictions of each of the above methods. Our performance tests are conducted over two stages: The first stage of testing uses video sequences created with simulated camera movements along the six degrees of freedom in order to compare accuracy in tracking, while the second stage analyzes the robustness of the algorithms by testing for manipulative factors like image scaling and frame-skipping.

  8. Separation of left and right lungs using 3D information of sequential CT images and a guided dynamic programming algorithm

    PubMed Central

    Park, Sang Cheol; Leader, Joseph Ken; Tan, Jun; Lee, Guee Sang; Kim, Soo Hyung; Na, In Seop; Zheng, Bin

    2011-01-01

    Objective this article presents a new computerized scheme that aims to accurately and robustly separate left and right lungs on CT examinations. Methods we developed and tested a method to separate the left and right lungs using sequential CT information and a guided dynamic programming algorithm using adaptively and automatically selected start point and end point with especially severe and multiple connections. Results the scheme successfully identified and separated all 827 connections on the total 4034 CT images in an independent testing dataset of CT examinations. The proposed scheme separated multiple connections regardless of their locations, and the guided dynamic programming algorithm reduced the computation time to approximately 4.6% in comparison with the traditional dynamic programming and avoided the permeation of the separation boundary into normal lung tissue. Conclusions The proposed method is able to robustly and accurately disconnect all connections between left and right lungs and the guided dynamic programming algorithm is able to remove redundant processing. PMID:21412104

  9. Separation of left and right lungs using 3-dimensional information of sequential computed tomography images and a guided dynamic programming algorithm.

    PubMed

    Park, Sang Cheol; Leader, Joseph Ken; Tan, Jun; Lee, Guee Sang; Kim, Soo Hyung; Na, In Seop; Zheng, Bin

    2011-01-01

    This article presents a new computerized scheme that aims to accurately and robustly separate left and right lungs on computed tomography (CT) examinations. We developed and tested a method to separate the left and right lungs using sequential CT information and a guided dynamic programming algorithm using adaptively and automatically selected start point and end point with especially severe and multiple connections. The scheme successfully identified and separated all 827 connections on the total 4034 CT images in an independent testing data set of CT examinations. The proposed scheme separated multiple connections regardless of their locations, and the guided dynamic programming algorithm reduced the computation time to approximately 4.6% in comparison with the traditional dynamic programming and avoided the permeation of the separation boundary into normal lung tissue. The proposed method is able to robustly and accurately disconnect all connections between left and right lungs, and the guided dynamic programming algorithm is able to remove redundant processing.

  10. A Robust Linear Feature-Based Procedure for Automated Registration of Point Clouds

    PubMed Central

    Poreba, Martyna; Goulette, François

    2015-01-01

    With the variety of measurement techniques available on the market today, fusing multi-source complementary information into one dataset is a matter of great interest. Target-based, point-based and feature-based methods are some of the approaches used to place data in a common reference frame by estimating its corresponding transformation parameters. This paper proposes a new linear feature-based method to perform accurate registration of point clouds, either in 2D or 3D. A two-step fast algorithm called Robust Line Matching and Registration (RLMR), which combines coarse and fine registration, was developed. The initial estimate is found from a triplet of conjugate line pairs, selected by a RANSAC algorithm. Then, this transformation is refined using an iterative optimization algorithm. Conjugates of linear features are identified with respect to a similarity metric representing a line-to-line distance. The efficiency and robustness to noise of the proposed method are evaluated and discussed. The algorithm is valid and ensures valuable results when pre-aligned point clouds with the same scale are used. The studies show that the matching accuracy is at least 99.5%. The transformation parameters are also estimated correctly. The error in rotation is better than 2.8% full scale, while the translation error is less than 12.7%. PMID:25594589

  11. Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering

    PubMed Central

    Vianney Kinani, Jean Marie; Gallegos Funes, Francisco; Mújica Vargas, Dante; Ramos Díaz, Eduardo; Arellano, Alfonso

    2017-01-01

    We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient's response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery (FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time. PMID:29158887

  12. Adaptive control in the presence of unmodeled dynamics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.

    1982-01-01

    Stability and robustness properties of a wide class of adaptive control algorithms in the presence of unmodeled dynamics and output disturbances were investigated. The class of adaptive algorithms considered are those commonly referred to as model reference adaptive control algorithms, self-tuning controllers, and dead beat adaptive controllers, developed for both continuous-time systems and discrete-time systems. A unified analytical approach was developed to examine the class of existing adaptive algorithms. It was discovered that all existing algorithms contain an infinite gain operator in the dynamic system that defines command reference errors and parameter errors; it is argued that such an infinite gain operator appears to be generic to all adaptive algorithms, whether they exhibit explicit or implicit parameter identification. It is concluded that none of the adaptive algorithms considered can be used with confidence in a practical control system design, because instability will set in with a high probability.

  13. Standard and Robust Methods in Regression Imputation

    ERIC Educational Resources Information Center

    Moraveji, Behjat; Jafarian, Koorosh

    2014-01-01

    The aim of this paper is to provide an introduction of new imputation algorithms for estimating missing values from official statistics in larger data sets of data pre-processing, or outliers. The goal is to propose a new algorithm called IRMI (iterative robust model-based imputation). This algorithm is able to deal with all challenges like…

  14. Robust pupil center detection using a curvature algorithm

    NASA Technical Reports Server (NTRS)

    Zhu, D.; Moore, S. T.; Raphan, T.; Wall, C. C. (Principal Investigator)

    1999-01-01

    Determining the pupil center is fundamental for calculating eye orientation in video-based systems. Existing techniques are error prone and not robust because eyelids, eyelashes, corneal reflections or shadows in many instances occlude the pupil. We have developed a new algorithm which utilizes curvature characteristics of the pupil boundary to eliminate these artifacts. Pupil center is computed based solely on points related to the pupil boundary. For each boundary point, a curvature value is computed. Occlusion of the boundary induces characteristic peaks in the curvature function. Curvature values for normal pupil sizes were determined and a threshold was found which together with heuristics discriminated normal from abnormal curvature. Remaining boundary points were fit with an ellipse using a least squares error criterion. The center of the ellipse is an estimate of the pupil center. This technique is robust and accurately estimates pupil center with less than 40% of the pupil boundary points visible.

  15. Data depth based clustering analysis

    DOE PAGES

    Jeong, Myeong -Hun; Cai, Yaping; Sullivan, Clair J.; ...

    2016-01-01

    Here, this paper proposes a new algorithm for identifying patterns within data, based on data depth. Such a clustering analysis has an enormous potential to discover previously unknown insights from existing data sets. Many clustering algorithms already exist for this purpose. However, most algorithms are not affine invariant. Therefore, they must operate with different parameters after the data sets are rotated, scaled, or translated. Further, most clustering algorithms, based on Euclidean distance, can be sensitive to noises because they have no global perspective. Parameter selection also significantly affects the clustering results of each algorithm. Unlike many existing clustering algorithms, themore » proposed algorithm, called data depth based clustering analysis (DBCA), is able to detect coherent clusters after the data sets are affine transformed without changing a parameter. It is also robust to noises because using data depth can measure centrality and outlyingness of the underlying data. Further, it can generate relatively stable clusters by varying the parameter. The experimental comparison with the leading state-of-the-art alternatives demonstrates that the proposed algorithm outperforms DBSCAN and HDBSCAN in terms of affine invariance, and exceeds or matches the ro-bustness to noises of DBSCAN or HDBSCAN. The robust-ness to parameter selection is also demonstrated through the case study of clustering twitter data.« less

  16. Flux-vector splitting algorithm for chain-rule conservation-law form

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Nguyen, H. L.; Willis, E. A.; Steinthorsson, E.; Li, Z.

    1991-01-01

    A flux-vector splitting algorithm with Newton-Raphson iteration was developed for the 'full compressible' Navier-Stokes equations cast in chain-rule conservation-law form. The algorithm is intended for problems with deforming spatial domains and for problems whose governing equations cannot be cast in strong conservation-law form. The usefulness of the algorithm for such problems was demonstrated by applying it to analyze the unsteady, two- and three-dimensional flows inside one combustion chamber of a Wankel engine under nonfiring conditions. Solutions were obtained to examine the algorithm in terms of conservation error, robustness, and ability to handle complex flows on time-dependent grid systems.

  17. Intergration of system identification and robust controller designs for flexible structures in space

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Lew, Jiann-Shiun

    1990-01-01

    An approach is developed using experimental data to identify a reduced-order model and its model error for a robust controller design. There are three steps involved in the approach. First, an approximately balanced model is identified using the Eigensystem Realization Algorithm, which is an identification algorithm. Second, the model error is calculated and described in frequency domain in terms of the H(infinity) norm. Third, a pole placement technique in combination with a H(infinity) control method is applied to design a controller for the considered system. A set experimental data from an existing setup, namely the Mini-Mast system, is used to illustrate and verify the approach.

  18. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, part 2

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Nachtigal, Noel M.

    1990-01-01

    It is shown how the look-ahead Lanczos process (combined with a quasi-minimal residual QMR) approach) can be used to develop a robust black box solver for large sparse non-Hermitian linear systems. Details of an implementation of the resulting QMR algorithm are presented. It is demonstrated that the QMR method is closely related to the biconjugate gradient (BCG) algorithm; however, unlike BCG, the QMR algorithm has smooth convergence curves and good numerical properties. We report numerical experiments with our implementation of the look-ahead Lanczos algorithm, both for eigenvalue problem and linear systems. Also, program listings of FORTRAN implementations of the look-ahead algorithm and the QMR method are included.

  19. Robust functional regression model for marginal mean and subject-specific inferences.

    PubMed

    Cao, Chunzheng; Shi, Jian Qing; Lee, Youngjo

    2017-01-01

    We introduce flexible robust functional regression models, using various heavy-tailed processes, including a Student t-process. We propose efficient algorithms in estimating parameters for the marginal mean inferences and in predicting conditional means as well as interpolation and extrapolation for the subject-specific inferences. We develop bootstrap prediction intervals (PIs) for conditional mean curves. Numerical studies show that the proposed model provides a robust approach against data contamination or distribution misspecification, and the proposed PIs maintain the nominal confidence levels. A real data application is presented as an illustrative example.

  20. Inverse transport calculations in optical imaging with subspace optimization algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Tian, E-mail: tding@math.utexas.edu; Ren, Kui, E-mail: ren@math.utexas.edu

    2014-09-15

    Inverse boundary value problems for the radiative transport equation play an important role in optics-based medical imaging techniques such as diffuse optical tomography (DOT) and fluorescence optical tomography (FOT). Despite the rapid progress in the mathematical theory and numerical computation of these inverse problems in recent years, developing robust and efficient reconstruction algorithms remains a challenging task and an active research topic. We propose here a robust reconstruction method that is based on subspace minimization techniques. The method splits the unknown transport solution (or a functional of it) into low-frequency and high-frequency components, and uses singular value decomposition to analyticallymore » recover part of low-frequency information. Minimization is then applied to recover part of the high-frequency components of the unknowns. We present some numerical simulations with synthetic data to demonstrate the performance of the proposed algorithm.« less

  1. Robust Planning for Autonomous Navigation of Mobile Robots in Unstructured, Dynamic Environments: An LDRD Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    EISLER, G. RICHARD

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Robust Planning for Autonomous Navigation of Mobile Robots In Unstructured, Dynamic Environments (AutoNav)''. The project goal was to develop an algorithmic-driven, multi-spectral approach to point-to-point navigation characterized by: segmented on-board trajectory planning, self-contained operation without human support for mission duration, and the development of appropriate sensors and algorithms to navigate unattended. The project was partially successful in achieving gains in sensing, path planning, navigation, and guidance. One of three experimental platforms, the Minimalist Autonomous Testbed, used a repetitive sense-and-re-plan combination to demonstratemore » the majority of elements necessary for autonomous navigation. However, a critical goal for overall success in arbitrary terrain, that of developing a sensor that is able to distinguish true obstacles that need to be avoided as a function of vehicle scale, still needs substantial research to bring to fruition.« less

  2. Intra-operative adjustment of standard planes in C-arm CT image data.

    PubMed

    Brehler, Michael; Görres, Joseph; Franke, Jochen; Barth, Karl; Vetter, Sven Y; Grützner, Paul A; Meinzer, Hans-Peter; Wolf, Ivo; Nabers, Diana

    2016-03-01

    With the help of an intra-operative mobile C-arm CT, medical interventions can be verified and corrected, avoiding the need for a post-operative CT and a second intervention. An exact adjustment of standard plane positions is necessary for the best possible assessment of the anatomical regions of interest but the mobility of the C-arm causes the need for a time-consuming manual adjustment. In this article, we present an automatic plane adjustment at the example of calcaneal fractures. We developed two feature detection methods (2D and pseudo-3D) based on SURF key points and also transferred the SURF approach to 3D. Combined with an atlas-based registration, our algorithm adjusts the standard planes of the calcaneal C-arm images automatically. The robustness of the algorithms is evaluated using a clinical data set. Additionally, we tested the algorithm's performance for two registration approaches, two resolutions of C-arm images and two methods for metal artifact reduction. For the feature extraction, the novel 3D-SURF approach performs best. As expected, a higher resolution ([Formula: see text] voxel) leads also to more robust feature points and is therefore slightly better than the [Formula: see text] voxel images (standard setting of device). Our comparison of two different artifact reduction methods and the complete removal of metal in the images shows that our approach is highly robust against artifacts and the number and position of metal implants. By introducing our fast algorithmic processing pipeline, we developed the first steps for a fully automatic assistance system for the assessment of C-arm CT images.

  3. X-Ray Phase Imaging for Breast Cancer Detection

    DTIC Science & Technology

    2012-09-01

    the Gerchberg-Saxton algorithm in the Fresnel diffraction regime, and is much more robust against image noise than the TIE-based method. For details...developed efficient coding with the software modules for the image registration, flat-filed correction , and phase retrievals. In addition, we...X, Liu H. 2010. Performance analysis of the attenuation-partition based iterative phase retrieval algorithm for in-line phase-contrast imaging

  4. Development of an analytical guidance algorithm for lunar descent

    NASA Astrophysics Data System (ADS)

    Chomel, Christina Tvrdik

    In recent years, NASA has indicated a desire to return humans to the moon. With NASA planning manned missions within the next couple of decades, the concept development for these lunar vehicles has begun. The guidance, navigation, and control (GN&C) computer programs that will perform the function of safely landing a spacecraft on the moon are part of that development. The lunar descent guidance algorithm takes the horizontally oriented spacecraft from orbital speeds hundreds of kilometers from the desired landing point to the landing point at an almost vertical orientation and very low speed. Existing lunar descent GN&C algorithms date back to the Apollo era with little work available for implementation since then. Though these algorithms met the criteria of the 1960's, they are cumbersome today. At the basis of the lunar descent phase are two elements: the targeting, which generates a reference trajectory, and the real-time guidance, which forces the spacecraft to fly that trajectory. The Apollo algorithm utilizes a complex, iterative, numerical optimization scheme for developing the reference trajectory. The real-time guidance utilizes this reference trajectory in the form of a quartic rather than a more general format to force the real-time trajectory errors to converge to zero; however, there exist no guarantees under any conditions for this convergence. The proposed algorithm implements a purely analytical targeting algorithm used to generate two-dimensional trajectories "on-the-fly"' or to retarget the spacecraft to another landing site altogether. It is based on the analytical solutions to the equations for speed, downrange, and altitude as a function of flight path angle and assumes two constant thrust acceleration curves. The proposed real-time guidance algorithm has at its basis the three-dimensional non-linear equations of motion and a control law that is proven to converge under certain conditions through Lyapunov analysis to a reference trajectory formatted as a function of downrange, altitude, speed, and flight path angle. The two elements of the guidance algorithm are joined in Monte Carlo analysis to prove their robustness to initial state dispersions and mass and thrust errors. The robustness of the retargeting algorithm is also demonstrated.

  5. A robust firearm identification algorithm of forensic ballistics specimens

    NASA Astrophysics Data System (ADS)

    Chuan, Z. L.; Jemain, A. A.; Liong, C.-Y.; Ghani, N. A. M.; Tan, L. K.

    2017-09-01

    There are several inherent difficulties in the existing firearm identification algorithms, include requiring the physical interpretation and time consuming. Therefore, the aim of this study is to propose a robust algorithm for a firearm identification based on extracting a set of informative features from the segmented region of interest (ROI) using the simulated noisy center-firing pin impression images. The proposed algorithm comprises Laplacian sharpening filter, clustering-based threshold selection, unweighted least square estimator, and segment a square ROI from the noisy images. A total of 250 simulated noisy images collected from five different pistols of the same make, model and caliber are used to evaluate the robustness of the proposed algorithm. This study found that the proposed algorithm is able to perform the identical task on the noisy images with noise levels as high as 70%, while maintaining a firearm identification accuracy rate of over 90%.

  6. [Effect of algorithms for calibration set selection on quantitatively determining asiaticoside content in Centella total glucosides by near infrared spectroscopy].

    PubMed

    Zhan, Xue-yan; Zhao, Na; Lin, Zhao-zhou; Wu, Zhi-sheng; Yuan, Rui-juan; Qiao, Yan-jiang

    2014-12-01

    The appropriate algorithm for calibration set selection was one of the key technologies for a good NIR quantitative model. There are different algorithms for calibration set selection, such as Random Sampling (RS) algorithm, Conventional Selection (CS) algorithm, Kennard-Stone(KS) algorithm and Sample set Portioning based on joint x-y distance (SPXY) algorithm, et al. However, there lack systematic comparisons between two algorithms of the above algorithms. The NIR quantitative models to determine the asiaticoside content in Centella total glucosides were established in the present paper, of which 7 indexes were classified and selected, and the effects of CS algorithm, KS algorithm and SPXY algorithm for calibration set selection on the accuracy and robustness of NIR quantitative models were investigated. The accuracy indexes of NIR quantitative models with calibration set selected by SPXY algorithm were significantly different from that with calibration set selected by CS algorithm or KS algorithm, while the robustness indexes, such as RMSECV and |RMSEP-RMSEC|, were not significantly different. Therefore, SPXY algorithm for calibration set selection could improve the predicative accuracy of NIR quantitative models to determine asiaticoside content in Centella total glucosides, and have no significant effect on the robustness of the models, which provides a reference to determine the appropriate algorithm for calibration set selection when NIR quantitative models are established for the solid system of traditional Chinese medcine.

  7. Research reactor loading pattern optimization using estimation of distribution algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, S.; Ziver, K.; AMCG Group, RM Consultants, Abingdon

    2006-07-01

    A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K{sub eff}) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K{sub eff} with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristicmore » Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)« less

  8. Robust Adaptive Modified Newton Algorithm for Generalized Eigendecomposition and Its Application

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Yang, Feng; Xi, Hong-Sheng; Guo, Wei; Sheng, Yanmin

    2007-12-01

    We propose a robust adaptive algorithm for generalized eigendecomposition problems that arise in modern signal processing applications. To that extent, the generalized eigendecomposition problem is reinterpreted as an unconstrained nonlinear optimization problem. Starting from the proposed cost function and making use of an approximation of the Hessian matrix, a robust modified Newton algorithm is derived. A rigorous analysis of its convergence properties is presented by using stochastic approximation theory. We also apply this theory to solve the signal reception problem of multicarrier DS-CDMA to illustrate its practical application. The simulation results show that the proposed algorithm has fast convergence and excellent tracking capability, which are important in a practical time-varying communication environment.

  9. Robust Integration Schemes for Generalized Viscoplasticity with Internal-State Variables

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Li, W.; Wilt, Thomas E.

    1997-01-01

    The scope of the work in this presentation focuses on the development of algorithms for the integration of rate dependent constitutive equations. In view of their robustness; i.e., their superior stability and convergence properties for isotropic and anisotropic coupled viscoplastic-damage models, implicit integration schemes have been selected. This is the simplest in its class and is one of the most widely used implicit integrators at present.

  10. Multi-Optimisation Consensus Clustering

    NASA Astrophysics Data System (ADS)

    Li, Jian; Swift, Stephen; Liu, Xiaohui

    Ensemble Clustering has been developed to provide an alternative way of obtaining more stable and accurate clustering results. It aims to avoid the biases of individual clustering algorithms. However, it is still a challenge to develop an efficient and robust method for Ensemble Clustering. Based on an existing ensemble clustering method, Consensus Clustering (CC), this paper introduces an advanced Consensus Clustering algorithm called Multi-Optimisation Consensus Clustering (MOCC), which utilises an optimised Agreement Separation criterion and a Multi-Optimisation framework to improve the performance of CC. Fifteen different data sets are used for evaluating the performance of MOCC. The results reveal that MOCC can generate more accurate clustering results than the original CC algorithm.

  11. Computational microscopy: illumination coding and nonlinear optimization enables gigapixel 3D phase imaging

    NASA Astrophysics Data System (ADS)

    Tian, Lei; Waller, Laura

    2017-05-01

    Microscope lenses can have either large field of view (FOV) or high resolution, not both. Computational microscopy based on illumination coding circumvents this limit by fusing images from different illumination angles using nonlinear optimization algorithms. The result is a Gigapixel-scale image having both wide FOV and high resolution. We demonstrate an experimentally robust reconstruction algorithm based on a 2nd order quasi-Newton's method, combined with a novel phase initialization scheme. To further extend the Gigapixel imaging capability to 3D, we develop a reconstruction method to process the 4D light field measurements from sequential illumination scanning. The algorithm is based on a 'multislice' forward model that incorporates both 3D phase and diffraction effects, as well as multiple forward scatterings. To solve the inverse problem, an iterative update procedure that combines both phase retrieval and 'error back-propagation' is developed. To avoid local minimum solutions, we further develop a novel physical model-based initialization technique that accounts for both the geometric-optic and 1st order phase effects. The result is robust reconstructions of Gigapixel 3D phase images having both wide FOV and super resolution in all three dimensions. Experimental results from an LED array microscope were demonstrated.

  12. Decentralized Feedback Controllers for Robust Stabilization of Periodic Orbits of Hybrid Systems: Application to Bipedal Walking.

    PubMed

    Hamed, Kaveh Akbari; Gregg, Robert D

    2017-07-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially and robustly stabilize periodic orbits for hybrid dynamical systems against possible uncertainties in discrete-time phases. The algorithm assumes a family of parameterized and decentralized nonlinear controllers to coordinate interconnected hybrid subsystems based on a common phasing variable. The exponential and [Formula: see text] robust stabilization problems of periodic orbits are translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities. By investigating the properties of the Poincaré map, some sufficient conditions for the convergence of the iterative algorithm are presented. The power of the algorithm is finally demonstrated through designing a set of robust stabilizing local nonlinear controllers for walking of an underactuated 3D autonomous bipedal robot with 9 degrees of freedom, impact model uncertainties, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.

  13. Decentralized Feedback Controllers for Robust Stabilization of Periodic Orbits of Hybrid Systems: Application to Bipedal Walking

    PubMed Central

    Hamed, Kaveh Akbari; Gregg, Robert D.

    2016-01-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially and robustly stabilize periodic orbits for hybrid dynamical systems against possible uncertainties in discrete-time phases. The algorithm assumes a family of parameterized and decentralized nonlinear controllers to coordinate interconnected hybrid subsystems based on a common phasing variable. The exponential and H2 robust stabilization problems of periodic orbits are translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities. By investigating the properties of the Poincaré map, some sufficient conditions for the convergence of the iterative algorithm are presented. The power of the algorithm is finally demonstrated through designing a set of robust stabilizing local nonlinear controllers for walking of an underactuated 3D autonomous bipedal robot with 9 degrees of freedom, impact model uncertainties, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:28959117

  14. Robust Feature Selection Technique using Rank Aggregation.

    PubMed

    Sarkar, Chandrima; Cooley, Sarah; Srivastava, Jaideep

    2014-01-01

    Although feature selection is a well-developed research area, there is an ongoing need to develop methods to make classifiers more efficient. One important challenge is the lack of a universal feature selection technique which produces similar outcomes with all types of classifiers. This is because all feature selection techniques have individual statistical biases while classifiers exploit different statistical properties of data for evaluation. In numerous situations this can put researchers into dilemma as to which feature selection method and a classifiers to choose from a vast range of choices. In this paper, we propose a technique that aggregates the consensus properties of various feature selection methods to develop a more optimal solution. The ensemble nature of our technique makes it more robust across various classifiers. In other words, it is stable towards achieving similar and ideally higher classification accuracy across a wide variety of classifiers. We quantify this concept of robustness with a measure known as the Robustness Index (RI). We perform an extensive empirical evaluation of our technique on eight data sets with different dimensions including Arrythmia, Lung Cancer, Madelon, mfeat-fourier, internet-ads, Leukemia-3c and Embryonal Tumor and a real world data set namely Acute Myeloid Leukemia (AML). We demonstrate not only that our algorithm is more robust, but also that compared to other techniques our algorithm improves the classification accuracy by approximately 3-4% (in data set with less than 500 features) and by more than 5% (in data set with more than 500 features), across a wide range of classifiers.

  15. Robust resolution enhancement optimization methods to process variations based on vector imaging model

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Li, Yanqiu; Guo, Xuejia; Dong, Lisong

    2012-03-01

    Optical proximity correction (OPC) and phase shifting mask (PSM) are the most widely used resolution enhancement techniques (RET) in the semiconductor industry. Recently, a set of OPC and PSM optimization algorithms have been developed to solve for the inverse lithography problem, which are only designed for the nominal imaging parameters without giving sufficient attention to the process variations due to the aberrations, defocus and dose variation. However, the effects of process variations existing in the practical optical lithography systems become more pronounced as the critical dimension (CD) continuously shrinks. On the other hand, the lithography systems with larger NA (NA>0.6) are now extensively used, rendering the scalar imaging models inadequate to describe the vector nature of the electromagnetic field in the current optical lithography systems. In order to tackle the above problems, this paper focuses on developing robust gradient-based OPC and PSM optimization algorithms to the process variations under a vector imaging model. To achieve this goal, an integrative and analytic vector imaging model is applied to formulate the optimization problem, where the effects of process variations are explicitly incorporated in the optimization framework. The steepest descent algorithm is used to optimize the mask iteratively. In order to improve the efficiency of the proposed algorithms, a set of algorithm acceleration techniques (AAT) are exploited during the optimization procedure.

  16. Fat water decomposition using globally optimal surface estimation (GOOSE) algorithm.

    PubMed

    Cui, Chen; Wu, Xiaodong; Newell, John D; Jacob, Mathews

    2015-03-01

    This article focuses on developing a novel noniterative fat water decomposition algorithm more robust to fat water swaps and related ambiguities. Field map estimation is reformulated as a constrained surface estimation problem to exploit the spatial smoothness of the field, thus minimizing the ambiguities in the recovery. Specifically, the differences in the field map-induced frequency shift between adjacent voxels are constrained to be in a finite range. The discretization of the above problem yields a graph optimization scheme, where each node of the graph is only connected with few other nodes. Thanks to the low graph connectivity, the problem is solved efficiently using a noniterative graph cut algorithm. The global minimum of the constrained optimization problem is guaranteed. The performance of the algorithm is compared with that of state-of-the-art schemes. Quantitative comparisons are also made against reference data. The proposed algorithm is observed to yield more robust fat water estimates with fewer fat water swaps and better quantitative results than other state-of-the-art algorithms in a range of challenging applications. The proposed algorithm is capable of considerably reducing the swaps in challenging fat water decomposition problems. The experiments demonstrate the benefit of using explicit smoothness constraints in field map estimation and solving the problem using a globally convergent graph-cut optimization algorithm. © 2014 Wiley Periodicals, Inc.

  17. Space Launch System Implementation of Adaptive Augmenting Control

    NASA Technical Reports Server (NTRS)

    Wall, John H.; Orr, Jeb S.; VanZwieten, Tannen S.

    2014-01-01

    Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to provide stable and high-performance flight. On its development path to Preliminary Design Review (PDR), the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an Adaptive Augmenting Control (AAC) algorithm has been shown to extend the envelope of failures and flight anomalies the SLS control system can accommodate while maintaining a direct link to flight control stability criteria such as classical gain and phase margin. In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the full SLS digital 3-axis autopilot, including existing load-relief elements, and the necessary steps for integration with the production flight software prototype have been implemented. Several updates which have been made to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are also shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.

  18. Trade-offs between robustness and small-world effect in complex networks

    PubMed Central

    Peng, Guan-Sheng; Tan, Suo-Yi; Wu, Jun; Holme, Petter

    2016-01-01

    Robustness and small-world effect are two crucial structural features of complex networks and have attracted increasing attention. However, little is known about the relation between them. Here we demonstrate that, there is a conflicting relation between robustness and small-world effect for a given degree sequence. We suggest that the robustness-oriented optimization will weaken the small-world effect and vice versa. Then, we propose a multi-objective trade-off optimization model and develop a heuristic algorithm to obtain the optimal trade-off topology for robustness and small-world effect. We show that the optimal network topology exhibits a pronounced core-periphery structure and investigate the structural properties of the optimized networks in detail. PMID:27853301

  19. Multi-scale graph-cut algorithm for efficient water-fat separation.

    PubMed

    Berglund, Johan; Skorpil, Mikael

    2017-09-01

    To improve the accuracy and robustness to noise in water-fat separation by unifying the multiscale and graph cut based approaches to B 0 -correction. A previously proposed water-fat separation algorithm that corrects for B 0 field inhomogeneity in 3D by a single quadratic pseudo-Boolean optimization (QPBO) graph cut was incorporated into a multi-scale framework, where field map solutions are propagated from coarse to fine scales for voxels that are not resolved by the graph cut. The accuracy of the single-scale and multi-scale QPBO algorithms was evaluated against benchmark reference datasets. The robustness to noise was evaluated by adding noise to the input data prior to water-fat separation. Both algorithms achieved the highest accuracy when compared with seven previously published methods, while computation times were acceptable for implementation in clinical routine. The multi-scale algorithm was more robust to noise than the single-scale algorithm, while causing only a small increase (+10%) of the reconstruction time. The proposed 3D multi-scale QPBO algorithm offers accurate water-fat separation, robustness to noise, and fast reconstruction. The software implementation is freely available to the research community. Magn Reson Med 78:941-949, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.

    2014-01-01

    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  1. U31: vehicle stability and dynamics electronic stability control final report.

    DOT National Transportation Integrated Search

    2011-09-01

    A team led by NTRCI is working to improve the roll and yaw stability of heavy duty combination trucks through developing stability algorithms, assembling demonstration hardware, and investigating robust wireless communication. : Modern electronic sta...

  2. Robust and real-time rotor control with magnetic bearings

    NASA Technical Reports Server (NTRS)

    Sinha, A.; Wang, K. W.; Mease, K. L.

    1991-01-01

    This paper deals with the sliding mode control of a rigid rotor via radial magnetic bearings. The digital control algorithm and the results from numerical simulations are presented for an experimental rig. The experimental system which has been set up to digitally implement and validate the sliding mode control algorithm is described. Two methods for the development of control softwares are presented. Experimental results for individual rotor axis are discussed.

  3. A robust in-situ warp-correction algorithm for VISAR streak camera data at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.

    2015-02-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high energy density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.

  4. Identification of robust adaptation gene regulatory network parameters using an improved particle swarm optimization algorithm.

    PubMed

    Huang, X N; Ren, H P

    2016-05-13

    Robust adaptation is a critical ability of gene regulatory network (GRN) to survive in a fluctuating environment, which represents the system responding to an input stimulus rapidly and then returning to its pre-stimulus steady state timely. In this paper, the GRN is modeled using the Michaelis-Menten rate equations, which are highly nonlinear differential equations containing 12 undetermined parameters. The robust adaption is quantitatively described by two conflicting indices. To identify the parameter sets in order to confer the GRNs with robust adaptation is a multi-variable, multi-objective, and multi-peak optimization problem, which is difficult to acquire satisfactory solutions especially high-quality solutions. A new best-neighbor particle swarm optimization algorithm is proposed to implement this task. The proposed algorithm employs a Latin hypercube sampling method to generate the initial population. The particle crossover operation and elitist preservation strategy are also used in the proposed algorithm. The simulation results revealed that the proposed algorithm could identify multiple solutions in one time running. Moreover, it demonstrated a superior performance as compared to the previous methods in the sense of detecting more high-quality solutions within an acceptable time. The proposed methodology, owing to its universality and simplicity, is useful for providing the guidance to design GRN with superior robust adaptation.

  5. State-dependent biasing method for importance sampling in the weighted stochastic simulation algorithm.

    PubMed

    Roh, Min K; Gillespie, Dan T; Petzold, Linda R

    2010-11-07

    The weighted stochastic simulation algorithm (wSSA) was developed by Kuwahara and Mura [J. Chem. Phys. 129, 165101 (2008)] to efficiently estimate the probabilities of rare events in discrete stochastic systems. The wSSA uses importance sampling to enhance the statistical accuracy in the estimation of the probability of the rare event. The original algorithm biases the reaction selection step with a fixed importance sampling parameter. In this paper, we introduce a novel method where the biasing parameter is state-dependent. The new method features improved accuracy, efficiency, and robustness.

  6. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2018-01-01

    The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.

  7. Robust crop and weed segmentation under uncontrolled outdoor illumination.

    PubMed

    Jeon, Hong Y; Tian, Lei F; Zhu, Heping

    2011-01-01

    An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN). The developed algorithm was validated for its ability to identify and detect weeds and crop plants under uncontrolled outdoor illuminations. A machine vision implementing field robot captured field images under outdoor illuminations and the image processing algorithm automatically processed them without manual adjustment. The errors of the algorithm, when processing 666 field images, ranged from 2.1 to 2.9%. The ANN correctly detected 72.6% of crop plants from the identified plants, and considered the rest as weeds. However, the ANN identification rates for crop plants were improved up to 95.1% by addressing the error sources in the algorithm. The developed weed detection and image processing algorithm provides a novel method to identify plants against soil background under the uncontrolled outdoor illuminations, and to differentiate weeds from crop plants. Thus, the proposed new machine vision and processing algorithm may be useful for outdoor applications including plant specific direct applications (PSDA).

  8. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics.

    PubMed

    Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan

    2017-04-06

    An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.

  9. Fast vision-based catheter 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D.

    2016-07-01

    Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of  ±0.6 mm and  ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.

  10. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics

    PubMed Central

    Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan

    2017-01-01

    An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods. PMID:28383503

  11. Control of equipment isolation system using wavelet-based hybrid sliding mode control

    NASA Astrophysics Data System (ADS)

    Huang, Shieh-Kung; Loh, Chin-Hsiung

    2017-04-01

    Critical non-structural equipment, including life-saving equipment in hospitals, circuit breakers, computers, high technology instrumentations, etc., is vulnerable to strong earthquakes, and on top of that, the failure of the vibration-sensitive equipment will cause severe economic loss. In order to protect vibration-sensitive equipment or machinery against strong earthquakes, various innovative control algorithms are developed to compensate the internal forces that to be applied. These new or improved control strategies, such as the control algorithms based on optimal control theory and sliding mode control (SMC), are also developed for structures engineering as a key element in smart structure technology. The optimal control theory, one of the most common methodologies in feedback control, finds control forces through achieving a certain optimal criterion by minimizing a cost function. For example, the linear-quadratic regulator (LQR) was the most popular control algorithm over the past three decades, and a number of modifications have been proposed to increase the efficiency of classical LQR algorithm. However, except to the advantage of simplicity and ease of implementation, LQR are susceptible to parameter uncertainty and modeling error due to complex nature of civil structures. Different from LQR control, a robust and easy to be implemented control algorithm, SMC has also been studied. SMC is a nonlinear control methodology that forces the structural system to slide along surfaces or boundaries; hence this control algorithm is naturally robust with respect to parametric uncertainties of a structure. Early attempts at protecting vibration-sensitive equipment were based on the use of existing control algorithms as described above. However, in recent years, researchers have tried to renew the existing control algorithms or developing a new control algorithm to adapt the complex nature of civil structures which include the control of both structures and non-structural components. The aim of this paper is to develop a hybrid control algorithm on the control of both structures and equipments simultaneously to overcome the limitations of classical feedback control through combining the advantage of classic LQR and SMC. To suppress vibrations with the frequency contents of strong earthquakes differing from the natural frequencies of civil structures, the hybrid control algorithms integrated with the wavelet-base vibration control algorithm is developed. The performance of classical, hybrid, and wavelet-based hybrid control algorithms as well as the responses of structure and non-structural components are evaluated and discussed through numerical simulation in this study.

  12. All solid state mid-infrared dual-comb spectroscopy platform based on QCL technology

    NASA Astrophysics Data System (ADS)

    Hugi, Andreas; Geiser, Markus; Villares, Gustavo; Cappelli, Francesco; Blaser, Stephane; Faist, Jérôme

    2015-01-01

    We develop a spectroscopy platform for industrial applications based on semiconductor quantum cascade laser (QCL) frequency combs. The platform's key features will be an unmatched combination of bandwidth of 100 cm-1, resolution of 100 kHz, speed of ten to hundreds of μs as well as size and robustness, opening doors to beforehand unreachable markets. The sensor can be built extremely compact and robust since the laser source is an all-electrically pumped semiconductor optical frequency comb and no mechanical elements are required. However, the parallel acquisition of dual-comb spectrometers comes at the price of enormous data-rates. For system scalability, robustness and optical simplicity we use free-running QCL combs. Therefore no complicated optical locking mechanisms are required. To reach high signal-to-noise ratios, we develop an algorithm, which is based on combination of coherent and non-coherent averaging. This algorithm is specifically optimized for free-running and small footprint, therefore high-repetition rate, comb sources. As a consequence, our system generates data-rates of up to 3.2 GB/sec. These data-rates need to be reduced by several orders of magnitude in real-time in order to be useful for spectral fitting algorithms. We present the development of a data-treatment solution, which reaches a single-channel throughput of 22% using a standard laptop-computer. Using a state-of-the art desktop computer, the throughput is increased to 43%. This is combined with a data-acquisition board to a stand-alone data processing unit, allowing real-time industrial process observation and continuous averaging to achieve highest signal fidelity.

  13. Real-time fetal ECG system design using embedded microprocessors

    NASA Astrophysics Data System (ADS)

    Meyer-Baese, Uwe; Muddu, Harikrishna; Schinhaerl, Sebastian; Kumm, Martin; Zipf, Peter

    2016-05-01

    The emphasis of this project lies in the development and evaluation of new robust and high fidelity fetal electrocardiogram (FECG) systems to determine the fetal heart rate (FHR). Recently several powerful algorithms have been suggested to improve the FECG fidelity. Until now it is unknown if these algorithms allow a real-time processing, can be used in mobile systems (low power), and which algorithm produces the best error rate for a given system configuration. In this work we have developed high performance, low power microprocessor-based biomedical systems that allow a fair comparison of proposed, state-of-the-art FECG algorithms. We will evaluate different soft-core microprocessors and compare these solutions to other commercial off-the-shelf (COTS) hardcore solutions in terms of price, size, power, and speed.

  14. Block clustering based on difference of convex functions (DC) programming and DC algorithms.

    PubMed

    Le, Hoai Minh; Le Thi, Hoai An; Dinh, Tao Pham; Huynh, Van Ngai

    2013-10-01

    We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.

  15. Glint-induced false alarm reduction in signature adaptive target detection

    NASA Astrophysics Data System (ADS)

    Crosby, Frank J.

    2002-07-01

    The signal adaptive target detection algorithm developed by Crosby and Riley uses target geometry to discern anomalies in local backgrounds. Detection is not restricted based on specific target signatures. The robustness of the algorithm is limited by an increased false alarm potential. The base algorithm is extended to eliminate one common source of false alarms in a littoral environment. This common source is glint reflected on the surface of water. The spectral and spatial transience of glint prevent straightforward characterization and complicate exclusion. However, the statistical basis of the detection algorithm and its inherent computations allow for glint discernment and the removal of its influence.

  16. Designing robust control laws using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Marrison, Chris

    1994-01-01

    The purpose of this research is to create a method of finding practical, robust control laws. The robustness of a controller is judged by Stochastic Robustness metrics and the level of robustness is optimized by searching for design parameters that minimize a robustness cost function.

  17. A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems.

    PubMed

    Kazemi, Mahdi; Arefi, Mohammad Mehdi

    2017-03-01

    In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Robust Online Monitoring for Calibration Assessment of Transmitters and Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Coble, Jamie B.; Shumaker, Brent

    Robust online monitoring (OLM) technologies are expected to enable the extension or elimination of periodic sensor calibration intervals in operating and new reactors. These advances in OLM technologies will improve the safety and reliability of current and planned nuclear power systems through improved accuracy and increased reliability of sensors used to monitor key parameters. In this article, we discuss an overview of research being performed within the Nuclear Energy Enabling Technologies (NEET)/Advanced Sensors and Instrumentation (ASI) program, for the development of OLM algorithms to use sensor outputs and, in combination with other available information, 1) determine whether one or moremore » sensors are out of calibration or failing and 2) replace a failing sensor with reliable, accurate sensor outputs. Algorithm development is focused on the following OLM functions: • Signal validation • Virtual sensing • Sensor response-time assessment These algorithms incorporate, at their base, a Gaussian Process-based uncertainty quantification (UQ) method. Various plant models (using kernel regression, GP, or hierarchical models) may be used to predict sensor responses under various plant conditions. These predicted responses can then be applied in fault detection (sensor output and response time) and in computing the correct value (virtual sensing) of a failing physical sensor. The methods being evaluated in this work can compute confidence levels along with the predicted sensor responses, and as a result, may have the potential for compensating for sensor drift in real-time (online recalibration). Evaluation was conducted using data from multiple sources (laboratory flow loops and plant data). Ongoing research in this project is focused on further evaluation of the algorithms, optimization for accuracy and computational efficiency, and integration into a suite of tools for robust OLM that are applicable to monitoring sensor calibration state in nuclear power plants.« less

  19. Broadband continuous wave source localization via pair-wise, cochleagram processing

    NASA Astrophysics Data System (ADS)

    Nosal, Eva-Marie; Frazer, L. Neil

    2005-04-01

    A pair-wise processor has been developed for the passive localization of broadband continuous-wave underwater sources. The algorithm uses sparse hydrophone arrays and does not require previous knowledge of the source signature. It is applicable in multiple source situations. A spectrogram/cochleagram version of the algorithm has been developed in order to utilize higher frequencies at longer ranges where signal incoherence, and limited computational resources, preclude the use of full waveforms. Simulations demonstrating the robustness of the algorithm with respect to noise and environmental mismatch will be presented, together with initial results from the analysis of humpback whale song recorded at the Pacific Missile Range Facility off Kauai. [Work supported by MHPCC and ONR.

  20. An Automated Method for Navigation Assessment for Earth Survey Sensors Using Island Targets

    NASA Technical Reports Server (NTRS)

    Patt, F. S.; Woodward, R. H.; Gregg, W. W.

    1997-01-01

    An automated method has been developed for performing navigation assessment on satellite-based Earth sensor data. The method utilizes islands as targets which can be readily located in the sensor data and identified with reference locations. The essential elements are an algorithm for classifying the sensor data according to source, a reference catalogue of island locations, and a robust pattern-matching algorithm for island identification. The algorithms were developed and tested for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), an ocean colour sensor. This method will allow navigation error statistics to be automatically generated for large numbers of points, supporting analysis over large spatial and temporal ranges.

  1. Automated navigation assessment for earth survey sensors using island targets

    NASA Technical Reports Server (NTRS)

    Patt, Frederick S.; Woodward, Robert H.; Gregg, Watson W.

    1997-01-01

    An automated method has been developed for performing navigation assessment on satellite-based Earth sensor data. The method utilizes islands as targets which can be readily located in the sensor data and identified with reference locations. The essential elements are an algorithm for classifying the sensor data according to source, a reference catalog of island locations, and a robust pattern-matching algorithm for island identification. The algorithms were developed and tested for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), an ocean color sensor. This method will allow navigation error statistics to be automatically generated for large numbers of points, supporting analysis over large spatial and temporal ranges.

  2. A robust embedded vision system feasible white balance algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Yu, Feihong

    2018-01-01

    White balance is a very important part of the color image processing pipeline. In order to meet the need of efficiency and accuracy in embedded machine vision processing system, an efficient and robust white balance algorithm combining several classical ones is proposed. The proposed algorithm mainly has three parts. Firstly, in order to guarantee higher efficiency, an initial parameter calculated from the statistics of R, G and B components from raw data is used to initialize the following iterative method. After that, the bilinear interpolation algorithm is utilized to implement demosaicing procedure. Finally, an adaptive step adjustable scheme is introduced to ensure the controllability and robustness of the algorithm. In order to verify the proposed algorithm's performance on embedded vision system, a smart camera based on IMX6 DualLite, IMX291 and XC6130 is designed. Extensive experiments on a large amount of images under different color temperatures and exposure conditions illustrate that the proposed white balance algorithm avoids color deviation problem effectively, achieves a good balance between efficiency and quality, and is suitable for embedded machine vision processing system.

  3. An efficient robust sound classification algorithm for hearing aids.

    PubMed

    Nordqvist, Peter; Leijon, Arne

    2004-06-01

    An efficient robust sound classification algorithm based on hidden Markov models is presented. The system would enable a hearing aid to automatically change its behavior for differing listening environments according to the user's preferences. This work attempts to distinguish between three listening environment categories: speech in traffic noise, speech in babble, and clean speech, regardless of the signal-to-noise ratio. The classifier uses only the modulation characteristics of the signal. The classifier ignores the absolute sound pressure level and the absolute spectrum shape, resulting in an algorithm that is robust against irrelevant acoustic variations. The measured classification hit rate was 96.7%-99.5% when the classifier was tested with sounds representing one of the three environment categories included in the classifier. False-alarm rates were 0.2%-1.7% in these tests. The algorithm is robust and efficient and consumes a small amount of instructions and memory. It is fully possible to implement the classifier in a DSP-based hearing instrument.

  4. Development of an embedded instrument for autofocus and polarization alignment of polarization maintaining fiber

    NASA Astrophysics Data System (ADS)

    Feng, Di; Fang, Qimeng; Huang, Huaibo; Zhao, Zhengqi; Song, Ningfang

    2017-12-01

    The development and implementation of a practical instrument based on an embedded technique for autofocus and polarization alignment of polarization maintaining fiber is presented. For focusing efficiency and stability, an image-based focusing algorithm fully considering the image definition evaluation and the focusing search strategy was used to accomplish autofocus. For improving the alignment accuracy, various image-based algorithms of alignment detection were developed with high calculation speed and strong robustness. The instrument can be operated as a standalone device with real-time processing and convenience operations. The hardware construction, software interface, and image-based algorithms of main modules are described. Additionally, several image simulation experiments were also carried out to analyze the accuracy of the above alignment detection algorithms. Both the simulation results and experiment results indicate that the instrument can achieve the accuracy of polarization alignment <±0.1 deg.

  5. A Robust Gold Deconvolution Approach for LiDAR Waveform Data Processing to Characterize Vegetation Structure

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.; Krause, K.; Sheridan, R.; Ku, N. W.

    2014-12-01

    Increasing attention has been paid in the remote sensing community to the next generation Light Detection and Ranging (lidar) waveform data systems for extracting information on topography and the vertical structure of vegetation. However, processing waveform lidar data raises some challenges compared to analyzing discrete return data. The overall goal of this study was to present a robust de-convolution algorithm- Gold algorithm used to de-convolve waveforms in a lidar dataset acquired within a 60 x 60m study area located in the Harvard Forest in Massachusetts. The waveform lidar data was collected by the National Ecological Observatory Network (NEON). Specific objectives were to: (1) explore advantages and limitations of various waveform processing techniques to derive topography and canopy height information; (2) develop and implement a novel de-convolution algorithm, the Gold algorithm, to extract elevation and canopy metrics; and (3) compare results and assess accuracy. We modeled lidar waveforms with a mixture of Gaussian functions using the Non-least squares (NLS) algorithm implemented in R and derived a Digital Terrain Model (DTM) and canopy height. We compared our waveform-derived topography and canopy height measurements using the Gold de-convolution algorithm to results using the Richardson-Lucy algorithm. Our findings show that the Gold algorithm performed better than the Richardson-Lucy algorithm in terms of recovering the hidden echoes and detecting false echoes for generating a DTM, which indicates that the Gold algorithm could potentially be applied to processing of waveform lidar data to derive information on terrain elevation and canopy characteristics.

  6. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors

    PubMed Central

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-01-01

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233

  7. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    PubMed

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  8. UAV Mission Planning under Uncertainty

    DTIC Science & Technology

    2006-06-01

    algorithm , adapted from [13] . 57 4-5 Robust Optimization considers only a subset of the feasible region . 61 5-1 Overview of simulation with parameter...incorporates the robust optimization method suggested by Bertsimas and Sim [12], and is solved with a standard Branch- and-Cut algorithm . The chapter... algorithms , and the heuristic methods of Local Search methods and Simulated Annealing. With each method, we attempt to give a review of research that has

  9. Robust efficient estimation of heart rate pulse from video.

    PubMed

    Xu, Shuchang; Sun, Lingyun; Rohde, Gustavo Kunde

    2014-04-01

    We describe a simple but robust algorithm for estimating the heart rate pulse from video sequences containing human skin in real time. Based on a model of light interaction with human skin, we define the change of blood concentration due to arterial pulsation as a pixel quotient in log space, and successfully use the derived signal for computing the pulse heart rate. Various experiments with different cameras, different illumination condition, and different skin locations were conducted to demonstrate the effectiveness and robustness of the proposed algorithm. Examples computed with normal illumination show the algorithm is comparable with pulse oximeter devices both in accuracy and sensitivity.

  10. Robust efficient estimation of heart rate pulse from video

    PubMed Central

    Xu, Shuchang; Sun, Lingyun; Rohde, Gustavo Kunde

    2014-01-01

    We describe a simple but robust algorithm for estimating the heart rate pulse from video sequences containing human skin in real time. Based on a model of light interaction with human skin, we define the change of blood concentration due to arterial pulsation as a pixel quotient in log space, and successfully use the derived signal for computing the pulse heart rate. Various experiments with different cameras, different illumination condition, and different skin locations were conducted to demonstrate the effectiveness and robustness of the proposed algorithm. Examples computed with normal illumination show the algorithm is comparable with pulse oximeter devices both in accuracy and sensitivity. PMID:24761294

  11. Efficient super-resolution image reconstruction applied to surveillance video captured by small unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    He, Qiang; Schultz, Richard R.; Chu, Chee-Hung Henry

    2008-04-01

    The concept surrounding super-resolution image reconstruction is to recover a highly-resolved image from a series of low-resolution images via between-frame subpixel image registration. In this paper, we propose a novel and efficient super-resolution algorithm, and then apply it to the reconstruction of real video data captured by a small Unmanned Aircraft System (UAS). Small UAS aircraft generally have a wingspan of less than four meters, so that these vehicles and their payloads can be buffeted by even light winds, resulting in potentially unstable video. This algorithm is based on a coarse-to-fine strategy, in which a coarsely super-resolved image sequence is first built from the original video data by image registration and bi-cubic interpolation between a fixed reference frame and every additional frame. It is well known that the median filter is robust to outliers. If we calculate pixel-wise medians in the coarsely super-resolved image sequence, we can restore a refined super-resolved image. The primary advantage is that this is a noniterative algorithm, unlike traditional approaches based on highly-computational iterative algorithms. Experimental results show that our coarse-to-fine super-resolution algorithm is not only robust, but also very efficient. In comparison with five well-known super-resolution algorithms, namely the robust super-resolution algorithm, bi-cubic interpolation, projection onto convex sets (POCS), the Papoulis-Gerchberg algorithm, and the iterated back projection algorithm, our proposed algorithm gives both strong efficiency and robustness, as well as good visual performance. This is particularly useful for the application of super-resolution to UAS surveillance video, where real-time processing is highly desired.

  12. Geomagnetic matching navigation algorithm based on robust estimation

    NASA Astrophysics Data System (ADS)

    Xie, Weinan; Huang, Liping; Qu, Zhenshen; Wang, Zhenhuan

    2017-08-01

    The outliers in the geomagnetic survey data seriously affect the precision of the geomagnetic matching navigation and badly disrupt its reliability. A novel algorithm which can eliminate the outliers influence is investigated in this paper. First, the weight function is designed and its principle of the robust estimation is introduced. By combining the relation equation between the matching trajectory and the reference trajectory with the Taylor series expansion for geomagnetic information, a mathematical expression of the longitude, latitude and heading errors is acquired. The robust target function is obtained by the weight function and the mathematical expression. Then the geomagnetic matching problem is converted to the solutions of nonlinear equations. Finally, Newton iteration is applied to implement the novel algorithm. Simulation results show that the matching error of the novel algorithm is decreased to 7.75% compared to the conventional mean square difference (MSD) algorithm, and is decreased to 18.39% to the conventional iterative contour matching algorithm when the outlier is 40nT. Meanwhile, the position error of the novel algorithm is 0.017° while the other two algorithms fail to match when the outlier is 400nT.

  13. A voting-based star identification algorithm utilizing local and global distribution

    NASA Astrophysics Data System (ADS)

    Fan, Qiaoyun; Zhong, Xuyang; Sun, Junhua

    2018-03-01

    A novel star identification algorithm based on voting scheme is presented in this paper. In the proposed algorithm, the global distribution and local distribution of sensor stars are fully utilized, and the stratified voting scheme is adopted to obtain the candidates for sensor stars. The database optimization is employed to reduce its memory requirement and improve the robustness of the proposed algorithm. The simulation shows that the proposed algorithm exhibits 99.81% identification rate with 2-pixel standard deviations of positional noises and 0.322-Mv magnitude noises. Compared with two similar algorithms, the proposed algorithm is more robust towards noise, and the average identification time and required memory is less. Furthermore, the real sky test shows that the proposed algorithm performs well on the real star images.

  14. A Novel Particle Swarm Optimization Algorithm for Global Optimization

    PubMed Central

    Wang, Chun-Feng; Liu, Kui

    2016-01-01

    Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms. PMID:26955387

  15. A Benders based rolling horizon algorithm for a dynamic facility location problem

    DOE PAGES

    Marufuzzaman,, Mohammad; Gedik, Ridvan; Roni, Mohammad S.

    2016-06-28

    This study presents a well-known capacitated dynamic facility location problem (DFLP) that satisfies the customer demand at a minimum cost by determining the time period for opening, closing, or retaining an existing facility in a given location. To solve this challenging NP-hard problem, this paper develops a unique hybrid solution algorithm that combines a rolling horizon algorithm with an accelerated Benders decomposition algorithm. Extensive computational experiments are performed on benchmark test instances to evaluate the hybrid algorithm’s efficiency and robustness in solving the DFLP problem. Computational results indicate that the hybrid Benders based rolling horizon algorithm consistently offers high qualitymore » feasible solutions in a much shorter computational time period than the standalone rolling horizon and accelerated Benders decomposition algorithms in the experimental range.« less

  16. Analysis of parameter estimation and optimization application of ant colony algorithm in vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Xu, Quan-Li; Cao, Yu-Wei; Yang, Kun

    2018-03-01

    Ant Colony Optimization (ACO) is the most widely used artificial intelligence algorithm at present. This study introduced the principle and mathematical model of ACO algorithm in solving Vehicle Routing Problem (VRP), and designed a vehicle routing optimization model based on ACO, then the vehicle routing optimization simulation system was developed by using c ++ programming language, and the sensitivity analyses, estimations and improvements of the three key parameters of ACO were carried out. The results indicated that the ACO algorithm designed in this paper can efficiently solve rational planning and optimization of VRP, and the different values of the key parameters have significant influence on the performance and optimization effects of the algorithm, and the improved algorithm is not easy to locally converge prematurely and has good robustness.

  17. LCC-Demons: a robust and accurate symmetric diffeomorphic registration algorithm.

    PubMed

    Lorenzi, M; Ayache, N; Frisoni, G B; Pennec, X

    2013-11-01

    Non-linear registration is a key instrument for computational anatomy to study the morphology of organs and tissues. However, in order to be an effective instrument for the clinical practice, registration algorithms must be computationally efficient, accurate and most importantly robust to the multiple biases affecting medical images. In this work we propose a fast and robust registration framework based on the log-Demons diffeomorphic registration algorithm. The transformation is parameterized by stationary velocity fields (SVFs), and the similarity metric implements a symmetric local correlation coefficient (LCC). Moreover, we show how the SVF setting provides a stable and consistent numerical scheme for the computation of the Jacobian determinant and the flux of the deformation across the boundaries of a given region. Thus, it provides a robust evaluation of spatial changes. We tested the LCC-Demons in the inter-subject registration setting, by comparing with state-of-the-art registration algorithms on public available datasets, and in the intra-subject longitudinal registration problem, for the statistically powered measurements of the longitudinal atrophy in Alzheimer's disease. Experimental results show that LCC-Demons is a generic, flexible, efficient and robust algorithm for the accurate non-linear registration of images, which can find several applications in the field of medical imaging. Without any additional optimization, it solves equally well intra & inter-subject registration problems, and compares favorably to state-of-the-art methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. A Robust Step Detection Algorithm and Walking Distance Estimation Based on Daily Wrist Activity Recognition Using a Smart Band.

    PubMed

    Trong Bui, Duong; Nguyen, Nhan Duc; Jeong, Gu-Min

    2018-06-25

    Human activity recognition and pedestrian dead reckoning are an interesting field because of their importance utilities in daily life healthcare. Currently, these fields are facing many challenges, one of which is the lack of a robust algorithm with high performance. This paper proposes a new method to implement a robust step detection and adaptive distance estimation algorithm based on the classification of five daily wrist activities during walking at various speeds using a smart band. The key idea is that the non-parametric adaptive distance estimator is performed after two activity classifiers and a robust step detector. In this study, two classifiers perform two phases of recognizing five wrist activities during walking. Then, a robust step detection algorithm, which is integrated with an adaptive threshold, peak and valley correction algorithm, is applied to the classified activities to detect the walking steps. In addition, the misclassification activities are fed back to the previous layer. Finally, three adaptive distance estimators, which are based on a non-parametric model of the average walking speed, calculate the length of each strike. The experimental results show that the average classification accuracy is about 99%, and the accuracy of the step detection is 98.7%. The error of the estimated distance is 2.2⁻4.2% depending on the type of wrist activities.

  19. An efficient and robust algorithm for two dimensional time dependent incompressible Navier-Stokes equations: High Reynolds number flows

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1991-01-01

    An algorithm is presented for unsteady two-dimensional incompressible Navier-Stokes calculations. This algorithm is based on the fourth order partial differential equation for incompressible fluid flow which uses the streamfunction as the only dependent variable. The algorithm is second order accurate in both time and space. It uses a multigrid solver at each time step. It is extremely efficient with respect to the use of both CPU time and physical memory. It is extremely robust with respect to Reynolds number.

  20. A feedback control for the advanced launch system

    NASA Technical Reports Server (NTRS)

    Seywald, Hans; Cliff, Eugene M.

    1991-01-01

    A robust feedback algorithm is presented for a near-minimum-fuel ascent of a two-stage launch vehicle operating in the equatorial plane. The development of the algorithm is based on the ideas of neighboring optimal control and can be derived into three phases. In phase 1, the formalism of optimal control is employed to calculate fuel-optimal ascent trajectories for a simple point-mass model. In phase 2, these trajectories are used to numerically calculate gain functions of time for the control(s), the total flight time, and possibly, for other variables of interest. In phase 3, these gains are used to determine feedback expressions for the controls associated with a more realistic model of a launch vehicle. With the Advanced Launch System in mind, all calculations are performed on a two-stage vehicle with fixed thrust history, but this restriction is by no means important for the approach taken. Performance and robustness of the algorithm is found to be excellent.

  1. Space-time light field rendering.

    PubMed

    Wang, Huamin; Sun, Mingxuan; Yang, Ruigang

    2007-01-01

    In this paper, we propose a novel framework called space-time light field rendering, which allows continuous exploration of a dynamic scene in both space and time. Compared to existing light field capture/rendering systems, it offers the capability of using unsynchronized video inputs and the added freedom of controlling the visualization in the temporal domain, such as smooth slow motion and temporal integration. In order to synthesize novel views from any viewpoint at any time instant, we develop a two-stage rendering algorithm. We first interpolate in the temporal domain to generate globally synchronized images using a robust spatial-temporal image registration algorithm followed by edge-preserving image morphing. We then interpolate these software-synchronized images in the spatial domain to synthesize the final view. In addition, we introduce a very accurate and robust algorithm to estimate subframe temporal offsets among input video sequences. Experimental results from unsynchronized videos with or without time stamps show that our approach is capable of maintaining photorealistic quality from a variety of real scenes.

  2. Network-level accident-mapping: Distance based pattern matching using artificial neural network.

    PubMed

    Deka, Lipika; Quddus, Mohammed

    2014-04-01

    The objective of an accident-mapping algorithm is to snap traffic accidents onto the correct road segments. Assigning accidents onto the correct segments facilitate to robustly carry out some key analyses in accident research including the identification of accident hot-spots, network-level risk mapping and segment-level accident risk modelling. Existing risk mapping algorithms have some severe limitations: (i) they are not easily 'transferable' as the algorithms are specific to given accident datasets; (ii) they do not perform well in all road-network environments such as in areas of dense road network; and (iii) the methods used do not perform well in addressing inaccuracies inherent in and type of road environment. The purpose of this paper is to develop a new accident mapping algorithm based on the common variables observed in most accident databases (e.g. road name and type, direction of vehicle movement before the accident and recorded accident location). The challenges here are to: (i) develop a method that takes into account uncertainties inherent to the recorded traffic accident data and the underlying digital road network data, (ii) accurately determine the type and proportion of inaccuracies, and (iii) develop a robust algorithm that can be adapted for any accident set and road network of varying complexity. In order to overcome these challenges, a distance based pattern-matching approach is used to identify the correct road segment. This is based on vectors containing feature values that are common in the accident data and the network data. Since each feature does not contribute equally towards the identification of the correct road segments, an ANN approach using the single-layer perceptron is used to assist in "learning" the relative importance of each feature in the distance calculation and hence the correct link identification. The performance of the developed algorithm was evaluated based on a reference accident dataset from the UK confirming that the accuracy is much better than other methods. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  3. Explicit robust schemes for implementation of a class of principal value-based constitutive models: Symbolic and numeric implementation

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Saleeb, A. F.; Tan, H. Q.; Zhang, Y.

    1993-01-01

    The issue of developing effective and robust schemes to implement a class of the Ogden-type hyperelastic constitutive models is addressed. To this end, special purpose functions (running under MACSYMA) are developed for the symbolic derivation, evaluation, and automatic FORTRAN code generation of explicit expressions for the corresponding stress function and material tangent stiffness tensors. These explicit forms are valid over the entire deformation range, since the singularities resulting from repeated principal-stretch values have been theoretically removed. The required computational algorithms are outlined, and the resulting FORTRAN computer code is presented.

  4. Continuum topology optimization considering uncertainties in load locations based on the cloud model

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Wen, Guilin

    2018-06-01

    Few researchers have paid attention to designing structures in consideration of uncertainties in the loading locations, which may significantly influence the structural performance. In this work, cloud models are employed to depict the uncertainties in the loading locations. A robust algorithm is developed in the context of minimizing the expectation of the structural compliance, while conforming to a material volume constraint. To guarantee optimal solutions, sufficient cloud drops are used, which in turn leads to low efficiency. An innovative strategy is then implemented to enormously improve the computational efficiency. A modified soft-kill bi-directional evolutionary structural optimization method using derived sensitivity numbers is used to output the robust novel configurations. Several numerical examples are presented to demonstrate the effectiveness and efficiency of the proposed algorithm.

  5. Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system

    NASA Astrophysics Data System (ADS)

    Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping

    2017-12-01

    This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.

  6. Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data.

    PubMed

    Sehgal, Muhammad Shoaib B; Gondal, Iqbal; Dooley, Laurence S

    2005-05-15

    Microarray data are used in a range of application areas in biology, although often it contains considerable numbers of missing values. These missing values can significantly affect subsequent statistical analysis and machine learning algorithms so there is a strong motivation to estimate these values as accurately as possible before using these algorithms. While many imputation algorithms have been proposed, more robust techniques need to be developed so that further analysis of biological data can be accurately undertaken. In this paper, an innovative missing value imputation algorithm called collateral missing value estimation (CMVE) is presented which uses multiple covariance-based imputation matrices for the final prediction of missing values. The matrices are computed and optimized using least square regression and linear programming methods. The new CMVE algorithm has been compared with existing estimation techniques including Bayesian principal component analysis imputation (BPCA), least square impute (LSImpute) and K-nearest neighbour (KNN). All these methods were rigorously tested to estimate missing values in three separate non-time series (ovarian cancer based) and one time series (yeast sporulation) dataset. Each method was quantitatively analyzed using the normalized root mean square (NRMS) error measure, covering a wide range of randomly introduced missing value probabilities from 0.01 to 0.2. Experiments were also undertaken on the yeast dataset, which comprised 1.7% actual missing values, to test the hypothesis that CMVE performed better not only for randomly occurring but also for a real distribution of missing values. The results confirmed that CMVE consistently demonstrated superior and robust estimation capability of missing values compared with other methods for both series types of data, for the same order of computational complexity. A concise theoretical framework has also been formulated to validate the improved performance of the CMVE algorithm. The CMVE software is available upon request from the authors.

  7. MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics

    NASA Astrophysics Data System (ADS)

    Feroz, F.; Hobson, M. P.; Bridges, M.

    2009-10-01

    We present further development and the first public release of our multimodal nested sampling algorithm, called MULTINEST. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson, which itself significantly outperformed existing Markov chain Monte Carlo techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MULTINEST algorithm are demonstrated by application to two toy problems and to a cosmological inference problem focusing on the extension of the vanilla Λ cold dark matter model to include spatial curvature and a varying equation of state for dark energy. The MULTINEST software, which is fully parallelized using MPI and includes an interface to COSMOMC, is available at http://www.mrao.cam.ac.uk/software/multinest/. It will also be released as part of the SUPERBAYES package, for the analysis of supersymmetric theories of particle physics, at http://www.superbayes.org.

  8. Exploratory power of the harmony search algorithm: analysis and improvements for global numerical optimization.

    PubMed

    Das, Swagatam; Mukhopadhyay, Arpan; Roy, Anwit; Abraham, Ajith; Panigrahi, Bijaya K

    2011-02-01

    The theoretical analysis of evolutionary algorithms is believed to be very important for understanding their internal search mechanism and thus to develop more efficient algorithms. This paper presents a simple mathematical analysis of the explorative search behavior of a recently developed metaheuristic algorithm called harmony search (HS). HS is a derivative-free real parameter optimization algorithm, and it draws inspiration from the musical improvisation process of searching for a perfect state of harmony. This paper analyzes the evolution of the population-variance over successive generations in HS and thereby draws some important conclusions regarding the explorative power of HS. A simple but very useful modification to the classical HS has been proposed in light of the mathematical analysis undertaken here. A comparison with the most recently published variants of HS and four other state-of-the-art optimization algorithms over 15 unconstrained and five constrained benchmark functions reflects the efficiency of the modified HS in terms of final accuracy, convergence speed, and robustness.

  9. Robust watermarking scheme for binary images using a slice-based large-cluster algorithm with a Hamming Code

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Yuan; Liu, Chen-Chung

    2006-01-01

    The problems with binary watermarking schemes are that they have only a small amount of embeddable space and are not robust enough. We develop a slice-based large-cluster algorithm (SBLCA) to construct a robust watermarking scheme for binary images. In SBLCA, a small-amount cluster selection (SACS) strategy is used to search for a feasible slice in a large-cluster flappable-pixel decision (LCFPD) method, which is used to search for the best location for concealing a secret bit from a selected slice. This method has four major advantages over the others: (a) SBLCA has a simple and effective decision function to select appropriate concealment locations, (b) SBLCA utilizes a blind watermarking scheme without the original image in the watermark extracting process, (c) SBLCA uses slice-based shuffling capability to transfer the regular image into a hash state without remembering the state before shuffling, and finally, (d) SBLCA has enough embeddable space that every 64 pixels could accommodate a secret bit of the binary image. Furthermore, empirical results on test images reveal that our approach is a robust watermarking scheme for binary images.

  10. Gradient descent for robust kernel-based regression

    NASA Astrophysics Data System (ADS)

    Guo, Zheng-Chu; Hu, Ting; Shi, Lei

    2018-06-01

    In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.

  11. Robust Learning Control Design for Quantum Unitary Transformations.

    PubMed

    Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi

    2017-12-01

    Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.

  12. A Gradient Taguchi Method for Engineering Optimization

    NASA Astrophysics Data System (ADS)

    Hwang, Shun-Fa; Wu, Jen-Chih; He, Rong-Song

    2017-10-01

    To balance the robustness and the convergence speed of optimization, a novel hybrid algorithm consisting of Taguchi method and the steepest descent method is proposed in this work. Taguchi method using orthogonal arrays could quickly find the optimum combination of the levels of various factors, even when the number of level and/or factor is quite large. This algorithm is applied to the inverse determination of elastic constants of three composite plates by combining numerical method and vibration testing. For these problems, the proposed algorithm could find better elastic constants in less computation cost. Therefore, the proposed algorithm has nice robustness and fast convergence speed as compared to some hybrid genetic algorithms.

  13. A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations: Validation and model problems

    NASA Technical Reports Server (NTRS)

    Thompson, C. P.; Leaf, G. K.; Vanrosendale, J.

    1991-01-01

    An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction.

  14. Get Your Atoms in Order--An Open-Source Implementation of a Novel and Robust Molecular Canonicalization Algorithm.

    PubMed

    Schneider, Nadine; Sayle, Roger A; Landrum, Gregory A

    2015-10-26

    Finding a canonical ordering of the atoms in a molecule is a prerequisite for generating a unique representation of the molecule. The canonicalization of a molecule is usually accomplished by applying some sort of graph relaxation algorithm, the most common of which is the Morgan algorithm. There are known issues with that algorithm that lead to noncanonical atom orderings as well as problems when it is applied to large molecules like proteins. Furthermore, each cheminformatics toolkit or software provides its own version of a canonical ordering, most based on unpublished algorithms, which also complicates the generation of a universal unique identifier for molecules. We present an alternative canonicalization approach that uses a standard stable-sorting algorithm instead of a Morgan-like index. Two new invariants that allow canonical ordering of molecules with dependent chirality as well as those with highly symmetrical cyclic graphs have been developed. The new approach proved to be robust and fast when tested on the 1.45 million compounds of the ChEMBL 20 data set in different scenarios like random renumbering of input atoms or SMILES round tripping. Our new algorithm is able to generate a canonical order of the atoms of protein molecules within a few milliseconds. The novel algorithm is implemented in the open-source cheminformatics toolkit RDKit. With this paper, we provide a reference Python implementation of the algorithm that could easily be integrated in any cheminformatics toolkit. This provides a first step toward a common standard for canonical atom ordering to generate a universal unique identifier for molecules other than InChI.

  15. Restoration of MRI data for intensity non-uniformities using local high order intensity statistics

    PubMed Central

    Hadjidemetriou, Stathis; Studholme, Colin; Mueller, Susanne; Weiner, Michael; Schuff, Norbert

    2008-01-01

    MRI at high magnetic fields (>3.0 T) is complicated by strong inhomogeneous radio-frequency fields, sometimes termed the “bias field”. These lead to non-biological intensity non-uniformities across the image. They can complicate further image analysis such as registration and tissue segmentation. Existing methods for intensity uniformity restoration have been optimized for 1.5 T, but they are less effective for 3.0 T MRI, and not at all satisfactory for higher fields. Also, many of the existing restoration algorithms require a brain template or use a prior atlas, which can restrict their practicalities. In this study an effective intensity uniformity restoration algorithm has been developed based on non-parametric statistics of high order local intensity co-occurrences. These statistics are restored with a non-stationary Wiener filter. The algorithm also assumes a smooth non-uniformity and is stable. It does not require a prior atlas and is robust to variations in anatomy. In geriatric brain imaging it is robust to variations such as enlarged ventricles and low contrast to noise ratio. The co-occurrence statistics improve robustness to whole head images with pronounced non-uniformities present in high field acquisitions. Its significantly improved performance and lower time requirements have been demonstrated by comparing it to the very commonly used N3 algorithm on BrainWeb MR simulator images as well as on real 4 T human head images. PMID:18621568

  16. Cooperative vehicles for robust traffic congestion reduction: An analysis based on algorithmic, environmental and agent behavioral factors

    PubMed Central

    Desai, Prajakta; Desai, Aniruddha

    2017-01-01

    Traffic congestion continues to be a persistent problem throughout the world. As vehicle-to-vehicle communication develops, there is an opportunity of using cooperation among close proximity vehicles to tackle the congestion problem. The intuition is that if vehicles could cooperate opportunistically when they come close enough to each other, they could, in effect, spread themselves out among alternative routes so that vehicles do not all jam up on the same roads. Our previous work proposed a decentralized multiagent based vehicular congestion management algorithm entitled Congestion Avoidance and Route Allocation using Virtual Agent Negotiation (CARAVAN), wherein the vehicles acting as intelligent agents perform cooperative route allocation using inter-vehicular communication. This paper focuses on evaluating the practical applicability of this approach by testing its robustness and performance (in terms of travel time reduction), across variations in: (a) environmental parameters such as road network topology and configuration; (b) algorithmic parameters such as vehicle agent preferences and route cost/preference multipliers; and (c) agent-related parameters such as equipped/non-equipped vehicles and compliant/non-compliant agents. Overall, the results demonstrate the adaptability and robustness of the decentralized cooperative vehicles approach to providing global travel time reduction using simple local coordination strategies. PMID:28792513

  17. Cooperative vehicles for robust traffic congestion reduction: An analysis based on algorithmic, environmental and agent behavioral factors.

    PubMed

    Desai, Prajakta; Loke, Seng W; Desai, Aniruddha

    2017-01-01

    Traffic congestion continues to be a persistent problem throughout the world. As vehicle-to-vehicle communication develops, there is an opportunity of using cooperation among close proximity vehicles to tackle the congestion problem. The intuition is that if vehicles could cooperate opportunistically when they come close enough to each other, they could, in effect, spread themselves out among alternative routes so that vehicles do not all jam up on the same roads. Our previous work proposed a decentralized multiagent based vehicular congestion management algorithm entitled Congestion Avoidance and Route Allocation using Virtual Agent Negotiation (CARAVAN), wherein the vehicles acting as intelligent agents perform cooperative route allocation using inter-vehicular communication. This paper focuses on evaluating the practical applicability of this approach by testing its robustness and performance (in terms of travel time reduction), across variations in: (a) environmental parameters such as road network topology and configuration; (b) algorithmic parameters such as vehicle agent preferences and route cost/preference multipliers; and (c) agent-related parameters such as equipped/non-equipped vehicles and compliant/non-compliant agents. Overall, the results demonstrate the adaptability and robustness of the decentralized cooperative vehicles approach to providing global travel time reduction using simple local coordination strategies.

  18. Superiorization-based multi-energy CT image reconstruction

    PubMed Central

    Yang, Q; Cong, W; Wang, G

    2017-01-01

    The recently-developed superiorization approach is efficient and robust for solving various constrained optimization problems. This methodology can be applied to multi-energy CT image reconstruction with the regularization in terms of the prior rank, intensity and sparsity model (PRISM). In this paper, we propose a superiorized version of the simultaneous algebraic reconstruction technique (SART) based on the PRISM model. Then, we compare the proposed superiorized algorithm with the Split-Bregman algorithm in numerical experiments. The results show that both the Superiorized-SART and the Split-Bregman algorithms generate good results with weak noise and reduced artefacts. PMID:28983142

  19. Development of homotopy algorithms for fixed-order mixed H2/H(infinity) controller synthesis

    NASA Technical Reports Server (NTRS)

    Whorton, M.; Buschek, H.; Calise, A. J.

    1994-01-01

    A major difficulty associated with H-infinity and mu-synthesis methods is the order of the resulting compensator. Whereas model and/or controller reduction techniques are sometimes applied, performance and robustness properties are not preserved. By directly constraining compensator order during the optimization process, these properties are better preserved, albeit at the expense of computational complexity. This paper presents a novel homotopy algorithm to synthesize fixed-order mixed H2/H-infinity compensators. Numerical results are presented for a four-disk flexible structure to evaluate the efficiency of the algorithm.

  20. Real-time implementation of logo detection on open source BeagleBoard

    NASA Astrophysics Data System (ADS)

    George, M.; Kehtarnavaz, N.; Estevez, L.

    2011-03-01

    This paper presents the real-time implementation of our previously developed logo detection and tracking algorithm on the open source BeagleBoard mobile platform. This platform has an OMAP processor that incorporates an ARM Cortex processor. The algorithm combines Scale Invariant Feature Transform (SIFT) with k-means clustering, online color calibration and moment invariants to robustly detect and track logos in video. Various optimization steps that are carried out to allow the real-time execution of the algorithm on BeagleBoard are discussed. The results obtained are compared to the PC real-time implementation results.

  1. Robust Satisficing Decision Making for Unmanned Aerial Vehicle Complex Missions under Severe Uncertainty

    PubMed Central

    Ji, Xiaoting; Niu, Yifeng; Shen, Lincheng

    2016-01-01

    This paper presents a robust satisficing decision-making method for Unmanned Aerial Vehicles (UAVs) executing complex missions in an uncertain environment. Motivated by the info-gap decision theory, we formulate this problem as a novel robust satisficing optimization problem, of which the objective is to maximize the robustness while satisfying some desired mission requirements. Specifically, a new info-gap based Markov Decision Process (IMDP) is constructed to abstract the uncertain UAV system and specify the complex mission requirements with the Linear Temporal Logic (LTL). A robust satisficing policy is obtained to maximize the robustness to the uncertain IMDP while ensuring a desired probability of satisfying the LTL specifications. To this end, we propose a two-stage robust satisficing solution strategy which consists of the construction of a product IMDP and the generation of a robust satisficing policy. In the first stage, a product IMDP is constructed by combining the IMDP with an automaton representing the LTL specifications. In the second, an algorithm based on robust dynamic programming is proposed to generate a robust satisficing policy, while an associated robustness evaluation algorithm is presented to evaluate the robustness. Finally, through Monte Carlo simulation, the effectiveness of our algorithms is demonstrated on an UAV search mission under severe uncertainty so that the resulting policy can maximize the robustness while reaching the desired performance level. Furthermore, by comparing the proposed method with other robust decision-making methods, it can be concluded that our policy can tolerate higher uncertainty so that the desired performance level can be guaranteed, which indicates that the proposed method is much more effective in real applications. PMID:27835670

  2. Robust Satisficing Decision Making for Unmanned Aerial Vehicle Complex Missions under Severe Uncertainty.

    PubMed

    Ji, Xiaoting; Niu, Yifeng; Shen, Lincheng

    2016-01-01

    This paper presents a robust satisficing decision-making method for Unmanned Aerial Vehicles (UAVs) executing complex missions in an uncertain environment. Motivated by the info-gap decision theory, we formulate this problem as a novel robust satisficing optimization problem, of which the objective is to maximize the robustness while satisfying some desired mission requirements. Specifically, a new info-gap based Markov Decision Process (IMDP) is constructed to abstract the uncertain UAV system and specify the complex mission requirements with the Linear Temporal Logic (LTL). A robust satisficing policy is obtained to maximize the robustness to the uncertain IMDP while ensuring a desired probability of satisfying the LTL specifications. To this end, we propose a two-stage robust satisficing solution strategy which consists of the construction of a product IMDP and the generation of a robust satisficing policy. In the first stage, a product IMDP is constructed by combining the IMDP with an automaton representing the LTL specifications. In the second, an algorithm based on robust dynamic programming is proposed to generate a robust satisficing policy, while an associated robustness evaluation algorithm is presented to evaluate the robustness. Finally, through Monte Carlo simulation, the effectiveness of our algorithms is demonstrated on an UAV search mission under severe uncertainty so that the resulting policy can maximize the robustness while reaching the desired performance level. Furthermore, by comparing the proposed method with other robust decision-making methods, it can be concluded that our policy can tolerate higher uncertainty so that the desired performance level can be guaranteed, which indicates that the proposed method is much more effective in real applications.

  3. Robust crop and weed segmentation under uncontrolled outdoor illumination

    USDA-ARS?s Scientific Manuscript database

    A new machine vision for weed detection was developed from RGB color model images. Processes included in the algorithm for the detection were excessive green conversion, threshold value computation by statistical analysis, adaptive image segmentation by adjusting the threshold value, median filter, ...

  4. A Robust In-Situ Warp-Correction Algorithm For VISAR Streak Camera Data at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.

    2015-01-12

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However,more » the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.« less

  5. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  6. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2018-01-29

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  7. Robust Crop and Weed Segmentation under Uncontrolled Outdoor Illumination

    PubMed Central

    Jeon, Hong Y.; Tian, Lei F.; Zhu, Heping

    2011-01-01

    An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN). The developed algorithm was validated for its ability to identify and detect weeds and crop plants under uncontrolled outdoor illuminations. A machine vision implementing field robot captured field images under outdoor illuminations and the image processing algorithm automatically processed them without manual adjustment. The errors of the algorithm, when processing 666 field images, ranged from 2.1 to 2.9%. The ANN correctly detected 72.6% of crop plants from the identified plants, and considered the rest as weeds. However, the ANN identification rates for crop plants were improved up to 95.1% by addressing the error sources in the algorithm. The developed weed detection and image processing algorithm provides a novel method to identify plants against soil background under the uncontrolled outdoor illuminations, and to differentiate weeds from crop plants. Thus, the proposed new machine vision and processing algorithm may be useful for outdoor applications including plant specific direct applications (PSDA). PMID:22163954

  8. Face pose tracking using the four-point algorithm

    NASA Astrophysics Data System (ADS)

    Fung, Ho Yin; Wong, Kin Hong; Yu, Ying Kin; Tsui, Kwan Pang; Kam, Ho Chuen

    2017-06-01

    In this paper, we have developed an algorithm to track the pose of a human face robustly and efficiently. Face pose estimation is very useful in many applications such as building virtual reality systems and creating an alternative input method for the disabled. Firstly, we have modified a face detection toolbox called DLib for the detection of a face in front of a camera. The detected face features are passed to a pose estimation method, known as the four-point algorithm, for pose computation. The theory applied and the technical problems encountered during system development are discussed in the paper. It is demonstrated that the system is able to track the pose of a face in real time using a consumer grade laptop computer.

  9. Impact of MPEG-4 3D mesh coding on watermarking algorithms for polygonal 3D meshes

    NASA Astrophysics Data System (ADS)

    Funk, Wolfgang

    2004-06-01

    The MPEG-4 multimedia standard addresses the scene-based composition of audiovisual objects. Natural and synthetic multimedia content can be mixed and transmitted over narrow and broadband communication channels. Synthetic natural hybrid coding (SNHC) within MPEG-4 provides tools for 3D mesh coding (3DMC). We investigate the robustness of two different 3D watermarking algorithms for polygonal meshes with respect to 3DMC. The first algorithm is a blind detection scheme designed for labelling applications that require high bandwidth and low robustness. The second algorithm is a robust non-blind one-bit watermarking scheme intended for copyright protection applications. Both algorithms have been proposed by Benedens. We expect 3DMC to have an impact on the watermarked 3D meshes, as the algorithms used for our simulations work on vertex coordinates to encode the watermark. We use the 3DMC implementation provided with the MPEG-4 reference software and the Princeton Shape Benchmark model database for our simulations. The watermarked models are sent through the 3DMC encoder and decoder, and the watermark decoding process is performed. For each algorithm under consideration we examine the detection properties as a function of the quantization of the vertex coordinates.

  10. A Robust Sound Source Localization Approach for Microphone Array with Model Errors

    NASA Astrophysics Data System (ADS)

    Xiao, Hua; Shao, Huai-Zong; Peng, Qi-Cong

    In this paper, a robust sound source localization approach is proposed. The approach retains good performance even when model errors exist. Compared with previous work in this field, the contributions of this paper are as follows. First, an improved broad-band and near-field array model is proposed. It takes array gain, phase perturbations into account and is based on the actual positions of the elements. It can be used in arbitrary planar geometry arrays. Second, a subspace model errors estimation algorithm and a Weighted 2-Dimension Multiple Signal Classification (W2D-MUSIC) algorithm are proposed. The subspace model errors estimation algorithm estimates unknown parameters of the array model, i. e., gain, phase perturbations, and positions of the elements, with high accuracy. The performance of this algorithm is improved with the increasing of SNR or number of snapshots. The W2D-MUSIC algorithm based on the improved array model is implemented to locate sound sources. These two algorithms compose the robust sound source approach. The more accurate steering vectors can be provided for further processing such as adaptive beamforming algorithm. Numerical examples confirm effectiveness of this proposed approach.

  11. Digital watermarking algorithm research of color images based on quaternion Fourier transform

    NASA Astrophysics Data System (ADS)

    An, Mali; Wang, Weijiang; Zhao, Zhen

    2013-10-01

    A watermarking algorithm of color images based on the quaternion Fourier Transform (QFFT) and improved quantization index algorithm (QIM) is proposed in this paper. The original image is transformed by QFFT, the watermark image is processed by compression and quantization coding, and then the processed watermark image is embedded into the components of the transformed original image. It achieves embedding and blind extraction of the watermark image. The experimental results show that the watermarking algorithm based on the improved QIM algorithm with distortion compensation achieves a good tradeoff between invisibility and robustness, and better robustness for the attacks of Gaussian noises, salt and pepper noises, JPEG compression, cropping, filtering and image enhancement than the traditional QIM algorithm.

  12. Robust transceiver design for reciprocal M × N interference channel based on statistical linearization approximation

    NASA Astrophysics Data System (ADS)

    Mayvan, Ali D.; Aghaeinia, Hassan; Kazemi, Mohammad

    2017-12-01

    This paper focuses on robust transceiver design for throughput enhancement on the interference channel (IC), under imperfect channel state information (CSI). In this paper, two algorithms are proposed to improve the throughput of the multi-input multi-output (MIMO) IC. Each transmitter and receiver has, respectively, M and N antennas and IC operates in a time division duplex mode. In the first proposed algorithm, each transceiver adjusts its filter to maximize the expected value of signal-to-interference-plus-noise ratio (SINR). On the other hand, the second algorithm tries to minimize the variances of the SINRs to hedge against the variability due to CSI error. Taylor expansion is exploited to approximate the effect of CSI imperfection on mean and variance. The proposed robust algorithms utilize the reciprocity of wireless networks to optimize the estimated statistical properties in two different working modes. Monte Carlo simulations are employed to investigate sum rate performance of the proposed algorithms and the advantage of incorporating variation minimization into the transceiver design.

  13. Benchmarking Procedures for High-Throughput Context Specific Reconstruction Algorithms

    PubMed Central

    Pacheco, Maria P.; Pfau, Thomas; Sauter, Thomas

    2016-01-01

    Recent progress in high-throughput data acquisition has shifted the focus from data generation to processing and understanding of how to integrate collected information. Context specific reconstruction based on generic genome scale models like ReconX or HMR has the potential to become a diagnostic and treatment tool tailored to the analysis of specific individuals. The respective computational algorithms require a high level of predictive power, robustness and sensitivity. Although multiple context specific reconstruction algorithms were published in the last 10 years, only a fraction of them is suitable for model building based on human high-throughput data. Beside other reasons, this might be due to problems arising from the limitation to only one metabolic target function or arbitrary thresholding. This review describes and analyses common validation methods used for testing model building algorithms. Two major methods can be distinguished: consistency testing and comparison based testing. The first is concerned with robustness against noise, e.g., missing data due to the impossibility to distinguish between the signal and the background of non-specific binding of probes in a microarray experiment, and whether distinct sets of input expressed genes corresponding to i.e., different tissues yield distinct models. The latter covers methods comparing sets of functionalities, comparison with existing networks or additional databases. We test those methods on several available algorithms and deduce properties of these algorithms that can be compared with future developments. The set of tests performed, can therefore serve as a benchmarking procedure for future algorithms. PMID:26834640

  14. Robust THP Transceiver Designs for Multiuser MIMO Downlink with Imperfect CSIT

    NASA Astrophysics Data System (ADS)

    Ubaidulla, P.; Chockalingam, A.

    2009-12-01

    We present robust joint nonlinear transceiver designs for multiuser multiple-input multiple-output (MIMO) downlink in the presence of imperfections in the channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. The BS employs Tomlinson-Harashima precoding (THP) for interuser interference precancellation at the transmitter. We consider robust transceiver designs that jointly optimize the transmit THP filters and receive filter for two models of CSIT errors. The first model is a stochastic error (SE) model, where the CSIT error is Gaussian-distributed. This model is applicable when the CSIT error is dominated by channel estimation error. In this case, the proposed robust transceiver design seeks to minimize a stochastic function of the sum mean square error (SMSE) under a constraint on the total BS transmit power. We propose an iterative algorithm to solve this problem. The other model we consider is a norm-bounded error (NBE) model, where the CSIT error can be specified by an uncertainty set. This model is applicable when the CSIT error is dominated by quantization errors. In this case, we consider a worst-case design. For this model, we consider robust (i) minimum SMSE, (ii) MSE-constrained, and (iii) MSE-balancing transceiver designs. We propose iterative algorithms to solve these problems, wherein each iteration involves a pair of semidefinite programs (SDPs). Further, we consider an extension of the proposed algorithm to the case with per-antenna power constraints. We evaluate the robustness of the proposed algorithms to imperfections in CSIT through simulation, and show that the proposed robust designs outperform nonrobust designs as well as robust linear transceiver designs reported in the recent literature.

  15. An Automated Pipeline for Engineering Many-Enzyme Pathways: Computational Sequence Design, Pathway Expression-Flux Mapping, and Scalable Pathway Optimization.

    PubMed

    Halper, Sean M; Cetnar, Daniel P; Salis, Howard M

    2018-01-01

    Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.

  16. Robust control of electrostatic torsional micromirrors using adaptive sliding-mode control

    NASA Astrophysics Data System (ADS)

    Sane, Harshad S.; Yazdi, Navid; Mastrangelo, Carlos H.

    2005-01-01

    This paper presents high-resolution control of torsional electrostatic micromirrors beyond their inherent pull-in instability using robust sliding-mode control (SMC). The objectives of this paper are two-fold - firstly, to demonstrate the applicability of SMC for MEMS devices; secondly - to present a modified SMC algorithm that yields improved control accuracy. SMC enables compact realization of a robust controller tolerant of device characteristic variations and nonlinearities. Robustness of the control loop is demonstrated through extensive simulations and measurements on MEMS with a wide range in their characteristics. Control of two-axis gimbaled micromirrors beyond their pull-in instability with overall 10-bit pointing accuracy is confirmed experimentally. In addition, this paper presents an analysis of the sources of errors in discrete-time implementation of the control algorithm. To minimize these errors, we present an adaptive version of the SMC algorithm that yields substantial performance improvement without considerably increasing implementation complexity.

  17. TVR-DART: A More Robust Algorithm for Discrete Tomography From Limited Projection Data With Automated Gray Value Estimation.

    PubMed

    Xiaodong Zhuge; Palenstijn, Willem Jan; Batenburg, Kees Joost

    2016-01-01

    In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorithm, and is aimed at imaging of objects consisting of only a few different material compositions, each corresponding to a different gray value in the reconstruction. By exploiting two types of prior knowledge of the scanned object simultaneously, TVR-DART solves the discrete reconstruction problem within an optimization framework inspired by compressive sensing to steer the current reconstruction toward a solution with the specified number of discrete gray values. The gray values and the thresholds are estimated as the reconstruction improves through iterations. Extensive experiments from simulated data, experimental μCT, and electron tomography data sets show that TVR-DART is capable of providing more accurate reconstruction than existing algorithms under noisy conditions from a small number of projection images and/or from a small angular range. Furthermore, the new algorithm requires less effort on parameter tuning compared with the original DART algorithm. With TVR-DART, we aim to provide the tomography society with an easy-to-use and robust algorithm for DT.

  18. A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng

    2009-11-01

    Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.

  19. The new and computationally efficient MIL-SOM algorithm: potential benefits for visualization and analysis of a large-scale high-dimensional clinically acquired geographic data.

    PubMed

    Oyana, Tonny J; Achenie, Luke E K; Heo, Joon

    2012-01-01

    The objective of this paper is to introduce an efficient algorithm, namely, the mathematically improved learning-self organizing map (MIL-SOM) algorithm, which speeds up the self-organizing map (SOM) training process. In the proposed MIL-SOM algorithm, the weights of Kohonen's SOM are based on the proportional-integral-derivative (PID) controller. Thus, in a typical SOM learning setting, this improvement translates to faster convergence. The basic idea is primarily motivated by the urgent need to develop algorithms with the competence to converge faster and more efficiently than conventional techniques. The MIL-SOM algorithm is tested on four training geographic datasets representing biomedical and disease informatics application domains. Experimental results show that the MIL-SOM algorithm provides a competitive, better updating procedure and performance, good robustness, and it runs faster than Kohonen's SOM.

  20. A Stereo Dual-Channel Dynamic Programming Algorithm for UAV Image Stitching

    PubMed Central

    Chen, Ruizhi; Zhang, Weilong; Li, Deren; Liao, Xuan; Zhang, Peng

    2017-01-01

    Dislocation is one of the major challenges in unmanned aerial vehicle (UAV) image stitching. In this paper, we propose a new algorithm for seamlessly stitching UAV images based on a dynamic programming approach. Our solution consists of two steps: Firstly, an image matching algorithm is used to correct the images so that they are in the same coordinate system. Secondly, a new dynamic programming algorithm is developed based on the concept of a stereo dual-channel energy accumulation. A new energy aggregation and traversal strategy is adopted in our solution, which can find a more optimal seam line for image stitching. Our algorithm overcomes the theoretical limitation of the classical Duplaquet algorithm. Experiments show that the algorithm can effectively solve the dislocation problem in UAV image stitching, especially for the cases in dense urban areas. Our solution is also direction-independent, which has better adaptability and robustness for stitching images. PMID:28885547

  1. A Stereo Dual-Channel Dynamic Programming Algorithm for UAV Image Stitching.

    PubMed

    Li, Ming; Chen, Ruizhi; Zhang, Weilong; Li, Deren; Liao, Xuan; Wang, Lei; Pan, Yuanjin; Zhang, Peng

    2017-09-08

    Dislocation is one of the major challenges in unmanned aerial vehicle (UAV) image stitching. In this paper, we propose a new algorithm for seamlessly stitching UAV images based on a dynamic programming approach. Our solution consists of two steps: Firstly, an image matching algorithm is used to correct the images so that they are in the same coordinate system. Secondly, a new dynamic programming algorithm is developed based on the concept of a stereo dual-channel energy accumulation. A new energy aggregation and traversal strategy is adopted in our solution, which can find a more optimal seam line for image stitching. Our algorithm overcomes the theoretical limitation of the classical Duplaquet algorithm. Experiments show that the algorithm can effectively solve the dislocation problem in UAV image stitching, especially for the cases in dense urban areas. Our solution is also direction-independent, which has better adaptability and robustness for stitching images.

  2. The New and Computationally Efficient MIL-SOM Algorithm: Potential Benefits for Visualization and Analysis of a Large-Scale High-Dimensional Clinically Acquired Geographic Data

    PubMed Central

    Oyana, Tonny J.; Achenie, Luke E. K.; Heo, Joon

    2012-01-01

    The objective of this paper is to introduce an efficient algorithm, namely, the mathematically improved learning-self organizing map (MIL-SOM) algorithm, which speeds up the self-organizing map (SOM) training process. In the proposed MIL-SOM algorithm, the weights of Kohonen's SOM are based on the proportional-integral-derivative (PID) controller. Thus, in a typical SOM learning setting, this improvement translates to faster convergence. The basic idea is primarily motivated by the urgent need to develop algorithms with the competence to converge faster and more efficiently than conventional techniques. The MIL-SOM algorithm is tested on four training geographic datasets representing biomedical and disease informatics application domains. Experimental results show that the MIL-SOM algorithm provides a competitive, better updating procedure and performance, good robustness, and it runs faster than Kohonen's SOM. PMID:22481977

  3. Practical Control Algorithms for Nonlinear Dynamical Systems Using Phase-Space Knowledge and Mixed Numeric and Geometric Computation.

    DTIC Science & Technology

    1997-10-01

    Research results include: (1) Developed empirical performance criteria for characterizing stabilities and robustness of the maglev control... Maglev Experience’ at HS󈨥: Fifth International Hybrid Systems Workshop, Notre Dame, IN, Sept. 11-13,1997

  4. A Model-Based Prognostics Approach Applied to Pneumatic Valves

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Goebel, Kai

    2011-01-01

    Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain knowledge of the system, its components, and how they fail by casting the underlying physical phenomena in a physics-based model that is derived from first principles. Uncertainty cannot be avoided in prediction, therefore, algorithms are employed that help in managing these uncertainties. The particle filtering algorithm has become a popular choice for model-based prognostics due to its wide applicability, ease of implementation, and support for uncertainty management. We develop a general model-based prognostics methodology within a robust probabilistic framework using particle filters. As a case study, we consider a pneumatic valve from the Space Shuttle cryogenic refueling system. We develop a detailed physics-based model of the pneumatic valve, and perform comprehensive simulation experiments to illustrate our prognostics approach and evaluate its effectiveness and robustness. The approach is demonstrated using historical pneumatic valve data from the refueling system.

  5. Stabilization Approaches for Linear and Nonlinear Reduced Order Models

    NASA Astrophysics Data System (ADS)

    Rezaian, Elnaz; Wei, Mingjun

    2017-11-01

    It has been a major concern to establish reduced order models (ROMs) as reliable representatives of the dynamics inherent in high fidelity simulations, while fast computation is achieved. In practice it comes to stability and accuracy of ROMs. Given the inviscid nature of Euler equations it becomes more challenging to achieve stability, especially where moving discontinuities exist. Originally unstable linear and nonlinear ROMs are stabilized here by two approaches. First, a hybrid method is developed by integrating two different stabilization algorithms. At the same time, symmetry inner product is introduced in the generation of ROMs for its known robust behavior for compressible flows. Results have shown a notable improvement in computational efficiency and robustness compared to similar approaches. Second, a new stabilization algorithm is developed specifically for nonlinear ROMs. This method adopts Particle Swarm Optimization to enforce a bounded ROM response for minimum discrepancy between the high fidelity simulation and the ROM outputs. Promising results are obtained in its application on the nonlinear ROM of an inviscid fluid flow with discontinuities. Supported by ARL.

  6. Next generation of decision making software for nanopatterns characterization: application to semiconductor industry

    NASA Astrophysics Data System (ADS)

    Dervilllé, A.; Labrosse, A.; Zimmermann, Y.; Foucher, J.; Gronheid, R.; Boeckx, C.; Singh, A.; Leray, P.; Halder, S.

    2016-03-01

    The dimensional scaling in IC manufacturing strongly drives the demands on CD and defect metrology techniques and their measurement uncertainties. Defect review has become as important as CD metrology and both of them create a new metrology paradigm because it creates a completely new need for flexible, robust and scalable metrology software. Current, software architectures and metrology algorithms are performant but it must be pushed to another higher level in order to follow roadmap speed and requirements. For example: manage defect and CD in one step algorithm, customize algorithms and outputs features for each R&D team environment, provide software update every day or every week for R&D teams in order to explore easily various development strategies. The final goal is to avoid spending hours and days to manually tune algorithm to analyze metrology data and to allow R&D teams to stay focus on their expertise. The benefits are drastic costs reduction, more efficient R&D team and better process quality. In this paper, we propose a new generation of software platform and development infrastructure which can integrate specific metrology business modules. For example, we will show the integration of a chemistry module dedicated to electronics materials like Direct Self Assembly features. We will show a new generation of image analysis algorithms which are able to manage at the same time defect rates, images classifications, CD and roughness measurements with high throughput performances in order to be compatible with HVM. In a second part, we will assess the reliability, the customization of algorithm and the software platform capabilities to follow new specific semiconductor metrology software requirements: flexibility, robustness, high throughput and scalability. Finally, we will demonstrate how such environment has allowed a drastic reduction of data analysis cycle time.

  7. Efficient Variable Selection Method for Exposure Variables on Binary Data

    NASA Astrophysics Data System (ADS)

    Ohno, Manabu; Tarumi, Tomoyuki

    In this paper, we propose a new variable selection method for "robust" exposure variables. We define "robust" as property that the same variable can select among original data and perturbed data. There are few studies of effective for the selection method. The problem that selects exposure variables is almost the same as a problem that extracts correlation rules without robustness. [Brin 97] is suggested that correlation rules are possible to extract efficiently using chi-squared statistic of contingency table having monotone property on binary data. But the chi-squared value does not have monotone property, so it's is easy to judge the method to be not independent with an increase in the dimension though the variable set is completely independent, and the method is not usable in variable selection for robust exposure variables. We assume anti-monotone property for independent variables to select robust independent variables and use the apriori algorithm for it. The apriori algorithm is one of the algorithms which find association rules from the market basket data. The algorithm use anti-monotone property on the support which is defined by association rules. But independent property does not completely have anti-monotone property on the AIC of independent probability model, but the tendency to have anti-monotone property is strong. Therefore, selected variables with anti-monotone property on the AIC have robustness. Our method judges whether a certain variable is exposure variable for the independent variable using previous comparison of the AIC. Our numerical experiments show that our method can select robust exposure variables efficiently and precisely.

  8. Rayleigh wave nonlinear inversion based on the Firefly algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Teng-Fei; Peng, Geng-Xin; Hu, Tian-Yue; Duan, Wen-Sheng; Yao, Feng-Chang; Liu, Yi-Mou

    2014-06-01

    Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity profile and stratigraphic information from Rayleigh waves. We choose the Firefly algorithm for inversion of surface waves. The Firefly algorithm, a new type of particle swarm optimization, has the advantages of being robust, highly effective, and allows global searching. This algorithm is feasible and has advantages for use in Rayleigh wave inversion with both synthetic models and field data. The results show that the Firefly algorithm, which is a robust and practical method, can achieve nonlinear inversion of surface waves with high resolution.

  9. A Genetic Algorithm Tool (splicer) for Complex Scheduling Problems and the Space Station Freedom Resupply Problem

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Valenzuela-Rendon, Manuel

    1993-01-01

    The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.

  10. Design and implementation of robust controllers for a gait trainer.

    PubMed

    Wang, F C; Yu, C H; Chou, T Y

    2009-08-01

    This paper applies robust algorithms to control an active gait trainer for children with walking disabilities. Compared with traditional rehabilitation procedures, in which two or three trainers are required to assist the patient, a motor-driven mechanism was constructed to improve the efficiency of the procedures. First, a six-bar mechanism was designed and constructed to mimic the trajectory of children's ankles in walking. Second, system identification techniques were applied to obtain system transfer functions at different operating points by experiments. Third, robust control algorithms were used to design Hinfinity robust controllers for the system. Finally, the designed controllers were implemented to verify experimentally the system performance. From the results, the proposed robust control strategies are shown to be effective.

  11. Robust Selection Algorithm (RSA) for Multi-Omic Biomarker Discovery; Integration with Functional Network Analysis to Identify miRNA Regulated Pathways in Multiple Cancers.

    PubMed

    Sehgal, Vasudha; Seviour, Elena G; Moss, Tyler J; Mills, Gordon B; Azencott, Robert; Ram, Prahlad T

    2015-01-01

    MicroRNAs (miRNAs) play a crucial role in the maintenance of cellular homeostasis by regulating the expression of their target genes. As such, the dysregulation of miRNA expression has been frequently linked to cancer. With rapidly accumulating molecular data linked to patient outcome, the need for identification of robust multi-omic molecular markers is critical in order to provide clinical impact. While previous bioinformatic tools have been developed to identify potential biomarkers in cancer, these methods do not allow for rapid classification of oncogenes versus tumor suppressors taking into account robust differential expression, cutoffs, p-values and non-normality of the data. Here, we propose a methodology, Robust Selection Algorithm (RSA) that addresses these important problems in big data omics analysis. The robustness of the survival analysis is ensured by identification of optimal cutoff values of omics expression, strengthened by p-value computed through intensive random resampling taking into account any non-normality in the data and integration into multi-omic functional networks. Here we have analyzed pan-cancer miRNA patient data to identify functional pathways involved in cancer progression that are associated with selected miRNA identified by RSA. Our approach demonstrates the way in which existing survival analysis techniques can be integrated with a functional network analysis framework to efficiently identify promising biomarkers and novel therapeutic candidates across diseases.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soffientini, Chiara Dolores, E-mail: chiaradolores.soffientini@polimi.it; Baselli, Giuseppe; De Bernardi, Elisabetta

    Purpose: Quantitative {sup 18}F-fluorodeoxyglucose positron emission tomography is limited by the uncertainty in lesion delineation due to poor SNR, low resolution, and partial volume effects, subsequently impacting oncological assessment, treatment planning, and follow-up. The present work develops and validates a segmentation algorithm based on statistical clustering. The introduction of constraints based on background features and contiguity priors is expected to improve robustness vs clinical image characteristics such as lesion dimension, noise, and contrast level. Methods: An eight-class Gaussian mixture model (GMM) clustering algorithm was modified by constraining the mean and variance parameters of four background classes according to the previousmore » analysis of a lesion-free background volume of interest (background modeling). Hence, expectation maximization operated only on the four classes dedicated to lesion detection. To favor the segmentation of connected objects, a further variant was introduced by inserting priors relevant to the classification of neighbors. The algorithm was applied to simulated datasets and acquired phantom data. Feasibility and robustness toward initialization were assessed on a clinical dataset manually contoured by two expert clinicians. Comparisons were performed with respect to a standard eight-class GMM algorithm and to four different state-of-the-art methods in terms of volume error (VE), Dice index, classification error (CE), and Hausdorff distance (HD). Results: The proposed GMM segmentation with background modeling outperformed standard GMM and all the other tested methods. Medians of accuracy indexes were VE <3%, Dice >0.88, CE <0.25, and HD <1.2 in simulations; VE <23%, Dice >0.74, CE <0.43, and HD <1.77 in phantom data. Robustness toward image statistic changes (±15%) was shown by the low index changes: <26% for VE, <17% for Dice, and <15% for CE. Finally, robustness toward the user-dependent volume initialization was demonstrated. The inclusion of the spatial prior improved segmentation accuracy only for lesions surrounded by heterogeneous background: in the relevant simulation subset, the median VE significantly decreased from 13% to 7%. Results on clinical data were found in accordance with simulations, with absolute VE <7%, Dice >0.85, CE <0.30, and HD <0.81. Conclusions: The sole introduction of constraints based on background modeling outperformed standard GMM and the other tested algorithms. Insertion of a spatial prior improved the accuracy for realistic cases of objects in heterogeneous backgrounds. Moreover, robustness against initialization supports the applicability in a clinical setting. In conclusion, application-driven constraints can generally improve the capabilities of GMM and statistical clustering algorithms.« less

  13. A robust human face detection algorithm

    NASA Astrophysics Data System (ADS)

    Raviteja, Thaluru; Karanam, Srikrishna; Yeduguru, Dinesh Reddy V.

    2012-01-01

    Human face detection plays a vital role in many applications like video surveillance, managing a face image database, human computer interface among others. This paper proposes a robust algorithm for face detection in still color images that works well even in a crowded environment. The algorithm uses conjunction of skin color histogram, morphological processing and geometrical analysis for detecting human faces. To reinforce the accuracy of face detection, we further identify mouth and eye regions to establish the presence/absence of face in a particular region of interest.

  14. Accuracy and robustness evaluation in stereo matching

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc M.; Hanca, Jan; Lu, Shao-Ping; Schelkens, Peter; Munteanu, Adrian

    2016-09-01

    Stereo matching has received a lot of attention from the computer vision community, thanks to its wide range of applications. Despite of the large variety of algorithms that have been proposed so far, it is not trivial to select suitable algorithms for the construction of practical systems. One of the main problems is that many algorithms lack sufficient robustness when employed in various operational conditions. This problem is due to the fact that most of the proposed methods in the literature are usually tested and tuned to perform well on one specific dataset. To alleviate this problem, an extensive evaluation in terms of accuracy and robustness of state-of-the-art stereo matching algorithms is presented. Three datasets (Middlebury, KITTI, and MPEG FTV) representing different operational conditions are employed. Based on the analysis, improvements over existing algorithms have been proposed. The experimental results show that our improved versions of cross-based and cost volume filtering algorithms outperform the original versions with large margins on Middlebury and KITTI datasets. In addition, the latter of the two proposed algorithms ranks itself among the best local stereo matching approaches on the KITTI benchmark. Under evaluations using specific settings for depth-image-based-rendering applications, our improved belief propagation algorithm is less complex than MPEG's FTV depth estimation reference software (DERS), while yielding similar depth estimation performance. Finally, several conclusions on stereo matching algorithms are also presented.

  15. Robust PD Sway Control of a Lifted Load for a Crane Using a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kawada, Kazuo; Sogo, Hiroyuki; Yamamoto, Toru; Mada, Yasuhiro

    PID control schemes still continue to be widely used for most industrial control systems. This is mainly because PID controllers have simple control structures, and are simple to maintain and tune. However, it is difficult to find a set of suitable control parameters in the case of time-varying and/or nonlinear systems. For such a problem, the robust controller has been proposed.Although it is important to choose the suitable nominal model in designing the robust controller, it is not usually easy.In this paper, a new robust PD controller design scheme is proposed, which utilizes a genetic algorithm.

  16. A homotopy algorithm for synthesizing robust controllers for flexible structures via the maximum entropy design equations

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Richter, Stephen

    1990-01-01

    One well known deficiency of LQG compensators is that they do not guarantee any measure of robustness. This deficiency is especially highlighted when considering control design for complex systems such as flexible structures. There has thus been a need to generalize LQG theory to incorporate robustness constraints. Here we describe the maximum entropy approach to robust control design for flexible structures, a generalization of LQG theory, pioneered by Hyland, which has proved useful in practice. The design equations consist of a set of coupled Riccati and Lyapunov equations. A homotopy algorithm that is used to solve these design equations is presented.

  17. Multiple feature fusion via covariance matrix for visual tracking

    NASA Astrophysics Data System (ADS)

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Wang, Xin; Sun, Hui

    2018-04-01

    Aiming at the problem of complicated dynamic scenes in visual target tracking, a multi-feature fusion tracking algorithm based on covariance matrix is proposed to improve the robustness of the tracking algorithm. In the frame-work of quantum genetic algorithm, this paper uses the region covariance descriptor to fuse the color, edge and texture features. It also uses a fast covariance intersection algorithm to update the model. The low dimension of region covariance descriptor, the fast convergence speed and strong global optimization ability of quantum genetic algorithm, and the fast computation of fast covariance intersection algorithm are used to improve the computational efficiency of fusion, matching, and updating process, so that the algorithm achieves a fast and effective multi-feature fusion tracking. The experiments prove that the proposed algorithm can not only achieve fast and robust tracking but also effectively handle interference of occlusion, rotation, deformation, motion blur and so on.

  18. Development of a Robust star identification technique for use in attitude determination of the ACE spacecraft

    NASA Technical Reports Server (NTRS)

    Woodard, Mark; Rohrbaugh, Dave

    1995-01-01

    The Advanced Composition Explorer (ACE) spacecraft is designed to fly in a spin-stabilized attitude. The spacecraft will carry two attitude sensors - a digital fine Sun sensor and a charge coupled device (CCD) star tracker - to allow ground-based determination of the spacecraft attitude and spin rate. Part of the processing that must be performed on the CCD star tracker data is the star identification. Star data received from the spacecraft must be matched with star information in the SKYMAP catalog to determine exactly which stars the sensor is tracking. This information, along with the Sun vector measured by the Sun sensor, is used to determine the spacecraft attitude. Several existing star identification (star ID) systems were examined to determine whether they could be modified for use on the ACE mission. Star ID systems which exist for three-axis stabilized spacecraft tend to be complex in nature and many require fairly good knowledge of the spacecraft attitude, making their use for ACE excessive. Star ID systems used for spinners carrying traditional slit star sensors would have to be modified to model the CCD star tracker. The ACE star ID algorithm must also be robust, in that it will be able to correctly identify stars even though the attitude is not known to a high degree of accuracy, and must be very efficient to allow real-time star identification. The paper presents the star ID algorithm that was developed for ACE. Results from prototype testing are also presented to demonstrate the efficiency, accuracy, and robustness of the algorithm.

  19. Robust object tracking techniques for vision-based 3D motion analysis applications

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  20. Vision-based vehicle detection and tracking algorithm design

    NASA Astrophysics Data System (ADS)

    Hwang, Junyeon; Huh, Kunsoo; Lee, Donghwi

    2009-12-01

    The vision-based vehicle detection in front of an ego-vehicle is regarded as promising for driver assistance as well as for autonomous vehicle guidance. The feasibility of vehicle detection in a passenger car requires accurate and robust sensing performance. A multivehicle detection system based on stereo vision has been developed for better accuracy and robustness. This system utilizes morphological filter, feature detector, template matching, and epipolar constraint techniques in order to detect the corresponding pairs of vehicles. After the initial detection, the system executes the tracking algorithm for the vehicles. The proposed system can detect front vehicles such as the leading vehicle and side-lane vehicles. The position parameters of the vehicles located in front are obtained based on the detection information. The proposed vehicle detection system is implemented on a passenger car, and its performance is verified experimentally.

  1. Aperiodic Robust Model Predictive Control for Constrained Continuous-Time Nonlinear Systems: An Event-Triggered Approach.

    PubMed

    Liu, Changxin; Gao, Jian; Li, Huiping; Xu, Demin

    2018-05-01

    The event-triggered control is a promising solution to cyber-physical systems, such as networked control systems, multiagent systems, and large-scale intelligent systems. In this paper, we propose an event-triggered model predictive control (MPC) scheme for constrained continuous-time nonlinear systems with bounded disturbances. First, a time-varying tightened state constraint is computed to achieve robust constraint satisfaction, and an event-triggered scheduling strategy is designed in the framework of dual-mode MPC. Second, the sufficient conditions for ensuring feasibility and closed-loop robust stability are developed, respectively. We show that robust stability can be ensured and communication load can be reduced with the proposed MPC algorithm. Finally, numerical simulations and comparison studies are performed to verify the theoretical results.

  2. A robust color image watermarking algorithm against rotation attacks

    NASA Astrophysics Data System (ADS)

    Han, Shao-cheng; Yang, Jin-feng; Wang, Rui; Jia, Gui-min

    2018-01-01

    A robust digital watermarking algorithm is proposed based on quaternion wavelet transform (QWT) and discrete cosine transform (DCT) for copyright protection of color images. The luminance component Y of a host color image in YIQ space is decomposed by QWT, and then the coefficients of four low-frequency subbands are transformed by DCT. An original binary watermark scrambled by Arnold map and iterated sine chaotic system is embedded into the mid-frequency DCT coefficients of the subbands. In order to improve the performance of the proposed algorithm against rotation attacks, a rotation detection scheme is implemented before watermark extracting. The experimental results demonstrate that the proposed watermarking scheme shows strong robustness not only against common image processing attacks but also against arbitrary rotation attacks.

  3. Pixel-level multisensor image fusion based on matrix completion and robust principal component analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.

    2016-01-01

    Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.

  4. Computational complexity of algorithms for sequence comparison, short-read assembly and genome alignment.

    PubMed

    Baichoo, Shakuntala; Ouzounis, Christos A

    A multitude of algorithms for sequence comparison, short-read assembly and whole-genome alignment have been developed in the general context of molecular biology, to support technology development for high-throughput sequencing, numerous applications in genome biology and fundamental research on comparative genomics. The computational complexity of these algorithms has been previously reported in original research papers, yet this often neglected property has not been reviewed previously in a systematic manner and for a wider audience. We provide a review of space and time complexity of key sequence analysis algorithms and highlight their properties in a comprehensive manner, in order to identify potential opportunities for further research in algorithm or data structure optimization. The complexity aspect is poised to become pivotal as we will be facing challenges related to the continuous increase of genomic data on unprecedented scales and complexity in the foreseeable future, when robust biological simulation at the cell level and above becomes a reality. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Multirate sampled-data yaw-damper and modal suppression system design

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1990-01-01

    A multirate control law synthesized algorithm based on an infinite-time quadratic cost function, was developed along with a method for analyzing the robustness of multirate systems. A generalized multirate sampled-data control law structure (GMCLS) was introduced. A new infinite-time-based parameter optimization multirate sampled-data control law synthesis method and solution algorithm were developed. A singular-value-based method for determining gain and phase margins for multirate systems was also developed. The finite-time-based parameter optimization multirate sampled-data control law synthesis algorithm originally intended to be applied to the aircraft problem was instead demonstrated by application to a simpler problem involving the control of the tip position of a two-link robot arm. The GMCLS, the infinite-time-based parameter optimization multirate control law synthesis method and solution algorithm, and the singular-value based method for determining gain and phase margins were all demonstrated by application to the aircraft control problem originally proposed for this project.

  6. Robust efficient video fingerprinting

    NASA Astrophysics Data System (ADS)

    Puri, Manika; Lubin, Jeffrey

    2009-02-01

    We have developed a video fingerprinting system with robustness and efficiency as the primary and secondary design criteria. In extensive testing, the system has shown robustness to cropping, letter-boxing, sub-titling, blur, drastic compression, frame rate changes, size changes and color changes, as well as to the geometric distortions often associated with camcorder capture in cinema settings. Efficiency is afforded by a novel two-stage detection process in which a fast matching process first computes a number of likely candidates, which are then passed to a second slower process that computes the overall best match with minimal false alarm probability. One key component of the algorithm is a maximally stable volume computation - a three-dimensional generalization of maximally stable extremal regions - that provides a content-centric coordinate system for subsequent hash function computation, independent of any affine transformation or extensive cropping. Other key features include an efficient bin-based polling strategy for initial candidate selection, and a final SIFT feature-based computation for final verification. We describe the algorithm and its performance, and then discuss additional modifications that can provide further improvement to efficiency and accuracy.

  7. Mining biological information from 3D short time-series gene expression data: the OPTricluster algorithm.

    PubMed

    Tchagang, Alain B; Phan, Sieu; Famili, Fazel; Shearer, Heather; Fobert, Pierre; Huang, Yi; Zou, Jitao; Huang, Daiqing; Cutler, Adrian; Liu, Ziying; Pan, Youlian

    2012-04-04

    Nowadays, it is possible to collect expression levels of a set of genes from a set of biological samples during a series of time points. Such data have three dimensions: gene-sample-time (GST). Thus they are called 3D microarray gene expression data. To take advantage of the 3D data collected, and to fully understand the biological knowledge hidden in the GST data, novel subspace clustering algorithms have to be developed to effectively address the biological problem in the corresponding space. We developed a subspace clustering algorithm called Order Preserving Triclustering (OPTricluster), for 3D short time-series data mining. OPTricluster is able to identify 3D clusters with coherent evolution from a given 3D dataset using a combinatorial approach on the sample dimension, and the order preserving (OP) concept on the time dimension. The fusion of the two methodologies allows one to study similarities and differences between samples in terms of their temporal expression profile. OPTricluster has been successfully applied to four case studies: immune response in mice infected by malaria (Plasmodium chabaudi), systemic acquired resistance in Arabidopsis thaliana, similarities and differences between inner and outer cotyledon in Brassica napus during seed development, and to Brassica napus whole seed development. These studies showed that OPTricluster is robust to noise and is able to detect the similarities and differences between biological samples. Our analysis showed that OPTricluster generally outperforms other well known clustering algorithms such as the TRICLUSTER, gTRICLUSTER and K-means; it is robust to noise and can effectively mine the biological knowledge hidden in the 3D short time-series gene expression data.

  8. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.

    PubMed

    Lee, Unseok; Chang, Sungyul; Putra, Gian Anantrio; Kim, Hyoungseok; Kim, Dong Hwan

    2018-01-01

    A high-throughput plant phenotyping system automatically observes and grows many plant samples. Many plant sample images are acquired by the system to determine the characteristics of the plants (populations). Stable image acquisition and processing is very important to accurately determine the characteristics. However, hardware for acquiring plant images rapidly and stably, while minimizing plant stress, is lacking. Moreover, most software cannot adequately handle large-scale plant imaging. To address these problems, we developed a new, automated, high-throughput plant phenotyping system using simple and robust hardware, and an automated plant-imaging-analysis pipeline consisting of machine-learning-based plant segmentation. Our hardware acquires images reliably and quickly and minimizes plant stress. Furthermore, the images are processed automatically. In particular, large-scale plant-image datasets can be segmented precisely using a classifier developed using a superpixel-based machine-learning algorithm (Random Forest), and variations in plant parameters (such as area) over time can be assessed using the segmented images. We performed comparative evaluations to identify an appropriate learning algorithm for our proposed system, and tested three robust learning algorithms. We developed not only an automatic analysis pipeline but also a convenient means of plant-growth analysis that provides a learning data interface and visualization of plant growth trends. Thus, our system allows end-users such as plant biologists to analyze plant growth via large-scale plant image data easily.

  9. Detection of Heart Sounds in Children with and without Pulmonary Arterial Hypertension―Daubechies Wavelets Approach

    PubMed Central

    Elgendi, Mohamed; Kumar, Shine; Guo, Long; Rutledge, Jennifer; Coe, James Y.; Zemp, Roger; Schuurmans, Dale; Adatia, Ian

    2015-01-01

    Background Automatic detection of the 1st (S1) and 2nd (S2) heart sounds is difficult, and existing algorithms are imprecise. We sought to develop a wavelet-based algorithm for the detection of S1 and S2 in children with and without pulmonary arterial hypertension (PAH). Method Heart sounds were recorded at the second left intercostal space and the cardiac apex with a digital stethoscope simultaneously with pulmonary arterial pressure (PAP). We developed a Daubechies wavelet algorithm for the automatic detection of S1 and S2 using the wavelet coefficient ‘D 6’ based on power spectral analysis. We compared our algorithm with four other Daubechies wavelet-based algorithms published by Liang, Kumar, Wang, and Zhong. We annotated S1 and S2 from an audiovisual examination of the phonocardiographic tracing by two trained cardiologists and the observation that in all subjects systole was shorter than diastole. Results We studied 22 subjects (9 males and 13 females, median age 6 years, range 0.25–19). Eleven subjects had a mean PAP < 25 mmHg. Eleven subjects had PAH with a mean PAP ≥ 25 mmHg. All subjects had a pulmonary artery wedge pressure ≤ 15 mmHg. The sensitivity (SE) and positive predictivity (+P) of our algorithm were 70% and 68%, respectively. In comparison, the SE and +P of Liang were 59% and 42%, Kumar 19% and 12%, Wang 50% and 45%, and Zhong 43% and 53%, respectively. Our algorithm demonstrated robustness and outperformed the other methods up to a signal-to-noise ratio (SNR) of 10 dB. For all algorithms, detection errors arose from low-amplitude peaks, fast heart rates, low signal-to-noise ratio, and fixed thresholds. Conclusion Our algorithm for the detection of S1 and S2 improves the performance of existing Daubechies-based algorithms and justifies the use of the wavelet coefficient ‘D 6’ through power spectral analysis. Also, the robustness despite ambient noise may improve real world clinical performance. PMID:26629704

  10. Novel Kalman Filter Algorithm for Statistical Monitoring of Extensive Landscapes with Synoptic Sensor Data

    PubMed Central

    Czaplewski, Raymond L.

    2015-01-01

    Wall-to-wall remotely sensed data are increasingly available to monitor landscape dynamics over large geographic areas. However, statistical monitoring programs that use post-stratification cannot fully utilize those sensor data. The Kalman filter (KF) is an alternative statistical estimator. I develop a new KF algorithm that is numerically robust with large numbers of study variables and auxiliary sensor variables. A National Forest Inventory (NFI) illustrates application within an official statistics program. Practical recommendations regarding remote sensing and statistical issues are offered. This algorithm has the potential to increase the value of synoptic sensor data for statistical monitoring of large geographic areas. PMID:26393588

  11. A new approach of watermarking technique by means multichannel wavelet functions

    NASA Astrophysics Data System (ADS)

    Agreste, Santa; Puccio, Luigia

    2012-12-01

    The digital piracy involving images, music, movies, books, and so on, is a legal problem that has not found a solution. Therefore it becomes crucial to create and to develop methods and numerical algorithms in order to solve the copyright problems. In this paper we focus the attention on a new approach of watermarking technique applied to digital color images. Our aim is to describe the realized watermarking algorithm based on multichannel wavelet functions with multiplicity r = 3, called MCWM 1.0. We report a large experimentation and some important numerical results in order to show the robustness of the proposed algorithm to geometrical attacks.

  12. Regularization iteration imaging algorithm for electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Tong, Guowei; Liu, Shi; Chen, Hongyan; Wang, Xueyao

    2018-03-01

    The image reconstruction method plays a crucial role in real-world applications of the electrical capacitance tomography technique. In this study, a new cost function that simultaneously considers the sparsity and low-rank properties of the imaging targets is proposed to improve the quality of the reconstruction images, in which the image reconstruction task is converted into an optimization problem. Within the framework of the split Bregman algorithm, an iterative scheme that splits a complicated optimization problem into several simpler sub-tasks is developed to solve the proposed cost function efficiently, in which the fast-iterative shrinkage thresholding algorithm is introduced to accelerate the convergence. Numerical experiment results verify the effectiveness of the proposed algorithm in improving the reconstruction precision and robustness.

  13. Towards developing robust algorithms for solving partial differential equations on MIMD machines

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Naik, Vijay K.

    1988-01-01

    Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.

  14. Reliable Detection and Smart Deletion of Malassez Counting Chamber Grid in Microscopic White Light Images for Microbiological Applications.

    PubMed

    Denimal, Emmanuel; Marin, Ambroise; Guyot, Stéphane; Journaux, Ludovic; Molin, Paul

    2015-08-01

    In biology, hemocytometers such as Malassez slides are widely used and are effective tools for counting cells manually. In a previous work, a robust algorithm was developed for grid extraction in Malassez slide images. This algorithm was evaluated on a set of 135 images and grids were accurately detected in most cases, but there remained failures for the most difficult images. In this work, we present an optimization of this algorithm that allows for 100% grid detection and a 25% improvement in grid positioning accuracy. These improvements make the algorithm fully reliable for grid detection. This optimization also allows complete erasing of the grid without altering the cells, which eases their segmentation.

  15. Towards developing robust algorithms for solving partial differential equations on MIMD machines

    NASA Technical Reports Server (NTRS)

    Saltz, J. H.; Naik, V. K.

    1985-01-01

    Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.

  16. Time-optimal trajectory planning for underactuated spacecraft using a hybrid particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Zhuang, Yufei; Huang, Haibin

    2014-02-01

    A hybrid algorithm combining particle swarm optimization (PSO) algorithm with the Legendre pseudospectral method (LPM) is proposed for solving time-optimal trajectory planning problem of underactuated spacecrafts. At the beginning phase of the searching process, an initialization generator is constructed by the PSO algorithm due to its strong global searching ability and robustness to random initial values, however, PSO algorithm has a disadvantage that its convergence rate around the global optimum is slow. Then, when the change in fitness function is smaller than a predefined value, the searching algorithm is switched to the LPM to accelerate the searching process. Thus, with the obtained solutions by the PSO algorithm as a set of proper initial guesses, the hybrid algorithm can find a global optimum more quickly and accurately. 200 Monte Carlo simulations results demonstrate that the proposed hybrid PSO-LPM algorithm has greater advantages in terms of global searching capability and convergence rate than both single PSO algorithm and LPM algorithm. Moreover, the PSO-LPM algorithm is also robust to random initial values.

  17. Improvements on the minimax algorithm for the Laplace transformation of orbital energy denominators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmich-Paris, Benjamin, E-mail: b.helmichparis@vu.nl; Visscher, Lucas, E-mail: l.visscher@vu.nl

    2016-09-15

    We present a robust and non-heuristic algorithm that finds all extremum points of the error distribution function of numerically Laplace-transformed orbital energy denominators. The extremum point search is one of the two key steps for finding the minimax approximation. If pre-tabulation of initial guesses is supposed to be avoided, strategies for a sufficiently robust algorithm have not been discussed so far. We compare our non-heuristic approach with a bracketing and bisection algorithm and demonstrate that 3 times less function evaluations are required altogether when applying it to typical non-relativistic and relativistic quantum chemical systems.

  18. Characterization techniques for incorporating backgrounds into DIRSIG

    NASA Astrophysics Data System (ADS)

    Brown, Scott D.; Schott, John R.

    2000-07-01

    The appearance of operation hyperspectral imaging spectrometers in both solar and thermal regions has lead to the development of a variety of spectral detection algorithms. The development and testing of these algorithms requires well characterized field collection campaigns that can be time and cost prohibitive. Radiometrically robust synthetic image generation (SIG) environments that can generate appropriate images under a variety of atmospheric conditions and with a variety of sensors offers an excellent supplement to reduce the scope of the expensive field collections. In addition, SIG image products provide the algorithm developer with per-pixel truth, allowing for improved characterization of the algorithm performance. To meet the needs of the algorithm development community, the image modeling community needs to supply synthetic image products that contain all the spatial and spectral variability present in real world scenes, and that provide the large area coverage typically acquired with actual sensors. This places a heavy burden on synthetic scene builders to construct well characterized scenes that span large areas. Several SIG models have demonstrated the ability to accurately model targets (vehicles, buildings, etc.) Using well constructed target geometry (from CAD packages) and robust thermal and radiometry models. However, background objects (vegetation, infrastructure, etc.) dominate the percentage of real world scene pixels and utilizing target building techniques is time and resource prohibitive. This paper discusses new methods that have been integrated into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model to characterize backgrounds. The new suite of scene construct types allows the user to incorporate both terrain and surface properties to obtain wide area coverage. The terrain can be incorporated using a triangular irregular network (TIN) derived from elevation data or digital elevation model (DEM) data from actual sensors, temperature maps, spectral reflectance cubes (possible derived from actual sensors), and/or material and mixture maps. Descriptions and examples of each new technique are presented as well as hybrid methods to demonstrate target embedding in real world imagery.

  19. Development and validation of an automated operational modal analysis algorithm for vibration-based monitoring and tensile load estimation

    NASA Astrophysics Data System (ADS)

    Rainieri, Carlo; Fabbrocino, Giovanni

    2015-08-01

    In the last few decades large research efforts have been devoted to the development of methods for automated detection of damage and degradation phenomena at an early stage. Modal-based damage detection techniques are well-established methods, whose effectiveness for Level 1 (existence) and Level 2 (location) damage detection is demonstrated by several studies. The indirect estimation of tensile loads in cables and tie-rods is another attractive application of vibration measurements. It provides interesting opportunities for cheap and fast quality checks in the construction phase, as well as for safety evaluations and structural maintenance over the structure lifespan. However, the lack of automated modal identification and tracking procedures has been for long a relevant drawback to the extensive application of the above-mentioned techniques in the engineering practice. An increasing number of field applications of modal-based structural health and performance assessment are appearing after the development of several automated output-only modal identification procedures in the last few years. Nevertheless, additional efforts are still needed to enhance the robustness of automated modal identification algorithms, control the computational efforts and improve the reliability of modal parameter estimates (in particular, damping). This paper deals with an original algorithm for automated output-only modal parameter estimation. Particular emphasis is given to the extensive validation of the algorithm based on simulated and real datasets in view of continuous monitoring applications. The results point out that the algorithm is fairly robust and demonstrate its ability to provide accurate and precise estimates of the modal parameters, including damping ratios. As a result, it has been used to develop systems for vibration-based estimation of tensile loads in cables and tie-rods. Promising results have been achieved for non-destructive testing as well as continuous monitoring purposes. They are documented in the last sections of the paper.

  20. Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)

    NASA Astrophysics Data System (ADS)

    Li, X. R.; Wang, X.

    2016-03-01

    When using the genetic algorithm to solve the problem of too-short-arc (TSA) determination, due to the difference of computing processes between the genetic algorithm and classical method, the methods for outliers editing are no longer applicable. In the genetic algorithm, the robust estimation is acquired by means of using different loss functions in the fitness function, then the outlier problem of TSAs is solved. Compared with the classical method, the application of loss functions in the genetic algorithm is greatly simplified. Through the comparison of results of different loss functions, it is clear that the methods of least median square and least trimmed square can greatly improve the robustness of TSAs, and have a high breakdown point.

  1. Robust distributed model predictive control of linear systems with structured time-varying uncertainties

    NASA Astrophysics Data System (ADS)

    Zhang, Langwen; Xie, Wei; Wang, Jingcheng

    2017-11-01

    In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.

  2. Common spatial pattern combined with kernel linear discriminate and generalized radial basis function for motor imagery-based brain computer interface applications

    NASA Astrophysics Data System (ADS)

    Hekmatmanesh, Amin; Jamaloo, Fatemeh; Wu, Huapeng; Handroos, Heikki; Kilpeläinen, Asko

    2018-04-01

    Brain Computer Interface (BCI) can be a challenge for developing of robotic, prosthesis and human-controlled systems. This work focuses on the implementation of a common spatial pattern (CSP) base algorithm to detect event related desynchronization patterns. Utilizing famous previous work in this area, features are extracted by filter bank with common spatial pattern (FBCSP) method, and then weighted by a sensitive learning vector quantization (SLVQ) algorithm. In the current work, application of the radial basis function (RBF) as a mapping kernel of linear discriminant analysis (KLDA) method on the weighted features, allows the transfer of data into a higher dimension for more discriminated data scattering by RBF kernel. Afterwards, support vector machine (SVM) with generalized radial basis function (GRBF) kernel is employed to improve the efficiency and robustness of the classification. Averagely, 89.60% accuracy and 74.19% robustness are achieved. BCI Competition III, Iva data set is used to evaluate the algorithm for detecting right hand and foot imagery movement patterns. Results show that combination of KLDA with SVM-GRBF classifier makes 8.9% and 14.19% improvements in accuracy and robustness, respectively. For all the subjects, it is concluded that mapping the CSP features into a higher dimension by RBF and utilization GRBF as a kernel of SVM, improve the accuracy and reliability of the proposed method.

  3. The effects of variations in parameters and algorithm choices on calculated radiomics feature values: initial investigations and comparisons to feature variability across CT image acquisition conditions

    NASA Astrophysics Data System (ADS)

    Emaminejad, Nastaran; Wahi-Anwar, Muhammad; Hoffman, John; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael

    2018-02-01

    Translation of radiomics into clinical practice requires confidence in its interpretations. This may be obtained via understanding and overcoming the limitations in current radiomic approaches. Currently there is a lack of standardization in radiomic feature extraction. In this study we examined a few factors that are potential sources of inconsistency in characterizing lung nodules, such as 1)different choices of parameters and algorithms in feature calculation, 2)two CT image dose levels, 3)different CT reconstruction algorithms (WFBP, denoised WFBP, and Iterative). We investigated the effect of variation of these factors on entropy textural feature of lung nodules. CT images of 19 lung nodules identified from our lung cancer screening program were identified by a CAD tool and contours provided. The radiomics features were extracted by calculating 36 GLCM based and 4 histogram based entropy features in addition to 2 intensity based features. A robustness index was calculated across different image acquisition parameters to illustrate the reproducibility of features. Most GLCM based and all histogram based entropy features were robust across two CT image dose levels. Denoising of images slightly improved robustness of some entropy features at WFBP. Iterative reconstruction resulted in improvement of robustness in a fewer times and caused more variation in entropy feature values and their robustness. Within different choices of parameters and algorithms texture features showed a wide range of variation, as much as 75% for individual nodules. Results indicate the need for harmonization of feature calculations and identification of optimum parameters and algorithms in a radiomics study.

  4. Robust camera calibration for sport videos using court models

    NASA Astrophysics Data System (ADS)

    Farin, Dirk; Krabbe, Susanne; de With, Peter H. N.; Effelsberg, Wolfgang

    2003-12-01

    We propose an automatic camera calibration algorithm for court sports. The obtained camera calibration parameters are required for applications that need to convert positions in the video frame to real-world coordinates or vice versa. Our algorithm uses a model of the arrangement of court lines for calibration. Since the court model can be specified by the user, the algorithm can be applied to a variety of different sports. The algorithm starts with a model initialization step which locates the court in the image without any user assistance or a-priori knowledge about the most probable position. Image pixels are classified as court line pixels if they pass several tests including color and local texture constraints. A Hough transform is applied to extract line elements, forming a set of court line candidates. The subsequent combinatorial search establishes correspondences between lines in the input image and lines from the court model. For the succeeding input frames, an abbreviated calibration algorithm is used, which predicts the camera parameters for the new image and optimizes the parameters using a gradient-descent algorithm. We have conducted experiments on a variety of sport videos (tennis, volleyball, and goal area sequences of soccer games). Video scenes with considerable difficulties were selected to test the robustness of the algorithm. Results show that the algorithm is very robust to occlusions, partial court views, bad lighting conditions, or shadows.

  5. A robust fuzzy local Information c-means clustering algorithm with noise detection

    NASA Astrophysics Data System (ADS)

    Shang, Jiayu; Li, Shiren; Huang, Junwei

    2018-04-01

    Fuzzy c-means clustering (FCM), especially with spatial constraints (FCM_S), is an effective algorithm suitable for image segmentation. Its reliability contributes not only to the presentation of fuzziness for belongingness of every pixel but also to exploitation of spatial contextual information. But these algorithms still remain some problems when processing the image with noise, they are sensitive to the parameters which have to be tuned according to prior knowledge of the noise. In this paper, we propose a new FCM algorithm, combining the gray constraints and spatial constraints, called spatial and gray-level denoised fuzzy c-means (SGDFCM) algorithm. This new algorithm conquers the parameter disadvantages mentioned above by considering the possibility of noise of each pixel, which aims to improve the robustness and obtain more detail information. Furthermore, the possibility of noise can be calculated in advance, which means the algorithm is effective and efficient.

  6. Using Multiple Robust Parameter Design Techniques to Improve Hyperspectral Anomaly Detection Algorithm Performance

    DTIC Science & Technology

    2009-03-01

    Set negative pixel values = 0 (remove bad pixels) -------------- [m,n] = size(data_matrix_new); for i =1:m for j= 1:n if...everything from packaging toothpaste to high speed fluid dynamics. While future engagements will continue to require the development of specialized

  7. Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition

    NASA Astrophysics Data System (ADS)

    Kesrarat, Darun; Patanavijit, Vorapoj

    2017-02-01

    In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).

  8. Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.

    PubMed

    Liu, Hua; Wu, Wen

    2017-03-31

    Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states' error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF's strong robustness and SSRCKF's high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking.

  9. Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking

    PubMed Central

    Liu, Hua; Wu, Wen

    2017-01-01

    Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states’ error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF’s strong robustness and SSRCKF’s high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking. PMID:28362347

  10. Robust automatic line scratch detection in films.

    PubMed

    Newson, Alasdair; Almansa, Andrés; Gousseau, Yann; Pérez, Patrick

    2014-03-01

    Line scratch detection in old films is a particularly challenging problem due to the variable spatiotemporal characteristics of this defect. Some of the main problems include sensitivity to noise and texture, and false detections due to thin vertical structures belonging to the scene. We propose a robust and automatic algorithm for frame-by-frame line scratch detection in old films, as well as a temporal algorithm for the filtering of false detections. In the frame-by-frame algorithm, we relax some of the hypotheses used in previous algorithms in order to detect a wider variety of scratches. This step's robustness and lack of external parameters is ensured by the combined use of an a contrario methodology and local statistical estimation. In this manner, over-detection in textured or cluttered areas is greatly reduced. The temporal filtering algorithm eliminates false detections due to thin vertical structures by exploiting the coherence of their motion with that of the underlying scene. Experiments demonstrate the ability of the resulting detection procedure to deal with difficult situations, in particular in the presence of noise, texture, and slanted or partial scratches. Comparisons show significant advantages over previous work.

  11. Robust Mokken Scale Analysis by Means of the Forward Search Algorithm for Outlier Detection

    ERIC Educational Resources Information Center

    Zijlstra, Wobbe P.; van der Ark, L. Andries; Sijtsma, Klaas

    2011-01-01

    Exploratory Mokken scale analysis (MSA) is a popular method for identifying scales from larger sets of items. As with any statistical method, in MSA the presence of outliers in the data may result in biased results and wrong conclusions. The forward search algorithm is a robust diagnostic method for outlier detection, which we adapt here to…

  12. A robust correspondence matching algorithm of ground images along the optic axis

    NASA Astrophysics Data System (ADS)

    Jia, Fengman; Kang, Zhizhong

    2013-10-01

    Facing challenges of nontraditional geometry, multiple resolutions and the same features sensed from different angles, there are more difficulties of robust correspondence matching for ground images along the optic axis. A method combining SIFT algorithm and the geometric constraint of the ratio of coordinate differences between image point and image principal point is proposed in this paper. As it can provide robust matching across a substantial range of affine distortion addition of change in 3D viewpoint and noise, we use SIFT algorithm to tackle the problem of image distortion. By analyzing the nontraditional geometry of ground image along the optic axis, this paper derivates that for one correspondence pair, the ratio of distances between image point and image principal point in an image pair should be a value not far from 1. Therefore, a geometric constraint for gross points detection is formed. The proposed approach is tested with real image data acquired by Kodak. The results show that with SIFT and the proposed geometric constraint, the robustness of correspondence matching on the ground images along the optic axis can be effectively improved, and thus prove the validity of the proposed algorithm.

  13. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.

  14. Real-time segmentation of burst suppression patterns in critical care EEG monitoring

    PubMed Central

    Westover, M. Brandon; Shafi, Mouhsin M.; Ching, ShiNung; Chemali, Jessica J.; Purdon, Patrick L.; Cash, Sydney S.; Brown, Emery N.

    2014-01-01

    Objective Develop a real-time algorithm to automatically discriminate suppressions from non-suppressions (bursts) in electroencephalograms of critically ill adult patients. Methods A real-time method for segmenting adult ICU EEG data into bursts and suppressions is presented based on thresholding local voltage variance. Results are validated against manual segmentations by two experienced human electroencephalographers. We compare inter-rater agreement between manual EEG segmentations by experts with inter-rater agreement between human vs automatic segmentations, and investigate the robustness of segmentation quality to variations in algorithm parameter settings. We further compare the results of using these segmentations as input for calculating the burst suppression probability (BSP), a continuous measure of depth-of-suppression. Results Automated segmentation was comparable to manual segmentation, i.e. algorithm-vs-human agreement was comparable to human-vs-human agreement, as judged by comparing raw EEG segmentations or the derived BSP signals. Results were robust to modest variations in algorithm parameter settings. Conclusions Our automated method satisfactorily segments burst suppression data across a wide range adult ICU EEG patterns. Performance is comparable to or exceeds that of manual segmentation by human electroencephalographers. Significance Automated segmentation of burst suppression EEG patterns is an essential component of quantitative brain activity monitoring in critically ill and anesthetized adults. The segmentations produced by our algorithm provide a basis for accurate tracking of suppression depth. PMID:23891828

  15. Real-time segmentation of burst suppression patterns in critical care EEG monitoring.

    PubMed

    Brandon Westover, M; Shafi, Mouhsin M; Ching, Shinung; Chemali, Jessica J; Purdon, Patrick L; Cash, Sydney S; Brown, Emery N

    2013-09-30

    Develop a real-time algorithm to automatically discriminate suppressions from non-suppressions (bursts) in electroencephalograms of critically ill adult patients. A real-time method for segmenting adult ICU EEG data into bursts and suppressions is presented based on thresholding local voltage variance. Results are validated against manual segmentations by two experienced human electroencephalographers. We compare inter-rater agreement between manual EEG segmentations by experts with inter-rater agreement between human vs automatic segmentations, and investigate the robustness of segmentation quality to variations in algorithm parameter settings. We further compare the results of using these segmentations as input for calculating the burst suppression probability (BSP), a continuous measure of depth-of-suppression. Automated segmentation was comparable to manual segmentation, i.e. algorithm-vs-human agreement was comparable to human-vs-human agreement, as judged by comparing raw EEG segmentations or the derived BSP signals. Results were robust to modest variations in algorithm parameter settings. Our automated method satisfactorily segments burst suppression data across a wide range adult ICU EEG patterns. Performance is comparable to or exceeds that of manual segmentation by human electroencephalographers. Automated segmentation of burst suppression EEG patterns is an essential component of quantitative brain activity monitoring in critically ill and anesthetized adults. The segmentations produced by our algorithm provide a basis for accurate tracking of suppression depth. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Experimental designs for detecting synergy and antagonism between two drugs in a pre-clinical study.

    PubMed

    Sperrin, Matthew; Thygesen, Helene; Su, Ting-Li; Harbron, Chris; Whitehead, Anne

    2015-01-01

    The identification of synergistic interactions between combinations of drugs is an important area within drug discovery and development. Pre-clinically, large numbers of screening studies to identify synergistic pairs of compounds can often be ran, necessitating efficient and robust experimental designs. We consider experimental designs for detecting interaction between two drugs in a pre-clinical in vitro assay in the presence of uncertainty of the monotherapy response. The monotherapies are assumed to follow the Hill equation with common lower and upper asymptotes, and a common variance. The optimality criterion used is the variance of the interaction parameter. We focus on ray designs and investigate two algorithms for selecting the optimum set of dose combinations. The first is a forward algorithm in which design points are added sequentially. This is found to give useful solutions in simple cases but can lack robustness when knowledge about the monotherapy parameters is insufficient. The second algorithm is a more pragmatic approach where the design points are constrained to be distributed log-normally along the rays and monotherapy doses. We find that the pragmatic algorithm is more stable than the forward algorithm, and even when the forward algorithm has converged, the pragmatic algorithm can still out-perform it. Practically, we find that good designs for detecting an interaction have equal numbers of points on monotherapies and combination therapies, with those points typically placed in positions where a 50% response is expected. More uncertainty in monotherapy parameters leads to an optimal design with design points that are more spread out. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Score-Level Fusion of Phase-Based and Feature-Based Fingerprint Matching Algorithms

    NASA Astrophysics Data System (ADS)

    Ito, Koichi; Morita, Ayumi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo

    This paper proposes an efficient fingerprint recognition algorithm combining phase-based image matching and feature-based matching. In our previous work, we have already proposed an efficient fingerprint recognition algorithm using Phase-Only Correlation (POC), and developed commercial fingerprint verification units for access control applications. The use of Fourier phase information of fingerprint images makes it possible to achieve robust recognition for weakly impressed, low-quality fingerprint images. This paper presents an idea of improving the performance of POC-based fingerprint matching by combining it with feature-based matching, where feature-based matching is introduced in order to improve recognition efficiency for images with nonlinear distortion. Experimental evaluation using two different types of fingerprint image databases demonstrates efficient recognition performance of the combination of the POC-based algorithm and the feature-based algorithm.

  18. ROBNCA: robust network component analysis for recovering transcription factor activities.

    PubMed

    Noor, Amina; Ahmad, Aitzaz; Serpedin, Erchin; Nounou, Mohamed; Nounou, Hazem

    2013-10-01

    Network component analysis (NCA) is an efficient method of reconstructing the transcription factor activity (TFA), which makes use of the gene expression data and prior information available about transcription factor (TF)-gene regulations. Most of the contemporary algorithms either exhibit the drawback of inconsistency and poor reliability, or suffer from prohibitive computational complexity. In addition, the existing algorithms do not possess the ability to counteract the presence of outliers in the microarray data. Hence, robust and computationally efficient algorithms are needed to enable practical applications. We propose ROBust Network Component Analysis (ROBNCA), a novel iterative algorithm that explicitly models the possible outliers in the microarray data. An attractive feature of the ROBNCA algorithm is the derivation of a closed form solution for estimating the connectivity matrix, which was not available in prior contributions. The ROBNCA algorithm is compared with FastNCA and the non-iterative NCA (NI-NCA). ROBNCA estimates the TF activity profiles as well as the TF-gene control strength matrix with a much higher degree of accuracy than FastNCA and NI-NCA, irrespective of varying noise, correlation and/or amount of outliers in case of synthetic data. The ROBNCA algorithm is also tested on Saccharomyces cerevisiae data and Escherichia coli data, and it is observed to outperform the existing algorithms. The run time of the ROBNCA algorithm is comparable with that of FastNCA, and is hundreds of times faster than NI-NCA. The ROBNCA software is available at http://people.tamu.edu/∼amina/ROBNCA

  19. A comparison of optimization algorithms for localized in vivo B0 shimming.

    PubMed

    Nassirpour, Sahar; Chang, Paul; Fillmer, Ariane; Henning, Anke

    2018-02-01

    To compare several different optimization algorithms currently used for localized in vivo B 0 shimming, and to introduce a novel, fast, and robust constrained regularized algorithm (ConsTru) for this purpose. Ten different optimization algorithms (including samples from both generic and dedicated least-squares solvers, and a novel constrained regularized inversion method) were implemented and compared for shimming in five different shimming volumes on 66 in vivo data sets from both 7 T and 9.4 T. The best algorithm was chosen to perform single-voxel spectroscopy at 9.4 T in the frontal cortex of the brain on 10 volunteers. The results of the performance tests proved that the shimming algorithm is prone to unstable solutions if it depends on the value of a starting point, and is not regularized to handle ill-conditioned problems. The ConsTru algorithm proved to be the most robust, fast, and efficient algorithm among all of the chosen algorithms. It enabled acquisition of spectra of reproducible high quality in the frontal cortex at 9.4 T. For localized in vivo B 0 shimming, the use of a dedicated linear least-squares solver instead of a generic nonlinear one is highly recommended. Among all of the linear solvers, the constrained regularized method (ConsTru) was found to be both fast and most robust. Magn Reson Med 79:1145-1156, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Deterministic implementations of single-photon multi-qubit Deutsch-Jozsa algorithms with linear optics

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Liu, Ji-Zhen

    2017-02-01

    It is very important to seek an efficient and robust quantum algorithm demanding less quantum resources. We propose one-photon three-qubit original and refined Deutsch-Jozsa algorithms with polarization and two linear momentums degrees of freedom (DOFs). Our schemes are constructed by solely using linear optics. Compared to the traditional ones with one DOF, our schemes are more economic and robust because the necessary photons are reduced from three to one. Our linear-optic schemes are working in a determinate way, and they are feasible with current experimental technology.

  1. Deterministic implementations of single-photon multi-qubit Deutsch–Jozsa algorithms with linear optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Hai-Rui, E-mail: hrwei@ustb.edu.cn; Liu, Ji-Zhen

    2017-02-15

    It is very important to seek an efficient and robust quantum algorithm demanding less quantum resources. We propose one-photon three-qubit original and refined Deutsch–Jozsa algorithms with polarization and two linear momentums degrees of freedom (DOFs). Our schemes are constructed by solely using linear optics. Compared to the traditional ones with one DOF, our schemes are more economic and robust because the necessary photons are reduced from three to one. Our linear-optic schemes are working in a determinate way, and they are feasible with current experimental technology.

  2. Parabolized Navier-Stokes solutions of separation and trailing-edge flows

    NASA Technical Reports Server (NTRS)

    Brown, J. L.

    1983-01-01

    A robust, iterative solution procedure is presented for the parabolized Navier-Stokes or higher order boundary layer equations as applied to subsonic viscous-inviscid interaction flows. The robustness of the present procedure is due, in part, to an improved algorithmic formulation. The present formulation is based on a reinterpretation of stability requirements for this class of algorithms and requires only second order accurate backward or central differences for all streamwise derivatives. Upstream influence is provided for through the algorithmic formulation and iterative sweeps in x. The primary contribution to robustness, however, is the boundary condition treatment, which imposes global constraints to control the convergence path. Discussed are successful calculations of subsonic, strong viscous-inviscid interactions, including separation. These results are consistent with Navier-Stokes solutions and triple deck theory.

  3. Embedded Relative Navigation Sensor Fusion Algorithms for Autonomous Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    DeKock, Brandon K.; Betts, Kevin M.; McDuffie, James H.; Dreas, Christine B.

    2008-01-01

    bd Systems (a subsidiary of SAIC) has developed a suite of embedded relative navigation sensor fusion algorithms to enable NASA autonomous rendezvous and docking (AR&D) missions. Translational and rotational Extended Kalman Filters (EKFs) were developed for integrating measurements based on the vehicles' orbital mechanics and high-fidelity sensor error models and provide a solution with increased accuracy and robustness relative to any single relative navigation sensor. The filters were tested tinough stand-alone covariance analysis, closed-loop testing with a high-fidelity multi-body orbital simulation, and hardware-in-the-loop (HWIL) testing in the Marshall Space Flight Center (MSFC) Flight Robotics Laboratory (FRL).

  4. Automated Lead Optimization of MMP-12 Inhibitors Using a Genetic Algorithm.

    PubMed

    Pickett, Stephen D; Green, Darren V S; Hunt, David L; Pardoe, David A; Hughes, Ian

    2011-01-13

    Traditional lead optimization projects involve long synthesis and testing cycles, favoring extensive structure-activity relationship (SAR) analysis and molecular design steps, in an attempt to limit the number of cycles that a project must run to optimize a development candidate. Microfluidic-based chemistry and biology platforms, with cycle times of minutes rather than weeks, lend themselves to unattended autonomous operation. The bottleneck in the lead optimization process is therefore shifted from synthesis or test to SAR analysis and design. As such, the way is open to an algorithm-directed process, without the need for detailed user data analysis. Here, we present results of two synthesis and screening experiments, undertaken using traditional methodology, to validate a genetic algorithm optimization process for future application to a microfluidic system. The algorithm has several novel features that are important for the intended application. For example, it is robust to missing data and can suggest compounds for retest to ensure reliability of optimization. The algorithm is first validated on a retrospective analysis of an in-house library embedded in a larger virtual array of presumed inactive compounds. In a second, prospective experiment with MMP-12 as the target protein, 140 compounds are submitted for synthesis over 10 cycles of optimization. Comparison is made to the results from the full combinatorial library that was synthesized manually and tested independently. The results show that compounds selected by the algorithm are heavily biased toward the more active regions of the library, while the algorithm is robust to both missing data (compounds where synthesis failed) and inactive compounds. This publication places the full combinatorial library and biological data into the public domain with the intention of advancing research into algorithm-directed lead optimization methods.

  5. Automated Lead Optimization of MMP-12 Inhibitors Using a Genetic Algorithm

    PubMed Central

    2010-01-01

    Traditional lead optimization projects involve long synthesis and testing cycles, favoring extensive structure−activity relationship (SAR) analysis and molecular design steps, in an attempt to limit the number of cycles that a project must run to optimize a development candidate. Microfluidic-based chemistry and biology platforms, with cycle times of minutes rather than weeks, lend themselves to unattended autonomous operation. The bottleneck in the lead optimization process is therefore shifted from synthesis or test to SAR analysis and design. As such, the way is open to an algorithm-directed process, without the need for detailed user data analysis. Here, we present results of two synthesis and screening experiments, undertaken using traditional methodology, to validate a genetic algorithm optimization process for future application to a microfluidic system. The algorithm has several novel features that are important for the intended application. For example, it is robust to missing data and can suggest compounds for retest to ensure reliability of optimization. The algorithm is first validated on a retrospective analysis of an in-house library embedded in a larger virtual array of presumed inactive compounds. In a second, prospective experiment with MMP-12 as the target protein, 140 compounds are submitted for synthesis over 10 cycles of optimization. Comparison is made to the results from the full combinatorial library that was synthesized manually and tested independently. The results show that compounds selected by the algorithm are heavily biased toward the more active regions of the library, while the algorithm is robust to both missing data (compounds where synthesis failed) and inactive compounds. This publication places the full combinatorial library and biological data into the public domain with the intention of advancing research into algorithm-directed lead optimization methods. PMID:24900251

  6. Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework

    PubMed Central

    Antonopoulos, Georgios C.; Steltner, Benjamin; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko

    2015-01-01

    A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available. PMID:26599984

  7. Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework.

    PubMed

    Antonopoulos, Georgios C; Steltner, Benjamin; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko

    2015-01-01

    A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.

  8. Introductory review on `Flying Triangulation': a motion-robust optical 3D measurement principle

    NASA Astrophysics Data System (ADS)

    Ettl, Svenja

    2015-04-01

    'Flying Triangulation' (FlyTri) is a recently developed principle which allows for a motion-robust optical 3D measurement of rough surfaces. It combines a simple sensor with sophisticated algorithms: a single-shot sensor acquires 2D camera images. From each camera image, a 3D profile is generated. The series of 3D profiles generated are aligned to one another by algorithms, without relying on any external tracking device. It delivers real-time feedback of the measurement process which enables an all-around measurement of objects. The principle has great potential for small-space acquisition environments, such as the measurement of the interior of a car, and motion-sensitive measurement tasks, such as the intraoral measurement of teeth. This article gives an overview of the basic ideas and applications of FlyTri. The main challenges and their solutions are discussed. Measurement examples are also given to demonstrate the potential of the measurement principle.

  9. Robust moving mesh algorithms for hybrid stretched meshes: Application to moving boundaries problems

    NASA Astrophysics Data System (ADS)

    Landry, Jonathan; Soulaïmani, Azzeddine; Luke, Edward; Ben Haj Ali, Amine

    2016-12-01

    A robust Mesh-Mover Algorithm (MMA) approach is designed to adapt meshes of moving boundaries problems. A new methodology is developed from the best combination of well-known algorithms in order to preserve the quality of initial meshes. In most situations, MMAs distribute mesh deformation while preserving a good mesh quality. However, invalid meshes are generated when the motion is complex and/or involves multiple bodies. After studying a few MMA limitations, we propose the following approach: use the Inverse Distance Weighting (IDW) function to produce the displacement field, then apply the Geometric Element Transformation Method (GETMe) smoothing algorithms to improve the resulting mesh quality, and use an untangler to revert negative elements. The proposed approach has been proven efficient to adapt meshes for various realistic aerodynamic motions: a symmetric wing that has suffered large tip bending and twisting and the high-lift components of a swept wing that has moved to different flight stages. Finally, the fluid flow problem has been solved on meshes that have moved and they have produced results close to experimental ones. However, for situations where moving boundaries are too close to each other, more improvements need to be made or other approaches should be taken, such as an overset grid method.

  10. CNN universal machine as classificaton platform: an art-like clustering algorithm.

    PubMed

    Bálya, David

    2003-12-01

    Fast and robust classification of feature vectors is a crucial task in a number of real-time systems. A cellular neural/nonlinear network universal machine (CNN-UM) can be very efficient as a feature detector. The next step is to post-process the results for object recognition. This paper shows how a robust classification scheme based on adaptive resonance theory (ART) can be mapped to the CNN-UM. Moreover, this mapping is general enough to include different types of feed-forward neural networks. The designed analogic CNN algorithm is capable of classifying the extracted feature vectors keeping the advantages of the ART networks, such as robust, plastic and fault-tolerant behaviors. An analogic algorithm is presented for unsupervised classification with tunable sensitivity and automatic new class creation. The algorithm is extended for supervised classification. The presented binary feature vector classification is implemented on the existing standard CNN-UM chips for fast classification. The experimental evaluation shows promising performance after 100% accuracy on the training set.

  11. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters.

    PubMed

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-09-07

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers.

  12. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images

    PubMed Central

    Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi

    2016-01-01

    Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704

  13. Seismic noise attenuation using an online subspace tracking algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang

    2018-02-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.

  14. Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)

    NASA Astrophysics Data System (ADS)

    Li, Xin-ran; Wang, Xin

    2017-04-01

    When the genetic algorithm is used to solve the problem of too short-arc (TSA) orbit determination, due to the difference of computing process between the genetic algorithm and the classical method, the original method for outlier deletion is no longer applicable. In the genetic algorithm, the robust estimation is realized by introducing different loss functions for the fitness function, then the outlier problem of the TSA orbit determination is solved. Compared with the classical method, the genetic algorithm is greatly simplified by introducing in different loss functions. Through the comparison on the calculations of multiple loss functions, it is found that the least median square (LMS) estimation and least trimmed square (LTS) estimation can greatly improve the robustness of the TSA orbit determination, and have a high breakdown point.

  15. An Integrated Ransac and Graph Based Mismatch Elimination Approach for Wide-Baseline Image Matching

    NASA Astrophysics Data System (ADS)

    Hasheminasab, M.; Ebadi, H.; Sedaghat, A.

    2015-12-01

    In this paper we propose an integrated approach in order to increase the precision of feature point matching. Many different algorithms have been developed as to optimizing the short-baseline image matching while because of illumination differences and viewpoints changes, wide-baseline image matching is so difficult to handle. Fortunately, the recent developments in the automatic extraction of local invariant features make wide-baseline image matching possible. The matching algorithms which are based on local feature similarity principle, using feature descriptor as to establish correspondence between feature point sets. To date, the most remarkable descriptor is the scale-invariant feature transform (SIFT) descriptor , which is invariant to image rotation and scale, and it remains robust across a substantial range of affine distortion, presence of noise, and changes in illumination. The epipolar constraint based on RANSAC (random sample consensus) method is a conventional model for mismatch elimination, particularly in computer vision. Because only the distance from the epipolar line is considered, there are a few false matches in the selected matching results based on epipolar geometry and RANSAC. Aguilariu et al. proposed Graph Transformation Matching (GTM) algorithm to remove outliers which has some difficulties when the mismatched points surrounded by the same local neighbor structure. In this study to overcome these limitations, which mentioned above, a new three step matching scheme is presented where the SIFT algorithm is used to obtain initial corresponding point sets. In the second step, in order to reduce the outliers, RANSAC algorithm is applied. Finally, to remove the remained mismatches, based on the adjacent K-NN graph, the GTM is implemented. Four different close range image datasets with changes in viewpoint are utilized to evaluate the performance of the proposed method and the experimental results indicate its robustness and capability.

  16. An Algorithm of Association Rule Mining for Microbial Energy Prospection

    PubMed Central

    Shaheen, Muhammad; Shahbaz, Muhammad

    2017-01-01

    The presence of hydrocarbons beneath earth’s surface produces some microbiological anomalies in soils and sediments. The detection of such microbial populations involves pure bio chemical processes which are specialized, expensive and time consuming. This paper proposes a new algorithm of context based association rule mining on non spatial data. The algorithm is a modified form of already developed algorithm which was for spatial database only. The algorithm is applied to mine context based association rules on microbial database to extract interesting and useful associations of microbial attributes with existence of hydrocarbon reserve. The surface and soil manifestations caused by the presence of hydrocarbon oxidizing microbes are selected from existing literature and stored in a shared database. The algorithm is applied on the said database to generate direct and indirect associations among the stored microbial indicators. These associations are then correlated with the probability of hydrocarbon’s existence. The numerical evaluation shows better accuracy for non-spatial data as compared to conventional algorithms at generating reliable and robust rules. PMID:28393846

  17. Precision pointing and control of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Bantell, M. H., Jr.

    1987-01-01

    The problem and long term objectives for the precision pointing and control of flexible spacecraft are given. The four basic objectives are stated in terms of two principle tasks. Under Task 1, robust low order controllers, improved structural modeling methods for control applications and identification methods for structural dynamics are being developed. Under Task 2, a lab test experiment for verification of control laws and system identification algorithms is being developed. For Task 1, work has focused on robust low order controller design and some initial considerations for structural modeling in control applications. For Task 2, work has focused on experiment design and fabrication, along with sensor selection and initial digital controller implementation. Conclusions are given.

  18. Failure detection system design methodology. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.

    1980-01-01

    The design of a failure detection and identification system consists of designing a robust residual generation process and a high performance decision making process. The design of these two processes are examined separately. Residual generation is based on analytical redundancy. Redundancy relations that are insensitive to modelling errors and noise effects are important for designing robust residual generation processes. The characterization of the concept of analytical redundancy in terms of a generalized parity space provides a framework in which a systematic approach to the determination of robust redundancy relations are developed. The Bayesian approach is adopted for the design of high performance decision processes. The FDI decision problem is formulated as a Bayes sequential decision problem. Since the optimal decision rule is incomputable, a methodology for designing suboptimal rules is proposed. A numerical algorithm is developed to facilitate the design and performance evaluation of suboptimal rules.

  19. Tissue Probability Map Constrained 4-D Clustering Algorithm for Increased Accuracy and Robustness in Serial MR Brain Image Segmentation

    PubMed Central

    Xue, Zhong; Shen, Dinggang; Li, Hai; Wong, Stephen

    2010-01-01

    The traditional fuzzy clustering algorithm and its extensions have been successfully applied in medical image segmentation. However, because of the variability of tissues and anatomical structures, the clustering results might be biased by the tissue population and intensity differences. For example, clustering-based algorithms tend to over-segment white matter tissues of MR brain images. To solve this problem, we introduce a tissue probability map constrained clustering algorithm and apply it to serial MR brain image segmentation, i.e., a series of 3-D MR brain images of the same subject at different time points. Using the new serial image segmentation algorithm in the framework of the CLASSIC framework, which iteratively segments the images and estimates the longitudinal deformations, we improved both accuracy and robustness for serial image computing, and at the mean time produced longitudinally consistent segmentation and stable measures. In the algorithm, the tissue probability maps consist of both the population-based and subject-specific segmentation priors. Experimental study using both simulated longitudinal MR brain data and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data confirmed that using both priors more accurate and robust segmentation results can be obtained. The proposed algorithm can be applied in longitudinal follow up studies of MR brain imaging with subtle morphological changes for neurological disorders. PMID:26566399

  20. Genetic Algorithm and Tabu Search for Vehicle Routing Problems with Stochastic Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Zuhaimy, E-mail: zuhaimyi@yahoo.com, E-mail: irhamahn@yahoo.com; Irhamah, E-mail: zuhaimyi@yahoo.com, E-mail: irhamahn@yahoo.com

    2010-11-11

    This paper presents a problem of designing solid waste collection routes, involving scheduling of vehicles where each vehicle begins at the depot, visits customers and ends at the depot. It is modeled as a Vehicle Routing Problem with Stochastic Demands (VRPSD). A data set from a real world problem (a case) is used in this research. We developed Genetic Algorithm (GA) and Tabu Search (TS) procedure and these has produced the best possible result. The problem data are inspired by real case of VRPSD in waste collection. Results from the experiment show the advantages of the proposed algorithm that aremore » its robustness and better solution qualities.« less

  1. Self-tuning control of attitude and momentum management for the Space Station

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Yuan, Z. Z.; Zhao, X. M.

    1992-01-01

    This paper presents a hybrid state-space self-tuning design methodology using dual-rate sampling for suboptimal digital adaptive control of attitude and momentum management for the Space Station. This new hybrid adaptive control scheme combines an on-line recursive estimation algorithm for indirectly identifying the parameters of a continuous-time system from the available fast-rate sampled data of the inputs and states and a controller synthesis algorithm for indirectly finding the slow-rate suboptimal digital controller from the designed optimal analog controller. The proposed method enables the development of digitally implementable control algorithms for the robust control of Space Station Freedom with unknown environmental disturbances and slowly time-varying dynamics.

  2. A robust watermarking scheme using lifting wavelet transform and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anuj; Verma, Deval; Verma, Vivek Singh

    2017-01-01

    The present paper proposes a robust image watermarking scheme using lifting wavelet transform (LWT) and singular value decomposition (SVD). Second level LWT is applied on host/cover image to decompose into different subbands. SVD is used to obtain singular values of watermark image and then these singular values are updated with the singular values of LH2 subband. The algorithm is tested on a number of benchmark images and it is found that the present algorithm is robust against different geometric and image processing operations. A comparison of the proposed scheme is performed with other existing schemes and observed that the present scheme is better not only in terms of robustness but also in terms of imperceptibility.

  3. A triangle voting algorithm based on double feature constraints for star sensors

    NASA Astrophysics Data System (ADS)

    Fan, Qiaoyun; Zhong, Xuyang

    2018-02-01

    A novel autonomous star identification algorithm is presented in this study. In the proposed algorithm, each sensor star constructs multi-triangle with its bright neighbor stars and obtains its candidates by triangle voting process, in which the triangle is considered as the basic voting element. In order to accelerate the speed of this algorithm and reduce the required memory for star database, feature extraction is carried out to reduce the dimension of triangles and each triangle is described by its base and height. During the identification period, the voting scheme based on double feature constraints is proposed to implement triangle voting. This scheme guarantees that only the catalog star satisfying two features can vote for the sensor star, which improves the robustness towards false stars. The simulation and real star image test demonstrate that compared with the other two algorithms, the proposed algorithm is more robust towards position noise, magnitude noise and false stars.

  4. A Model-Based Approach for the Measurement of Eye Movements Using Image Processing

    NASA Technical Reports Server (NTRS)

    Sung, Kwangjae; Reschke, Millard F.

    1997-01-01

    This paper describes a video eye-tracking algorithm which searches for the best fit of the pupil modeled as a circular disk. The algorithm is robust to common image artifacts such as the droopy eyelids and light reflections while maintaining the measurement resolution available by the centroid algorithm. The presented algorithm is used to derive the pupil size and center coordinates, and can be combined with iris-tracking techniques to measure ocular torsion. A comparison search method of pupil candidates using pixel coordinate reference lookup tables optimizes the processing requirements for a least square fit of the circular disk model. This paper includes quantitative analyses and simulation results for the resolution and the robustness of the algorithm. The algorithm presented in this paper provides a platform for a noninvasive, multidimensional eye measurement system which can be used for clinical and research applications requiring the precise recording of eye movements in three-dimensional space.

  5. Robust frequency diversity based algorithm for clutter noise reduction of ultrasonic signals using multiple sub-spectrum phase coherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gongzhang, R.; Xiao, B.; Lardner, T.

    2014-02-18

    This paper presents a robust frequency diversity based algorithm for clutter reduction in ultrasonic A-scan waveforms. The performance of conventional spectral-temporal techniques like Split Spectrum Processing (SSP) is highly dependent on the parameter selection, especially when the signal to noise ratio (SNR) is low. Although spatial beamforming offers noise reduction with less sensitivity to parameter variation, phased array techniques are not always available. The proposed algorithm first selects an ascending series of frequency bands. A signal is reconstructed for each selected band in which a defect is present when all frequency components are in uniform sign. Combining all reconstructed signalsmore » through averaging gives a probability profile of potential defect position. To facilitate data collection and validate the proposed algorithm, Full Matrix Capture is applied on the austenitic steel and high nickel alloy (HNA) samples with 5MHz transducer arrays. When processing A-scan signals with unrefined parameters, the proposed algorithm enhances SNR by 20dB for both samples and consequently, defects are more visible in B-scan images created from the large amount of A-scan traces. Importantly, the proposed algorithm is considered robust, while SSP is shown to fail on the austenitic steel data and achieves less SNR enhancement on the HNA data.« less

  6. Flexible Wing Base Micro Aerial Vehicles: Vision-Guided Flight Stability and Autonomy for Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ettinger, Scott M.; Nechyba, Michael C.; Ifju, Peter G.; Wazak, Martin

    2002-01-01

    Substantial progress has been made recently towards design building and test-flying remotely piloted Micro Air Vehicle's (MAVs). We seek to complement this progress in overcoming the aerodynamic obstacles to.flight at very small scales with a vision stability and autonomy system. The developed system based on a robust horizon detection algorithm which we discuss in greater detail in a companion paper. In this paper, we first motivate the use of computer vision for MAV autonomy arguing that given current sensor technology, vision may he the only practical approach to the problem. We then briefly review our statistical vision-based horizon detection algorithm, which has been demonstrated at 30Hz with over 99.9% correct horizon identification. Next we develop robust schemes for the detection of extreme MAV attitudes, where no horizon is visible, and for the detection of horizon estimation errors, due to external factors such as video transmission noise. Finally, we discuss our feed-back controller for self-stabilized flight, and report results on vision autonomous flights of duration exceeding ten minutes.

  7. Parallax-Robust Surveillance Video Stitching

    PubMed Central

    He, Botao; Yu, Shaohua

    2015-01-01

    This paper presents a parallax-robust video stitching technique for timely synchronized surveillance video. An efficient two-stage video stitching procedure is proposed in this paper to build wide Field-of-View (FOV) videos for surveillance applications. In the stitching model calculation stage, we develop a layered warping algorithm to align the background scenes, which is location-dependent and turned out to be more robust to parallax than the traditional global projective warping methods. On the selective seam updating stage, we propose a change-detection based optimal seam selection approach to avert ghosting and artifacts caused by moving foregrounds. Experimental results demonstrate that our procedure can efficiently stitch multi-view videos into a wide FOV video output without ghosting and noticeable seams. PMID:26712756

  8. Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kohen, Hamid

    1997-01-01

    This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial (open-loop optimal) to 43 km RMS radial (optimized with respect to perturbations) using 200 hours of computation on an Ultra-SPARC workstation. Further reduction in the landing error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.

  9. Onboard Robust Visual Tracking for UAVs Using a Reliable Global-Local Object Model

    PubMed Central

    Fu, Changhong; Duan, Ran; Kircali, Dogan; Kayacan, Erdal

    2016-01-01

    In this paper, we present a novel onboard robust visual algorithm for long-term arbitrary 2D and 3D object tracking using a reliable global-local object model for unmanned aerial vehicle (UAV) applications, e.g., autonomous tracking and chasing a moving target. The first main approach in this novel algorithm is the use of a global matching and local tracking approach. In other words, the algorithm initially finds feature correspondences in a way that an improved binary descriptor is developed for global feature matching and an iterative Lucas–Kanade optical flow algorithm is employed for local feature tracking. The second main module is the use of an efficient local geometric filter (LGF), which handles outlier feature correspondences based on a new forward-backward pairwise dissimilarity measure, thereby maintaining pairwise geometric consistency. In the proposed LGF module, a hierarchical agglomerative clustering, i.e., bottom-up aggregation, is applied using an effective single-link method. The third proposed module is a heuristic local outlier factor (to the best of our knowledge, it is utilized for the first time to deal with outlier features in a visual tracking application), which further maximizes the representation of the target object in which we formulate outlier feature detection as a binary classification problem with the output features of the LGF module. Extensive UAV flight experiments show that the proposed visual tracker achieves real-time frame rates of more than thirty-five frames per second on an i7 processor with 640 × 512 image resolution and outperforms the most popular state-of-the-art trackers favorably in terms of robustness, efficiency and accuracy. PMID:27589769

  10. A Family of Algorithms for Computing Consensus about Node State from Network Data

    PubMed Central

    Brush, Eleanor R.; Krakauer, David C.; Flack, Jessica C.

    2013-01-01

    Biological and social networks are composed of heterogeneous nodes that contribute differentially to network structure and function. A number of algorithms have been developed to measure this variation. These algorithms have proven useful for applications that require assigning scores to individual nodes–from ranking websites to determining critical species in ecosystems–yet the mechanistic basis for why they produce good rankings remains poorly understood. We show that a unifying property of these algorithms is that they quantify consensus in the network about a node's state or capacity to perform a function. The algorithms capture consensus by either taking into account the number of a target node's direct connections, and, when the edges are weighted, the uniformity of its weighted in-degree distribution (breadth), or by measuring net flow into a target node (depth). Using data from communication, social, and biological networks we find that that how an algorithm measures consensus–through breadth or depth– impacts its ability to correctly score nodes. We also observe variation in sensitivity to source biases in interaction/adjacency matrices: errors arising from systematic error at the node level or direct manipulation of network connectivity by nodes. Our results indicate that the breadth algorithms, which are derived from information theory, correctly score nodes (assessed using independent data) and are robust to errors. However, in cases where nodes “form opinions” about other nodes using indirect information, like reputation, depth algorithms, like Eigenvector Centrality, are required. One caveat is that Eigenvector Centrality is not robust to error unless the network is transitive or assortative. In these cases the network structure allows the depth algorithms to effectively capture breadth as well as depth. Finally, we discuss the algorithms' cognitive and computational demands. This is an important consideration in systems in which individuals use the collective opinions of others to make decisions. PMID:23874167

  11. Cosine Kuramoto Based Distribution of a Convoy with Limit-Cycle Obstacle Avoidance Through the Use of Simulated Agents

    NASA Astrophysics Data System (ADS)

    Howerton, William

    This thesis presents a method for the integration of complex network control algorithms with localized agent specific algorithms for maneuvering and obstacle avoidance. This method allows for successful implementation of group and agent specific behaviors. It has proven to be robust and will work for a variety of vehicle platforms. Initially, a review and implementation of two specific algorithms will be detailed. The first, a modified Kuramoto model was developed by Xu [1] which utilizes tools from graph theory to efficiently perform the task of distributing agents. The second algorithm developed by Kim [2] is an effective method for wheeled robots to avoid local obstacles using a limit-cycle navigation method. The results of implementing these methods on a test-bed of wheeled robots will be presented. Control issues related to outside disturbances not anticipated in the original theory are then discussed. A novel method of using simulated agents to separate the task of distributing agents from agent specific velocity and heading commands has been developed and implemented to address these issues. This new method can be used to combine various behaviors and is not limited to a specific control algorithm.

  12. A robust internal control for high-precision DNA methylation analyses by droplet digital PCR.

    PubMed

    Pharo, Heidi D; Andresen, Kim; Berg, Kaja C G; Lothe, Ragnhild A; Jeanmougin, Marine; Lind, Guro E

    2018-01-01

    Droplet digital PCR (ddPCR) allows absolute quantification of nucleic acids and has potential for improved non-invasive detection of DNA methylation. For increased precision of the methylation analysis, we aimed to develop a robust internal control for use in methylation-specific ddPCR. Two control design approaches were tested: (a) targeting a genomic region shared across members of a gene family and (b) combining multiple assays targeting different pericentromeric loci on different chromosomes. Through analyses of 34 colorectal cancer cell lines, the performance of the control assay candidates was optimized and evaluated, both individually and in various combinations, using the QX200™ droplet digital PCR platform (Bio-Rad). The best-performing control was tested in combination with assays targeting methylated CDO1 , SEPT9 , and VIM . A 4Plex panel consisting of EPHA3 , KBTBD4 , PLEKHF1 , and SYT10 was identified as the best-performing control. The use of the 4Plex for normalization reduced the variability in methylation values, corrected for differences in template amount, and diminished the effect of chromosomal aberrations. Positive Droplet Calling (PoDCall), an R-based algorithm for standardized threshold determination, was developed, ensuring consistency of the ddPCR results. Implementation of a robust internal control, i.e., the 4Plex, and an algorithm for automated threshold determination, PoDCall, in methylation-specific ddPCR increase the precision of DNA methylation analysis.

  13. Concave 1-norm group selection

    PubMed Central

    Jiang, Dingfeng; Huang, Jian

    2015-01-01

    Grouping structures arise naturally in many high-dimensional problems. Incorporation of such information can improve model fitting and variable selection. Existing group selection methods, such as the group Lasso, require correct membership. However, in practice it can be difficult to correctly specify group membership of all variables. Thus, it is important to develop group selection methods that are robust against group mis-specification. Also, it is desirable to select groups as well as individual variables in many applications. We propose a class of concave \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$1$\\end{document}-norm group penalties that is robust to grouping structure and can perform bi-level selection. A coordinate descent algorithm is developed to calculate solutions of the proposed group selection method. Theoretical convergence of the algorithm is proved under certain regularity conditions. Comparison with other methods suggests the proposed method is the most robust approach under membership mis-specification. Simulation studies and real data application indicate that the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$1$\\end{document}-norm concave group selection approach achieves better control of false discovery rates. An R package grppenalty implementing the proposed method is available at CRAN. PMID:25417206

  14. A novel single thruster control strategy for spacecraft attitude stabilization

    NASA Astrophysics Data System (ADS)

    Godard; Kumar, Krishna Dev; Zou, An-Min

    2013-05-01

    Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is developed based on the nonlinear kinematic and dynamic equations of motion of a rigid body spacecraft in the presence of gravity gradient torque and external disturbances. The spacecraft, controlled using the proposed concept, constitutes an underactuated system (a system with fewer independent control inputs than degrees of freedom) with nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the system non-affine (control terms appear nonlinearly in the state equation). This necessitates the control algorithms to be developed based on nonlinear control theory since linear control methods are not directly applicable. The stability conditions for the spacecraft attitude motion for robustness against uncertainties and disturbances are derived to establish the regions of asymptotic 3-axis attitude stabilization. Several numerical simulations are presented to demonstrate the efficacy of the proposed controller and validate the theoretical results. The control algorithm is shown to compensate for time-varying external disturbances including solar radiation pressure, aerodynamic forces, and magnetic disturbances; and uncertainties in the spacecraft inertia parameters. The numerical results also establish the robustness of the proposed control scheme to negate disturbances caused by orbit eccentricity.

  15. An Automatic Registration Algorithm for 3D Maxillofacial Model

    NASA Astrophysics Data System (ADS)

    Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng

    2016-09-01

    3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.

  16. An improved stochastic fractal search algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Sun, Chuan; Wang, Bin; Wang, Xiaojun

    2018-05-03

    Protein structure prediction (PSP) is a significant area for biological information research, disease treatment, and drug development and so on. In this paper, three-dimensional structures of proteins are predicted based on the known amino acid sequences, and the structure prediction problem is transformed into a typical NP problem by an AB off-lattice model. This work applies a novel improved Stochastic Fractal Search algorithm (ISFS) to solve the problem. The Stochastic Fractal Search algorithm (SFS) is an effective evolutionary algorithm that performs well in exploring the search space but falls into local minimums sometimes. In order to avoid the weakness, Lvy flight and internal feedback information are introduced in ISFS. In the experimental process, simulations are conducted by ISFS algorithm on Fibonacci sequences and real peptide sequences. Experimental results prove that the ISFS performs more efficiently and robust in terms of finding the global minimum and avoiding getting stuck in local minimums.

  17. Geometrical pose and structural estimation from a single image for automatic inspection of filter components

    NASA Astrophysics Data System (ADS)

    Liu, Yonghuai; Rodrigues, Marcos A.

    2000-03-01

    This paper describes research on the application of machine vision techniques to a real time automatic inspection task of air filter components in a manufacturing line. A novel calibration algorithm is proposed based on a special camera setup where defective items would show a large calibration error. The algorithm makes full use of rigid constraints derived from the analysis of geometrical properties of reflected correspondence vectors which have been synthesized into a single coordinate frame and provides a closed form solution to the estimation of all parameters. For a comparative study of performance, we also developed another algorithm based on this special camera setup using epipolar geometry. A number of experiments using synthetic data have shown that the proposed algorithm is generally more accurate and robust than the epipolar geometry based algorithm and that the geometric properties of reflected correspondence vectors provide effective constraints to the calibration of rigid body transformations.

  18. Active control of flexible structures using a fuzzy logic algorithm

    NASA Astrophysics Data System (ADS)

    Cohen, Kelly; Weller, Tanchum; Ben-Asher, Joseph Z.

    2002-08-01

    This study deals with the development and application of an active control law for the vibration suppression of beam-like flexible structures experiencing transient disturbances. Collocated pairs of sensors/actuators provide active control of the structure. A design methodology for the closed-loop control algorithm based on fuzzy logic is proposed. First, the behavior of the open-loop system is observed. Then, the number and locations of collocated actuator/sensor pairs are selected. The proposed control law, which is based on the principles of passivity, commands the actuator to emulate the behavior of a dynamic vibration absorber. The absorber is tuned to a targeted frequency, whereas the damping coefficient of the dashpot is varied in a closed loop using a fuzzy logic based algorithm. This approach not only ensures inherent stability associated with passive absorbers, but also circumvents the phenomenon of modal spillover. The developed controller is applied to the AFWAL/FIB 10 bar truss. Simulated results using MATLAB© show that the closed-loop system exhibits fairly quick settling times and desirable performance, as well as robustness characteristics. To demonstrate the robustness of the control system to changes in the temporal dynamics of the flexible structure, the transient response to a considerably perturbed plant is simulated. The modal frequencies of the 10 bar truss were raised as well as lowered substantially, thereby significantly perturbing the natural frequencies of vibration. For these cases, too, the developed control law provides adequate settling times and rates of vibrational energy dissipation.

  19. Anytime synthetic projection: Maximizing the probability of goal satisfaction

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John L.

    1990-01-01

    A projection algorithm is presented for incremental control rule synthesis. The algorithm synthesizes an initial set of goal achieving control rules using a combination of situation probability and estimated remaining work as a search heuristic. This set of control rules has a certain probability of satisfying the given goal. The probability is incrementally increased by synthesizing additional control rules to handle 'error' situations the execution system is likely to encounter when following the initial control rules. By using situation probabilities, the algorithm achieves a computationally effective balance between the limited robustness of triangle tables and the absolute robustness of universal plans.

  20. Robust mosiacs of close-range high-resolution images

    NASA Astrophysics Data System (ADS)

    Song, Ran; Szymanski, John E.

    2008-03-01

    This paper presents a robust algorithm which relies only on the information contained within the captured images for the construction of massive composite mosaic images from close-range and high-resolution originals, such as those obtained when imaging architectural and heritage structures. We first apply Harris algorithm to extract a selection of corners and, then, employ both the intensity correlation and the spatial correlation between the corresponding corners for matching them. Then we estimate the eight-parameter projective transformation matrix by the genetic algorithm. Lastly, image fusion using a weighted blending function together with intensity compensation produces an effective seamless mosaic image.

  1. MO-C-17A-11: A Segmentation and Point Matching Enhanced Deformable Image Registration Method for Dose Accumulation Between HDR CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, X; Chen, H; Zhou, L

    2014-06-15

    Purpose: To propose and validate a novel and accurate deformable image registration (DIR) scheme to facilitate dose accumulation among treatment fractions of high-dose-rate (HDR) gynecological brachytherapy. Method: We have developed a method to adapt DIR algorithms to gynecologic anatomies with HDR applicators by incorporating a segmentation step and a point-matching step into an existing DIR framework. In the segmentation step, random walks algorithm is used to accurately segment and remove the applicator region (AR) in the HDR CT image. A semi-automatic seed point generation approach is developed to obtain the incremented foreground and background point sets to feed the randommore » walks algorithm. In the subsequent point-matching step, a feature-based thin-plate spline-robust point matching (TPS-RPM) algorithm is employed for AR surface point matching. With the resulting mapping, a DVF characteristic of the deformation between the two AR surfaces is generated by B-spline approximation, which serves as the initial DVF for the following Demons DIR between the two AR-free HDR CT images. Finally, the calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. Results: The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative results as well as the visual inspection of the DIR indicate that our proposed method can suppress the interference of the applicator with the DIR algorithm, and accurately register HDR CT images as well as deform and add interfractional HDR doses. Conclusions: We have developed a novel and robust DIR scheme that can perform registration between HDR gynecological CT images and yield accurate registration results. This new DIR scheme has potential for accurate interfractional HDR dose accumulation. This work is supported in part by the National Natural ScienceFoundation of China (no 30970866 and no 81301940)« less

  2. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series

    PubMed Central

    2011-01-01

    Background Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Results Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. Conclusions The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html. PMID:21851598

  3. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series.

    PubMed

    Yuan, Yuan; Chen, Yi-Ping Phoebe; Ni, Shengyu; Xu, Augix Guohua; Tang, Lin; Vingron, Martin; Somel, Mehmet; Khaitovich, Philipp

    2011-08-18

    Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html.

  4. Robust MST-Based Clustering Algorithm.

    PubMed

    Liu, Qidong; Zhang, Ruisheng; Zhao, Zhili; Wang, Zhenghai; Jiao, Mengyao; Wang, Guangjing

    2018-06-01

    Minimax similarity stresses the connectedness of points via mediating elements rather than favoring high mutual similarity. The grouping principle yields superior clustering results when mining arbitrarily-shaped clusters in data. However, it is not robust against noises and outliers in the data. There are two main problems with the grouping principle: first, a single object that is far away from all other objects defines a separate cluster, and second, two connected clusters would be regarded as two parts of one cluster. In order to solve such problems, we propose robust minimum spanning tree (MST)-based clustering algorithm in this letter. First, we separate the connected objects by applying a density-based coarsening phase, resulting in a low-rank matrix in which the element denotes the supernode by combining a set of nodes. Then a greedy method is presented to partition those supernodes through working on the low-rank matrix. Instead of removing the longest edges from MST, our algorithm groups the data set based on the minimax similarity. Finally, the assignment of all data points can be achieved through their corresponding supernodes. Experimental results on many synthetic and real-world data sets show that our algorithm consistently outperforms compared clustering algorithms.

  5. Curve Set Feature-Based Robust and Fast Pose Estimation Algorithm

    PubMed Central

    Hashimoto, Koichi

    2017-01-01

    Bin picking refers to picking the randomly-piled objects from a bin for industrial production purposes, and robotic bin picking is always used in automated assembly lines. In order to achieve a higher productivity, a fast and robust pose estimation algorithm is necessary to recognize and localize the randomly-piled parts. This paper proposes a pose estimation algorithm for bin picking tasks using point cloud data. A novel descriptor Curve Set Feature (CSF) is proposed to describe a point by the surface fluctuation around this point and is also capable of evaluating poses. The Rotation Match Feature (RMF) is proposed to match CSF efficiently. The matching process combines the idea of the matching in 2D space of origin Point Pair Feature (PPF) algorithm with nearest neighbor search. A voxel-based pose verification method is introduced to evaluate the poses and proved to be more than 30-times faster than the kd-tree-based verification method. Our algorithm is evaluated against a large number of synthetic and real scenes and proven to be robust to noise, able to detect metal parts, more accurately and more than 10-times faster than PPF and Oriented, Unique and Repeatable (OUR)-Clustered Viewpoint Feature Histogram (CVFH). PMID:28771216

  6. A robust and accurate center-frequency estimation (RACE) algorithm for improving motion estimation performance of SinMod on tagged cardiac MR images without known tagging parameters.

    PubMed

    Liu, Hong; Wang, Jie; Xu, Xiangyang; Song, Enmin; Wang, Qian; Jin, Renchao; Hung, Chih-Cheng; Fei, Baowei

    2014-11-01

    A robust and accurate center-frequency (CF) estimation (RACE) algorithm for improving the performance of the local sine-wave modeling (SinMod) method, which is a good motion estimation method for tagged cardiac magnetic resonance (MR) images, is proposed in this study. The RACE algorithm can automatically, effectively and efficiently produce a very appropriate CF estimate for the SinMod method, under the circumstance that the specified tagging parameters are unknown, on account of the following two key techniques: (1) the well-known mean-shift algorithm, which can provide accurate and rapid CF estimation; and (2) an original two-direction-combination strategy, which can further enhance the accuracy and robustness of CF estimation. Some other available CF estimation algorithms are brought out for comparison. Several validation approaches that can work on the real data without ground truths are specially designed. Experimental results on human body in vivo cardiac data demonstrate the significance of accurate CF estimation for SinMod, and validate the effectiveness of RACE in facilitating the motion estimation performance of SinMod. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Application of composite dictionary multi-atom matching in gear fault diagnosis.

    PubMed

    Cui, Lingli; Kang, Chenhui; Wang, Huaqing; Chen, Peng

    2011-01-01

    The sparse decomposition based on matching pursuit is an adaptive sparse expression method for signals. This paper proposes an idea concerning a composite dictionary multi-atom matching decomposition and reconstruction algorithm, and the introduction of threshold de-noising in the reconstruction algorithm. Based on the structural characteristics of gear fault signals, a composite dictionary combining the impulse time-frequency dictionary and the Fourier dictionary was constituted, and a genetic algorithm was applied to search for the best matching atom. The analysis results of gear fault simulation signals indicated the effectiveness of the hard threshold, and the impulse or harmonic characteristic components could be separately extracted. Meanwhile, the robustness of the composite dictionary multi-atom matching algorithm at different noise levels was investigated. Aiming at the effects of data lengths on the calculation efficiency of the algorithm, an improved segmented decomposition and reconstruction algorithm was proposed, and the calculation efficiency of the decomposition algorithm was significantly enhanced. In addition it is shown that the multi-atom matching algorithm was superior to the single-atom matching algorithm in both calculation efficiency and algorithm robustness. Finally, the above algorithm was applied to gear fault engineering signals, and achieved good results.

  8. The Speech multi features fusion perceptual hash algorithm based on tensor decomposition

    NASA Astrophysics Data System (ADS)

    Huang, Y. B.; Fan, M. H.; Zhang, Q. Y.

    2018-03-01

    With constant progress in modern speech communication technologies, the speech data is prone to be attacked by the noise or maliciously tampered. In order to make the speech perception hash algorithm has strong robustness and high efficiency, this paper put forward a speech perception hash algorithm based on the tensor decomposition and multi features is proposed. This algorithm analyses the speech perception feature acquires each speech component wavelet packet decomposition. LPCC, LSP and ISP feature of each speech component are extracted to constitute the speech feature tensor. Speech authentication is done by generating the hash values through feature matrix quantification which use mid-value. Experimental results showing that the proposed algorithm is robust for content to maintain operations compared with similar algorithms. It is able to resist the attack of the common background noise. Also, the algorithm is highly efficiency in terms of arithmetic, and is able to meet the real-time requirements of speech communication and complete the speech authentication quickly.

  9. Fusion of multiple quadratic penalty function support vector machines (QPFSVM) for automated sea mine detection and classification

    NASA Astrophysics Data System (ADS)

    Dobeck, Gerald J.; Cobb, J. Tory

    2002-08-01

    The high-resolution sonar is one of the principal sensors used by the Navy to detect and classify sea mines in minehunting operations. For such sonar systems, substantial effort has been devoted to the development of automated detection and classification (D/C) algorithms. These have been spurred by several factors including (1) aids for operators to reduce work overload, (2) more optimal use of all available data, and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and man-made clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while still maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms have been studied. We refer to this as Algorithm Fusion. The results have been remarkable, including reliable robustness to new environments. The Quadratic Penalty Function Support Vector Machine (QPFSVM) algorithm to aid in the automated detection and classification of sea mines is introduced in this paper. The QPFSVM algorithm is easy to train, simple to implement, and robust to feature space dimension. Outputs of successive SVM algorithms are cascaded in stages (fused) to improve the Probability of Classification (Pc) and reduce the number of false alarms. Even though our experience has been gained in the area of sea mine detection and classification, the principles described herein are general and can be applied to fusion of any D/C problem (e.g., automated medical diagnosis or automatic target recognition for ballistic missile defense).

  10. Predicting intensity ranks of peptide fragment ions.

    PubMed

    Frank, Ari M

    2009-05-01

    Accurate modeling of peptide fragmentation is necessary for the development of robust scoring functions for peptide-spectrum matches, which are the cornerstone of MS/MS-based identification algorithms. Unfortunately, peptide fragmentation is a complex process that can involve several competing chemical pathways, which makes it difficult to develop generative probabilistic models that describe it accurately. However, the vast amounts of MS/MS data being generated now make it possible to use data-driven machine learning methods to develop discriminative ranking-based models that predict the intensity ranks of a peptide's fragment ions. We use simple sequence-based features that get combined by a boosting algorithm into models that make peak rank predictions with high accuracy. In an accompanying manuscript, we demonstrate how these prediction models are used to significantly improve the performance of peptide identification algorithms. The models can also be useful in the design of optimal multiple reaction monitoring (MRM) transitions, in cases where there is insufficient experimental data to guide the peak selection process. The prediction algorithm can also be run independently through PepNovo+, which is available for download from http://bix.ucsd.edu/Software/PepNovo.html.

  11. Predicting Intensity Ranks of Peptide Fragment Ions

    PubMed Central

    Frank, Ari M.

    2009-01-01

    Accurate modeling of peptide fragmentation is necessary for the development of robust scoring functions for peptide-spectrum matches, which are the cornerstone of MS/MS-based identification algorithms. Unfortunately, peptide fragmentation is a complex process that can involve several competing chemical pathways, which makes it difficult to develop generative probabilistic models that describe it accurately. However, the vast amounts of MS/MS data being generated now make it possible to use data-driven machine learning methods to develop discriminative ranking-based models that predict the intensity ranks of a peptide's fragment ions. We use simple sequence-based features that get combined by a boosting algorithm in to models that make peak rank predictions with high accuracy. In an accompanying manuscript, we demonstrate how these prediction models are used to significantly improve the performance of peptide identification algorithms. The models can also be useful in the design of optimal MRM transitions, in cases where there is insufficient experimental data to guide the peak selection process. The prediction algorithm can also be run independently through PepNovo+, which is available for download from http://bix.ucsd.edu/Software/PepNovo.html. PMID:19256476

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; Sen, Satyabrata; Berry, M. L..

    Domestic Nuclear Detection Office s (DNDO) Intelligence Radiation Sensors Systems (IRSS) program supported the development of networks of commercial-off-the-shelf (COTS) radiation counters for detecting, localizing, and identifying low-level radiation sources. Under this program, a series of indoor and outdoor tests were conducted with multiple source strengths and types, different background profiles, and various types of source and detector movements. Following the tests, network algorithms were replayed in various re-constructed scenarios using sub-networks. These measurements and algorithm traces together provide a rich collection of highly valuable datasets for testing the current and next generation radiation network algorithms, including the ones (tomore » be) developed by broader R&D communities such as distributed detection, information fusion, and sensor networks. From this multiple TeraByte IRSS database, we distilled out and packaged the first batch of canonical datasets for public release. They include measurements from ten indoor and two outdoor tests which represent increasingly challenging baseline scenarios for robustly testing radiation network algorithms.« less

  13. Robust Statistical Approaches for RSS-Based Floor Detection in Indoor Localization.

    PubMed

    Razavi, Alireza; Valkama, Mikko; Lohan, Elena Simona

    2016-05-31

    Floor detection for indoor 3D localization of mobile devices is currently an important challenge in the wireless world. Many approaches currently exist, but usually the robustness of such approaches is not addressed or investigated. The goal of this paper is to show how to robustify the floor estimation when probabilistic approaches with a low number of parameters are employed. Indeed, such an approach would allow a building-independent estimation and a lower computing power at the mobile side. Four robustified algorithms are to be presented: a robust weighted centroid localization method, a robust linear trilateration method, a robust nonlinear trilateration method, and a robust deconvolution method. The proposed approaches use the received signal strengths (RSS) measured by the Mobile Station (MS) from various heard WiFi access points (APs) and provide an estimate of the vertical position of the MS, which can be used for floor detection. We will show that robustification can indeed increase the performance of the RSS-based floor detection algorithms.

  14. A robust recognition and accurate locating method for circular coded diagonal target

    NASA Astrophysics Data System (ADS)

    Bao, Yunna; Shang, Yang; Sun, Xiaoliang; Zhou, Jiexin

    2017-10-01

    As a category of special control points which can be automatically identified, artificial coded targets have been widely developed in the field of computer vision, photogrammetry, augmented reality, etc. In this paper, a new circular coded target designed by RockeTech technology Corp. Ltd is analyzed and studied, which is called circular coded diagonal target (CCDT). A novel detection and recognition method with good robustness is proposed in the paper, and implemented on Visual Studio. In this algorithm, firstly, the ellipse features of the center circle are used for rough positioning. Then, according to the characteristics of the center diagonal target, a circular frequency filter is designed to choose the correct center circle and eliminates non-target noise. The precise positioning of the coded target is done by the correlation coefficient fitting extreme value method. Finally, the coded target recognition is achieved by decoding the binary sequence in the outer ring of the extracted target. To test the proposed algorithm, this paper has carried out simulation experiments and real experiments. The results show that the CCDT recognition and accurate locating method proposed in this paper can robustly recognize and accurately locate the targets in complex and noisy background.

  15. A Robust Zero-Watermarking Algorithm for Audio

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Zhu, Jie

    2007-12-01

    In traditional watermarking algorithms, the insertion of watermark into the host signal inevitably introduces some perceptible quality degradation. Another problem is the inherent conflict between imperceptibility and robustness. Zero-watermarking technique can solve these problems successfully. Instead of embedding watermark, the zero-watermarking technique extracts some essential characteristics from the host signal and uses them for watermark detection. However, most of the available zero-watermarking schemes are designed for still image and their robustness is not satisfactory. In this paper, an efficient and robust zero-watermarking technique for audio signal is presented. The multiresolution characteristic of discrete wavelet transform (DWT), the energy compression characteristic of discrete cosine transform (DCT), and the Gaussian noise suppression property of higher-order cumulant are combined to extract essential features from the host audio signal and they are then used for watermark recovery. Simulation results demonstrate the effectiveness of our scheme in terms of inaudibility, detection reliability, and robustness.

  16. Robust autofocus algorithm for ISAR imaging of moving targets

    NASA Astrophysics Data System (ADS)

    Li, Jian; Wu, Renbiao; Chen, Victor C.

    2000-08-01

    A robust autofocus approach, referred to as AUTOCLEAN (AUTOfocus via CLEAN), is proposed for the motion compensation in ISAR (inverse synthetic aperture radar) imaging of moving targets. It is a parametric algorithm based on a very flexible data model which takes into account arbitrary range migration and arbitrary phase errors across the synthetic aperture that may be induced by unwanted radial motion of the target as well as propagation or system instability. AUTOCLEAN can be classified as a multiple scatterer algorithm (MSA), but it differs considerably from other existing MSAs in several aspects: (1) dominant scatterers are selected automatically in the two-dimensional (2-D) image domain; (2) scatterers may not be well-isolated or very dominant; (3) phase and RCS (radar cross section) information from each selected scatterer are combined in an optimal way; (4) the troublesome phase unwrapping step is avoided. AUTOCLEAN is computationally efficient and involves only a sequence of FFTs (fast Fourier Transforms). Another good feature associated with AUTOCLEAN is that its performance can be progressively improved by assuming a larger number of dominant scatterers for the target. Hence it can be easily configured for real-time applications including, for example, ATR (automatic target recognition) of non-cooperative moving targets, and for some other applications where the image quality is of the major concern but not the computational time including, for example, for the development and maintenance of low observable aircrafts. Numerical and experimental results have shown that AUTOCLEAN is a very robust autofocus tool for ISAR imaging.

  17. Expanded envelope concepts for aircraft control-element failure detection and identification

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.; Hsu, John Y.

    1988-01-01

    The purpose of this effort was to develop and demonstrate concepts for expanding the envelope of failure detection and isolation (FDI) algorithms for aircraft-path failures. An algorithm which uses analytic-redundancy in the form of aerodynamic force and moment balance equations was used. Because aircraft-path FDI uses analytical models, there is a tradeoff between accuracy and the ability to detect and isolate failures. For single flight condition operation, design and analysis methods are developed to deal with this robustness problem. When the departure from the single flight condition is significant, algorithm adaptation is necessary. Adaptation requirements for the residual generation portion of the FDI algorithm are interpreted as the need for accurate, large-motion aero-models, over a broad range of velocity and altitude conditions. For the decision-making part of the algorithm, adaptation may require modifications to filtering operations, thresholds, and projection vectors that define the various hypothesis tests performed in the decision mechanism. Methods of obtaining and evaluating adequate residual generation and decision-making designs have been developed. The application of the residual generation ideas to a high-performance fighter is demonstrated by developing adaptive residuals for the AFTI-F-16 and simulating their behavior under a variety of maneuvers using the results of a NASA F-16 simulation.

  18. Framework for a space shuttle main engine health monitoring system

    NASA Technical Reports Server (NTRS)

    Hawman, Michael W.; Galinaitis, William S.; Tulpule, Sharayu; Mattedi, Anita K.; Kamenetz, Jeffrey

    1990-01-01

    A framework developed for a health management system (HMS) which is directed at improving the safety of operation of the Space Shuttle Main Engine (SSME) is summarized. An emphasis was placed on near term technology through requirements to use existing SSME instrumentation and to demonstrate the HMS during SSME ground tests within five years. The HMS framework was developed through an analysis of SSME failure modes, fault detection algorithms, sensor technologies, and hardware architectures. A key feature of the HMS framework design is that a clear path from the ground test system to a flight HMS was maintained. Fault detection techniques based on time series, nonlinear regression, and clustering algorithms were developed and demonstrated on data from SSME ground test failures. The fault detection algorithms exhibited 100 percent detection of faults, had an extremely low false alarm rate, and were robust to sensor loss. These algorithms were incorporated into a hierarchical decision making strategy for overall assessment of SSME health. A preliminary design for a hardware architecture capable of supporting real time operation of the HMS functions was developed. Utilizing modular, commercial off-the-shelf components produced a reliable low cost design with the flexibility to incorporate advances in algorithm and sensor technology as they become available.

  19. Research in robust control for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1994-01-01

    The research during the third reporting period focused on fixed order robust control design for hypersonic vehicles. A new technique was developed to synthesize fixed order H(sub infinity) controllers. A controller canonical form is imposed on the compensator structure and a homotopy algorithm is employed to perform the controller design. Various reduced order controllers are designed for a simplified version of the hypersonic vehicle model used in our previous studies to demonstrate the capabilities of the code. However, further work is needed to investigate the issue of numerical ill-conditioning for large order systems and to make the numerical approach more reliable.

  20. Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing.

    PubMed

    Estrada, Rolando; Tomasi, Carlo; Cabrera, Michelle T; Wallace, David K; Freedman, Sharon F; Farsiu, Sina

    2011-10-01

    Indirect ophthalmoscopy (IO) is the standard of care for evaluation of the neonatal retina. When recorded on video from a head-mounted camera, IO images have low quality and narrow Field of View (FOV). We present an image fusion methodology for converting a video IO recording into a single, high quality, wide-FOV mosaic that seamlessly blends the best frames in the video. To this end, we have developed fast and robust algorithms for automatic evaluation of video quality, artifact detection and removal, vessel mapping, registration, and multi-frame image fusion. Our experiments show the effectiveness of the proposed methods.

  1. Robust and Cost-Efficient Communication Based on SNMP in Mobile Networks

    NASA Astrophysics Data System (ADS)

    Ryu, Sang-Hoon; Baik, Doo-Kwon

    A main challenge in the design of this mobile network is the development of dynamic routing protocols that can efficiently find routes between two communicating nodes. Multimedia streaming services are receiving considerable interest in the mobile network business. An entire mobile network may change its point of attachment to the Internet. The mobile network is operated by a basic specification to support network mobility called Network Mobility (NEMO) Basic Support. However, NEMO basic Support mechanism has some problem in continuous communication. In this paper, we propose robust and cost-efficient algorithm. And we simulate proposed method and conclude some remarks.

  2. Robust neural network with applications to credit portfolio data analysis.

    PubMed

    Feng, Yijia; Li, Runze; Sudjianto, Agus; Zhang, Yiyun

    2010-01-01

    In this article, we study nonparametric conditional quantile estimation via neural network structure. We proposed an estimation method that combines quantile regression and neural network (robust neural network, RNN). It provides good smoothing performance in the presence of outliers and can be used to construct prediction bands. A Majorization-Minimization (MM) algorithm was developed for optimization. Monte Carlo simulation study is conducted to assess the performance of RNN. Comparison with other nonparametric regression methods (e.g., local linear regression and regression splines) in real data application demonstrate the advantage of the newly proposed procedure.

  3. Automatic computation of 2D cardiac measurements from B-mode echocardiography

    NASA Astrophysics Data System (ADS)

    Park, JinHyeong; Feng, Shaolei; Zhou, S. Kevin

    2012-03-01

    We propose a robust and fully automatic algorithm which computes the 2D echocardiography measurements recommended by America Society of Echocardiography. The algorithm employs knowledge-based imaging technologies which can learn the expert's knowledge from the training images and expert's annotation. Based on the models constructed from the learning stage, the algorithm searches initial location of the landmark points for the measurements by utilizing heart structure of left ventricle including mitral valve aortic valve. It employs the pseudo anatomic M-mode image generated by accumulating the line images in 2D parasternal long axis view along the time to refine the measurement landmark points. The experiment results with large volume of data show that the algorithm runs fast and is robust comparable to expert.

  4. Robust and unobtrusive algorithm based on position independence for step detection

    NASA Astrophysics Data System (ADS)

    Qiu, KeCheng; Li, MengYang; Luo, YiHan

    2018-04-01

    Running is becoming one of the most popular exercises among the people, monitoring steps can help users better understand their running process and improve exercise efficiency. In this paper, we design and implement a robust and unobtrusive algorithm based on position independence for step detection under real environment. It applies Butterworth filter to suppress high frequency interference and then employs the projection based on mathematics to transform system to solve the problem of unknown position of smartphone. Finally, using sliding window to suppress the false peak. The algorithm was tested for eight participants on the Android 7.0 platform. In our experiments, the results show that the proposed algorithm can achieve desired effect in spite of device pose.

  5. Fast Compressive Tracking.

    PubMed

    Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan

    2014-10-01

    It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.

  6. Real-time detection of small and dim moving objects in IR video sequences using a robust background estimator and a noise-adaptive double thresholding

    NASA Astrophysics Data System (ADS)

    Zingoni, Andrea; Diani, Marco; Corsini, Giovanni

    2016-10-01

    We developed an algorithm for automatically detecting small and poorly contrasted (dim) moving objects in real-time, within video sequences acquired through a steady infrared camera. The algorithm is suitable for different situations since it is independent of the background characteristics and of changes in illumination. Unlike other solutions, small objects of any size (up to single-pixel), either hotter or colder than the background, can be successfully detected. The algorithm is based on accurately estimating the background at the pixel level and then rejecting it. A novel approach permits background estimation to be robust to changes in the scene illumination and to noise, and not to be biased by the transit of moving objects. Care was taken in avoiding computationally costly procedures, in order to ensure the real-time performance even using low-cost hardware. The algorithm was tested on a dataset of 12 video sequences acquired in different conditions, providing promising results in terms of detection rate and false alarm rate, independently of background and objects characteristics. In addition, the detection map was produced frame by frame in real-time, using cheap commercial hardware. The algorithm is particularly suitable for applications in the fields of video-surveillance and computer vision. Its reliability and speed permit it to be used also in critical situations, like in search and rescue, defence and disaster monitoring.

  7. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults

    PubMed Central

    Verschueren, Sabine M. P.; Degens, Hans; Morse, Christopher I.; Onambélé, Gladys L.

    2017-01-01

    Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual’s physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry. PMID:29155839

  8. Optimization Methods in Sherpa

    NASA Astrophysics Data System (ADS)

    Siemiginowska, Aneta; Nguyen, Dan T.; Doe, Stephen M.; Refsdal, Brian L.

    2009-09-01

    Forward fitting is a standard technique used to model X-ray data. A statistic, usually assumed weighted chi^2 or Poisson likelihood (e.g. Cash), is minimized in the fitting process to obtain a set of the best model parameters. Astronomical models often have complex forms with many parameters that can be correlated (e.g. an absorbed power law). Minimization is not trivial in such setting, as the statistical parameter space becomes multimodal and finding the global minimum is hard. Standard minimization algorithms can be found in many libraries of scientific functions, but they are usually focused on specific functions. However, Sherpa designed as general fitting and modeling application requires very robust optimization methods that can be applied to variety of astronomical data (X-ray spectra, images, timing, optical data etc.). We developed several optimization algorithms in Sherpa targeting a wide range of minimization problems. Two local minimization methods were built: Levenberg-Marquardt algorithm was obtained from MINPACK subroutine LMDIF and modified to achieve the required robustness; and Nelder-Mead simplex method has been implemented in-house based on variations of the algorithm described in the literature. A global search Monte-Carlo method has been implemented following a differential evolution algorithm presented by Storn and Price (1997). We will present the methods in Sherpa and discuss their usage cases. We will focus on the application to Chandra data showing both 1D and 2D examples. This work is supported by NASA contract NAS8-03060 (CXC).

  9. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults.

    PubMed

    Wullems, Jorgen A; Verschueren, Sabine M P; Degens, Hans; Morse, Christopher I; Onambélé, Gladys L

    2017-01-01

    Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual's physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry.

  10. Development of a robust MRI fiducial system for automated fusion of MR-US abdominal images.

    PubMed

    Favazza, Christopher P; Gorny, Krzysztof R; Callstrom, Matthew R; Kurup, Anil N; Washburn, Michael; Trester, Pamela S; Fowler, Charles L; Hangiandreou, Nicholas J

    2018-05-21

    We present the development of a two-component magnetic resonance (MR) fiducial system, that is, a fiducial marker device combined with an auto-segmentation algorithm, designed to be paired with existing ultrasound probe tracking and image fusion technology to automatically fuse MR and ultrasound (US) images. The fiducial device consisted of four ~6.4 mL cylindrical wells filled with 1 g/L copper sulfate solution. The algorithm was designed to automatically segment the device in clinical abdominal MR images. The algorithm's detection rate and repeatability were investigated through a phantom study and in human volunteers. The detection rate was 100% in all phantom and human images. The center-of-mass of the fiducial device was robustly identified with maximum variations of 2.9 mm in position and 0.9° in angular orientation. In volunteer images, average differences between algorithm-measured inter-marker spacings and actual separation distances were 0.53 ± 0.36 mm. "Proof-of-concept" automatic MR-US fusions were conducted with sets of images from both a phantom and volunteer using a commercial prototype system, which was built based on the above findings. Image fusion accuracy was measured to be within 5 mm for breath-hold scanning. These results demonstrate the capability of this approach to automatically fuse US and MR images acquired across a wide range of clinical abdominal pulse sequences. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. Advances in algorithm fusion for automated sea mine detection and classification

    NASA Astrophysics Data System (ADS)

    Dobeck, Gerald J.; Cobb, J. Tory

    2002-11-01

    Along with other sensors, the Navy uses high-resolution sonar to detect and classify sea mines in mine-hunting operations. Scientists and engineers have devoted substantial effort to the development of automated detection and classification (D/C) algorithms for these high-resolution systems. Several factors spurred these efforts, including: (1) aids for operators to reduce work overload; (2) more optimal use of all available data; and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and manmade clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms (Algorithm Fusion) have been studied. To date, the results have been remarkable, including reliable robustness to new environments. In this paper a brief history of existing Algorithm Fusion technology and some techniques recently used to improve performance are presented. An exploration of new developments is presented in conclusion.

  12. Advanced synthetic image generation models and their application to multi/hyperspectral algorithm development

    NASA Astrophysics Data System (ADS)

    Schott, John R.; Brown, Scott D.; Raqueno, Rolando V.; Gross, Harry N.; Robinson, Gary

    1999-01-01

    The need for robust image data sets for algorithm development and testing has prompted the consideration of synthetic imagery as a supplement to real imagery. The unique ability of synthetic image generation (SIG) tools to supply per-pixel truth allows algorithm writers to test difficult scenarios that would require expensive collection and instrumentation efforts. In addition, SIG data products can supply the user with `actual' truth measurements of the entire image area that are not subject to measurement error thereby allowing the user to more accurately evaluate the performance of their algorithm. Advanced algorithms place a high demand on synthetic imagery to reproduce both the spectro-radiometric and spatial character observed in real imagery. This paper describes a synthetic image generation model that strives to include the radiometric processes that affect spectral image formation and capture. In particular, it addresses recent advances in SIG modeling that attempt to capture the spatial/spectral correlation inherent in real images. The model is capable of simultaneously generating imagery from a wide range of sensors allowing it to generate daylight, low-light-level and thermal image inputs for broadband, multi- and hyper-spectral exploitation algorithms.

  13. Acceptance test of a commercially available software for automatic image registration of computed tomography (CT), magnetic resonance imaging (MRI) and 99mTc-methoxyisobutylisonitrile (MIBI) single-photon emission computed tomography (SPECT) brain images.

    PubMed

    Loi, Gianfranco; Dominietto, Marco; Manfredda, Irene; Mones, Eleonora; Carriero, Alessandro; Inglese, Eugenio; Krengli, Marco; Brambilla, Marco

    2008-09-01

    This note describes a method to characterize the performances of image fusion software (Syntegra) with respect to accuracy and robustness. Computed tomography (CT), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) studies were acquired from two phantoms and 10 patients. Image registration was performed independently by two couples composed of one radiotherapist and one physicist by means of superposition of anatomic landmarks. Each couple performed jointly and saved the registration. The two solutions were averaged to obtain the gold standard registration. A new set of estimators was defined to identify translation and rotation errors in the coordinate axes, independently from point position in image field of view (FOV). Algorithms evaluated were local correlation (LC) for CT-MRI, normalized mutual information (MI) for CT-MRI, and CT-SPECT registrations. To evaluate accuracy, estimator values were compared to limiting values for the algorithms employed, both in phantoms and in patients. To evaluate robustness, different alignments between images taken from a sample patient were produced and registration errors determined. LC algorithm resulted accurate in CT-MRI registrations in phantoms, but exceeded limiting values in 3 of 10 patients. MI algorithm resulted accurate in CT-MRI and CT-SPECT registrations in phantoms; limiting values were exceeded in one case in CT-MRI and never reached in CT-SPECT registrations. Thus, the evaluation of robustness was restricted to the algorithm of MI both for CT-MRI and CT-SPECT registrations. The algorithm of MI proved to be robust: limiting values were not exceeded with translation perturbations up to 2.5 cm, rotation perturbations up to 10 degrees and roto-translational perturbation up to 3 cm and 5 degrees.

  14. Experimental Validation of Advanced Dispersed Fringe Sensing (ADFS) Algorithm Using Advanced Wavefront Sensing and Correction Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Shi, Fang; Sigrist, Norbert; Seo, Byoung-Joon; Tang, Hong; Bikkannavar, Siddarayappa; Basinger, Scott; Lay, Oliver

    2012-01-01

    Large aperture telescope commonly features segment mirrors and a coarse phasing step is needed to bring these individual segments into the fine phasing capture range. Dispersed Fringe Sensing (DFS) is a powerful coarse phasing technique and its alteration is currently being used for JWST.An Advanced Dispersed Fringe Sensing (ADFS) algorithm is recently developed to improve the performance and robustness of previous DFS algorithms with better accuracy and unique solution. The first part of the paper introduces the basic ideas and the essential features of the ADFS algorithm and presents the some algorithm sensitivity study results. The second part of the paper describes the full details of algorithm validation process through the advanced wavefront sensing and correction testbed (AWCT): first, the optimization of the DFS hardware of AWCT to ensure the data accuracy and reliability is illustrated. Then, a few carefully designed algorithm validation experiments are implemented, and the corresponding data analysis results are shown. Finally the fiducial calibration using Range-Gate-Metrology technique is carried out and a <10nm or <1% algorithm accuracy is demonstrated.

  15. Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels

    NASA Astrophysics Data System (ADS)

    Ruan, Liangzhong; Dai, Wenhan; Win, Moe Z.

    2018-05-01

    Quantum entanglement serves as a valuable resource for many important quantum operations. A pair of entangled qubits can be shared between two agents by first preparing a maximally entangled qubit pair at one agent, and then sending one of the qubits to the other agent through a quantum channel. In this process, the deterioration of entanglement is inevitable since the noise inherent in the channel contaminates the qubit. To address this challenge, various quantum entanglement distillation (QED) algorithms have been developed. Among them, recurrence algorithms have advantages in terms of implementability and robustness. However, the efficiency of recurrence QED algorithms has not been investigated thoroughly in the literature. This paper puts forth two recurrence QED algorithms that adapt to the quantum channel to tackle the efficiency issue. The proposed algorithms have guaranteed convergence for quantum channels with two Kraus operators, which include phase-damping and amplitude-damping channels. Analytical results show that the convergence speed of these algorithms is improved from linear to quadratic and one of the algorithms achieves the optimal speed. Numerical results confirm that the proposed algorithms significantly improve the efficiency of QED.

  16. Selective robust optimization: A new intensity-modulated proton therapy optimization strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yupeng; Niemela, Perttu; Siljamaki, Sami

    2015-08-15

    Purpose: To develop a new robust optimization strategy for intensity-modulated proton therapy as an important step in translating robust proton treatment planning from research to clinical applications. Methods: In selective robust optimization, a worst-case-based robust optimization algorithm is extended, and terms of the objective function are selectively computed from either the worst-case dose or the nominal dose. Two lung cancer cases and one head and neck cancer case were used to demonstrate the practical significance of the proposed robust planning strategy. The lung cancer cases had minimal tumor motion less than 5 mm, and, for the demonstration of the methodology,more » are assumed to be static. Results: Selective robust optimization achieved robust clinical target volume (CTV) coverage and at the same time increased nominal planning target volume coverage to 95.8%, compared to the 84.6% coverage achieved with CTV-based robust optimization in one of the lung cases. In the other lung case, the maximum dose in selective robust optimization was lowered from a dose of 131.3% in the CTV-based robust optimization to 113.6%. Selective robust optimization provided robust CTV coverage in the head and neck case, and at the same time improved controls over isodose distribution so that clinical requirements may be readily met. Conclusions: Selective robust optimization may provide the flexibility and capability necessary for meeting various clinical requirements in addition to achieving the required plan robustness in practical proton treatment planning settings.« less

  17. Content-based audio authentication using a hierarchical patchwork watermark embedding

    NASA Astrophysics Data System (ADS)

    Gulbis, Michael; Müller, Erika

    2010-05-01

    Content-based audio authentication watermarking techniques extract perceptual relevant audio features, which are robustly embedded into the audio file to protect. Manipulations of the audio file are detected on the basis of changes between the original embedded feature information and the anew extracted features during verification. The main challenges of content-based watermarking are on the one hand the identification of a suitable audio feature to distinguish between content preserving and malicious manipulations. On the other hand the development of a watermark, which is robust against content preserving modifications and able to carry the whole authentication information. The payload requirements are significantly higher compared to transaction watermarking or copyright protection. Finally, the watermark embedding should not influence the feature extraction to avoid false alarms. Current systems still lack a sufficient alignment of watermarking algorithm and feature extraction. In previous work we developed a content-based audio authentication watermarking approach. The feature is based on changes in DCT domain over time. A patchwork algorithm based watermark was used to embed multiple one bit watermarks. The embedding process uses the feature domain without inflicting distortions to the feature. The watermark payload is limited by the feature extraction, more precisely the critical bands. The payload is inverse proportional to segment duration of the audio file segmentation. Transparency behavior was analyzed in dependence of segment size and thus the watermark payload. At a segment duration of about 20 ms the transparency shows an optimum (measured in units of Objective Difference Grade). Transparency and/or robustness are fast decreased for working points beyond this area. Therefore, these working points are unsuitable to gain further payload, needed for the embedding of the whole authentication information. In this paper we present a hierarchical extension of the watermark method to overcome the limitations given by the feature extraction. The approach is a recursive application of the patchwork algorithm onto its own patches, with a modified patch selection to ensure a better signal to noise ratio for the watermark embedding. The robustness evaluation was done by compression (mp3, ogg, aac), normalization, and several attacks of the stirmark benchmark for audio suite. Compared on the base of same payload and transparency the hierarchical approach shows improved robustness.

  18. Machine Learning Aided Efficient and Robust Algorithms for Spectrum Knowledge Acquisition in Wideband Autonomous Cognitive Radios

    DTIC Science & Technology

    2016-08-01

    Kirtland AFB, NM 87117-5776 AFRL /RVSW 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -RV-PS-TR-2016-0096 12. DISTRIBUTION / AVAILABILITY STATEMENT...22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSW/Khanh Pham 1 cy ... AFRL -RV-PS- TR-2016-0096 AFRL -RV-PS- TR-2016-0096 MACHINE LEARNING AIDED EFFICIENT AND ROBUST ALGORITHMS FOR

  19. Robust input design for nonlinear dynamic modeling of AUV.

    PubMed

    Nouri, Nowrouz Mohammad; Valadi, Mehrdad

    2017-09-01

    Input design has a dominant role in developing the dynamic model of autonomous underwater vehicles (AUVs) through system identification. Optimal input design is the process of generating informative inputs that can be used to generate the good quality dynamic model of AUVs. In a problem with optimal input design, the desired input signal depends on the unknown system which is intended to be identified. In this paper, the input design approach which is robust to uncertainties in model parameters is used. The Bayesian robust design strategy is applied to design input signals for dynamic modeling of AUVs. The employed approach can design multiple inputs and apply constraints on an AUV system's inputs and outputs. Particle swarm optimization (PSO) is employed to solve the constraint robust optimization problem. The presented algorithm is used for designing the input signals for an AUV, and the estimate obtained by robust input design is compared with that of the optimal input design. According to the results, proposed input design can satisfy both robustness of constraints and optimality. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. LSAH: a fast and efficient local surface feature for point cloud registration

    NASA Astrophysics Data System (ADS)

    Lu, Rongrong; Zhu, Feng; Wu, Qingxiao; Kong, Yanzi

    2018-04-01

    Point cloud registration is a fundamental task in high level three dimensional applications. Noise, uneven point density and varying point cloud resolutions are the three main challenges for point cloud registration. In this paper, we design a robust and compact local surface descriptor called Local Surface Angles Histogram (LSAH) and propose an effectively coarse to fine algorithm for point cloud registration. The LSAH descriptor is formed by concatenating five normalized sub-histograms into one histogram. The five sub-histograms are created by accumulating a different type of angle from a local surface patch respectively. The experimental results show that our LSAH is more robust to uneven point density and point cloud resolutions than four state-of-the-art local descriptors in terms of feature matching. Moreover, we tested our LSAH based coarse to fine algorithm for point cloud registration. The experimental results demonstrate that our algorithm is robust and efficient as well.

  1. Robust non-rigid registration algorithm based on local affine registration

    NASA Astrophysics Data System (ADS)

    Wu, Liyang; Xiong, Lei; Du, Shaoyi; Bi, Duyan; Fang, Ting; Liu, Kun; Wu, Dongpeng

    2018-04-01

    Aiming at the problem that the traditional point set non-rigid registration algorithm has low precision and slow convergence speed for complex local deformation data, this paper proposes a robust non-rigid registration algorithm based on local affine registration. The algorithm uses a hierarchical iterative method to complete the point set non-rigid registration from coarse to fine. In each iteration, the sub data point sets and sub model point sets are divided and the shape control points of each sub point set are updated. Then we use the control point guided affine ICP algorithm to solve the local affine transformation between the corresponding sub point sets. Next, the local affine transformation obtained by the previous step is used to update the sub data point sets and their shape control point sets. When the algorithm reaches the maximum iteration layer K, the loop ends and outputs the updated sub data point sets. Experimental results demonstrate that the accuracy and convergence of our algorithm are greatly improved compared with the traditional point set non-rigid registration algorithms.

  2. Development of a novel constellation based landmark detection algorithm

    NASA Astrophysics Data System (ADS)

    Ghayoor, Ali; Vaidya, Jatin G.; Johnson, Hans J.

    2013-03-01

    Anatomical landmarks such as the anterior commissure (AC) and posterior commissure (PC) are commonly used by researchers for co-registration of images. In this paper, we present a novel, automated approach for landmark detection that combines morphometric constraining and statistical shape models to provide accurate estimation of landmark points. This method is made robust to large rotations in initial head orientation by extracting extra information of the eye centers using a radial Hough transform and exploiting the centroid of head mass (CM) using a novel estimation approach. To evaluate the effectiveness of this method, the algorithm is trained on a set of 20 images with manually selected landmarks, and a test dataset is used to compare the automatically detected against the manually detected landmark locations of the AC, PC, midbrain-pons junction (MPJ), and fourth ventricle notch (VN4). The results show that the proposed method is accurate as the average error between the automatically and manually labeled landmark points is less than 1 mm. Also, the algorithm is highly robust as it was successfully run on a large dataset that included different kinds of images with various orientation, spacing, and origin.

  3. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  4. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, Brian; Scherzinger, William

    2017-01-19

    Here, a new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, andmore » compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.« less

  5. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, Brian T.; Scherzinger, William M.

    2017-01-19

    A new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and comparedmore » to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. As a result through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.« less

  6. Implementation of an algorithm for cylindrical object identification using range data

    NASA Technical Reports Server (NTRS)

    Bozeman, Sylvia T.; Martin, Benjamin J.

    1989-01-01

    One of the problems in 3-D object identification and localization is addressed. In robotic and navigation applications the vision system must be able to distinguish cylindrical or spherical objects as well as those of other geometric shapes. An algorithm was developed to identify cylindrical objects in an image when range data is used. The algorithm incorporates the Hough transform for line detection using edge points which emerge from a Sobel mask. Slices of the data are examined to locate arcs of circles using the normal equations of an over-determined linear system. Current efforts are devoted to testing the computer implementation of the algorithm. Refinements are expected to continue in order to accommodate cylinders in various positions. A technique is sought which is robust in the presence of noise and partial occlusions.

  7. Image stack alignment in full-field X-ray absorption spectroscopy using SIFT_PyOCL.

    PubMed

    Paleo, Pierre; Pouyet, Emeline; Kieffer, Jérôme

    2014-03-01

    Full-field X-ray absorption spectroscopy experiments allow the acquisition of millions of spectra within minutes. However, the construction of the hyperspectral image requires an image alignment procedure with sub-pixel precision. While the image correlation algorithm has originally been used for image re-alignment using translations, the Scale Invariant Feature Transform (SIFT) algorithm (which is by design robust versus rotation, illumination change, translation and scaling) presents an additional advantage: the alignment can be limited to a region of interest of any arbitrary shape. In this context, a Python module, named SIFT_PyOCL, has been developed. It implements a parallel version of the SIFT algorithm in OpenCL, providing high-speed image registration and alignment both on processors and graphics cards. The performance of the algorithm allows online processing of large datasets.

  8. Statistical reconstruction for cosmic ray muon tomography.

    PubMed

    Schultz, Larry J; Blanpied, Gary S; Borozdin, Konstantin N; Fraser, Andrew M; Hengartner, Nicolas W; Klimenko, Alexei V; Morris, Christopher L; Orum, Chris; Sossong, Michael J

    2007-08-01

    Highly penetrating cosmic ray muons constantly shower the earth at a rate of about 1 muon per cm2 per minute. We have developed a technique which exploits the multiple Coulomb scattering of these particles to perform nondestructive inspection without the use of artificial radiation. In prior work [1]-[3], we have described heuristic methods for processing muon data to create reconstructed images. In this paper, we present a maximum likelihood/expectation maximization tomographic reconstruction algorithm designed for the technique. This algorithm borrows much from techniques used in medical imaging, particularly emission tomography, but the statistics of muon scattering dictates differences. We describe the statistical model for multiple scattering, derive the reconstruction algorithm, and present simulated examples. We also propose methods to improve the robustness of the algorithm to experimental errors and events departing from the statistical model.

  9. Pricing and location decisions in multi-objective facility location problem with M/M/m/k queuing systems

    NASA Astrophysics Data System (ADS)

    Tavakkoli-Moghaddam, Reza; Vazifeh-Noshafagh, Samira; Taleizadeh, Ata Allah; Hajipour, Vahid; Mahmoudi, Amin

    2017-01-01

    This article presents a new multi-objective model for a facility location problem with congestion and pricing policies. This model considers situations in which immobile service facilities are congested by a stochastic demand following M/M/m/k queues. The presented model belongs to the class of mixed-integer nonlinear programming models and NP-hard problems. To solve such a hard model, a new multi-objective optimization algorithm based on a vibration theory, namely multi-objective vibration damping optimization (MOVDO), is developed. In order to tune the algorithms parameters, the Taguchi approach using a response metric is implemented. The computational results are compared with those of the non-dominated ranking genetic algorithm and non-dominated sorting genetic algorithm. The outputs demonstrate the robustness of the proposed MOVDO in large-sized problems.

  10. Accelerating global optimization of aerodynamic shapes using a new surrogate-assisted parallel genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mehdi; Jahangirian, Alireza

    2017-12-01

    An efficient strategy is presented for global shape optimization of wing sections with a parallel genetic algorithm. Several computational techniques are applied to increase the convergence rate and the efficiency of the method. A variable fidelity computational evaluation method is applied in which the expensive Navier-Stokes flow solver is complemented by an inexpensive multi-layer perceptron neural network for the objective function evaluations. A population dispersion method that consists of two phases, of exploration and refinement, is developed to improve the convergence rate and the robustness of the genetic algorithm. Owing to the nature of the optimization problem, a parallel framework based on the master/slave approach is used. The outcomes indicate that the method is able to find the global optimum with significantly lower computational time in comparison to the conventional genetic algorithm.

  11. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters

    PubMed Central

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-01-01

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046

  12. Robust Deep Semantics for Language Understanding

    DTIC Science & Technology

    focus on five areas: deep learning, textual inferential relations, relation and event extraction by distant supervision , semantic parsing and...ontology expansion, and coreference resolution. As time went by, the program focus converged towards emphasizing technologies for knowledge base...natural logic methods for text understanding, improved mention coreference algorithms, and the further development of multilingual tools in CoreNLP.

  13. Lane Detection on the iPhone

    NASA Astrophysics Data System (ADS)

    Ren, Feixiang; Huang, Jinsheng; Terauchi, Mutsuhiro; Jiang, Ruyi; Klette, Reinhard

    A robust and efficient lane detection system is an essential component of Lane Departure Warning Systems, which are commonly used in many vision-based Driver Assistance Systems (DAS) in intelligent transportation. Various computation platforms have been proposed in the past few years for the implementation of driver assistance systems (e.g., PC, laptop, integrated chips, PlayStation, and so on). In this paper, we propose a new platform for the implementation of lane detection, which is based on a mobile phone (the iPhone). Due to physical limitations of the iPhone w.r.t. memory and computing power, a simple and efficient lane detection algorithm using a Hough transform is developed and implemented on the iPhone, as existing algorithms developed based on the PC platform are not suitable for mobile phone devices (currently). Experiments of the lane detection algorithm are made both on PC and on iPhone.

  14. Development of a combined feed forward-feedback system for an electron Linac

    NASA Astrophysics Data System (ADS)

    Meier, E.; Biedron, S. G.; LeBlanc, G.; Morgan, M. J.; Wu, J.

    2009-10-01

    This paper describes the results of an advanced control algorithm for the stabilization of electron beam energy in a Linac. The approach combines a conventional Proportional-Integral (PI) controller with a neural network (NNET) feed forward algorithm; it utilizes the robustness of PI control and the ability of a feed forward system in order to exert control over a wider range of frequencies. The NNET is trained to recognize jitter occurring in the phase and voltage of one of the klystrons, based on a record of these parameters, and predicts future energy deviations. A systematic approach is developed to determine the optimal NNET parameters that are then applied to the Australian Synchrotron Linac. The system's capability to fully cancel multi-frequency jitter is demonstrated. The NNET system is then augmented with the PI algorithm, and further jitter attenuation is achieved when the NNET is not operating optimally.

  15. Symbiotic organism search algorithm for simulation of J- V characteristics and optimizing internal parameters of DSSC developed using electrospun TiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Vinoth, S.; Kanimozhi, G.; Kumar, Harish; Srinadhu, E. S.; Satyanarayana, N.

    2017-12-01

    In the present investigation, the recently developed, simple, robust, and powerful metaheuristic symbiotic organism search (SOS) algorithm was used for simulation of J- V characteristics and optimizing the internal parameters of the dye-sensitized solar cells (DSSCs) fabricated using electrospun 1-D mesoporous TiO2 nanofibers as photoanode. The efficiency ( η = 5.80 %) of the DSSC made up of TiO2 nanofibers as photoanode is found to be ˜ 21.59% higher compared to the efficiency ( η = 4.77 %) of the DSSC made up of TiO2 nanoparticles as photoanode. The observed high efficiency can be attributed to high dye loading as well as high electron transport in the mesoporous 1-D TiO2 nanofibers. Further, the validity and advantage of SOS algorithm are verified by simulating J- V characteristics of DSSC with Lambert-W function.

  16. DALMATIAN: An Algorithm for Automatic Cell Detection and Counting in 3D.

    PubMed

    Shuvaev, Sergey A; Lazutkin, Alexander A; Kedrov, Alexander V; Anokhin, Konstantin V; Enikolopov, Grigori N; Koulakov, Alexei A

    2017-01-01

    Current 3D imaging methods, including optical projection tomography, light-sheet microscopy, block-face imaging, and serial two photon tomography enable visualization of large samples of biological tissue. Large volumes of data obtained at high resolution require development of automatic image processing techniques, such as algorithms for automatic cell detection or, more generally, point-like object detection. Current approaches to automated cell detection suffer from difficulties originating from detection of particular cell types, cell populations of different brightness, non-uniformly stained, and overlapping cells. In this study, we present a set of algorithms for robust automatic cell detection in 3D. Our algorithms are suitable for, but not limited to, whole brain regions and individual brain sections. We used watershed procedure to split regional maxima representing overlapping cells. We developed a bootstrap Gaussian fit procedure to evaluate the statistical significance of detected cells. We compared cell detection quality of our algorithm and other software using 42 samples, representing 6 staining and imaging techniques. The results provided by our algorithm matched manual expert quantification with signal-to-noise dependent confidence, including samples with cells of different brightness, non-uniformly stained, and overlapping cells for whole brain regions and individual tissue sections. Our algorithm provided the best cell detection quality among tested free and commercial software.

  17. Robust control of systems with real parameter uncertainty and unmodelled dynamics

    NASA Technical Reports Server (NTRS)

    Chang, Bor-Chin; Fischl, Robert

    1991-01-01

    During this research period we have made significant progress in the four proposed areas: (1) design of robust controllers via H infinity optimization; (2) design of robust controllers via mixed H2/H infinity optimization; (3) M-delta structure and robust stability analysis for structured uncertainties; and (4) a study on controllability and observability of perturbed plant. It is well known now that the two-Riccati-equation solution to the H infinity control problem can be used to characterize all possible stabilizing optimal or suboptimal H infinity controllers if the optimal H infinity norm or gamma, an upper bound of a suboptimal H infinity norm, is given. In this research, we discovered some useful properties of these H infinity Riccati solutions. Among them, the most prominent one is that the spectral radius of the product of these two Riccati solutions is a continuous, nonincreasing, convex function of gamma in the domain of interest. Based on these properties, quadratically convergent algorithms are developed to compute the optimal H infinity norm. We also set up a detailed procedure for applying the H infinity theory to robust control systems design. The desire to design controllers with H infinity robustness but H(exp 2) performance has recently resulted in mixed H(exp 2) and H infinity control problem formulation. The mixed H(exp 2)/H infinity problem have drawn the attention of many investigators. However, solution is only available for special cases of this problem. We formulated a relatively realistic control problem with H(exp 2) performance index and H infinity robustness constraint into a more general mixed H(exp 2)/H infinity problem. No optimal solution yet is available for this more general mixed H(exp 2)/H infinity problem. Although the optimal solution for this mixed H(exp 2)/H infinity control has not yet been found, we proposed a design approach which can be used through proper choice of the available design parameters to influence both robustness and performance. For a large class of linear time-invariant systems with real parametric perturbations, the coefficient vector of the characteristic polynomial is a multilinear function of the real parameter vector. Based on this multilinear mapping relationship together with the recent developments for polytopic polynomials and parameter domain partition technique, we proposed an iterative algorithm for coupling the real structured singular value.

  18. Power system security enhancement through direct non-disruptive load control

    NASA Astrophysics Data System (ADS)

    Ramanathan, Badri Narayanan

    The transition to a competitive market structure raises significant concerns regarding reliability of the power grid. A need to build tools for security assessment that produce operating limit boundaries for both static and dynamic contingencies is recognized. Besides, an increase in overall uncertainty in operating conditions makes corrective actions at times ineffective leaving the system vulnerable to instability. The tools that are in place for stability enhancement are mostly corrective and suffer from lack of robustness to operating condition changes. They often pose serious coordination challenges. With deregulation, there have also been ownership and responsibility issues associated with stability controls. However, the changing utility business model and the developments in enabling technologies such as two-way communication, metering, and control open up several new possibilities for power system security enhancement. This research proposes preventive modulation of selected loads through direct control for power system security enhancement. Two main contributions of this research are the following: development of an analysis framework and two conceptually different analysis approaches for load modulation to enhance oscillatory stability, and the development and study of algorithms for real-time modulation of thermostatic loads. The underlying analysis framework is based on the Structured Singular Value (SSV or mu) theory. Based on the above framework, two fundamentally different approaches towards analysis of the amount of load modulation for desired stability performance have been developed. Both the approaches have been tested on two different test systems: CIGRE Nordic test system and an equivalent of the Western Electric Coordinating Council test system. This research also develops algorithms for real-time modulation of thermostatic loads that use the results of the analysis. In line with some recent load management programs executed by utilities, two different algorithms based on dynamic programming are proposed for air-conditioner loads, while a decision-tree based algorithm is proposed for water-heater loads. An optimization framework has been developed employing the above algorithms. Monte Carlo simulations have been performed using this framework with the objective of studying the impact of different parameters and constraints on the effectiveness as well as the effect of control. The conclusions drawn from this research strongly advocate direct load control for stability enhancement from the perspectives of robustness and coordination, as well as economic viability and the developments towards availability of the institutional framework for load participation in providing system reliability services.

  19. The Superior Lambert Algorithm

    NASA Astrophysics Data System (ADS)

    der, G.

    2011-09-01

    Lambert algorithms are used extensively for initial orbit determination, mission planning, space debris correlation, and missile targeting, just to name a few applications. Due to the significance of the Lambert problem in Astrodynamics, Gauss, Battin, Godal, Lancaster, Gooding, Sun and many others (References 1 to 15) have provided numerous formulations leading to various analytic solutions and iterative methods. Most Lambert algorithms and their computer programs can only work within one revolution, break down or converge slowly when the transfer angle is near zero or 180 degrees, and their multi-revolution limitations are either ignored or barely addressed. Despite claims of robustness, many Lambert algorithms fail without notice, and the users seldom have a clue why. The DerAstrodynamics lambert2 algorithm, which is based on the analytic solution formulated by Sun, works for any number of revolutions and converges rapidly at any transfer angle. It provides significant capability enhancements over every other Lambert algorithm in use today. These include improved speed, accuracy, robustness, and multirevolution capabilities as well as implementation simplicity. Additionally, the lambert2 algorithm provides a powerful tool for solving the angles-only problem without artificial singularities (pointed out by Gooding in Reference 16), which involves 3 lines of sight captured by optical sensors, or systems such as the Air Force Space Surveillance System (AFSSS). The analytic solution is derived from the extended Godal’s time equation by Sun, while the iterative method of solution is that of Laguerre, modified for robustness. The Keplerian solution of a Lambert algorithm can be extended to include the non-Keplerian terms of the Vinti algorithm via a simple targeting technique (References 17 to 19). Accurate analytic non-Keplerian trajectories can be predicted for satellites and ballistic missiles, while performing at least 100 times faster in speed than most numerical integration methods.

  20. Colour based fire detection method with temporal intensity variation filtration

    NASA Astrophysics Data System (ADS)

    Trambitckii, K.; Anding, K.; Musalimov, V.; Linß, G.

    2015-02-01

    Development of video, computing technologies and computer vision gives a possibility of automatic fire detection on video information. Under that project different algorithms was implemented to find more efficient way of fire detection. In that article colour based fire detection algorithm is described. But it is not enough to use only colour information to detect fire properly. The main reason of this is that in the shooting conditions may be a lot of things having colour similar to fire. A temporary intensity variation of pixels is used to separate them from the fire. These variations are averaged over the series of several frames. This algorithm shows robust work and was realised as a computer program by using of the OpenCV library.

  1. On the Optimization of Aerospace Plane Ascent Trajectory

    NASA Astrophysics Data System (ADS)

    Al-Garni, Ahmed; Kassem, Ayman Hamdy

    A hybrid heuristic optimization technique based on genetic algorithms and particle swarm optimization has been developed and tested for trajectory optimization problems with multi-constraints and a multi-objective cost function. The technique is used to calculate control settings for two types for ascending trajectories (constant dynamic pressure and minimum-fuel-minimum-heat) for a two-dimensional model of an aerospace plane. A thorough statistical analysis is done on the hybrid technique to make comparisons with both basic genetic algorithms and particle swarm optimization techniques with respect to convergence and execution time. Genetic algorithm optimization showed better execution time performance while particle swarm optimization showed better convergence performance. The hybrid optimization technique, benefiting from both techniques, showed superior robust performance compromising convergence trends and execution time.

  2. Watermarking on 3D mesh based on spherical wavelet transform.

    PubMed

    Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng

    2004-03-01

    In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.

  3. Vehicle logo recognition using multi-level fusion model

    NASA Astrophysics Data System (ADS)

    Ming, Wei; Xiao, Jianli

    2018-04-01

    Vehicle logo recognition plays an important role in manufacturer identification and vehicle recognition. This paper proposes a new vehicle logo recognition algorithm. It has a hierarchical framework, which consists of two fusion levels. At the first level, a feature fusion model is employed to map the original features to a higher dimension feature space. In this space, the vehicle logos become more recognizable. At the second level, a weighted voting strategy is proposed to promote the accuracy and the robustness of the recognition results. To evaluate the performance of the proposed algorithm, extensive experiments are performed, which demonstrate that the proposed algorithm can achieve high recognition accuracy and work robustly.

  4. Robust local search for spacecraft operations using adaptive noise

    NASA Technical Reports Server (NTRS)

    Fukunaga, Alex S.; Rabideau, Gregg; Chien, Steve

    2004-01-01

    Randomization is a standard technique for improving the performance of local search algorithms for constraint satisfaction. However, it is well-known that local search algorithms are constraints satisfaction. However, it is well-known that local search algorithms are to the noise values selected. We investigate the use of an adaptive noise mechanism in an iterative repair-based planner/scheduler for spacecraft operations. Preliminary results indicate that adaptive noise makes the use of randomized repair moves safe and robust; that is, using adaptive noise makes it possible to consistently achieve, performance comparable with the best tuned noise setting without the need for manually tuning the noise parameter.

  5. Robust guaranteed cost tracking control of quadrotor UAV with uncertainties.

    PubMed

    Xu, Zhiwei; Nian, Xiaohong; Wang, Haibo; Chen, Yinsheng

    2017-07-01

    In this paper, a robust guaranteed cost controller (RGCC) is proposed for quadrotor UAV system with uncertainties to address set-point tracking problem. A sufficient condition of the existence for RGCC is derived by Lyapunov stability theorem. The designed RGCC not only guarantees the whole closed-loop system asymptotically stable but also makes the quadratic performance level built for the closed-loop system have an upper bound irrespective to all admissible parameter uncertainties. Then, an optimal robust guaranteed cost controller is developed to minimize the upper bound of performance level. Simulation results verify the presented control algorithms possess small overshoot and short setting time, with which the quadrotor has ability to perform set-point tracking task well. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Reliable numerical computation in an optimal output-feedback design

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.

  7. Multiple Leader Candidate and Competitive Position Allocation for Robust Formation against Member Robot Faults

    PubMed Central

    Kwon, Ji-Wook; Kim, Jin Hyo; Seo, Jiwon

    2015-01-01

    This paper proposes a Multiple Leader Candidate (MLC) structure and a Competitive Position Allocation (CPA) algorithm which can be applicable for various applications including environmental sensing. Unlike previous formation structures such as virtual-leader and actual-leader structures with position allocation including a rigid allocation and an optimization based allocation, the formation employing the proposed MLC structure and CPA algorithm is robust against the fault (or disappearance) of the member robots and reduces the entire cost. In the MLC structure, a leader of the entire system is chosen among leader candidate robots. The CPA algorithm is the decentralized position allocation algorithm that assigns the robots to the vertex of the formation via the competition of the adjacent robots. The numerical simulations and experimental results are included to show the feasibility and the performance of the multiple robot system employing the proposed MLC structure and the CPA algorithm. PMID:25954956

  8. Advanced rotorcraft control using parameter optimization

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.

  9. Novel probabilistic and distributed algorithms for guidance, control, and nonlinear estimation of large-scale multi-agent systems

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Saptarshi

    Multi-agent systems are widely used for constructing a desired formation shape, exploring an area, surveillance, coverage, and other cooperative tasks. This dissertation introduces novel algorithms in the three main areas of shape formation, distributed estimation, and attitude control of large-scale multi-agent systems. In the first part of this dissertation, we address the problem of shape formation for thousands to millions of agents. Here, we present two novel algorithms for guiding a large-scale swarm of robotic systems into a desired formation shape in a distributed and scalable manner. These probabilistic swarm guidance algorithms adopt an Eulerian framework, where the physical space is partitioned into bins and the swarm's density distribution over each bin is controlled using tunable Markov chains. In the first algorithm - Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG-IMC) - each agent determines its bin transition probabilities using a time-inhomogeneous Markov chain that is constructed in real-time using feedback from the current swarm distribution. This PSG-IMC algorithm minimizes the expected cost of the transitions required to achieve and maintain the desired formation shape, even when agents are added to or removed from the swarm. The algorithm scales well with a large number of agents and complex formation shapes, and can also be adapted for area exploration applications. In the second algorithm - Probabilistic Swarm Guidance using Optimal Transport (PSG-OT) - each agent determines its bin transition probabilities by solving an optimal transport problem, which is recast as a linear program. In the presence of perfect feedback of the current swarm distribution, this algorithm minimizes the given cost function, guarantees faster convergence, reduces the number of transitions for achieving the desired formation, and is robust to disturbances or damages to the formation. We demonstrate the effectiveness of these two proposed swarm guidance algorithms using results from numerical simulations and closed-loop hardware experiments on multiple quadrotors. In the second part of this dissertation, we present two novel discrete-time algorithms for distributed estimation, which track a single target using a network of heterogeneous sensing agents. The Distributed Bayesian Filtering (DBF) algorithm, the sensing agents combine their normalized likelihood functions using the logarithmic opinion pool and the discrete-time dynamic average consensus algorithm. Each agent's estimated likelihood function converges to an error ball centered on the joint likelihood function of the centralized multi-sensor Bayesian filtering algorithm. Using a new proof technique, the convergence, stability, and robustness properties of the DBF algorithm are rigorously characterized. The explicit bounds on the time step of the robust DBF algorithm are shown to depend on the time-scale of the target dynamics. Furthermore, the DBF algorithm for linear-Gaussian models can be cast into a modified form of the Kalman information filter. In the Bayesian Consensus Filtering (BCF) algorithm, the agents combine their estimated posterior pdfs multiple times within each time step using the logarithmic opinion pool scheme. Thus, each agent's consensual pdf minimizes the sum of Kullback-Leibler divergences with the local posterior pdfs. The performance and robust properties of these algorithms are validated using numerical simulations. In the third part of this dissertation, we present an attitude control strategy and a new nonlinear tracking controller for a spacecraft carrying a large object, such as an asteroid or a boulder. If the captured object is larger or comparable in size to the spacecraft and has significant modeling uncertainties, conventional nonlinear control laws that use exact feed-forward cancellation are not suitable because they exhibit a large resultant disturbance torque. The proposed nonlinear tracking control law guarantees global exponential convergence of tracking errors with finite-gain Lp stability in the presence of modeling uncertainties and disturbances, and reduces the resultant disturbance torque. Further, this control law permits the use of any attitude representation and its integral control formulation eliminates any constant disturbance. Under small uncertainties, the best strategy for stabilizing the combined system is to track a fuel-optimal reference trajectory using this nonlinear control law, because it consumes the least amount of fuel. In the presence of large uncertainties, the most effective strategy is to track the derivative plus proportional-derivative based reference trajectory, because it reduces the resultant disturbance torque. The effectiveness of the proposed attitude control law is demonstrated by using results of numerical simulation based on an Asteroid Redirect Mission concept. The new algorithms proposed in this dissertation will facilitate the development of versatile autonomous multi-agent systems that are capable of performing a variety of complex tasks in a robust and scalable manner.

  10. ACCEPT: Introduction of the Adverse Condition and Critical Event Prediction Toolbox

    NASA Technical Reports Server (NTRS)

    Martin, Rodney A.; Santanu, Das; Janakiraman, Vijay Manikandan; Hosein, Stefan

    2015-01-01

    The prediction of anomalies or adverse events is a challenging task, and there are a variety of methods which can be used to address the problem. In this paper, we introduce a generic framework developed in MATLAB (sup registered mark) called ACCEPT (Adverse Condition and Critical Event Prediction Toolbox). ACCEPT is an architectural framework designed to compare and contrast the performance of a variety of machine learning and early warning algorithms, and tests the capability of these algorithms to robustly predict the onset of adverse events in any time-series data generating systems or processes.

  11. Parameter-tolerant design of high contrast gratings

    NASA Astrophysics Data System (ADS)

    Chevallier, Christyves; Fressengeas, Nicolas; Jacquet, Joel; Almuneau, Guilhem; Laaroussi, Youness; Gauthier-Lafaye, Olivier; Cerutti, Laurent; Genty, Frédéric

    2015-02-01

    This work is devoted to the design of high contrast grating mirrors taking into account the technological constraints and tolerance of fabrication. First, a global optimization algorithm has been combined to a numerical analysis of grating structures (RCWA) to automatically design HCG mirrors. Then, the tolerances of the grating dimensions have been precisely studied to develop a robust optimization algorithm with which high contrast gratings, exhibiting not only a high efficiency but also large tolerance values, could be designed. Finally, several structures integrating previously designed HCGs has been simulated to validate and illustrate the interest of such gratings.

  12. Angle-of-Attack-Modulated Terminal Point Control for Neptune Aerocapture

    NASA Technical Reports Server (NTRS)

    Queen, Eric M.

    2004-01-01

    An aerocapture guidance algorithm based on a calculus of variations approach is developed, using angle of attack as the primary control variable. Bank angle is used as a secondary control to alleviate angle of attack extremes and to control inclination. The guidance equations are derived in detail. The controller has very small onboard computational requirements and is robust to atmospheric and aerodynamic dispersions. The algorithm is applied to aerocapture at Neptune. Three versions of the controller are considered with varying angle of attack authority. The three versions of the controller are evaluated using Monte Carlo simulations with expected dispersions.

  13. The LSST Data Mining Research Agenda

    NASA Astrophysics Data System (ADS)

    Borne, K.; Becla, J.; Davidson, I.; Szalay, A.; Tyson, J. A.

    2008-12-01

    We describe features of the LSST science database that are amenable to scientific data mining, object classification, outlier identification, anomaly detection, image quality assurance, and survey science validation. The data mining research agenda includes: scalability (at petabytes scales) of existing machine learning and data mining algorithms; development of grid-enabled parallel data mining algorithms; designing a robust system for brokering classifications from the LSST event pipeline (which may produce 10,000 or more event alerts per night) multi-resolution methods for exploration of petascale databases; indexing of multi-attribute multi-dimensional astronomical databases (beyond spatial indexing) for rapid querying of petabyte databases; and more.

  14. Quantum Hamiltonian identification from measurement time traces.

    PubMed

    Zhang, Jun; Sarovar, Mohan

    2014-08-22

    Precise identification of parameters governing quantum processes is a critical task for quantum information and communication technologies. In this Letter, we consider a setting where system evolution is determined by a parametrized Hamiltonian, and the task is to estimate these parameters from temporal records of a restricted set of system observables (time traces). Based on the notion of system realization from linear systems theory, we develop a constructive algorithm that provides estimates of the unknown parameters directly from these time traces. We illustrate the algorithm and its robustness to measurement noise by applying it to a one-dimensional spin chain model with variable couplings.

  15. Adaptive Wing Camber Optimization: A Periodic Perturbation Approach

    NASA Technical Reports Server (NTRS)

    Espana, Martin; Gilyard, Glenn

    1994-01-01

    Available redundancy among aircraft control surfaces allows for effective wing camber modifications. As shown in the past, this fact can be used to improve aircraft performance. To date, however, algorithm developments for in-flight camber optimization have been limited. This paper presents a perturbational approach for cruise optimization through in-flight camber adaptation. The method uses, as a performance index, an indirect measurement of the instantaneous net thrust. As such, the actual performance improvement comes from the integrated effects of airframe and engine. The algorithm, whose design and robustness properties are discussed, is demonstrated on the NASA Dryden B-720 flight simulator.

  16. Robust Operation of Soft Open Points in Active Distribution Networks with High Penetration of Photovoltaic Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Ji, Haoran; Wang, Chengshan

    Distributed generators (DGs) including photovoltaic panels (PVs) have been integrated dramatically in active distribution networks (ADNs). Due to the strong volatility and uncertainty, the high penetration of PV generation immensely exacerbates the conditions of voltage violation in ADNs. However, the emerging flexible interconnection technology based on soft open points (SOPs) provides increased controllability and flexibility to the system operation. For fully exploiting the regulation ability of SOPs to address the problems caused by PV, this paper proposes a robust optimization method to achieve the robust optimal operation of SOPs in ADNs. A two-stage adjustable robust optimization model is built tomore » tackle the uncertainties of PV outputs, in which robust operation strategies of SOPs are generated to eliminate the voltage violations and reduce the power losses of ADNs. A column-and-constraint generation (C&CG) algorithm is developed to solve the proposed robust optimization model, which are formulated as second-order cone program (SOCP) to facilitate the accuracy and computation efficiency. Case studies on the modified IEEE 33-node system and comparisons with the deterministic optimization approach are conducted to verify the effectiveness and robustness of the proposed method.« less

  17. Sampling Technique for Robust Odorant Detection Based on MIT RealNose Data

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2012-01-01

    This technique enhances the detection capability of the autonomous Real-Nose system from MIT to detect odorants and their concentrations in noisy and transient environments. The lowcost, portable system with low power consumption will operate at high speed and is suited for unmanned and remotely operated long-life applications. A deterministic mathematical model was developed to detect odorants and calculate their concentration in noisy environments. Real data from MIT's NanoNose was examined, from which a signal conditioning technique was proposed to enable robust odorant detection for the RealNose system. Its sensitivity can reach to sub-part-per-billion (sub-ppb). A Space Invariant Independent Component Analysis (SPICA) algorithm was developed to deal with non-linear mixing that is an over-complete case, and it is used as a preprocessing step to recover the original odorant sources for detection. This approach, combined with the Cascade Error Projection (CEP) Neural Network algorithm, was used to perform odorant identification. Signal conditioning is used to identify potential processing windows to enable robust detection for autonomous systems. So far, the software has been developed and evaluated with current data sets provided by the MIT team. However, continuous data streams are made available where even the occurrence of a new odorant is unannounced and needs to be noticed by the system autonomously before its unambiguous detection. The challenge for the software is to be able to separate the potential valid signal from the odorant and from the noisy transition region when the odorant is just introduced.

  18. Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.

    PubMed

    Hu, Liang; Wang, Zidong; Liu, Xiaohui

    2016-08-01

    In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.

  19. A false-alarm aware methodology to develop robust and efficient multi-scale infrared small target detection algorithm

    NASA Astrophysics Data System (ADS)

    Moradi, Saed; Moallem, Payman; Sabahi, Mohamad Farzan

    2018-03-01

    False alarm rate and detection rate are still two contradictory metrics for infrared small target detection in an infrared search and track system (IRST), despite the development of new detection algorithms. In certain circumstances, not detecting true targets is more tolerable than detecting false items as true targets. Hence, considering background clutter and detector noise as the sources of the false alarm in an IRST system, in this paper, a false alarm aware methodology is presented to reduce false alarm rate while the detection rate remains undegraded. To this end, advantages and disadvantages of each detection algorithm are investigated and the sources of the false alarms are determined. Two target detection algorithms having independent false alarm sources are chosen in a way that the disadvantages of the one algorithm can be compensated by the advantages of the other one. In this work, multi-scale average absolute gray difference (AAGD) and Laplacian of point spread function (LoPSF) are utilized as the cornerstones of the desired algorithm of the proposed methodology. After presenting a conceptual model for the desired algorithm, it is implemented through the most straightforward mechanism. The desired algorithm effectively suppresses background clutter and eliminates detector noise. Also, since the input images are processed through just four different scales, the desired algorithm has good capability for real-time implementation. Simulation results in term of signal to clutter ratio and background suppression factor on real and simulated images prove the effectiveness and the performance of the proposed methodology. Since the desired algorithm was developed based on independent false alarm sources, our proposed methodology is expandable to any pair of detection algorithms which have different false alarm sources.

  20. Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach

    PubMed Central

    Miran, Sina; Akram, Sahar; Sheikhattar, Alireza; Simon, Jonathan Z.; Zhang, Tao; Babadi, Behtash

    2018-01-01

    Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach) or vice versa (the encoding approach). To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1) Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2) Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3) Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ1-regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our proposed framework using comprehensive simulations as well as application to experimentally acquired M/EEG data. Our results reveal that the proposed real-time algorithms perform nearly as accurately as the existing state-of-the-art offline techniques, while providing a significant degree of adaptivity, statistical robustness, and computational savings. PMID:29765298

  1. Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach.

    PubMed

    Miran, Sina; Akram, Sahar; Sheikhattar, Alireza; Simon, Jonathan Z; Zhang, Tao; Babadi, Behtash

    2018-01-01

    Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach) or vice versa (the encoding approach). To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1) Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2) Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3) Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ 1 -regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our proposed framework using comprehensive simulations as well as application to experimentally acquired M/EEG data. Our results reveal that the proposed real-time algorithms perform nearly as accurately as the existing state-of-the-art offline techniques, while providing a significant degree of adaptivity, statistical robustness, and computational savings.

  2. Fast and robust wavelet-based dynamic range compression and contrast enhancement model with color restoration

    NASA Astrophysics Data System (ADS)

    Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur

    2009-05-01

    Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.

  3. Autonomous intelligent assembly systems LDRD 105746 final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2013-04-01

    This report documents a three-year to develop technology that enables mobile robots to perform autonomous assembly tasks in unstructured outdoor environments. This is a multi-tier problem that requires an integration of a large number of different software technologies including: command and control, estimation and localization, distributed communications, object recognition, pose estimation, real-time scanning, and scene interpretation. Although ultimately unsuccessful in achieving a target brick stacking task autonomously, numerous important component technologies were nevertheless developed. Such technologies include: a patent-pending polygon snake algorithm for robust feature tracking, a color grid algorithm for uniquely identification and calibration, a command and control frameworkmore » for abstracting robot commands, a scanning capability that utilizes a compact robot portable scanner, and more. This report describes this project and these developed technologies.« less

  4. Robust Group Sparse Beamforming for Multicast Green Cloud-RAN With Imperfect CSI

    NASA Astrophysics Data System (ADS)

    Shi, Yuanming; Zhang, Jun; Letaief, Khaled B.

    2015-09-01

    In this paper, we investigate the network power minimization problem for the multicast cloud radio access network (Cloud-RAN) with imperfect channel state information (CSI). The key observation is that network power minimization can be achieved by adaptively selecting active remote radio heads (RRHs) via controlling the group-sparsity structure of the beamforming vector. However, this yields a non-convex combinatorial optimization problem, for which we propose a three-stage robust group sparse beamforming algorithm. In the first stage, a quadratic variational formulation of the weighted mixed l1/l2-norm is proposed to induce the group-sparsity structure in the aggregated beamforming vector, which indicates those RRHs that can be switched off. A perturbed alternating optimization algorithm is then proposed to solve the resultant non-convex group-sparsity inducing optimization problem by exploiting its convex substructures. In the second stage, we propose a PhaseLift technique based algorithm to solve the feasibility problem with a given active RRH set, which helps determine the active RRHs. Finally, the semidefinite relaxation (SDR) technique is adopted to determine the robust multicast beamformers. Simulation results will demonstrate the convergence of the perturbed alternating optimization algorithm, as well as, the effectiveness of the proposed algorithm to minimize the network power consumption for multicast Cloud-RAN.

  5. Novel, Miniature Multi-Hole Probes and High-Accuracy Calibration Algorithms for their use in Compressible Flowfields

    NASA Technical Reports Server (NTRS)

    Rediniotis, Othon K.

    1999-01-01

    Two new calibration algorithms were developed for the calibration of non-nulling multi-hole probes in compressible, subsonic flowfields. The reduction algorithms are robust and able to reduce data from any multi-hole probe inserted into any subsonic flowfield to generate very accurate predictions of the velocity vector, flow direction, total pressure and static pressure. One of the algorithms PROBENET is based on the theory of neural networks, while the other is of a more conventional nature (polynomial approximation technique) and introduces a novel idea of local least-squares fits. Both algorithms have been developed to complete, user-friendly software packages. New technology was developed for the fabrication of miniature multi-hole probes, with probe tip diameters all the way down to 0.035". Several miniature 5- and 7-hole probes, with different probe tip geometries (hemispherical, conical, faceted) and different overall shapes (straight, cobra, elbow probes) were fabricated, calibrated and tested. Emphasis was placed on the development of four stainless-steel conical 7-hole probes, 1/16" in diameter calibrated at NASA Langley for the entire subsonic regime. The developed calibration algorithms were extensively tested with these probes demonstrating excellent prediction capabilities. The probes were used in the "trap wing" wind tunnel tests in the 14'x22' wind tunnel at NASA Langley, providing valuable information on the flowfield over the wing. This report is organized in the following fashion. It consists of a "Technical Achievements" section that summarizes the major achievements, followed by an assembly of journal articles that were produced from this project and ends with two manuals for the two probe calibration algorithms developed.

  6. Novel bio-inspired smart control for hazard mitigation of civil structures

    NASA Astrophysics Data System (ADS)

    Kim, Yeesock; Kim, Changwon; Langari, Reza

    2010-11-01

    In this paper, a new bio-inspired controller is proposed for vibration mitigation of smart structures subjected to ground disturbances (i.e. earthquakes). The control system is developed through the integration of a brain emotional learning (BEL) algorithm with a proportional-integral-derivative (PID) controller and a semiactive inversion (Inv) algorithm. The BEL algorithm is based on the neurologically inspired computational model of the amygdala and the orbitofrontal cortex. To demonstrate the effectiveness of the proposed hybrid BEL-PID-Inv control algorithm, a seismically excited building structure equipped with a magnetorheological (MR) damper is investigated. The performance of the proposed hybrid BEL-PID-Inv control algorithm is compared with that of passive, PID, linear quadratic Gaussian (LQG), and BEL control systems. In the simulation, the robustness of the hybrid BEL-PID-Inv control algorithm in the presence of modeling uncertainties as well as external disturbances is investigated. It is shown that the proposed hybrid BEL-PID-Inv control algorithm is effective in improving the dynamic responses of seismically excited building structure-MR damper systems.

  7. A fast bilinear structure from motion algorithm using a video sequence and inertial sensors.

    PubMed

    Ramachandran, Mahesh; Veeraraghavan, Ashok; Chellappa, Rama

    2011-01-01

    In this paper, we study the benefits of the availability of a specific form of additional information—the vertical direction (gravity) and the height of the camera, both of which can be conveniently measured using inertial sensors and a monocular video sequence for 3D urban modeling. We show that in the presence of this information, the SfM equations can be rewritten in a bilinear form. This allows us to derive a fast, robust, and scalable SfM algorithm for large scale applications. The SfM algorithm developed in this paper is experimentally demonstrated to have favorable properties compared to the sparse bundle adjustment algorithm. We provide experimental evidence indicating that the proposed algorithm converges in many cases to solutions with lower error than state-of-art implementations of bundle adjustment. We also demonstrate that for the case of large reconstruction problems, the proposed algorithm takes lesser time to reach its solution compared to bundle adjustment. We also present SfM results using our algorithm on the Google StreetView research data set.

  8. A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data.

    PubMed

    Gregoire, John M; Dale, Darren; van Dover, R Bruce

    2011-01-01

    Peak detection is ubiquitous in the analysis of spectral data. While many noise-filtering algorithms and peak identification algorithms have been developed, recent work [P. Du, W. Kibbe, and S. Lin, Bioinformatics 22, 2059 (2006); A. Wee, D. Grayden, Y. Zhu, K. Petkovic-Duran, and D. Smith, Electrophoresis 29, 4215 (2008)] has demonstrated that both of these tasks are efficiently performed through analysis of the wavelet transform of the data. In this paper, we present a wavelet-based peak detection algorithm with user-defined parameters that can be readily applied to the application of any spectral data. Particular attention is given to the algorithm's resolution of overlapping peaks. The algorithm is implemented for the analysis of powder diffraction data, and successful detection of Bragg peaks is demonstrated for both low signal-to-noise data from theta-theta diffraction of nanoparticles and combinatorial x-ray diffraction data from a composition spread thin film. These datasets have different types of background signals which are effectively removed in the wavelet-based method, and the results demonstrate that the algorithm provides a robust method for automated peak detection.

  9. Long-term scale adaptive tracking with kernel correlation filters

    NASA Astrophysics Data System (ADS)

    Wang, Yueren; Zhang, Hong; Zhang, Lei; Yang, Yifan; Sun, Mingui

    2018-04-01

    Object tracking in video sequences has broad applications in both military and civilian domains. However, as the length of input video sequence increases, a number of problems arise, such as severe object occlusion, object appearance variation, and object out-of-view (some portion or the entire object leaves the image space). To deal with these problems and identify the object being tracked from cluttered background, we present a robust appearance model using Speeded Up Robust Features (SURF) and advanced integrated features consisting of the Felzenszwalb's Histogram of Oriented Gradients (FHOG) and color attributes. Since re-detection is essential in long-term tracking, we develop an effective object re-detection strategy based on moving area detection. We employ the popular kernel correlation filters in our algorithm design, which facilitates high-speed object tracking. Our evaluation using the CVPR2013 Object Tracking Benchmark (OTB2013) dataset illustrates that the proposed algorithm outperforms reference state-of-the-art trackers in various challenging scenarios.

  10. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.

    PubMed

    Ni, Jingchao; Koyuturk, Mehmet; Tong, Hanghang; Haines, Jonathan; Xu, Rong; Zhang, Xiang

    2016-11-10

    Accurately prioritizing candidate disease genes is an important and challenging problem. Various network-based methods have been developed to predict potential disease genes by utilizing the disease similarity network and molecular networks such as protein interaction or gene co-expression networks. Although successful, a common limitation of the existing methods is that they assume all diseases share the same molecular network and a single generic molecular network is used to predict candidate genes for all diseases. However, different diseases tend to manifest in different tissues, and the molecular networks in different tissues are usually different. An ideal method should be able to incorporate tissue-specific molecular networks for different diseases. In this paper, we develop a robust and flexible method to integrate tissue-specific molecular networks for disease gene prioritization. Our method allows each disease to have its own tissue-specific network(s). We formulate the problem of candidate gene prioritization as an optimization problem based on network propagation. When there are multiple tissue-specific networks available for a disease, our method can automatically infer the relative importance of each tissue-specific network. Thus it is robust to the noisy and incomplete network data. To solve the optimization problem, we develop fast algorithms which have linear time complexities in the number of nodes in the molecular networks. We also provide rigorous theoretical foundations for our algorithms in terms of their optimality and convergence properties. Extensive experimental results show that our method can significantly improve the accuracy of candidate gene prioritization compared with the state-of-the-art methods. In our experiments, we compare our methods with 7 popular network-based disease gene prioritization algorithms on diseases from Online Mendelian Inheritance in Man (OMIM) database. The experimental results demonstrate that our methods recover true associations more accurately than other methods in terms of AUC values, and the performance differences are significant (with paired t-test p-values less than 0.05). This validates the importance to integrate tissue-specific molecular networks for studying disease gene prioritization and show the superiority of our network models and ranking algorithms toward this purpose. The source code and datasets are available at http://nijingchao.github.io/CRstar/ .

  11. Automated target classification in high resolution dual frequency sonar imagery

    NASA Astrophysics Data System (ADS)

    Aridgides, Tom; Fernández, Manuel

    2007-04-01

    An improved computer-aided-detection / computer-aided-classification (CAD/CAC) processing string has been developed. The classified objects of 2 distinct strings are fused using the classification confidence values and their expansions as features, and using "summing" or log-likelihood-ratio-test (LLRT) based fusion rules. The utility of the overall processing strings and their fusion was demonstrated with new high-resolution dual frequency sonar imagery. Three significant fusion algorithm improvements were made. First, a nonlinear 2nd order (Volterra) feature LLRT fusion algorithm was developed. Second, a Box-Cox nonlinear feature LLRT fusion algorithm was developed. The Box-Cox transformation consists of raising the features to a to-be-determined power. Third, a repeated application of a subset feature selection / feature orthogonalization / Volterra feature LLRT fusion block was utilized. It was shown that cascaded Volterra feature LLRT fusion of the CAD/CAC processing strings outperforms summing, baseline single-stage Volterra and Box-Cox feature LLRT algorithms, yielding significant improvements over the best single CAD/CAC processing string results, and providing the capability to correctly call the majority of targets while maintaining a very low false alarm rate. Additionally, the robustness of cascaded Volterra feature fusion was demonstrated, by showing that the algorithm yields similar performance with the training and test sets.

  12. Constructing Robust Cooperative Networks using a Multi-Objective Evolutionary Algorithm

    PubMed Central

    Wang, Shuai; Liu, Jing

    2017-01-01

    The design and construction of network structures oriented towards different applications has attracted much attention recently. The existing studies indicated that structural heterogeneity plays different roles in promoting cooperation and robustness. Compared with rewiring a predefined network, it is more flexible and practical to construct new networks that satisfy the desired properties. Therefore, in this paper, we study a method for constructing robust cooperative networks where the only constraint is that the number of nodes and links is predefined. We model this network construction problem as a multi-objective optimization problem and propose a multi-objective evolutionary algorithm, named MOEA-Netrc, to generate the desired networks from arbitrary initializations. The performance of MOEA-Netrc is validated on several synthetic and real-world networks. The results show that MOEA-Netrc can construct balanced candidates and is insensitive to the initializations. MOEA-Netrc can find the Pareto fronts for networks with different levels of cooperation and robustness. In addition, further investigation of the robustness of the constructed networks revealed the impact on other aspects of robustness during the construction process. PMID:28134314

  13. Structural Damage Detection Using Changes in Natural Frequencies: Theory and Applications

    NASA Astrophysics Data System (ADS)

    He, K.; Zhu, W. D.

    2011-07-01

    A vibration-based method that uses changes in natural frequencies of a structure to detect damage has advantages over conventional nondestructive tests in detecting various types of damage, including loosening of bolted joints, using minimum measurement data. Two major challenges associated with applications of the vibration-based damage detection method to engineering structures are addressed: accurate modeling of structures and the development of a robust inverse algorithm to detect damage, which are defined as the forward and inverse problems, respectively. To resolve the forward problem, new physics-based finite element modeling techniques are developed for fillets in thin-walled beams and for bolted joints, so that complex structures can be accurately modeled with a reasonable model size. To resolve the inverse problem, a logistical function transformation is introduced to convert the constrained optimization problem to an unconstrained one, and a robust iterative algorithm using a trust-region method, called the Levenberg-Marquardt method, is developed to accurately detect the locations and extent of damage. The new methodology can ensure global convergence of the iterative algorithm in solving under-determined system equations and deal with damage detection problems with relatively large modeling error and measurement noise. The vibration-based damage detection method is applied to various structures including lightning masts, a space frame structure and one of its components, and a pipeline. The exact locations and extent of damage can be detected in the numerical simulation where there is no modeling error and measurement noise. The locations and extent of damage can be successfully detected in experimental damage detection.

  14. The Influence Function of Principal Component Analysis by Self-Organizing Rule.

    PubMed

    Higuchi; Eguchi

    1998-07-28

    This article is concerned with a neural network approach to principal component analysis (PCA). An algorithm for PCA by the self-organizing rule has been proposed and its robustness observed through the simulation study by Xu and Yuille (1995). In this article, the robustness of the algorithm against outliers is investigated by using the theory of influence function. The influence function of the principal component vector is given in an explicit form. Through this expression, the method is shown to be robust against any directions orthogonal to the principal component vector. In addition, a statistic generated by the self-organizing rule is proposed to assess the influence of data in PCA.

  15. A Robust Vehicle Localization Approach Based on GNSS/IMU/DMI/LiDAR Sensor Fusion for Autonomous Vehicles

    PubMed Central

    Meng, Xiaoli

    2017-01-01

    Precise and robust localization in a large-scale outdoor environment is essential for an autonomous vehicle. In order to improve the performance of the fusion of GNSS (Global Navigation Satellite System)/IMU (Inertial Measurement Unit)/DMI (Distance-Measuring Instruments), a multi-constraint fault detection approach is proposed to smooth the vehicle locations in spite of GNSS jumps. Furthermore, the lateral localization error is compensated by the point cloud-based lateral localization method proposed in this paper. Experiment results have verified the algorithms proposed in this paper, which shows that the algorithms proposed in this paper are capable of providing precise and robust vehicle localization. PMID:28926996

  16. A Robust Vehicle Localization Approach Based on GNSS/IMU/DMI/LiDAR Sensor Fusion for Autonomous Vehicles.

    PubMed

    Meng, Xiaoli; Wang, Heng; Liu, Bingbing

    2017-09-18

    Precise and robust localization in a large-scale outdoor environment is essential for an autonomous vehicle. In order to improve the performance of the fusion of GNSS (Global Navigation Satellite System)/IMU (Inertial Measurement Unit)/DMI (Distance-Measuring Instruments), a multi-constraint fault detection approach is proposed to smooth the vehicle locations in spite of GNSS jumps. Furthermore, the lateral localization error is compensated by the point cloud-based lateral localization method proposed in this paper. Experiment results have verified the algorithms proposed in this paper, which shows that the algorithms proposed in this paper are capable of providing precise and robust vehicle localization.

  17. Building a robust vehicle detection and classification module

    NASA Astrophysics Data System (ADS)

    Grigoryev, Anton; Khanipov, Timur; Koptelov, Ivan; Bocharov, Dmitry; Postnikov, Vassily; Nikolaev, Dmitry

    2015-12-01

    The growing adoption of intelligent transportation systems (ITS) and autonomous driving requires robust real-time solutions for various event and object detection problems. Most of real-world systems still cannot rely on computer vision algorithms and employ a wide range of costly additional hardware like LIDARs. In this paper we explore engineering challenges encountered in building a highly robust visual vehicle detection and classification module that works under broad range of environmental and road conditions. The resulting technology is competitive to traditional non-visual means of traffic monitoring. The main focus of the paper is on software and hardware architecture, algorithm selection and domain-specific heuristics that help the computer vision system avoid implausible answers.

  18. Robust phase retrieval of complex-valued object in phase modulation by hybrid Wirtinger flow method

    NASA Astrophysics Data System (ADS)

    Wei, Zhun; Chen, Wen; Yin, Tiantian; Chen, Xudong

    2017-09-01

    This paper presents a robust iterative algorithm, known as hybrid Wirtinger flow (HWF), for phase retrieval (PR) of complex objects from noisy diffraction intensities. Numerical simulations indicate that the HWF method consistently outperforms conventional PR methods in terms of both accuracy and convergence rate in multiple phase modulations. The proposed algorithm is also more robust to low oversampling ratios, loose constraints, and noisy environments. Furthermore, compared with traditional Wirtinger flow, sample complexity is largely reduced. It is expected that the proposed HWF method will find applications in the rapidly growing coherent diffractive imaging field for high-quality image reconstruction with multiple modulations, as well as other disciplines where PR is needed.

  19. TU-H-206-04: An Effective Homomorphic Unsharp Mask Filtering Method to Correct Intensity Inhomogeneity in Daily Treatment MR Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, D; Gach, H; Li, H

    Purpose: The daily treatment MRIs acquired on MR-IGRT systems, like diagnostic MRIs, suffer from intensity inhomogeneity issue, associated with B1 and B0 inhomogeneities. An improved homomorphic unsharp mask (HUM) filtering method, automatic and robust body segmentation, and imaging field-of-view (FOV) detection methods were developed to compute the multiplicative slow-varying correction field and correct the intensity inhomogeneity. The goal is to improve and normalize the voxel intensity so that the images could be processed more accurately by quantitative methods (e.g., segmentation and registration) that require consistent image voxel intensity values. Methods: HUM methods have been widely used for years. A bodymore » mask is required, otherwise the body surface in the corrected image would be incorrectly bright due to the sudden intensity transition at the body surface. In this study, we developed an improved HUM-based correction method that includes three main components: 1) Robust body segmentation on the normalized image gradient map, 2) Robust FOV detection (needed for body segmentation) using region growing and morphologic filters, and 3) An effective implementation of HUM using repeated Gaussian convolution. Results: The proposed method was successfully tested on patient images of common anatomical sites (H/N, lung, abdomen and pelvis). Initial qualitative comparisons showed that this improved HUM method outperformed three recently published algorithms (FCM, LEMS, MICO) in both computation speed (by 50+ times) and robustness (in intermediate to severe inhomogeneity situations). Currently implemented in MATLAB, it takes 20 to 25 seconds to process a 3D MRI volume. Conclusion: Compared to more sophisticated MRI inhomogeneity correction algorithms, the improved HUM method is simple and effective. The inhomogeneity correction, body mask, and FOV detection methods developed in this study would be useful as preprocessing tools for many MRI-related research and clinical applications in radiotherapy. Authors have received research grants from ViewRay and Varian.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorne, N; Kassaee, A

    Purpose: To develop an algorithm which can calculate the Full Width Half Maximum (FWHM) of a Proton Pencil Beam from a 2D dimensional ion chamber array (IBA Matrixx) with limited spatial resolution ( 7.6 mm inter chamber distance). The algorithm would allow beam FWHM measurements to be taken during daily QA without an appreciable time increase. Methods: Combinations of 147 MeV single spot beams were delivered onto an IBA Matrixx and concurrently on EBT3 films for a standard. Data were collected around the Bragg Peak region and evaluated by a custom MATLAB script based on our algorithm using a leastmore » squared analysis. A set of artificial data, modified with random noise, was also processed to test for robustness. Results: The Matlab script processed Matixx data shows acceptable agreement (within 5%) with film measurements with no single measurement differing by more than 1.8 mm. In cases where the spots show some degree of asymmetry, the algorithm is able to resolve the differences. The algorithm was able to process artificial data with noise up to 15% of the maximum value. Time assays of each measurement took less than 3 minutes to perform, indicating that such measurements may be efficiently added to daily QA treatment. Conclusion: The developed algorithm can be implemented in daily QA program for Proton Pencil Beam scanning beams (PBS) with Matrixx to extract spot size and position information. The developed algorithm may be extended to small field sizes in photon clinic.« less

  1. SU-E-T-07: 4DCT Robust Optimization for Esophageal Cancer Using Intensity Modulated Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, L; Department of Industrial Engineering, University of Houston, Houston, TX; Yu, J

    2015-06-15

    Purpose: To develop a 4DCT robust optimization method to reduce the dosimetric impact from respiratory motion in intensity modulated proton therapy (IMPT) for esophageal cancer. Methods: Four esophageal cancer patients were selected for this study. The different phases of CT from a set of 4DCT were incorporated into the worst-case dose distribution robust optimization algorithm. 4DCT robust treatment plans were designed and compared with the conventional non-robust plans. Result doses were calculated on the average and maximum inhale/exhale phases of 4DCT. Dose volume histogram (DVH) band graphic and ΔD95%, ΔD98%, ΔD5%, ΔD2% of CTV between different phases were used tomore » evaluate the robustness of the plans. Results: Compare to the IMPT plans optimized using conventional methods, the 4DCT robust IMPT plans can achieve the same quality in nominal cases, while yield a better robustness to breathing motion. The mean ΔD95%, ΔD98%, ΔD5% and ΔD2% of CTV are 6%, 3.2%, 0.9% and 1% for the robustly optimized plans vs. 16.2%, 11.8%, 1.6% and 3.3% from the conventional non-robust plans. Conclusion: A 4DCT robust optimization method was proposed for esophageal cancer using IMPT. We demonstrate that the 4DCT robust optimization can mitigate the dose deviation caused by the diaphragm motion.« less

  2. Robust integration schemes for generalized viscoplasticity with internal-state variables. Part 1: Theoretical developments and applications

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Li, Wei

    1995-01-01

    This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present first part of the report, we focus on the theoretical developments, and discussions of the results of numerical-performance studies using the integration schemes for GVIPS and NAV models.

  3. Biologically inspired robots elicit a robust fear response in zebrafish

    NASA Astrophysics Data System (ADS)

    Ladu, Fabrizio; Bartolini, Tiziana; Panitz, Sarah G.; Butail, Sachit; Macrı, Simone; Porfiri, Maurizio

    2015-03-01

    We investigate the behavioral response of zebrafish to three fear-evoking stimuli. In a binary choice test, zebrafish are exposed to a live allopatric predator, a biologically-inspired robot, and a computer-animated image of the live predator. A target tracking algorithm is developed to score zebrafish behavior. Unlike computer-animated images, the robotic and live predator elicit a robust avoidance response. Importantly, the robotic stimulus elicits more consistent inter-individual responses than the live predator. Results from this effort are expected to aid in hypothesis-driven studies on zebrafish fear response, by offering a valuable approach to maximize data-throughput and minimize animal subjects.

  4. Robust Low-dose CT Perfusion Deconvolution via Tensor Total-Variation Regularization

    PubMed Central

    Zhang, Shaoting; Chen, Tsuhan; Sanelli, Pina C.

    2016-01-01

    Acute brain diseases such as acute strokes and transit ischemic attacks are the leading causes of mortality and morbidity worldwide, responsible for 9% of total death every year. ‘Time is brain’ is a widely accepted concept in acute cerebrovascular disease treatment. Efficient and accurate computational framework for hemodynamic parameters estimation can save critical time for thrombolytic therapy. Meanwhile the high level of accumulated radiation dosage due to continuous image acquisition in CT perfusion (CTP) raised concerns on patient safety and public health. However, low-radiation leads to increased noise and artifacts which require more sophisticated and time-consuming algorithms for robust estimation. In this paper, we focus on developing a robust and efficient framework to accurately estimate the perfusion parameters at low radiation dosage. Specifically, we present a tensor total-variation (TTV) technique which fuses the spatial correlation of the vascular structure and the temporal continuation of the blood signal flow. An efficient algorithm is proposed to find the solution with fast convergence and reduced computational complexity. Extensive evaluations are carried out in terms of sensitivity to noise levels, estimation accuracy, contrast preservation, and performed on digital perfusion phantom estimation, as well as in-vivo clinical subjects. Our framework reduces the necessary radiation dose to only 8% of the original level and outperforms the state-of-art algorithms with peak signal-to-noise ratio improved by 32%. It reduces the oscillation in the residue functions, corrects over-estimation of cerebral blood flow (CBF) and under-estimation of mean transit time (MTT), and maintains the distinction between the deficit and normal regions. PMID:25706579

  5. Toward automated face detection in thermal and polarimetric thermal imagery

    NASA Astrophysics Data System (ADS)

    Gordon, Christopher; Acosta, Mark; Short, Nathan; Hu, Shuowen; Chan, Alex L.

    2016-05-01

    Visible spectrum face detection algorithms perform pretty reliably under controlled lighting conditions. However, variations in illumination and application of cosmetics can distort the features used by common face detectors, thereby degrade their detection performance. Thermal and polarimetric thermal facial imaging are relatively invariant to illumination and robust to the application of makeup, due to their measurement of emitted radiation instead of reflected light signals. The objective of this work is to evaluate a government off-the-shelf wavelet based naïve-Bayes face detection algorithm and a commercial off-the-shelf Viola-Jones cascade face detection algorithm on face imagery acquired in different spectral bands. New classifiers were trained using the Viola-Jones cascade object detection framework with preprocessed facial imagery. Preprocessing using Difference of Gaussians (DoG) filtering reduces the modality gap between facial signatures across the different spectral bands, thus enabling more correlated histogram of oriented gradients (HOG) features to be extracted from the preprocessed thermal and visible face images. Since the availability of training data is much more limited in the thermal spectrum than in the visible spectrum, it is not feasible to train a robust multi-modal face detector using thermal imagery alone. A large training dataset was constituted with DoG filtered visible and thermal imagery, which was subsequently used to generate a custom trained Viola-Jones detector. A 40% increase in face detection rate was achieved on a testing dataset, as compared to the performance of a pre-trained/baseline face detector. Insights gained in this research are valuable in the development of more robust multi-modal face detectors.

  6. Numerical Algorithms for Acoustic Integrals - The Devil is in the Details

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1996-01-01

    The accurate prediction of the aeroacoustic field generated by aerospace vehicles or nonaerospace machinery is necessary for designers to control and reduce source noise. Powerful computational aeroacoustic methods, based on various acoustic analogies (primarily the Lighthill acoustic analogy) and Kirchhoff methods, have been developed for prediction of noise from complicated sources, such as rotating blades. Both methods ultimately predict the noise through a numerical evaluation of an integral formulation. In this paper, we consider three generic acoustic formulations and several numerical algorithms that have been used to compute the solutions to these formulations. Algorithms for retarded-time formulations are the most efficient and robust, but they are difficult to implement for supersonic-source motion. Collapsing-sphere and emission-surface formulations are good alternatives when supersonic-source motion is present, but the numerical implementations of these formulations are more computationally demanding. New algorithms - which utilize solution adaptation to provide a specified error level - are needed.

  7. Sensor Network Localization by Eigenvector Synchronization Over the Euclidean Group

    PubMed Central

    CUCURINGU, MIHAI; LIPMAN, YARON; SINGER, AMIT

    2013-01-01

    We present a new approach to localization of sensors from noisy measurements of a subset of their Euclidean distances. Our algorithm starts by finding, embedding, and aligning uniquely realizable subsets of neighboring sensors called patches. In the noise-free case, each patch agrees with its global positioning up to an unknown rigid motion of translation, rotation, and possibly reflection. The reflections and rotations are estimated using the recently developed eigenvector synchronization algorithm, while the translations are estimated by solving an overdetermined linear system. The algorithm is scalable as the number of nodes increases and can be implemented in a distributed fashion. Extensive numerical experiments show that it compares favorably to other existing algorithms in terms of robustness to noise, sparse connectivity, and running time. While our approach is applicable to higher dimensions, in the current article, we focus on the two-dimensional case. PMID:23946700

  8. Application of the DMRG in two dimensions: a parallel tempering algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Shijie; Zhao, Jize; Zhang, Xuefeng; Eggert, Sebastian

    The Density Matrix Renormalization Group (DMRG) is known to be a powerful algorithm for treating one-dimensional systems. When the DMRG is applied in two dimensions, however, the convergence becomes much less reliable and typically ''metastable states'' may appear, which are unfortunately quite robust even when keeping a very high number of DMRG states. To overcome this problem we have now successfully developed a parallel tempering DMRG algorithm. Similar to parallel tempering in quantum Monte Carlo, this algorithm allows the systematic switching of DMRG states between different model parameters, which is very efficient for solving convergence problems. Using this method we have figured out the phase diagram of the xxz model on the anisotropic triangular lattice which can be realized by hardcore bosons in optical lattices. SFB Transregio 49 of the Deutsche Forschungsgemeinschaft (DFG) and the Allianz fur Hochleistungsrechnen Rheinland-Pfalz (AHRP).

  9. Turbopump Performance Improved by Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Oyama, Akira; Liou, Meng-Sing

    2002-01-01

    The development of design optimization technology for turbomachinery has been initiated using the multiobjective evolutionary algorithm under NASA's Intelligent Synthesis Environment and Revolutionary Aeropropulsion Concepts programs. As an alternative to the traditional gradient-based methods, evolutionary algorithms (EA's) are emergent design-optimization algorithms modeled after the mechanisms found in natural evolution. EA's search from multiple points, instead of moving from a single point. In addition, they require no derivatives or gradients of the objective function, leading to robustness and simplicity in coupling any evaluation codes. Parallel efficiency also becomes very high by using a simple master-slave concept for function evaluations, since such evaluations often consume the most CPU time, such as computational fluid dynamics. Application of EA's to multiobjective design problems is also straightforward because EA's maintain a population of design candidates in parallel. Because of these advantages, EA's are a unique and attractive approach to real-world design optimization problems.

  10. An efficient motion-resistant method for wearable pulse oximeter.

    PubMed

    Yan, Yong-Sheng; Zhang, Yuan-Ting

    2008-05-01

    Reduction of motion artifact and power saving are crucial in designing a wearable pulse oximeter for long-term telemedicine application. In this paper, a novel algorithm, minimum correlation discrete saturation transform (MCDST) has been developed for the estimation of arterial oxygen saturation (SaO2), based on an optical model derived from photon diffusion analysis. The simulation shows that the new algorithm MCDST is more robust under low SNRs than the clinically verified motion-resistant algorithm discrete saturation transform (DST). Further, the experiment with different severity of motions demonstrates that MCDST has a slightly better performance than DST algorithm. Moreover, MCDST is more computationally efficient than DST because the former uses linear algebra instead of the time-consuming adaptive filter used by latter, which indicates that MCDST can reduce the required power consumption and circuit complexity of the implementation. This is vital for wearable devices, where the physical size and long battery life are crucial.

  11. Fast and accurate metrology of multi-layered ceramic materials by an automated boundary detection algorithm developed for optical coherence tomography data

    PubMed Central

    Ekberg, Peter; Su, Rong; Chang, Ernest W.; Yun, Seok Hyun; Mattsson, Lars

    2014-01-01

    Optical coherence tomography (OCT) is useful for materials defect analysis and inspection with the additional possibility of quantitative dimensional metrology. Here, we present an automated image-processing algorithm for OCT analysis of roll-to-roll multilayers in 3D manufacturing of advanced ceramics. It has the advantage of avoiding filtering and preset modeling, and will, thus, introduce a simplification. The algorithm is validated for its capability of measuring the thickness of ceramic layers, extracting the boundaries of embedded features with irregular shapes, and detecting the geometric deformations. The accuracy of the algorithm is very high, and the reliability is better than 1 µm when evaluating with the OCT images using the same gauge block step height reference. The method may be suitable for industrial applications to the rapid inspection of manufactured samples with high accuracy and robustness. PMID:24562018

  12. Automated segmentation algorithm for detection of changes in vaginal epithelial morphology using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab; Vincent, Kathleen L.; Vargas, Gracie; Motamedi, Massoud

    2012-11-01

    We have explored the use of optical coherence tomography (OCT) as a noninvasive tool for assessing the toxicity of topical microbicides, products used to prevent HIV, by monitoring the integrity of the vaginal epithelium. A novel feature-based segmentation algorithm using a nearest-neighbor classifier was developed to monitor changes in the morphology of vaginal epithelium. The two-step automated algorithm yielded OCT images with a clearly defined epithelial layer, enabling differentiation of normal and damaged tissue. The algorithm was robust in that it was able to discriminate the epithelial layer from underlying stroma as well as residual microbicide product on the surface. This segmentation technique for OCT images has the potential to be readily adaptable to the clinical setting for noninvasively defining the boundaries of the epithelium, enabling quantifiable assessment of microbicide-induced damage in vaginal tissue.

  13. Improved blood glucose estimation through multi-sensor fusion.

    PubMed

    Xiong, Feiyu; Hipszer, Brian R; Joseph, Jeffrey; Kam, Moshe

    2011-01-01

    Continuous glucose monitoring systems are an integral component of diabetes management. Efforts to improve the accuracy and robustness of these systems are at the forefront of diabetes research. Towards this goal, a multi-sensor approach was evaluated in hospitalized patients. In this paper, we report on a multi-sensor fusion algorithm to combine glucose sensor measurements in a retrospective fashion. The results demonstrate the algorithm's ability to improve the accuracy and robustness of the blood glucose estimation with current glucose sensor technology.

  14. Robust perception algorithms for road and track autonomous following

    NASA Astrophysics Data System (ADS)

    Marion, Vincent; Lecointe, Olivier; Lewandowski, Cecile; Morillon, Joel G.; Aufrere, Romuald; Marcotegui, Beatrix; Chapuis, Roland; Beucher, Serge

    2004-09-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales Airborne Systems as the prime contractor, focuses on about 15 robotic themes, which can provide an immediate "operational add-on value." The paper details the "road and track following" theme (named AUT2), which main purpose was to develop a vision based sub-system to automatically detect roadsides of an extended range of roads and tracks suitable to military missions. To achieve the goal, efforts focused on three main areas: (1) Improvement of images quality at algorithms inputs, thanks to the selection of adapted video cameras, and the development of a THALES patented algorithm: it removes in real time most of the disturbing shadows in images taken in natural environments, enhances contrast and lowers reflection effect due to films of water. (2) Selection and improvement of two complementary algorithms (one is segment oriented, the other region based) (3) Development of a fusion process between both algorithms, which feeds in real time a road model with the best available data. Each previous step has been developed so that the global perception process is reliable and safe: as an example, the process continuously evaluates itself and outputs confidence criteria qualifying roadside detection. The paper presents the processes in details, and the results got from passed military acceptance tests, which trigger the next step: autonomous track following (named AUT3).

  15. Robust Optimization Design Algorithm for High-Frequency TWTs

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Chevalier, Christine T.

    2010-01-01

    Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.

  16. Intelligent robust tracking control for a class of uncertain strict-feedback nonlinear systems.

    PubMed

    Chang, Yeong-Chan

    2009-02-01

    This paper addresses the problem of designing robust tracking controls for a large class of strict-feedback nonlinear systems involving plant uncertainties and external disturbances. The input and virtual input weighting matrices are perturbed by bounded time-varying uncertainties. An adaptive fuzzy-based (or neural-network-based) dynamic feedback tracking controller will be developed such that all the states and signals of the closed-loop system are bounded and the trajectory tracking error should be as small as possible. First, the adaptive approximators with linearly parameterized models are designed, and a partitioned procedure with respect to the developed adaptive approximators is proposed such that the implementation of the fuzzy (or neural network) basis functions depends only on the state variables but does not depend on the tuning approximation parameters. Furthermore, we extend to design the nonlinearly parameterized adaptive approximators. Consequently, the intelligent robust tracking control schemes developed in this paper possess the properties of computational simplicity and easy implementation. Finally, simulation examples are presented to demonstrate the effectiveness of the proposed control algorithms.

  17. A Hybrid Optimization Framework with POD-based Order Reduction and Design-Space Evolution Scheme

    NASA Astrophysics Data System (ADS)

    Ghoman, Satyajit S.

    The main objective of this research is to develop an innovative multi-fidelity multi-disciplinary design, analysis and optimization suite that integrates certain solution generation codes and newly developed innovative tools to improve the overall optimization process. The research performed herein is divided into two parts: (1) the development of an MDAO framework by integration of variable fidelity physics-based computational codes, and (2) enhancements to such a framework by incorporating innovative features extending its robustness. The first part of this dissertation describes the development of a conceptual Multi-Fidelity Multi-Strategy and Multi-Disciplinary Design Optimization Environment (M3 DOE), in context of aircraft wing optimization. M 3 DOE provides the user a capability to optimize configurations with a choice of (i) the level of fidelity desired, (ii) the use of a single-step or multi-step optimization strategy, and (iii) combination of a series of structural and aerodynamic analyses. The modularity of M3 DOE allows it to be a part of other inclusive optimization frameworks. The M 3 DOE is demonstrated within the context of shape and sizing optimization of the wing of a Generic Business Jet aircraft. Two different optimization objectives, viz. dry weight minimization, and cruise range maximization are studied by conducting one low-fidelity and two high-fidelity optimization runs to demonstrate the application scope of M3 DOE. The second part of this dissertation describes the development of an innovative hybrid optimization framework that extends the robustness of M 3 DOE by employing a proper orthogonal decomposition-based design-space order reduction scheme combined with the evolutionary algorithm technique. The POD method of extracting dominant modes from an ensemble of candidate configurations is used for the design-space order reduction. The snapshot of candidate population is updated iteratively using evolutionary algorithm technique of fitness-driven retention. This strategy capitalizes on the advantages of evolutionary algorithm as well as POD-based reduced order modeling, while overcoming the shortcomings inherent with these techniques. When linked with M3 DOE, this strategy offers a computationally efficient methodology for problems with high level of complexity and a challenging design-space. This newly developed framework is demonstrated for its robustness on a nonconventional supersonic tailless air vehicle wing shape optimization problem.

  18. The comparison of robust partial least squares regression with robust principal component regression on a real

    NASA Astrophysics Data System (ADS)

    Polat, Esra; Gunay, Suleyman

    2013-10-01

    One of the problems encountered in Multiple Linear Regression (MLR) is multicollinearity, which causes the overestimation of the regression parameters and increase of the variance of these parameters. Hence, in case of multicollinearity presents, biased estimation procedures such as classical Principal Component Regression (CPCR) and Partial Least Squares Regression (PLSR) are then performed. SIMPLS algorithm is the leading PLSR algorithm because of its speed, efficiency and results are easier to interpret. However, both of the CPCR and SIMPLS yield very unreliable results when the data set contains outlying observations. Therefore, Hubert and Vanden Branden (2003) have been presented a robust PCR (RPCR) method and a robust PLSR (RPLSR) method called RSIMPLS. In RPCR, firstly, a robust Principal Component Analysis (PCA) method for high-dimensional data on the independent variables is applied, then, the dependent variables are regressed on the scores using a robust regression method. RSIMPLS has been constructed from a robust covariance matrix for high-dimensional data and robust linear regression. The purpose of this study is to show the usage of RPCR and RSIMPLS methods on an econometric data set, hence, making a comparison of two methods on an inflation model of Turkey. The considered methods have been compared in terms of predictive ability and goodness of fit by using a robust Root Mean Squared Error of Cross-validation (R-RMSECV), a robust R2 value and Robust Component Selection (RCS) statistic.

  19. Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks.

    PubMed

    Demirhan, Ayşe; Toru, Mustafa; Guler, Inan

    2015-07-01

    Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The detection of the healthy tissues is performed simultaneously with the diseased tissues because examining the change caused by the spread of tumor and edema on healthy tissues is very important for treatment planning. We used T1, T2, and FLAIR MR images of 20 subjects suffering from glial tumor. We developed an algorithm for stripping the skull before the segmentation process. The segmentation is performed using self-organizing map (SOM) that is trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ). Unlike other studies, we developed an algorithm for clustering the SOM instead of using an additional network. Input feature vector is constructed with the features obtained from stationary wavelet transform (SWT) coefficients. The results showed that average dice similarity indexes are 91% for WM, 87% for GM, 96% for CSF, 61% for tumor, and 77% for edema.

  20. A Kirchhoff approach to seismic modeling and prestack depth migration

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Yue

    1993-05-01

    The Kirchhoff integral provides a robust method for implementing seismic modeling and prestack depth migration, which can handle lateral velocity variation and turning waves. With a little extra computation cost, the Kirchoff-type migration can obtain multiple outputs that have the same phase but different amplitudes, compared with that of other migration methods. The ratio of these amplitudes is helpful in computing some quantities such as reflection angle. I develop a seismic modeling and prestack depth migration method based on the Kirchhoff integral, that handles both laterally variant velocity and a dip beyond 90 degrees. The method uses a finite-difference algorithm to calculate travel times and WKBJ amplitudes for the Kirchhoff integral. Compared to ray-tracing algorithms, the finite-difference algorithm gives an efficient implementation and single-valued quantities (first arrivals) on output. In my finite difference algorithm, the upwind scheme is used to calculate travel times, and the Crank-Nicolson scheme is used to calculate amplitudes. Moreover, interpolation is applied to save computation cost. The modeling and migration algorithms require a smooth velocity function. I develop a velocity-smoothing technique based on damped least-squares to aid in obtaining a successful migration.

  1. Evaluation of coastal zone color scanner diffuse attenuation coefficient algorithms for application to coastal waters

    NASA Astrophysics Data System (ADS)

    Mueller, James L.; Trees, Charles C.; Arnone, Robert A.

    1990-09-01

    The Coastal Zone Color Scannez (ZCS) and associated atmospheric and in-water algorithms have allowed synoptic analyses of regional and large scale variability of bio-optical properties [phytoplankton pigments and diffuse auenuation coefficient K(490)}. Austin and Petzold (1981) developed a robust in-water K(490) algorithm which related the diffuse attenuation coefficient at one optical depth [1/K(490)] to the ratio of the water-leaving radiances at 443 and 550 nm. Their regression analysis included diffuse attenuation coefficients K(490) up to 0.40 nm, but excluded data from estuarine areas, and other Case II waters, where the optical properties are not predominantly determined by phytoplankton. In these areas, errors are induced in the retrieval of remote sensing K(490) by extremely low water-leaving radiance at 443 nm [Lw(443) as viewed at the sensor may only be 1 or 2 digital counts], and improved cury can be realized using algorithms based on wavelengths where Lw(λ) is larger. Using ocean optical profiles quired by the Visibility Laboratory, algorithms are developed to predict K(490) from ratios of water leaving radiances at 520 and 670, as well as 443 and 550 nm.

  2. Development of an algorithm for an EEG-based driver fatigue countermeasure.

    PubMed

    Lal, Saroj K L; Craig, Ashley; Boord, Peter; Kirkup, Les; Nguyen, Hung

    2003-01-01

    Fatigue affects a driver's ability to proceed safely. Driver-related fatigue and/or sleepiness are a significant cause of traffic accidents, which makes this an area of great socioeconomic concern. Monitoring physiological signals while driving provides the possibility of detecting and warning of fatigue. The aim of this paper is to describe an EEG-based fatigue countermeasure algorithm and to report its reliability. Changes in all major EEG bands during fatigue were used to develop the algorithm for detecting different levels of fatigue. The software was shown to be capable of detecting fatigue accurately in 10 subjects tested. The percentage of time the subjects were detected to be in a fatigue state was significantly different than the alert phase (P<.01). This is the first countermeasure software described that has shown to detect fatigue based on EEG changes in all frequency bands. Field research is required to evaluate the fatigue software in order to produce a robust and reliable fatigue countermeasure system. The development of the fatigue countermeasure algorithm forms the basis of a future fatigue countermeasure device. Implementation of electronic devices for fatigue detection is crucial for reducing fatigue-related road accidents and their associated costs.

  3. Performance improvement of an active vibration absorber subsystem for an aircraft model using a bees algorithm based on multi-objective intelligent optimization

    NASA Astrophysics Data System (ADS)

    Zarchi, Milad; Attaran, Behrooz

    2017-11-01

    This study develops a mathematical model to investigate the behaviour of adaptable shock absorber dynamics for the six-degree-of-freedom aircraft model in the taxiing phase. The purpose of this research is to design a proportional-integral-derivative technique for control of an active vibration absorber system using a hydraulic nonlinear actuator based on the bees algorithm. This optimization algorithm is inspired by the natural intelligent foraging behaviour of honey bees. The neighbourhood search strategy is used to find better solutions around the previous one. The parameters of the controller are adjusted by minimizing the aircraft's acceleration and impact force as the multi-objective function. The major advantages of this algorithm over other optimization algorithms are its simplicity, flexibility and robustness. The results of the numerical simulation indicate that the active suspension increases the comfort of the ride for passengers and the fatigue life of the structure. This is achieved by decreasing the impact force, displacement and acceleration significantly.

  4. Robust tissue-air volume segmentation of MR images based on the statistics of phase and magnitude: Its applications in the display of susceptibility-weighted imaging of the brain.

    PubMed

    Du, Yiping P; Jin, Zhaoyang

    2009-10-01

    To develop a robust algorithm for tissue-air segmentation in magnetic resonance imaging (MRI) using the statistics of phase and magnitude of the images. A multivariate measure based on the statistics of phase and magnitude was constructed for tissue-air volume segmentation. The standard deviation of first-order phase difference and the standard deviation of magnitude were calculated in a 3 x 3 x 3 kernel in the image domain. To improve differentiation accuracy, the uniformity of phase distribution in the kernel was also calculated and linear background phase introduced by field inhomogeneity was corrected. The effectiveness of the proposed volume segmentation technique was compared to a conventional approach that uses the magnitude data alone. The proposed algorithm was shown to be more effective and robust in volume segmentation in both synthetic phantom and susceptibility-weighted images of human brain. Using our proposed volume segmentation method, veins in the peripheral regions of the brain were well depicted in the minimum-intensity projection of the susceptibility-weighted images. Using the additional statistics of phase, tissue-air volume segmentation can be substantially improved compared to that using the statistics of magnitude data alone. (c) 2009 Wiley-Liss, Inc.

  5. Probability-based hazard avoidance guidance for planetary landing

    NASA Astrophysics Data System (ADS)

    Yuan, Xu; Yu, Zhengshi; Cui, Pingyuan; Xu, Rui; Zhu, Shengying; Cao, Menglong; Luan, Enjie

    2018-03-01

    Future landing and sample return missions on planets and small bodies will seek landing sites with high scientific value, which may be located in hazardous terrains. Autonomous landing in such hazardous terrains and highly uncertain planetary environments is particularly challenging. Onboard hazard avoidance ability is indispensable, and the algorithms must be robust to uncertainties. In this paper, a novel probability-based hazard avoidance guidance method is developed for landing in hazardous terrains on planets or small bodies. By regarding the lander state as probabilistic, the proposed guidance algorithm exploits information on the uncertainty of lander position and calculates the probability of collision with each hazard. The collision probability serves as an accurate safety index, which quantifies the impact of uncertainties on the lander safety. Based on the collision probability evaluation, the state uncertainty of the lander is explicitly taken into account in the derivation of the hazard avoidance guidance law, which contributes to enhancing the robustness to the uncertain dynamics of planetary landing. The proposed probability-based method derives fully analytic expressions and does not require off-line trajectory generation. Therefore, it is appropriate for real-time implementation. The performance of the probability-based guidance law is investigated via a set of simulations, and the effectiveness and robustness under uncertainties are demonstrated.

  6. Design and analysis of a model predictive controller for active queue management.

    PubMed

    Wang, Ping; Chen, Hong; Yang, Xiaoping; Ma, Yan

    2012-01-01

    Model predictive (MP) control as a novel active queue management (AQM) algorithm in dynamic computer networks is proposed. According to the predicted future queue length in the data buffer, early packets at the router are dropped reasonably by the MPAQM controller so that the queue length reaches the desired value with minimal tracking error. The drop probability is obtained by optimizing the network performance. Further, randomized algorithms are applied to analyze the robustness of MPAQM successfully, and also to provide the stability domain of systems with uncertain network parameters. The performances of MPAQM are evaluated through a series of simulations in NS2. The simulation results show that the MPAQM algorithm outperforms RED, PI, and REM algorithms in terms of stability, disturbance rejection, and robustness. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Combining spatial and spectral information to improve crop/weed discrimination algorithms

    NASA Astrophysics Data System (ADS)

    Yan, L.; Jones, G.; Villette, S.; Paoli, J. N.; Gée, C.

    2012-01-01

    Reduction of herbicide spraying is an important key to environmentally and economically improve weed management. To achieve this, remote sensors such as imaging systems are commonly used to detect weed plants. We developed spatial algorithms that detect the crop rows to discriminate crop from weeds. These algorithms have been thoroughly tested and provide robust and accurate results without learning process but their detection is limited to inter-row areas. Crop/Weed discrimination using spectral information is able to detect intra-row weeds but generally needs a prior learning process. We propose a method based on spatial and spectral information to enhance the discrimination and overcome the limitations of both algorithms. The classification from the spatial algorithm is used to build the training set for the spectral discrimination method. With this approach we are able to improve the range of weed detection in the entire field (inter and intra-row). To test the efficiency of these algorithms, a relevant database of virtual images issued from SimAField model has been used and combined to LOPEX93 spectral database. The developed method based is evaluated and compared with the initial method in this paper and shows an important enhancement from 86% of weed detection to more than 95%.

  8. Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Koeppen, W. C.; Pilger, E.; Wright, R.

    2011-07-01

    We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth's volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.

  9. Development of a Robust Identifier for NPPs Transients Combining ARIMA Model and EBP Algorithm

    NASA Astrophysics Data System (ADS)

    Moshkbar-Bakhshayesh, Khalil; Ghofrani, Mohammad B.

    2014-08-01

    This study introduces a novel identification method for recognition of nuclear power plants (NPPs) transients by combining the autoregressive integrated moving-average (ARIMA) model and the neural network with error backpropagation (EBP) learning algorithm. The proposed method consists of three steps. First, an EBP based identifier is adopted to distinguish the plant normal states from the faulty ones. In the second step, ARIMA models use integrated (I) process to convert non-stationary data of the selected variables into stationary ones. Subsequently, ARIMA processes, including autoregressive (AR), moving-average (MA), or autoregressive moving-average (ARMA) are used to forecast time series of the selected plant variables. In the third step, for identification the type of transients, the forecasted time series are fed to the modular identifier which has been developed using the latest advances of EBP learning algorithm. Bushehr nuclear power plant (BNPP) transients are probed to analyze the ability of the proposed identifier. Recognition of transient is based on similarity of its statistical properties to the reference one, rather than the values of input patterns. More robustness against noisy data and improvement balance between memorization and generalization are salient advantages of the proposed identifier. Reduction of false identification, sole dependency of identification on the sign of each output signal, selection of the plant variables for transients training independent of each other, and extendibility for identification of more transients without unfavorable effects are other merits of the proposed identifier.

  10. Utilizing Adjoint-Based Error Estimates for Surrogate Models to Accurately Predict Probabilities of Events

    DOE PAGES

    Butler, Troy; Wildey, Timothy

    2018-01-01

    In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less

  11. Utilizing Adjoint-Based Error Estimates for Surrogate Models to Accurately Predict Probabilities of Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Troy; Wildey, Timothy

    In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less

  12. Multipurpose image watermarking algorithm based on multistage vector quantization.

    PubMed

    Lu, Zhe-Ming; Xu, Dian-Guo; Sun, Sheng-He

    2005-06-01

    The rapid growth of digital multimedia and Internet technologies has made copyright protection, copy protection, and integrity verification three important issues in the digital world. To solve these problems, the digital watermarking technique has been presented and widely researched. Traditional watermarking algorithms are mostly based on discrete transform domains, such as the discrete cosine transform, discrete Fourier transform (DFT), and discrete wavelet transform (DWT). Most of these algorithms are good for only one purpose. Recently, some multipurpose digital watermarking methods have been presented, which can achieve the goal of content authentication and copyright protection simultaneously. However, they are based on DWT or DFT. Lately, several robust watermarking schemes based on vector quantization (VQ) have been presented, but they can only be used for copyright protection. In this paper, we present a novel multipurpose digital image watermarking method based on the multistage vector quantizer structure, which can be applied to image authentication and copyright protection. In the proposed method, the semi-fragile watermark and the robust watermark are embedded in different VQ stages using different techniques, and both of them can be extracted without the original image. Simulation results demonstrate the effectiveness of our algorithm in terms of robustness and fragility.

  13. Robust hashing for 3D models

    NASA Astrophysics Data System (ADS)

    Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin

    2014-02-01

    3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.

  14. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Kut, Carmen; Liang, Wenxuan; Li, Xingde

    2017-03-01

    Cancer is known to alter the local optical properties of tissues. The detection of OCT-based optical attenuation provides a quantitative method to efficiently differentiate cancer from non-cancer tissues. In particular, the intraoperative use of quantitative OCT is able to provide a direct visual guidance in real time for accurate identification of cancer tissues, especially these without any obvious structural layers, such as brain cancer. However, current methods are suboptimal in providing high-speed and accurate OCT attenuation mapping for intraoperative brain cancer detection. In this paper, we report a novel frequency-domain (FD) algorithm to enable robust and fast characterization of optical attenuation as derived from OCT intensity images. The performance of this FD algorithm was compared with traditional fitting methods by analyzing datasets containing images from freshly resected human brain cancer and from a silica phantom acquired by a 1310 nm swept-source OCT (SS-OCT) system. With graphics processing unit (GPU)-based CUDA C/C++ implementation, this new attenuation mapping algorithm can offer robust and accurate quantitative interpretation of OCT images in real time during brain surgery.

  15. Robust and efficient fiducial tracking for augmented reality in HD-laparoscopic video streams

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Groch, A.; Baumhauer, M.; Maier-Hein, L.; Teber, D.; Rassweiler, J.; Meinzer, H.-P.; Wegner, In.

    2012-02-01

    Augmented Reality (AR) is a convenient way of porting information from medical images into the surgical field of view and can deliver valuable assistance to the surgeon, especially in laparoscopic procedures. In addition, high definition (HD) laparoscopic video devices are a great improvement over the previously used low resolution equipment. However, in AR applications that rely on real-time detection of fiducials from video streams, the demand for efficient image processing has increased due to the introduction of HD devices. We present an algorithm based on the well-known Conditional Density Propagation (CONDENSATION) algorithm which can satisfy these new demands. By incorporating a prediction around an already existing and robust segmentation algorithm, we can speed up the whole procedure while leaving the robustness of the fiducial segmentation untouched. For evaluation purposes we tested the algorithm on recordings from real interventions, allowing for a meaningful interpretation of the results. Our results show that we can accelerate the segmentation by a factor of 3.5 on average. Moreover, the prediction information can be used to compensate for fiducials that are temporarily occluded or out of scope, providing greater stability.

  16. Practical image registration concerns overcome by the weighted and filtered mutual information metric

    NASA Astrophysics Data System (ADS)

    Keane, Tommy P.; Saber, Eli; Rhody, Harvey; Savakis, Andreas; Raj, Jeffrey

    2012-04-01

    Contemporary research in automated panorama creation utilizes camera calibration or extensive knowledge of camera locations and relations to each other to achieve successful results. Research in image registration attempts to restrict these same camera parameters or apply complex point-matching schemes to overcome the complications found in real-world scenarios. This paper presents a novel automated panorama creation algorithm by developing an affine transformation search based on maximized mutual information (MMI) for region-based registration. Standard MMI techniques have been limited to applications with airborne/satellite imagery or medical images. We show that a novel MMI algorithm can approximate an accurate registration between views of realistic scenes of varying depth distortion. The proposed algorithm has been developed using stationary, color, surveillance video data for a scenario with no a priori camera-to-camera parameters. This algorithm is robust for strict- and nearly-affine-related scenes, while providing a useful approximation for the overlap regions in scenes related by a projective homography or a more complex transformation, allowing for a set of efficient and accurate initial conditions for pixel-based registration.

  17. Automatic Marker-free Longitudinal Infrared Image Registration by Shape Context Based Matching and Competitive Winner-guided Optimal Corresponding

    PubMed Central

    Lee, Chia-Yen; Wang, Hao-Jen; Lai, Jhih-Hao; Chang, Yeun-Chung; Huang, Chiun-Sheng

    2017-01-01

    Long-term comparisons of infrared image can facilitate the assessment of breast cancer tissue growth and early tumor detection, in which longitudinal infrared image registration is a necessary step. However, it is hard to keep markers attached on a body surface for weeks, and rather difficult to detect anatomic fiducial markers and match them in the infrared image during registration process. The proposed study, automatic longitudinal infrared registration algorithm, develops an automatic vascular intersection detection method and establishes feature descriptors by shape context to achieve robust matching, as well as to obtain control points for the deformation model. In addition, competitive winner-guided mechanism is developed for optimal corresponding. The proposed algorithm is evaluated in two ways. Results show that the algorithm can quickly lead to accurate image registration and that the effectiveness is superior to manual registration with a mean error being 0.91 pixels. These findings demonstrate that the proposed registration algorithm is reasonably accurate and provide a novel method of extracting a greater amount of useful data from infrared images. PMID:28145474

  18. Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems.

    PubMed

    Boukattaya, Mohamed; Mezghani, Neila; Damak, Tarak

    2018-06-01

    In this paper, robust and adaptive nonsingular fast terminal sliding-mode (NFTSM) control schemes for the trajectory tracking problem are proposed with known or unknown upper bound of the system uncertainty and external disturbances. The developed controllers take the advantage of the NFTSM theory to ensure fast convergence rate, singularity avoidance, and robustness against uncertainties and external disturbances. First, a robust NFTSM controller is proposed which guarantees that sliding surface and equilibrium point can be reached in a short finite-time from any initial state. Then, in order to cope with the unknown upper bound of the system uncertainty which may be occurring in practical applications, a new adaptive NFTSM algorithm is developed. One feature of the proposed control law is their adaptation techniques where the prior knowledge of parameters uncertainty and disturbances is not needed. However, the adaptive tuning law can estimate the upper bound of these uncertainties using only position and velocity measurements. Moreover, the proposed controller eliminates the chattering effect without losing the robustness property and the precision. Stability analysis is performed using the Lyapunov stability theory, and simulation studies are conducted to verify the effectiveness of the developed control schemes. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization

    PubMed Central

    Chen, Shuangqing; Wei, Lixin; Guan, Bing

    2018-01-01

    Particle swarm optimization (PSO) and fireworks algorithm (FWA) are two recently developed optimization methods which have been applied in various areas due to their simplicity and efficiency. However, when being applied to high-dimensional optimization problems, PSO algorithm may be trapped in the local optima owing to the lack of powerful global exploration capability, and fireworks algorithm is difficult to converge in some cases because of its relatively low local exploitation efficiency for noncore fireworks. In this paper, a hybrid algorithm called PS-FW is presented, in which the modified operators of FWA are embedded into the solving process of PSO. In the iteration process, the abandonment and supplement mechanism is adopted to balance the exploration and exploitation ability of PS-FW, and the modified explosion operator and the novel mutation operator are proposed to speed up the global convergence and to avoid prematurity. To verify the performance of the proposed PS-FW algorithm, 22 high-dimensional benchmark functions have been employed, and it is compared with PSO, FWA, stdPSO, CPSO, CLPSO, FIPS, Frankenstein, and ALWPSO algorithms. Results show that the PS-FW algorithm is an efficient, robust, and fast converging optimization method for solving global optimization problems. PMID:29675036

  20. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    PubMed

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1992-01-01

    Worked performed during the reporting period is summarized. Construction of robustly good trellis codes for use with sequential decoding was developed. The robustly good trellis codes provide a much better trade off between free distance and distance profile. The unequal error protection capabilities of convolutional codes was studied. The problem of finding good large constraint length, low rate convolutional codes for deep space applications is investigated. A formula for computing the free distance of 1/n convolutional codes was discovered. Double memory (DM) codes, codes with two memory units per unit bit position, were studied; a search for optimal DM codes is being conducted. An algorithm for constructing convolutional codes from a given quasi-cyclic code was developed. Papers based on the above work are included in the appendix.

  2. Development and experimental verification of a robust active noise control system for a diesel engine in submarines

    NASA Astrophysics Data System (ADS)

    Sachau, D.; Jukkert, S.; Hövelmann, N.

    2016-08-01

    This paper presents the development and experimental validation of an ANC (active noise control)-system designed for a particular application in the exhaust line of a submarine. Thereby, tonal components of the exhaust noise in the frequency band from 75 Hz to 120 Hz are reduced by more than 30 dB. The ANC-system is based on the feedforward leaky FxLMS-algorithm. The observability of the sound pressure in standing wave field is ensured by using two error microphones. The noninvasive online plant identification method is used to increase the robustness of the controller. Online plant identification is extended by a time-varying convergence gain to improve the performance in the presence of slight error in the frequency of the reference signal.

  3. Robust attitude control design for spacecraft under assigned velocity and control constraints.

    PubMed

    Hu, Qinglei; Li, Bo; Zhang, Youmin

    2013-07-01

    A novel robust nonlinear control design under the constraints of assigned velocity and actuator torque is investigated for attitude stabilization of a rigid spacecraft. More specifically, a nonlinear feedback control is firstly developed by explicitly taking into account the constraints on individual angular velocity components as well as external disturbances. Considering further the actuator misalignments and magnitude deviation, a modified robust least-squares based control allocator is employed to deal with the problem of distributing the previously designed three-axis moments over the available actuators, in which the focus of this control allocation is to find the optimal control vector of actuators by minimizing the worst-case residual error using programming algorithms. The attitude control performance using the controller structure is evaluated through a numerical example. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters

    PubMed Central

    Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun

    2017-01-01

    Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved. PMID:28241475

  5. Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters.

    PubMed

    Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun

    2017-02-23

    Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved.

  6. Robust mobility in human-populated environments

    NASA Astrophysics Data System (ADS)

    Gonzalez, Juan Pablo; Phillips, Mike; Neuman, Brad; Likhachev, Max

    2012-06-01

    Creating robots that can help humans in a variety of tasks requires robust mobility and the ability to safely navigate among moving obstacles. This paper presents an overview of recent research in the Robotics Collaborative Technology Alliance (RCTA) that addresses many of the core requirements for robust mobility in human-populated environments. Safe Interval Path Planning (SIPP) allows for very fast planning in dynamic environments when planning timeminimal trajectories. Generalized Safe Interval Path Planning extends this concept to trajectories that minimize arbitrary cost functions. Finally, generalized PPCP algorithm is used to generate plans that reason about the uncertainty in the predicted trajectories of moving obstacles and try to actively disambiguate the intentions of humans whenever necessary. We show how these approaches consider moving obstacles and temporal constraints and produce high-fidelity paths. Experiments in simulated environments show the performance of the algorithms under different controlled conditions, and experiments on physical mobile robots interacting with humans show how the algorithms perform under the uncertainties of the real world.

  7. Multilayer Perceptron for Robust Nonlinear Interval Regression Analysis Using Genetic Algorithms

    PubMed Central

    2014-01-01

    On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets. PMID:25110755

  8. Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.

    PubMed

    Hu, Yi-Chung

    2014-01-01

    On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.

  9. An H(∞) control approach to robust learning of feedforward neural networks.

    PubMed

    Jing, Xingjian

    2011-09-01

    A novel H(∞) robust control approach is proposed in this study to deal with the learning problems of feedforward neural networks (FNNs). The analysis and design of a desired weight update law for the FNN is transformed into a robust controller design problem for a discrete dynamic system in terms of the estimation error. The drawbacks of some existing learning algorithms can therefore be revealed, especially for the case that the output data is fast changing with respect to the input or the output data is corrupted by noise. Based on this approach, the optimal learning parameters can be found by utilizing the linear matrix inequality (LMI) optimization techniques to achieve a predefined H(∞) "noise" attenuation level. Several existing BP-type algorithms are shown to be special cases of the new H(∞)-learning algorithm. Theoretical analysis and several examples are provided to show the advantages of the new method. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Automatic segmentation of the optic nerve head for deformation measurements in video rate optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hidalgo-Aguirre, Maribel; Gitelman, Julian; Lesk, Mark Richard; Costantino, Santiago

    2015-11-01

    Optical coherence tomography (OCT) imaging has become a standard diagnostic tool in ophthalmology, providing essential information associated with various eye diseases. In order to investigate the dynamics of the ocular fundus, we present a simple and accurate automated algorithm to segment the inner limiting membrane in video-rate optic nerve head spectral domain (SD) OCT images. The method is based on morphological operations including a two-step contrast enhancement technique, proving to be very robust when dealing with low signal-to-noise ratio images and pathological eyes. An analysis algorithm was also developed to measure neuroretinal tissue deformation from the segmented retinal profiles. The performance of the algorithm is demonstrated, and deformation results are presented for healthy and glaucomatous eyes.

  11. VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Guliyev, E.; Kavatsyuk, M.; Lemmens, P. J. J.; Tambave, G.; Löhner, H.; Panda Collaboration

    2012-02-01

    A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an open-source project and is adaptable for other projects and sampling ADCs. Best performance with different types of signal sources can be achieved through flexible parameter selection. The on-line data-processing in FPGA enables to construct an almost dead-time free data acquisition system which is successfully evaluated as a first step towards building a complete trigger-less readout chain. Prototype setups are studied to determine the dead-time of the implemented algorithm, the rate of false triggering, timing performance, and event correlations.

  12. Abnormal global and local event detection in compressive sensing domain

    NASA Astrophysics Data System (ADS)

    Wang, Tian; Qiao, Meina; Chen, Jie; Wang, Chuanyun; Zhang, Wenjia; Snoussi, Hichem

    2018-05-01

    Abnormal event detection, also known as anomaly detection, is one challenging task in security video surveillance. It is important to develop effective and robust movement representation models for global and local abnormal event detection to fight against factors such as occlusion and illumination change. In this paper, a new algorithm is proposed. It can locate the abnormal events on one frame, and detect the global abnormal frame. The proposed algorithm employs a sparse measurement matrix designed to represent the movement feature based on optical flow efficiently. Then, the abnormal detection mission is constructed as a one-class classification task via merely learning from the training normal samples. Experiments demonstrate that our algorithm performs well on the benchmark abnormal detection datasets against state-of-the-art methods.

  13. Predictive Lateral Logic for Numerical Entry Guidance Algorithms

    NASA Technical Reports Server (NTRS)

    Smith, Kelly M.

    2016-01-01

    Recent entry guidance algorithm development123 has tended to focus on numerical integration of trajectories onboard in order to evaluate candidate bank profiles. Such methods enjoy benefits such as flexibility to varying mission profiles and improved robustness to large dispersions. A common element across many of these modern entry guidance algorithms is a reliance upon the concept of Apollo heritage lateral error (or azimuth error) deadbands in which the number of bank reversals to be performed is non-deterministic. This paper presents a closed-loop bank reversal method that operates with a fixed number of bank reversals defined prior to flight. However, this number of bank reversals can be modified at any point, including in flight, based on contingencies such as fuel leaks where propellant usage must be minimized.

  14. Parareal algorithms with local time-integrators for time fractional differential equations

    NASA Astrophysics Data System (ADS)

    Wu, Shu-Lin; Zhou, Tao

    2018-04-01

    It is challenge work to design parareal algorithms for time-fractional differential equations due to the historical effect of the fractional operator. A direct extension of the classical parareal method to such equations will lead to unbalance computational time in each process. In this work, we present an efficient parareal iteration scheme to overcome this issue, by adopting two recently developed local time-integrators for time fractional operators. In both approaches, one introduces auxiliary variables to localized the fractional operator. To this end, we propose a new strategy to perform the coarse grid correction so that the auxiliary variables and the solution variable are corrected separately in a mixed pattern. It is shown that the proposed parareal algorithm admits robust rate of convergence. Numerical examples are presented to support our conclusions.

  15. Subject independent facial expression recognition with robust face detection using a convolutional neural network.

    PubMed

    Matsugu, Masakazu; Mori, Katsuhiko; Mitari, Yusuke; Kaneda, Yuji

    2003-01-01

    Reliable detection of ordinary facial expressions (e.g. smile) despite the variability among individuals as well as face appearance is an important step toward the realization of perceptual user interface with autonomous perception of persons. We describe a rule-based algorithm for robust facial expression recognition combined with robust face detection using a convolutional neural network. In this study, we address the problem of subject independence as well as translation, rotation, and scale invariance in the recognition of facial expression. The result shows reliable detection of smiles with recognition rate of 97.6% for 5600 still images of more than 10 subjects. The proposed algorithm demonstrated the ability to discriminate smiling from talking based on the saliency score obtained from voting visual cues. To the best of our knowledge, it is the first facial expression recognition model with the property of subject independence combined with robustness to variability in facial appearance.

  16. Optimal design of loudspeaker arrays for robust cross-talk cancellation using the Taguchi method and the genetic algorithm.

    PubMed

    Bai, Mingsian R; Tung, Chih-Wei; Lee, Chih-Chung

    2005-05-01

    An optimal design technique of loudspeaker arrays for cross-talk cancellation with application in three-dimensional audio is presented. An array focusing scheme is presented on the basis of the inverse propagation that relates the transducers to a set of chosen control points. Tikhonov regularization is employed in designing the inverse cancellation filters. An extensive analysis is conducted to explore the cancellation performance and robustness issues. To best compromise the performance and robustness of the cross-talk cancellation system, optimal configurations are obtained with the aid of the Taguchi method and the genetic algorithm (GA). The proposed systems are further justified by physical as well as subjective experiments. The results reveal that large number of loudspeakers, closely spaced configuration, and optimal control point design all contribute to the robustness of cross-talk cancellation systems (CCS) against head misalignment.

  17. Methods for coherent lensless imaging and X-ray wavefront measurements

    NASA Astrophysics Data System (ADS)

    Guizar Sicairos, Manuel

    X-ray diffractive imaging is set apart from other high-resolution imaging techniques (e.g. scanning electron or atomic force microscopy) for its high penetration depth, which enables tomographic 3D imaging of thick samples and buried structures. Furthermore, using short x-ray pulses, it enables the capability to take ultrafast snapshots, giving a unique opportunity to probe nanoscale dynamics at femtosecond time scales. In this thesis we present improvements to phase retrieval algorithms, assess their performance through numerical simulations, and develop new methods for both imaging and wavefront measurement. Building on the original work by Faulkner and Rodenburg, we developed an improved reconstruction algorithm for phase retrieval with transverse translations of the object relative to the illumination beam. Based on gradient-based nonlinear optimization, this algorithm is capable of estimating the object, and at the same time refining the initial knowledge of the incident illumination and the object translations. The advantages of this algorithm over the original iterative transform approach are shown through numerical simulations. Phase retrieval has already shown substantial success in wavefront sensing at optical wavelengths. Although in principle the algorithms can be used at any wavelength, in practice the focus-diversity mechanism that makes optical phase retrieval robust is not practical to implement for x-rays. In this thesis we also describe the novel application of phase retrieval with transverse translations to the problem of x-ray wavefront sensing. This approach allows the characterization of the complex-valued x-ray field in-situ and at-wavelength and has several practical and algorithmic advantages over conventional focused beam measurement techniques. A few of these advantages include improved robustness through diverse measurements, reconstruction from far-field intensity measurements only, and significant relaxation of experimental requirements over other beam characterization approaches. Furthermore, we show that a one-dimensional version of this technique can be used to characterize an x-ray line focus produced by a cylindrical focusing element. We provide experimental demonstrations of the latter at hard x-ray wavelengths, where we have characterized the beams focused by a kinoform lens and an elliptical mirror. In both experiments the reconstructions exhibited good agreement with independent measurements, and in the latter a small mirror misalignment was inferred from the phase retrieval reconstruction. These experiments pave the way for the application of robust phase retrieval algorithms for in-situ alignment and performance characterization of x-ray optics for nanofocusing. We also present a study on how transverse translations help with the well-known uniqueness problem of one-dimensional phase retrieval. We also present a novel method for x-ray holography that is capable of reconstructing an image using an off-axis extended reference in a non-iterative computation, greatly generalizing an earlier approach by Podorov et al. The approach, based on the numerical application of derivatives on the field autocorrelation, was developed from first mathematical principles. We conducted a thorough theoretical study to develop technical and intuitive understanding of this technique and derived sufficient separation conditions required for an artifact-free reconstruction. We studied the effects of missing information in the Fourier domain, and of an imperfect reference, and we provide a signal-to-noise ratio comparison with the more traditional approach of Fourier transform holography. We demonstrated this new holographic approach through proof-of-principle optical experiments and later experimentally at soft x-ray wavelengths, where we compared its performance to Fourier transform holography, iterative phase retrieval and state-of-the-art zone-plate x-ray imaging techniques (scanning and full-field). Finally, we present a demonstration of the technique using a single 20 fs pulse from a high-harmonic table-top source. Holography with an extended reference is shown to provide fast, good quality images that are robust to noise and artifacts that arise from missing information due to a beam stop. (Abstract shortened by UMI.)

  18. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.

    PubMed

    Ge, Ruiyang; Wang, Yubao; Zhang, Jipeng; Yao, Li; Zhang, Hang; Long, Zhiying

    2016-04-01

    As a blind source separation technique, independent component analysis (ICA) has many applications in functional magnetic resonance imaging (fMRI). Although either temporal or spatial prior information has been introduced into the constrained ICA and semi-blind ICA methods to improve the performance of ICA in fMRI data analysis, certain types of additional prior information, such as the sparsity, has seldom been added to the ICA algorithms as constraints. In this study, we proposed a SparseFastICA method by adding the source sparsity as a constraint to the FastICA algorithm to improve the performance of the widely used FastICA. The source sparsity is estimated through a smoothed ℓ0 norm method. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of SparseFastICA and made a performance comparison between SparseFastICA, FastICA and Infomax ICA. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of SparseFastICA for the source separation in fMRI data. Both the simulated and real fMRI experimental results showed that SparseFastICA has better robustness to noise and better spatial detection power than FastICA. Although the spatial detection power of SparseFastICA and Infomax did not show significant difference, SparseFastICA had faster computation speed than Infomax. SparseFastICA was comparable to the Infomax algorithm with a faster computation speed. More importantly, SparseFastICA outperformed FastICA in robustness and spatial detection power and can be used to identify more accurate brain networks than FastICA algorithm. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A random sampling approach for robust estimation of tissue-to-plasma ratio from extremely sparse data.

    PubMed

    Chu, Hui-May; Ette, Ene I

    2005-09-02

    his study was performed to develop a new nonparametric approach for the estimation of robust tissue-to-plasma ratio from extremely sparsely sampled paired data (ie, one sample each from plasma and tissue per subject). Tissue-to-plasma ratio was estimated from paired/unpaired experimental data using independent time points approach, area under the curve (AUC) values calculated with the naïve data averaging approach, and AUC values calculated using sampling based approaches (eg, the pseudoprofile-based bootstrap [PpbB] approach and the random sampling approach [our proposed approach]). The random sampling approach involves the use of a 2-phase algorithm. The convergence of the sampling/resampling approaches was investigated, as well as the robustness of the estimates produced by different approaches. To evaluate the latter, new data sets were generated by introducing outlier(s) into the real data set. One to 2 concentration values were inflated by 10% to 40% from their original values to produce the outliers. Tissue-to-plasma ratios computed using the independent time points approach varied between 0 and 50 across time points. The ratio obtained from AUC values acquired using the naive data averaging approach was not associated with any measure of uncertainty or variability. Calculating the ratio without regard to pairing yielded poorer estimates. The random sampling and pseudoprofile-based bootstrap approaches yielded tissue-to-plasma ratios with uncertainty and variability. However, the random sampling approach, because of the 2-phase nature of its algorithm, yielded more robust estimates and required fewer replications. Therefore, a 2-phase random sampling approach is proposed for the robust estimation of tissue-to-plasma ratio from extremely sparsely sampled data.

  20. SISSY: An efficient and automatic algorithm for the analysis of EEG sources based on structured sparsity.

    PubMed

    Becker, H; Albera, L; Comon, P; Nunes, J-C; Gribonval, R; Fleureau, J; Guillotel, P; Merlet, I

    2017-08-15

    Over the past decades, a multitude of different brain source imaging algorithms have been developed to identify the neural generators underlying the surface electroencephalography measurements. While most of these techniques focus on determining the source positions, only a small number of recently developed algorithms provides an indication of the spatial extent of the distributed sources. In a recent comparison of brain source imaging approaches, the VB-SCCD algorithm has been shown to be one of the most promising algorithms among these methods. However, this technique suffers from several problems: it leads to amplitude-biased source estimates, it has difficulties in separating close sources, and it has a high computational complexity due to its implementation using second order cone programming. To overcome these problems, we propose to include an additional regularization term that imposes sparsity in the original source domain and to solve the resulting optimization problem using the alternating direction method of multipliers. Furthermore, we show that the algorithm yields more robust solutions by taking into account the temporal structure of the data. We also propose a new method to automatically threshold the estimated source distribution, which permits to delineate the active brain regions. The new algorithm, called Source Imaging based on Structured Sparsity (SISSY), is analyzed by means of realistic computer simulations and is validated on the clinical data of four patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Molecular descriptor subset selection in theoretical peptide quantitative structure-retention relationship model development using nature-inspired optimization algorithms.

    PubMed

    Žuvela, Petar; Liu, J Jay; Macur, Katarzyna; Bączek, Tomasz

    2015-10-06

    In this work, performance of five nature-inspired optimization algorithms, genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC), firefly algorithm (FA), and flower pollination algorithm (FPA), was compared in molecular descriptor selection for development of quantitative structure-retention relationship (QSRR) models for 83 peptides that originate from eight model proteins. The matrix with 423 descriptors was used as input, and QSRR models based on selected descriptors were built using partial least squares (PLS), whereas root mean square error of prediction (RMSEP) was used as a fitness function for their selection. Three performance criteria, prediction accuracy, computational cost, and the number of selected descriptors, were used to evaluate the developed QSRR models. The results show that all five variable selection methods outperform interval PLS (iPLS), sparse PLS (sPLS), and the full PLS model, whereas GA is superior because of its lowest computational cost and higher accuracy (RMSEP of 5.534%) with a smaller number of variables (nine descriptors). The GA-QSRR model was validated initially through Y-randomization. In addition, it was successfully validated with an external testing set out of 102 peptides originating from Bacillus subtilis proteomes (RMSEP of 22.030%). Its applicability domain was defined, from which it was evident that the developed GA-QSRR exhibited strong robustness. All the sources of the model's error were identified, thus allowing for further application of the developed methodology in proteomics.

  2. Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management.

    PubMed

    Li, Yongping; Huang, Guo H; Veawab, Amornvadee; Nie, Xianghui; Liu, Lei

    2006-08-01

    In this study, a hybrid two-stage fuzzy-stochastic robust programming (TFSRP) model is developed and applied to the planning of an air-quality management system. As an extension of existing fuzzy-robust programming and two-stage stochastic programming methods, the TFSRP can explicitly address complexities and uncertainties of the study system without unrealistic simplifications. Uncertain parameters can be expressed as probability density and/or fuzzy membership functions, such that robustness of the optimization efforts can be enhanced. Moreover, economic penalties as corrective measures against any infeasibilities arising from the uncertainties are taken into account. This method can, thus, provide a linkage to predefined policies determined by authorities that have to be respected when a modeling effort is undertaken. In its solution algorithm, the fuzzy decision space can be delimited through specification of the uncertainties using dimensional enlargement of the original fuzzy constraints. The developed model is applied to a case study of regional air quality management. The results indicate that reasonable solutions have been obtained. The solutions can be used for further generating pollution-mitigation alternatives with minimized system costs and for providing a more solid support for sound environmental decisions.

  3. Electrical conductivity imaging using gradient B, decomposition algorithm in magnetic resonance electrical impedance tomography (MREIT).

    PubMed

    Park, Chunjae; Kwon, Ohin; Woo, Eung Je; Seo, Jin Keun

    2004-03-01

    In magnetic resonance electrical impedance tomography (MREIT), we try to visualize cross-sectional conductivity (or resistivity) images of a subject. We inject electrical currents into the subject through surface electrodes and measure the z component Bz of the induced internal magnetic flux density using an MRI scanner. Here, z is the direction of the main magnetic field of the MRI scanner. We formulate the conductivity image reconstruction problem in MREIT from a careful analysis of the relationship between the injection current and the induced magnetic flux density Bz. Based on the novel mathematical formulation, we propose the gradient Bz decomposition algorithm to reconstruct conductivity images. This new algorithm needs to differentiate Bz only once in contrast to the previously developed harmonic Bz algorithm where the numerical computation of (inverted delta)2Bz is required. The new algorithm, therefore, has the important advantage of much improved noise tolerance. Numerical simulations with added random noise of realistic amounts show the feasibility of the algorithm in practical applications and also its robustness against measurement noise.

  4. Algorithms for Maneuvering Spacecraft Around Small Bodies

    NASA Technical Reports Server (NTRS)

    Acikmese, A. Bechet; Bayard, David

    2006-01-01

    A document describes mathematical derivations and applications of autonomous guidance algorithms for maneuvering spacecraft in the vicinities of small astronomical bodies like comets or asteroids. These algorithms compute fuel- or energy-optimal trajectories for typical maneuvers by solving the associated optimal-control problems with relevant control and state constraints. In the derivations, these problems are converted from their original continuous (infinite-dimensional) forms to finite-dimensional forms through (1) discretization of the time axis and (2) spectral discretization of control inputs via a finite number of Chebyshev basis functions. In these doubly discretized problems, the Chebyshev coefficients are the variables. These problems are, variously, either convex programming problems or programming problems that can be convexified. The resulting discrete problems are convex parameter-optimization problems; this is desirable because one can take advantage of very efficient and robust algorithms that have been developed previously and are well established for solving such problems. These algorithms are fast, do not require initial guesses, and always converge to global optima. Following the derivations, the algorithms are demonstrated by applying them to numerical examples of flyby, descent-to-hover, and ascent-from-hover maneuvers.

  5. Detecting REM sleep from the finger: an automatic REM sleep algorithm based on peripheral arterial tone (PAT) and actigraphy.

    PubMed

    Herscovici, Sarah; Pe'er, Avivit; Papyan, Surik; Lavie, Peretz

    2007-02-01

    Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring. The innovative method of optimization using a genetic algorithm has been proven to yield robust results in the validation set.

  6. Implementing a C++ Version of the Joint Seismic-Geodetic Algorithm for Finite-Fault Detection and Slip Inversion for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Felizardo, C.; Minson, S. E.; Boese, M.; Langbein, J. O.; Guillemot, C.; Murray, J. R.

    2015-12-01

    The earthquake early warning (EEW) systems in California and elsewhere can greatly benefit from algorithms that generate estimates of finite-fault parameters. These estimates could significantly improve real-time shaking calculations and yield important information for immediate disaster response. Minson et al. (2015) determined that combining FinDer's seismic-based algorithm (Böse et al., 2012) with BEFORES' geodetic-based algorithm (Minson et al., 2014) yields a more robust and informative joint solution than using either algorithm alone. FinDer examines the distribution of peak ground accelerations from seismic stations and determines the best finite-fault extent and strike from template matching. BEFORES employs a Bayesian framework to search for the best slip inversion over all possible fault geometries in terms of strike and dip. Using FinDer and BEFORES together generates estimates of finite-fault extent, strike, dip, preferred slip, and magnitude. To yield the quickest, most flexible, and open-source version of the joint algorithm, we translated BEFORES and FinDer from Matlab into C++. We are now developing a C++ Application Protocol Interface for these two algorithms to be connected to the seismic and geodetic data flowing from the EEW system. The interface that is being developed will also enable communication between the two algorithms to generate the joint solution of finite-fault parameters. Once this interface is developed and implemented, the next step will be to run test seismic and geodetic data through the system via the Earthworm module, Tank Player. This will allow us to examine algorithm performance on simulated data and past real events.

  7. Design and development of a prototype platform for gait analysis

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, T. E.; Marti, M. A.; Jagani, J.; Garcia, V.; Iliff, G. J.; Phoenix, A.; Woolard, A. G.; Malladi, V. V. N. S.; Bales, D. B.; Tarazaga, P. A.

    2017-04-01

    The field of event classification and localization in building environments using accelerometers has grown significantly due to its implications for energy, security, and emergency protocols. Virginia Tech's Goodwin Hall (VT-GH) provides a robust testbed for such work, but a reduced scale testbed could provide significant benefits by allowing algorithm development to occur in a simplified environment. Environments such as VT-GH have high human traffic that contributes external noise disrupting test signals. This paper presents a design solution through the development of an isolated platform for data collection, portable demonstrations, and the development of localization and classification algorithms. The platform's success was quantified by the resulting transmissibility of external excitation sources, demonstrating the capabilities of the platform to isolate external disturbances while preserving gait information. This platform demonstrates the collection of high-quality gait information in otherwise noisy environments for data collection or demonstration purposes.

  8. Implementation of a Multichannel Serial Data Streaming Algorithm using the Xilinx Serial RapidIO Solution

    NASA Technical Reports Server (NTRS)

    Doxley, Charles A.

    2016-01-01

    In the current world of applications that use reconfigurable technology implemented on field programmable gate arrays (FPGAs), there is a need for flexible architectures that can grow as the systems evolve. A project has limited resources and a fixed set of requirements that development efforts are tasked to meet. Designers must develop robust solutions that practically meet the current customer demands and also have the ability to grow for future performance. This paper describes the development of a high speed serial data streaming algorithm that allows for transmission of multiple data channels over a single serial link. The technique has the ability to change to meet new applications developed for future design considerations. This approach uses the Xilinx Serial RapidIO LOGICORE Solution to implement a flexible infrastructure to meet the current project requirements with the ability to adapt future system designs.

  9. A new approach to pre-processing digital image for wavelet-based watermark

    NASA Astrophysics Data System (ADS)

    Agreste, Santa; Andaloro, Guido

    2008-11-01

    The growth of the Internet has increased the phenomenon of digital piracy, in multimedia objects, like software, image, video, audio and text. Therefore it is strategic to individualize and to develop methods and numerical algorithms, which are stable and have low computational cost, that will allow us to find a solution to these problems. We describe a digital watermarking algorithm for color image protection and authenticity: robust, not blind, and wavelet-based. The use of Discrete Wavelet Transform is motivated by good time-frequency features and a good match with Human Visual System directives. These two combined elements are important for building an invisible and robust watermark. Moreover our algorithm can work with any image, thanks to the step of pre-processing of the image that includes resize techniques that adapt to the size of the original image for Wavelet transform. The watermark signal is calculated in correlation with the image features and statistic properties. In the detection step we apply a re-synchronization between the original and watermarked image according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has been shown to be resistant against geometric, filtering, and StirMark attacks with a low rate of false alarm.

  10. Firefly as a novel swarm intelligence variable selection method in spectroscopy.

    PubMed

    Goodarzi, Mohammad; dos Santos Coelho, Leandro

    2014-12-10

    A critical step in multivariate calibration is wavelength selection, which is used to build models with better prediction performance when applied to spectral data. Up to now, many feature selection techniques have been developed. Among all different types of feature selection techniques, those based on swarm intelligence optimization methodologies are more interesting since they are usually simulated based on animal and insect life behavior to, e.g., find the shortest path between a food source and their nests. This decision is made by a crowd, leading to a more robust model with less falling in local minima during the optimization cycle. This paper represents a novel feature selection approach to the selection of spectroscopic data, leading to more robust calibration models. The performance of the firefly algorithm, a swarm intelligence paradigm, was evaluated and compared with genetic algorithm and particle swarm optimization. All three techniques were coupled with partial least squares (PLS) and applied to three spectroscopic data sets. They demonstrate improved prediction results in comparison to when only a PLS model was built using all wavelengths. Results show that firefly algorithm as a novel swarm paradigm leads to a lower number of selected wavelengths while the prediction performance of built PLS stays the same. Copyright © 2014. Published by Elsevier B.V.

  11. Reconstruction method for inversion problems in an acoustic tomography based temperature distribution measurement

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Liu, Shi; Tong, Guowei

    2017-11-01

    In industrial areas, temperature distribution information provides a powerful data support for improving system efficiency, reducing pollutant emission, ensuring safety operation, etc. As a noninvasive measurement technology, acoustic tomography (AT) has been widely used to measure temperature distribution where the efficiency of the reconstruction algorithm is crucial for the reliability of the measurement results. Different from traditional reconstruction techniques, in this paper a two-phase reconstruction method is proposed to ameliorate the reconstruction accuracy (RA). In the first phase, the measurement domain is discretized by a coarse square grid to reduce the number of unknown variables to mitigate the ill-posed nature of the AT inverse problem. By taking into consideration the inaccuracy of the measured time-of-flight data, a new cost function is constructed to improve the robustness of the estimation, and a grey wolf optimizer is used to solve the proposed cost function to obtain the temperature distribution on the coarse grid. In the second phase, the Adaboost.RT based BP neural network algorithm is developed for predicting the temperature distribution on the refined grid in accordance with the temperature distribution data estimated in the first phase. Numerical simulations and experiment measurement results validate the superiority of the proposed reconstruction algorithm in improving the robustness and RA.

  12. ROBUST ONLINE MONITORING FOR CALIBRATION ASSESSMENT OF TRANSMITTERS AND INSTRUMENTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Tipireddy, Ramakrishna; Lerchen, Megan E.

    Robust online monitoring (OLM) technologies are expected to enable the extension or elimination of periodic sensor calibration intervals in operating and new reactors. Specifically, the next generation of OLM technology is expected to include newly developed advanced algorithms that improve monitoring of sensor/system performance and enable the use of plant data to derive information that currently cannot be measured. These advances in OLM technologies will improve the safety and reliability of current and planned nuclear power systems through improved accuracy and increased reliability of sensors used to monitor key parameters. In this paper, we discuss an overview of research beingmore » performed within the Nuclear Energy Enabling Technologies (NEET)/Advanced Sensors and Instrumentation (ASI) program, for the development of OLM algorithms to use sensor outputs and, in combination with other available information, 1) determine whether one or more sensors are out of calibration or failing and 2) replace a failing sensor with reliable, accurate sensor outputs. Algorithm development is focused on the following OLM functions: • Signal validation – fault detection and selection of acceptance criteria • Virtual sensing – signal value prediction and acceptance criteria • Response-time assessment – fault detection and acceptance criteria selection A GP-based uncertainty quantification (UQ) method previously developed for UQ in OLM, was adapted for use in sensor-fault detection and virtual sensing. For signal validation, the various components to the OLM residual (which is computed using an AAKR model) were explicitly defined and modeled using a GP. Evaluation was conducted using flow loop data from multiple sources. Results using experimental data from laboratory-scale flow loops indicate that the approach, while capable of detecting sensor drift, may be incapable of discriminating between sensor drift and model inadequacy. This may be due to a simplification applied in the initial modeling, where the sensor degradation is assumed to be stationary. In the case of virtual sensors, the GP model was used in a predictive mode to estimate the correct sensor reading for sensors that may have failed. Results have indicated the viability of using this approach for virtual sensing. However, the GP model has proven to be computationally expensive, and so alternative algorithms for virtual sensing are being evaluated. Finally, automated approaches to performing noise analysis for extracting sensor response time were developed. Evaluation of this technique using laboratory-scale data indicates that it compares well with manual techniques previously used for noise analysis. Moreover, the automated and manual approaches for noise analysis also compare well with the current “gold standard”, hydraulic ramp testing, for response time monitoring. Ongoing research in this project is focused on further evaluation of the algorithms, optimization for accuracy and computational efficiency, and integration into a suite of tools for robust OLM that are applicable to monitoring sensor calibration state in nuclear power plants.« less

  13. Design of permanent magnet synchronous motor speed loop controller based on sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Qiang, Jiang; Meng-wei, Liao; Ming-jie, Luo

    2018-03-01

    Abstract.The control performance of Permanent Magnet Synchronous Motor will be affected by the fluctuation or changes of mechanical parameters when PMSM is applied as driving motor in actual electric vehicle,and external disturbance would influence control robustness.To improve control dynamic quality and robustness of PMSM speed control system, a new second order integral sliding mode control algorithm is introduced into PMSM vector control.The simulation results show that, compared with the traditional PID control,the modified control scheme optimized has better control precision and dynamic response ability and perform better with a stronger robustness facing external disturbance,it can effectively solve the traditional sliding mode variable structure control chattering problems as well.

  14. Analysis, calculation and utilization of the k-balance attribute in interdependent networks

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Li, Qing; Wang, Dan; Xu, Mingwei

    2018-05-01

    Interdependent networks, where two networks depend on each other, are becoming more and more significant in modern systems. From previous work, it can be concluded that interdependent networks are more vulnerable than a single network. The robustness in interdependent networks deserves special attention. In this paper, we propose a metric of robustness from a new perspective-the balance. First, we define the balance-coefficient of the interdependent system. Based on precise analysis and derivation, we prove some significant theories and provide an efficient algorithm to compute the balance-coefficient. Finally, we propose an optimal solution to reduce the balance-coefficient to enhance the robustness of the given system. Comprehensive experiments confirm the efficiency of our algorithms.

  15. Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data.

    PubMed

    Becker, Natalia; Toedt, Grischa; Lichter, Peter; Benner, Axel

    2011-05-09

    Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net.We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone.Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution. Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (L1) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error.Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations. The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters.The penalized SVM classification algorithms as well as fixed grid and interval search for finding appropriate tuning parameters were implemented in our freely available R package 'penalizedSVM'.We conclude that the Elastic SCAD SVM is a flexible and robust tool for classification and feature selection tasks for high-dimensional data such as microarray data sets.

  16. Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data

    PubMed Central

    2011-01-01

    Background Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net. We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone. Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution. Results Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (L1) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error. Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations. Conclusions The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters. The penalized SVM classification algorithms as well as fixed grid and interval search for finding appropriate tuning parameters were implemented in our freely available R package 'penalizedSVM'. We conclude that the Elastic SCAD SVM is a flexible and robust tool for classification and feature selection tasks for high-dimensional data such as microarray data sets. PMID:21554689

  17. Spatial detection of tv channel logos as outliers from the content

    NASA Astrophysics Data System (ADS)

    Ekin, Ahmet; Braspenning, Ralph

    2006-01-01

    This paper proposes a purely image-based TV channel logo detection algorithm that can detect logos independently from their motion and transparency features. The proposed algorithm can robustly detect any type of logos, such as transparent and animated, without requiring any temporal constraints whereas known methods have to wait for the occurrence of large motion in the scene and assume stationary logos. The algorithm models logo pixels as outliers from the actual scene content that is represented by multiple 3-D histograms in the YC BC R space. We use four scene histograms corresponding to each of the four corners because the content characteristics change from one image corner to another. A further novelty of the proposed algorithm is that we define image corners and the areas where we compute the scene histograms by a cinematic technique called Golden Section Rule that is used by professionals. The robustness of the proposed algorithm is demonstrated over a dataset of representative TV content.

  18. Inverse algorithms for 2D shallow water equations in presence of wet dry fronts: Application to flood plain dynamics

    NASA Astrophysics Data System (ADS)

    Monnier, J.; Couderc, F.; Dartus, D.; Larnier, K.; Madec, R.; Vila, J.-P.

    2016-11-01

    The 2D shallow water equations adequately model some geophysical flows with wet-dry fronts (e.g. flood plain or tidal flows); nevertheless deriving accurate, robust and conservative numerical schemes for dynamic wet-dry fronts over complex topographies remains a challenge. Furthermore for these flows, data are generally complex, multi-scale and uncertain. Robust variational inverse algorithms, providing sensitivity maps and data assimilation processes may contribute to breakthrough shallow wet-dry front dynamics modelling. The present study aims at deriving an accurate, positive and stable finite volume scheme in presence of dynamic wet-dry fronts, and some corresponding inverse computational algorithms (variational approach). The schemes and algorithms are assessed on classical and original benchmarks plus a real flood plain test case (Lèze river, France). Original sensitivity maps with respect to the (friction, topography) pair are performed and discussed. The identification of inflow discharges (time series) or friction coefficients (spatially distributed parameters) demonstrate the algorithms efficiency.

  19. Performance study of LMS based adaptive algorithms for unknown system identification

    NASA Astrophysics Data System (ADS)

    Javed, Shazia; Ahmad, Noor Atinah

    2014-07-01

    Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.

  20. Optical image hiding based on computational ghost imaging

    NASA Astrophysics Data System (ADS)

    Wang, Le; Zhao, Shengmei; Cheng, Weiwen; Gong, Longyan; Chen, Hanwu

    2016-05-01

    Imaging hiding schemes play important roles in now big data times. They provide copyright protections of digital images. In the paper, we propose a novel image hiding scheme based on computational ghost imaging to have strong robustness and high security. The watermark is encrypted with the configuration of a computational ghost imaging system, and the random speckle patterns compose a secret key. Least significant bit algorithm is adopted to embed the watermark and both the second-order correlation algorithm and the compressed sensing (CS) algorithm are used to extract the watermark. The experimental and simulation results show that the authorized users can get the watermark with the secret key. The watermark image could not be retrieved when the eavesdropping ratio is less than 45% with the second-order correlation algorithm, whereas it is less than 20% with the TVAL3 CS reconstructed algorithm. In addition, the proposed scheme is robust against the 'salt and pepper' noise and image cropping degradations.

Top