Sample records for develop small molecule

  1. Recent advances in developing small molecules targeting RNA.

    PubMed

    Guan, Lirui; Disney, Matthew D

    2012-01-20

    RNAs are underexploited targets for small molecule drugs or chemical probes of function. This may be due, in part, to a fundamental lack of understanding of the types of small molecules that bind RNA specifically and the types of RNA motifs that specifically bind small molecules. In this review, we describe recent advances in the development and design of small molecules that bind to RNA and modulate function that aim to fill this void.

  2. Small Molecule Inhibitors of AI-2 Signaling in Bacteria: State-of-the-Art and Future Perspectives for Anti-Quorum Sensing Agents

    PubMed Central

    Guo, Min; Gamby, Sonja; Zheng, Yue; Sintim, Herman O.

    2013-01-01

    Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules. PMID:23994835

  3. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset | Office of Cancer Genomics

    Cancer.gov

    Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset.

  4. Activation of Polymine Catabolism as a Novel Strategy for Treating and/or Preventing Human Prostate Cancer

    DTIC Science & Technology

    2006-03-01

    strategy against prostate cancer and thus, worthy of small molecule discovery and development. On the basis of findings obtained over the past 3...support for the discovery and development of specific small molecule inducers of SSAT as a novel therapeutic strategy targeting prostate cancer. This...D. Unscheduled Findings. Findings under Tasks 1 and 3 provided genetic evidence for the discovery and development of small molecule inducers of

  5. Inforna 2.0: A Platform for the Sequence-Based Design of Small Molecules Targeting Structured RNAs.

    PubMed

    Disney, Matthew D; Winkelsas, Audrey M; Velagapudi, Sai Pradeep; Southern, Mark; Fallahi, Mohammad; Childs-Disney, Jessica L

    2016-06-17

    The development of small molecules that target RNA is challenging yet, if successful, could advance the development of chemical probes to study RNA function or precision therapeutics to treat RNA-mediated disease. Previously, we described Inforna, an approach that can mine motifs (secondary structures) within target RNAs, which is deduced from the RNA sequence, and compare them to a database of known RNA motif-small molecule binding partners. Output generated by Inforna includes the motif found in both the database and the desired RNA target, lead small molecules for that target, and other related meta-data. Lead small molecules can then be tested for binding and affecting cellular (dys)function. Herein, we describe Inforna 2.0, which incorporates all known RNA motif-small molecule binding partners reported in the scientific literature, a chemical similarity searching feature, and an improved user interface and is freely available via an online web server. By incorporation of interactions identified by other laboratories, the database has been doubled, containing 1936 RNA motif-small molecule interactions, including 244 unique small molecules and 1331 motifs. Interestingly, chemotype analysis of the compounds that bind RNA in the database reveals features in small molecule chemotypes that are privileged for binding. Further, this updated database expanded the number of cellular RNAs to which lead compounds can be identified.

  6. Identification of a Broad-Spectrum Antiviral Small Molecule against Severe Acute Respiratory Syndrome Coronavirus and Ebola, Hendra, and Nipah Viruses by Using a Novel High-Throughput Screening Assay

    PubMed Central

    Elshabrawy, Hatem A.; Fan, Jilao; Haddad, Christine S.; Ratia, Kiira; Broder, Christopher C.; Caffrey, Michael

    2014-01-01

    ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. IMPORTANCE We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug. PMID:24501399

  7. Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay.

    PubMed

    Elshabrawy, Hatem A; Fan, Jilao; Haddad, Christine S; Ratia, Kiira; Broder, Christopher C; Caffrey, Michael; Prabhakar, Bellur S

    2014-04-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug.

  8. Systems Based Study of the Therapeutic Potential of Small Charged Molecules for the Inhibition of IL-1 Mediated Cartilage Degradation

    PubMed Central

    Kar, Saptarshi; Smith, David W.; Gardiner, Bruce S.; Grodzinsky, Alan J.

    2016-01-01

    Inflammatory cytokines are key drivers of cartilage degradation in post-traumatic osteoarthritis. Cartilage degradation mediated by these inflammatory cytokines has been extensively investigated using in vitro experimental systems. Based on one such study, we have developed a computational model to quantitatively assess the impact of charged small molecules intended to inhibit IL-1 mediated cartilage degradation. We primarily focus on the simplest possible computational model of small molecular interaction with the IL-1 system—direct binding of the small molecule to the active site on the IL-1 molecule itself. We first use the model to explore the uptake and release kinetics of the small molecule inhibitor by cartilage tissue. Our results show that negatively charged small molecules are excluded from the negatively charged cartilage tissue and have uptake kinetics in the order of hours. In contrast, the positively charged small molecules are drawn into the cartilage with uptake and release timescales ranging from hours to days. Using our calibrated computational model, we subsequently explore the effect of small molecule charge and binding constant on the rate of cartilage degradation. The results from this analysis indicate that the small molecules are most effective in inhibiting cartilage degradation if they are either positively charged and/or bind strongly to IL-1α, or both. Furthermore, our results showed that the cartilage structural homeostasis can be restored by the small molecule if administered within six days following initial tissue exposure to IL-1α. We finally extended the scope of the computational model by simulating the competitive inhibition of cartilage degradation by the small molecule. Results from this model show that small molecules are more efficient in inhibiting cartilage degradation by binding directly to IL-1α rather than binding to IL-1α receptors. The results from this study can be used as a template for the design and development of more pharmacologically effective osteoarthritis drugs, and to investigate possible therapeutic options. PMID:27977731

  9. ChemBank: a small-molecule screening and cheminformatics resource database.

    PubMed

    Seiler, Kathleen Petri; George, Gregory A; Happ, Mary Pat; Bodycombe, Nicole E; Carrinski, Hyman A; Norton, Stephanie; Brudz, Steve; Sullivan, John P; Muhlich, Jeremy; Serrano, Martin; Ferraiolo, Paul; Tolliday, Nicola J; Schreiber, Stuart L; Clemons, Paul A

    2008-01-01

    ChemBank (http://chembank.broad.harvard.edu/) is a public, web-based informatics environment developed through a collaboration between the Chemical Biology Program and Platform at the Broad Institute of Harvard and MIT. This knowledge environment includes freely available data derived from small molecules and small-molecule screens and resources for studying these data. ChemBank is unique among small-molecule databases in its dedication to the storage of raw screening data, its rigorous definition of screening experiments in terms of statistical hypothesis testing, and its metadata-based organization of screening experiments into projects involving collections of related assays. ChemBank stores an increasingly varied set of measurements derived from cells and other biological assay systems treated with small molecules. Analysis tools are available and are continuously being developed that allow the relationships between small molecules, cell measurements, and cell states to be studied. Currently, ChemBank stores information on hundreds of thousands of small molecules and hundreds of biomedically relevant assays that have been performed at the Broad Institute by collaborators from the worldwide research community. The goal of ChemBank is to provide life scientists unfettered access to biomedically relevant data and tools heretofore available primarily in the private sector.

  10. Antibody-enabled small-molecule drug discovery.

    PubMed

    Lawson, Alastair D G

    2012-06-29

    Although antibody-based therapeutics have become firmly established as medicines for serious diseases, the value of antibodies as tools in the early stages of small-molecule drug discovery is only beginning to be realized. In particular, antibodies may provide information to reduce risk in small-molecule drug discovery by enabling the validation of targets and by providing insights into the design of small-molecule screening assays. Moreover, antibodies can act as guides in the quest for small molecules that have the ability to modulate protein-protein interactions, which have traditionally only been considered to be tractable targets for biological drugs. The development of small molecules that have similar therapeutic effects to current biologics has the potential to benefit a broader range of patients at earlier stages of disease.

  11. Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics

    PubMed Central

    Maschinot, C.A.; Pace, J.R.; Hadden, M.K.

    2016-01-01

    The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds. PMID:26310919

  12. Small Molecule Chemical Probes of MicroRNA Function

    PubMed Central

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R.; Disney, Matthew D.

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as strides are made to understand small molecule recognition of RNA from a fundamental perspective. PMID:25500006

  13. Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer's disease.

    PubMed

    Habchi, Johnny; Chia, Sean; Limbocker, Ryan; Mannini, Benedetta; Ahn, Minkoo; Perni, Michele; Hansson, Oskar; Arosio, Paolo; Kumita, Janet R; Challa, Pavan Kumar; Cohen, Samuel I A; Linse, Sara; Dobson, Christopher M; Knowles, Tuomas P J; Vendruscolo, Michele

    2017-01-10

    The aggregation of the 42-residue form of the amyloid-β peptide (Aβ42) is a pivotal event in Alzheimer's disease (AD). The use of chemical kinetics has recently enabled highly accurate quantifications of the effects of small molecules on specific microscopic steps in Aβ42 aggregation. Here, we exploit this approach to develop a rational drug discovery strategy against Aβ42 aggregation that uses as a read-out the changes in the nucleation and elongation rate constants caused by candidate small molecules. We thus identify a pool of compounds that target specific microscopic steps in Aβ42 aggregation. We then test further these small molecules in human cerebrospinal fluid and in a Caenorhabditis elegans model of AD. Our results show that this strategy represents a powerful approach to identify systematically small molecule lead compounds, thus offering an appealing opportunity to reduce the attrition problem in drug discovery.

  14. Development of small molecule biosensors by coupling the recognition of the bacterial allosteric transcription factor with isothermal strand displacement amplification.

    PubMed

    Yao, Yongpeng; Li, Shanshan; Cao, Jiaqian; Liu, Weiwei; Fan, Keqiang; Xiang, Wensheng; Yang, Keqian; Kong, Deming; Wang, Weishan

    2018-05-08

    Here, we demonstrate an easy-to-implement and general biosensing strategy by coupling the small-molecule recognition of the bacterial allosteric transcription factor (aTF) with isothermal strand displacement amplification (SDA) in vitro. Based on this strategy, we developed two biosensors for the detection of an antiseptic, p-hydroxybenzoic acid, and a disease marker, uric acid, using bacterial aTF HosA and HucR, respectively, highlighting the great potential of this strategy for the development of small-molecule biosensors.

  15. High Throughput, Label-free Screening Small Molecule Compound Libraries for Protein-Ligands using Combination of Small Molecule Microarrays and a Special Ellipsometry-based Optical Scanner.

    PubMed

    Landry, James P; Fei, Yiyan; Zhu, X D

    2011-12-01

    Small-molecule compounds remain the major source of therapeutic and preventative drugs. Developing new drugs against a protein target often requires screening large collections of compounds with diverse structures for ligands or ligand fragments that exhibit sufficiently affinity and desirable inhibition effect on the target before further optimization and development. Since the number of small molecule compounds is large, high-throughput screening (HTS) methods are needed. Small-molecule microarrays (SMM) on a solid support in combination with a suitable binding assay form a viable HTS platform. We demonstrate that by combining an oblique-incidence reflectivity difference optical scanner with SMM we can screen 10,000 small-molecule compounds on a single glass slide for protein ligands without fluorescence labeling. Furthermore using such a label-free assay platform we can simultaneously acquire binding curves of a solution-phase protein to over 10,000 immobilized compounds, thus enabling full characterization of protein-ligand interactions over a wide range of affinity constants.

  16. Small-molecule pheromones and hormones controlling nematode development.

    PubMed

    Butcher, Rebecca A

    2017-05-17

    The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.

  17. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset.

    PubMed

    Seashore-Ludlow, Brinton; Rees, Matthew G; Cheah, Jaime H; Cokol, Murat; Price, Edmund V; Coletti, Matthew E; Jones, Victor; Bodycombe, Nicole E; Soule, Christian K; Gould, Joshua; Alexander, Benjamin; Li, Ava; Montgomery, Philip; Wawer, Mathias J; Kuru, Nurdan; Kotz, Joanne D; Hon, C Suk-Yee; Munoz, Benito; Liefeld, Ted; Dančík, Vlado; Bittker, Joshua A; Palmer, Michelle; Bradner, James E; Shamji, Alykhan F; Clemons, Paul A; Schreiber, Stuart L

    2015-11-01

    Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset. This analysis reveals insights into small-molecule mechanisms of action, and genomic features that associate with CCL response to small-molecule treatment. We are able to recapitulate known relationships between FDA-approved therapies and cancer dependencies and to uncover new relationships, including for KRAS-mutant cancers and neuroblastoma. To enable the cancer community to explore these data, and to generate novel hypotheses, we created an updated version of the Cancer Therapeutic Response Portal (CTRP v2). We present the largest CCL sensitivity dataset yet available, and an analysis method integrating information from multiple CCLs and multiple small molecules to identify CCL response predictors robustly. We updated the CTRP to enable the cancer research community to leverage these data and analyses. ©2015 American Association for Cancer Research.

  18. Re-education begins at home: an overview of the discovery of in vivo-active small molecule modulators of endogenous stem cells.

    PubMed

    Um, JungIn; Lee, Ji-Hyung; Jung, Da-Woon; Williams, Darren R

    2018-04-01

    Degenerative diseases, such as Alzheimer's disease, heart disease and arthritis cause great suffering and are major socioeconomic burdens. An attractive treatment approach is stem cell transplantation to regenerate damaged or destroyed tissues. However, this can be problematic. For example, donor cells may not functionally integrate into the host tissue. An alternative methodology is to deliver bioactive agents, such as small molecules, directly into the diseased tissue to enhance the regenerative potential of endogenous stem cells. Areas covered: In this review, the authors discuss the necessity of developing these small molecules to treat degenerative diseases and survey progress in their application as therapeutics. They describe both the successes and caveats of developing small molecules that target endogenous stem cells to induce tissue regeneration. This article is based on literature searches which encompass databases for biomedical research and clinical trials. These small molecules are also categorized per their target disease and mechanism of action. Expert opinion: The development of small molecules targeting endogenous stem cells is a high-profile research area. Some compounds have made the successful transition to the clinic. Novel approaches, such as modulating the stem cell niche or targeted delivery to disease sites, should increase the likelihood of future successes in this field.

  19. Methodologies for Studying B. subtilis Biofilms as a Model for Characterizing Small Molecule Biofilm Inhibitors.

    PubMed

    Bucher, Tabitha; Kartvelishvily, Elena; Kolodkin-Gal, Ilana

    2016-10-09

    This work assesses different methodologies to study the impact of small molecule biofilm inhibitors, such as D-amino acids, on the development and resilience of Bacillus subtilis biofilms. First, methods are presented that select for small molecule inhibitors with biofilm-specific targets in order to separate the effect of the small molecule inhibitors on planktonic growth from their effect on biofilm formation. Next, we focus on how inoculation conditions affect the sensitivity of multicellular, floating B. subtilis cultures to small molecule inhibitors. The results suggest that discrepancies in the reported effects of such inhibitors such as D-amino acids are due to inconsistent pre-culture conditions. Furthermore, a recently developed protocol is described for evaluating the contribution of small molecule treatments towards biofilm resistance to antibacterial substances. Lastly, scanning electron microscopy (SEM) techniques are presented to analyze the three-dimensional spatial arrangement of cells and their surrounding extracellular matrix in a B. subtilis biofilm. SEM facilitates insight into the three-dimensional biofilm architecture and the matrix texture. A combination of the methods described here can greatly assist the study of biofilm development in the presence and absence of biofilm inhibitors, and shed light on the mechanism of action of these inhibitors.

  20. Small molecule chemical probes of microRNA function.

    PubMed

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R; Disney, Matthew D

    2015-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as progress is made in understanding small molecule recognition of RNA. Copyright © 2014. Published by Elsevier Ltd.

  1. Molecular targets for small-molecule modulators of circadian clocks

    PubMed Central

    He, Baokun; Chen, Zheng

    2016-01-01

    Background Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. Methods Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. Results Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. Conclusion Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases. PMID:26750111

  2. Cheminformatics-aided discovery of small-molecule Protein-Protein Interaction (PPI) dual inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB Ligand (RANKL).

    PubMed

    Melagraki, Georgia; Ntougkos, Evangelos; Rinotas, Vagelis; Papaneophytou, Christos; Leonis, Georgios; Mavromoustakos, Thomas; Kontopidis, George; Douni, Eleni; Afantitis, Antreas; Kollias, George

    2017-04-01

    We present an in silico drug discovery pipeline developed and applied for the identification and virtual screening of small-molecule Protein-Protein Interaction (PPI) compounds that act as dual inhibitors of TNF and RANKL through the trimerization interface. The cheminformatics part of the pipeline was developed by combining structure-based with ligand-based modeling using the largest available set of known TNF inhibitors in the literature (2481 small molecules). To facilitate virtual screening, the consensus predictive model was made freely available at: http://enalos.insilicotox.com/TNFPubChem/. We thus generated a priority list of nine small molecules as candidates for direct TNF function inhibition. In vitro evaluation of these compounds led to the selection of two small molecules that act as potent direct inhibitors of TNF function, with IC50 values comparable to those of a previously-described direct inhibitor (SPD304), but with significantly reduced toxicity. These molecules were also identified as RANKL inhibitors and validated in vitro with respect to this second functionality. Direct binding of the two compounds was confirmed both for TNF and RANKL, as well as their ability to inhibit the biologically-active trimer forms. Molecular dynamics calculations were also carried out for the two small molecules in each protein to offer additional insight into the interactions that govern TNF and RANKL complex formation. To our knowledge, these compounds, namely T8 and T23, constitute the second and third published examples of dual small-molecule direct function inhibitors of TNF and RANKL, and could serve as lead compounds for the development of novel treatments for inflammatory and autoimmune diseases.

  3. Second-generation DNA-templated macrocycle libraries for the discovery of bioactive small molecules.

    PubMed

    Usanov, Dmitry L; Chan, Alix I; Maianti, Juan Pablo; Liu, David R

    2018-07-01

    DNA-encoded libraries have emerged as a widely used resource for the discovery of bioactive small molecules, and offer substantial advantages compared with conventional small-molecule libraries. Here, we have developed and streamlined multiple fundamental aspects of DNA-encoded and DNA-templated library synthesis methodology, including computational identification and experimental validation of a 20 × 20 × 20 × 80 set of orthogonal codons, chemical and computational tools for enhancing the structural diversity and drug-likeness of library members, a highly efficient polymerase-mediated template library assembly strategy, and library isolation and purification methods. We have integrated these improved methods to produce a second-generation DNA-templated library of 256,000 small-molecule macrocycles with improved drug-like physical properties. In vitro selection of this library for insulin-degrading enzyme affinity resulted in novel insulin-degrading enzyme inhibitors, including one of unusual potency and novel macrocycle stereochemistry (IC 50  = 40 nM). Collectively, these developments enable DNA-templated small-molecule libraries to serve as more powerful, accessible, streamlined and cost-effective tools for bioactive small-molecule discovery.

  4. Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer’s disease

    PubMed Central

    Habchi, Johnny; Chia, Sean; Limbocker, Ryan; Mannini, Benedetta; Ahn, Minkoo; Perni, Michele; Hansson, Oskar; Arosio, Paolo; Kumita, Janet R.; Challa, Pavan Kumar; Cohen, Samuel I. A.; Dobson, Christopher M.; Knowles, Tuomas P. J.; Vendruscolo, Michele

    2017-01-01

    The aggregation of the 42-residue form of the amyloid-β peptide (Aβ42) is a pivotal event in Alzheimer’s disease (AD). The use of chemical kinetics has recently enabled highly accurate quantifications of the effects of small molecules on specific microscopic steps in Aβ42 aggregation. Here, we exploit this approach to develop a rational drug discovery strategy against Aβ42 aggregation that uses as a read-out the changes in the nucleation and elongation rate constants caused by candidate small molecules. We thus identify a pool of compounds that target specific microscopic steps in Aβ42 aggregation. We then test further these small molecules in human cerebrospinal fluid and in a Caenorhabditis elegans model of AD. Our results show that this strategy represents a powerful approach to identify systematically small molecule lead compounds, thus offering an appealing opportunity to reduce the attrition problem in drug discovery. PMID:28011763

  5. Advancing Biological Understanding and Therapeutics Discovery with Small Molecule Probes

    PubMed Central

    Schreiber, Stuart L.; Kotz, Joanne D.; Li, Min; Aubé, Jeffrey; Austin, Christopher P.; Reed, John C.; Rosen, Hugh; White, E. Lucile; Sklar, Larry A.; Lindsley, Craig W.; Alexander, Benjamin R.; Bittker, Joshua A.; Clemons, Paul A.; de Souza, Andrea; Foley, Michael A.; Palmer, Michelle; Shamji, Alykhan F.; Wawer, Mathias J.; McManus, Owen; Wu, Meng; Zou, Beiyan; Yu, Haibo; Golden, Jennifer E.; Schoenen, Frank J.; Simeonov, Anton; Jadhav, Ajit; Jackson, Michael R.; Pinkerton, Anthony B.; Chung, Thomas D.Y.; Griffin, Patrick R.; Cravatt, Benjamin F.; Hodder, Peter S.; Roush, William R.; Roberts, Edward; Chung, Dong-Hoon; Jonsson, Colleen B.; Noah, James W.; Severson, William E.; Ananthan, Subramaniam; Edwards, Bruce; Oprea, Tudor I.; Conn, P. Jeffrey; Hopkins, Corey R.; Wood, Michael R.; Stauffer, Shaun R.; Emmitte, Kyle A.

    2015-01-01

    Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the U.S. National Institutes of Health launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines, but also highlight the need to innovate the science of therapeutic discovery. PMID:26046436

  6. Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors.

    PubMed

    Huo, Yong; Yan, Cenqi; Kan, Bin; Liu, Xiao-Fei; Chen, Li-Chuan; Hu, Chen-Xia; Lau, Tsz-Ki; Lu, Xinhui; Sun, Chun-Lin; Shao, Xiangfeng; Chen, Yongsheng; Zhan, Xiaowei; Zhang, Hao-Li

    2018-03-21

    Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC 71 BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.

  7. Identification of small molecules capable of regulating conformational changes of telomeric G-quadruplex

    NASA Astrophysics Data System (ADS)

    Chen, Shuo-Bin; Liu, Guo-Cai; Gu, Lian-Quan; Huang, Zhi-Shu; Tan, Jia-Heng

    2018-02-01

    Design of small molecules targeted at human telomeric G-quadruplex DNA is an extremely active research area. Interestingly, the telomeric G-quadruplex is a highly polymorphic structure. Changes in its conformation upon small molecule binding may be a powerful method to achieve a desired biological effect. However, the rational development of small molecules capable of regulating conformational change of telomeric G-quadruplex structures is still challenging. In this study, we developed a reliable ligand-based pharmacophore model based on isaindigotone derivatives with conformational change activity toward telomeric G-quadruplex DNA. Furthermore, virtual screening of database was conducted using this pharmacophore model and benzopyranopyrimidine derivatives in the database were identified as a strong inducer of the telomeric G-quadruplex DNA conformation, transforming it from hybrid-type structure to parallel structure.

  8. Visualization of molecular structures using HoloLens-based augmented reality

    PubMed Central

    Hoffman, MA; Provance, JB

    2017-01-01

    Biological molecules and biologically active small molecules are complex three dimensional structures. Current flat screen monitors are limited in their ability to convey the full three dimensional characteristics of these molecules. Augmented reality devices, including the Microsoft HoloLens, offer an immersive platform to change how we interact with molecular visualizations. We describe a process to incorporate the three dimensional structures of small molecules and complex proteins into the Microsoft HoloLens using aspirin and the human leukocyte antigen (HLA) as examples. Small molecular structures can be introduced into the HoloStudio application, which provides native support for rotating, resizing and performing other interactions with these molecules. Larger molecules can be imported through the Unity gaming development platform and then Microsoft Visual Developer. The processes described here can be modified to import a wide variety of molecular structures into augmented reality systems and improve our comprehension of complex structural features. PMID:28815109

  9. Methods to enable the design of bioactive small molecules targeting RNA

    PubMed Central

    Disney, Matthew D.; Yildirim, Ilyas; Childs-Disney, Jessica L.

    2014-01-01

    RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including Structure-Activity Relationships Through Sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome. PMID:24357181

  10. Methods to enable the design of bioactive small molecules targeting RNA.

    PubMed

    Disney, Matthew D; Yildirim, Ilyas; Childs-Disney, Jessica L

    2014-02-21

    RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including structure-activity relationships through sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome.

  11. Screening of Small Molecule Interactor Library by Using In-Cell NMR Spectroscopy (SMILI-NMR)

    PubMed Central

    Xie, Jingjing; Thapa, Rajiv; Reverdatto, Sergey; Burz, David S.; Shekhtman, Alexander

    2011-01-01

    We developed an in-cell NMR assay for screening small molecule interactor libraries (SMILI-NMR) for compounds capable of disrupting or enhancing specific interactions between two or more components of a biomolecular complex. The method relies on the formation of a well-defined biocomplex and utilizes in-cell NMR spectroscopy to identify the molecular surfaces involved in the interaction at atomic scale resolution. Changes in the interaction surface caused by a small molecule interfering with complex formation are used as a read-out of the assay. The in-cell nature of the experimental protocol insures that the small molecule is capable of penetrating the cell membrane and specifically engaging the target molecule(s). Utility of the method was demonstrated by screening a small dipeptide library against the FKBP–FRB protein complex involved in cell cycle arrest. The dipeptide identified by SMILI-NMR showed biological activity in a functional assay in yeast. PMID:19422228

  12. Toward Generalization of Iterative Small Molecule Synthesis

    PubMed Central

    Lehmann, Jonathan W.; Blair, Daniel J.; Burke, Martin D.

    2018-01-01

    Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the “building block approach”, i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach. PMID:29696152

  13. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry.

    PubMed

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-03-16

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%.

  14. Treatment of Prostate Cancer using Anti-androgen Small Molecules | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute seeks parties interested in collaborative research to co-develop and commercialize a new class of small molecules for the treatment of prostate cancer. General information on co-development research collaborations, can be found on our web site (http://ttc.nci.nih.gov/forms).

  15. Precise small molecule recognition of a toxic CUG RNA repeat expansion

    PubMed Central

    Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D

    2017-01-01

    Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)exp) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)exp. In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG)exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG)exp in its natural context. PMID:27941760

  16. Precise small-molecule recognition of a toxic CUG RNA repeat expansion.

    PubMed

    Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D

    2017-02-01

    Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG) exp ) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG) exp . In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG) exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG) exp in its natural context.

  17. Connecting synthetic chemistry decisions to cell and genome biology using small-molecule phenotypic profiling

    PubMed Central

    Wagner, Bridget K.; Clemons, Paul A.

    2009-01-01

    Discovering small-molecule modulators for thousands of gene products requires multiple stages of biological testing, specificity evaluation, and chemical optimization. Many cellular profiling methods, including cellular sensitivity, gene-expression, and cellular imaging, have emerged as methods to assess the functional consequences of biological perturbations. Cellular profiling methods applied to small-molecule science provide opportunities to use complex phenotypic information to prioritize and optimize small-molecule structures simultaneously against multiple biological endpoints. As throughput increases and cost decreases for such technologies, we see an emerging paradigm of using more information earlier in probe- and drug-discovery efforts. Moreover, increasing access to public datasets makes possible the construction of “virtual” profiles of small-molecule performance, even when multiplexed measurements were not performed or when multidimensional profiling was not the original intent. We review some key conceptual advances in small-molecule phenotypic profiling, emphasizing connections to other information, such as protein-binding measurements, genetic perturbations, and cell states. We argue that to maximally leverage these measurements in probe and drug discovery requires a fundamental connection to synthetic chemistry, allowing the consequences of synthetic decisions to be described in terms of changes in small-molecule profiles. Mining such data in the context of chemical structure and synthesis strategies can inform decisions about chemistry procurement and library development, leading to optimal small-molecule screening collections. PMID:19825513

  18. Development of novel small molecules for imaging and drug release

    NASA Astrophysics Data System (ADS)

    Cao, Yanting

    Small organic molecules, including small molecule based fluorescent probes, small molecule based drugs or prodrugs, and smart multifunctional fluorescent drug delivery systems play important roles in biological research, drug discovery, and clinical practices. Despite the significant progress made in these fields, the development of novel and diverse small molecules is needed to meet various demands for research and clinical applications. My Ph.D study focuses on the development of novel functional molecules for recognition, imaging and drug release. In the first part, a turn-on fluorescent probe is developed for the detection of intracellular adenosine-5'-triphosphate (ATP) levels based on multiplexing recognitions. Considering the unique and complicated structure of ATP molecules, a fluorescent probe has been implemented with improved sensitivity and selectivity due to two synergistic binding recognitions by incorporating of 2, 2'-dipicolylamine (Dpa)-Zn(II) for targeting of phospho anions and phenylboronic acid group for cis-diol moiety. The novel probe is able to detect intracellular ATP levels in SH-SY5Y cells. Meanwhile, the advantages of multiplexing recognition design concept have been demonstrated using two control molecules. In the second part, a prodrug system is developed to deliver multiple drugs within one small molecule entity. The prodrug is designed by using 1-(2-nitrophenyl)ethyl (NPE) as phototrigger, and biphenol biquaternary ammonium as the prodrug. With controlled photo activation, both DNA cross-linking agents mechlorethamine and o-quinone methide are delivered and released at the preferred site, leading to efficient DNA cross-links formation and cell death. The prodrug shows negligible cytotoxicity towards normal skin cells (Hekn cells) with and without UV activation, but displays potent activity towards cancer cells (HeLa cells) upon UV activation. The multiple drug release system may hold a great potential for practical application. In the last part, a new photo-initiated fluorescent anticancer prodrug for DNA alkylating agent mechlorethamine releasing and monitoring has been developed. The theranostic prodrug consists a photolabile NPE group, an inactive form of mechlorethamine and a nonfluorescent coumarin in one small molecule. It is demonstrated that the prodrug shows negligible cytotoxicity towards normal skin cells (Hekn cells) with and without UV activation, while the original parent drug mechlorethamine can be photocontrol-released and induces effective DNA cross-linking activity. Importantly, the drug release progress can be conveniently monitored by the 'off-on' fluorescence enhancement in cells. Moreover, the selective prodrug is not only cell permeable but also nuclear permeable. Therefore, the prodrug serves as a promising drug delivery system for spatiotemporal control release and monitoring of an anticancer drug to obtain the optimal treatment efficacy.

  19. Design strategy for photoinduced electron transfer-based small-molecule fluorescent probes of biomacromolecules.

    PubMed

    Zhang, Wei; Ma, Zhao; Du, Lupei; Li, Minyong

    2014-06-07

    As the cardinal support of innumerable biological processes, biomacromolecules such as proteins, nucleic acids and polysaccharides are of importance to living systems. The key to understanding biological processes is to realize the role of these biomacromolecules in thte localization, distribution, conformation and interaction with other molecules. With the current development and adaptation of fluorescent technologies in biomedical and pharmaceutical fields, the fluorescence imaging (FLI) approach of using small-molecule fluorescent probes is becoming an up-to-the-minute method for the detection and monitoring of these imperative biomolecules in life sciences. However, conventional small-molecule fluorescent probes may provide undesirable results because of their intrinsic deficiencies such as low signal-to-noise ratio (SNR) and false-positive errors. Recently, small-molecule fluorescent probes with a photoinduced electron transfer (PET) "on/off" switch for biomacromolecules have been thoroughly considered. When recognized by the biomacromolecules, these probes turn on/off the PET switch and change the fluorescence intensity to present a high SNR result. It should be emphasized that these PET-based fluorescent probes could be advantageous for understanding the pathogenesis of various diseases caused by abnormal expression of biomacromolecules. The discussion of this successful strategy involved in this review will be a valuable guide for the further development of new PET-based small-molecule fluorescent probes for biomacromolecules.

  20. Identification of Direct Protein Targets of Small Molecules

    PubMed Central

    2010-01-01

    Small-molecule target identification is a vital and daunting task for the chemical biology community as well as for researchers interested in applying the power of chemical genetics to impact biology and medicine. To overcome this “target ID” bottleneck, new technologies are being developed that analyze protein–drug interactions, such as drug affinity responsive target stability (DARTS), which aims to discover the direct binding targets (and off targets) of small molecules on a proteome scale without requiring chemical modification of the compound. Here, we review the DARTS method, discuss why it works, and provide new perspectives for future development in this area. PMID:21077692

  1. Tulane/Xavier Vaccine Development/Engineering Project

    DTIC Science & Technology

    2009-02-01

    spectroscopic studies with polar dyes (e.g. proflavine ) have verified these compounds’ ability to encapsulate and solvate small polar dye molecules in...systems. Fluorescent microscopy studies verify that they significantly enhance the transport of polar small molecules ( proflavin dye) through

  2. Antibody-Mediated Small Molecule Detection Using Programmable DNA-Switches.

    PubMed

    Rossetti, Marianna; Ippodrino, Rudy; Marini, Bruna; Palleschi, Giuseppe; Porchetta, Alessandro

    2018-06-13

    The development of rapid, cost-effective, and single-step methods for the detection of small molecules is crucial for improving the quality and efficiency of many applications ranging from life science to environmental analysis. Unfortunately, current methodologies still require multiple complex, time-consuming washing and incubation steps, which limit their applicability. In this work we present a competitive DNA-based platform that makes use of both programmable DNA-switches and antibodies to detect small target molecules. The strategy exploits both the advantages of proximity-based methods and structure-switching DNA-probes. The platform is modular and versatile and it can potentially be applied for the detection of any small target molecule that can be conjugated to a nucleic acid sequence. Here the rational design of programmable DNA-switches is discussed, and the sensitive, rapid, and single-step detection of different environmentally relevant small target molecules is demonstrated.

  3. Characterizing protein domain associations by Small-molecule ligand binding

    PubMed Central

    Li, Qingliang; Cheng, Tiejun; Wang, Yanli; Bryant, Stephen H.

    2012-01-01

    Background Protein domains are evolutionarily conserved building blocks for protein structure and function, which are conventionally identified based on protein sequence or structure similarity. Small molecule binding domains are of great importance for the recognition of small molecules in biological systems and drug development. Many small molecules, including drugs, have been increasingly identified to bind to multiple targets, leading to promiscuous interactions with protein domains. Thus, a large scale characterization of the protein domains and their associations with respect to small-molecule binding is of particular interest to system biology research, drug target identification, as well as drug repurposing. Methods We compiled a collection of 13,822 physical interactions of small molecules and protein domains derived from the Protein Data Bank (PDB) structures. Based on the chemical similarity of these small molecules, we characterized pairwise associations of the protein domains and further investigated their global associations from a network point of view. Results We found that protein domains, despite lack of similarity in sequence and structure, were comprehensively associated through binding the same or similar small-molecule ligands. Moreover, we identified modules in the domain network that consisted of closely related protein domains by sharing similar biochemical mechanisms, being involved in relevant biological pathways, or being regulated by the same cognate cofactors. Conclusions A novel protein domain relationship was identified in the context of small-molecule binding, which is complementary to those identified by traditional sequence-based or structure-based approaches. The protein domain network constructed in the present study provides a novel perspective for chemogenomic study and network pharmacology, as well as target identification for drug repurposing. PMID:23745168

  4. Strategy to discover diverse optimal molecules in the small molecule universe.

    PubMed

    Rupakheti, Chetan; Virshup, Aaron; Yang, Weitao; Beratan, David N

    2015-03-23

    The small molecule universe (SMU) is defined as a set of over 10(60) synthetically feasible organic molecules with molecular weight less than ∼500 Da. Exhaustive enumerations and evaluation of all SMU molecules for the purpose of discovering favorable structures is impossible. We take a stochastic approach and extend the ACSESS framework ( Virshup et al. J. Am. Chem. Soc. 2013 , 135 , 7296 - 7303 ) to develop diversity oriented molecular libraries that can generate a set of compounds that is representative of the small molecule universe and that also biases the library toward favorable physical property values. We show that the approach is efficient compared to exhaustive enumeration and to existing evolutionary algorithms for generating such libraries by testing in the NKp fitness landscape model and in the fully enumerated GDB-9 chemical universe containing 3 × 10(5) molecules.

  5. Strategy To Discover Diverse Optimal Molecules in the Small Molecule Universe

    PubMed Central

    2015-01-01

    The small molecule universe (SMU) is defined as a set of over 1060 synthetically feasible organic molecules with molecular weight less than ∼500 Da. Exhaustive enumerations and evaluation of all SMU molecules for the purpose of discovering favorable structures is impossible. We take a stochastic approach and extend the ACSESS framework (Virshup et al. J. Am. Chem. Soc.2013, 135, 7296–730323548177) to develop diversity oriented molecular libraries that can generate a set of compounds that is representative of the small molecule universe and that also biases the library toward favorable physical property values. We show that the approach is efficient compared to exhaustive enumeration and to existing evolutionary algorithms for generating such libraries by testing in the NKp fitness landscape model and in the fully enumerated GDB-9 chemical universe containing 3 × 105 molecules. PMID:25594586

  6. From synthesis to function via iterative assembly of N-methyliminodiacetic acid boronate building blocks.

    PubMed

    Li, Junqi; Grillo, Anthony S; Burke, Martin D

    2015-08-18

    The study and optimization of small molecule function is often impeded by the time-intensive and specialist-dependent process that is typically used to make such compounds. In contrast, general and automated platforms have been developed for making peptides, oligonucleotides, and increasingly oligosaccharides, where synthesis is simplified to iterative applications of the same reactions. Inspired by the way natural products are biosynthesized via the iterative assembly of a defined set of building blocks, we developed a platform for small molecule synthesis involving the iterative coupling of haloboronic acids protected as the corresponding N-methyliminodiacetic acid (MIDA) boronates. Here we summarize our efforts thus far to develop this platform into a generalized and automated approach for small molecule synthesis. We and others have employed this approach to access many polyene-based compounds, including the polyene motifs found in >75% of all polyene natural products. This platform further allowed us to derivatize amphotericin B, the powerful and resistance-evasive but also highly toxic last line of defense in treating systemic fungal infections, and thereby understand its mechanism of action. This synthesis-enabled mechanistic understanding has led us to develop less toxic derivatives currently under evaluation as improved antifungal agents. To access more Csp(3)-containing small molecules, we gained a stereocontrolled entry into chiral, non-racemic α-boryl aldehydes through the discovery of a chiral derivative of MIDA. These α-boryl aldehydes are versatile intermediates for the synthesis of many Csp(3) boronate building blocks that are otherwise difficult to access. In addition, we demonstrated the utility of these types of building blocks in accessing pharmaceutically relevant targets via an iterative Csp(3) cross-coupling cycle. We have further expanded the scope of the platform to include stereochemically complex macrocyclic and polycyclic molecules using a linear-to-cyclized strategy, in which Csp(3) boronate building blocks are iteratively assembled into linear precursors that are then cyclized into the cyclic frameworks found in many natural products and natural product-like structures. Enabled by the serendipitous discovery of a catch-and-release protocol for generally purifying MIDA boronate intermediates, the platform has been automated. The synthesis of 14 distinct classes of small molecules, including pharmaceuticals, materials components, and polycyclic natural products, has been achieved using this new synthesis machine. It is anticipated that the scope of small molecules accessible by this platform will continue to expand via further developments in building block synthesis, Csp(3) cross-coupling methodologies, and cyclization strategies. Achieving these goals will enable the more generalized synthesis of small molecules and thereby help shift the rate-limiting step in small molecule science from synthesis to function.

  7. Cobalt coated substrate for matrix-free analysis of small molecules by laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yalcin, Talat; Li, Liang

    2009-12-01

    Small molecule analysis is one of the most challenging issues in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. We have developed a cobalt coated substrate as a target for matrix-free analysis of small molecules in laser desorption/ionization mass spectrometry. Cobalt coating of 60-70 nm thickness has been characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and laser induced breakdown spectroscopy. This target facilitates hundreds of samples to be spotted and analyzed without mixing any matrices, in a very short time. This can save a lot of time and money and can be a very practical approach for the analysis of small molecules by laser desorption/ionization mass spectrometry.

  8. Complex small-molecule architectures regulate phenotypic plasticity in a nematode.

    PubMed

    Bose, Neelanjan; Ogawa, Akira; von Reuss, Stephan H; Yim, Joshua J; Ragsdale, Erik J; Sommer, Ralf J; Schroeder, Frank C

    2012-12-07

    Chemistry the worm's way: The nematode Pristionchus pacificus constructs elaborate small molecules from modified building blocks of primary metabolism, including an unusual xylopyranose-based nucleoside (see scheme). These compounds act as signaling molecules to control adult phenotypic plasticity and dauer development and provide examples of modular generation of structural diversity in metazoans. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Inhibiting prolyl isomerase activity by hybrid organic-inorganic molecules containing rhodium(II) fragments.

    PubMed

    Coughlin, Jane M; Kundu, Rituparna; Cooper, Julian C; Ball, Zachary T

    2014-11-15

    A small molecule containing a rhodium(II) tetracarboxylate fragment is shown to be a potent inhibitor of the prolyl isomerase FKBP12. The use of small molecules conjugates of rhodium(II) is presented as a general strategy for developing new protein inhibitors based on distinct structural and sequence features of the enzyme active site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Approaches to Validate and Manipulate RNA Targets with Small Molecules in Cells.

    PubMed

    Childs-Disney, Jessica L; Disney, Matthew D

    2016-01-01

    RNA has become an increasingly important target for therapeutic interventions and for chemical probes that dissect and manipulate its cellular function. Emerging targets include human RNAs that have been shown to directly cause cancer, metabolic disorders, and genetic disease. In this review, we describe various routes to obtain bioactive compounds that target RNA, with a particular emphasis on the development of small molecules. We use these cases to describe approaches that are being developed for target validation, which include target-directed cleavage, classic pull-down experiments, and covalent cross-linking. Thus, tools are available to design small molecules to target RNA and to identify the cellular RNAs that are their targets.

  11. Use of mRNA expression signatures to discover small molecule inhibitors of skeletal muscle atrophy

    PubMed Central

    Adams, Christopher M.; Ebert, Scott M.; Dyle, Michael C.

    2017-01-01

    Purpose of review Here, we discuss a recently developed experimental strategy for discovering small molecules with potential to prevent and treat skeletal muscle atrophy. Recent findings Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression, which generate complex but measurable patterns of positive and negative changes in skeletal muscle mRNA levels (a.k.a. mRNA expression signatures of muscle atrophy). Many bioactive small molecules generate their own characteristic mRNA expression signatures, and by identifying small molecules whose signatures approximate mirror images of muscle atrophy signatures, one may identify small molecules with potential to prevent and/or reverse muscle atrophy. Unlike a conventional drug discovery approach, this strategy does not rely on a predefined molecular target but rather exploits the complexity of muscle atrophy to identify small molecules that counter the entire spectrum of pathological changes in atrophic muscle. We discuss how this strategy has been used to identify two natural compounds, ursolic acid and tomatidine, that reduce muscle atrophy and improve skeletal muscle function. Summary Discovery strategies based on mRNA expression signatures can elucidate new approaches for preserving and restoring muscle mass and function. PMID:25807353

  12. Use of mRNA expression signatures to discover small molecule inhibitors of skeletal muscle atrophy.

    PubMed

    Adams, Christopher M; Ebert, Scott M; Dyle, Michael C

    2015-05-01

    Here, we discuss a recently developed experimental strategy for discovering small molecules with potential to prevent and treat skeletal muscle atrophy. Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression, which generate complex but measurable patterns of positive and negative changes in skeletal muscle mRNA levels (a.k.a. mRNA expression signatures of muscle atrophy). Many bioactive small molecules generate their own characteristic mRNA expression signatures, and by identifying small molecules whose signatures approximate mirror images of muscle atrophy signatures, one may identify small molecules with potential to prevent and/or reverse muscle atrophy. Unlike a conventional drug discovery approach, this strategy does not rely on a predefined molecular target but rather exploits the complexity of muscle atrophy to identify small molecules that counter the entire spectrum of pathological changes in atrophic muscle. We discuss how this strategy has been used to identify two natural compounds, ursolic acid and tomatidine, that reduce muscle atrophy and improve skeletal muscle function. Discovery strategies based on mRNA expression signatures can elucidate new approaches for preserving and restoring muscle mass and function.

  13. Genome-Scale Architecture of Small Molecule Regulatory Networks and the Fundamental Trade-Off between Regulation and Enzymatic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reznik, Ed; Christodoulou, Dimitris; Goldford, Joshua E.

    Metabolic flux is in part regulated by endogenous small molecules that modulate the catalytic activity of an enzyme, e.g., allosteric inhibition. In contrast to transcriptional regulation of enzymes, technical limitations have hindered the production of a genome-scale atlas of small molecule-enzyme regulatory interactions. Here, we develop a framework leveraging the vast, but fragmented, biochemical literature to reconstruct and analyze the small molecule regulatory network (SMRN) of the model organism Escherichia coli, including the primary metabolite regulators and enzyme targets. Using metabolic control analysis, we prove a fundamental trade-off between regulation and enzymatic activity, and we combine it with metabolomic measurementsmore » and the SMRN to make inferences on the sensitivity of enzymes to their regulators. By generalizing the analysis to other organisms, we identify highly conserved regulatory interactions across evolutionarily divergent species, further emphasizing a critical role for small molecule interactions in the maintenance of metabolic homeostasis.« less

  14. Simultaneous optimization of biomolecular energy function on features from small molecules and macromolecules

    PubMed Central

    Park, Hahnbeom; Bradley, Philip; Greisen, Per; Liu, Yuan; Mulligan, Vikram Khipple; Kim, David E.; Baker, David; DiMaio, Frank

    2017-01-01

    Most biomolecular modeling energy functions for structure prediction, sequence design, and molecular docking, have been parameterized using existing macromolecular structural data; this contrasts molecular mechanics force fields which are largely optimized using small-molecule data. In this study, we describe an integrated method that enables optimization of a biomolecular modeling energy function simultaneously against small-molecule thermodynamic data and high-resolution macromolecular structural data. We use this approach to develop a next-generation Rosetta energy function that utilizes a new anisotropic implicit solvation model, and an improved electrostatics and Lennard-Jones model, illustrating how energy functions can be considerably improved in their ability to describe large-scale energy landscapes by incorporating both small-molecule and macromolecule data. The energy function improves performance in a wide range of protein structure prediction challenges, including monomeric structure prediction, protein-protein and protein-ligand docking, protein sequence design, and prediction of the free energy changes by mutation, while reasonably recapitulating small-molecule thermodynamic properties. PMID:27766851

  15. Small-Molecule-Directed Hepatocyte-Like Cell Differentiation of Human Pluripotent Stem Cells.

    PubMed

    Mathapati, Santosh; Siller, Richard; Impellizzeri, Agata A R; Lycke, Max; Vegheim, Karianne; Almaas, Runar; Sullivan, Gareth J

    2016-08-17

    Hepatocyte-like cells (HLCs) generated in vitro from human pluripotent stem cells (hPSCs) provide an invaluable resource for basic research, regenerative medicine, drug screening, toxicology, and modeling of liver disease and development. This unit describes a small-molecule-driven protocol for in vitro differentiation of hPSCs into HLCs without the use of growth factors. hPSCs are coaxed through a developmentally relevant route via the primitive streak to definitive endoderm (DE) using the small molecule CHIR99021 (a Wnt agonist), replacing the conventional growth factors Wnt3A and activin A. The small-molecule-derived DE is then differentiated to hepatoblast-like cells in the presence of dimethyl sulfoxide. The resulting hepatoblasts are then differentiated to HLCs with N-hexanoic-Tyr, Ile-6 aminohexanoic amide (Dihexa, a hepatocyte growth factor agonist) and dexamethasone. The protocol provides an efficient and reproducible procedure for differentiation of hPSCs into HLCs utilizing small molecules. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  16. 9,10-Azaboraphenanthrene-containing small molecules and conjugated polymers: synthesis and their application in chemodosimeters for the ratiometric detection of fluoride ions.

    PubMed

    Zhang, Weidong; Li, Guoping; Xu, Letian; Zhuo, Yue; Wan, Wenming; Yan, Ni; He, Gang

    2018-05-21

    The introduction of main group elements into conjugated scaffolds is emerging as a key route to novel optoelectronic materials. Herein, an efficient and versatile way to synthesize polymerizable 9,10-azaboraphenanthrene ( BNP )-containing monomers by aromaticity-driven ring expansion reactions between highly antiaromatic borafluorene and azides is reported, and the corresponding conjugated small molecules and polymers are developed as well. The BNP -containing small molecules and conjugated polymers showed good air/moisture stability and notable fluorescence properties. Addition of fluoride ions to the BNP -based small molecules and polymers induced a rapid change in the emission color from blue to green/yellow, respectively, accompanied by strong intensity changes. The conjugated polymers showed better ratiometric sensing performance than small molecules due to the exciton migration along the conjugated chains. Further experiments showed that the sensing process is fully reversible. The films prepared by solution-deposition of BNP -based compounds in the presence of polycaprolactone also showed good ratiometric sensing for fluoride ions.

  17. Small molecules enhance CRISPR genome editing in pluripotent stem cells.

    PubMed

    Yu, Chen; Liu, Yanxia; Ma, Tianhua; Liu, Kai; Xu, Shaohua; Zhang, Yu; Liu, Honglei; La Russa, Marie; Xie, Min; Ding, Sheng; Qi, Lei S

    2015-02-05

    The bacterial CRISPR-Cas9 system has emerged as an effective tool for sequence-specific gene knockout through non-homologous end joining (NHEJ), but it remains inefficient for precise editing of genome sequences. Here we develop a reporter-based screening approach for high-throughput identification of chemical compounds that can modulate precise genome editing through homology-directed repair (HDR). Using our screening method, we have identified small molecules that can enhance CRISPR-mediated HDR efficiency, 3-fold for large fragment insertions and 9-fold for point mutations. Interestingly, we have also observed that a small molecule that inhibits HDR can enhance frame shift insertion and deletion (indel) mutations mediated by NHEJ. The identified small molecules function robustly in diverse cell types with minimal toxicity. The use of small molecules provides a simple and effective strategy to enhance precise genome engineering applications and facilitates the study of DNA repair mechanisms in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Genome-Scale Architecture of Small Molecule Regulatory Networks and the Fundamental Trade-Off between Regulation and Enzymatic Activity

    DOE PAGES

    Reznik, Ed; Christodoulou, Dimitris; Goldford, Joshua E.; ...

    2017-09-12

    Metabolic flux is in part regulated by endogenous small molecules that modulate the catalytic activity of an enzyme, e.g., allosteric inhibition. In contrast to transcriptional regulation of enzymes, technical limitations have hindered the production of a genome-scale atlas of small molecule-enzyme regulatory interactions. Here, we develop a framework leveraging the vast, but fragmented, biochemical literature to reconstruct and analyze the small molecule regulatory network (SMRN) of the model organism Escherichia coli, including the primary metabolite regulators and enzyme targets. Using metabolic control analysis, we prove a fundamental trade-off between regulation and enzymatic activity, and we combine it with metabolomic measurementsmore » and the SMRN to make inferences on the sensitivity of enzymes to their regulators. By generalizing the analysis to other organisms, we identify highly conserved regulatory interactions across evolutionarily divergent species, further emphasizing a critical role for small molecule interactions in the maintenance of metabolic homeostasis.« less

  19. Recent Developments in β-Cell Differentiation of Pluripotent Stem Cells Induced by Small and Large Molecules

    PubMed Central

    Kumar, S. Suresh; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Singh, A. J. A. Ranjith; Peng, I-Chia; Priya, Sivan Padma; Hamat, Rukman Awang; Higuchi, Akon

    2014-01-01

    Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation. PMID:25526563

  20. New developments in microbial interspecies signaling.

    PubMed

    Shank, Elizabeth Anne; Kolter, Roberto

    2009-04-01

    There is a growing appreciation that in addition to well-documented intraspecies quorum sensing systems, small molecules act as signals between microbes of different species. This review will focus on how bacterial small molecules modulate these interspecies interactions. We will particularly emphasize complex relationships such as those between microbes and insects, interactions resulting in non-antagonistic outcomes (i.e. developmental and morphological processes), how co-culture can lead to the discovery of new small molecules, and the use of known compounds to evoke unexpected responses and mediate crosstalk between microbes.

  1. Targeting RNA in mammalian systems with small molecules.

    PubMed

    Donlic, Anita; Hargrove, Amanda E

    2018-05-03

    The recognition of RNA functions beyond canonical protein synthesis has challenged the central dogma of molecular biology. Indeed, RNA is now known to directly regulate many important cellular processes, including transcription, splicing, translation, and epigenetic modifications. The misregulation of these processes in disease has led to an appreciation of RNA as a therapeutic target. This potential was first recognized in bacteria and viruses, but discoveries of new RNA classes following the sequencing of the human genome have invigorated exploration of its disease-related functions in mammals. As stable structure formation is evolving as a hallmark of mammalian RNAs, the prospect of utilizing small molecules to specifically probe the function of RNA structural domains and their interactions is gaining increased recognition. To date, researchers have discovered bioactive small molecules that modulate phenotypes by binding to expanded repeats, microRNAs, G-quadruplex structures, and RNA splice sites in neurological disorders, cancers, and other diseases. The lessons learned from achieving these successes both call for additional studies and encourage exploration of the plethora of mammalian RNAs whose precise mechanisms of action remain to be elucidated. Efforts toward understanding fundamental principles of small molecule-RNA recognition combined with advances in methodology development should pave the way toward targeting emerging RNA classes such as long noncoding RNAs. Together, these endeavors can unlock the full potential of small molecule-based probing of RNA-regulated processes and enable us to discover new biology and underexplored avenues for therapeutic intervention in human disease. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease. © 2018 Wiley Periodicals, Inc.

  2. Selective small-molecule inhibitors as chemical tools to define the roles of matrix metalloproteinases in disease.

    PubMed

    Meisel, Jayda E; Chang, Mayland

    2017-11-01

    The focus of this article is to highlight novel inhibitors and current examples where the use of selective small-molecule inhibitors has been critical in defining the roles of matrix metalloproteinases (MMPs) in disease. Selective small-molecule inhibitors are surgical chemical tools that can inhibit the targeted enzyme; they are the method of choice to ascertain the roles of MMPs and complement studies with knockout animals. This strategy can identify targets for therapeutic development as exemplified by the use of selective small-molecule MMP inhibitors in diabetic wound healing, spinal cord injury, stroke, traumatic brain injury, cancer metastasis, and viral infection. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Transformational Medical Technologies Initiative (TMTI)

    DTIC Science & Technology

    2007-01-01

    Parker Development of monoclonal antibodies (Mab) protein based therapeutics against viral hemorrhagic fevers (VHF) CUBRC Prosetta, Inc Development of...2,028,389 $178,416 $186,000 $558,804 CUBRC Prosetta, Inc 2 (1 base, 1yr opt) $8,300,922 $4,017,013 $1,070,977 $3,212,932 Small Molecule/Drugs...Green II Genomic Identification USAMRIID - Hart Green Yellow CUBRC Prosetta, Inc Yellow Yellow Small Molecule/Drugs Functional Genetics, Inc Green

  4. CRISPR Approaches to Small Molecule Target Identification. | Office of Cancer Genomics

    Cancer.gov

    A long-standing challenge in drug development is the identification of the mechanisms of action of small molecules with therapeutic potential. A number of methods have been developed to address this challenge, each with inherent strengths and limitations. We here provide a brief review of these methods with a focus on chemical-genetic methods that are based on systematically profiling the effects of genetic perturbations on drug sensitivity.

  5. Mass action at the single-molecule level.

    PubMed

    Shon, Min Ju; Cohen, Adam E

    2012-09-05

    We developed a system to reversibly encapsulate small numbers of molecules in an array of nanofabricated "dimples". This system enables highly parallel, long-term, and attachment-free studies of molecular dynamics via single-molecule fluorescence. In studies of bimolecular reactions of small numbers of confined molecules, we see phenomena that, while expected from basic statistical mechanics, are not observed in bulk chemistry. Statistical fluctuations in the occupancy of sealed reaction chambers lead to steady-state fluctuations in reaction equilibria and rates. These phenomena are likely to be important whenever reactions happen in confined geometries.

  6. Crossing borders to bind proteins--a new concept in protein recognition based on the conjugation of small organic molecules or short peptides to polypeptides from a designed set.

    PubMed

    Baltzer, Lars

    2011-06-01

    A new concept for protein recognition and binding is highlighted. The conjugation of small organic molecules or short peptides to polypeptides from a designed set provides binder molecules that bind proteins with high affinities, and with selectivities that are equal to those of antibodies. The small organic molecules or peptides need to bind the protein targets but only with modest affinities and selectivities, because conjugation to the polypeptides results in molecules with dramatically improved binder performance. The polypeptides are selected from a set of only sixteen sequences designed to bind, in principle, any protein. The small number of polypeptides used to prepare high-affinity binders contrasts sharply with the huge libraries used in binder technologies based on selection or immunization. Also, unlike antibodies and engineered proteins, the polypeptides have unordered three-dimensional structures and adapt to the proteins to which they bind. Binder molecules for the C-reactive protein, human carbonic anhydrase II, acetylcholine esterase, thymidine kinase 1, phosphorylated proteins, the D-dimer, and a number of antibodies are used as examples to demonstrate that affinities are achieved that are higher than those of the small molecules or peptides by as much as four orders of magnitude. Evaluation by pull-down experiments and ELISA-based tests in human serum show selectivities to be equal to those of antibodies. Small organic molecules and peptides are readily available from pools of endogenous ligands, enzyme substrates, inhibitors or products, from screened small molecule libraries, from phage display, and from mRNA display. The technology is an alternative to established binder concepts for applications in drug development, diagnostics, medical imaging, and protein separation.

  7. Inhibitors of voltage-gated sodium channel Nav1.7: patent applications since 2010.

    PubMed

    Sun, Shaoyi; Cohen, Charles J; Dehnhardt, Christoph M

    2014-09-01

    There has been intense interest in developing inhibitors of the sodium channel Nav1.7 because genetic studies have established very strong validation for the efficacy to alleviate both inflammatory and neuropathic pain. This review summarizes patent applications targeting Nav1.7 since 2010 until May, 2014. We have classified the patents into three categories as follows: small molecules with well-defined molecular selectivity among sodium channel isoforms; biologicals with well-defined molecular selectivity; and, small molecules that inhibit Nav1.7 with unknown molecular selectivity. Most of the review is dedicated to small molecule selective compounds.

  8. Perylene-Diimide Based Donor-Acceptor-Donor Type Small-Molecule Acceptors for Solution-Processable Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Ganesamoorthy, Ramasamy; Vijayaraghavan, Rajagopalan; Sakthivel, Pachagounder

    2017-12-01

    Development of nonfullerene acceptors plays an important role in the commercial availability of plastic solar cells. We report herein synthesis of bay-substituted donor-acceptor-donor (D-A-D)-type perylene diimide (PDI)-based small molecules (SM-1 to SM-4) by Suzuki coupling method and their use as acceptors in bulk heterojunction organic solar cells (BHJ-OSCs) with poly(3-hexylthiophene) (P3HT) polymer donor. We varied the number of electron-rich thiophene units and the solubilizing side chains and also evaluated the optical and electrochemical properties of the small molecules. The synthesized small molecules were confirmed by Fourier-transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and high-resolution mass spectroscopy (HR-MS). The small molecules showed extensive and strong absorption in the ultraviolet-visible (UV-Vis) region up to 750 nm, with bandgap (E_{{g}}^{{opt}} ) reduced below <2 eV. The energy levels of small molecules SM-1 to SM-4 were suitable for use as electron-accepting materials. The small molecules showed good thermal stability up to 300°C. BHJ-OSCs with SM-1 and P3HT polymer donor showed maximum power conversion efficiency (PCE) of 0.19% with V oc of 0.30 V, J sc of 1.72 mA cm-2, and fill factor (FF) of 37%. The PCE decreased with the number of thiophene units. The PCE of SM-2 was lower than that of SM-1. This difference in PCE can be explained by the higher aggregation tendency of the bithiophene compared with the thiophene unit. Introduction of the solubilizing group in the bay position increased the aggregation property, leading to much lower PCE than for the small molecules without solubilizing group.

  9. Small Molecule Targeted Recruitment of a Nuclease to RNA.

    PubMed

    Costales, Matthew G; Matsumoto, Yasumasa; Velagapudi, Sai Pradeep; Disney, Matthew D

    2018-06-06

    The choreography between RNA synthesis and degradation is a key determinant in biology. Engineered systems such as CRISPR have been developed to rid a cell of RNAs. Here, we show that a small molecule can recruit a nuclease to a specific transcript, triggering its destruction. A small molecule that selectively binds the oncogenic microRNA(miR)-96 hairpin precursor was appended with a short 2'-5' poly(A) oligonucleotide. The conjugate locally activated endogenous, latent ribonuclease (RNase L), which selectively cleaved the miR-96 precursor in cancer cells in a catalytic and sub-stoichiometric fashion. Silencing miR-96 derepressed pro-apoptotic FOXO1 transcription factor, triggering apoptosis in breast cancer, but not healthy breast, cells. These results demonstrate that small molecules can be programmed to selectively cleave RNA via nuclease recruitment and has broad implications.

  10. Small-molecule control of protein function through Staudinger reduction

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander

    2016-11-01

    Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).

  11. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.

    PubMed

    Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-11-22

    Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.

  12. Bottom-up design of small molecules that stimulate exon 10 skipping in mutant MAPT pre-mRNA.

    PubMed

    Luo, Yiling; Disney, Matthew D

    2014-09-22

    One challenge in chemical biology is to develop small molecules that control cellular protein content. The amount and identity of proteins are influenced by the RNAs that encode them; thus, protein content in a cell could be affected by targeting mRNA. However, RNA has been traditionally difficult to target with small molecules. In this report, we describe controlling the protein products of the mutated microtubule-associated protein tau (MAPT) mature mRNA with a small molecule. MAPT mutations in exon 10 are associated with inherited frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17), an incurable disease that is directly caused by increased inclusion of exon 10 in MAPT mRNA. Recent studies have shown that mutations within a hairpin at the MAPT exon 10-intron junction decrease the thermodynamic stability of the RNA, increasing binding to U1 snRNP and thus exon 10 inclusion. Therefore, we designed small molecules that bind and stabilize a mutant MAPT by using Inforna, a computational approach based on information about RNA-small-molecule interactions. The optimal compound selectively bound the mutant MAPT hairpin and thermodynamically stabilized its folding, facilitating exon 10 exclusion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Small Molecule Supplements Improve Cultured Megakaryocyte Polyploidization by Modulating Multiple Cell Cycle Regulators.

    PubMed

    Zou, Xiaojing; Qu, Mingyi; Fang, Fang; Fan, Zeng; Chen, Lin; Yue, Wen; Xie, Xiaoyan; Pei, Xuetao

    2017-01-01

    Platelets (PLTs) are produced by megakaryocytes (MKs) that completed differentiation and endomitosis. Endomitosis is an important process in which the cell replicates its DNA without cytokinesis and develops highly polyploid MK. In this study, to gain a better PLTs production, four small molecules (Rho-Rock inhibitor (RRI), nicotinamide (NIC), Src inhibitor (SI), and Aurora B inhibitor (ABI)) and their combinations were surveyed as MK culture supplements for promoting polyploidization. Three leukemia cell lines as well as primary mononuclear cells were chosen in the function and mechanism studies of the small molecules. In an optimal culture method, cells were treated with different small molecules and their combinations. The impact of the small molecules on megakaryocytic surface marker expression, polyploidy, proliferation, and apoptosis was examined for the best MK polyploidization supplement. The elaborate analysis confirmed that the combination of SI and RRI together with our MK induction system might result in efficient ploidy promotion. Our experiments demonstrated that, besides direct downregulation on the expression of cytoskeleton protein actin, SI and RRI could significantly enhance the level of cyclins through the suppression of p53 and p21. The verified small molecule combination might be further used in the in vitro PLT manufacture and clinical applications.

  14. Small Molecule Supplements Improve Cultured Megakaryocyte Polyploidization by Modulating Multiple Cell Cycle Regulators

    PubMed Central

    Fang, Fang; Chen, Lin; Yue, Wen

    2017-01-01

    Platelets (PLTs) are produced by megakaryocytes (MKs) that completed differentiation and endomitosis. Endomitosis is an important process in which the cell replicates its DNA without cytokinesis and develops highly polyploid MK. In this study, to gain a better PLTs production, four small molecules (Rho-Rock inhibitor (RRI), nicotinamide (NIC), Src inhibitor (SI), and Aurora B inhibitor (ABI)) and their combinations were surveyed as MK culture supplements for promoting polyploidization. Three leukemia cell lines as well as primary mononuclear cells were chosen in the function and mechanism studies of the small molecules. In an optimal culture method, cells were treated with different small molecules and their combinations. The impact of the small molecules on megakaryocytic surface marker expression, polyploidy, proliferation, and apoptosis was examined for the best MK polyploidization supplement. The elaborate analysis confirmed that the combination of SI and RRI together with our MK induction system might result in efficient ploidy promotion. Our experiments demonstrated that, besides direct downregulation on the expression of cytoskeleton protein actin, SI and RRI could significantly enhance the level of cyclins through the suppression of p53 and p21. The verified small molecule combination might be further used in the in vitro PLT manufacture and clinical applications. PMID:29201898

  15. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Katharina; Raupp, Sebastian, E-mail: sebastian.raupp@kit.edu; Scharfer, Philip

    2016-06-15

    Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N’-Di(1-naphthyl)-N,N’-diphenyl-(1,1’-biphenyl)-4,4’-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processedmore » with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.« less

  16. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling

    NASA Astrophysics Data System (ADS)

    Peters, Katharina; Raupp, Sebastian; Hummel, Helga; Bruns, Michael; Scharfer, Philip; Schabel, Wilhelm

    2016-06-01

    Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processed with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.

  17. Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders.

    PubMed

    Luan, Hemi; Wang, Xian; Cai, Zongwei

    2017-11-12

    Metabolomics seeks to take a "snapshot" in a time of the levels, activities, regulation and interactions of all small molecule metabolites in response to a biological system with genetic or environmental changes. The emerging development in mass spectrometry technologies has shown promise in the discovery and quantitation of neuroactive small molecule metabolites associated with gut microbiota and brain. Significant progress has been made recently in the characterization of intermediate role of small molecule metabolites linked to neural development and neurodegenerative disorder, showing its potential in understanding the crosstalk between gut microbiota and the host brain. More evidence reveals that small molecule metabolites may play a critical role in mediating microbial effects on neurotransmission and disease development. Mass spectrometry-based metabolomics is uniquely suitable for obtaining the metabolic signals in bidirectional communication between gut microbiota and brain. In this review, we summarized major mass spectrometry technologies including liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and imaging mass spectrometry for metabolomics studies of neurodegenerative disorders. We also reviewed the recent advances in the identification of new metabolites by mass spectrometry and metabolic pathways involved in the connection of intestinal microbiota and brain. These metabolic pathways allowed the microbiota to impact the regular function of the brain, which can in turn affect the composition of microbiota via the neurotransmitter substances. The dysfunctional interaction of this crosstalk connects neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Huntington's disease. The mass spectrometry-based metabolomics analysis provides information for targeting dysfunctional pathways of small molecule metabolites in the development of the neurodegenerative diseases, which may be valuable for the investigation of underlying mechanism of therapeutic strategies. © 2017 Wiley Periodicals, Inc.

  18. Inhibition of Protein-Protein Interactions and Signaling by Small Molecules

    NASA Astrophysics Data System (ADS)

    Freire, Ernesto

    2010-03-01

    Protein-protein interactions are at the core of cell signaling pathways as well as many bacterial and viral infection processes. As such, they define critical targets for drug development against diseases such as cancer, arthritis, obesity, AIDS and many others. Until now, the clinical inhibition of protein-protein interactions and signaling has been accomplished with the use of antibodies or soluble versions of receptor molecules. Small molecule replacements of these therapeutic agents have been extremely difficult to develop; either the necessary potency has been hard to achieve or the expected biological effect has not been obtained. In this presentation, we show that a rigorous thermodynamic approach that combines differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) provides a unique platform for the identification and optimization of small molecular weight inhibitors of protein-protein interactions. Recent advances in the development of cell entry inhibitors of HIV-1 using this approach will be discussed.

  19. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Sangwon

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternativemore » assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.« less

  20. Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules.

    PubMed

    Childs-Disney, Jessica L; Stepniak-Konieczna, Ewa; Tran, Tuan; Yildirim, Ilyas; Park, HaJeung; Chen, Catherine Z; Hoskins, Jason; Southall, Noel; Marugan, Juan J; Patnaik, Samarjit; Zheng, Wei; Austin, Chris P; Schatz, George C; Sobczak, Krzysztof; Thornton, Charles A; Disney, Matthew D

    2013-01-01

    The ability to control pre-mRNA splicing with small molecules could facilitate the development of therapeutics or cell-based circuits that control gene function. Myotonic dystrophy type 1 is caused by the dysregulation of alternative pre-mRNA splicing due to sequestration of muscleblind-like 1 protein (MBNL1) by expanded, non-coding r(CUG) repeats (r(CUG)(exp)). Here we report two small molecules that induce or ameliorate alternative splicing dysregulation. A thiophene-containing small molecule (1) inhibits the interaction of MBNL1 with its natural pre-mRNA substrates. Compound (2), a substituted naphthyridine, binds r(CUG)(exp) and displaces MBNL1. Structural models show that 1 binds MBNL1 in the Zn-finger domain and that 2 interacts with UU loops in r(CUG)(exp). This study provides a structural framework for small molecules that target MBNL1 by mimicking r(CUG)(exp) and shows that targeting MBNL1 causes dysregulation of alternative splicing, suggesting that MBNL1 is thus not a suitable therapeutic target for the treatment of myotonic dystrophy type 1.

  1. Induction and Reversal of Myotonic Dystrophy Type 1 Pre-mRNA Splicing Defects by Small Molecules

    PubMed Central

    Childs-Disney, Jessica L.; Stepniak-Konieczna, Ewa; Tran, Tuan; Yildirim, Ilyas; Park, HaJeung; Chen, Catherine Z.; Hoskins, Jason; Southall, Noel; Marugan, Juan J.; Patnaik, Samarjit; Zheng, Wei; Austin, Chris P.; Schatz, George C.; Sobczak, Krzysztof; Thornton, Charles A.; Disney, Matthew D.

    2013-01-01

    The ability to control pre-mRNA splicing with small molecules could facilitate the development of therapeutics or cell-based circuits that control gene function. Myotonic dystrophy type 1 (DM1) is caused by the dysregulation of alternative pre-mRNA splicing due to sequestration of muscleblind-like 1 protein (MBNL1) by expanded, non-coding r(CUG) repeats (r(CUG)exp). Here we report two small molecules that induce or ameliorate alternative splicing dysregulation. The thiophene-containing small molecule (1) inhibits the interaction of MBNL1 with its natural pre-mRNA substrates. Compound (2), a substituted naphthyridine, binds r(CUG)exp and displaces MBNL1. Structural models show that 1 binds MBNL1 in the Zn-finger domain and that 2 interacts with UU loops in r(CUG)exp. This study provides a structural framework for small molecules that target MBNL1 by mimicking r(CUG)exp and shows that targeting MBNL1 causes dysregulation of alternative splicing, suggesting that MBNL1 is thus not a suitable therapeutic target for the treatment of DM1. PMID:23806903

  2. Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines.

    PubMed

    Zhang, Xinyuan; Zheng, Nan; Rosania, Gus R

    2008-09-01

    Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions.

  3. Functional Conservation and Divergence of daf-22 Paralogs in Pristionchus pacificus Dauer Development.

    PubMed

    Markov, Gabriel V; Meyer, Jan M; Panda, Oishika; Artyukhin, Alexander B; Claaßen, Marc; Witte, Hanh; Schroeder, Frank C; Sommer, Ralf J

    2016-10-01

    Small-molecule signaling in nematode dauer formation has emerged as a major model to study chemical communication in development and evolution. Developmental arrest as nonfeeding and stress-resistant dauer larvae represents the major survival and dispersal strategy. Detailed studies in Caenorhabditis elegans and Pristionchus pacificus revealed that small-molecule communication changes rapidly in evolution resulting in extreme structural diversity of small-molecule compounds. In C. elegans, a blend of ascarosides constitutes the dauer pheromone, whereas the P. pacificus dauer pheromone includes additional paratosides and integrates building blocks from diverse primary metabolic pathways. Despite this complexity of small-molecule structures and functions, little is known about the biosynthesis of small molecules in nematodes outside C. elegans Here, we show that the genes encoding enzymes of the peroxisomal β-oxidation pathway involved in small-molecule biosynthesis evolve rapidly, including gene duplications and domain switching. The thiolase daf-22, the most downstream factor in C. elegans peroxisomal β-oxidation, has duplicated in P. pacificus, resulting in Ppa-daf-22.1, which still contains the sterol-carrier-protein (SCP) domain that was lost in C. elegans daf-22, and Ppa-daf-22.2. Using the CRISPR/Cas9 system, we induced mutations in both P. pacificus daf-22 genes and identified an unexpected complexity of functional conservation and divergence. Under well-fed conditions, ascaroside biosynthesis proceeds exclusively via Ppa-daf-22.1 In contrast, starvation conditions induce Ppa-daf-22.2 activity, resulting in the production of a specific subset of ascarosides. Gene expression studies indicate a reciprocal up-regulation of both Ppa-daf-22 genes, which is, however, independent of starvation. Thus, our study reveals an unexpected functional complexity of dauer development and evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Development of hydrogel TentaGel shell-core beads for ultrahigh throughput solution-phase screening of encoded OBOC combinatorial small molecule libraries.

    PubMed

    Baek, Hyoung Gee; Liu, Ruiwu; Lam, Kit S

    2009-01-01

    The one-bead one-compound (OBOC) combinatorial library method enables the rapid generation and screening of millions of discrete chemical compounds on beads. Most of the OBOC screening methods require the library compounds to remain tethered to the bead during screening process. Methods have also been developed to release library compounds from immobilized beads for in situ solution phase or "lawn" assays. However, this latter approach, while extremely powerful, is severely limited by the lack of suitable solid supports for such assays. Here, we report on the development of a novel hydrogel TentaGel shell-core (HTSC) bead in which hydrogel is grafted onto the polystyrene-based TentaGel (TG) bead as an outer shell (5-80 mum thick) via free radical surface-initiated polymerization. This novel shell-core bilayer resin enables the preparation of encoded OBOC combinatorial small molecule libraries, such that the library compounds reside on the highly hydrophilic outer layer and the coding tags reside in the polystyrene-based TG core. Using fluorescein as a model small molecule compound, we have demonstrated that fluorescein molecules that have been linked covalently to the hydrogel shell via a disulfide bond could readily diffuse out of the hydrogel layer into the bead surrounding after reduction with dithiothreitol. In contrast, under identical condition, the released fluorescein molecules remained bound to unmodified TG bead. We have prepared an encoded OBOC small molecule library on the novel shell-core beads and demonstrated that the beads can be readily decoded.

  5. Polypetide signaling molecules in plant development

    USDA-ARS?s Scientific Manuscript database

    Intercellular communication mediated by small signaling molecules is a key mechanism for coordinating plant growth and development. In the past few years, polypeptide signals have been shown to play prominent roles in processes as diverse as shoot and root meristem maintenance, vascular differentiat...

  6. New Small Molecule Agonists to the Thyrotropin Receptor

    PubMed Central

    Ali, M. Rejwan; Ma, Risheng; David, Martine; Morshed, Syed A.; Ohlmeyer, Michael; Felsenfeld, Dan P.; Lau, Zerlina; Mezei, Mihaly; Davies, Terry F.

    2015-01-01

    Background Novel small molecular ligands (SMLs) to the thyrotropin receptor (TSHR) have potential as improved molecular probes and as therapeutic agents for the treatment of thyroid dysfunction and thyroid cancer. Methods To identify novel SMLs to the TSHR, we developed a transcription-based luciferase-cAMP high-throughput screening system and we screened 48,224 compounds from a 100K library in duplicate. Results We obtained 62 hits using the cut-off criteria of the mean±three standard deviations above the baseline. Twenty molecules with the greatest activity were rescreened against the parent CHO-luciferase cell for nonspecific activation, and we selected two molecules (MS437 and MS438) with the highest potency for further study. These lead molecules demonstrated no detectible cross-reactivity with homologous receptors when tested against luteinizing hormone (LH)/human chorionic gonadotropin receptor and follicle stimulating hormone receptor–expressing cells. Molecule MS437 had a TSHR-stimulating potency with an EC50 of 13×10−8 M, and molecule MS438 had an EC50 of 5.3×10−8 M. The ability of these small molecule agonists to bind to the transmembrane domain of the receptor and initiate signal transduction was suggested by their activation of a chimeric receptor consisting of an LHR ectodomain and a TSHR transmembrane. Molecular modeling demonstrated that these molecules bound to residues S505 and E506 for MS438 and T501 for MS437 in the intrahelical region of transmembrane helix 3. We also examined the G protein activating ability of these molecules using CHO cells co-expressing TSHRs transfected with luciferase reporter vectors in order to measure Gsα, Gβγ, Gαq, and Gα12 activation quantitatively. The MS437 and MS438 molecules showed potent activation of Gsα, Gαq, and Gα12 similar to TSH, but neither the small molecule agonists nor TSH showed activation of the Gβγ pathway. The small molecules MS437 and MS438 also showed upregulation of thyroglobulin (Tg), sodium iodine symporter (NIS), and TSHR gene expression. Conclusions Pharmacokinetic analysis of MS437 and MS438 indicated their pharmacotherapeutic potential, and their intraperitoneal administration to normal female mice resulted in significantly increased serum thyroxine levels, which could be maintained by repeated treatments. These molecules can therefore serve as lead molecules for further development of powerful TSH agonists. PMID:25333622

  7. Development of Single-Stranded DNA Aptamers for Specific Bisphenol A Detection

    PubMed Central

    Jo, Minjoung; Ahn, Ji-Young; Lee, Joohyung; Lee, Seram; Hong, Sun Woo; Yoo, Jae-Wook; Kang, Jeehye; Dua, Pooja

    2011-01-01

    The development of reagents with high affinity and specificity to small molecules is crucial for the high-throughput detection of chemical compounds, such as toxicants or pollutants. Aptamers are short and single-stranded (ss) oligonucleotides able to recognize target molecules with high affinity. Here, we report the selection of ssDNA aptamers that bind to Bisphenol A (BPA), an environmental hormone. Using SELEX process, we isolated high affinity aptamers to BPA from a 1015 random library of 60 mer ssDNAs. The selected aptamers bound specifically to BPA, but not to structurally similar molecules, such as Bisphenol B with one methyl group difference, or 4,4′-Bisphenol with 2 methyl groups difference. Using these aptamers, we developed an aptamer-based sol–gel biochip and detected BPA dissolved in water. This novel BPA aptamer-based detection can be further applied to the universal and high-specificity detection of small molecules. PMID:21413891

  8. New Wind in Old Sails: Novel Applications of Triphos-based Transition Metal Complexes as Homogeneous Catalysts for Small Molecules and Renewables Activation.

    PubMed

    Mellone, Irene; Bertini, Federica; Gonsalvi, Luca; Guerriero, Antonella; Peruzzini, Maurizio

    2015-01-01

    Recent developments in the coordination chemistry and applications of Ru-triphos [triphos = 1,1,1-tris-(diphenylphosphinomethyl)ethane] systems are reviewed, highlighting their role as active and selective homogenous catalysts for small molecule activation, biomass conversions and in carbon dioxide utilization-related processes.

  9. A systems approach for tumor pharmacokinetics.

    PubMed

    Thurber, Greg Michael; Weissleder, Ralph

    2011-01-01

    Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.

  10. Small molecules targeting LapB protein prevent Listeria attachment to catfish muscle

    PubMed Central

    Das, Bhaskar; Lawrence, Mark

    2017-01-01

    Listeria monocytogenes is a Gram-positive foodborne pathogen and the causative agent of listeriosis. L. monocytogenes lapB gene encodes a cell wall surface anchor protein, and mutation of this gene causes Listeria attenuation in mice. In this work, the potential role of Listeria LapB protein in catfish fillet attachment was investigated. To achieve this, boron-based small molecules designed to interfere with the active site of the L. monocytogenes LapB protein were developed, and their ability to prevent L. monocytogenes attachment to fish fillet was tested. Results indicated that seven out of nine different small molecules were effective in reducing the Listeria attachment to catfish fillets. Of these, three small molecules (SM3, SM5, and SM7) were highly effective in blocking Listeria attachment to catfish fillets. This study suggests an alternative strategy for reduction of L. monocytogenes contamination in fresh and frozen fish products. PMID:29253892

  11. Side-chain Engineering of Benzo[1,2-b:4,5-b’]dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells

    PubMed Central

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-01-01

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b’]dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing. PMID:27140224

  12. Side-chain Engineering of Benzo[1,2-b:4,5-b']dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells.

    PubMed

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-05-03

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b']dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing.

  13. Targeting Mycobacterium tuberculosis Topoisomerase I by Small-Molecule Inhibitors

    PubMed Central

    Godbole, Adwait Anand; Ahmed, Wareed; Bhat, Rajeshwari Subray; Bradley, Erin K.; Ekins, Sean

    2014-01-01

    We describe inhibition of Mycobacterium tuberculosis topoisomerase I (MttopoI), an essential mycobacterial enzyme, by two related compounds, imipramine and norclomipramine, of which imipramine is clinically used as an antidepressant. These molecules showed growth inhibition of both Mycobacterium smegmatis and M. tuberculosis cells. The mechanism of action of these two molecules was investigated by analyzing the individual steps of the topoisomerase I (topoI) reaction cycle. The compounds stimulated cleavage, thereby perturbing the cleavage-religation equilibrium. Consequently, these molecules inhibited the growth of the cells overexpressing topoI at a low MIC. Docking of the molecules on the MttopoI model suggested that they bind near the metal binding site of the enzyme. The DNA relaxation activity of the metal binding mutants harboring mutations in the DxDxE motif was differentially affected by the molecules, suggesting that the metal coordinating residues contribute to the interaction of the enzyme with the drug. Taken together, the results highlight the potential of these small molecules, which poison the M. tuberculosis and M. smegmatis topoisomerase I, as leads for the development of improved molecules to combat mycobacterial infections. Moreover, targeting metal coordination in topoisomerases might be a general strategy to develop new lead molecules. PMID:25534741

  14. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    PubMed Central

    Boujday, Souhir; Lamy de la Chapelle, Marc; Srajer, Johannes; Knoll, Wolfgang

    2015-01-01

    In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes. PMID:26343666

  15. The future of small molecule inhibitors in lymphoma.

    PubMed

    Gerecitano, John

    2009-09-01

    For the many patients with lymphoma that has relapsed after and/or has become refractory to existing treatments, the development of novel therapeutics is imperative. Investigation into intracellular processes that are dysregulated during lymphomagenesis has uncovered several new potential targets for anticancer agents. Although monoclonal antibodies and other immunotherapeutics have led to dramatic advances in the treatment of patients with lymphoma, the parallel development of small molecule inhibitors has been equally exciting. These agents, whose small size allows direct entry into tumor cells, can target distinct proteins or complexes, thereby disrupting molecular processes on which neoplastic cells depend for survival and growth. This review surveys the published literature on many of these new targeted molecules, focusing on some of the most promising agents for which phase 2 data currently exist. It also explores the potential for incorporating these agents into broader multidrug regimens.

  16. A High Throughput Screening Assay System for the Identification of Small Molecule Inhibitors of gsp

    PubMed Central

    Bhattacharyya, Nisan; Hu, Xin; Chen, Catherine Z.; Mathews Griner, Lesley A.; Zheng, Wei; Inglese, James; Austin, Christopher P.; Marugan, Juan J.; Southall, Noel; Neumann, Susanne; Northup, John K.; Ferrer, Marc; Collins, Michael T.

    2014-01-01

    Mis-sense mutations in the α-subunit of the G-protein, Gsα, cause fibrous dysplasia of bone/McCune-Albright syndrome. The biochemical outcome of these mutations is constitutively active Gsα and increased levels of cAMP. The aim of this study was to develop an assay system that would allow the identification of small molecule inhibitors specific for the mutant Gsα protein, the so-called gsp oncogene. Commercially available Chinese hamster ovary cells were stably transfected with either wild-type (WT) or mutant Gsα proteins (R201C and R201H). Stable cell lines with equivalent transfected Gsα protein expression that had relatively lower (WT) or higher (R201C and R201H) cAMP levels were generated. These cell lines were used to develop a fluorescence resonance energy transfer (FRET)–based cAMP assay in 1536-well microplate format for high throughput screening of small molecule libraries. A small molecule library of 343,768 compounds was screened to identify modulators of gsp activity. A total of 1,356 compounds with inhibitory activity were initially identified and reconfirmed when tested in concentration dose responses. Six hundred eighty-six molecules were selected for further analysis after removing cytotoxic compounds and those that were active in forskolin-induced WT cells. These molecules were grouped by potency, efficacy, and structural similarities to yield 22 clusters with more than 5 of structurally similar members and 144 singleton molecules. Seven chemotypes of the major clusters were identified for further testing and analyses. PMID:24667240

  17. Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-like compounds

    PubMed Central

    Virshup, Aaron M.; Contreras-García, Julia; Wipf, Peter; Yang, Weitao; Beratan, David N.

    2013-01-01

    The “small molecule universe” (SMU), the set of all synthetically feasible organic molecules of 500 Daltons molecular weight or less, is estimated to contain over 1060 structures, making exhaustive searches for structures of interest impractical. Here, we describe the construction of a “representative universal library” spanning the SMU that samples the full extent of feasible small molecule chemistries. This library was generated using the newly developed Algorithm for Chemical Space Exploration with Stochastic Search (ACSESS). ACSESS makes two important contributions to chemical space exploration: it allows the systematic search of the unexplored regions of the small molecule universe, and it facilitates the mining of chemical libraries that do not yet exist, providing a near-infinite source of diverse novel compounds. PMID:23548177

  18. Challenges and Opportunities for Small-Molecule Fluorescent Probes in Redox Biology Applications.

    PubMed

    Jiang, Xiqian; Wang, Lingfei; Carroll, Shaina L; Chen, Jianwei; Wang, Meng C; Wang, Jin

    2018-02-16

    The concentrations of reactive oxygen/nitrogen species (ROS/RNS) are critical to various biochemical processes. Small-molecule fluorescent probes have been widely used to detect and/or quantify ROS/RNS in many redox biology studies and serve as an important complementary to protein-based sensors with unique applications. Recent Advances: New sensing reactions have emerged in probe development, allowing more selective and quantitative detection of ROS/RNS, especially in live cells. Improvements have been made in sensing reactions, fluorophores, and bioavailability of probe molecules. In this review, we will not only summarize redox-related small-molecule fluorescent probes but also lay out the challenges of designing probes to help redox biologists independently evaluate the quality of reported small-molecule fluorescent probes, especially in the chemistry literature. We specifically highlight the advantages of reversibility in sensing reactions and its applications in ratiometric probe design for quantitative measurements in living cells. In addition, we compare the advantages and disadvantages of small-molecule probes and protein-based probes. The low physiological relevant concentrations of most ROS/RNS call for new sensing reactions with better selectivity, kinetics, and reversibility; fluorophores with high quantum yield, wide wavelength coverage, and Stokes shifts; and structural design with good aqueous solubility, membrane permeability, low protein interference, and organelle specificity. Antioxid. Redox Signal. 00, 000-000.

  19. Persistence length of collagen molecules based on nonlocal viscoelastic model.

    PubMed

    Ghavanloo, Esmaeal

    2017-12-01

    Persistence length is one of the most interesting properties of a molecular chain, which is used to describe the stiffness of a molecule. The experimentally measured values of the persistence length of the collagen molecule are widely scattered from 14 to 180 nm. Therefore, an alternative approach is highly desirable to predict the persistence length of a molecule and also to explain the experimental results. In this paper, a nonlocal viscoelastic model is developed to obtain the persistence length of the collagen molecules in solvent. A new explicit formula is proposed for the persistence length of the molecule with the consideration of the small-scale effect, viscoelastic properties of the molecule, loading frequency, and viscosity of the solvent. The presented model indicates that there exists a range of molecule lengths in which the persistence length strongly depends on the frequency and spatial mode of applied loads, small-scale effect, and viscoelastic properties of the collagen.

  20. Recent development of small molecule glutaminase inhibitors.

    PubMed

    Song, Minsoo; Kim, Soong-Hyun; Im, Chun Young; Hwang, Hee-Jong

    2018-05-24

    Glutaminase (GLS) which is responsible for the conversion of glutamine to glutamate plays vital role in up-regulating cell metabolism for tumor cell growth, and is considered as a valuable therapeutic target for cancer treatment. Based on this important function of glutaminase in cancer, several GLS inhibitors have been developed from both academia and industries. Most importantly, Calithera Biosciences Inc. is actively developing glutaminase inhibitor CB-839 for the treatment of various cancers in phase 1 and 2 clinical trials at present. In this review, it is discussed about recent efforts to develop small molecule glutaminase inhibitors targeting glutamine metabolism both in the preclinical and clinical studies. In particular, more emphasis is placed on CB-839 since it is the only small molecule GLS inhibitor being studied in clinical setting. Inhibition mechanism is discussed based on x-ray structure study of thiadiazole derivatives as well. Finally, recent medicinal chemistry efforts to develop a new class of GLS inhibitors are given herein in the hope of providing useful information for GLS inhibitors of the next generation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Discovery and characterization of small molecules targeting the DNA-binding ETS domain of ERG in prostate cancer

    PubMed Central

    Kim, Ari; Yen, Paul; Mroczek, Marta; Nouri, Mannan; Lien, Scott; Axerio-Cilies, Peter; Dalal, Kush; Yau, Clement; Ghaidi, Fariba; Guo, Yubin; Yamazaki, Takeshi; Lawn, Sam; Gleave, Martin E.; Gregory-Evans, Cheryl Y.

    2017-01-01

    Genomic alterations involving translocations of the ETS-related gene ERG occur in approximately half of prostate cancer cases. These alterations result in aberrant, androgen-regulated production of ERG protein variants that directly contribute to disease development and progression. This study describes the discovery and characterization of a new class of small molecule ERG antagonists identified through rational in silico methods. These antagonists are designed to sterically block DNA binding by the ETS domain of ERG and thereby disrupt transcriptional activity. We confirmed the direct binding of a lead compound, VPC-18005, with the ERG-ETS domain using biophysical approaches. We then demonstrated VPC-18005 reduced migration and invasion rates of ERG expressing prostate cancer cells, and reduced metastasis in a zebrafish xenograft model. These results demonstrate proof-of-principal that small molecule targeting of the ERG-ETS domain can suppress transcriptional activity and reverse transformed characteristics of prostate cancers aberrantly expressing ERG. Clinical advancement of the developed small molecule inhibitors may provide new therapeutic agents for use as alternatives to, or in combination with, current therapies for men with ERG-expressing metastatic castration-resistant prostate cancer. PMID:28465491

  2. Small Molecule Inhibitors Target the Tissue Transglutaminase and Fibronectin Interaction

    PubMed Central

    Yakubov, Bakhtiyor; Chen, Lan; Belkin, Alexey M.; Zhang, Sheng; Chelladurai, Bhadrani; Zhang, Zhong-Yin; Matei, Daniela

    2014-01-01

    Tissue transglutaminase (TG2) mediates protein crosslinking through generation of ε−(γ-glutamyl) lysine isopeptide bonds and promotes cell adhesion through interaction with fibronectin (FN) and integrins. Cell adhesion to the peritoneal matrix regulated by TG2 facilitates ovarian cancer dissemination. Therefore, disruption of the TG2-FN complex by small molecules may inhibit cell adhesion and metastasis. A novel high throughput screening (HTS) assay based on AlphaLISA™ technology was developed to measure the formation of a complex between His-TG2 and the biotinylated FN fragment that binds TG2 and to discover small molecules that inhibit this protein-protein interaction. Several hits were identified from 10,000 compounds screened. The top candidates selected based on >70% inhibition of the TG2/FN complex formation were confirmed by using ELISA and bioassays measuring cell adhesion, migration, invasion, and proliferation. In conclusion, the AlphaLISA bead format assay measuring the TG2-FN interaction is robust and suitable for HTS of small molecules. One compound identified from the screen (TG53) potently inhibited ovarian cancer cell adhesion to FN, cell migration, and invasion and could be further developed as a potential inhibitor for ovarian cancer dissemination. PMID:24586660

  3. Comparison of small molecules and oligonucleotides that target a toxic, non-coding RNA.

    PubMed

    Costales, Matthew G; Rzuczek, Suzanne G; Disney, Matthew D

    2016-06-01

    Potential RNA targets for chemical probes and therapeutic modalities are pervasive in the transcriptome. Oligonucleotide-based therapeutics are commonly used to target RNA sequence. Small molecules are emerging as a modality to target RNA structures selectively, but their development is still in its infancy. In this work, we compare the activity of oligonucleotides and several classes of small molecules that target the non-coding r(CCUG) repeat expansion (r(CCUG)(exp)) that causes myotonic dystrophy type 2 (DM2), an incurable disease that is the second-most common cause of adult onset muscular dystrophy. Small molecule types investigated include monomers, dimers, and multivalent compounds synthesized on-site by using RNA-templated click chemistry. Oligonucleotides investigated include phosphorothioates that cleave their target and vivo-morpholinos that modulate target RNA activity via binding. We show that compounds assembled on-site that recognize structure have the highest potencies amongst small molecules and are similar in potency to a vivo-morpholino modified oligonucleotide that targets sequence. These studies are likely to impact the design of therapeutic modalities targeting other repeats expansions that cause fragile X syndrome and amyotrophic lateral sclerosis, for example. Copyright © 2016. Published by Elsevier Ltd.

  4. Small molecules as therapy for uveitis: a selected perspective of new and developing agents.

    PubMed

    Pleyer, Uwe; Algharably, Engi Abdel-Hady; Feist, Eugen; Kreutz, Reinhold

    2017-09-01

    Intraocular inflammation (uveitis) remains a significant burden of legal blindness. Because of its immune mediated and chronic recurrent nature, common therapy includes corticosteroids, disease-modifying anti-rheumatic drugs and more recently biologics as immune modulatory agents. The purpose of this article is to identify the role of new treatment approaches focusing on small molecules as therapeutic option in uveitis. Areas covered: A MEDLINE database search was conducted through February 2017 using the terms 'uveitis' and 'small molecule'. To provide ongoing and future perspectives in treatment options, also clinical trials as registered at ClinicalTrials.gov were included. Both, results from experimental as well as clinical research in this field were included. Since this field is rapidly evolving, a selection of promising agents had to be made. Expert opinion: Small molecules may interfere at different steps of the inflammatory cascade and appear as an interesting option in the treatment algorithm of uveitis. Because of their highly targeted molecular effects and their favorable bioavailability with the potential of topical application small molecules hold great promise. Nevertheless, a careful evaluation of these agents has to be made, since current experience is almost exclusively based on experimental uveitis models and few registered trials.

  5. Challenges and Perspectives on the Development of Small-Molecule EGFR Inhibitors against T790M-Mediated Resistance in Non-Small-Cell Lung Cancer.

    PubMed

    Song, Zhendong; Ge, Yang; Wang, Changyuan; Huang, Shanshan; Shu, Xiaohong; Liu, Kexin; Zhou, Youwen; Ma, Xiaodong

    2016-07-28

    Because of the development of drug-resistance mutations, particularly the "gatekeeper" threonine(790)-to-methionine(790) (T790M) mutation in the ATP-binding pocket of the epidermal growth factor receptor (EGFR), the current generation of EGFR tyrosine kinase inhibitors lost their clinical efficacy. Recently, a large number of small-molecule inhibitors with striking inhibitory potency against EGFR mutants with the T790M change have been identified. In particular, the inhibitors rociletinib and osimertinib, which can selectively target both sensitizing mutations and the T790M resistance while sparing the wild-type (WT) form of the receptor, have been designated as breakthrough therapies in the treatment of mutant non-small-cell lung cancer (NSCLC) by the U.S. FDA in 2014. We hope that this review on the small-molecule EGFR T790M inhibitors, along with their discovery strategies, will assist in the design of future T790M-containing EGFR inhibitors with high levels of selectivity over WT EGFR, broad kinase selectivity, and desirable physicochemical properties.

  6. SMMRNA: a database of small molecule modulators of RNA

    PubMed Central

    Mehta, Ankita; Sonam, Surabhi; Gouri, Isha; Loharch, Saurabh; Sharma, Deepak K.; Parkesh, Raman

    2014-01-01

    We have developed SMMRNA, an interactive database, available at http://www.smmrna.org, with special focus on small molecule ligands targeting RNA. Currently, SMMRNA consists of ∼770 unique ligands along with structural images of RNA molecules. Each ligand in the SMMRNA contains information such as Kd, Ki, IC50, ΔTm, molecular weight (MW), hydrogen donor and acceptor count, XlogP, number of rotatable bonds, number of aromatic rings and 2D and 3D structures. These parameters can be explored using text search, advanced search, substructure and similarity-based analysis tools that are embedded in SMMRNA. A structure editor is provided for 3D visualization of ligands. Advance analysis can be performed using substructure and OpenBabel-based chemical similarity fingerprints. Upload facility for both RNA and ligands is also provided. The physicochemical properties of the ligands were further examined using OpenBabel descriptors, hierarchical clustering, binning partition and multidimensional scaling. We have also generated a 3D conformation database of ligands to support the structure and ligand-based screening. SMMRNA provides comprehensive resource for further design, development and refinement of small molecule modulators for selective targeting of RNA molecules. PMID:24163098

  7. Monte-Carlo simulations of a coarse-grained model for α-oligothiophenes

    NASA Astrophysics Data System (ADS)

    Almutairi, Amani; Luettmer-Strathmann, Jutta

    The interfacial layer of an organic semiconductor in contact with a metal electrode has important effects on the performance of thin-film devices. However, the structure of this layer is not easy to model. Oligothiophenes are small, π-conjugated molecules with applications in organic electronics that also serve as small-molecule models for polythiophenes. α-hexithiophene (6T) is a six-ring molecule, whose adsorption on noble metal surfaces has been studied extensively (see, e.g., Ref.). In this work, we develop a coarse-grained model for α-oligothiophenes. We describe the molecules as linear chains of bonded, discotic particles with Gay-Berne potential interactions between non-bonded ellipsoids. We perform Monte Carlo simulations to study the structure of isolated and adsorbed molecules

  8. Theoretical research program to study chemical reactions in AOTV bow shock tubes

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.

    1993-01-01

    The main focus was the development, implementation, and calibration of methods for performing molecular electronic structure calculations to high accuracy. These various methods were then applied to a number of chemical reactions and species of interest to NASA, notably in the area of combustion chemistry. Among the development work undertaken was a collaborative effort to develop a program to efficiently predict molecular structures and vibrational frequencies using energy derivatives. Another major development effort involved the design of new atomic basis sets for use in chemical studies: these sets were considerably more accurate than those previously in use. Much effort was also devoted to calibrating methods for computing accurate molecular wave functions, including the first reliable calibrations for realistic molecules using full CI results. A wide variety of application calculations were undertaken. One area of interest was the spectroscopy and thermochemistry of small molecules, including establishing small molecule binding energies to an accuracy rivaling, or even on occasion surpassing, the experiment. Such binding energies are essential input to modeling chemical reaction processes, such as combustion. Studies of large molecules and processes important in both hydrogen and hydrocarbon combustion chemistry were also carried out. Finally, some effort was devoted to the structure and spectroscopy of small metal clusters, with applications to materials science problems.

  9. A Strategy for the Development of Macromolecular Nonlinear Optical Materials

    DTIC Science & Technology

    1990-01-01

    oriented in the polymer matrix although a small amount of residual anisotropy is sometimes seen as the asymmetric molecules are spin coated onto the...the pores of the polymer network after curing. Our investigation using small and large active molecules and a curable epoxy polymer has established a...Lett., 49(5), 248 (1986) 12. R. D. Small , K. D. Singer, J. E. Sohin, M. G. Kuzyk and S. J. Lalama, SPIE, 682, 160 (1987) 13. M. A. Mortazavi, A

  10. Chemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG)-containing transcripts.

    PubMed

    Kumar, Amit; Parkesh, Raman; Sznajder, Lukasz J; Childs-Disney, Jessica L; Sobczak, Krzysztof; Disney, Matthew D

    2012-03-16

    Recently, it was reported that expanded r(CAG) triplet repeats (r(CAG)(exp)) associated with untreatable neurological diseases cause pre-mRNA mis-splicing likely due to sequestration of muscleblind-like 1 (MBNL1) splicing factor. Bioactive small molecules that bind the 5'CAG/3'GAC motif found in r(CAG)(exp) hairpin structure were identified by using RNA binding studies and virtual screening/chemical similarity searching. Specifically, a benzylguanidine-containing small molecule was found to improve pre-mRNA alternative splicing of MBNL1-sensitive exons in cells expressing the toxic r(CAG)(exp). The compound was identified by first studying the binding of RNA 1 × 1 nucleotide internal loops to small molecules known to have affinity for nucleic acids. Those studies identified 4',6-diamidino-2-phenylindole (DAPI) as a specific binder to RNAs with the 5'CAG/3'GAC motif. DAPI was then used as a query molecule in a shape- and chemistry alignment-based virtual screen to identify compounds with improved properties, which identified 4-guanidinophenyl 4-guanidinobenzoate, a small molecule that improves pre-mRNA splicing defects associated with the r(CAG)(exp)-MBNL1 complex. This compound may facilitate the development of therapeutics to treat diseases caused by r(CAG)(exp) and could serve as a useful chemical tool to dissect the mechanisms of r(CAG)(exp) toxicity. The approach used in these studies, defining the small RNA motifs that bind small molecules with known affinity for nucleic acids and then using virtual screening to optimize them for bioactivity, may be generally applicable for designing small molecules that target other RNAs in the human genomic sequence.

  11. [Advances in the study of natural small molecular antibody].

    PubMed

    Zhu, Lei; Zhang, Da-peng

    2012-10-01

    Small molecule antibodies are naturally existed and well functioned but not structurally related to the conventional antibodies. They are only composed of heavy protein chains or light chains, much smaller than common antibody. The first small molecule antibody, called Nanobody was engineered from heavy-chain antibodies found in camelids. Cartilaginous fishes also have heavy-chain antibodies (IgNAR, "immunoglobulin new antigen receptor"), from which single-domain antibodies called Vnar fragments can be obtained. In addition, free light chain (FLC) antibodies in human bodies are being developed as therapeutic and diagnostic agents. Comparing to intact antibodies, common advantages of small molecule antibodies are with better solubility, tissue penetration, stability towards heat and enzymes, and comparatively low production costs. This article reviews the structural characteristics and mechanism of action of the Nanobody, IgNAR and FLC.

  12. Small Molecule Inhibitors in Acute Myeloid Leukemia: From the Bench to the Clinic

    PubMed Central

    Al-Hussaini, Muneera; DiPersio, John F.

    2014-01-01

    Many patients with acute myeloid leukemia (AML) will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors (SMIs) represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in AML. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials. PMID:25025370

  13. Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation

    PubMed Central

    Tang, Weixin; Hu, Johnny H.; Liu, David R.

    2017-01-01

    Programmable sequence-specific genome editing agents such as CRISPR-Cas9 have greatly advanced our ability to manipulate the human genome. Although canonical forms of genome-editing agents and programmable transcriptional regulators are constitutively active, precise temporal and spatial control over genome editing and transcriptional regulation activities would enable the more selective and potentially safer use of these powerful technologies. Here, by incorporating ligand-responsive self-cleaving catalytic RNAs (aptazymes) into guide RNAs, we developed a set of aptazyme-embedded guide RNAs that enable small molecule-controlled nuclease-mediated genome editing and small molecule-controlled base editing, as well as small molecule-dependent transcriptional activation in mammalian cells. PMID:28656978

  14. Metabolon, Inc.

    PubMed

    Ryals, John; Lawton, Kay; Stevens, Daniel; Milburn, Michael

    2007-07-01

    Metabolon is an emerging technology company developing proprietary analytical methods and software for biomarker discovery using metabolomics. The company's aim is to measure all small molecules (<1500 Da) in a biological sample. These small-molecule compounds include biochemicals of cellular metabolism and xenobiotics from diet and environment. Our proprietary mLIMStrade mark system contains advanced metabolomic software and automated data-processing tools that use a variety of data-analysis and quality-control algorithms to convert raw mass-spectrometry data to identified, quantitated compounds. Metabolon's primary focus is a fee-for-service business that exploits this technology for pharmaceutical and biotechnology companies, with additional clients in the consumer goods, cosmetics and agricultural industries. Fee-for-service studies are often collaborations with groups that employ a variety of technologies for biomarker discovery. Metabolon's goal is to develop technology that will automatically analyze any sample for the small-molecule components present and become a standard technology for applications in health and related sciences.

  15. Developing novel anti-fibrotic therapeutics to modulate post-surgical wound healing in glaucoma: big potential for small molecules

    PubMed Central

    Yu-Wai-Man, Cynthia; Khaw, Peng Tee

    2015-01-01

    Ocular fibrosis leads to significant visual impairment and blindness in millions of people worldwide, and is one of the largest areas of unmet need in clinical ophthalmology. The antimetabolites, mitomycin C and 5-fluorouracil, are the current gold standards used primarily to prevent fibrosis after glaucoma surgery, but have potentially blinding complications like tissue damage, breakdown and infection. This review thus focuses on the development of new classes of small molecule therapeutics to prevent post-surgical fibrosis in the eye, especially in the context of glaucoma filtration surgery. We discuss recent advances and innovations in ophthalmic wound healing research, including antibodies, RNAi, gene therapy, nanoparticles, liposomes, dendrimers, proteoglycans and small molecule inhibitors. We also review the challenges involved in terms of drug delivery, duration of action and potential toxicity of new anti-fibrotic agents in the eye. PMID:25983855

  16. Recent developments in small molecule therapies for renal cell carcinoma.

    PubMed

    Song, Minsoo

    2017-12-15

    Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults and is known to be the 10th most common type of cancer in the world. Most of the currently available RCC drugs are tyrosine kinase inhibitors (TKIs). However, combination therapies of TKIs and immune checkpoint inhibitors such as programmed cell death protein 1 (PD-1) and programmed cell death protein 1 ligand 1 (PD-L1) inhibitors are the focus of most of the final stage clinical trials. Meanwhile, other small molecule therapies for RCC that target indoleamine-2,3-dioxygenase (IDO1), glutaminase, C-X-C chemokine receptor 4 (CXCR4), and transglutaminase 2 (TG2) are emerging as the next generation of therapeutics. In this review, these three major streams for the development of small molecule drugs for RCC are described. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Diversity-oriented synthetic strategy for developing a chemical modulator of protein-protein interaction

    NASA Astrophysics Data System (ADS)

    Kim, Jonghoon; Jung, Jinjoo; Koo, Jaeyoung; Cho, Wansang; Lee, Won Seok; Kim, Chanwoo; Park, Wonwoo; Park, Seung Bum

    2016-10-01

    Diversity-oriented synthesis (DOS) can provide a collection of diverse and complex drug-like small molecules, which is critical in the development of new chemical probes for biological research of undruggable targets. However, the design and synthesis of small-molecule libraries with improved biological relevance as well as maximized molecular diversity represent a key challenge. Herein, we employ functional group-pairing strategy for the DOS of a chemical library containing privileged substructures, pyrimidodiazepine or pyrimidine moieties, as chemical navigators towards unexplored bioactive chemical space. To validate the utility of this DOS library, we identify a new small-molecule inhibitor of leucyl-tRNA synthetase-RagD protein-protein interaction, which regulates the amino acid-dependent activation of mechanistic target of rapamycin complex 1 signalling pathway. This work highlights that privileged substructure-based DOS strategy can be a powerful research tool for the construction of drug-like compounds to address challenging biological targets.

  18. Noncompetitive Homogeneous Detection of Small Molecules Using Synthetic Nanopeptamer-Based Luminescent Oxygen Channeling.

    PubMed

    Lassabe, Gabriel; Kramer, Karl; Hammock, Bruce D; González-Sapienza, Gualberto; González-Techera, Andrés

    2018-05-15

    Our group has previously developed immunoassays for noncompetitive detection of small molecules based on the use of phage borne anti-immunocomplex peptides. Recently, we substituted the phage particles by biotinylated synthetic anti-immunocomplex peptides complexed with streptavidin and named these constructs nanopeptamers. In this work, we report the results of combining AlphaLisa, a commercial luminescent oxygen channeling bead system, with nanopeptamers for the development of a noncompetitive homogeneous assay for the detection of small molecules. The signal generation of AlphaLisa assays relies on acceptor-donor bead proximity induced by the presence of the analyte (a macromolecule) simultaneously bound by antibodies immobilized on the surface of these beads. In the developed assay, termed as nanoAlphaLisa, bead proximity is sustained by the presence of a small model molecule (atrazine, MW = 215) using an antiatrazine antibody captured on the acceptor bead and an atrazine nanopeptamer on the donor bead. Atrazine is one of the most used pesticides worldwide, and its monitoring in water has relevant human health implications. NanoAlphaLisa allowed the homogeneous detection of atrazine down to 0.3 ng/mL in undiluted water samples in 1 h, which is 10-fold below the accepted limit in drinking water. NanoAlphaLisa has the intrinsic advantages for automation and high-throughput, simple, and fast homogeneous detection of target analytes that AlphaLisa assay provides.

  19. Computational systems chemical biology.

    PubMed

    Oprea, Tudor I; May, Elebeoba E; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology (SCB) (Nat Chem Biol 3: 447-450, 2007).The overarching goal of computational SCB is to develop tools for integrated chemical-biological data acquisition, filtering and processing, by taking into account relevant information related to interactions between proteins and small molecules, possible metabolic transformations of small molecules, as well as associated information related to genes, networks, small molecules, and, where applicable, mutants and variants of those proteins. There is yet an unmet need to develop an integrated in silico pharmacology/systems biology continuum that embeds drug-target-clinical outcome (DTCO) triplets, a capability that is vital to the future of chemical biology, pharmacology, and systems biology. Through the development of the SCB approach, scientists will be able to start addressing, in an integrated simulation environment, questions that make the best use of our ever-growing chemical and biological data repositories at the system-wide level. This chapter reviews some of the major research concepts and describes key components that constitute the emerging area of computational systems chemical biology.

  20. Computational Systems Chemical Biology

    PubMed Central

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2013-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007). The overarching goal of computational SCB is to develop tools for integrated chemical-biological data acquisition, filtering and processing, by taking into account relevant information related to interactions between proteins and small molecules, possible metabolic transformations of small molecules, as well as associated information related to genes, networks, small molecules and, where applicable, mutants and variants of those proteins. There is yet an unmet need to develop an integrated in silico pharmacology / systems biology continuum that embeds drug-target-clinical outcome (DTCO) triplets, a capability that is vital to the future of chemical biology, pharmacology and systems biology. Through the development of the SCB approach, scientists will be able to start addressing, in an integrated simulation environment, questions that make the best use of our ever-growing chemical and biological data repositories at the system-wide level. This chapter reviews some of the major research concepts and describes key components that constitute the emerging area of computational systems chemical biology. PMID:20838980

  1. A physicist's view of biotechnology. [small molecule crystal growth in space

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1987-01-01

    Theories and techniques for small molecule crystal growth are reviewed, with emphasis on space processing possibilities, particularly for protein crystal growth. The general principles of nucleation, growth, and mass and heat transport are first discussed. Optical systems using schlieren, shadowgraph, and holographic techniques are considered, and are illustrated with the example of the NASA developed Fluids Experiment System flow aboard Spacelab 3.

  2. A small-molecule fragment that emulates binding of receptor and broadly neutralizing antibodies to influenza A hemagglutinin.

    PubMed

    Kadam, Rameshwar U; Wilson, Ian A

    2018-04-17

    The influenza virus hemagglutinin (HA) glycoprotein mediates receptor binding and membrane fusion during viral entry in host cells. Blocking these key steps in viral infection has applications for development of novel antiinfluenza therapeutics as well as vaccines. However, the lack of structural information on how small molecules can gain a foothold in the small, shallow receptor-binding site (RBS) has hindered drug design against this important target on the viral pathogen. Here, we report on the serendipitous crystallization-based discovery of a small-molecule N -cyclohexyltaurine, commonly known as the buffering agent CHES, that is able to bind to both group-1 and group-2 HAs of influenza A viruses. X-ray structural characterization of group-1 H5N1 A/Vietnam/1203/2004 (H5/Viet) and group-2 H3N2 A/Hong Kong/1/1968 (H3/HK68) HAs at 2.0-Å and 2.57-Å resolution, respectively, revealed that N -cyclohexyltaurine binds to the heart of the conserved HA RBS. N -cyclohexyltaurine mimics the binding mode of the natural receptor sialic acid and RBS-targeting bnAbs through formation of similar hydrogen bonds and CH-π interactions with the HA. In H3/HK68, N -cyclohexyltaurine also binds to a conserved pocket in the stem region, thereby exhibiting a dual-binding mode in group-2 HAs. These long-awaited structural insights into RBS recognition by a noncarbohydrate-based small molecule enhance our knowledge of how to target this important functional site and can serve as a template to guide the development of novel broad-spectrum small-molecule therapeutics against influenza virus.

  3. Imaging enzyme-triggered self-assembly of small molecules inside live cells

    PubMed Central

    Gao, Yuan; Shi, Junfeng; Yuan, Dan; Xu, Bing

    2012-01-01

    Self-assembly of small molecules in water to form nanofibers, besides generating sophisticated biomaterials, promises a simple system inside cells for regulating cellular processes. But lack of a convenient approach for studying the self-assembly of small molecules inside cells hinders the development of such systems. Here we report a method to image enzyme-triggered self-assembly of small molecules inside live cells. After linking a fluorophore to a self-assembly motif to make a precursor, we confirmed by 31P NMR and rheology that enzyme-triggered conversion of the precursor to a hydrogelator results in the formation of a hydrogel via self-assembly. The imaging contrast conferred by the nanofibers of the hydrogelators allowed the evaluation of intracellular self-assembly; the dynamics, and the localization of the nanofibers of the hydrogelators in live cells. This approach explores supramolecular chemistry inside cells and may lead to new insights, processes, or materials at the interface of chemistry and biology. PMID:22929790

  4. The cationic small molecule GW4869 is cytotoxic to high phosphatidylserine-expressing myeloma cells.

    PubMed

    Vuckovic, Slavica; Vandyke, Kate; Rickards, David A; McCauley Winter, Padraig; Brown, Simon H J; Mitchell, Todd W; Liu, Jun; Lu, Jun; Askenase, Philip W; Yuriev, Elizabeth; Capuano, Ben; Ramsland, Paul A; Hill, Geoffrey R; Zannettino, Andrew C W; Hutchinson, Andrew T

    2017-05-01

    We have discovered that a small cationic molecule, GW4869, is cytotoxic to a subset of myeloma cell lines and primary myeloma plasma cells. Biochemical analysis revealed that GW4869 binds to anionic phospholipids such as phosphatidylserine - a lipid normally confined to the intracellular side of the cell membrane. However, interestingly, phosphatidylserine was expressed on the surface of all myeloma cell lines tested (n = 12) and 9/15 primary myeloma samples. Notably, the level of phosphatidylserine expression correlated well with sensitivity to GW4869. Inhibition of cell surface phosphatidylserine exposure with brefeldin A resulted in resistance to GW4869. Finally, GW4869 was shown to delay the growth of phosphatidylserine-high myeloma cells in vivo. To the best of our knowledge, this is the first example of using a small molecule to target phosphatidylserine on malignant cells. This study may provide the rationale for the development of phosphatidylserine-targeting small molecules for the treatment of surface phosphatidylserine-expressing cancers. © 2017 John Wiley & Sons Ltd.

  5. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Benoit, Danielle S. W.; Schwartz, Michael P.; Durney, Andrew R.; Anseth, Kristi S.

    2008-10-01

    Cell-matrix interactions have critical roles in regeneration, development and disease. The work presented here demonstrates that encapsulated human mesenchymal stem cells (hMSCs) can be induced to differentiate down osteogenic and adipogenic pathways by controlling their three-dimensional environment using tethered small-molecule chemical functional groups. Hydrogels were formed using sufficiently low concentrations of tether molecules to maintain constant physical characteristics, encapsulation of hMSCs in three dimensions prevented changes in cell morphology, and hMSCs were shown to differentiate in normal growth media, indicating that the small-molecule functional groups induced differentiation. To our knowledge, this is the first example where synthetic matrices are shown to control induction of multiple hMSC lineages purely through interactions with small-molecule chemical functional groups tethered to the hydrogel material. Strategies using simple chemistry to control complex biological processes would be particularly powerful as they could make production of therapeutic materials simpler, cheaper and more easily controlled.

  6. Aldolase-catalysed stereoselective synthesis of fluorinated small molecules.

    PubMed

    Windle, Claire L; Berry, Alan; Nelson, Adam

    2017-04-01

    The introduction of fluorine has been widely exploited to tune the biological functions of small molecules. Indeed, around 20% of leading drugs contain at least one fluorine atom. Yet, despite profound effects of fluorination on conformation, there is only a limited toolkit of reactions that enable stereoselective synthesis of fluorinated compounds. Aldolases are useful catalysts for the stereoselective synthesis of bioactive small molecules; however, despite fluoropyruvate being a viable nucleophile for some aldolases, the potential of aldolases to control the formation of fluorine-bearing stereocentres has largely been untapped. Very recently, it has been shown that aldolase-catalysed stereoselective carboncarbon bond formation with fluoropyruvate as nucleophile enable the synthesis of many α-fluoro β-hydroxy carboxyl derivatives. Furthermore, an understanding of the structural basis for the stereocontrol observed in these reactions is beginning to emerge. Here, we review the application of aldolase catalysis in the stereocontrolled synthesis of chiral fluorinated small molecules, and highlight likely areas for future developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. High-throughput platform assay technology for the discovery of pre-microrna-selective small molecule probes.

    PubMed

    Lorenz, Daniel A; Song, James M; Garner, Amanda L

    2015-01-21

    MicroRNAs (miRNA) play critical roles in human development and disease. As such, the targeting of miRNAs is considered attractive as a novel therapeutic strategy. A major bottleneck toward this goal, however, has been the identification of small molecule probes that are specific for select RNAs and methods that will facilitate such discovery efforts. Using pre-microRNAs as proof-of-concept, herein we report a conceptually new and innovative approach for assaying RNA-small molecule interactions. Through this platform assay technology, which we term catalytic enzyme-linked click chemistry assay or cat-ELCCA, we have designed a method that can be implemented in high throughput, is virtually free of false readouts, and is general for all nucleic acids. Through cat-ELCCA, we envision the discovery of selective small molecule ligands for disease-relevant miRNAs to promote the field of RNA-targeted drug discovery and further our understanding of the role of miRNAs in cellular biology.

  8. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy.

    PubMed

    Hengel, Sarah R; Spies, M Ashley; Spies, Maria

    2017-09-21

    To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Challenges for single molecule electronic devices with nanographene and organic molecules. Do single molecules offer potential as elements of electronic devices in the next generation?

    NASA Astrophysics Data System (ADS)

    Enoki, Toshiaki; Kiguchi, Manabu

    2018-03-01

    Interest in utilizing organic molecules to fabricate electronic materials has existed ever since organic (molecular) semiconductors were first discovered in the 1950s. Since then, scientists have devoted serious effort to the creation of various molecule-based electronic systems, such as molecular metals and molecular superconductors. Single-molecule electronics and the associated basic science have emerged over the past two decades and provided hope for the development of highly integrated molecule-based electronic devices in the future (after the Si-based technology era has ended). Here, nanographenes (nano-sized graphene) with atomically precise structures are among the most promising molecules that can be utilized for electronic/spintronic devices. To manipulate single small molecules for an electronic device, a single molecular junction has been developed. It is a powerful tool that allows even small molecules to be utilized. External electric, magnetic, chemical, and mechanical perturbations can change the physical and chemical properties of molecules in a way that is different from bulk materials. Therefore, the various functionalities of molecules, along with changes induced by external perturbations, allows us to create electronic devices that we cannot create using current top-down Si-based technology. Future challenges that involve the incorporation of condensed matter physics, quantum chemistry calculations, organic synthetic chemistry, and electronic device engineering are expected to open a new era in single-molecule device electronic technology.

  10. Getting Across the Cell Membrane: An Overview for Small Molecules, Peptides, and Proteins

    PubMed Central

    Yang, Nicole J.; Hinner, Marlon J.

    2016-01-01

    The ability to efficiently access cytosolic proteins is desired in both biological research and medicine. However, targeting intracellular proteins is often challenging, because to reach the cytosol, exogenous molecules must first traverse the cell membrane. This review provides a broad overview of how certain molecules are thought to cross this barrier, and what kinds of approaches are being made to enhance the intracellular delivery of those that are impermeable. We first discuss rules that govern the passive permeability of small molecules across the lipid membrane, and mechanisms of membrane transport that have evolved in nature for certain metabolites, peptides, and proteins. Then, we introduce design strategies that have emerged in the development of small molecules and peptides with improved permeability. Finally, intracellular delivery systems that have been engineered for protein payloads are surveyed. Viewpoints from varying disciplines have been brought together to provide a cohesive overview of how the membrane barrier is being overcome. PMID:25560066

  11. PD-1/PD-L1 Inhibitors for Immuno-oncology: From Antibodies to Small Molecules.

    PubMed

    Geng, Qiaohong; Jiao, Peifu; Jin, Peng; Su, Gaoxing; Dong, Jinlong; Yan, Bing

    2018-02-12

    The recent regulatory approvals of immune checkpoint protein inhibitors, such as ipilimumab, pembrolizumab, nivolumab, atezolizumab, durvalumab, and avelumab ushered a new era in cancer therapy. These inhibitors do not attack tumor cells directly but instead mobilize the immune system to re-recognize and eradicate tumors, which endows them with unique advantages including durable clinical responses and substantial clinical benefits. PD-1/PD-L1 inhibitors, a pillar of immune checkpoint protein inhibitors, have demonstrated unprecedented clinical efficacy in more than 20 cancer types. Besides monoclonal antibodies, diverse PD- 1/PD-L1 inhibiting candidates, such as peptides, small molecules have formed a powerful collection of weapons to fight cancer. The goal of this review is to summarize and discuss the current PD-1/PD-L1 inhibitors including candidates under clinical development, their molecular interactions with PD-1 or PD-L1, the disclosed structureactivity relationships of peptides and small molecules as inhibitors. Current PD-1/PD-L1 inhibitors under clinical development are exclusively dominated by antibodies. The molecular interactions of therapeutic antibodies with PD-1 or PD-L1 have been gradually elucidated for the design of novel inhibitors. Various peptides and traditional small molecules have been investigated in preclinical model to discover novel PD-1/PD-L1 inhibitors. Peptides and small molecules may play an important role in immuno-oncology because they may bind to multiple immune checkpoint proteins via rational design, opening opportunity for a new generation of novel PD-1/PD-L1 inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Small molecule mimics of DFTamP1, a database designed anti-Staphylococcal peptide

    PubMed Central

    Dong, Yuxiang; Lushnikova, Tamara; Golla, Radha M.; Wang, Xiaofang; Wang, Guangshun

    2017-01-01

    Antimicrobial peptides (AMPs) are important templates for developing new antimicrobial agents. Previously, we developed a database filtering technology that enabled us to design a potent anti-Staphylococcal peptide DFTamP1. Using this same design approach, we now report the discovery of a new class of bis-indole diimidazolines as AMP small molecule mimics. The best compound killed multiple S. aureus clinical strains in both planktonic and biofilm forms. The compound appeared to target bacterial membranes with antimicrobial activity and membrane permeation ability similar to daptomycin. PMID:28011203

  13. Development of programmable small DNA-binding molecules with epigenetic activity for induction of core pluripotency genes.

    PubMed

    Pandian, Ganesh N; Ohtsuki, Akimichi; Bando, Toshikazu; Sato, Shinsuke; Hashiya, Kaori; Sugiyama, Hiroshi

    2012-04-15

    Epigenetic modifications that govern the gene expression are often overlooked with the design of artificial genetic switches. N-Methylpyrrole-N-methylimidazole (PI) hairpin polyamides are programmable small DNA binding molecules that have been studied in the context of gene regulation. Recently, we synthesized a library of compounds by conjugating PI polyamides with SAHA, a chromatin-modifier. Among these novel compounds, PI polyamide-SAHA conjugate 1 was shown to epigenetically activate pluripotency genes in mouse embryonic fibroblasts. Here, we report the synthesis of the derivatives of conjugate 1 and demonstrate that these epigenetically active molecules could be developed to improve the induction of pluripotency factors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. A general strategy to construct small molecule biosensors in eukaryotes.

    PubMed

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  15. mirRICH, a simple method to enrich the small RNA fraction from over-dried RNA pellets.

    PubMed

    Choi, Cheolwon; Yoon, Seulgi; Moon, Hyesu; Bae, Yun-Ui; Kim, Chae-Bin; Diskul-Na-Ayudthaya, Penchatr; Ngu, Trinh Van; Munir, Javaria; Han, JaeWook; Park, Se Bin; Moon, Jong-Seok; Song, Sujung; Ryu, Seongho

    2018-04-11

    Techniques to isolate the small RNA fraction (<200nt) by column-based methods are commercially available. However, their use is limited because of the relatively high cost. We found that large RNA molecules, including mRNAs and rRNAs, are aggregated together in the presence of salts when RNA pellets are over-dried. Moreover, once RNA pellets are over-dried, large RNA molecules are barely soluble again during the elution process, whereas small RNA molecules (<100nt) can be eluted. We therefore modified the acid guanidinium thiocyanate-phenol-chloroform (AGPC)-based RNA extraction protocol by skipping the 70% ethanol washing step and over-drying the RNA pellet for 1 hour at room temperature. We named this novel small RNA isolation method "mirRICH." The quality of the small RNA sequences was validated by electrophoresis, next-generation sequencing, and quantitative PCR, and the findings support that our newly developed column-free method can successfully and efficiently isolate small RNAs from over-dried RNA pellets.

  16. Discovery of potent and selective small-molecule PAR-2 agonists.

    PubMed

    Seitzberg, Jimmi Gerner; Knapp, Anne Eeg; Lund, Birgitte Winther; Mandrup Bertozzi, Sine; Currier, Erika A; Ma, Jian-Nong; Sherbukhin, Vladimir; Burstein, Ethan S; Olsson, Roger

    2008-09-25

    Proteinase activated receptor-2 plays a crucial role in a wide variety of conditions with a strong inflammatory component. We present the discovery and characterization of two structurally different, potent, selective, and metabolically stable small-molecule PAR-2 agonists. These ligands may be useful as pharmacological tools for elucidating the complex physiological role of the PAR-2 receptors as well as for the development of PAR-2 antagonists.

  17. Recent development of ATP-competitive small molecule phosphatidylinostitol-3-kinase inhibitors as anticancer agents

    PubMed Central

    Liu, Yu; Wan, Wen-zhu; Li, Yan; Zhou, Guan-lian; Liu, Xin-guang

    2017-01-01

    Phosphatidylinostitol-3-kinase (PI3K) is the potential anticancer target in the PI3K/Akt/ mTOR pathway. Here we reviewed the ATP-competitive small molecule PI3K inhibitors in the past few years, including the pan Class I PI3K inhibitors, the isoform-specific PI3K inhibitors and/or the PI3K/mTOR dual inhibitors. PMID:27769061

  18. Small Molecule Inhibitors of Drug Resistant Forms of HIV-1 Integrase | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute discovered small-molecule compounds containing 1-hydroxy-2-oxo-1,8-naphthyridine moieties whose activity against HIV-1 integrase mutants confer resistance to currently approved INSTIs. Preliminary rodent efficacy, metabolic, and pharmacokinetic studies have been completed by the NCI researchers. The National Cancer Institute seeks partners to commercialize this class of compounds through licensing or co-development.

  19. Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines

    PubMed Central

    Zhang, Xinyuan; Zheng, Nan

    2008-01-01

    Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions. Electronic supplementary material The online version of this article (doi:10.1007/s10822-008-9194-7) contains supplementary material, which is available to authorized users. PMID:18338229

  20. Signal-enhancer molecules encapsulated liposome as a valuable sensing and amplification platform combining the aptasensor for ultrasensitive ECL immunoassay.

    PubMed

    Mao, Li; Yuan, Ruo; Chai, Yaqin; Zhuo, Ying; Xiang, Yun

    2011-06-15

    An innovatory ECL immunoassay strategy was proposed to detect the newly developing heart failure biomarker N-terminal pro-brain natriuretic peptide (NT-proBNP). Firstly, this strategy used small molecules encapsulated liposome as immune label to construct a sandwich immune sensing platform for NT-proBNP. Then the ECL aptasensor was prepared to collect and detect the small molecules released from the liposome. Finally, based on the ECL signal changes caused by the small molecules, the ECL signal indirectly reflected the level of NT-proBNP antigen. In this experiment, the cocaine was chosen as the proper small molecule that can act as signal-enhancer to enhance the ECL of Ru(bpy)(3)(2+). The cocaine-encapsulated liposomes were successfully characterized by TEM. The quantificational calculation proved the ∼5.3×10(3) cocaine molecules per liposome enough to perform the assignment of signal amplification. The cocaine-binding ECL aptasensor further promoted the work aimed at amplifying signal. The performance of NT-proBNP assay by the proposed strategy exhibited high sensitivity and high specificities with a linear relationship over 0.01-500 ng mL(-1) range, and a detection limit down to 0.77 pg mL(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Small molecules, big players: the National Cancer Institute's Initiative for Chemical Genetics.

    PubMed

    Tolliday, Nicola; Clemons, Paul A; Ferraiolo, Paul; Koehler, Angela N; Lewis, Timothy A; Li, Xiaohua; Schreiber, Stuart L; Gerhard, Daniela S; Eliasof, Scott

    2006-09-15

    In 2002, the National Cancer Institute created the Initiative for Chemical Genetics (ICG), to enable public research using small molecules to accelerate the discovery of cancer-relevant small-molecule probes. The ICG is a public-access research facility consisting of a tightly integrated team of synthetic and analytical chemists, assay developers, high-throughput screening and automation engineers, computational scientists, and software developers. The ICG seeks to facilitate the cross-fertilization of synthetic chemistry and cancer biology by creating a research environment in which new scientific collaborations are possible. To date, the ICG has interacted with 76 biology laboratories from 39 institutions and more than a dozen organic synthetic chemistry laboratories around the country and in Canada. All chemistry and screening data are deposited into the ChemBank web site (http://chembank.broad.harvard.edu/) and are available to the entire research community within a year of generation. ChemBank is both a data repository and a data analysis environment, facilitating the exploration of chemical and biological information across many different assays and small molecules. This report outlines how the ICG functions, how researchers can take advantage of its screening, chemistry and informatic capabilities, and provides a brief summary of some of the many important research findings.

  2. Engineered kinesin motor proteins amenable to small-molecule inhibition

    PubMed Central

    Engelke, Martin F.; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T. Lynne; Soppina, Pushpanjali; Hancock, William O.; Gelfand, Vladimir I.; Verhey, Kristen J.

    2016-01-01

    The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608

  3. Recommendations for Quantitative Analysis of Small Molecules by Matrix-assisted laser desorption ionization mass spectrometry

    PubMed Central

    Wang, Poguang; Giese, Roger W.

    2017-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for quantitative analysis of small molecules for many years. It is usually preceded by an LC separation step when complex samples are tested. With the development several years ago of “modern MALDI” (automation, high repetition laser, high resolution peaks), the ease of use and performance of MALDI as a quantitative technique greatly increased. This review focuses on practical aspects of modern MALDI for quantitation of small molecules conducted in an ordinary way (no special reagents, devices or techniques for the spotting step of MALDI), and includes our ordinary, preferred Methods The review is organized as 18 recommendations with accompanying explanations, criticisms and exceptions. PMID:28118972

  4. In Vitro Selection for Small-Molecule-Triggered Strand Displacement and Riboswitch Activity.

    PubMed

    Martini, Laura; Meyer, Adam J; Ellefson, Jared W; Milligan, John N; Forlin, Michele; Ellington, Andrew D; Mansy, Sheref S

    2015-10-16

    An in vitro selection method for ligand-responsive RNA sensors was developed that exploited strand displacement reactions. The RNA library was based on the thiamine pyrophosphate (TPP) riboswitch, and RNA sequences capable of hybridizing to a target duplex DNA in a TPP regulated manner were identified. After three rounds of selection, RNA molecules that mediated a strand exchange reaction upon TPP binding were enriched. The enriched sequences also showed riboswitch activity. Our results demonstrated that small-molecule-responsive nucleic acid sensors can be selected to control the activity of target nucleic acid circuitry.

  5. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  6. Development of pharmacophore models for small molecules targeting RNA: Application to the RNA repeat expansion in myotonic dystrophy type 1.

    PubMed

    Angelbello, Alicia J; González, Àlex L; Rzuczek, Suzanne G; Disney, Matthew D

    2016-12-01

    RNA is an important drug target, but current approaches to identify bioactive small molecules have been engineered primarily for protein targets. Moreover, the identification of small molecules that bind a specific RNA target with sufficient potency remains a challenge. Computer-aided drug design (CADD) and, in particular, ligand-based drug design provide a myriad of tools to identify rapidly new chemical entities for modulating a target based on previous knowledge of active compounds without relying on a ligand complex. Herein we describe pharmacophore virtual screening based on previously reported active molecules that target the toxic RNA that causes myotonic dystrophy type 1 (DM1). DM1-associated defects are caused by sequestration of muscleblind-like 1 protein (MBNL1), an alternative splicing regulator, by expanded CUG repeats (r(CUG) exp ). Several small molecules have been found to disrupt the MBNL1-r(CUG) exp complex, ameliorating DM1 defects. Our pharmacophore model identified a number of potential lead compounds from which we selected 11 compounds to evaluate. Of the 11 compounds, several improved DM1 defects both in vitro and in cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Small molecule organic semiconductors on the move: promises for future solar energy technology.

    PubMed

    Mishra, Amaresh; Bäuerle, Peter

    2012-02-27

    This article is written from an organic chemist's point of view and provides an up-to-date review about organic solar cells based on small molecules or oligomers as absorbers and in detail deals with devices that incorporate planar-heterojunctions (PHJ) and bulk heterojunctions (BHJ) between a donor (p-type semiconductor) and an acceptor (n-type semiconductor) material. The article pays particular attention to the design and development of molecular materials and their performance in corresponding devices. In recent years, a substantial amount of both, academic and industrial research, has been directed towards organic solar cells, in an effort to develop new materials and to improve their tunability, processability, power conversion efficiency, and stability. On the eve of commercialization of organic solar cells, this review provides an overview over efficiencies attained with small molecules/oligomers in OSCs and reflects materials and device concepts developed over the last decade. Approaches to enhancing the efficiency of organic solar cells are analyzed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Exploring the role of water in molecular recognition: predicting protein ligandability using a combinatorial search of surface hydration sites.

    PubMed

    Vukovic, Sinisa; Brennan, Paul E; Huggins, David J

    2016-09-01

    The interaction between any two biological molecules must compete with their interaction with water molecules. This makes water the most important molecule in medicine, as it controls the interactions of every therapeutic with its target. A small molecule binding to a protein is able to recognize a unique binding site on a protein by displacing bound water molecules from specific hydration sites. Quantifying the interactions of these water molecules allows us to estimate the potential of the protein to bind a small molecule. This is referred to as ligandability. In the study, we describe a method to predict ligandability by performing a search of all possible combinations of hydration sites on protein surfaces. We predict ligandability as the summed binding free energy for each of the constituent hydration sites, computed using inhomogeneous fluid solvation theory. We compared the predicted ligandability with the maximum observed binding affinity for 20 proteins in the human bromodomain family. Based on this comparison, it was determined that effective inhibitors have been developed for the majority of bromodomains, in the range from 10 to 100 nM. However, we predict that more potent inhibitors can be developed for the bromodomains BPTF and BRD7 with relative ease, but that further efforts to develop inhibitors for ATAD2 will be extremely challenging. We have also made predictions for the 14 bromodomains with no reported small molecule K d values by isothermal titration calorimetry. The calculations predict that PBRM1(1) will be a challenging target, while others such as TAF1L(2), PBRM1(4) and TAF1(2), should be highly ligandable. As an outcome of this work, we assembled a database of experimental maximal K d that can serve as a community resource assisting medicinal chemistry efforts focused on BRDs. Effective prediction of ligandability would be a very useful tool in the drug discovery process.

  9. Exploring the role of water in molecular recognition: predicting protein ligandability using a combinatorial search of surface hydration sites

    NASA Astrophysics Data System (ADS)

    Vukovic, Sinisa; Brennan, Paul E.; Huggins, David J.

    2016-09-01

    The interaction between any two biological molecules must compete with their interaction with water molecules. This makes water the most important molecule in medicine, as it controls the interactions of every therapeutic with its target. A small molecule binding to a protein is able to recognize a unique binding site on a protein by displacing bound water molecules from specific hydration sites. Quantifying the interactions of these water molecules allows us to estimate the potential of the protein to bind a small molecule. This is referred to as ligandability. In the study, we describe a method to predict ligandability by performing a search of all possible combinations of hydration sites on protein surfaces. We predict ligandability as the summed binding free energy for each of the constituent hydration sites, computed using inhomogeneous fluid solvation theory. We compared the predicted ligandability with the maximum observed binding affinity for 20 proteins in the human bromodomain family. Based on this comparison, it was determined that effective inhibitors have been developed for the majority of bromodomains, in the range from 10 to 100 nM. However, we predict that more potent inhibitors can be developed for the bromodomains BPTF and BRD7 with relative ease, but that further efforts to develop inhibitors for ATAD2 will be extremely challenging. We have also made predictions for the 14 bromodomains with no reported small molecule K d values by isothermal titration calorimetry. The calculations predict that PBRM1(1) will be a challenging target, while others such as TAF1L(2), PBRM1(4) and TAF1(2), should be highly ligandable. As an outcome of this work, we assembled a database of experimental maximal K d that can serve as a community resource assisting medicinal chemistry efforts focused on BRDs. Effective prediction of ligandability would be a very useful tool in the drug discovery process.

  10. Recent Progress in the Design and Discovery of RXR Modulators Targeting Alternate Binding Sites of the Receptor.

    PubMed

    Su, Ying; Zeng, Zhiping; Chen, Ziwen; Xu, Dan; Zhang, Weidong; Zhang, Xiao-Kun

    2017-01-01

    Retinoid X receptors (RXRs) occupy a central position within the nuclear receptor superfamily. They not only function as important transcriptional factors but also exhibit diverse nongenomic biological activities. The pleiotropic actions of RXRs under both physiological and pathophysiological conditions confer RXRs important drug targets for the treatment of cancer, and metabolic and neurodegenerative diseases. RXR modulators have been studied for the purpose of developing both drug molecules and chemical tools for biological investigation of RXR. Development of RXR modulators has focused on small molecules targeting the canonical ligand-binding pocket. However, accumulating results have demonstrated that there are other binding mechanisms by which small molecules interact with RXR to act as RXR modulators. This review discusses the recent development in the design and discovery of RXR modulators with a focus on those targeting novel binding sites on RXR.

  11. Privileged structures: efficient chemical "navigators" toward unexplored biologically relevant chemical spaces.

    PubMed

    Kim, Jonghoon; Kim, Heejun; Park, Seung Bum

    2014-10-22

    In the search for new therapeutic agents for currently incurable diseases, attention has turned to traditionally "undruggable" targets, and collections of drug-like small molecules with high diversity and quality have become a prerequisite for new breakthroughs. To generate such collections, the diversity-oriented synthesis (DOS) strategy was developed, which aims to populate new chemical space with drug-like compounds containing a high degree of molecular diversity. The resulting DOS-derived libraries have been of great value for the discovery of various bioactive small molecules and therapeutic agents, and thus DOS has emerged as an essential tool in chemical biology and drug discovery. However, the key challenge has become how to design and synthesize drug-like small-molecule libraries with improved biological relevancy as well as maximum molecular diversity. This Perspective presents the development of privileged substructure-based DOS (pDOS), an efficient strategy for the construction of polyheterocyclic compound libraries with high biological relevancy. We envisioned the specific interaction of drug-like small molecules with certain biopolymers via the incorporation of privileged substructures into polyheterocyclic core skeletons. The importance of privileged substructures such as benzopyran, pyrimidine, and oxopiperazine in rigid skeletons was clearly demonstrated through the discovery of bioactive small molecules and the subsequent identification of appropriate target biomolecule using a method called "fluorescence difference in two-dimensional gel electrophoresis". Focusing on examples of pDOS-derived bioactive compounds with exceptional specificity, we discuss the capability of privileged structures to serve as chemical "navigators" toward biologically relevant chemical spaces. We also provide an outlook on chemical biology research and drug discovery using biologically relevant compound libraries constructed by pDOS, biology-oriented synthesis, or natural product-inspired DOS.

  12. A New Small-Molecule Antagonist Inhibits Graves' Disease Antibody Activation of the TSH Receptor

    PubMed Central

    Eliseeva, Elena; McCoy, Joshua G.; Napolitano, Giorgio; Giuliani, Cesidio; Monaco, Fabrizio; Huang, Wenwei; Gershengorn, Marvin C.

    2011-01-01

    Context: Graves' disease (GD) is caused by persistent, unregulated stimulation of thyrocytes by thyroid-stimulating antibodies (TSAbs) that activate the TSH receptor (TSHR). We previously reported the first small-molecule antagonist of human TSHR and showed that it inhibited receptor signaling stimulated by sera from four patients with GD. Objective: Our objective was to develop a better TSHR antagonist and use it to determine whether inhibition of TSAb activation of TSHR is a general phenomenon. Design: We aimed to chemically modify a previously reported small-molecule TSHR ligand to develop a better antagonist and determine whether it inhibits TSHR signaling by 30 GD sera. TSHR signaling was measured in two in vitro systems: model HEK-EM293 cells stably overexpressing human TSHRs and primary cultures of human thyrocytes. TSHR signaling was measured as cAMP production and by effects on thyroid peroxidase mRNA. Results: We tested analogs of a previously reported small-molecule TSHR inverse agonist and selected the best NCGC00229600 for further study. In the model system, NCGC00229600 inhibited basal and TSH-stimulated cAMP production. NCGC00229600 inhibition of TSH signaling was competitive even though it did not compete for TSH binding; that is, NCGC00229600 is an allosteric inverse agonist. NCGC00229600 inhibited cAMP production by 39 ± 2.6% by all 30 GD sera tested. In primary cultures of human thyrocytes, NCGC00229600 inhibited TSHR-mediated basal and GD sera up-regulation of thyroperoxidase mRNA levels by 65 ± 2.0%. Conclusion: NCGC00229600, a small-molecule allosteric inverse agonist of TSHR, is a general antagonist of TSH receptor activation by TSAbs in GD patient sera. PMID:21123444

  13. A new small-molecule antagonist inhibits Graves' disease antibody activation of the TSH receptor.

    PubMed

    Neumann, Susanne; Eliseeva, Elena; McCoy, Joshua G; Napolitano, Giorgio; Giuliani, Cesidio; Monaco, Fabrizio; Huang, Wenwei; Gershengorn, Marvin C

    2011-02-01

    Graves' disease (GD) is caused by persistent, unregulated stimulation of thyrocytes by thyroid-stimulating antibodies (TSAbs) that activate the TSH receptor (TSHR). We previously reported the first small-molecule antagonist of human TSHR and showed that it inhibited receptor signaling stimulated by sera from four patients with GD. Our objective was to develop a better TSHR antagonist and use it to determine whether inhibition of TSAb activation of TSHR is a general phenomenon. We aimed to chemically modify a previously reported small-molecule TSHR ligand to develop a better antagonist and determine whether it inhibits TSHR signaling by 30 GD sera. TSHR signaling was measured in two in vitro systems: model HEK-EM293 cells stably overexpressing human TSHRs and primary cultures of human thyrocytes. TSHR signaling was measured as cAMP production and by effects on thyroid peroxidase mRNA. We tested analogs of a previously reported small-molecule TSHR inverse agonist and selected the best NCGC00229600 for further study. In the model system, NCGC00229600 inhibited basal and TSH-stimulated cAMP production. NCGC00229600 inhibition of TSH signaling was competitive even though it did not compete for TSH binding; that is, NCGC00229600 is an allosteric inverse agonist. NCGC00229600 inhibited cAMP production by 39 ± 2.6% by all 30 GD sera tested. In primary cultures of human thyrocytes, NCGC00229600 inhibited TSHR-mediated basal and GD sera up-regulation of thyroperoxidase mRNA levels by 65 ± 2.0%. NCGC00229600, a small-molecule allosteric inverse agonist of TSHR, is a general antagonist of TSH receptor activation by TSAbs in GD patient sera.

  14. Quantitative analyses of bifunctional molecules.

    PubMed

    Braun, Patrick D; Wandless, Thomas J

    2004-05-11

    Small molecules can be discovered or engineered to bind tightly to biologically relevant proteins, and these molecules have proven to be powerful tools for both basic research and therapeutic applications. In many cases, detailed biophysical analyses of the intermolecular binding events are essential for improving the activity of the small molecules. These interactions can often be characterized as straightforward bimolecular binding events, and a variety of experimental and analytical techniques have been developed and refined to facilitate these analyses. Several investigators have recently synthesized heterodimeric molecules that are designed to bind simultaneously with two different proteins to form ternary complexes. These heterodimeric molecules often display compelling biological activity; however, they are difficult to characterize. The bimolecular interaction between one protein and the heterodimeric ligand (primary dissociation constant) can be determined by a number of methods. However, the interaction between that protein-ligand complex and the second protein (secondary dissociation constant) is more difficult to measure due to the noncovalent nature of the original protein-ligand complex. Consequently, these heterodimeric compounds are often characterized in terms of their activity, which is an experimentally dependent metric. We have developed a general quantitative mathematical model that can be used to measure both the primary (protein + ligand) and secondary (protein-ligand + protein) dissociation constants for heterodimeric small molecules. These values are largely independent of the experimental technique used and furthermore provide a direct measure of the thermodynamic stability of the ternary complexes that are formed. Fluorescence polarization and this model were used to characterize the heterodimeric molecule, SLFpYEEI, which binds to both FKBP12 and the Fyn SH2 domain, demonstrating that the model is useful for both predictive as well as ex post facto analytical applications.

  15. Small-Molecule-Based Self-Assembled Ligands for G-Quadruplex DNA Surface Recognition.

    PubMed

    Rivera-Sánchez, María Del C; García-Arriaga, Marilyn; Hobley, Gerard; Morales-de-Echegaray, Ana V; Rivera, José M

    2017-10-31

    Most drugs are small molecules because of their attractive pharmacokinetics, manageable development and manufacturing, and effective binding into the concave crevices of bio-macromolecules. Despite these features, they often fall short when it comes to effectively recognizing the surfaces of bio-macromolecules. One way to overcome the challenge of biomolecular surface recognition is to develop small molecules that become self-assembled ligands (SALs) prior to binding. Herein, we report SALs made from 8-aryl-2'-deoxyguanosine derivatives forming precise hydrophilic supramolecular G-quadruplexes (SGQs) with excellent size, shape, and charge complementarity to G-quadruplex DNA (QDNA). We show that only those compounds forming SGQs act as SALs, which in turn differentially stabilize QDNAs from selected oncogene promoters and the human telomeric regions. Fluorescence resonance energy-transfer melting assays are consistent with spectroscopic, calorimetric, and light scattering studies, showing the formation of a "sandwichlike" complex QDNA·SGQ·QDNA. These results open the door for the advent of SALs that recognize QDNAs and potentially the surfaces of other bio-macromolecules such as proteins.

  16. UCSF Small Molecule Discovery Center: innovation, collaboration and chemical biology in the Bay Area.

    PubMed

    Arkin, Michelle R; Ang, Kenny K H; Chen, Steven; Davies, Julia; Merron, Connie; Tang, Yinyan; Wilson, Christopher G M; Renslo, Adam R

    2014-05-01

    The Small Molecule Discovery Center (SMDC) at the University of California, San Francisco, works collaboratively with the scientific community to solve challenging problems in chemical biology and drug discovery. The SMDC includes a high throughput screening facility, medicinal chemistry, and research labs focused on fundamental problems in biochemistry and targeted drug delivery. Here, we outline our HTS program and provide examples of chemical tools developed through SMDC collaborations. We have an active research program in developing quantitative cell-based screens for primary cells and whole organisms; here, we describe whole-organism screens to find drugs against parasites that cause neglected tropical diseases. We are also very interested in target-based approaches for so-called "undruggable", protein classes and fragment-based lead discovery. This expertise has led to several pharmaceutical collaborations; additionally, the SMDC works with start-up companies to enable their early-stage research. The SMDC, located in the biotech-focused Mission Bay neighborhood in San Francisco, is a hub for innovative small-molecule discovery research at UCSF.

  17. Psmir: a database of potential associations between small molecules and miRNAs.

    PubMed

    Meng, Fanlin; Wang, Jing; Dai, Enyu; Yang, Feng; Chen, Xiaowen; Wang, Shuyuan; Yu, Xuexin; Liu, Dianming; Jiang, Wei

    2016-01-13

    miRNAs are key post-transcriptional regulators of many essential biological processes, and their dysregulation has been validated in almost all human cancers. Restoring aberrantly expressed miRNAs might be a novel therapeutics. Recently, many studies have demonstrated that small molecular compounds can affect miRNA expression. Thus, prediction of associations between small molecules and miRNAs is important for investigation of miRNA-targeted drugs. Here, we analyzed 39 miRNA-perturbed gene expression profiles, and then calculated the similarity of transcription responses between miRNA perturbation and drug treatment to predict drug-miRNA associations. At the significance level of 0.05, we obtained 6501 candidate associations between 1295 small molecules and 25 miRNAs, which included 624 FDA approved drugs. Finally, we constructed the Psmir database to store all potential associations and the related materials. In a word, Psmir served as a valuable resource for dissecting the biological significance in small molecules' effects on miRNA expression, which will facilitate developing novel potential therapeutic targets or treatments for human cancers. Psmir is supported by all major browsers, and is freely available at http://www.bio-bigdata.com/Psmir/.

  18. Small molecules targeting heterotrimeric G proteins.

    PubMed

    Ayoub, Mohammed Akli

    2018-05-05

    G protein-coupled receptors (GPCRs) represent the largest family of cell surface receptors regulating many human and animal physiological functions. Their implication in human pathophysiology is obvious with almost 30-40% medical drugs commercialized today directly targeting GPCRs as molecular entities. However, upon ligand binding GPCRs signal inside the cell through many key signaling, adaptor and regulatory proteins, including various classes of heterotrimeric G proteins. Therefore, G proteins are considered interesting targets for the development of pharmacological tools that are able to modulate their interaction with the receptors, as well as their activation/deactivation processes. In this review, old attempts and recent advances in the development of small molecules that directly target G proteins will be described with an emphasis on their utilization as pharmacological tools to dissect the mechanisms of activation of GPCR-G protein complexes. These molecules constitute a further asset for research in the "hot" areas of GPCR biology, areas such as multiple G protein coupling/signaling, GPCR-G protein preassembly, and GPCR functional selectivity or bias. Moreover, this review gives a particular focus on studies in vitro and in vivo supporting the potential applications of such small molecules in various GPCR/G protein-related diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Identification of small molecule compounds targeting the interaction of HIV-1 Vif and human APOBEC3G by virtual screening and biological evaluation.

    PubMed

    Ma, Ling; Zhang, Zhixin; Liu, Zhenlong; Pan, Qinghua; Wang, Jing; Li, Xiaoyu; Guo, Fei; Liang, Chen; Hu, Laixing; Zhou, Jinming; Cen, Shan

    2018-05-23

    Human APOBEC3G (hA3G) is a restriction factor that inhibits human immunodeficiency 1 virus (HIV-1) replication. The virally encoded protein Vif binds to hA3G and induces its degradation, thereby counteracting the antiviral activity of hA3G. Vif-mediated hA3G degradation clearly represents a potential target for anti-HIV drug development. Herein, we have performed virtual screening to discover small molecule inhibitors that target the binding interface of the Vif/hA3G complex. Subsequent biochemical studies have led to the identification of a small molecule inhibitor, IMB-301 that binds to hA3G, interrupts the hA3G-Vif interaction and inhibits Vif-mediated degradation of hA3G. As a result, IMB-301 strongly inhibits HIV-1 replication in a hA3G-dependent manner. Our study further demonstrates the feasibility of inhibiting HIV replication by abrogating the Vif-hA3G interaction with small molecules.

  20. Current strategies for sustaining drug release from electrospun nanofibers

    PubMed Central

    Chou, Shih-Feng; Carson, Daniel; Woodrow, Kim A.

    2017-01-01

    Electrospun drug-eluting fibers are emerging as a novel dosage form for multipurpose prevention against sexually transmitted infections, including HIV, and unintended pregnancy. Previous work from our lab and others show the versatility of this platform to deliver large doses of physico-chemically diverse agents. However, there is still an unmet need to develop practical fiber formulations for water-soluble small molecule drugs needed at high dosing due to intrinsic low potency or desire for sustained prevention. To date, most sustained release fibers have been restricted to the delivery of biologics or hydrophobic small molecules at low drug loading of typically < 1 wt.%, which is often impractical for most clinical applications. For hydrophilic small molecule drugs, their high aqueous solubility and poor partitioning and incompatibility with insoluble polymers make long-term release even more challenging. Here we investigate several existing strategies to sustain release of hydrophilic small molecule drugs that are highly-loaded in electrospun fibers. In particular, we investigate what is known about the design constraints required to realize multi-day release from fibers fabricated from uniaxial and coaxial electrospinning. PMID:26363300

  1. High-Affinity Small-Molecule Inhibitors of the Menin-Mixed Lineage Leukemia (MLL) Interaction Closely Mimic a Natural Protein-Protein Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shihan; Senter, Timothy J.; Pollock, Jonathan

    2014-10-02

    The protein–protein interaction (PPI) between menin and mixed lineage leukemia (MLL) plays a critical role in acute leukemias, and inhibition of this interaction represents a new potential therapeutic strategy for MLL leukemias. We report development of a novel class of small-molecule inhibitors of the menin–MLL interaction, the hydroxy- and aminomethylpiperidine compounds, which originated from HTS of ~288000 small molecules. We determined menin–inhibitor co-crystal structures and found that these compounds closely mimic all key interactions of MLL with menin. Extensive crystallography studies combined with structure-based design were applied for optimization of these compounds, resulting in MIV-6R, which inhibits the menin–MLL interactionmore » with IC 50 = 56 nM. Treatment with MIV-6 demonstrated strong and selective effects in MLL leukemia cells, validating specific mechanism of action. Our studies provide novel and attractive scaffold as a new potential therapeutic approach for MLL leukemias and demonstrate an example of PPI amenable to inhibition by small molecules.« less

  2. Examining small molecule: HIV RNA interactions using arrayed imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Chaimayo, Wanaruk; Miller, Benjamin L.

    2014-03-01

    Human Immunodeficiency Virus (HIV) has been the subject of intense research for more than three decades as it causes an uncurable disease: Acquired Immunodeficiency Syndrome, AIDS. In the pursuit of a medical treatment, RNAtargeted small molecules are emerging as promising targets. In order to understand the binding kinetics of small molecules and HIV RNA, association (ka) and dissociation (kd) kinetic constants must be obtained, ideally for a large number of sequences to assess selectivity. We have developed Aqueous Array Imaged Reflectometry (Aq-AIR) to address this challenge. Using a simple light interference phenomenon, Aq-AIR provides real-time high-throughput multiplex capabilities to detect binding of targets to surface-immobilized probes in a label-free microarray format. The second generation of Aq-AIR consisting of high-sensitivity CCD camera and 12-μL flow cell was fabricated. The system performance was assessed by real-time detection of MBNL1-(CUG)10 and neomycin B - HIV RNA bindings. The results establish this second-generation Aq-AIR to be able to examine small molecules binding to RNA sequences specific to HIV.

  3. MARS: bringing the automation of small-molecule bioanalytical sample preparations to a new frontier.

    PubMed

    Li, Ming; Chou, Judy; Jing, Jing; Xu, Hui; Costa, Aldo; Caputo, Robin; Mikkilineni, Rajesh; Flannelly-King, Shane; Rohde, Ellen; Gan, Lawrence; Klunk, Lewis; Yang, Liyu

    2012-06-01

    In recent years, there has been a growing interest in automating small-molecule bioanalytical sample preparations specifically using the Hamilton MicroLab(®) STAR liquid-handling platform. In the most extensive work reported thus far, multiple small-molecule sample preparation assay types (protein precipitation extraction, SPE and liquid-liquid extraction) have been integrated into a suite that is composed of graphical user interfaces and Hamilton scripts. Using that suite, bioanalytical scientists have been able to automate various sample preparation methods to a great extent. However, there are still areas that could benefit from further automation, specifically, the full integration of analytical standard and QC sample preparation with study sample extraction in one continuous run, real-time 2D barcode scanning on the Hamilton deck and direct Laboratory Information Management System database connectivity. We developed a new small-molecule sample-preparation automation system that improves in all of the aforementioned areas. The improved system presented herein further streamlines the bioanalytical workflow, simplifies batch run design, reduces analyst intervention and eliminates sample-handling error.

  4. Current strategies for sustaining drug release from electrospun nanofibers.

    PubMed

    Chou, Shih-Feng; Carson, Daniel; Woodrow, Kim A

    2015-12-28

    Electrospun drug-eluting fibers are emerging as a novel dosage form for multipurpose prevention against sexually transmitted infections, including HIV, and unintended pregnancy. Previous work from our lab and others show the versatility of this platform to deliver large doses of physico-chemically diverse agents. However, there is still an unmet need to develop practical fiber formulations for water-soluble small molecule drugs needed at high dosing due to intrinsic low potency or desire for sustained prevention. To date, most sustained release fibers have been restricted to the delivery of biologics or hydrophobic small molecules at low drug loading of typically <1 wt.%, which is often impractical for most clinical applications. For hydrophilic small molecule drugs, their high aqueous solubility and poor partitioning and incompatibility with insoluble polymers make long-term release even more challenging. Here we investigate several existing strategies to sustain release of hydrophilic small molecule drugs that are highly-loaded in electrospun fibers. In particular, we investigate what is known about the design constraints required to realize multi-day release from fibers fabricated from uniaxial and coaxial electrospinning. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Fragment-based virtual screening approach and molecular dynamics simulation studies for identification of BACE1 inhibitor leads.

    PubMed

    Manoharan, Prabu; Ghoshal, Nanda

    2018-05-01

    Traditional structure-based virtual screening method to identify drug-like small molecules for BACE1 is so far unsuccessful. Location of BACE1, poor Blood Brain Barrier permeability and P-glycoprotein (Pgp) susceptibility of the inhibitors make it even more difficult. Fragment-based drug design method is suitable for efficient optimization of initial hit molecules for target like BACE1. We have developed a fragment-based virtual screening approach to identify/optimize the fragment molecules as a starting point. This method combines the shape, electrostatic, and pharmacophoric features of known fragment molecules, bound to protein conjugate crystal structure, and aims to identify both chemically and energetically feasible small fragment ligands that bind to BACE1 active site. The two top-ranked fragment hits were subjected for a 53 ns MD simulation. Principle component analysis and free energy landscape analysis reveal that the new ligands show the characteristic features of established BACE1 inhibitors. The potent method employed in this study may serve for the development of potential lead molecules for BACE1-directed Alzheimer's disease therapeutics.

  6. Stabilization of protein-protein interactions in drug discovery.

    PubMed

    Andrei, Sebastian A; Sijbesma, Eline; Hann, Michael; Davis, Jeremy; O'Mahony, Gavin; Perry, Matthew W D; Karawajczyk, Anna; Eickhoff, Jan; Brunsveld, Luc; Doveston, Richard G; Milroy, Lech-Gustav; Ottmann, Christian

    2017-09-01

    PPIs are involved in every disease and specific modulation of these PPIs with small molecules would significantly improve our prospects of developing therapeutic agents. Both industry and academia have engaged in the identification and use of PPI inhibitors. However in comparison, the opposite strategy of employing small-molecule stabilizers of PPIs is underrepresented in drug discovery. Areas covered: PPI stabilization has not been exploited in a systematic manner. Rather, this concept validated by a number of therapeutically used natural products like rapamycin and paclitaxel has been shown retrospectively to be the basis of the activity of synthetic molecules originating from drug discovery projects among them lenalidomide and tafamidis. Here, the authors cover the growing number of synthetic small-molecule PPI stabilizers to advocate for a stronger consideration of this as a drug discovery approach. Expert opinion: Both the natural products and the growing number of synthetic molecules show that PPI stabilization is a viable strategy for drug discovery. There is certainly a significant challenge to adapt compound libraries, screening techniques and downstream methodologies to identify, characterize and optimize PPI stabilizers, but the examples of molecules reviewed here in our opinion justify these efforts.

  7. May the Best Molecule Win: Competition ESI Mass Spectrometry

    PubMed Central

    Laughlin, Sarah; Wilson, W. David

    2015-01-01

    Electrospray ionization mass spectrometry has become invaluable in the characterization of macromolecular biological systems such as nucleic acids and proteins. Recent advances in the field of mass spectrometry and the soft conditions characteristic of electrospray ionization allow for the investigation of non-covalent interactions among large biomolecules and ligands. Modulation of genetic processes through the use of small molecule inhibitors with the DNA minor groove is gaining attention as a potential therapeutic approach. In this review, we discuss the development of a competition method using electrospray ionization mass spectrometry to probe the interactions of multiple DNA sequences with libraries of minor groove binding molecules. Such an approach acts as a high-throughput screening method to determine important information including the stoichiometry, binding mode, cooperativity, and relative binding affinity. In addition to small molecule-DNA complexes, we highlight other applications in which competition mass spectrometry has been used. A competitive approach to simultaneously investigate complex interactions promises to be a powerful tool in the discovery of small molecule inhibitors with high specificity and for specific, important DNA sequences. PMID:26501262

  8. A Small Molecule Inverse Agonist for the Human Thyroid-Stimulating Hormone Receptor

    PubMed Central

    Neumann, Susanne; Huang, Wenwei; Eliseeva, Elena; Titus, Steve; Thomas, Craig J.; Gershengorn, Marvin C.

    2010-01-01

    Small molecule inverse agonists for the TSH receptor (TSHR) may be used as probes of the role of basal (or agonist-independent or constitutive) signaling and may have therapeutic potential as orally active drugs to inhibit basal signaling in patients with thyroid cancer and in some patients with hyperthyroidism. We describe the first small-molecule ligand [1;2-(3-((2,6-dimethylphenoxy)methyl)-4-methoxyphenyl)-3-(furan-2-ylmethyl)-2,3-dihydroquinazolin-4(1H)-one] that exhibits inverse agonist properties at TSHR. 1 inhibits basal and TSH-stimulated signaling, measured as cAMP production, by TSHRs in HEK-EM 293 cells stably expressing wild-type TSHRs; the antagonism of TSH-mediated signaling is competitive. 1 also inhibits basal signaling by wild-type TSHRs, and four constitutively active mutants of TSHR expressed transiently in HEK-EM 293 cells. 1 was active under more physiologically relevant conditions in primary cultures of human thyrocytes expressing endogenous TSHRs where it inhibited basal levels of mRNA transcripts for thyroglobulin, thyroperoxidase, sodium iodide symporter, and TSHR. These data serve as proof of principle that small, drug-like molecules can inhibit basal signaling by TSHR. We suggest that this small molecule is a lead compound for the development of higher-potency inverse agonists that can be used as probes of TSHR biology with therapeutic potential. PMID:20427476

  9. Clear Castable Polyurethane Elastomer for Fabrication of Microfluidic Devices

    PubMed Central

    Domansky, Karel; Leslie, Daniel C.; McKinney, James; Fraser, Jacob P.; Sliz, Josiah D.; Hamkins-Indik, Tiama; Hamilton, Geraldine A.; Bahinski, Anthony; Ingber, Donald E.

    2013-01-01

    Polydimethylsiloxane (PDMS) has numerous desirable properties for fabricating microfluidic devices, including optical transparency, flexibility, biocompatibility, and fabrication by casting; however, partitioning of small hydrophobic molecules into the bulk of PDMS hinders industrial acceptance of PDMS microfluidic devices for chemical processing and drug development applications. Here we describe an attractive alternative material that is similar to PDMS in terms of optical transparency, flexibility and castability, but that is also resistant to absorption of small hydrophobic molecules. PMID:23954953

  10. Synthetic fermentation of bioactive molecules.

    PubMed

    Stepek, Iain A; Bode, Jeffrey W

    2018-04-05

    The concept of synthetic fermentation is to 'grow' complex organic molecules in a controlled and predictable manner by combining small molecule building blocks in water-without the need for reagents, enzymes, or organisms. This approach mimics the production of small mixtures of structurally related natural products by living organisms, particularly microbes, under conditions compatible with direct screening of the cultures for biological activity. This review discusses the development and implementation of this concept, its use for the discovery of protease inhibitors, its basis as a chemistry outreach program allowing non-specialists to make and discover new antibiotics, and highlights of related approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Fluorescence quenching near small metal nanoparticles.

    PubMed

    Pustovit, V N; Shahbazyan, T V

    2012-05-28

    We develop a microscopic model for fluorescence of a molecule (or semiconductor quantum dot) near a small metal nanoparticle. When a molecule is situated close to metal surface, its fluorescence is quenched due to energy transfer to the metal. We perform quantum-mechanical calculations of energy transfer rates for nanometer-sized Au nanoparticles and find that nonlocal and quantum-size effects significantly enhance dissipation in metal as compared to those predicted by semiclassical electromagnetic models. However, the dependence of transfer rates on molecule's distance to metal nanoparticle surface, d, is significantly weaker than the d(-4) behavior for flat metal surface with a sharp boundary predicted by previous calculations within random phase approximation.

  12. Development of Spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene]-Based A-π-D-π-A Small Molecules with Different Acceptor Units for Efficient Organic Solar Cells.

    PubMed

    Wang, Wengong; Shen, Ping; Dong, Xinning; Weng, Chao; Wang, Guo; Bin, Haijun; Zhang, Jing; Zhang, Zhi-Guo; Li, Yongfang

    2017-02-08

    Three acceptor-π-donor-π-acceptor (A-π-D-π-A) small molecules (STFYT, STFRDN, and STFRCN) with spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene] (STF) as the central donor unit, terthiophene as the π-conjugated bridge, indenedione, 3-ethylrhodanine, or 2-(1,1-dicyanomethylene)rhodanine as the acceptor unit are designed, synthesized, and characterized as electron donor materials in solution-processing organic solar cells (OSCs). The effects of the spiro STF-based central core and different acceptors on the molecular configuration, absorption properties, electronic energy levels, carrier transport properties, the morphology of active layers, and photovoltaic properties are investigated in detail. The three molecules exhibit desirable physicochemical features: wide absorption bands (300-850 nm) and high molar absorption coefficients (4.82 × 10 4 to 7.56 × 10 4 M -1 cm -1 ) and relatively low HOMO levels (-5.15 to -5.38 eV). Density functional theory calculations reveal that the spiro STF central core benefits to reduce the steric hindrance effect between the central donor block and terthiophene bridge and suppress excessive intermolecular aggregations. The optimized OSCs based on these molecules deliver power conversion efficiencies (PCEs) of 6.68%, 3.30%, and 4.33% for STFYT, STFRDN, and STFRCN, respectively. The higher PCE of STFYT-based OSCs should be ascribed to its better absorption ability, higher and balanced hole and electron mobilities, and superior active layer morphology as compared to the other two compounds. So far, this is the first example of developing the A-π-D-π-A type small molecules with a spiro central donor core for high-performance OSC applications. Meanwhile, these results demonstrate that using spiro central block to construct A-π-D-π-A molecule is an alternative and effective strategy for achieving high-performance small molecule donor materials.

  13. A Critical and Comparative Review of Fluorescent Tools for Live-Cell Imaging.

    PubMed

    Specht, Elizabeth A; Braselmann, Esther; Palmer, Amy E

    2017-02-10

    Fluorescent tools have revolutionized our ability to probe biological dynamics, particularly at the cellular level. Fluorescent sensors have been developed on several platforms, utilizing either small-molecule dyes or fluorescent proteins, to monitor proteins, RNA, DNA, small molecules, and even cellular properties, such as pH and membrane potential. We briefly summarize the impressive history of tool development for these various applications and then discuss the most recent noteworthy developments in more detail. Particular emphasis is placed on tools suitable for single-cell analysis and especially live-cell imaging applications. Finally, we discuss prominent areas of need in future fluorescent tool development-specifically, advancing our capability to analyze and integrate the plethora of high-content data generated by fluorescence imaging.

  14. A general strategy to construct small molecule biosensors in eukaryotes

    DOE PAGES

    Feng, Justin; Jester, Benjamin W.; Tinberg, Christine E.; ...

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activatesmore » transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. As a result, this work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.« less

  15. A general strategy to construct small molecule biosensors in eukaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Justin; Jester, Benjamin W.; Tinberg, Christine E.

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activatesmore » transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. As a result, this work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.« less

  16. A general strategy to construct small molecule biosensors in eukaryotes

    PubMed Central

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-01-01

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.10606.001 PMID:26714111

  17. Chemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG) transcripts

    PubMed Central

    Kumar, Amit; Parkesh, Raman; Sznajder, Lukasz J.; Childs-Disney, Jessica; Sobczak, Krzysztof; Disney, Matthew D.

    2012-01-01

    Recently, it was reported that expanded r(CAG) triplet repeats (r(CAG)exp) associated with untreatable neurological diseases cause pre-mRNA mis-splicing likely due to sequestration of muscleblind-like 1 (MBNL1) splicing factor. Bioactive small molecules that bind the 5’CAG/3’GAC motif found in r(CAG)exp hairpin structure were identified by using RNA binding studies and virtual screening/chemical similarity searching. Specifically, a benzylguanidine-containing small molecule was found to improve pre-mRNA alternative splicing of MBNL1-sensitive exons in cells expressing the toxic r(CAG)exp. The compound was identified by first studying the binding of RNA 1×1 nucleotide internal loops to small molecules known to have affinity for nucleic acids. Those studies identified 4',6-diamidino-2-phenylindole (DAPI) as a specific binder to RNAs with the 5’CAG/3’GAC motif. DAPI was then used as a query molecule in a shape- and chemistry alignment-based virtual screen to identify compounds with improved properties, which identified 4-guanidinophenyl 4-guanidinobenzoate as small molecule capable of improving pre-mRNA splicing defects associated with the r(CAG)exp-MBNL1 complex. This compound may facilitate the development of therapeutics to treat diseases caused by r(CAG)exp and could serve as a useful chemical tool to dissect the mechanisms of r(CAG)exp toxicity. The approach used in these studies, defining the small RNA motifs that bind known nucleic acid binders and then using virtual screening to optimize them for bioactivity, may be generally applicable for designing small molecules that target other RNAs in human genomic sequence. PMID:22252896

  18. Interspecies scaling and prediction of human clearance: comparison of small- and macro-molecule drugs

    PubMed Central

    Huh, Yeamin; Smith, David E.; Feng, Meihau Rose

    2014-01-01

    Human clearance prediction for small- and macro-molecule drugs was evaluated and compared using various scaling methods and statistical analysis.Human clearance is generally well predicted using single or multiple species simple allometry for macro- and small-molecule drugs excreted renally.The prediction error is higher for hepatically eliminated small-molecules using single or multiple species simple allometry scaling, and it appears that the prediction error is mainly associated with drugs with low hepatic extraction ratio (Eh). The error in human clearance prediction for hepatically eliminated small-molecules was reduced using scaling methods with a correction of maximum life span (MLP) or brain weight (BRW).Human clearance of both small- and macro-molecule drugs is well predicted using the monkey liver blood flow method. Predictions using liver blood flow from other species did not work as well, especially for the small-molecule drugs. PMID:21892879

  19. Covalent modification of a ten-residue cationic antimicrobial peptide with levofloxacin

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carlos; Papanastasiou, Emilios; Juba, Melanie; Bishop, Barney

    2014-09-01

    The rampant spread of antibiotic resistant bacteria has spurred interest in alternative strategies for developing next-generation antibacterial therapies. As such, there has been growing interest in cationic antimicrobial peptides (CAMPs) and their therapeutic applications. Modification of CAMPs via conjugation to auxiliary compounds, including small molecule drugs, is a new approach to developing effective, broad-spectrum antibacterial agents with novel physicochemical properties and versatile antibacterial mechanisms. Here, we’ve explored design parameters for engineering CAMPs conjugated to small molecules with favorable physicochemical and antibacterial properties by covalently affixing a fluoroquinolone antibiotic, levofloxacin, to the ten-residue CAMP Pep-4. Relative to the unmodified Pep-4, the conjugate was found to demonstrate substantially increased antibacterial potency under high salt concentrations. Historically, it has been observed that most CAMPs lose antibacterial effectiveness in such high ionic strength environments, a fact that has presented a challenge to their development as therapeutics. Physicochemical studies revealed that P4LC was more hydrophobic than Pep-4, while mechanistic findings indicated that the conjugate was more effective at disrupting bacterial membrane integrity. Although the inherent antibacterial effect of the incorporated levofloxacin molecules did not appear to be substantially realized in this conjugate, these findings nevertheless suggest that covalent attachment of small molecule antibiotics with favorable physicochemical properties to CAMPs could be a promising strategy for enhancing peptide performance and overall therapeutic potential. These results have broader applicability to the development of future CAMP-antibiotic conjugates for potential therapeutic applications.

  20. Electrostatic Similarities between Protein and Small Molecule Ligands Facilitate the Design of Protein-Protein Interaction Inhibitors

    PubMed Central

    Zhang, Kam Y. J.

    2013-01-01

    One of the underlying principles in drug discovery is that a biologically active compound is complimentary in shape and molecular recognition features to its receptor. This principle infers that molecules binding to the same receptor may share some common features. Here, we have investigated whether the electrostatic similarity can be used for the discovery of small molecule protein-protein interaction inhibitors (SMPPIIs). We have developed a method that can be used to evaluate the similarity of electrostatic potentials between small molecules and known protein ligands. This method was implemented in a software called EleKit. Analyses of all available (at the time of research) SMPPII structures indicate that SMPPIIs bear some similarities of electrostatic potential with the ligand proteins of the same receptor. This is especially true for the more polar SMPPIIs. Retrospective analysis of several successful SMPPIIs has shown the applicability of EleKit in the design of new SMPPIIs. PMID:24130741

  1. Using the QCM Biosensor-Based T7 Phage Display Combined with Bioinformatics Analysis for Target Identification of Bioactive Small Molecule.

    PubMed

    Takakusagi, Yoichi; Takakusagi, Kaori; Sugawara, Fumio; Sakaguchi, Kengo

    2018-01-01

    Identification of target proteins that directly bind to bioactive small molecule is of great interest in terms of clarifying the mode of action of the small molecule as well as elucidating the biological phenomena at the molecular level. Of the experimental technologies available, T7 phage display allows comprehensive screening of small molecule-recognizing amino acid sequence from the peptide libraries displayed on the T7 phage capsid. Here, we describe the T7 phage display strategy that is combined with quartz-crystal microbalance (QCM) biosensor for affinity selection platform and bioinformatics analysis for small molecule-recognizing short peptides. This method dramatically enhances efficacy and throughput of the screening for small molecule-recognizing amino acid sequences without repeated rounds of selection. Subsequent execution of bioinformatics programs allows combinatorial and comprehensive target protein discovery of small molecules with its binding site, regardless of protein sample insolubility, instability, or inaccessibility of the fixed small molecules to internally located binding site on larger target proteins when conventional proteomics approaches are used.

  2. Ligand-regulated peptide aptamers.

    PubMed

    Miller, Russell A

    2009-01-01

    The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.

  3. 9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor.

    PubMed

    Bin, Haijun; Yang, Yankang; Zhang, Zhi-Guo; Ye, Long; Ghasemi, Masoud; Chen, Shanshan; Zhang, Yindong; Zhang, Chunfeng; Sun, Chenkai; Xue, Lingwei; Yang, Changduk; Ade, Harald; Li, Yongfang

    2017-03-29

    In the last two years, polymer solar cells (PSCs) developed quickly with n-type organic semiconductor (n-OSs) as acceptor. In contrast, the research progress of nonfullerene organic solar cells (OSCs) with organic small molecule as donor and the n-OS as acceptor lags behind. Here, we synthesized a D-A structured medium bandgap organic small molecule H11 with bithienyl-benzodithiophene (BDTT) as central donor unit and fluorobenzotriazole as acceptor unit, and achieved a power conversion efficiency (PCE) of 9.73% for the all organic small molecules OSCs with H11 as donor and a low bandgap n-OS IDIC as acceptor. A control molecule H12 without thiophene conjugated side chains on the BDT unit was also synthesized for investigating the effect of the thiophene conjugated side chains on the photovoltaic performance of the p-type organic semiconductors (p-OSs). Compared with H12, the 2D-conjugated H11 with thiophene conjugated side chains shows intense absorption, low-lying HOMO energy level, higher hole mobility and ordered bimodal crystallite packing in the blend films. Moreover, a larger interaction parameter (χ) was observed in the H11 blends calculated from Hansen solubility parameters and differential scanning calorimetry measurements. These special features combined with the complementary absorption of H11 donor and IDIC acceptor resulted in the best PCE of 9.73% for nonfullerene all small molecule OSCs up to date. Our results indicate that fluorobenzotriazole based 2D conjugated p-OSs are promising medium bandgap donors in the nonfullerene OSCs.

  4. Facilities for small-molecule crystallography at synchrotron sources.

    PubMed

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  5. Conserved nematode signaling molecules elicit plant defenses and pathogen resistance

    USDA-ARS?s Scientific Manuscript database

    Nematodes, which are ubiquitous in soil and are estimated to cause $100 B of agricultural damage annually, produce novel, highly conserved small sugar-based molecules call ascarosides. Ascarosides play critical roles in nematode development and behavior. We report here that plants recognize these un...

  6. Remote detection of explosives using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Fulton, Jack

    2011-05-01

    Stand-off detection of potentially hazardous small molecules at distances that allow the user to be safe has many applications, including explosives and chemical threats. The Naval Surface Warfare Center, Crane Division, with EYZtek, Inc. of Ohio, developed a prototype stand-off, eye-safe Raman spectrometer. With a stand-off distance greater than twenty meters and scanning optics, this system has the potential of addressing particularly difficult challenges in small molecule detection. An overview of the system design and desired application space is presented.

  7. Encoded Library Synthesis Using Chemical Ligation and the Discovery of sEH Inhibitors from a 334-Million Member Library

    NASA Astrophysics Data System (ADS)

    Litovchick, Alexander; Dumelin, Christoph E.; Habeshian, Sevan; Gikunju, Diana; Guié, Marie-Aude; Centrella, Paolo; Zhang, Ying; Sigel, Eric A.; Cuozzo, John W.; Keefe, Anthony D.; Clark, Matthew A.

    2015-06-01

    A chemical ligation method for construction of DNA-encoded small-molecule libraries has been developed. Taking advantage of the ability of the Klenow fragment of DNA polymerase to accept templates with triazole linkages in place of phosphodiesters, we have designed a strategy for chemically ligating oligonucleotide tags using cycloaddition chemistry. We have utilized this strategy in the construction and selection of a small molecule library, and successfully identified inhibitors of the enzyme soluble epoxide hydrolase.

  8. Molecular locks and keys: the role of small molecules in phytohormone research

    PubMed Central

    Fonseca, Sandra; Rosado, Abel; Vaughan-Hirsch, John; Bishopp, Anthony; Chini, Andrea

    2014-01-01

    Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signaling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signaling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function. Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signaling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated mechanisms. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds. PMID:25566283

  9. Identification of Small Molecule Activators of Cryptochrome

    PubMed Central

    Hirota, Tsuyoshi; Lee, Jae Wook; St. John, Peter C.; Sawa, Mariko; Iwaisako, Keiko; Noguchi, Takako; Pongsawakul, Pagkapol Y.; Sonntag, Tim; Welsh, David K.; Brenner, David A.; Doyle, Francis J.; Schultz, Peter G.; Kay, Steve A.

    2013-01-01

    Impairment of the circadian clock has been associated with numerous disorders, including metabolic disease. Although small molecules that modulate clock function might offer therapeutic approaches to such diseases, only a few compound have been identified that selectively target core clock proteins. From an unbiased cell-based circadian screen, we identified KL001, a small molecule that specifically interacts with cryptochrome (CRY). KL001 prevented ubiquitin-dependent degradation of CRY, resulting in lengthening of the circadian period. In combination with mathematical modeling, KL001 revealed that CRY1 and CRY2 share a similar functional role in the period regulation. Furthermore, KL001- mediated CRY stabilization inhibited glucagon-induced gluconeogenesis in primary hepatocytes. KL001 thus provides a tool to study the regulation of CRY-dependent physiology and aid development of clock-based therapeutics of diabetes. PMID:22798407

  10. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering.

    PubMed

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors.

  11. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering

    PubMed Central

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors. PMID:29089935

  12. Update in TSH Receptor Agonists and Antagonists

    PubMed Central

    Neumann, Susanne

    2012-01-01

    The physiological role of the TSH receptor (TSHR) as a major regulator of thyroid function is well understood, but TSHRs are also expressed in multiple normal extrathyroidal tissues, and the physiological roles of TSHRs in these tissues are unclear. Moreover, TSHRs play a major role in several pathological conditions including hyperthyroidism, hypothyroidism, and thyroid tumors. Small molecule, “drug-like” TSHR agonists, neutral antagonists, and inverse agonists may be useful as probes of TSHR function in extrathyroidal tissues and as leads to develop drugs for several diseases of the thyroid. In this Update, we review the most recent findings regarding the development and use of these small molecule TSHR ligands. PMID:23019348

  13. Recent advances in small molecule drug delivery.

    PubMed

    Kidane, Argaw; Bhatt, Padmanabh P

    2005-08-01

    The majority of new drugs, and new drug products, being developed and marketed by the pharmaceutical industry are small molecules. Oral administration remains the most common route of delivering such drugs, typically in the form of immediate-release tablets or capsules. While the immediate-release dosage forms dominate the market today, more specialized and rationalized products incorporating the concepts of drug delivery are being developed to overcome the physicochemical, physiological and pharmacological challenges inherent with the drugs, and to improve the treatment regimens for the patients. Today, these specialized concepts are increasingly being applied to first-generation products and not just products intended for the life cycle management of the franchise.

  14. cMapper: gene-centric connectivity mapper for EBI-RDF platform.

    PubMed

    Shoaib, Muhammad; Ansari, Adnan Ahmad; Ahn, Sung-Min

    2017-01-15

    In this era of biological big data, data integration has become a common task and a challenge for biologists. The Resource Description Framework (RDF) was developed to enable interoperability of heterogeneous datasets. The EBI-RDF platform enables an efficient data integration of six independent biological databases using RDF technologies and shared ontologies. However, to take advantage of this platform, biologists need to be familiar with RDF technologies and SPARQL query language. To overcome this practical limitation of the EBI-RDF platform, we developed cMapper, a web-based tool that enables biologists to search the EBI-RDF databases in a gene-centric manner without a thorough knowledge of RDF and SPARQL. cMapper allows biologists to search data entities in the EBI-RDF platform that are connected to genes or small molecules of interest in multiple biological contexts. The input to cMapper consists of a set of genes or small molecules, and the output are data entities in six independent EBI-RDF databases connected with the given genes or small molecules in the user's query. cMapper provides output to users in the form of a graph in which nodes represent data entities and the edges represent connections between data entities and inputted set of genes or small molecules. Furthermore, users can apply filters based on database, taxonomy, organ and pathways in order to focus on a core connectivity graph of their interest. Data entities from multiple databases are differentiated based on background colors. cMapper also enables users to investigate shared connections between genes or small molecules of interest. Users can view the output graph on a web browser or download it in either GraphML or JSON formats. cMapper is available as a web application with an integrated MySQL database. The web application was developed using Java and deployed on Tomcat server. We developed the user interface using HTML5, JQuery and the Cytoscape Graph API. cMapper can be accessed at http://cmapper.ewostech.net Readers can download the development manual from the website http://cmapper.ewostech.net/docs/cMapperDocumentation.pdf. Source Code is available at https://github.com/muhammadshoaib/cmapperContact:smahn@gachon.ac.krSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Influence of charge on encapsulation and release behavior of small molecules in self-assembled layer-by-layer microcapsules.

    PubMed

    Mandapalli, Praveen K; Labala, Suman; Vanamala, Deekshith; Koranglekar, Manali P; Sakimalla, Lakshmi A; Venuganti, Venkata Vamsi K

    2014-12-01

    The objective of this study is to investigate the influence of charge of model small molecules on their encapsulation and release behavior in layer-by-layer microcapsules (LbL-MC). Poly(styrene sulfonate) and poly(ethylene imine) were sequentially adsorbed on calcium carbonate sacrificial templates to prepare LbL-MC. Model molecules with varying charge, anionic - ascorbic acid, cationic - imatinib mesylate (IM) and neutral - 5-fluorouracil were encapsulated in LbL-MC. Free and encapsulated LbL-MC were characterized using zetasizer, FTIR spectroscope and differential scanning calorimeter. The influence of IM-loaded LbL-MC on cell viability was studied in B16F10 murine melanoma cells. Furthermore, biodistribution of IM-loaded LbL-MC with and without PEGylation was studied in BALB/c mice. Results showed spherical LbL-MC of 3.0 ± 0.4 μm diameter. Encapsulation efficiency of LbL-MC increased linearly (R(2 )= 0.89-0.99) with the increase in solute concentration. Increase in pH from 2 to 6 increased the encapsulation of charged molecules in LbL-MC. Charged molecules showed greater encapsulation efficiency in LbL-MC compared with neutral molecule. In vitro release kinetics showed Fickian and non-Fickian diffusion of small molecules, depending on the nature of molecular interactions with LbL-MC. At 50 μM concentration, free IM showed significantly (p < 0.05) more cytotoxicity compared with IM-loaded LbL-MC. Biodistribution studies showed that PEGylation of LbL-MC decreased the liver and spleen uptake of IM-encapsulated LbL-MC. In conclusion, LbL-MC can be developed as a potential carrier for small molecules depending on their physical and chemical properties.

  16. A novel small molecule, Rosline, inhibits growth and induces caspase-dependent apoptosis in human lung cancer cells A549 through a reactive oxygen species-dependent mechanism.

    PubMed

    Zhao, Ting; Feng, Yang; Jin, Wenling; Pan, Hui; Li, Haizhou; Zhao, Yang

    2016-06-01

    Chemical screening using synthetic small molecule libraries has provided a huge amount of novel active molecules. It generates lead compound for drug development and brings focus on molecules for mechanistic investigations on many otherwise intangible biological processes. In this study, using non-small cell lung cancer cell A549 to screen against a structurally novel and diverse synthetic small molecule library of 2,400 compounds, we identified a molecule named rosline that has strong anti-proliferation activity on A549 cells with a 50% cell growth inhibitory concentration (IC50 ) of 2.87 ± 0.39 µM. We showed that rosline treatment increased the number of Annexin V-positive staining cell, as well as G2/M arrest in their cell cycle progression. Further, we have demonstrated that rosline induces a decrease of mitochondrial membrane potential (Δφm ) and an increase of caspases 3/7 and 9 activities in A549 cells, although having no effect on the activity of caspase 8. Moreover, we found that rosline could induce the production of reactive oxygen species (ROS) and inhibit the phosphorylation of signaling molecule Akt in A549 cells. Alternatively, an antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated rosline's effects on the mitochondrial membrane potential, caspases 3/7 and 9 activities, cell viabilities and the phosphorylation of Akt. Our results demonstrated that ROS played an important role in the apoptosis of A549 cells induced by rosline. © 2016 International Federation for Cell Biology.

  17. iSpec: A Web-Based Activity for Spectroscopy Teaching

    ERIC Educational Resources Information Center

    Vosegaard, Thomas

    2018-01-01

    Students' skills in structure elucidation of organic molecules are developed by training them to understand advanced spectroscopic measurements and elucidate structures of small organic molecules from mass spectrometry (MS) and infrared (IR), ultraviolet (UV), and [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR)…

  18. A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency.

    PubMed

    Kan, Bin; Li, Miaomiao; Zhang, Qian; Liu, Feng; Wan, Xiangjian; Wang, Yunchuang; Ni, Wang; Long, Guankui; Yang, Xuan; Feng, Huanran; Zuo, Yi; Zhang, Mingtao; Huang, Fei; Cao, Yong; Russell, Thomas P; Chen, Yongsheng

    2015-03-25

    A series of acceptor-donor-acceptor simple oligomer-like small molecules based on oligothiophenes, namely, DRCN4T-DRCN9T, were designed and synthesized. Their optical, electrical, and thermal properties and photovoltaic performances were systematically investigated. Except for DRCN4T, excellent performances were obtained for DRCN5T-DRCN9T. The devices based on DRCN5T, DRCN7T, and DRCN9T with axisymmetric chemical structures exhibit much higher short-circuit current densities than those based on DRCN6T and DRCN8T with centrosymmetric chemical structures, which is attributed to their well-developed fibrillar network with a feature size less than 20 nm. The devices based on DRCN5T/PC71BM showed a notable certified power conversion efficiency (PCE) of 10.10% under AM 1.5G irradiation (100 mW cm(-2)) using a simple solution spin-coating fabrication process. This is the highest PCE for single-junction small-molecule-based organic photovoltaics (OPVs) reported to date. DRCN5T is a rather simpler molecule compared with all of the other high-performance molecules in OPVs to date, and this might highlight its advantage in the future possible commercialization of OPVs. These results demonstrate that a fine and balanced modification/design of chemical structure can make significant performance differences and that the performance of solution-processed small-molecule-based solar cells can be comparable to or even surpass that of their polymer counterparts.

  19. 1,5-Diaminonaphthalene hydrochloride assisted laser desorption/ionization mass spectrometry imaging of small molecules in tissues following focal cerebral ischemia.

    PubMed

    Liu, Huihui; Chen, Rui; Wang, Jiyun; Chen, Suming; Xiong, Caiqiao; Wang, Jianing; Hou, Jian; He, Qing; Zhang, Ning; Nie, Zongxiu; Mao, Lanqun

    2014-10-21

    A sensitive analytical technique for visualizing small endogenous molecules simultaneously is of great significance for clearly elucidating metabolic mechanisms during pathological progression. In the present study, 1,5-naphthalenediamine (1,5-DAN) hydrochloride was prepared for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) of small molecules in liver, brain, and kidneys from mice. Furthermore, 1,5-DAN hydrochloride assisted LDI MSI of small molecules in brain tissue of rats subjected to middle cerebral artery occlusion (MCAO) was carried out to investigate the altered metabolic pathways and mechanisms underlying the development of ischemic brain damage. Our results suggested that the newly prepared matrix possessed brilliant features including low cost, strong ultraviolet absorption, high salt tolerance capacity, and fewer background signals especially in the low mass range (typically m/z < 500), which permitted us to visualize the spatial distribution of a broad range of small molecule metabolites including metal ions, amino acids, carboxylic acids, nucleotide derivatives, peptide, and lipids simultaneously. Nineteen endogenous metabolites involved in metabolic networks such as ATP metabolism, tricarboxylic acid (TCA) cycle, glutamate-glutamine cycle, and malate-aspartate shuttle, together with metal ions and phospholipids as well as antioxidants underwent relatively obvious changes after 24 h of MCAO. The results were highly consistent with the data obtained by MRM MS analysis. These findings highlighted the promising potential of the organic salt matrix for application in the field of biomedical research.

  20. Mapping the Small Molecule Interactome by Mass Spectrometry.

    PubMed

    Flaxman, Hope A; Woo, Christina M

    2018-01-16

    Mapping small molecule interactions throughout the proteome provides the critical structural basis for functional analysis of their impact on biochemistry. However, translation of mass spectrometry-based proteomics methods to directly profile the interaction between a small molecule and the whole proteome is challenging because of the substoichiometric nature of many interactions, the diversity of covalent and noncovalent interactions involved, and the subsequent computational complexity associated with their spectral assignment. Recent advances in chemical proteomics have begun fill this gap to provide a structural basis for the breadth of small molecule-protein interactions in the whole proteome. Innovations enabling direct characterization of the small molecule interactome include faster, more sensitive instrumentation coupled to chemical conjugation, enrichment, and labeling methods that facilitate detection and assignment. These methods have started to measure molecular interaction hotspots due to inherent differences in local amino acid reactivity and binding affinity throughout the proteome. Measurement of the small molecule interactome is producing structural insights and methods for probing and engineering protein biochemistry. Direct structural characterization of the small molecule interactome is a rapidly emerging area pushing new frontiers in biochemistry at the interface of small molecules and the proteome.

  1. Small-Molecule Hormones: Molecular Mechanisms of Action

    PubMed Central

    Budzińska, Monika

    2013-01-01

    Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30–60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes. PMID:23533406

  2. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41

    PubMed Central

    Lu, Lu; Yu, Fei; Cai, Lifeng; Debnath, Asim K.; Jiang, Shibo

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development. PMID:26324044

  3. Protein Knockdown Technology: Application of Ubiquitin Ligase to Cancer Therapy.

    PubMed

    Ohoka, Nobumichi; Shibata, Norihito; Hattori, Takayuki; Naito, Mikihiko

    2016-01-01

    Selective degradation of pathogenic proteins by small molecules in cells is a novel approach for development of therapeutic agents against various diseases, including cancer. We and others have developed a protein knockdown technology with a series of hybrid small compounds, called SNIPERs (Specific and Nongenetic IAP-dependent Protein ERasers); and peptidic chimeric molecules, called PROTACs (proteolysis-targeting chimeric molecules), which induce selective degradation of target proteins via the ubiquitin-proteasome pathway. These compounds include two different ligands connected by a linker; one is a ligand for a ubiquitin ligase and the other is a ligand for the target protein, which are expected to crosslink these proteins in cells. Theoretically, any cytosolic protein can be targeted for degradation by this technology. To date, several SNIPERs and PROTACs against various oncogenic proteins have been developed, which specifically induce polyubiquitylation and proteasomal degradation of the oncogenic proteins, resulting in cell death, growth arrest, or impaired migration of cancer cells. Thus, this protein knockdown technology has a great potential for cancer therapy.

  4. A Strategy for Minimizing Background Signal in Autoinductive Signal Amplification Reactions for Point-of-Need Assays.

    PubMed

    Brooks, Adam D; Yeung, Kimy; Lewis, Gregory G; Phillips, Scott T

    2015-09-07

    Rapid point-of-need assays are used to detect abundant biomarkers. The development of in situ signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based in situ signal amplification reactions that eventually may be useful in this context. Herein we describe a design strategy for minimizing background signal that may occur in the absence of the target analyte, thus moving this in situ signal amplification approach one step closer to practical applications. Specifically, we describe allylic ethers as privileged connectors for linking detection and propagating functionality in a small molecule signal amplification reagent. Allylic ethers minimize background reactions while still enabling controlled release of a propagating signal in order to continue the signal amplification reaction. This paper characterizes the ability of allylic ethers to provide an amplified response, and offers insight into additional design considerations that are needed before in situ small molecule-based signal amplification becomes a viable strategy for point-of-need diagnostics.

  5. A Strategy for Minimizing Background Signal in Autoinductive Signal Amplification Reactions for Point-of-Need Assays

    PubMed Central

    Brooks, Adam D.; Yeung, Kimy; Lewis, Gregory G.

    2015-01-01

    Rapid point-of-need assays are used to detect abundant biomarkers. The development of in situ signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based in situ signal amplification reactions that eventually may be useful in this context. Herein we describe a design strategy for minimizing background signal that may occur in the absence of the target analyte, thus moving this in situ signal amplification approach one step closer to practical applications. Specifically, we describe allylic ethers as privileged connectors for linking detection and propagating functionality in a small molecule signal amplification reagent. Allylic ethers minimize background reactions while still enabling controlled release of a propagating signal in order to continue the signal amplification reaction. This paper characterizes the ability of allylic ethers to provide an amplified response, and offers insight into additional design considerations that are needed before in situ small molecule-based signal amplification becomes a viable strategy for point-of-need diagnostics. PMID:26604988

  6. Array Formatting of the Heat-Transfer Method (HTM) for the Detection of Small Organic Molecules by Molecularly Imprinted Polymers

    PubMed Central

    Wackers, Gideon; Vandenryt, Thijs; Cornelis, Peter; Kellens, Evelien; Thoelen, Ronald; De Ceuninck, Ward; Losada-Pérez, Patricia; van Grinsven, Bart; Peeters, Marloes; Wagner, Patrick

    2014-01-01

    In this work we present the first steps towards a molecularly imprinted polymer (MIP)-based biomimetic sensor array for the detection of small organic molecules via the heat-transfer method (HTM). HTM relies on the change in thermal resistance upon binding of the target molecule to the MIP-type receptor. A flow-through sensor cell was developed, which is segmented into four quadrants with a volume of 2.5 μL each, allowing four measurements to be done simultaneously on a single substrate. Verification measurements were conducted, in which all quadrants received a uniform treatment and all four channels exhibited a similar response. Subsequently, measurements were performed in quadrants, which were functionalized with different MIP particles. Each of these quadrants was exposed to the same buffer solution, spiked with different molecules, according to the MIP under analysis. With the flow cell design we could discriminate between similar small organic molecules and observed no significant cross-selectivity. Therefore, the MIP array sensor platform with HTM as a readout technique, has the potential to become a low-cost analysis tool for bioanalytical applications. PMID:24955945

  7. Drug search for leishmaniasis: a virtual screening approach by grid computing

    NASA Astrophysics Data System (ADS)

    Ochoa, Rodrigo; Watowich, Stanley J.; Flórez, Andrés; Mesa, Carol V.; Robledo, Sara M.; Muskus, Carlos

    2016-07-01

    The trypanosomatid protozoa Leishmania is endemic in 100 countries, with infections causing 2 million new cases of leishmaniasis annually. Disease symptoms can include severe skin and mucosal ulcers, fever, anemia, splenomegaly, and death. Unfortunately, therapeutics approved to treat leishmaniasis are associated with potentially severe side effects, including death. Furthermore, drug-resistant Leishmania parasites have developed in most endemic countries. To address an urgent need for new, safe and inexpensive anti-leishmanial drugs, we utilized the IBM World Community Grid to complete computer-based drug discovery screens (Drug Search for Leishmaniasis) using unique leishmanial proteins and a database of 600,000 drug-like small molecules. Protein structures from different Leishmania species were selected for molecular dynamics (MD) simulations, and a series of conformational "snapshots" were chosen from each MD trajectory to simulate the protein's flexibility. A Relaxed Complex Scheme methodology was used to screen 2000 MD conformations against the small molecule database, producing >1 billion protein-ligand structures. For each protein target, a binding spectrum was calculated to identify compounds predicted to bind with highest average affinity to all protein conformations. Significantly, four different Leishmania protein targets were predicted to strongly bind small molecules, with the strongest binding interactions predicted to occur for dihydroorotate dehydrogenase (LmDHODH; PDB:3MJY). A number of predicted tight-binding LmDHODH inhibitors were tested in vitro and potent selective inhibitors of Leishmania panamensis were identified. These promising small molecules are suitable for further development using iterative structure-based optimization and in vitro/in vivo validation assays.

  8. Drug search for leishmaniasis: a virtual screening approach by grid computing.

    PubMed

    Ochoa, Rodrigo; Watowich, Stanley J; Flórez, Andrés; Mesa, Carol V; Robledo, Sara M; Muskus, Carlos

    2016-07-01

    The trypanosomatid protozoa Leishmania is endemic in ~100 countries, with infections causing ~2 million new cases of leishmaniasis annually. Disease symptoms can include severe skin and mucosal ulcers, fever, anemia, splenomegaly, and death. Unfortunately, therapeutics approved to treat leishmaniasis are associated with potentially severe side effects, including death. Furthermore, drug-resistant Leishmania parasites have developed in most endemic countries. To address an urgent need for new, safe and inexpensive anti-leishmanial drugs, we utilized the IBM World Community Grid to complete computer-based drug discovery screens (Drug Search for Leishmaniasis) using unique leishmanial proteins and a database of 600,000 drug-like small molecules. Protein structures from different Leishmania species were selected for molecular dynamics (MD) simulations, and a series of conformational "snapshots" were chosen from each MD trajectory to simulate the protein's flexibility. A Relaxed Complex Scheme methodology was used to screen ~2000 MD conformations against the small molecule database, producing >1 billion protein-ligand structures. For each protein target, a binding spectrum was calculated to identify compounds predicted to bind with highest average affinity to all protein conformations. Significantly, four different Leishmania protein targets were predicted to strongly bind small molecules, with the strongest binding interactions predicted to occur for dihydroorotate dehydrogenase (LmDHODH; PDB:3MJY). A number of predicted tight-binding LmDHODH inhibitors were tested in vitro and potent selective inhibitors of Leishmania panamensis were identified. These promising small molecules are suitable for further development using iterative structure-based optimization and in vitro/in vivo validation assays.

  9. Development and Implementation of a High-Throughput High-Content Screening Assay to Identify Inhibitors of Androgen Receptor Nuclear Localization in Castration-Resistant Prostate Cancer Cells

    PubMed Central

    Nguyen, Minh M.; Dar, Javid A.; Ai, Junkui; Wang, Yujuan; Masoodi, Khalid Z.; Shun, Tongying; Shinde, Sunita; Camarco, Daniel P.; Hua, Yun; Huryn, Donna M.; Wilson, Gabriela Mustata; Lazo, John S.; Nelson, Joel B.; Wipf, Peter

    2016-01-01

    Abstract Patients with castration-resistant prostate cancer (CRPC) can be treated with abiraterone, a potent inhibitor of androgen synthesis, or enzalutamide, a second-generation androgen receptor (AR) antagonist, both targeting AR signaling. However, most patients relapse after several months of therapy and a majority of patients with relapsed CRPC tumors express the AR target gene prostate-specific antigen (PSA), suggesting that AR signaling is reactivated and can be targeted again to inhibit the relapsed tumors. Novel small molecules capable of inhibiting AR function may lead to urgently needed therapies for patients resistant to abiraterone, enzalutamide, and/or other previously approved antiandrogen therapies. Here, we describe a high-throughput high-content screening (HCS) campaign to identify small-molecule inhibitors of AR nuclear localization in the C4-2 CRPC cell line stably transfected with GFP-AR-GFP (2GFP-AR). The implementation of this HCS assay to screen a National Institutes of Health library of 219,055 compounds led to the discovery of 3 small molecules capable of inhibiting AR nuclear localization and function in C4-2 cells, demonstrating the feasibility of using this cell-based phenotypic assay to identify small molecules targeting the subcellular localization of AR. Furthermore, the three hit compounds provide opportunities to develop novel AR drugs with potential for therapeutic intervention in CRPC patients who have relapsed after treatment with antiandrogens, such as abiraterone and/or enzalutamide. PMID:27187604

  10. Raman imaging of molecular dynamics during cellular events

    NASA Astrophysics Data System (ADS)

    Fujita, Katsumasa

    2017-07-01

    To overcome the speed limitation in Raman imaging, we have developed a microscope system that detects Raman spectra from hundreds of points in a sample simultaneously. The sample was illuminated by a line-shaped focus, and Raman scattering from the illuminated positions was measured simultaneously by an imaging spectrophotometer. We applied the line-illumination technique to observe the dynamics of intracellular molecules during cellular events. We found that intracellular cytochrome c can be clearly imaged by resonant Raman scattering. We demonstrated label-free imaging of redistribution of cytochrome c during apoptosis and osteoblastic mineralization. We also proposed alkyne-tagged Raman imaging to observe small molecules in living cells. Due to its small size and the unique Raman band, alkyne can tag molecules without strong perturbation to molecular functions and with the capability to be detected separately from endogenous molecules.

  11. Identification of Antibody and Small Molecule Antagonists of Ferroportin-Hepcidin Interaction

    PubMed Central

    Ross, Sandra L.; Biswas, Kaustav; Rottman, James; Allen, Jennifer R.; Long, Jason; Miranda, Les P.; Winters, Aaron; Arvedson, Tara L.

    2017-01-01

    The iron exporter ferroportin and its ligand, the hormone hepcidin, control fluxes of stored and recycled iron for use in a variety of essential biochemical processes. Inflammatory disorders and malignancies are often associated with high hepcidin levels, leading to ferroportin down-regulation, iron sequestration in tissue macrophages and subsequent anemia. The objective of this research was to develop reagents to characterize the expression of ferroportin, the interaction between ferroportin and hepcidin, as well as to identify novel ferroportin antagonists capable of maintaining iron export in the presence of hepcidin. Development of investigative tools that enabled cell-based screening assays is described in detail, including specific and sensitive monoclonal antibodies that detect endogenously-expressed human and mouse ferroportin and fluorescently-labeled chemically-synthesized human hepcidin. Large and small molecule antagonists inhibiting hepcidin-mediated ferroportin internalization were identified, and unique insights into the requirements for interaction between these two key iron homeostasis molecules are provided. PMID:29209212

  12. NCCN Guidelines Insights: Chronic Lymphocytic Leukemia/Small Lymphocytic Leukemia, Version 1.2017.

    PubMed

    Wierda, William G; Zelenetz, Andrew D; Gordon, Leo I; Abramson, Jeremy S; Advani, Ranjana H; Andreadis, C Babis; Bartlett, Nancy; Byrd, John C; Caimi, Paolo; Fayad, Luis E; Fisher, Richard I; Glenn, Martha J; Habermann, Thomas M; Harris, Nancy Lee; Hernandez-Ilizaliturri, Francisco; Hoppe, Richard T; Horwitz, Steven M; Kaminski, Mark S; Kelsey, Christopher R; Kim, Youn H; Krivacic, Susan; LaCasce, Ann S; Martin, Michael G; Nademanee, Auayporn; Porcu, Pierluigi; Press, Oliver; Rabinovitch, Rachel; Reddy, Nishitha; Reid, Erin; Roberts, Kenneth; Saad, Ayman A; Snyder, Erin D; Sokol, Lubomir; Swinnen, Lode J; Vose, Julie M; Yahalom, Joachim; Dwyer, Mary A; Sundar, Hema

    2017-03-01

    Chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) are different manifestations of the same disease and managed in much the same way. The advent of novel CD20 monoclonal antibodies led to the development of effective chemoimmunotherapy regimens. More recently, small molecule inhibitors targeting kinases involved in a number of critical signaling pathways and a small molecule inhibitor of the BCL-2 family of proteins have demonstrated activity for the treatment of patients with CLL/SLL. These NCCN Guidelines Insights highlight important updates to the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for CLL/SLL for the treatment of patients with newly diagnosed or relapsed/refractory CLL/SLL. Copyright © 2017 by the National Comprehensive Cancer Network.

  13. Optical aptasensors for quantitative detection of small biomolecules: a review.

    PubMed

    Feng, Chunjing; Dai, Shuang; Wang, Lei

    2014-09-15

    Aptasensors are aptamer-based biosensors with excellent recognition capability towards a wide range of targets. Specially, there have been ever-growing interests in the development of aptasensors for the detection of small molecules. This phenomenon is contributed to two reasons. On one hand, small biomolecules play an important role in living organisms with many kinds of biological function, such as antiarrhythmic effect and vasodilator activity of adenosine. On the other hand, the concentration of small molecules can be an indicator for disease diagnosis, for example, the concentration of ATP is closely associated with cell injury and cell viability. As a potential analysis tool in the construction of aptasensors, optical analysis has attracted much more interest of researchers due to its high sensitivity, quick response and simple operation. Besides, it promises the promotion of aptasensors in performance toward a new level. Review the development of optical aptasensors for small biomolecules will give readers an overall understanding of its progress and provide some theoretical guidelines for its future development. Hence, we give a mini-review on the advance of optical aptasensors for small biomolecules. This review focuses on recent achievements in the design of various optical aptasensors for small biomolecules, containing fluorescence aptasensors, colorimetric aptasensors, chemiluminescence aptasensors and other optical aptasensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Rational Design of Small Molecules Targeting Oncogenic Noncoding RNAs from Sequence.

    PubMed

    Disney, Matthew D; Angelbello, Alicia J

    2016-12-20

    The discovery of RNA catalysis in the 1980s and the dissemination of the human genome sequence at the start of this century inspired investigations of the regulatory roles of noncoding RNAs in biology. In fact, the Encyclopedia of DNA Elements (ENCODE) project has shown that only 1-2% of the human genome encodes protein, yet 75% is transcribed into RNA. Functional studies both preceding and following the ENCODE project have shown that these noncoding RNAs have important roles in regulating gene expression, developmental timing, and other critical functions. RNA's diverse roles are often a consequence of the various folds that it adopts. The single-stranded nature of the biopolymer enables it to adopt intramolecular folds with noncanonical pairings to lower its free energy. These folds can be scaffolds to bind proteins or to form frameworks to interact with other RNAs. Not surprisingly, dysregulation of certain noncoding RNAs has been shown to be causative of disease. Given this as the background, it is easy to see why it would be useful to develop methods that target RNA and manipulate its biology in rational and predictable ways. The antisense approach has afforded strategies to target RNAs via Watson-Crick base pairing and has typically focused on targeting partially unstructured regions of RNA. Small molecule strategies to target RNA would be desirable not only because compounds could be lead optimized via medicinal chemistry but also because structured regions within an RNA of interest could be targeted to directly interfere with RNA folds that contribute to disease. Additionally, small molecules have historically been the most successful drug candidates. Until recently, the ability to design small molecules that target non-ribosomal RNAs has been elusive, creating the perception that they are "undruggable". In this Account, approaches to demystify targeting RNA with small molecules are described. Rather than bulk screening for compounds that bind to singular targets, which is the purview of the pharmaceutical industry and academic institutions with high throughput screening facilities, we focus on methods that allow for the rational design of small molecules toward biological RNAs. One enabling and foundational technology that has been developed is two-dimensional combinatorial screening (2DCS), a library-versus-library selection approach that allows the identification of the RNA motif binding preferences of small molecules from millions of combinations. A landscape map of the 2DCS-defined and annotated RNA motif-small molecule interactions is then placed into Inforna, a computational tool that allows one to mine these interactions against an RNA of interest or an entire transcriptome. Indeed, this approach has been enabled by tools to annotate RNA structure from sequence, an invaluable asset to the RNA community and this work, and has allowed for the rational identification of "druggable" RNAs in a target agnostic fashion.

  15. Binding screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic strategy.

    PubMed

    Hall, Justin D; Wang, Hong; Byrnes, Laura J; Shanker, Suman; Wang, Kelong; Efremov, Ivan V; Chong, P Andrew; Forman-Kay, Julie D; Aulabaugh, Ann E

    2016-02-01

    The most common mutation in cystic fibrosis (CF) patients is deletion of F508 (ΔF508) in the first nucleotide binding domain (NBD1) of the CF transmembrane conductance regulator (CFTR). ΔF508 causes a decrease in the trafficking of CFTR to the cell surface and reduces the thermal stability of isolated NBD1; it is well established that both of these effects can be rescued by additional revertant mutations in NBD1. The current paradigm in CF small molecule drug discovery is that, like revertant mutations, a path may exist to ΔF508 CFTR correction through a small molecule chaperone binding to NBD1. We, therefore, set out to find small molecule binders of NBD1 and test whether it is possible to develop these molecules into potent binders that increase CFTR trafficking in CF-patient-derived human bronchial epithelial cells. Several fragments were identified that bind NBD1 at either the CFFT-001 site or the BIA site. However, repeated attempts to improve the affinity of these fragments resulted in only modest gains. Although these results cannot prove that there is no possibility of finding a high-affinity small molecule binder of NBD1, they are discouraging and lead us to hypothesize that the nature of these two binding sites, and isolated NBD1 itself, may not contain the features needed to build high-affinity interactions. Future work in this area may, therefore, require constructs including other domains of CFTR in addition to NBD1, if high-affinity small molecule binding is to be achieved. © 2016 The Protein Society.

  16. Chemogenomics: a discipline at the crossroad of high throughput technologies, biomarker research, combinatorial chemistry, genomics, cheminformatics, bioinformatics and artificial intelligence.

    PubMed

    Maréchal, Eric

    2008-09-01

    Chemogenomics is the study of the interaction of functional biological systems with exogenous small molecules, or in broader sense the study of the intersection of biological and chemical spaces. Chemogenomics requires expertises in biology, chemistry and computational sciences (bioinformatics, cheminformatics, large scale statistics and machine learning methods) but it is more than the simple apposition of each of these disciplines. Biological entities interacting with small molecules can be isolated proteins or more elaborate systems, from single cells to complete organisms. The biological space is therefore analyzed at various postgenomic levels (genomic, transcriptomic, proteomic or any phenotypic level). The space of small molecules is partially real, corresponding to commercial and academic collections of compounds, and partially virtual, corresponding to the chemical space possibly synthesizable. Synthetic chemistry has developed novel strategies allowing a physical exploration of this universe of possibilities. A major challenge of cheminformatics is to charter the virtual space of small molecules using realistic biological constraints (bioavailability, druggability, structural biological information). Chemogenomics is a descendent of conventional pharmaceutical approaches, since it involves the screening of chemolibraries for their effect on biological targets, and benefits from the advances in the corresponding enabling technologies and the introduction of new biological markers. Screening was originally motivated by the rigorous discovery of new drugs, neglecting and throwing away any molecule that would fail to meet the standards required for a therapeutic treatment. It is now the basis for the discovery of small molecules that might or might not be directly used as drugs, but which have an immense potential for basic research, as probes to explore an increasing number of biological phenomena. Concerns about the environmental impact of chemical industry open new fields of research for chemogenomics.

  17. Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs.

    PubMed

    Gao, Jinxu; Mfuh, Adelphe; Amako, Yuka; Woo, Christina M

    2018-03-28

    Many therapeutics elicit cell-type specific polypharmacology that is executed by a network of molecular recognition events between a small molecule and the whole proteome. However, measurement of the structures that underpin the molecular associations between the proteome and even common therapeutics, such as the nonsteroidal anti-inflammatory drugs (NSAIDs), is limited by the inability to map the small molecule interactome. To address this gap, we developed a platform termed small molecule interactome mapping by photoaffinity labeling (SIM-PAL) and applied it to the in cellulo direct characterization of specific NSAID binding sites. SIM-PAL uses (1) photochemical conjugation of NSAID derivatives in the whole proteome and (2) enrichment and isotope-recoding of the conjugated peptides for (3) targeted mass spectrometry-based assignment. Using SIM-PAL, we identified the NSAID interactome consisting of over 1000 significantly enriched proteins and directly characterized nearly 200 conjugated peptides representing direct binding sites of the photo-NSAIDs with proteins from Jurkat and K562 cells. The enriched proteins were often identified as parts of complexes, including known targets of NSAID activity (e.g., NF-κB) and novel interactions (e.g., AP-2, proteasome). The conjugated peptides revealed direct NSAID binding sites from the cell surface to the nucleus and a specific binding site hotspot for the three photo-NSAIDs on histones H2A and H2B. NSAID binding stabilized COX-2 and histone H2A by cellular thermal shift assay. Since small molecule stabilization of protein complexes is a gain of function regulatory mechanism, it is conceivable that NSAIDs affect biological processes through these broader proteomic interactions. SIM-PAL enabled characterization of NSAID binding site hotspots and is amenable to map global binding sites for virtually any molecule of interest.

  18. Long-Term Priming by Three Small Molecules Is a Promising Strategy for Enhancing Late Endothelial Progenitor Cell Bioactivities.

    PubMed

    Kim, Yeon-Ju; Ji, Seung Taek; Kim, Da Yeon; Jung, Seok Yun; Kang, Songhwa; Park, Ji Hye; Jang, Woong Bi; Yun, Jisoo; Ha, Jongseong; Lee, Dong Hyung; Kwon, Sang-Mo

    2018-06-12

    Endothelial progenitor cells (EPCs) and outgrowth endothelial cells (OECs) play a pivotal role in vascular regeneration in ischemic tissues; however, their therapeutic application in clinical settings is limited due to the low quality and quantity of patient-derived circulating EPCs. To solve this problem, we evaluated whether three priming small molecules (tauroursodeoxycholic acid, fucoidan, oleuropein) could enhance the angiogenic potential of EPCs. Such enhancement would promote the cellular bioactivities and help to develop functionally improved EPC therapeutics for ischemic diseases by accelerating the priming effect of the defined physiological molecules. We found that preconditioning of each of the three small molecules significantly induced the differentiation potential of CD34+ stem cells into EPC lineage cells. Notably, long-term priming of OECs with the three chemical cocktail (OEC-3C) increased the proliferation potential of EPCs via ERK activation. The migration, invasion, and tube-forming capacities were also significantly enhanced in OEC-3Cs compared with unprimed OECs. Further, the cell survival ratio was dramatically increased in OEC-3Cs against H2O2-induced oxidative stress via the augmented expression of Bcl-2, a prosurvival protein. In conclusion, we identified three small molecules for enhancing the bioactivities of ex vivo-expanded OECs for vascular repair. Long-term 3C priming might be a promising methodology for EPC-based therapy against ischemic diseases.

  19. [Current and prospective biologics and small molecules in the treatment of inflammatory bowel diseases].

    PubMed

    Buc, Milan

    2018-01-01

    Crohns disease (CD) and ulcerative colitis (UC) belong to chronic inflammatory bowel diseases, which are induced by autoimmune processes. While CD is characterized by over-activity of Th1, ILC1, and MAIT cells, UC is mediated by exaggerated activities of Th2 and ILC2 cells and cytokines they produce. Knowledge of the pathogenesis enabled a rational therapy based mostly on biologics and small molecules. TNF is the principal proinflammatory cytokine in both diseases. Anti-TNF monoclonal antibodies, mostly infliximab or adalimumab were therefore introduced to their treatment. Approximately 50-70 % of CD and more than 33 % of UC patients respond to primary treatment only, which resulted in the development of other biologics and small molecules. Out of them, monoclonal antibodies targeting adhesive molecules (vedolizumab, etrolizumab) and p40 chains shared by IL12 and IL23 (ustekinumab) have been already in clinical practice. There are also other small molecules in clinical trials: mongersen, tafacitinib, and ozanimod. Mongersen supports immunosuppressive activity of TGFβ; it has been tried for the treatment of CD. Tofacitinib inhibits activity of JAK kinases; it was shown to be effective in UC management. Ozanimod interferes with migrations of activated T cells to the site of inflammation and is a promising drug for the UC treatment.Key words: Crohns disease - mongersen - monoclonal antibodies - ozanimod - tofacitinib - ulcerative colitis.

  20. Advantages and application of label-free detection assays in drug screening.

    PubMed

    Cunningham, Brian T; Laing, Lance G

    2008-08-01

    Adoption is accelerating for a new family of label-free optical biosensors incorporated into standard format microplates owing to their ability to enable highly sensitive detection of small molecules, proteins and cells for high-throughput drug discovery applications. Label-free approaches are displacing other detection technologies owing to their ability to provide simple assay procedures for hit finding/validation, accessing difficult target classes, screening the interaction of cells with drugs and analyzing the affinity of small molecule inhibitors to target proteins. This review describes several new drug discovery applications that are under development for microplate-based photonic crystal optical biosensors and the key issues that will drive adoption of the technology. Microplate-based optical biosensors are enabling a variety of cell-based assays, inhibition assays, protein-protein binding assays and protein-small molecule binding assays to be performed with high-throughput and high sensitivity.

  1. Application of chemical biology in target identification and drug discovery.

    PubMed

    Zhu, Yue; Xiao, Ting; Lei, Saifei; Zhou, Fulai; Wang, Ming-Wei

    2015-09-01

    Drug discovery and development is vital to the well-being of mankind and sustainability of the pharmaceutical industry. Using chemical biology approaches to discover drug leads has become a widely accepted path partially because of the completion of the Human Genome Project. Chemical biology mainly solves biological problems through searching previously unknown targets for pharmacologically active small molecules or finding ligands for well-defined drug targets. It is a powerful tool to study how these small molecules interact with their respective targets, as well as their roles in signal transduction, molecular recognition and cell functions. There have been an increasing number of new therapeutic targets being identified and subsequently validated as a result of advances in functional genomics, which in turn led to the discovery of numerous active small molecules via a variety of high-throughput screening initiatives. In this review, we highlight some applications of chemical biology in the context of drug discovery.

  2. Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer

    PubMed Central

    Chang, Joan; Lucas, Morghan C.; Leonte, Lidia E.; Garcia-Montolio, Marc; Singh, Lukram Babloo; Findlay, Alison D.; Deodhar, Mandar; Foot, Jonathan S.; Jarolimek, Wolfgang; Timpson, Paul; Erler, Janine T.; Cox, Thomas R.

    2017-01-01

    Lysyl Oxidase-like 2 (LOXL2), a member of the lysyl oxidase family of amine oxidases is known to be important in normal tissue development and homeostasis, as well as the onset and progression of solid tumors. Here we tested the anti-tumor properties of two generations of novel small molecule LOXL2 inhibitor in the MDA-MB-231 human model of breast cancer. We confirmed a functional role for LOXL2 activity in the progression of primary breast cancer. Inhibition of LOXL2 activity inhibited the growth of primary tumors and reduced primary tumor angiogenesis. Dual inhibition of LOXL2 and LOX showed a greater effect and also led to a lower overall metastatic burden in the lung and liver. Our data provides the first evidence to support a role for LOXL2 specific small molecule inhibitors as a potential therapy in breast cancer. PMID:28199967

  3. Small molecule absorption by PDMS in the context of drug response bioassays.

    PubMed

    van Meer, B J; de Vries, H; Firth, K S A; van Weerd, J; Tertoolen, L G J; Karperien, H B J; Jonkheijm, P; Denning, C; IJzerman, A P; Mummery, C L

    2017-01-08

    The polymer polydimethylsiloxane (PDMS) is widely used to build microfluidic devices compatible with cell culture. Whilst convenient in manufacture, PDMS has the disadvantage that it can absorb small molecules such as drugs. In microfluidic devices like "Organs-on-Chip", designed to examine cell behavior and test the effects of drugs, this might impact drug bioavailability. Here we developed an assay to compare the absorption of a test set of four cardiac drugs by PDMS based on measuring the residual non-absorbed compound by High Pressure Liquid Chromatography (HPLC). We showed that absorption was variable and time dependent and not determined exclusively by hydrophobicity as claimed previously. We demonstrated that two commercially available lipophilic coatings and the presence of cells affected absorption. The use of lipophilic coatings may be useful in preventing small molecule absorption by PDMS. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Hierarchical Co-Assembly Enhanced Direct Ink Writing.

    PubMed

    Li, Longyu; Zhang, Pengfei; Zhang, Zhiyun; Lin, Qianming; Wu, Yuyang; Cheng, Alexander; Lin, Yunxiao; Thompson, Christina M; Smaldone, Ronald A; Ke, Chenfeng

    2018-04-23

    Integrating intelligent molecular systems into 3D printing materials and transforming their molecular functions to the macroscale with controlled superstructures will unleash great potential for the development of smart materials. Compared to macromolecular 3D printing materials, self-assembled small-molecule-based 3D printing materials are very rare owing to the difficulties of facilitating 3D printability as well as preserving their molecular functions macroscopically. Herein, we report a general approach for the integration of functional small molecules into 3D printing materials for direct ink writing through the introduction of a supramolecular template. A variety of inorganic and organic small-molecule-based inks were 3D-printed, and their superstructures were refined by post-printing hierarchical co-assembly. Through spatial and temporal control of individual molecular events from the nano- to the macroscale, fine-tuned macroscale features were successfully installed in the monoliths. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function.

    PubMed

    Kwiatkowski, Nicholas; Jelluma, Nannette; Filippakopoulos, Panagis; Soundararajan, Meera; Manak, Michael S; Kwon, Mijung; Choi, Hwan Geun; Sim, Taebo; Deveraux, Quinn L; Rottmann, Sabine; Pellman, David; Shah, Jagesh V; Kops, Geert J P L; Knapp, Stefan; Gray, Nathanael S

    2010-05-01

    Mps1, a dual-specificity kinase, is required for the proper functioning of the spindle assembly checkpoint and for the maintenance of chromosomal stability. As Mps1 function has been implicated in numerous phases of the cell cycle, the development of a potent, selective small-molecule inhibitor of Mps1 should facilitate dissection of Mps1-related biology. We describe the cellular effects and Mps1 cocrystal structures of new, selective small-molecule inhibitors of Mps1. Consistent with RNAi studies, chemical inhibition of Mps1 leads to defects in Mad1 and Mad2 establishment at unattached kinetochores, decreased Aurora B kinase activity, premature mitotic exit and gross aneuploidy, without any evidence of centrosome duplication defects. However, in U2OS cells having extra centrosomes (an abnormality found in some cancers), Mps1 inhibition increases the frequency of multipolar mitoses. Lastly, Mps1 inhibitor treatment resulted in a decrease in cancer cell viability.

  6. Identification of a small molecule that inhibits herpes simplex virus DNA Polymerase subunit interactions and viral replication.

    PubMed

    Pilger, Beatrice D; Cui, Can; Coen, Donald M

    2004-05-01

    The interaction between the catalytic subunit Pol and the processivity subunit UL42 of herpes simplex virus DNA polymerase has been characterized structurally and mutationally and is a potential target for novel antiviral drugs. We developed and validated an assay for small molecules that could disrupt the interaction of UL42 and a Pol-derived peptide and used it to screen approximately 16,000 compounds. Of 37 "hits" identified, four inhibited UL42-stimulated long-chain DNA synthesis by Pol in vitro, of which two exhibited little inhibition of polymerase activity by Pol alone. One of these specifically inhibited the physical interaction of Pol and UL42 and also inhibited viral replication at concentrations below those that caused cytotoxic effects. Thus, a small molecule can inhibit this protein-protein interaction, which provides a starting point for the discovery of new antiviral drugs.

  7. Small mitochondria-targeting molecules as anti-cancer agents

    PubMed Central

    Wang, Feng; Ogasawara, Marcia A.; Huang, Peng

    2009-01-01

    Alterations in mitochondrial structure and functions have long been observed in cancer cells. Targeting mitochondria as a cancer therapeutic strategy has gained momentum in the recent years. The signaling pathways that govern mitochondrial function, apoptosis and molecules that affect mitochondrial integrity and cell viability have been important topics of the recent review in the literature. In this article, we first briefly summarize the rationale and biological basis for developing mitochondrial-targeted compounds as potential anticancer agents, and then provide key examples of small molecules that either directly impact mitochondria or functionally affect the metabolic alterations in cancer cells with mitochondrial dysfunction. The main focus is on the small molecular weight compounds with potential applications in cancer treatment. We also summarize information on the drug developmental stages of the key mitochondria-targeted compounds and their clinical trial status. The advantages and potential shortcomings of targeting the mitochondria for cancer treatment are also discussed. PMID:19995573

  8. Structural interaction fingerprints: a new approach to organizing, mining, analyzing, and designing protein-small molecule complexes.

    PubMed

    Singh, Juswinder; Deng, Zhan; Narale, Gaurav; Chuaqui, Claudio

    2006-01-01

    The combination of advances in structure-based drug design efforts in the pharmaceutical industry in parallel with structural genomics initiatives in the public domain has led to an explosion in the number of structures of protein-small molecule complexes structures. This information has critical importance to both the understanding of the structural basis for molecular recognition in biological systems and the design of better drugs. A significant challenge exists in managing this vast amount of data and fully leveraging it. Here, we review our work to develop a simple, fast way to store, organize, mine, and analyze large numbers of protein-small molecule complexes. We illustrate the utility of the approach to the management of inhibitor complexes from the protein kinase family. Finally, we describe our recent efforts in applying this method to the design of target-focused chemical libraries.

  9. Chemical genetics-based development of small molecules targeting hepatitis C virus.

    PubMed

    Jin, Guanghai; Lee, Jisu; Lee, Kyeong

    2017-09-01

    Hepatitis C virus (HCV) infection is a major worldwide problem that has emerged as one of the most significant diseases affecting humans. There are currently no vaccines or efficient therapies without side effects, despite today's advanced medical technology. Currently, the common therapy for most patients (i.e. genotype 1) is combination of HCV-specific direct-acting antivirals (DAAs). Up to 2011, the standard of care (SOC) was a combination of peg-IFNα with ribavirin (RBV). After approval of NS3/4A protease inhibitor, SOC was peg-IFNα and RBV with either the first-generation DAAs boceprevir or telaprevir. In the past several years, various novel small molecules have been discovered and some of them (i.e., HCV polymerase, protease, helicase and entry inhibitors) have undergone clinical trials. Between 2013 and 2016, the second-generation DAA drugs simeprevir, asunaprevir, daclatasvir, dasabuvir, sofosbuvir, and elbasvir were approved, as well as the combinational drugs Harvoni ® , Zepatier ® , Technivie ® , and Epclusa ® . A number of reviews have been recently published describing the structure-activity relationship (SAR) in the development of HCV inhibitors and outlining current therapeutic approaches to hepatitis C infection. Target identification involves studying a drug's mechanism of action (MOA), and a variety of target identification methods have been developed in the past few years. Chemical biology has emerged as a powerful tool for studying biological processes using small molecules. The use of chemical genetic methods is a valuable strategy for studying the molecular mechanisms of the viral lifecycle and screening for anti-viral agents. Two general screening approaches have been employed: forward and reverse chemical genetics. This review reveals information on the small molecules in HCV drug discovery by using chemical genetics for targeting the HCV protein and describes successful examples of targets identified with these methods.

  10. Defining RNA-Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA.

    PubMed

    Velagapudi, Sai Pradeep; Luo, Yiling; Tran, Tuan; Haniff, Hafeez S; Nakai, Yoshio; Fallahi, Mohammad; Martinez, Gustavo J; Childs-Disney, Jessica L; Disney, Matthew D

    2017-03-22

    RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif-small molecule interactions identified via selection. Named High Throughput Structure-Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif-small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule-RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs.

  11. Protocols for the delivery of small molecules to the two-spotted spider mite, Tetranychus urticae

    PubMed Central

    Nunes, Maria Andreia; Zhurov, Vladimir; Dermauw, Wannes; Osakabe, Masahiro; Van Leeuwen, Thomas; Grbic, Miodrag

    2017-01-01

    The two-spotted spider mite, Tetranychus urticae, is a chelicerate herbivore with an extremely wide host range and an extraordinary ability to develop pesticide resistance. Due to its responsiveness to natural and synthetic xenobiotics, the spider mite is becoming a prime pest herbivore model for studies of the evolution of host range, plant-herbivore interactions and mechanisms of xenobiotic resistance. The spider mite genome has been sequenced and its transcriptional responses to developmental and various biotic and abiotic cues have been documented. However, to identify biological and evolutionary roles of T. urticae genes and proteins, it is necessary to develop methods for the efficient manipulation of mite gene function or protein activity. Here, we describe protocols developed for the delivery of small molecules into spider mites. Starting with mite maintenance and the preparation of the experimental mite populations of developmentally synchronized larvae and adults, we describe 3 methods for delivery of small molecules including artificial diet, leaf coating, and soaking. The presented results define critical steps in these methods and demonstrate that they can successfully deliver tracer dyes into mites. Described protocols provide guidelines for high-throughput setups for delivery of experimental compounds that could be used in reverse genetics platforms to modulate gene expression or protein activity, or for screens focused on discovery of new molecules for mite control. In addition, described protocols could be adapted for other Tetranychidae and related species of economic importance such as Varroa, dust and poultry mites. PMID:28686745

  12. MMPP Attenuates Non-Small Cell Lung Cancer Growth by Inhibiting the STAT3 DNA-Binding Activity via Direct Binding to the STAT3 DNA-Binding Domain.

    PubMed

    Son, Dong Ju; Zheng, Jie; Jung, Yu Yeon; Hwang, Chul Ju; Lee, Hee Pom; Woo, Ju Rang; Baek, Song Yi; Ham, Young Wan; Kang, Min Woong; Shong, Minho; Kweon, Gi Ryang; Song, Min Jong; Jung, Jae Kyung; Han, Sang-Bae; Kim, Bo Yeon; Yoon, Do Young; Choi, Bu Young; Hong, Jin Tae

    2017-01-01

    Rationale: Signal transducer and activator of transcription-3 (STAT3) plays a pivotal role in cancer biology. Many small-molecule inhibitors that target STAT3 have been developed as potential anticancer drugs. While designing small-molecule inhibitors that target the SH2 domain of STAT3 remains the leading focus for drug discovery, there has been a growing interest in targeting the DNA-binding domain (DBD) of the protein. Methods: We demonstrated the potential antitumor activity of a novel, small-molecule (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) that directly binds to the DBD of STAT3, in patient-derived non-small cell lung cancer (NSCLC) xenograft model as well as in NCI-H460 cell xenograft model in nude mice. Results: MMPP effectively inhibited the phosphorylation of STAT3 and its DNA binding activity in vitro and in vivo . It induced G1-phase cell cycle arrest and apoptosis through the regulation of cell cycle- and apoptosis-regulating genes by directly binding to the hydroxyl residue of threonine 456 in the DBD of STAT3. Furthermore, MMPP showed a similar or better antitumor activity than that of docetaxel or cisplatin. Conclusion: MMPP is suggested to be a potential candidate for further development as an anticancer drug that targets the DBD of STAT3.

  13. Triptycene: A Nucleic Acid Three-Way Junction Binder Scaffold

    NASA Astrophysics Data System (ADS)

    Yoon, Ina

    Nucleic acids play a critical role in many biological processes such as gene regulation and replication. The development of small molecules that modulate nucleic acids with sequence or structure specificity would provide new strategies for regulating disease states at the nucleic acid level. However, this remains challenging mainly because of the nonspecific interactions between nucleic acids and small molecules. Three-way junctions are critical structural elements of nucleic acids. They are present in many important targets such as trinucleotide repeat junctions related to Huntington's disease, a temperature sensor sigma32 in E. coli, Dengue virus, and HIV. Triptycene-derived small molecules have been shown to bind to nucleic acid three-way junctions, resulting from their shape complementary. To develop a better understanding of designing molecules for targeting different junctions, a rapid screening of triptycene-based small molecules is needed. We envisioned that the installation of a linker at C9 position of the bicyclic core would allow for a rapid solid phase diversification. To achieve this aim, we synthesized 9-substituted triptycene scaffolds by using two different synthetic routes. The first synthetic route installed the linker from the amidation reaction between carboxylic acid at C9 position of the triptycene and an amine linker, beta-alanine ethyl ester. This new 9-substituted triptycene scaffold was then attached to a 2-chlorotrityl chloride resin for solid-phase diversification. This enabled a rapid diversification and an easy purification of mono-, di-, and tri-peptide triptycene derivatives. The binding affinities of these compounds were investigated towards a (CAG)˙(CTG) trinucleotide repeat junction. In the modified second synthetic route, we utilized a combined Heck coupling/benzyne Diels-Alder strategy. This improved synthetic strategy reduced the number of steps and total reaction times, increased the overall yield, improved solubilities of intermediates, and provided a new regioisomer that was not observed in the previous synthesis. Through this investigation, we discovered new high-affinity lead compounds towards a d(CAG)·(CTG) trinucleotide repeat junction. In addition, we turned our attention to sigma 32 mRNA, which contains a RNA three-way junction in E. coli. We demonstrated that triptycene-based small molecules can modulate the heat shock response in E. coli..

  14. Small Molecule Anti-cancer Agents that Stabilize the MYC-G-Quadruplex | NCI Technology Transfer Center | TTC

    Cancer.gov

    The proto-oncogene c-Myc is deregulated and overexpressed in ~70% of all cancers. Thus, c-Myc is an attractive therapeutic target. Beyond cancer, Myc is also a positive effector of tissue inflammation, and its function has been implicated in the pathophysiology of heart failure. Researchers at the National Cancer Institute (NCI) developed novel small molecules that target c-Myc at the transcriptional level, thus enabling a potential pan-cancer therapeutic. Specifically, these compounds stabilize the transcription repressing quadruplex in the c-Myc gene promoter region. The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop these therapeutic targets.'

  15. Protein based therapeutic delivery agents: Contemporary developments and challenges.

    PubMed

    Yin, Liming; Yuvienco, Carlo; Montclare, Jin Kim

    2017-07-01

    As unique biopolymers, proteins can be employed for therapeutic delivery. They bear important features such as bioavailability, biocompatibility, and biodegradability with low toxicity serving as a platform for delivery of various small molecule therapeutics, gene therapies, protein biologics and cells. Depending on size and characteristic of the therapeutic, a variety of natural and engineered proteins or peptides have been developed. This, coupled to recent advances in synthetic and chemical biology, has led to the creation of tailor-made protein materials for delivery. This review highlights strategies employing proteins to facilitate the delivery of therapeutic matter, addressing the challenges for small molecule, gene, protein and cell transport. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Encoded Library Synthesis Using Chemical Ligation and the Discovery of sEH Inhibitors from a 334-Million Member Library

    PubMed Central

    Litovchick, Alexander; Dumelin, Christoph E.; Habeshian, Sevan; Gikunju, Diana; Guié, Marie-Aude; Centrella, Paolo; Zhang, Ying; Sigel, Eric A.; Cuozzo, John W.; Keefe, Anthony D.; Clark, Matthew A.

    2015-01-01

    A chemical ligation method for construction of DNA-encoded small-molecule libraries has been developed. Taking advantage of the ability of the Klenow fragment of DNA polymerase to accept templates with triazole linkages in place of phosphodiesters, we have designed a strategy for chemically ligating oligonucleotide tags using cycloaddition chemistry. We have utilized this strategy in the construction and selection of a small molecule library, and successfully identified inhibitors of the enzyme soluble epoxide hydrolase. PMID:26061191

  17. Hacking into the granuloma: could antibody antibiotic conjugates be developed for TB?

    PubMed

    Ekins, Sean

    2014-12-01

    Alternatives to small molecule or vaccine approaches to treating tuberculosis are rarely discussed. Attacking Mycobacterium tuberculosis in the granuloma represents a challenge. It is proposed that the conjugation of small molecules onto a monoclonal antibody that recognizes macrophage or lymphocytes cell surface receptors, might be a way to target the bacteria in the granuloma. This antibody drug conjugate approach is currently being used in 2 FDA approved targeted cancer therapies. The pros and cons of this proposal for further research are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Modulation of the Kynurenine Pathway for the Potential Treatment of Neurodegenerative Diseases

    NASA Astrophysics Data System (ADS)

    Courtney, Stephen; Scheel, Andreas

    Modulation of tryptophan metabolism and in particular the kynurenine pathway is of considerable interest in the discovery of potential new treatments for neurodegenerative diseases. A number of small molecule inhibitors of the kynurenine metabolic pathway enzymes have been identified over recent years; a summary of these and their utility has been reviewed in this chapter. In particular, inhibitors of kynurenine monooxygenase represent an opportunity to develop a therapy for Huntington's disease; progress in the optimization of small molecule inhibitors of this enzyme is also described.

  19. Fiber optic SERS-based plasmonics nanobiosensing in single living cells

    NASA Astrophysics Data System (ADS)

    Scaffidi, Jonathan P.; Gregas, Molly K.; Seewaldt, Victoria; Vo-Dinh, Tuan

    2009-05-01

    We describe the development of small molecule-sensitive plasmonics-active fiber-optic nanoprobes suitable for intracellular bioanalysis in single living human cells using surface-enhanced Raman scattering (SERS) detection. The practical utility of SERS-based fiber-optic nanoprobes is illustrated by measurements of intracellular pH in HMEC- 15/hTERT immortalized "normal" human mammary epithelial cells and PC-3 human prostate cancer cells. The results indicate that fiber-optic nanoprobe insertion and interrogation provide a sensitive and selective means to monitor biologically-relevant small molecules at the single cell level.

  20. The small molecule probe PT-Yellow labels the renal proximal tubules in zebrafish.

    PubMed

    Sander, Veronika; Patke, Shantanu; Sahu, Srikanta; Teoh, Chai Lean; Peng, Zhenzhen; Chang, Young-Tae; Davidson, Alan J

    2015-01-01

    We report the development of a small fluorescent molecule, BDNCA3-D2, herein referred to as PT-Yellow. Soaking zebrafish embryos in PT-Yellow or intraperitoneal injection into adults results in non-toxic in vivo fluorescent labeling of the renal proximal tubules, the major site of blood filtrate reabsorption and a common target of injury in acute kidney injury. We demonstrate the applicability of this new compound as a rapid and simple readout for zebrafish kidney filtration and proximal tubule reabsorption function.

  1. Next-generation small molecule therapies for heart failure: 2015 and beyond.

    PubMed

    Malinowski, Justin T; St Jean, David J

    2018-05-15

    Poor prognosis coupled with significant economic burden makes heart failure (HF) one of the largest issues currently facing the world population. Although a significant number of new therapies have emerged over the past 20 years to treat the underlying physiological risk factors, only two new medications specifically for HF have been approved since 2007. This perspective provides an overview of recently approved treatment options for HF and as well as an update on additional small molecule therapies currently in clinical development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Discovery of a small-molecule binder of the oncoprotein gankyrin that modulates gankyrin activity in the cell

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Anasuya; O'Connor, Cornelius J.; Zhang, Fengzhi; Galvagnion, Celine; Galloway, Warren R. J. D.; Tan, Yaw Sing; Stokes, Jamie E.; Rahman, Taufiq; Verma, Chandra; Spring, David R.; Itzhaki, Laura S.

    2016-04-01

    Gankyrin is an ankyrin-repeat oncoprotein whose overexpression has been implicated in the development of many cancer types. Elevated gankyrin levels are linked to aberrant cellular events including enhanced degradation of tumour suppressor protein p53, and inhibition of gankyrin activity has therefore been identified as an attractive anticancer strategy. Gankyrin interacts with several partner proteins, and a number of these protein-protein interactions (PPIs) are of relevance to cancer. Thus, molecules that bind the PPI interface of gankyrin and interrupt these interactions are of considerable interest. Herein, we report the discovery of a small molecule termed cjoc42 that is capable of binding to gankyrin. Cell-based experiments demonstrate that cjoc42 can inhibit gankyrin activity in a dose-dependent manner: cjoc42 prevents the decrease in p53 protein levels normally associated with high amounts of gankyrin, and it restores p53-dependent transcription and sensitivity to DNA damage. The results represent the first evidence that gankyrin is a “druggable” target with small molecules.

  3. Size-independent neural networks based first-principles method for accurate prediction of heat of formation of fuels

    NASA Astrophysics Data System (ADS)

    Yang, GuanYa; Wu, Jiang; Chen, ShuGuang; Zhou, WeiJun; Sun, Jian; Chen, GuanHua

    2018-06-01

    Neural network-based first-principles method for predicting heat of formation (HOF) was previously demonstrated to be able to achieve chemical accuracy in a broad spectrum of target molecules [L. H. Hu et al., J. Chem. Phys. 119, 11501 (2003)]. However, its accuracy deteriorates with the increase in molecular size. A closer inspection reveals a systematic correlation between the prediction error and the molecular size, which appears correctable by further statistical analysis, calling for a more sophisticated machine learning algorithm. Despite the apparent difference between simple and complex molecules, all the essential physical information is already present in a carefully selected set of small molecule representatives. A model that can capture the fundamental physics would be able to predict large and complex molecules from information extracted only from a small molecules database. To this end, a size-independent, multi-step multi-variable linear regression-neural network-B3LYP method is developed in this work, which successfully improves the overall prediction accuracy by training with smaller molecules only. And in particular, the calculation errors for larger molecules are drastically reduced to the same magnitudes as those of the smaller molecules. Specifically, the method is based on a 164-molecule database that consists of molecules made of hydrogen and carbon elements. 4 molecular descriptors were selected to encode molecule's characteristics, among which raw HOF calculated from B3LYP and the molecular size are also included. Upon the size-independent machine learning correction, the mean absolute deviation (MAD) of the B3LYP/6-311+G(3df,2p)-calculated HOF is reduced from 16.58 to 1.43 kcal/mol and from 17.33 to 1.69 kcal/mol for the training and testing sets (small molecules), respectively. Furthermore, the MAD of the testing set (large molecules) is reduced from 28.75 to 1.67 kcal/mol.

  4. Strategies for Discovery of Small Molecule Radiation Protectors and Radiation Mitigators

    PubMed Central

    Greenberger, Joel S.; Clump, David; Kagan, Valerian; Bayir, Hülya; Lazo, John S.; Wipf, Peter; Li, Song; Gao, Xiang; Epperly, Michael W.

    2011-01-01

    Mitochondrial targeted radiation damage protectors (delivered prior to irradiation) and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome) have been a recent focus in drug discovery for (1) normal tissue radiation protection during fractionated radiotherapy, and (2) radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new radiation dose modifying molecules to protect normal tissue includes: clonogenic radiation survival curves, assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development. PMID:22655254

  5. Torsional mechanics of DNA are regulated by small-molecule intercalation.

    PubMed

    Celedon, Alfredo; Wirtz, Denis; Sun, Sean

    2010-12-23

    Whether the bend and twist mechanics of DNA molecules are coupled is unclear. Here, we report the direct measurement of the resistive torque of single DNA molecules to study the effect of ethidium bromide (EtBr) intercalation and pulling force on DNA twist mechanics. DNA molecules were overwound and unwound using recently developed magnetic tweezers where the molecular resistive torque was obtained from Brownian angular fluctuations. The effect of EtBr intercalation on the twist stiffness was found to be significantly different from the effect on the bend persistence length. The twist stiffness of DNA was dramatically reduced at low intercalator concentration (<10 nM); however, it did not decrease further when the intercalator concentration was increased by 3 orders of magnitude. We also determined the dependence of EtBr intercalation on the torque applied to DNA. We propose a model for the elasticity of DNA base pairs with intercalated EtBr molecules to explain the abrupt decrease of twist stiffness at low EtBr concentration. These results indicate that the bend and twist stiffnesses of DNA are independent and can be differently affected by small-molecule binding.

  6. Targeting of the MYCN Protein with Small Molecule c-MYC Inhibitors

    PubMed Central

    Müller, Inga; Larsson, Karin; Frenzel, Anna; Oliynyk, Ganna; Zirath, Hanna; Prochownik, Edward V.; Westwood, Nicholas J.; Henriksson, Marie Arsenian

    2014-01-01

    Members of the MYC family are the most frequently deregulated oncogenes in human cancer and are often correlated with aggressive disease and/or poorly differentiated tumors. Since patients with MYCN-amplified neuroblastoma have a poor prognosis, targeting MYCN using small molecule inhibitors could represent a promising therapeutic approach. We have previously demonstrated that the small molecule 10058-F4, known to bind to the c-MYC bHLHZip dimerization domain and inhibiting the c-MYC/MAX interaction, also interferes with the MYCN/MAX dimerization in vitro and imparts anti-tumorigenic effects in neuroblastoma tumor models with MYCN overexpression. Our previous work also revealed that MYCN-inhibition leads to mitochondrial dysfunction resulting in accumulation of lipid droplets in neuroblastoma cells. To expand our understanding of how small molecules interfere with MYCN, we have now analyzed the direct binding of 10058-F4, as well as three of its analogs; #474, #764 and 10058-F4(7RH), one metabolite C-m/z 232, and a structurally unrelated c-MYC inhibitor 10074-G5, to the bHLHZip domain of MYCN. We also assessed their ability to induce apoptosis, neurite outgrowth and lipid accumulation in neuroblastoma cells. Interestingly, all c-MYC binding molecules tested also bind MYCN as assayed by surface plasmon resonance. Using a proximity ligation assay, we found reduced interaction between MYCN and MAX after treatment with all molecules except for the 10058-F4 metabolite C-m/z 232 and the non-binder 10058-F4(7RH). Importantly, 10074-G5 and 10058-F4 were the most efficient in inducing neuronal differentiation and lipid accumulation in MYCN-amplified neuroblastoma cells. Together our data demonstrate MYCN-binding properties for a selection of small molecules, and provide functional information that could be of importance for future development of targeted therapies against MYCN-amplified neuroblastoma. PMID:24859015

  7. Organic small molecule semiconducting chromophores for use in organic electronic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Gregory C.; Hoven, Corey V.; Nguyen, Thuc-Quyen

    Small organic molecule semi-conducting chromophores containing a pyridalthiadiazole, pyridaloxadiazole, or pyridaltriazole core structure are disclosed. Such compounds can be used in organic heterojunction devices, such as organic small molecule solar cells and transistors.

  8. Structure-guided Discovery of Dual-recognition Chemibodies.

    PubMed

    Cheng, Alan C; Doherty, Elizabeth M; Johnstone, Sheree; DiMauro, Erin F; Dao, Jennifer; Luthra, Abhinav; Ye, Jay; Tang, Jie; Nixey, Thomas; Min, Xiaoshan; Tagari, Philip; Miranda, Les P; Wang, Zhulun

    2018-05-15

    Small molecules and antibodies each have advantages and limitations as therapeutics. Here, we present for the first time to our knowledge, the structure-guided design of "chemibodies" as small molecule-antibody hybrids that offer dual recognition of a single target by both a small molecule and an antibody, using DPP-IV enzyme as a proof of concept study. Biochemical characterization demonstrates that the chemibodies present superior DPP-IV inhibition compared to either small molecule or antibody component alone. We validated our design by successfully solving a co-crystal structure of a chemibody in complex with DPP-IV, confirming specific binding of the small molecule portion at the interior catalytic site and the Fab portion at the protein surface. The discovery of chemibodies presents considerable potential for novel therapeutics that harness the power of both small molecule and antibody modalities to achieve superior specificity, potency, and pharmacokinetic properties.

  9. Rational design of chemical genetic probes of RNA function and lead therapeutics targeting repeating transcripts.

    PubMed

    Disney, Matthew D

    2013-12-01

    RNA is an important yet vastly underexploited target for small molecule chemical probes or lead therapeutics. Small molecules have been used successfully to modulate the function of the bacterial ribosome, viral RNAs and riboswitches. These RNAs are either highly expressed or can be targeted using substrate mimicry, a mainstay in the design of enzyme inhibitors. However, most cellular RNAs are neither highly expressed nor have a lead small molecule inhibitor, a significant challenge for drug discovery efforts. Herein, I describe the design of small molecules targeting expanded repeating transcripts that cause myotonic muscular dystrophy (DM). These test cases illustrate the challenges of designing small molecules that target RNA and the advantages of targeting repeating transcripts. Lastly, I discuss how small molecules might be more advantageous than oligonucleotides for targeting RNA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. High mobility high efficiency organic films based on pure organic materials

    DOEpatents

    Salzman, Rhonda F [Ann Arbor, MI; Forrest, Stephen R [Ann Arbor, MI

    2009-01-27

    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  11. Neuronal growth promoting sesquiterpene-neolignans; syntheses and biological studies.

    PubMed

    Cheng, Xu; Harzdorf, Nicole; Khaing, Zin; Kang, Danby; Camelio, Andrew M; Shaw, Travis; Schmidt, Christine E; Siegel, Dionicio

    2012-01-14

    The use of small molecules that can promote neuronal growth represents a promising approach to regenerative science. Along these lines we have developed separate short or modular syntheses of the natural products caryolanemagnolol and clovanemagnolol, small molecules previously shown to promote neuronal growth and induce choline acetyltransferase activity. The postulated biosynthetic pathways, potentially leading to the assembly of these molecules in nature, have guided the laboratory syntheses, allowing the preparation of both natural products in as few as two steps. With synthetic access to the compounds as single enantiomers we have examined clovanemagnolol's ability to promote the growth of embryonic hippocampal and cortical neurons. Clovanemagnolol has been shown to be a potent neurotrophic agent, promoting neuronal growth at concentrations of 10 nM.

  12. Inhibition of melanoma development in the Nras((Q61K)) ::Ink4a(-/-) mouse model by the small molecule BI-69A11.

    PubMed

    Feng, Yongmei; Lau, Eric; Scortegagna, Marzia; Ruller, Chelsea; De, Surya K; Barile, Elisa; Krajewski, Stan; Aza-Blanc, Pedro; Williams, Roy; Pinkerton, Anthony B; Jackson, Michael; Chin, Lynda; Pellecchia, Maurizio; Bosenberg, Marcus; Ronai, Ze'ev A

    2013-01-01

    To date, there are no effective therapies for tumors bearing NRAS mutations, which are present in 15-20% of human melanomas. Here we extend our earlier studies where we demonstrated that the small molecule BI-69A11 inhibits the growth of melanoma cell lines. Gene expression analysis revealed the induction of interferon- and cell death-related genes that were associated with responsiveness of melanoma cell lines to BI-69A11. Strikingly, the administration of BI-69A11 inhibited melanoma development in genetically modified mice bearing an inducible form of activated Nras and a deletion of the Ink4a gene (Nras((Q61K)) ::Ink4a(-/-) ). Biweekly administration of BI-69A11 starting at 10 weeks or as late as 24 weeks after the induction of mutant Nras expression inhibited melanoma development (100 and 36%, respectively). BI-69A11 treatment did not inhibit the development of histiocytic sarcomas, which constitute about 50% of the tumors in this model. BI-69A11-resistant Nras((Q61K)) ::Ink4a(-/-) tumors exhibited increased CD45 expression, reflective of immune cell infiltration and upregulation of gene networks associated with the cytoskeleton, DNA damage response, and small molecule transport. The ability to attenuate the development of NRAS mutant melanomas supports further development of BI-69A11 for clinical assessment. © 2012 John Wiley & Sons A/S.

  13. High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications.

    PubMed

    Stockwell, B R; Haggarty, S J; Schreiber, S L

    1999-02-01

    Fully adapting a forward genetic approach to mammalian systems requires efficient methods to alter systematically gene products without prior knowledge of gene sequences, while allowing for the subsequent characterization of these alterations. Ideally, these methods would also allow function to be altered in a temporally controlled manner. We report the development of a miniaturized cell-based assay format that enables a genetic-like approach to understanding cellular pathways in mammalian systems using small molecules, rather than mutations, as the source of gene-product alterations. This whole-cell immunodetection assay can sensitively detect changes in specific cellular macromolecules in high-density arrays of mammalian cells. Furthermore, it is compatible with screening large numbers of small molecules in nanoliter to microliter culture volumes. We refer to this assay format as a 'cytoblot', and demonstrate the use of cytoblotting to monitor biosynthetic processes such as DNA synthesis, and post-translational processes such as acetylation and phosphorylation. Finally, we demonstrate the applicability of these assays to natural-product screening through the identification of marine sponge extracts exhibiting genotype-specific inhibition of 5-bromodeoxyuridine incorporation and suppression of the anti-proliferative effect of rapamycin. We show that cytoblots can be used for high-throughput screening of small molecules in cell-based assays. Together with small-molecule libraries, the cytoblot assay can be used to perform chemical genetic screens analogous to those used in classical genetics and thus should be applicable to understanding a wide variety of cellular processes, especially those involving post-transitional modifications.

  14. Stable cellular models of nuclear receptor PXR for high-throughput evaluation of small molecules.

    PubMed

    Negi, Seema; Singh, Shashi Kala; Kumar, Sanjay; Kumar, Subodh; Tyagi, Rakesh K

    2018-06-19

    Pregnane & Xenobiotic Receptor (PXR) is one of the 48 members of the ligand-modulated transcription factors belonging to nuclear receptor superfamily. Though PXR is now well-established as a 'xenosensor', regulating the central detoxification and drug metabolizing machinery, it has also emerged as a key player in several metabolic disorders. This makes PXR attractive to both, researchers and pharmaceutical industry since clinical success of small drug molecules can be pre-evaluated on PXR platform. At the early stages of drug discovery, cell-based assays are used for high-throughput screening of small molecules. The future success or failure of a drug can be predicted by this approach saving expensive resources and time. In view of this, we have developed human liver cell line-based, dual-level screening and validation protocol on PXR platform having application to assess small molecules. We have generated two different stably transfected cell lines, (i) a stable promoter-reporter cell line (HepXREM) expressing PXR and a commonly used CYP3A4 promoter-reporter i.e. XREM-luciferase; and (ii) two stable cell lines integrated with proximal PXR-promoter-reporter (Hepx-1096/+43 and Hepx-497/+43). Employing HepXREM, Hepx-1096/+43 and Hepx-497/+43 stable cell lines > 25 anti-cancer herbal drug ingredients were screened for examining their modulatory effects on a) PXR transcriptional activity and, b) PXR-promoter activity. In conclusion, the present report provides a convenient and economical, dual-level screening system to facilitate the identification of superior therapeutic small molecules. Copyright © 2018. Published by Elsevier Ltd.

  15. Recombination Rates of Electrons with Interstellar PAH Molecules

    NASA Technical Reports Server (NTRS)

    Ballester, Jorge (Cartographer)

    1996-01-01

    The goal of this project is to develop a general model for the recombination of electrons with PAH molecules in an interstellar environment. The model is being developed such that it can be applied to a small number of families of PAHs without reference to specific molecular structures. Special attention will be focused on modeling the approximately circular compact PAHs in a way that only depends on the number of carbon atoms.

  16. Evaluation of a time efficient immunization strategy for anti-PAH antibody development

    PubMed Central

    Li, Xin; Kaattari, Stephen L.; Vogelbein, Mary Ann; Unger, Michael A.

    2016-01-01

    The development of monoclonal antibodies (mAb) with affinity to small molecules can be a time-consuming process. To evaluate shortening the time for mAb production, we examined mouse antisera at different time points post-immunization to measure titer and to evaluate the affinity to the immunogen PBA (pyrene butyric acid). Fusions were also conducted temporally to evaluate antibody production success at various time periods. We produced anti-PBA antibodies 7 weeks post-immunization and selected for anti-PAH reactivity during the hybridoma screening process. Moreover, there were no obvious sensitivity differences relative to antibodies screened from a more traditional 18 week schedule. Our results demonstrate a more time efficient immunization strategy for anti-PAH antibody development that may be applied to other small molecules. PMID:27282486

  17. Development of protein A functionalized microcantilever immunosensors for the analyses of small molecules at parts per trillion levels.

    PubMed

    Tan, Weiming; Huang, Yuan; Nan, Tiegui; Xue, Changguo; Li, Zhaohu; Zhang, Qingchuan; Wang, Baomin

    2010-01-15

    Development of microcantilever biosensors for small molecules was exemplified with the beta-adrenergic agonist clenbuterol and the antibiotic chloramphenicol. In this paper, antibody sulfhydrylation and protein A were used to modify the microcantilever Au surface, and the antibody activities on the microcantilever were evaluated with direct competitive enzyme-linked immunosorbent assay (dcELISA). The activity of the antibodies immobilized on the microcantilever via protein A was 1.7-fold of that via the sulfhydrylation reagent 2-iminothiolane hydrochloride. A microcantilever immunosensor method with protein A as the functionalization reagent was established to detect the residues of clenbuterol and chloramphenicol at limits of detection (LOD) of approximately 0.1 and 0.2 ng/mL, respectively. Such LODs were better than that of the corresponding dcELISAs. The concentration of clenbuterol in a fortified feed sample detected with the microcantilever immunosensor after thorough extraction and purification agreed well with that detected with the dcELISA. Protein A showed to be simple and reproducible for functionalization of the antibodies on the Au surface and, thus, has common application values in microcantilever immunosensor development. The results suggest that microcantilever immunosensors be suitable for detection of small molecules, and the assay sensitivity is mainly related to the quality and activities of the antibodies.

  18. Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics

    NASA Astrophysics Data System (ADS)

    Collis, Gavin E.

    2015-12-01

    By combining computational aided design with synthetic chemistry, we are able to identify core 2D polyaromatic small molecule templates with the necessary optoelectronic properties for p- and n-type materials. By judicious selection of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing structure-property relationships (SPRs) for these families of compounds we observe that some compounds are better suited for use in organic solar cells, while others, varying only slightly in structure, are favoured in organic field effect transistor devices. We also find that the processing conditions can have a dramatic impact on molecular packing (i.e. 1D vs 2D polymorphism) and charge mobility; this has implications for material and device long term stability. We have developed small molecule p- and n-type materials for organic solar cells with efficiencies exceeding 2%. Subtle variations in the functional groups of these materials produces p- and ntype materials with mobilities higher than 0.3 cm2/Vs. We are also interested in using our SPR approach to develop materials for sensor and bioelectronic applications.

  19. Proteoform-specific protein binding of small molecules in complex matrices

    USDA-ARS?s Scientific Manuscript database

    Characterizing the specific binding between protein targets and small molecules is critically important for drug discovery. Conventional assays require isolation and purification of small molecules from complex matrices through multistep chromatographic fractionation, which may alter their original ...

  20. SInCRe—structural interactome computational resource for Mycobacterium tuberculosis

    PubMed Central

    Metri, Rahul; Hariharaputran, Sridhar; Ramakrishnan, Gayatri; Anand, Praveen; Raghavender, Upadhyayula S.; Ochoa-Montaño, Bernardo; Higueruelo, Alicia P.; Sowdhamini, Ramanathan; Chandra, Nagasuma R.; Blundell, Tom L.; Srinivasan, Narayanaswamy

    2015-01-01

    We have developed an integrated database for Mycobacterium tuberculosis H37Rv (Mtb) that collates information on protein sequences, domain assignments, functional annotation and 3D structural information along with protein–protein and protein–small molecule interactions. SInCRe (Structural Interactome Computational Resource) is developed out of CamBan (Cambridge and Bangalore) collaboration. The motivation for development of this database is to provide an integrated platform to allow easily access and interpretation of data and results obtained by all the groups in CamBan in the field of Mtb informatics. In-house algorithms and databases developed independently by various academic groups in CamBan are used to generate Mtb-specific datasets and are integrated in this database to provide a structural dimension to studies on tuberculosis. The SInCRe database readily provides information on identification of functional domains, genome-scale modelling of structures of Mtb proteins and characterization of the small-molecule binding sites within Mtb. The resource also provides structure-based function annotation, information on small-molecule binders including FDA (Food and Drug Administration)-approved drugs, protein–protein interactions (PPIs) and natural compounds that bind to pathogen proteins potentially and result in weakening or elimination of host–pathogen protein–protein interactions. Together they provide prerequisites for identification of off-target binding. Database URL: http://proline.biochem.iisc.ernet.in/sincre PMID:26130660

  1. Computational Approaches for Designing Protein/Inhibitor Complexes and Membrane Protein Variants

    NASA Astrophysics Data System (ADS)

    Vijayendran, Krishna Gajan

    Drug discovery of small-molecule protein inhibitors is a vast enterprise that involves several scientific disciplines (i.e. genomics, cell biology, x-ray crystallography, chemistry, computer science, statistics), with each discipline focusing on a particular aspect of the process. In this thesis, I use computational and experimental approaches to explore the most fundamental aspect of drug discovery: the molecular interactions of small-molecules inhibitors with proteins. In Part I (Chapters I and II), I describe how computational docking approaches can be used to identify structurally diverse molecules that can inhibit multiple protein targets in the brain. I illustrate this approach using the examples of microtubule-stabilizing agents and inhibitors of cyclooxygenase(COX)-I and 5-lipoxygenase (5-LOX). In Part II (Chapters III and IV), I focus on membrane proteins, which are notoriously difficult to work with due to their low natural abundances, low yields for heterologous over expression, and propensities toward aggregation. I describe a general approach for designing water-soluble variants of membrane proteins, for the purpose of developing cell-free, label-free, detergent-free, solution-phase studies of protein structure and small-molecule binding. I illustrate this approach through the design of a water-soluble variant of the membrane protein Smoothened, wsSMO. This wsSMO stands to serve as a first-step towards developing membrane protein analogs of this important signaling protein and drug target.

  2. Small Molecule based Musculoskeletal Regenerative Engineering

    PubMed Central

    Lo, Kevin W.-H.; Jiang, Tao; Gagnon, Keith A.; Nelson, Clarke; Laurencin, Cato T.

    2014-01-01

    Clinicians and scientists working in the field of regenerative engineering are actively investigating a wide range of methods to promote musculoskeletal tissue regeneration. Small molecule-mediated tissue regeneration is emerging as a promising strategy for regenerating various musculoskeletal tissues and a large number of small molecule compounds have been recently discovered as potential bioactive molecules for musculoskeletal tissue repair and regeneration. In this review, we summarize the recent literature encompassing the past four years in the area of small bioactive molecule for promoting repair and regeneration of various musculoskeletal tissues including bone, muscle, cartilage, tendon, and nerve. PMID:24405851

  3. Defining RNA–Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA

    PubMed Central

    2017-01-01

    RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif–small molecule interactions identified via selection. Named High Throughput Structure–Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif–small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule–RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs. PMID:28386598

  4. Computational biology of RNA interactions.

    PubMed

    Dieterich, Christoph; Stadler, Peter F

    2013-01-01

    The biodiversity of the RNA world has been underestimated for decades. RNA molecules are key building blocks, sensors, and regulators of modern cells. The biological function of RNA molecules cannot be separated from their ability to bind to and interact with a wide space of chemical species, including small molecules, nucleic acids, and proteins. Computational chemists, physicists, and biologists have developed a rich tool set for modeling and predicting RNA interactions. These interactions are to some extent determined by the binding conformation of the RNA molecule. RNA binding conformations are approximated with often acceptable accuracy by sequence and secondary structure motifs. Secondary structure ensembles of a given RNA molecule can be efficiently computed in many relevant situations by employing a standard energy model for base pair interactions and dynamic programming techniques. The case of bi-molecular RNA-RNA interactions can be seen as an extension of this approach. However, unbiased transcriptome-wide scans for local RNA-RNA interactions are computationally challenging yet become efficient if the binding motif/mode is known and other external information can be used to confine the search space. Computational methods are less developed for proteins and small molecules, which bind to RNA with very high specificity. Binding descriptors of proteins are usually determined by in vitro high-throughput assays (e.g., microarrays or sequencing). Intriguingly, recent experimental advances, which are mostly based on light-induced cross-linking of binding partners, render in vivo binding patterns accessible yet require new computational methods for careful data interpretation. The grand challenge is to model the in vivo situation where a complex interplay of RNA binders competes for the same target RNA molecule. Evidently, bioinformaticians are just catching up with the impressive pace of these developments. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Small-molecule ligand docking into comparative models with Rosetta

    PubMed Central

    Combs, Steven A; DeLuca, Samuel L; DeLuca, Stephanie H; Lemmon, Gordon H; Nannemann, David P; Nguyen, Elizabeth D; Willis, Jordan R; Sheehan, Jonathan H; Meiler, Jens

    2017-01-01

    Structure-based drug design is frequently used to accelerate the development of small-molecule therapeutics. Although substantial progress has been made in X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, the availability of high-resolution structures is limited owing to the frequent inability to crystallize or obtain sufficient NMR restraints for large or flexible proteins. Computational methods can be used to both predict unknown protein structures and model ligand interactions when experimental data are unavailable. This paper describes a comprehensive and detailed protocol using the Rosetta modeling suite to dock small-molecule ligands into comparative models. In the protocol presented here, we review the comparative modeling process, including sequence alignment, threading and loop building. Next, we cover docking a small-molecule ligand into the protein comparative model. In addition, we discuss criteria that can improve ligand docking into comparative models. Finally, and importantly, we present a strategy for assessing model quality. The entire protocol is presented on a single example selected solely for didactic purposes. The results are therefore not representative and do not replace benchmarks published elsewhere. We also provide an additional tutorial so that the user can gain hands-on experience in using Rosetta. The protocol should take 5–7 h, with additional time allocated for computer generation of models. PMID:23744289

  6. Urea transporter proteins as targets for small-molecule diuretics.

    PubMed

    Esteva-Font, Cristina; Anderson, Marc O; Verkman, Alan S

    2015-02-01

    Conventional diuretics such as furosemide and thiazides target salt transporters in kidney tubules, but urea transporters (UTs) have emerged as alternative targets. UTs are a family of transmembrane channels expressed in a variety of mammalian tissues, in particular the kidney. UT knockout mice and humans with UT mutations exhibit reduced maximal urinary osmolality, demonstrating that UTs are necessary for the concentration of urine. Small-molecule screening has identified potent and selective inhibitors of UT-A, the UT protein expressed in renal tubule epithelial cells, and UT-B, the UT protein expressed in vasa recta endothelial cells. Data from UT knockout mice and from rodents administered UT inhibitors support the diuretic action of UT inhibition. The kidney-specific expression of UT-A1, together with high selectivity of the small-molecule inhibitors, means that off-target effects of such small-molecule drugs should be minimal. This Review summarizes the structure, expression and function of UTs, and looks at the evidence supporting the validity of UTs as targets for the development of salt-sparing diuretics with a unique mechanism of action. UT-targeted inhibitors may be useful alone or in combination with conventional diuretics for therapy of various oedemas and hyponatraemias, potentially including those refractory to treatment with current diuretics.

  7. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists

    PubMed Central

    Moody, Terry W.; Tashakkori, Nicole; Mantey, Samuel A.; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T.

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB2R), neuromedin B receptor (BB1R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4–10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca2+ in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists. PMID:28785244

  8. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists.

    PubMed

    Moody, Terry W; Tashakkori, Nicole; Mantey, Samuel A; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB 2 R), neuromedin B receptor (BB 1 R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB 1 R, BB 2 R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB 1 R, BB 2 R, and BRS-3 with similar affinity ( K i = 1.4-10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca 2+ in human lung cancer cells transfected with BB 1 R, BB 2 R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.

  9. Target identification for small bioactive molecules: finding the needle in the haystack.

    PubMed

    Ziegler, Slava; Pries, Verena; Hedberg, Christian; Waldmann, Herbert

    2013-03-04

    Identification and confirmation of bioactive small-molecule targets is a crucial, often decisive step both in academic and pharmaceutical research. Through the development and availability of several new experimental techniques, target identification is, in principle, feasible, and the number of successful examples steadily grows. However, a generic methodology that can successfully be applied in the majority of the cases has not yet been established. Herein we summarize current methods for target identification of small molecules, primarily for a chemistry audience but also the biological community, for example, the chemist or biologist attempting to identify the target of a given bioactive compound. We describe the most frequently employed experimental approaches for target identification and provide several representative examples illustrating the state-of-the-art. Among the techniques currently available, protein affinity isolation using suitable small-molecule probes (pulldown) and subsequent mass spectrometric analysis of the isolated proteins appears to be most powerful and most frequently applied. To provide guidance for rapid entry into the field and based on our own experience we propose a typical workflow for target identification, which centers on the application of chemical proteomics as the key step to generate hypotheses for potential target proteins. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Natural small-molecule enhancers of autophagy induce autophagic cell death in apoptosis-defective cells.

    PubMed

    Law, Betty Yuen Kwan; Chan, Wai Kit; Xu, Su Wei; Wang, Jing Rong; Bai, Li Ping; Liu, Liang; Wong, Vincent Kam Wai

    2014-07-01

    Resistance of cancer cells to chemotherapy is a significant problem in oncology, and the development of sensitising agents or small-molecules with new mechanisms of action to kill these cells is needed. Autophagy is a cellular process responsible for the turnover of misfolded proteins or damaged organelles, and it also recycles nutrients to maintain energy levels for cell survival. In some apoptosis-resistant cancer cells, autophagy can also enhance the efficacy of anti-cancer drugs through autophagy-mediated mechanisms of cell death. Because the modulation of autophagic processes can be therapeutically useful to circumvent chemoresistance and enhance the effects of cancer treatment, the identification of novel autophagic enhancers for use in oncology is highly desirable. Many novel anti-cancer compounds have been isolated from natural products; therefore, we worked to discover natural, anti-cancer small-molecule enhancers of autophagy. Here, we have identified a group of natural alkaloid small-molecules that function as novel autophagic enhancers. These alkaloids, including liensinine, isoliensinine, dauricine and cepharanthine, stimulated AMPK-mTOR dependent induction of autophagy and autophagic cell death in a panel of apoptosis-resistant cells. Taken together, our work provides novel insights into the biological functions, mechanisms and potential therapeutic values of alkaloids for the induction of autophagy.

  11. Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice

    PubMed Central

    Neumann, Susanne; Huang, Wenwei; Titus, Steve; Krause, Gerd; Kleinau, Gunnar; Alberobello, Anna Teresa; Zheng, Wei; Southall, Noel T.; Inglese, James; Austin, Christopher P.; Celi, Francesco S.; Gavrilova, Oksana; Thomas, Craig J.; Raaka, Bruce M.; Gershengorn, Marvin C.

    2009-01-01

    Seven-transmembrane-spanning receptors (7TMRs) are prominent drug targets. However, small-molecule ligands for 7-transmembrane-spanning receptors for which the natural ligands are large, heterodimeric glycoprotein hormones, like thyroid-stimulating hormone (TSH; thyrotropin), have only recently been reported, and none are approved for human use. We have used quantitative high-throughput screening to identify a small-molecule TSH receptor (TSHR) agonist that was modified to produce a second agonist with increased potency. We show that these agonists are highly selective for human TSHR versus other glycoprotein hormone receptors and interact with the receptor's serpentine domain. A binding pocket within the transmembrane domain was defined by docking into a TSHR homology model and was supported by site-directed mutagenesis. In primary cultures of human thyrocytes, both TSH and the agonists increase mRNA levels for thyroglobulin, thyroperoxidase, sodium iodide symporter, and deiodinase type 2, and deiodinase type 2 enzyme activity. Moreover, oral administration of the agonist stimulated thyroid function in mice, resulting in increased serum thyroxine and thyroidal radioiodide uptake. Thus, we discovered a small molecule that activates human TSHR in vitro, is orally active in mice, and could be a lead for development of drugs to use in place of recombinant human TSH in patients with thyroid cancer. PMID:19592511

  12. Chemical methodology as a source of small-molecule checkpoint inhibitors and heat shock protein 70 (Hsp70) modulators.

    PubMed

    Huryn, Donna M; Brodsky, Jeffrey L; Brummond, Kay M; Chambers, Peter G; Eyer, Benjamin; Ireland, Alex W; Kawasumi, Masaoki; Laporte, Matthew G; Lloyd, Kayla; Manteau, Baptiste; Nghiem, Paul; Quade, Bettina; Seguin, Sandlin P; Wipf, Peter

    2011-04-26

    Unique chemical methodology enables the synthesis of innovative and diverse scaffolds and chemotypes and allows access to previously unexplored "chemical space." Compound collections based on such new synthetic methods can provide small-molecule probes of proteins and/or pathways whose functions are not fully understood. We describe the identification, characterization, and evolution of two such probes. In one example, a pathway-based screen for DNA damage checkpoint inhibitors identified a compound, MARPIN (ATM and ATR pathway inhibitor) that sensitizes p53-deficient cells to DNA-damaging agents. Modification of the small molecule and generation of an immobilized probe were used to selectively bind putative protein target(s) responsible for the observed activity. The second example describes a focused library approach that relied on tandem multicomponent reaction methodologies to afford a series of modulators of the heat shock protein 70 (Hsp70) molecular chaperone. The synthesis of libraries based on the structure of MAL3-101 generated a collection of chemotypes, each modulating Hsp70 function, but exhibiting divergent pharmacological activities. For example, probes that compromise the replication of a disease-associated polyomavirus were identified. These projects highlight the importance of chemical methodology development as a source of small-molecule probes and as a drug discovery starting point.

  13. Chemical methodology as a source of small-molecule checkpoint inhibitors and heat shock protein 70 (Hsp70) modulators

    PubMed Central

    Huryn, Donna M.; Brodsky, Jeffrey L.; Brummond, Kay M.; Chambers, Peter G.; Eyer, Benjamin; Ireland, Alex W.; Kawasumi, Masaoki; LaPorte, Matthew G.; Lloyd, Kayla; Manteau, Baptiste; Nghiem, Paul; Quade, Bettina; Seguin, Sandlin P.; Wipf, Peter

    2011-01-01

    Unique chemical methodology enables the synthesis of innovative and diverse scaffolds and chemotypes and allows access to previously unexplored “chemical space.” Compound collections based on such new synthetic methods can provide small-molecule probes of proteins and/or pathways whose functions are not fully understood. We describe the identification, characterization, and evolution of two such probes. In one example, a pathway-based screen for DNA damage checkpoint inhibitors identified a compound, MARPIN (ATM and ATR pathway inhibitor) that sensitizes p53-deficient cells to DNA-damaging agents. Modification of the small molecule and generation of an immobilized probe were used to selectively bind putative protein target(s) responsible for the observed activity. The second example describes a focused library approach that relied on tandem multicomponent reaction methodologies to afford a series of modulators of the heat shock protein 70 (Hsp70) molecular chaperone. The synthesis of libraries based on the structure of MAL3-101 generated a collection of chemotypes, each modulating Hsp70 function, but exhibiting divergent pharmacological activities. For example, probes that compromise the replication of a disease-associated polyomavirus were identified. These projects highlight the importance of chemical methodology development as a source of small-molecule probes and as a drug discovery starting point. PMID:21502524

  14. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation

    PubMed Central

    Bulatov, Emil; Ciulli, Alessio

    2015-01-01

    In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs. PMID:25886174

  15. Studying a Drug-like, RNA-Focused Small Molecule Library Identifies Compounds That Inhibit RNA Toxicity in Myotonic Dystrophy.

    PubMed

    Rzuczek, Suzanne G; Southern, Mark R; Disney, Matthew D

    2015-12-18

    There are many RNA targets in the transcriptome to which small molecule chemical probes and lead therapeutics are desired. However, identifying compounds that bind and modulate RNA function in cellulo is difficult. Although rational design approaches have been developed, they are still in their infancies and leave many RNAs "undruggable". In an effort to develop a small molecule library that is biased for binding RNA, we computationally identified "drug-like" compounds from screening collections that have favorable properties for binding RNA and for suitability as lead drugs. As proof-of-concept, this collection was screened for binding to and modulating the cellular dysfunction of the expanded repeating RNA (r(CUG)(exp)) that causes myotonic dystrophy type 1. Hit compounds bind the target in cellulo, as determined by the target identification approach Competitive Chemical Cross-Linking and Isolation by Pull-down (C-ChemCLIP), and selectively improve several disease-associated defects. The best compounds identified from our 320-member library are more potent in cellulo than compounds identified by high-throughput screening (HTS) campaigns against this RNA. Furthermore, the compound collection has a higher hit rate (9% compared to 0.01-3%), and the bioactive compounds identified are not charged; thus, RNA can be "drugged" with compounds that have favorable pharmacological properties. Finally, this RNA-focused small molecule library may serve as a useful starting point to identify lead "drug-like" chemical probes that affect the biological (dys)function of other RNA targets by direct target engagement.

  16. A 3D visualization system for molecular structures

    NASA Technical Reports Server (NTRS)

    Green, Terry J.

    1989-01-01

    The properties of molecules derive in part from their structures. Because of the importance of understanding molecular structures various methodologies, ranging from first principles to empirical technique, were developed for computing the structure of molecules. For large molecules such as polymer model compounds, the structural information is difficult to comprehend by examining tabulated data. Therefore, a molecular graphics display system, called MOLDS, was developed to help interpret the data. MOLDS is a menu-driven program developed to run on the LADC SNS computer systems. This program can read a data file generated by the modeling programs or data can be entered using the keyboard. MOLDS has the following capabilities: draws the 3-D representation of a molecule using stick, ball and ball, or space filled model from Cartesian coordinates, draws different perspective views of the molecule; rotates the molecule on the X, Y, Z axis or about some arbitrary line in space, zooms in on a small area of the molecule in order to obtain a better view of a specific region; and makes hard copy representation of molecules on a graphic printer. In addition, MOLDS can be easily updated and readily adapted to run on most computer systems.

  17. Understanding the Halogenation Effects in Diketopyrrolopyrrole-Based Small Molecule Photovoltaics.

    PubMed

    Sun, Shi-Xin; Huo, Yong; Li, Miao-Miao; Hu, Xiaowen; Zhang, Hai-Jun; Zhang, You-Wen; Zhang, You-Dan; Chen, Xiao-Long; Shi, Zi-Fa; Gong, Xiong; Chen, Yongsheng; Zhang, Hao-Li

    2015-09-16

    Two molecules containing a central diketopyrrolopyrrole and two oligothiophene units have been designed and synthesized. Comparisons between the molecules containing terminal F (FDPP) and Cl (CDPP) atoms allowed us to evaluate the effects of halogenation on the photovoltaic properties of the small molecule organic solar cells (OSCs). The OSCs devices employing FDPP:PC71BM films showed power conversion efficiencies up to 4.32%, suggesting that fluorination is an efficient method for constructing small molecules for OSCs.

  18. Small molecule screening with laser cytometry can be used to identify pro-survival molecules in human embryonic stem cells.

    PubMed

    Sherman, Sean P; Pyle, April D

    2013-01-01

    Differentiated cells from human embryonic stem cells (hESCs) provide an unlimited source of cells for use in regenerative medicine. The recent derivation of human induced pluripotent cells (hiPSCs) provides a potential supply of pluripotent cells that avoid immune rejection and could provide patient-tailored therapy. In addition, the use of pluripotent cells for drug screening could enable routine toxicity testing and evaluation of underlying disease mechanisms. However, prior to establishment of patient specific cells for cell therapy it is important to understand the basic regulation of cell fate decisions in hESCs. One critical issue that hinders the use of these cells is the fact that hESCs survive poorly upon dissociation, which limits genetic manipulation because of poor cloning efficiency of individual hESCs, and hampers production of large-scale culture of hESCs. To address the problems associated with poor growth in culture and our lack of understanding of what regulates hESC signaling, we successfully developed a screening platform that allows for large scale screening for small molecules that regulate survival. In this work we developed the first large scale platform for hESC screening using laser scanning cytometry and were able to validate this platform by identifying the pro-survival molecule HA-1077. These small molecules provide targets for both improving our basic understanding of hESC survival as well as a tool to improve our ability to expand and genetically manipulate hESCs for use in regenerative applications.

  19. Psmir: a database of potential associations between small molecules and miRNAs

    PubMed Central

    Meng, Fanlin; Wang, Jing; Dai, Enyu; Yang, Feng; Chen, Xiaowen; Wang, Shuyuan; Yu, Xuexin; Liu, Dianming; Jiang, Wei

    2016-01-01

    miRNAs are key post-transcriptional regulators of many essential biological processes, and their dysregulation has been validated in almost all human cancers. Restoring aberrantly expressed miRNAs might be a novel therapeutics. Recently, many studies have demonstrated that small molecular compounds can affect miRNA expression. Thus, prediction of associations between small molecules and miRNAs is important for investigation of miRNA-targeted drugs. Here, we analyzed 39 miRNA-perturbed gene expression profiles, and then calculated the similarity of transcription responses between miRNA perturbation and drug treatment to predict drug-miRNA associations. At the significance level of 0.05, we obtained 6501 candidate associations between 1295 small molecules and 25 miRNAs, which included 624 FDA approved drugs. Finally, we constructed the Psmir database to store all potential associations and the related materials. In a word, Psmir served as a valuable resource for dissecting the biological significance in small molecules’ effects on miRNA expression, which will facilitate developing novel potential therapeutic targets or treatments for human cancers. Psmir is supported by all major browsers, and is freely available at http://www.bio-bigdata.com/Psmir/. PMID:26759061

  20. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    PubMed

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A "roller-wheel" Pt-containing small molecule that outperforms its polymer analogs in organic solar cells

    DOE PAGES

    He, Wenhan; Wu, Qin; Livshits, Maksim Y.; ...

    2016-05-23

    A novel Pt-bisacetylide small molecule (Pt-SM) featuring “roller-wheel” geometry was synthesized and characterized. When compared with conventional Pt-containing polymers and small molecules having “dumbbell” shaped structures, Pt-SM displays enhanced crystallinity and intermolecular π–π interactions, as well as favorable panchromatic absorption behaviors. Furthermore, organic solar cells (OSCs) employing Pt-SM achieve power conversion efficiencies (PCEs) up to 5.9%, the highest reported so far for Pt-containing polymers and small molecules.

  2. A "roller-wheel" Pt-containing small molecule that outperforms its polymer analogs in organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Wenhan; Wu, Qin; Livshits, Maksim Y.

    A novel Pt-bisacetylide small molecule (Pt-SM) featuring “roller-wheel” geometry was synthesized and characterized. When compared with conventional Pt-containing polymers and small molecules having “dumbbell” shaped structures, Pt-SM displays enhanced crystallinity and intermolecular π–π interactions, as well as favorable panchromatic absorption behaviors. Furthermore, organic solar cells (OSCs) employing Pt-SM achieve power conversion efficiencies (PCEs) up to 5.9%, the highest reported so far for Pt-containing polymers and small molecules.

  3. Design and synthesis of small molecule agonists of EphA2 receptor.

    PubMed

    Petty, Aaron; Idippily, Nethrie; Bobba, Viharika; Geldenhuys, Werner J; Zhong, Bo; Su, Bin; Wang, Bingcheng

    2018-01-01

    Ligand-independent activation of EphA2 receptor kinase promotes cancer metastasis and invasion. Activating EphA2 receptor tyrosine kinase with small molecule agonist is a novel strategy to treat EphA2 overexpressing cancer. In this study, we performed a lead optimization of a small molecule Doxazosin that was identified as an EphA2 receptor agonist. 33 new analogs were developed and evaluated; a structure-activity relationship was summarized based on the EphA2 activation of these derivatives. Two new derivative compounds 24 and 27 showed much improved activity compared to Doxazosin. Compound 24 possesses a bulky amide moiety, and compound 27 has a dimeric structure that is very different to the parental compound. Compound 27 with a twelve-carbon linker of the dimer activated the kinase and induced receptor internalization and cell death with the best potency. Another dimer with a six-carbon linker has significantly reduced potency compared to the dimer with a longer linker, suggesting that the length of the linker is critical for the activity of the dimeric agonist. To explore the receptor binding characteristics of the new molecules, we applied a docking study to examine how the small molecule binds to the EphA2 receptor. The results reveal that compounds 24 and 27 form more hydrogen bonds to EphA2 than Doxazosin, suggesting that they may have higher binding affinity to the receptor. Published by Elsevier Masson SAS.

  4. Thyroid Hormone Receptor Antagonists: From Environmental Pollution to Novel Small Molecules.

    PubMed

    Mackenzie, Louise S

    2018-01-01

    Thyroid hormone receptors (TRs) are nuclear receptors which control transcription, and thereby have effects in all cells within the body. TRs are an important regulator in many basic physiological processes including development, growth, metabolism, and cardiac function. The hyperthyroid condition results from an over production of thyroid hormones resulting in a continual stimulation of thyroid receptors which is detrimental for the patient. Therapies for hyperthyroidism are available, but there is a need for new small molecules that act as TR antagonists to treat hyperthyroidism. Many compounds exhibit TR antagonism and are considered detrimental to health. Some drugs in the clinic (most importantly, amiodarone) and environmental pollution exhibit TR antagonist properties and thus have the potential to induce hypothyroidism in some people. This chapter provides an overview of novel small molecules that have been specifically designed or screened for their TR antagonist activity as novel treatments for hyperthyroidism. While novel compounds have been identified, to date none have been developed sufficiently to enter clinical trials. Furthermore, a discussion on other sources of TR antagonists is discussed in terms of side effects of current drugs in the clinic as well as environmental pollution. © 2018 Elsevier Inc. All rights reserved.

  5. Identification of a coumarin-based antihistamine-like small molecule as an anti-filoviral entry inhibitor.

    PubMed

    Cheng, Han; Schafer, Adam; Soloveva, Veronica; Gharaibeh, Dima; Kenny, Tara; Retterer, Cary; Zamani, Rouzbeh; Bavari, Sina; Peet, Norton P; Rong, Lijun

    2017-09-01

    Filoviruses, consisting of Ebola virus, Marburg virus and Cuevavirus, cause severe hemorrhagic fevers in humans with high mortality rates up to 90%. Currently, there is no approved vaccine or therapy available for the prevention and treatment of filovirus infection in humans. The recent 2013-2015 West African Ebola epidemic underscores the urgency to develop antiviral therapeutics against these infectious diseases. Our previous study showed that GPCR antagonists, particularly histamine receptor antagonists (antihistamines) inhibit Ebola and Marburg virus entry. In this study, we screened a library of 1220 small molecules with predicted antihistamine activity, identified multiple compounds with potent inhibitory activity against entry of both Ebola and Marburg viruses in human cancer cell lines, and confirmed their anti-Ebola activity in human primary cells. These small molecules target a late-stage of Ebola virus entry. Further structure-activity relationship studies around one compound (cp19) reveal the importance of the coumarin fused ring structure, especially the hydrophobic substituents at positions 3 and/or 4, for its antiviral activity, and this identified scaffold represents a favorable starting point for the rapid development of anti-filovirus therapeutic agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Small molecule inhibition of fibroblast growth factor receptors in cancer.

    PubMed

    Liang, Guang; Chen, Gaozhi; Wei, Xiaoyan; Zhao, Yunjie; Li, Xiaokun

    2013-10-01

    Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs), which are a sub-family of the superfamily of receptor tyrosine kinases, to regulate human development and metabolism. Uncontrolled FGF signaling is responsible for diverse array of developmental disorders, most notably skeletal syndromes due to FGFR gain-of-function mutations. Studies in the last few years have provided significant evidence for the importance of FGF signaling in the pathogenesis of diverse cancers, including endometrial and bladder cancers. FGFs are both potent mitogenic and angiogenic factors and can contribute to carcinogenesis by stimulating cell proliferation and tumor angiogenesis. Gene knockout and pharmacological inhibition of FGFRs in in vivo and in vitro models validate FGFRs as a target for cancer treatment. Considerable efforts are being expended to develop specific, small-molecule inhibitors for treating FGFR-driven cancers. Recent reviews on the FGF/FGFR system have focused primarily on signaling, pathophysiology, and functions in cancer. In this article, we review the key roles of FGFR in cancer, provide an update on the status of clinical trials with small-molecule FGFR inhibitors, and discuss how the current structural data on FGFR kinases guide the design and characterization of new FGFR inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Computational screen and experimental validation of anti-influenza effects of quercetin and chlorogenic acid from traditional Chinese medicine

    PubMed Central

    Liu, Zekun; Zhao, Junpeng; Li, Weichen; Shen, Li; Huang, Shengbo; Tang, Jingjing; Duan, Jie; Fang, Fang; Huang, Yuelong; Chang, Haiyan; Chen, Ze; Zhang, Ran

    2016-01-01

    The Influenza A virus is a great threat for human health, while various subtypes of the virus made it difficult to develop drugs. With the development of state-of-art computational chemistry, computational molecular docking could serve as a virtual screen of potential leading compound. In this study, we performed molecular docking for influenza A H1N1 (A/PR/8/34) with small molecules such as quercetin and chlorogenic acid, which were derived from traditional Chinese medicine. The results showed that these small molecules have strong binding abilities with neuraminidase from H1N1 (A/PR/8/34). Further details showed that the structural features of the molecules might be helpful for further drug design and development. The experiments in vitro, in vivo have validated the anti-influenza effect of quercetin and chlorogenic acid, which indicating comparable protection effects as zanamivir. Taken together, it was proposed that chlorogenic acid and quercetin could be employed as the effective lead compounds for anti-influenza A H1N1. PMID:26754609

  8. Computational screen and experimental validation of anti-influenza effects of quercetin and chlorogenic acid from traditional Chinese medicine

    NASA Astrophysics Data System (ADS)

    Liu, Zekun; Zhao, Junpeng; Li, Weichen; Shen, Li; Huang, Shengbo; Tang, Jingjing; Duan, Jie; Fang, Fang; Huang, Yuelong; Chang, Haiyan; Chen, Ze; Zhang, Ran

    2016-01-01

    The Influenza A virus is a great threat for human health, while various subtypes of the virus made it difficult to develop drugs. With the development of state-of-art computational chemistry, computational molecular docking could serve as a virtual screen of potential leading compound. In this study, we performed molecular docking for influenza A H1N1 (A/PR/8/34) with small molecules such as quercetin and chlorogenic acid, which were derived from traditional Chinese medicine. The results showed that these small molecules have strong binding abilities with neuraminidase from H1N1 (A/PR/8/34). Further details showed that the structural features of the molecules might be helpful for further drug design and development. The experiments in vitro, in vivo have validated the anti-influenza effect of quercetin and chlorogenic acid, which indicating comparable protection effects as zanamivir. Taken together, it was proposed that chlorogenic acid and quercetin could be employed as the effective lead compounds for anti-influenza A H1N1.

  9. A-π-D-π-A Electron-Donating Small Molecules for Solution-Processed Organic Solar Cells: A Review.

    PubMed

    Wang, Zhen; Zhu, Lingyun; Shuai, Zhigang; Wei, Zhixiang

    2017-11-01

    Organic solar cells based on semiconducting polymers and small molecules have attracted considerable attention in the last two decades. Moreover, the power conversion efficiencies for solution-processed solar cells containing A-π-D-π-A-type small molecules and fullerenes have reached 11%. However, the method for designing high-performance, photovoltaic small molecules still remains unclear. In this review, recent studies on A-π-D-π-A electron-donating small molecules for organic solar cells are introduced. Moreover, the relationships between molecular properties and device performances are summarized, from which inspiration for the future design of high performance organic solar cells may be obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mechanisms of resistance to imatinib in CML patients: a paradigm for the advantages and pitfalls of molecularly targeted therapy.

    PubMed

    Ritchie, E; Nichols, G

    2006-12-01

    One of the challenges of cancer therapeutics is to discover targets unique to the tumor cell population. Constitutively activated tyrosine kinases play a role in the malignant phenotype in a number of different cancers. While the kinases may be present in the normal cell, the cancer cell is often dependent upon the activation of the kinase for the maintenance of malignant growth. Inhibition of kinase activation may therefore selectively inhibit malignant proliferation. In the case of chronic myelogenous leukemia (CML), the activated tyrosine kinase (BCR-ABL) is due to a chromosomal translocation that defines this disease, and is necessary for malignant transformation. Imatinib mesylate (Gleevec, Novartis) is a small molecule tyrosine kinase inhibitor, developed through the chemical modification to be selected for a small number of tyrosine kinases present in human cells. This agent is also orally bioavailable and has been found to be effective in clinical trials. We have learned much through the clinical use of this agent. 1) Specific targeting of activated signal transduction pathways may be effective in inhibiting cancer cells. 2) Cancer cells may not only be inherently resistant to small molecule inhibitors, but may also develop resistance after exposure to the inhibitor. 3) Increased knowledge regarding critical signal transduction pathways, the structure of the molecules that are being targeted and the inhibitors themselves, will allow us to understand resistance as it develops and create new molecules to bypass resistance. We will discuss imatinib as an important example of the success and pitfalls of targeted therapeutics for cancer.

  11. State-of-the-art of small molecule inhibitors of the TAM family: the point of view of the chemist.

    PubMed

    Baladi, Tom; Abet, Valentina; Piguel, Sandrine

    2015-11-13

    The TAM family of tyrosine kinases receptors (Tyro3, Axl and Mer) is implicated in cancer development, autoimmune reactions and viral infection and is therefore emerging as an effective and attractive therapeutic target. To date, only a few small molecules have been intentionally designed to block the TAM kinases, while most of the inhibitors were developed for blocking different protein kinases and then identified through selectivity profile studies. This minireview will examine in terms of chemical structure the different compounds able to act on either one, two or three TAM kinases with details about structure-activity relationships, drug-metabolism and pharmacokinetics properties where they exist. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Beyond cysteine: recent developments in the area of targeted covalent inhibition.

    PubMed

    Mukherjee, Herschel; Grimster, Neil P

    2018-05-29

    Over the past decade targeted covalent inhibitors have undergone a renaissance due to the clinical validation and regulatory approval of several small molecule therapeutics that are designed to irreversibly modify their target protein. Invariably, these compounds rely on the serendipitous placement of a cysteine residue proximal to the small molecule binding site; while this strategy has afforded numerous successes, it necessarily limits the number of proteins that can be targeted by this approach. This drawback has led several research groups to develop novel methodologies that target non-cysteine residues for covalent modification. Herein, we survey the current literature of warheads that covalently modify non-cysteine amino acids in proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A general electrochemical method for label-free screening of protein–small molecule interactions†

    PubMed Central

    Cash, Kevin J.; Ricci, Francesco

    2010-01-01

    Here we report a versatile method by which the interaction between a protein and a small molecule, and the disruption of that interaction by competition with other small molecules, can be monitored electrochemically directly in complex sample matrices. PMID:19826675

  14. Circularly Polarized Luminescence from Simple Organic Molecules

    PubMed Central

    Sánchez-Carnerero, Esther M.; Agarrabeitia, Antonia R.; Moreno, Florencio; Maroto, Beatriz L.; Muller, Gilles; Ortiz, María J.

    2015-01-01

    This article aims to show the identity of “CPL-active simple organic molecules” as a new concept in Organic Chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and nonaggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented. PMID:26136234

  15. MPAI (mass probes aided ionization) method for total analysis of biomolecules by mass spectrometry.

    PubMed

    Honda, Aki; Hayashi, Shinichiro; Hifumi, Hiroki; Honma, Yuya; Tanji, Noriyuki; Iwasawa, Naoko; Suzuki, Yoshio; Suzuki, Koji

    2007-01-01

    We have designed and synthesized various mass probes, which enable us to effectively ionize various molecules to be detected with mass spectrometry. We call the ionization method using mass probes the "MPAI (mass probes aided ionization)" method. We aim at the sensitive detection of various biological molecules, and also the detection of bio-molecules by a single mass spectrometry serially without changing the mechanical settings. Here, we review mass probes for small molecules with various functional groups and mass probes for proteins. Further, we introduce newly developed mass probes for proteins for highly sensitive detection.

  16. Chemical Biology Probes from Advanced DNA-encoded Libraries.

    PubMed

    Salamon, Hazem; Klika Škopić, Mateja; Jung, Kathrin; Bugain, Olivia; Brunschweiger, Andreas

    2016-02-19

    The identification of bioactive compounds is a crucial step toward development of probes for chemical biology studies. Screening of DNA-encoded small molecule libraries (DELs) has emerged as a validated technology to interrogate vast chemical space. DELs consist of chimeric molecules composed of a low-molecular weight compound that is conjugated to a DNA identifier tag. They are screened as pooled libraries using selection to identify "hits." Screening of DELs has identified numerous bioactive compounds. Some of these molecules were instrumental in gaining a deeper understanding of biological systems. One of the main challenges in the field is the development of synthesis methodology for DELs.

  17. Development of small molecules targeting the pseudokinase Her3.

    PubMed

    Lim, Sang Min; Xie, Ting; Westover, Kenneth D; Ficarro, Scott B; Tae, Hyun Seop; Gurbani, Deepak; Sim, Taebo; Marto, Jarrod A; Jänne, Pasi A; Crews, Craig M; Gray, Nathanael S

    2015-08-15

    Her3 is a member of the human epidermal growth factor receptor (EGFR) tyrosine kinase family, and it is often either overexpressed or deregulated in many types of human cancer. Her3 has not been the subject of small-molecule inhibitor development because it is a pseudokinase and does not possess appreciable kinase activity. We recently reported on the development of the first selective irreversible Her3 ligand (TX1-85-1) that forms a covalent bond with cysteine 721 which is unique to Her3 among all kinases. We also developed a bi-functional compound (TX2-121-1) containing a hydrophobic adamantane moiety and the same warhead of TX1-85-1 that is capable of inhibiting Her3-dependent signaling and growth. Here we report on the structure-based medicinal chemistry effort that resulted in the discovery of these two compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning.

    PubMed

    Blanchet, Lionel; Smeitink, Jan A M; van Emst-de Vries, Sjenet E; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I; Rodenburg, Richard J T; Buydens, Lutgarde M C; Beyrath, Julien; Willems, Peter H G M; Koopman, Werner J H

    2015-01-26

    In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.

  19. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning

    NASA Astrophysics Data System (ADS)

    Blanchet, Lionel; Smeitink, Jan A. M.; van Emst-de Vries, Sjenet E.; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I.; Rodenburg, Richard J. T.; Buydens, Lutgarde M. C.; Beyrath, Julien; Willems, Peter H. G. M.; Koopman, Werner J. H.

    2015-01-01

    In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.

  20. Multiple spatially related pharmacophores define small molecule inhibitors of OLIG2 in glioblastoma

    PubMed Central

    Chao, Ying; Babic, Ivan; Nurmemmedov, Elmar; Pastorino, Sandra; Jiang, Pengfei; Calligaris, David; Agar, Nathalie; Scadeng, Miriam; Pingle, Sandeep C.; Wrasidlo, Wolfgang; Makale, Milan T.; Kesari, Santosh

    2017-01-01

    Transcription factors (TFs) are a major class of protein signaling molecules that play key cellular roles in cancers such as the highly lethal brain cancer—glioblastoma (GBM). However, the development of specific TF inhibitors has proved difficult owing to expansive protein-protein interfaces and the absence of hydrophobic pockets. We uniquely defined the dimerization surface as an expansive parental pharmacophore comprised of several regional daughter pharmacophores. We targeted the OLIG2 TF which is essential for GBM survival and growth, we hypothesized that small molecules able to fit each subpharmacophore would inhibit OLIG2 activation. The most active compound was OLIG2 selective, it entered the brain, and it exhibited potent anti-GBM activity in cell-based assays and in pre-clinical mouse orthotopic models. These data suggest that (1) our multiple pharmacophore approach warrants further investigation, and (2) our most potent compounds merit detailed pharmacodynamic, biophysical, and mechanistic characterization for potential preclinical development as GBM therapeutics. PMID:26517684

  1. Discovery of novel benzopyranyl tetracycles that act as inhibitors of osteoclastogenesis induced by receptor activator of NF-κB ligand.

    PubMed

    Zhu, Mingyan; Kim, Myung Hee; Lee, Sanghee; Bae, Su Jung; Kim, Seong Hwan; Park, Seung Bum

    2010-12-23

    A novel benzopyran-fused molecular framework 7ai was discovered as a specific inhibitor of RANKL-induced osteoclastogenesis using a cell-based TRAP activity assay from drug-like small-molecule libraries constructed by diversity-oriented synthesis. Its inhibitory activity was confirmed by in vitro evaluations including specific inhibition of RANKL-induced ERK phosphorylation and NF-κB transcriptional activation. 7ai can serve as a specific small-molecule modulator for mechanistic studies of RANKL-induced osteoclast differentiation as well as a potential lead for the development of antiresorptive drugs.

  2. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules.

    PubMed

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2012-05-02

    A facile and general method has been developed to synthesize well-defined PdPt and PdAu alloy nanowires, which exhibit significantly enhanced activity towards small molecules, such as ethanol, methanol, and glucose electro-oxidation in an alkaline medium. Considering the important role of one-dimensional alloy nanowires in electrocatalytic systems, the present Pd-based alloy nanostructures could offer a promising new class of advanced electrocatalysts for direct alcohol fuel cells and electrochemical sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Small molecule-induced cellular fate reprogramming: promising road leading to Rome.

    PubMed

    Li, Xiang; Xu, Jun; Deng, Hongkui

    2018-05-29

    Cellular fate reprogramming holds great promise to generate functional cell types for replenishing new cells and restoring functional loss. Inspired by transcription factor-induced reprogramming, the field of cellular reprogramming has greatly advanced and developed into divergent streams of reprogramming approaches. Remarkably, increasing studies have shown the power and advantages of small molecule-based approaches for cellular fate reprogramming, which could overcome the limitations of conventional transgenic-based reprogramming. In this concise review, we discuss these findings and highlight the future potentiality with particular focus on this new trend of chemical reprogramming. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Interactions of quercetin, curcumin, epigallocatechin gallate and folic acid with gelatin.

    PubMed

    Yang, Tingting; Yang, Huiru; Fan, Yan; Li, Bafang; Hou, Hu

    2018-06-15

    Some small bioactive molecules from food show the potential health benefits, but with poor chemical stability and bioavailability. The interactions between small molecules and gelatin were investigated. Fluorescence experiments demonstrated that the bimolecular quenching constants (k q ) of complexes (gelatin-quercetin, gelatin-curcumin, gelatin-epigallocatechin gallate, gelatin-folic acid) were 3.7 × 10 12  L·mol -1 ·s -1 , 1.4 × 10 12  L·mol -1 ·s -1 , 2.7 × 10 12  L·mol -1 ·s -1 and 8.5 × 10 12  L·mol -1 ·s -1 , indicating that fluorescence quenching did not arise from a dynamical mechanism, but from gelatin-small molecules binding. Furthermore, the affinity with gelatin was ranked in the order of folic acid > quercetin > epigallocatechin gallate > curcumin. Fluorescence spectroscopy, ultraviolet and visible absorption spectroscopy, FTIR and circular dichroism showed that the interactions between small molecules and gelatin did not significantly alter the conformation and secondary structure of gelatin. Non-covalent interactions may result in the binding of gelatin with small molecules. The interactions were considered to be through two modes: (1) small molecules bound within the hydrophobic pockets of gelatin; (2) small molecules surrounded the gelatin molecule mainly through hydrogen bonds and hydrophobic interactions. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Pressure for drug development in lysosomal storage disorders - a quantitative analysis thirty years beyond the US orphan drug act.

    PubMed

    Mechler, Konstantin; Mountford, William K; Hoffmann, Georg F; Ries, Markus

    2015-04-18

    Lysosomal storage disorders are a heterogeneous group of approximately 50 monogenically inherited orphan conditions. A defect leads to the storage of complex molecules in the lysosome, and patients develop a complex multisystemic phenotype of high morbidity often associated with premature death. More than 30 years ago the Orphan Drug Act of 1983 passed the United States legislation intended to facilitate the development of drugs for rare disorders. We directed our efforts in assessing which lysosomal diseases had drug development pressure and what distinguished those with successful development and approvals from diseases not treated or without orphan drug designation. Analysis of the FDA database for orphan drug designations through descriptive and comparative statistics. Between 1983 and 2013, fourteen drugs for seven conditions received FDA approval. Overall, orphan drug status was designated 70 times for 20 conditions. Approved therapies were enzyme replacement therapies (N = 10), substrate reduction therapies (N = 1), small molecules facilitating lysosomal substrate transportation (N = 3). FDA approval was significantly associated with a disease prevalence higher than 0.5/100,000 (p = 0.00742) and clinical development programs that did not require a primary neurological endpoint (p = 0.00059). Orphan drug status was designated for enzymes, modified enzymes, fusion proteins, chemical chaperones, small molecules leading to substrate reduction, or facilitating subcellular substrate transport, stem cells as well as gene therapies. Drug development focused on more common diseases. Primarily neurological diseases were neglected. Small clinical trials with either somatic or biomarker endpoints were successful. Enzyme replacement therapy was the most successful technology. Four factors played a key role in successful orphan drug development or orphan drug designations: 1) prevalence of disease 2) endpoints 3) regulatory precedent, and 4) technology platform. Successful development seeded further innovation.

  6. Induction of sensory neurons from neuroepithelial stem cells by the ISX9 small molecule

    PubMed Central

    Ali, Rouknuddin Qasim; Blomberg, Evelina; Falk, Anna; Ährlund-Richter, Lars; Ulfendahl, Mats

    2016-01-01

    Hearing impairment most often involves loss of sensory hair cells and auditory neurons. As this loss is permanent in humans, a cell therapy approach has been suggested to replace damaged cells. It is thus of interest to generate lineage restricted progenitor cells appropriate for cell based therapies. Human long-term self-renewing neuroepithelial stem (lt-NES) cell lines exhibit in vitro a developmental potency to differentiate into CNS neural lineages, and importantly lack this potency in vivo, i.e do not form teratomas. Small-molecules-driven differentiation is today an established route obtain specific cell derivatives from stem cells. In this study, we have investigated the effects of three small molecules SB431542, ISX9 and Metformin to direct differentiation of lt-NES cells into sensory neurons. Exposure of lt-NES cells to Metformin or SB431542 did not induce any marked induction of markers for sensory neurons. However, a four days exposure to the ISX9 small molecule resulted in reduced expression of NeuroD1 mRNA as well as enhanced mRNA levels of GATA3, a marker and important player in auditory neuron specification and development. Subsequent culture in the presence of the neurotrophic factors BDNF and NT3 for another seven days yielded a further increase of mRNA expression for GATA3. This regimen resulted in a frequency of up to 25-30% of cells staining positive for Brn3a/Tuj1. We conclude that an approach with ISX9 small molecule induction of lt-NES cells into auditory like neurons may thus be an attractive route for obtaining safe cell replacement therapy of sensorineural hearing loss. PMID:27335699

  7. Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway

    PubMed Central

    Pattabhi, Sowmya; Wilkins, Courtney R.; Dong, Ran; Knoll, Megan L.; Posakony, Jeffrey; Kaiser, Shari; Mire, Chad E.; Wang, Myra L.; Ireton, Renee C.; Geisbert, Thomas W.; Bedard, Kristin M.; Iadonato, Shawn P.

    2015-01-01

    ABSTRACT The cellular response to virus infection is initiated when pathogen recognition receptors (PRR) engage viral pathogen-associated molecular patterns (PAMPs). This process results in induction of downstream signaling pathways that activate the transcription factor interferon regulatory factor 3 (IRF3). IRF3 plays a critical role in antiviral immunity to drive the expression of innate immune response genes, including those encoding antiviral factors, type 1 interferon, and immune modulatory cytokines, that act in concert to restrict virus replication. Thus, small molecule agonists that can promote IRF3 activation and induce innate immune gene expression could serve as antivirals to induce tissue-wide innate immunity for effective control of virus infection. We identified small molecule compounds that activate IRF3 to differentially induce discrete subsets of antiviral genes. We tested a lead compound and derivatives for the ability to suppress infections caused by a broad range of RNA viruses. Compound administration significantly decreased the viral RNA load in cultured cells that were infected with viruses of the family Flaviviridae, including West Nile virus, dengue virus, and hepatitis C virus, as well as viruses of the families Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus), and Paramyxoviridae (respiratory syncytial virus, Nipah virus) to suppress infectious virus production. Knockdown studies mapped this response to the RIG-I-like receptor pathway. This work identifies a novel class of host-directed immune modulatory molecules that activate IRF3 to promote host antiviral responses to broadly suppress infections caused by RNA viruses of distinct genera. IMPORTANCE Incidences of emerging and reemerging RNA viruses highlight a desperate need for broad-spectrum antiviral agents that can effectively control infections caused by viruses of distinct genera. We identified small molecule compounds that can selectively activate IRF3 for the purpose of identifying drug-like molecules that can be developed for the treatment of viral infections. Here, we report the discovery of a hydroxyquinoline family of small molecules that can activate IRF3 to promote cellular antiviral responses. These molecules can prophylactically or therapeutically control infection in cell culture by pathogenic RNA viruses, including West Nile virus, dengue virus, hepatitis C virus, influenza A virus, respiratory syncytial virus, Nipah virus, Lassa virus, and Ebola virus. Our study thus identifies a class of small molecules with a novel mechanism to enhance host immune responses for antiviral activity against a variety of RNA viruses that pose a significant health care burden and/or that are known to cause infections with high case fatality rates. PMID:26676770

  8. Inhibiting AMPylation: a novel screen to identify the first small molecule inhibitors of protein AMPylation.

    PubMed

    Lewallen, Daniel M; Sreelatha, Anju; Dharmarajan, Venkatasubramanian; Madoux, Franck; Chase, Peter; Griffin, Patrick R; Orth, Kim; Hodder, Peter; Thompson, Paul R

    2014-02-21

    Enzymatic transfer of the AMP portion of ATP to substrate proteins has recently been described as an essential mechanism of bacterial infection for several pathogens. The first AMPylator to be discovered, VopS from Vibrio parahemolyticus, catalyzes the transfer of AMP onto the host GTPases Cdc42 and Rac1. Modification of these proteins disrupts downstream signaling events, contributing to cell rounding and apoptosis, and recent studies have suggested that blocking AMPylation may be an effective route to stop infection. To date, however, no small molecule inhibitors have been discovered for any of the AMPylators. Therefore, we developed a fluorescence-polarization-based high-throughput screening assay and used it to discover the first inhibitors of protein AMPylation. Herein we report the discovery of the first small molecule VopS inhibitors (e.g., calmidazolium, GW7647, and MK886) with Ki's ranging from 6 to 50 μM and upward of 30-fold selectivity versus HYPE, the only known human AMPylator.

  9. Predictive compound accumulation rules yield a broad-spectrum antibiotic

    NASA Astrophysics Data System (ADS)

    Richter, Michelle F.; Drown, Bryon S.; Riley, Andrew P.; Garcia, Alfredo; Shirai, Tomohiro; Svec, Riley L.; Hergenrother, Paul J.

    2017-05-01

    Most small molecules are unable to rapidly traverse the outer membrane of Gram-negative bacteria and accumulate inside these cells, making the discovery of much-needed drugs against these pathogens challenging. Current understanding of the physicochemical properties that dictate small-molecule accumulation in Gram-negative bacteria is largely based on retrospective analyses of antibacterial agents, which suggest that polarity and molecular weight are key factors. Here we assess the ability of over 180 diverse compounds to accumulate in Escherichia coli. Computational analysis of the results reveals major differences from the retrospective studies, namely that the small molecules that are most likely to accumulate contain an amine, are amphiphilic and rigid, and have low globularity. These guidelines were then applied to convert deoxynybomycin, a natural product that is active only against Gram-positive organisms, into an antibiotic with activity against a diverse panel of multi-drug-resistant Gram-negative pathogens. We anticipate that these findings will aid in the discovery and development of antibiotics against Gram-negative bacteria.

  10. Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPH1 Signal Transduction

    PubMed Central

    Manigrasso, Michaele B.; Pan, Jinhong; Rai, Vivek; Zhang, Jinghua; Reverdatto, Sergey; Quadri, Nosirudeen; DeVita, Robert J.; Ramasamy, Ravichandran; Shekhtman, Alexander; Schmidt, Ann Marie

    2016-01-01

    The receptor for advanced glycation endproducts (RAGE) binds diverse ligands linked to chronic inflammation and disease. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. The cytoplasmic tail (ct) of RAGE is essential for RAGE ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE signaling requires interaction of ctRAGE with the intracellular effector, mammalian diaphanous 1 or DIAPH1. We screened a library of 58,000 small molecules and identified 13 small molecule competitive inhibitors of ctRAGE interaction with DIAPH1. These compounds, which exhibit in vitro and in vivo inhibition of RAGE-dependent molecular processes, present attractive molecular scaffolds for the development of therapeutics against RAGE-mediated diseases, such as those linked to diabetic complications, Alzheimer’s disease, and chronic inflammation, and provide support for the feasibility of inhibition of protein-protein interaction (PPI). PMID:26936329

  11. Predictive rules for compound accumulation yield a broad-spectrum antibiotic

    PubMed Central

    Richter, Michelle F.; Drown, Bryon S.; Riley, Andrew P.; Garcia, Alfredo; Shirai, Tomohiro; Svec, Riley L.; Hergenrother, Paul J.

    2017-01-01

    Most small molecules are unable to rapidly traverse the outer membrane of Gram-negative bacteria and accumulate inside these cells, making the discovery of much-needed drugs for these pathogens very challenging. Current understanding of the physicochemical properties that dictate small-molecule accumulation in Gram-negatives is largely based on retrospective analyses of antibacterials that suggest polarity and molecular weight as key factors. Here we assess the ability of over 180 diverse compounds to accumulate in Escherichia coli. Computational analysis of the results reveals major differences from the retrospective studies, namely that the small molecules that are most likely to accumulate contain an amine, are amphiphilic and rigid, and have low globularity. These guidelines were then applied to convert deoxynybomycin, a natural product that is active only against Gram-positive organisms, into an antibiotic with activity against a diverse panel of multi-drug-resistant Gram-negative pathogens. We anticipate these findings will aid in the discovery and development of antibiotics effective against Gram-negative bacteria. PMID:28489819

  12. Inhibiting AMPylation: A novel screen to identify the first small molecule inhibitors of protein AMPylation‡

    PubMed Central

    Lewallen, Daniel M.; Sreelatha, Anju; Dharmarajan, Venkatasubramanian; Madoux, Franck; Chase, Peter; Griffin, Patrick R.; Orth, Kim; Hodder, Peter; Thompson, Paul R.

    2014-01-01

    Enzymatic transfer of the AMP portion of ATP to substrate proteins has recently been described as an essential mechanism of bacterial infection for several pathogens. The first AMPylator to be discovered, VopS from Vibrio parahaemolyticus, catalyzes the transfer of AMP on to the host GTPases Cdc42 and Rac1. Modification of these proteins disrupts downstream signaling events, contributing to cell rounding and apoptosis, and recent studies have suggested that blocking AMPylation may be an effective route to stop infection. To date, however, no small molecule inhibitors have been discovered for any of the AMPylators. Therefore, we developed a fluorescence-polarization based high-throughput-screening assay and used it to discover the first inhibitors of protein AMPylation. Herein we report the discovery of the first small molecule VopS inhibitors (e.g. calmidazolium, GW7647 and MK886) with Kis ranging from 6–50 µM and upwards of 30-fold selectivity versus HYPE, the only known human AMPylator. PMID:24274060

  13. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.

    PubMed

    Biswas, Dhruba; Jiang, Peng

    2016-02-06

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming.

  14. A Synthetic DNA-Binding Domain Guides Distinct Chromatin-Modifying Small Molecules to Activate an Identical Gene Network.

    PubMed

    Han, Le; Pandian, Ganesh N; Chandran, Anandhakumar; Sato, Shinsuke; Taniguchi, Junichi; Kashiwazaki, Gengo; Sawatani, Yoshito; Hashiya, Kaori; Bando, Toshikazu; Xu, Yufang; Qian, Xuhong; Sugiyama, Hiroshi

    2015-07-20

    Synthetic dual-function ligands targeting specific DNA sequences and histone-modifying enzymes were applied to achieve regulatory control over multi-gene networks in living cells. Unlike the broad array of targeting small molecules for histone deacetylases (HDACs), few modulators are known for histone acetyltransferases (HATs), which play a central role in transcriptional control. As a novel chemical approach to induce selective HAT-regulated genes, we conjugated a DNA-binding domain (DBD) "I" to N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-benzamide (CTB), an artificial HAT activator. In vitro enzyme activity assays and microarray studies were used to demonstrate that distinct functional small molecules could be transformed to have identical bioactivity when conjugated with a targeting DBD. This proof-of-concept synthetic strategy validates the switchable functions of HDACs and HATs in gene regulation and provides a molecular basis for developing versatile bioactive ligands. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The NCGC Pharmaceutical Collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics

    PubMed Central

    Huang, Ruili; Southall, Noel; Wang, Yuhong; Yasgar, Adam; Shinn, Paul; Jadhav, Ajit; Nguyen, Dac-Trung; Austin, Christopher P.

    2011-01-01

    Small-molecule compounds approved for use as drugs may be “repurposed” for new indications and studied to determine the mechanisms of their beneficial and adverse effects. A comprehensive collection of all small-molecule drugs approved for human use would be invaluable for systematic repurposing across human diseases, particularly for rare and neglected diseases, for which the cost and time required for development of a new chemical entity are often prohibitive. Previous efforts to build such a comprehensive collection have been limited by the complexities, redundancies, and semantic inconsistencies of drug naming within and among regulatory agencies worldwide; a lack of clear conceptualization of what constitutes a drug; and a lack of access to physical samples. We report here the creation of a definitive, complete, and nonredundant list of all approved molecular entities as a freely available electronic resource and a physical collection of small molecules amenable to high-throughput screening. PMID:21525397

  16. Selection and Biosensor Application of Aptamers for Small Molecules

    PubMed Central

    Pfeiffer, Franziska; Mayer, Günter

    2016-01-01

    Small molecules play a major role in the human body and as drugs, toxins, and chemicals. Tools to detect and quantify them are therefore in high demand. This review will give an overview about aptamers interacting with small molecules and their selection. We discuss the current state of the field, including advantages as well as problems associated with their use and possible solutions to tackle these. We then discuss different kinds of small molecule aptamer-based sensors described in literature and their applications, ranging from detecting drinking water contaminations to RNA imaging. PMID:27379229

  17. Derivation and Expansion Using Only Small Molecules of Human Neural Progenitors for Neurodegenerative Disease Modeling

    PubMed Central

    Reinhardt, Peter; Glatza, Michael; Hemmer, Kathrin; Tsytsyura, Yaroslav; Thiel, Cora S.; Höing, Susanne; Moritz, Sören; Parga, Juan A.; Wagner, Lydia; Bruder, Jan M.; Wu, Guangming; Schmid, Benjamin; Röpke, Albrecht; Klingauf, Jürgen; Schwamborn, Jens C.; Gasser, Thomas; Schöler, Hans R.; Sterneckert, Jared

    2013-01-01

    Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development. PMID:23533608

  18. Analysis of the Gap Junction-dependent Transfer of miRNA with 3D-FRAP Microscopy.

    PubMed

    Lemcke, Heiko; Voronina, Natalia; Steinhoff, Gustav; David, Robert

    2017-06-19

    Small antisense RNAs, like miRNA and siRNA, play an important role in cellular physiology and pathology and, moreover, can be used as therapeutic agents in the treatment of several diseases. The development of new, innovative strategies for miRNA/siRNA therapy is based on an extensive knowledge of the underlying mechanisms. Recent data suggest that small RNAs are exchanged between cells in a gap junction-dependent manner, thereby inducing gene regulatory effects in the recipient cell. Molecular biological techniques and flow cytometric analysis are commonly used to study the intercellular exchange of miRNA. However, these methods do not provide high temporal resolution, which is necessary when studying the gap junctional flux of molecules. Therefore, to investigate the impact of miRNA/siRNA as intercellular signaling molecules, novel tools are needed that will allow for the analysis of these small RNAs at the cellular level. The present protocol describes the application of three-dimensional fluorescence recovery after photobleaching (3D-FRAP) microscopy to elucidating the gap junction-dependent exchange of miRNA molecules between cardiac cells. Importantly, this straightforward and non-invasive live-cell imaging approach allows for the visualization and quantification of the gap junctional shuttling of fluorescently labeled small RNAs in real time, with high spatio-temporal resolution. The data obtained by 3D-FRAP confirm a novel pathway of intercellular gene regulation, where small RNAs act as signaling molecules within the intercellular network.

  19. SERS and MD simulation studies of a kinase inhibitor demonstrate the emergence of a potential drug discovery tool.

    PubMed

    Karthigeyan, Dhanasekaran; Siddhanta, Soumik; Kishore, Annavarapu Hari; Perumal, Sathya S R R; Ågren, Hans; Sudevan, Surabhi; Bhat, Akshay V; Balasubramanyam, Karanam; Subbegowda, Rangappa Kanchugarakoppal; Kundu, Tapas K; Narayana, Chandrabhas

    2014-07-22

    We demonstrate the use of surface-enhanced Raman spectroscopy (SERS) as an excellent tool for identifying the binding site of small molecules on a therapeutically important protein. As an example, we show the specific binding of the common antihypertension drug felodipine to the oncogenic Aurora A kinase protein via hydrogen bonding interactions with Tyr-212 residue to specifically inhibit its activity. Based on SERS studies, molecular docking, molecular dynamics simulation, biochemical assays, and point mutation-based validation, we demonstrate the surface-binding mode of this molecule in two similar hydrophobic pockets in the Aurora A kinase. These binding pockets comprise the same unique hydrophobic patches that may aid in distinguishing human Aurora A versus human Aurora B kinase in vivo. The application of SERS to identify the specific interactions between small molecules and therapeutically important proteins by differentiating competitive and noncompetitive inhibition demonstrates its ability as a complementary technique. We also present felodipine as a specific inhibitor for oncogenic Aurora A kinase. Felodipine retards the rate of tumor progression in a xenografted nude mice model. This study reveals a potential surface pocket that may be useful for developing small molecules by selectively targeting the Aurora family kinases.

  20. Small-Molecule Modulators of Methyl-Lysine Binding for the CBX7 Chromodomain

    DOE PAGES

    Ren, Chunyan; Morohashi, Keita; Plotnikov, Alexander N.; ...

    2015-02-05

    Chromobox homolog 7 (CBX7) plays an important role in gene transcription in a wide array of cellular processes, ranging from stem cell self-renewal and differentiation to tumor progression. CBX7 functions through its N-terminal chromodomain (ChD), which recognizes tri-methylated lysine 27 of histone 3 (H3K27me3), a conserved epigenetic mark that signifies gene transcriptional repression. Here in this study, we report discovery of small molecules that inhibit CBX7ChD binding to H3K27me3. Our crystal structures reveal the binding modes of these molecules that compete against H3K27me3 binding through interactions with key residues in the methyl-lysine binding pocket of CBX7ChD. We further show thatmore » a lead compound MS37452, derepresses transcription of Polycomb repressive complex target gene p16/CDKN2A by displacing CBX7 binding to the INK4A/ARF locus in prostate cancer cells. Ultimately, these small molecules have the potential to be developed into high-potency chemical modulators that target CBX7 functions in gene transcription in different disease pathways.« less

  1. Circularly Polarized Luminescence from Simple Organic Molecules.

    PubMed

    Sánchez-Carnerero, Esther M; Agarrabeitia, Antonia R; Moreno, Florencio; Maroto, Beatriz L; Muller, Gilles; Ortiz, María J; de la Moya, Santiago

    2015-09-21

    This article aims to show the identity of "circularly polarized luminescent active simple organic molecules" as a new concept in organic chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and non-aggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Intranucleus Single-Molecule Imaging in Living Cells.

    PubMed

    Shao, Shipeng; Xue, Boxin; Sun, Yujie

    2018-06-01

    Many critical processes occurring in mammalian cells are stochastic and can be directly observed at the single-molecule level within their physiological environment, which would otherwise be obscured in an ensemble measurement. There are various fundamental processes in the nucleus, such as transcription, replication, and DNA repair, the study of which can greatly benefit from intranuclear single-molecule imaging. However, the number of such studies is relatively small mainly because of lack of proper labeling and imaging methods. In the past decade, tremendous efforts have been devoted to developing tools for intranuclear imaging. Here, we mainly describe the recent methodological developments of single-molecule imaging and their emerging applications in the live nucleus. We also discuss the remaining issues and provide a perspective on future developments and applications of this field. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Towards a Pharmacophore for Amyloid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.

    2011-09-16

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine sidemore » chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a cocktail of compounds may be required for future amyloid therapies. The structures described here start to define the amyloid pharmacophore, opening the way to structure-based design of improved diagnostics and therapeutics.« less

  4. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells.

    PubMed

    Malina, Halina Z

    2011-01-19

    The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules in disease development. In the knockout cells, incorrect interactions between proteins were observed without the protein modification by small molecules, indicating the abnormality of the protein network in the transgenic system. The irreversible protein-protein interactions lead to protein aggregation and cell degeneration, which are observed in all aging-associated diseases.

  5. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells

    PubMed Central

    2011-01-01

    Background The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Results Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. Conclusions The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules in disease development. In the knockout cells, incorrect interactions between proteins were observed without the protein modification by small molecules, indicating the abnormality of the protein network in the transgenic system. The irreversible protein-protein interactions lead to protein aggregation and cell degeneration, which are observed in all aging-associated diseases. PMID:21247434

  6. Therapeutic approaches to preventing cell death in Huntington disease

    PubMed Central

    Kaplan, Anna; Stockwell, Brent R.

    2012-01-01

    Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors—fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders. PMID:22967354

  7. Small molecule AT7867 proliferates PDX1-expressing pancreatic progenitor cells derived from human pluripotent stem cells.

    PubMed

    Kimura, Azuma; Toyoda, Taro; Nishi, Yohei; Nasu, Makoto; Ohta, Akira; Osafune, Kenji

    2017-10-01

    While pancreatic islet transplantation achieves insulin independence in type 1 diabetes (T1D) patients, its widespread application is limited by donor tissue scarcity. Pancreatic progenitor cells (PPCs) give rise to all cell types in the pancreas during development. PPCs derived from human pluripotent stem cells have been shown to differentiate into functional β cells both in vitro and in vivo, and to reverse hyperglycemia, at least in mice. Therefore, PPCs have great potential to serve as an alternative cell source for cell therapy, and the identification of compounds that facilitate PPC proliferation could provide stable and large-scale pancreatic cell preparation systems in clinical settings. Here, we developed and performed cell-based screens to identify small molecules that induce the proliferation of hiPSC-derived PDX1-expressing PPCs. The screening identified AT7867, which promoted PPC proliferation approximately five-fold within six days through the maintenance of a high Ki67 + cell ratio. The induced proliferation by AT7867 does not result in DNA damage, as revealed by pHH2AX staining, and is observed specifically in PPCs but not other cell types. The established platform utilizing small molecules for PPC proliferation may contribute to the development of cell therapy for T1D using a regenerative medicine approach. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Mathematical Modeling of E6-p53 interactions in Cervical Cancer

    PubMed

    Khattak, Faryal; Haseeb, Muhammad; Fazal, Sahar; Bhatti, A I; Ullah, Mukhtar

    2017-04-01

    Background: Cervical cancer is the third most common cancer in women throughout the world. The human papillomavirus (HPV) E6 viral protein plays an essential role in proteasomal degradation of the cancer suppressant protein p53. As a result, p53 negative regulation and apoptosis relevant activities are abrogated, facilitating development of cervical cancer. Methods: A mathematical model of E6-p53 interactions was developed using mathematical laws. In-silico simulations were carried out on CellDesigner and as a test case the small molecule drug RITA was considered for its ability to rescue the functions of tumor suppressor p53 by inhibiting E6 mediated proteasomal degradation. Results: Using a computational model we scrutinized how p53 responds to RITA, and chemical reactions of this small molecule drug were incorporated to perceive the full effects. The evolved strategy allowed the p53 response and rescue of its tumor suppressor function to be delineated, RITA being found to block p53 interactions with E6 associated proteins. Conclusion: We could develop a model of E6-p53 interactions with incorporation of actions of the small molecule drug RITA. Suppression of E6 associated proteins by RITA induces accumulation of tumor suppressant p53. Using CellDesigner to encode the model ensured that it can be easily modified and extended as more data become available. This strategy should play an effective role in the development of therapies against cancer. Creative Commons Attribution License

  9. Mathematical Modeling of E6-p53 interactions in Cervical Cancer

    PubMed Central

    Khattak, Faryal; Haseeb, Muhammad; Fazal, Sahar; Bhatti, AI; Ullah, Mukhtar

    2017-01-01

    Background: Cervical cancer is the third most common cancer in women throughout the world. The human papillomavirus (HPV) E6 viral protein plays an essential role in proteasomal degradation of the cancer suppressant protein p53. As a result, p53 negative regulation and apoptosis relevant activities are abrogated, facilitating development of cervical cancer. Methods: A mathematical model of E6-p53 interactions was developed using mathematical laws. In-silico simulations were carried out on CellDesigner and as a test case the small molecule drug RITA was considered for its ability to rescue the functions of tumor suppressor p53 by inhibiting E6 mediated proteasomal degradation. Results: Using a computational model we scrutinized how p53 responds to RITA, and chemical reactions of this small molecule drug were incorporated to perceive the full effects. The evolved strategy allowed the p53 response and rescue of its tumor suppressor function to be delineated, RITA being found to block p53 interactions with E6 associated proteins. Conclusion: We could develop a model of E6-p53 interactions with incorporation of actions of the small molecule drug RITA. Suppression of E6 associated proteins by RITA induces accumulation of tumor suppressant p53. Using CellDesigner to encode the model ensured that it can be easily modified and extended as more data become available. This strategy should play an effective role in the development of therapies against cancer. PMID:28547941

  10. Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels.

    PubMed

    Alexanian, Arshak R; Liu, Qing-song; Zhang, Zhiying

    2013-08-01

    Advances in cell reprogramming technologies to generate patient-specific cells of a desired type will revolutionize the field of regenerative medicine. While several cell reprogramming methods have been developed over the last decades, the majority of these technologies require the exposure of cell nuclei to reprogramming large molecules via transfection, transduction, cell fusion or nuclear transfer. This raises several technical, safety and ethical issues. Chemical genetics is an alternative approach for cell reprogramming that uses small, cell membrane penetrable substances to regulate multiple cellular processes including cell plasticity. Recently, using the combination of small molecules that are involved in the regulation chromatin structure and function and agents that favor neural differentiation we have been able to generate neural-like cells from human mesenchymal stem cells. In this study, to improve the efficiency of neuronal differentiation and maturation, two specific inhibitors of SMAD signaling (SMAD1/3 and SMAD3/5/8) that play an important role in neuronal differentiation of embryonic stem cells, were added to our previous neural induction recipe. Results demonstrated that human mesenchymal stem cells grown in this culture conditions exhibited higher expression of several mature neuronal genes, formed synapse-like structures and exerted electrophysiological properties of differentiating neural stem cells. Thus, an efficient method for production of mature neuronal-like cells from human adult bone marrow derived mesenchymal stem cells has been developed. We concluded that specific combinations of small molecules that target specific cell signaling pathways and chromatin modifying enzymes could be a promising approach for manipulation of adult stem cell plasticity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Cost-effective differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules.

    PubMed

    Tasnim, Farah; Phan, Derek; Toh, Yi-Chin; Yu, Hanry

    2015-11-01

    Significant efforts have been invested into the differentiation of stem cells into functional hepatocyte-like cells that can be used for cell therapy, disease modeling and drug screening. Most of these efforts have been concentrated on the use of growth factors to recapitulate developmental signals under in vitro conditions. Using small molecules instead of growth factors would provide an attractive alternative since small molecules are cell-permeable and cheaper than growth factors. We have developed a protocol for the differentiation of human embryonic stem cells into hepatocyte-like cells using a predominantly small molecule-based approach (SM-Hep). This 3 step differentiation strategy involves the use of optimized concentrations of LY294002 and bromo-indirubin-3'-oxime (BIO) for the generation of definitive endoderm; sodium butyrate and dimethyl sulfoxide (DMSO) for the generation of hepatoblasts and SB431542 for differentiation into hepatocyte-like cells. Activin A is the only growth factor required in this protocol. Our results showed that SM-Hep were morphologically and functionally similar or better compared to the hepatocytes derived from the growth-factor induced differentiation (GF-Hep) in terms of expression of hepatic markers, urea and albumin production and cytochrome P450 (CYP1A2 and CYP3A4) activities. Cell viability assays following treatment with paradigm hepatotoxicants Acetaminophen, Chlorpromazine, Diclofenac, Digoxin, Quinidine and Troglitazone showed that their sensitivity to these drugs was similar to human primary hepatocytes (PHHs). Using SM-Hep would result in 67% and 81% cost reduction compared to GF-Hep and PHHs respectively. Therefore, SM-Hep can serve as a robust and cost effective replacement for PHHs for drug screening and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. CCI-007, a novel small molecule with cytotoxic activity against infant leukemia with MLL rearrangements

    PubMed Central

    Middlemiss, Shiloh M.C.; Wen, Victoria W.; Clifton, Molly; Kwek, Alan; Liu, Bing; Mayoh, Chelsea; Bongers, Angelika; Karsa, Mawar; Pan, Sukey; Cruikshank, Sarah; Scandlyn, Marissa; Hoang, Wendi; Imamura, Toshihiko; Kees, Ursula R.; Gudkov, Andrei V.; Chernova, Olga B.

    2016-01-01

    There is an urgent need for the development of less toxic, more selective and targeted therapies for infants with leukemia characterized by translocation of the mixed lineage leukemia (MLL) gene. In this study, we performed a cell-based small molecule library screen on an infant MLL-rearranged (MLL-r) cell line, PER-485, in order to identify selective inhibitors for MLL-r leukemia. After screening initial hits for a cytotoxic effect against a panel of 30 cell lines including MLL-r and MLL wild-type (MLL-wt) leukemia, solid tumours and control cells, small molecule CCI-007 was identified as a compound that selectively and significantly decreased the viability of a subset of MLL-r and related leukemia cell lines with CALM-AF10 and SET-NUP214 translocation. CCI-007 induced a rapid caspase-dependent apoptosis with mitochondrial depolarization within twenty-four hours of treatment. CCI-007 altered the characteristic MLL-r gene expression signature in sensitive cells with downregulation of the expression of HOXA9, MEIS1, CMYC and BCL2, important drivers in MLL-r leukemia, within a few hours of treatment. MLL-r leukemia cells that were resistant to the compound were characterised by significantly higher baseline gene expression levels of MEIS1 and BCL2 in comparison to CCI-007 sensitive MLL-r leukemia cells. In conclusion, we have identified CCI-007 as a novel small molecule that displays rapid toxicity towards a subset of MLL-r, CALM-AF10 and SET-NUP214 leukemia cell lines. Our findings suggest an important new avenue in the development of targeted therapies for these deadly diseases and indicate that different therapeutic strategies might be needed for different subtypes of MLL-r leukemia. PMID:27317766

  13. New Small Molecules Targeting Apoptosis and Cell Viability in Osteosarcoma

    PubMed Central

    Maugg, Doris; Rothenaigner, Ina; Schorpp, Kenji; Potukuchi, Harish Kumar; Korsching, Eberhard; Baumhoer, Daniel; Hadian, Kamyar

    2015-01-01

    Despite the option of multimodal therapy in the treatment strategies of osteosarcoma (OS), the most common primary malignant bone tumor, the standard therapy has not changed over the last decades and still involves multidrug chemotherapy and radical surgery. Although successfully applied in many patients a large number of patients eventually develop recurrent or metastatic disease in which current therapeutic regimens often lack efficacy. Thus, new therapeutic strategies are urgently needed. In this study, we performed a phenotypic high-throughput screening campaign using a 25,000 small-molecule diversity library to identify new small molecules selectively targeting osteosarcoma cells. We could identify two new small molecules that specifically reduced cell viability in OS cell lines U2OS and HOS, but affected neither hepatocellular carcinoma cell line (HepG2) nor primary human osteoblasts (hOB). In addition, the two compounds induced caspase 3 and 7 activity in the U2OS cell line. Compared to conventional drugs generally used in OS treatment such as doxorubicin, we indeed observed a greater sensitivity of OS cell viability to the newly identified compounds compared to doxorubicin and staurosporine. The p53-negative OS cell line Saos-2 almost completely lacked sensitivity to compound treatment that could indicate a role of p53 in the drug response. Taken together, our data show potential implications for designing more efficient therapies in OS. PMID:26039064

  14. High-throughput spectral and lifetime-based FRET screening in living cells to identify small-molecule effectors of SERCA

    PubMed Central

    Schaaf, Tory M.; Peterson, Kurt C.; Grant, Benjamin D.; Bawaskar, Prachi; Yuen, Samantha; Li, Ji; Muretta, Joseph M.; Gillispie, Gregory D.; Thomas, David D.

    2017-01-01

    A robust high-throughput screening (HTS) strategy has been developed to discover small-molecule effectors targeting the sarco/endoplasmic reticulum calcium ATPase (SERCA), based on a fluorescence microplate reader that records both the nanosecond decay waveform (lifetime mode) and the complete emission spectrum (spectral mode), with high precision and speed. This spectral unmixing plate reader (SUPR) was used to screen libraries of small molecules with a fluorescence resonance energy transfer (FRET) biosensor expressed in living cells. Ligand binding was detected by FRET associated with structural rearrangements of green (GFP, donor) and red (RFP, acceptor) fluorescent proteins fused to the cardiac-specific SERCA2a isoform. The results demonstrate accurate quantitation of FRET along with high precision of hit identification. Fluorescence lifetime analysis resolved SERCA’s distinct structural states, providing a method to classify small-molecule chemotypes on the basis of their structural effect on the target. The spectral analysis was also applied to flag interference by fluorescent compounds. FRET hits were further evaluated for functional effects on SERCA’s ATPase activity via both a coupled-enzyme assay and a FRET-based calcium sensor. Concentration-response curves indicated excellent correlation between FRET and function. These complementary spectral and lifetime FRET detection methods offer an attractive combination of precision, speed, and resolution for HTS. PMID:27899691

  15. Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection

    PubMed Central

    Mike, Laura A.; Smith, Sara N.; Sumner, Christopher A.; Eaton, Kathryn A.; Mobley, Harry L. T.

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) is the primary cause of uncomplicated urinary tract infections (UTIs). Whereas most infections are isolated cases, 1 in 40 women experience recurrent UTIs. The rise in antibiotic resistance has complicated the management of chronic UTIs and necessitates new preventative strategies. Currently, no UTI vaccines are approved for use in the United States, and the development of a highly effective vaccine remains elusive. Here, we have pursued a strategy for eliciting protective immunity by vaccinating with small molecules required for pathogenesis, rather than proteins or peptides. Small iron-chelating molecules called siderophores were selected as antigens to vaccinate against UTI for this vaccine strategy. These pathogen-associated stealth siderophores evade host immune defenses and enhance bacterial virulence. Previous animal studies revealed that vaccination with siderophore receptor proteins protects against UTI. The poor solubility of these integral outer-membrane proteins in aqueous solutions limits their practical utility. Because their cognate siderophores are water soluble, we hypothesized that these bacterial-derived small molecules are prime vaccine candidates. To test this hypothesis, we immunized mice with siderophores conjugated to an immunogenic carrier protein. The siderophore–protein conjugates elicited an adaptive immune response that targeted bacterial stealth siderophores and protected against UTI. Our study has identified additional antigens suitable for a multicomponent UTI vaccine and highlights the potential use of bacterial-derived small molecules as antigens in vaccine therapies. PMID:27821778

  16. Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection.

    PubMed

    Mike, Laura A; Smith, Sara N; Sumner, Christopher A; Eaton, Kathryn A; Mobley, Harry L T

    2016-11-22

    Uropathogenic Escherichia coli (UPEC) is the primary cause of uncomplicated urinary tract infections (UTIs). Whereas most infections are isolated cases, 1 in 40 women experience recurrent UTIs. The rise in antibiotic resistance has complicated the management of chronic UTIs and necessitates new preventative strategies. Currently, no UTI vaccines are approved for use in the United States, and the development of a highly effective vaccine remains elusive. Here, we have pursued a strategy for eliciting protective immunity by vaccinating with small molecules required for pathogenesis, rather than proteins or peptides. Small iron-chelating molecules called siderophores were selected as antigens to vaccinate against UTI for this vaccine strategy. These pathogen-associated stealth siderophores evade host immune defenses and enhance bacterial virulence. Previous animal studies revealed that vaccination with siderophore receptor proteins protects against UTI. The poor solubility of these integral outer-membrane proteins in aqueous solutions limits their practical utility. Because their cognate siderophores are water soluble, we hypothesized that these bacterial-derived small molecules are prime vaccine candidates. To test this hypothesis, we immunized mice with siderophores conjugated to an immunogenic carrier protein. The siderophore-protein conjugates elicited an adaptive immune response that targeted bacterial stealth siderophores and protected against UTI. Our study has identified additional antigens suitable for a multicomponent UTI vaccine and highlights the potential use of bacterial-derived small molecules as antigens in vaccine therapies.

  17. Small Molecule Deubiquitinase Inhibitors Promote Macrophage Anti-Infective Capacity

    PubMed Central

    Charbonneau, Marie-Eve; Gonzalez-Hernandez, Marta J.; Showalter, Hollis D.; Donato, Nicholas J.; Wobus, Christiane E.; O’Riordan, Mary X. D.

    2014-01-01

    The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity. PMID:25093325

  18. Small molecule inhibitors block Gas6-inducible TAM activation and tumorigenicity.

    PubMed

    Kimani, Stanley G; Kumar, Sushil; Bansal, Nitu; Singh, Kamalendra; Kholodovych, Vladyslav; Comollo, Thomas; Peng, Youyi; Kotenko, Sergei V; Sarafianos, Stefan G; Bertino, Joseph R; Welsh, William J; Birge, Raymond B

    2017-03-08

    TAM receptors (Tyro-3, Axl, and Mertk) are a family of three homologous type I receptor tyrosine kinases that are implicated in several human malignancies. Overexpression of TAMs and their major ligand Growth arrest-specific factor 6 (Gas6) is associated with more aggressive staging of cancers, poorer predicted patient survival, acquired drug resistance and metastasis. Here we describe small molecule inhibitors (RU-301 and RU-302) that target the extracellular domain of Axl at the interface of the Ig-1 ectodomain of Axl and the Lg-1 of Gas6. These inhibitors effectively block Gas6-inducible Axl receptor activation with low micromolar IC 50s in cell-based reporter assays, inhibit Gas6-inducible motility in Axl-expressing cell lines, and suppress H1299 lung cancer tumor growth in a mouse xenograft NOD-SCIDγ model. Furthermore, using homology models and biochemical verifications, we show that RU301 and 302 also inhibit Gas6 inducible activation of Mertk and Tyro3 suggesting they can act as pan-TAM inhibitors that block the interface between the TAM Ig1 ectodomain and the Gas6 Lg domain. Together, these observations establish that small molecules that bind to the interface between TAM Ig1 domain and Gas6 Lg1 domain can inhibit TAM activation, and support the further development of small molecule Gas6-TAM interaction inhibitors as a novel class of cancer therapeutics.

  19. Small molecule deubiquitinase inhibitors promote macrophage anti-infective capacity.

    PubMed

    Charbonneau, Marie-Eve; Gonzalez-Hernandez, Marta J; Showalter, Hollis D; Donato, Nicholas J; Wobus, Christiane E; O'Riordan, Mary X D

    2014-01-01

    The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity.

  20. Whole-Cell-Based Assay To Evaluate Structure Permeation Relationships for Carbapenem Passage through the Pseudomonas aeruginosa Porin OprD.

    PubMed

    Iyer, Ramkumar; Sylvester, Mark A; Velez-Vega, Camilo; Tommasi, Ruben; Durand-Reville, Thomas F; Miller, Alita A

    2017-04-14

    The global emergence of antibiotic resistance, especially in Gram-negative bacteria, is an urgent threat to public health. Discovery of novel classes of antibiotics with activity against these pathogens has been impeded by a fundamental lack of understanding of the molecular drivers underlying small molecule uptake. Although it is well-known that outer membrane porins represent the main route of entry for small, hydrophilic molecules across the Gram-negative cell envelope, the structure-permeation relationship for porin passage has yet to be defined. To address this knowledge gap, we developed a sensitive and specific whole-cell approach in Escherichia coli called titrable outer membrane permeability assay system (TOMAS). We used TOMAS to characterize the structure porin-permeation relationships of a set of novel carbapenem analogues through the Pseudomonas aeruginosa porin OprD. Our results show that small structural modifications, especially the number and nature of charges and their position, have dramatic effects on the ability of these molecules to permeate cells through OprD. This is the first demonstration of a defined relationship between specific molecular changes in a substrate and permeation through an isolated porin. Understanding the molecular mechanisms that impact antibiotic transit through porins should provide valuable insights to antibacterial medicinal chemistry and may ultimately allow for the rational design of porin-mediated uptake of small molecules into Gram-negative bacteria.

  1. Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy.

    PubMed

    Li, Kui; Tian, Hongqi

    2018-02-20

    Cancer immunotherapy has been increasingly utilised to treat advanced malignancies. The signalling network of immune checkpoints has attracted considerable attention. Immune checkpoint inhibitors are revolutionising the treatment options and expectations for patients with cancer. The reported clinical success of targeting the T-cell immune checkpoint receptors PD-1/PD-L1 has demonstrated the importance of immune modulation. Indeed, antibodies binding to PD-1 or PD-L1 have shown remarkable efficacy. However, antibody drugs have many disadvantages, such as their production cost, stability, and immunogenicity and, therefore, small-molecule inhibitors of PD-1 and its ligand PD-L1 are being introduced. Small-molecule inhibitors could offer inherent advantages in terms of pharmacokinetics and druggability, thereby providing additional methods for cancer treatment and achieving better therapeutic effects. In this review, we first discuss how PD-1/PD-L1-targeting inhibitors modulate the relationship between immune cells and tumour cells in tumour immunotherapy. Second, we discuss how the immunomodulatory potential of these inhibitors can be exploited via rational combinations with immunotherapy and targeted therapy. Third, this review is the first to summarise the current clinical and preclinical evidence regarding small-molecule inhibitors of the PD-1/PD-L1 immune checkpoint, considering features and responses related to the tumours and to the host immune system.

  2. Synthetic-Molecule/Protein Hybrid Probe with Fluorogenic Switch for Live-Cell Imaging of DNA Methylation.

    PubMed

    Hori, Yuichiro; Otomura, Norimichi; Nishida, Ayuko; Nishiura, Miyako; Umeno, Maho; Suetake, Isao; Kikuchi, Kazuya

    2018-02-07

    Hybrid probes consisting of synthetic molecules and proteins are powerful tools for detecting biological molecules and signals in living cells. To date, most targets of the hybrid probes have been limited to pH and small analytes. Although biomacromolecules are essential to the physiological function of cells, the hybrid-probe-based approach has been scarcely employed for live-cell detection of biomacromolecules. Here, we developed a hybrid probe with a chemical switch for live-cell imaging of methylated DNA, an important macromolecule in the repression of gene expression. Using a protein labeling technique, we created a hybrid probe containing a DNA-binding fluorogen and a methylated-DNA-binding domain. The hybrid probe enhanced fluorescence intensity upon binding to methylated DNA and successfully monitored methylated DNA during mitosis. The hybrid probe offers notable advantages absent from probes based on small molecules or fluorescent proteins and is useful for live-cell analyses of epigenetic phenomena and diseases related to DNA methylation.

  3. Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules

    NASA Astrophysics Data System (ADS)

    Ràfols-Ribé, Joan; Dettori, Riccardo; Ferrando-Villalba, Pablo; Gonzalez-Silveira, Marta; Abad, Llibertat; Lopeandía, Aitor F.; Colombo, Luciano; Rodríguez-Viejo, Javier

    2018-03-01

    Vapor deposited organic glasses are currently in use in many optoelectronic devices. Their operation temperature is limited by the glass transition temperature of the organic layers and thermal management strategies become increasingly important to improve the lifetime of the device. Here we report the unusual finding that molecular orientation heavily influences heat flow propagation in glassy films of small molecule organic semiconductors. The thermal conductivity of vapor deposited thin-film semiconductor glasses is anisotropic and controlled by the deposition temperature. We compare our data with extensive molecular dynamics simulations to disentangle the role of density and molecular orientation on heat propagation. Simulations do support the view that thermal transport along the backbone of the organic molecule is strongly preferred with respect to the perpendicular direction. This is due to the anisotropy of the molecular interaction strength that limits the transport of atomic vibrations. This approach could be used in future developments to implement small molecule glassy films in thermoelectric or other organic electronic devices.

  4. Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications.

    PubMed

    Laurencin, Cato T; Ashe, Keshia M; Henry, Nicole; Kan, Ho Man; Lo, Kevin W-H

    2014-06-01

    Stimulation of bone regeneration using growth factors is a promising approach for musculoskeletal regenerative engineering. However, common limitations with protein growth factors, such as high manufacturing costs, protein instability, contamination issues, and unwanted immunogenic responses of the host reduce potential clinical applications. New strategies for bone regeneration that involve inexpensive and stable small molecules can obviate these problems and have a significant impact on the treatment of skeletal injury and diseases. Over the past decade, a large number of small molecules with the potential of regenerating skeletal tissue have been reported in the literature. Here, we review this literature, paying specific attention to the prospects for small molecule-based bone-regenerative engineering. We also review the preclinical study of small molecules associated with bone regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Small molecule annotation for the Protein Data Bank

    PubMed Central

    Sen, Sanchayita; Young, Jasmine; Berrisford, John M.; Chen, Minyu; Conroy, Matthew J.; Dutta, Shuchismita; Di Costanzo, Luigi; Gao, Guanghua; Ghosh, Sutapa; Hudson, Brian P.; Igarashi, Reiko; Kengaku, Yumiko; Liang, Yuhe; Peisach, Ezra; Persikova, Irina; Mukhopadhyay, Abhik; Narayanan, Buvaneswari Coimbatore; Sahni, Gaurav; Sato, Junko; Sekharan, Monica; Shao, Chenghua; Tan, Lihua; Zhuravleva, Marina A.

    2014-01-01

    The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100 000 structures contain more than 20 000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand. During curation of a newly deposited structure by wwPDB annotation staff, each molecule is cross-referenced to the PDB Chemical Component Dictionary (CCD). If the molecule is new to the PDB, a dictionary description is created for it. The information about all small molecule components found in the PDB is distributed via the ftp archive as an external reference file. Small molecule annotation in the PDB also includes information about ligand-binding sites and about covalent and other linkages between ligands and macromolecules. During the remediation of the peptide-like antibiotics and inhibitors present in the PDB archive in 2011, it became clear that additional annotation was required for consistent representation of these molecules, which are quite often composed of several sequential subcomponents including modified amino acids and other chemical groups. The connectivity information of the modified amino acids is necessary for correct representation of these biologically interesting molecules. The combined information is made available via a new resource called the Biologically Interesting molecules Reference Dictionary, which is complementary to the CCD and is now routinely used for annotation of peptide-like antibiotics and inhibitors. PMID:25425036

  6. Small molecule annotation for the Protein Data Bank.

    PubMed

    Sen, Sanchayita; Young, Jasmine; Berrisford, John M; Chen, Minyu; Conroy, Matthew J; Dutta, Shuchismita; Di Costanzo, Luigi; Gao, Guanghua; Ghosh, Sutapa; Hudson, Brian P; Igarashi, Reiko; Kengaku, Yumiko; Liang, Yuhe; Peisach, Ezra; Persikova, Irina; Mukhopadhyay, Abhik; Narayanan, Buvaneswari Coimbatore; Sahni, Gaurav; Sato, Junko; Sekharan, Monica; Shao, Chenghua; Tan, Lihua; Zhuravleva, Marina A

    2014-01-01

    The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100,000 structures contain more than 20,000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand. During curation of a newly deposited structure by wwPDB annotation staff, each molecule is cross-referenced to the PDB Chemical Component Dictionary (CCD). If the molecule is new to the PDB, a dictionary description is created for it. The information about all small molecule components found in the PDB is distributed via the ftp archive as an external reference file. Small molecule annotation in the PDB also includes information about ligand-binding sites and about covalent and other linkages between ligands and macromolecules. During the remediation of the peptide-like antibiotics and inhibitors present in the PDB archive in 2011, it became clear that additional annotation was required for consistent representation of these molecules, which are quite often composed of several sequential subcomponents including modified amino acids and other chemical groups. The connectivity information of the modified amino acids is necessary for correct representation of these biologically interesting molecules. The combined information is made available via a new resource called the Biologically Interesting molecules Reference Dictionary, which is complementary to the CCD and is now routinely used for annotation of peptide-like antibiotics and inhibitors. © The Author(s) 2014. Published by Oxford University Press.

  7. Theoretical study of the electronic and optical properties of photochromic dithienylethene derivatives connected to small gold clusters.

    PubMed

    Perrier, Aurélie; Maurel, François; Aubard, Jean

    2007-10-04

    In the course of developing electronic devices on a molecular scale, dithienylethenes photochromic molecules constitute promising candidates for optoelectronic applications such as memories and switches. There is thus a great interest to understand and control the switching behavior of photochromic compounds deposited on metallic surfaces or nanoparticles. Within the framework of the density functional theory, we studied the effect of small gold clusters (Au3 and Au9) on the electronic structure and absorption spectrum of a model dithienylethene molecule. The molecular orbital interactions between the photochromic molecule and the gold cluster made it possible to rationalize some experimental findings (Dulic, D.; van der Molen, S. J.; Kudernac, T.; Jonkman, H. T.; de Jong, J. J. D.; Bowden, T. N.; van Esch, J.; Feringa, B. L.; van Wees, B. J. Phys. Rev. Lett. 2003, 91, 207402). For the closed-ring isomer, grafting a photochromic molecule on a small gold cluster does not change the characteristics of the electronic transition involved in the ring-opening reaction. On the opposite, the absorption spectrum of the photochromic open-ring isomer is strongly modified by the inclusion of the metallic cluster. In agreement with experimental results, our study thus showed that the cycloreversion reaction which involves the closed-ring isomer should be still possible, whereas the ring-closure reaction which involves the open-ring isomer should be inhibited. Connecting a dithienylethene molecule to a small gold cluster hence provides a qualitative comprehension of the photochromic activities of dithienylethenes connected to a gold surface.

  8. Small molecules targeting viral RNA.

    PubMed

    Hermann, Thomas

    2016-11-01

    Highly conserved noncoding RNA (ncRNA) elements in viral genomes and transcripts offer new opportunities to expand the repertoire of drug targets for the development of antiinfective therapy. Ligands binding to ncRNA architectures are able to affect interactions, structural stability or conformational changes and thereby block processes essential for viral replication. Proof of concept for targeting functional RNA by small molecule inhibitors has been demonstrated for multiple viruses with RNA genomes. Strategies to identify antiviral compounds as inhibitors of ncRNA are increasingly emphasizing consideration of drug-like properties of candidate molecules emerging from screening and ligand design. Recent efforts of antiviral lead discovery for RNA targets have provided drug-like small molecules that inhibit viral replication and include inhibitors of human immunodeficiency virus (HIV), hepatitis C virus (HCV), severe respiratory syndrome coronavirus (SARS CoV), and influenza A virus. While target selectivity remains a challenge for the discovery of useful RNA-binding compounds, a better understanding is emerging of properties that define RNA targets amenable for inhibition by small molecule ligands. Insight from successful approaches of targeting viral ncRNA in HIV, HCV, SARS CoV, and influenza A will provide a basis for the future exploration of RNA targets for therapeutic intervention in other viral pathogens which create urgent, unmet medical needs. Viruses for which targeting ncRNA components in the genome or transcripts may be promising include insect-borne flaviviruses (Dengue, Zika, and West Nile) and filoviruses (Ebola and Marburg). WIREs RNA 2016, 7:726-743. doi: 10.1002/wrna.1373 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  9. Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules

    NASA Astrophysics Data System (ADS)

    Veetil, Aneesh T.; Chakraborty, Kasturi; Xiao, Kangni; Minter, Myles R.; Sisodia, Sangram S.; Krishnan, Yamuna

    2017-12-01

    Achieving triggered release of small molecules with spatial and temporal precision at designated cells within an organism remains a challenge. By combining a cell-targetable, icosahedral DNA-nanocapsule loaded with photoresponsive polymers, we show cytosolic delivery of small molecules with the spatial resolution of single endosomes in specific cells in Caenorhabditis elegans. Our technology can report on the extent of small molecules released after photoactivation as well as pinpoint the location at which uncaging of the molecules occurred. We apply this technology to release dehydroepiandrosterone (DHEA), a neurosteroid that promotes neurogenesis and neuron survival, and determined the timescale of neuronal activation by DHEA, using light-induced release of DHEA from targeted DNA nanocapsules. Importantly, sequestration inside the DNA capsule prevents photocaged DHEA from activating neurons prematurely. Our methodology can in principle be generalized to diverse neurostimulatory molecules.

  10. Library design practices for success in lead generation with small molecule libraries.

    PubMed

    Goodnow, R A; Guba, W; Haap, W

    2003-11-01

    The generation of novel structures amenable to rapid and efficient lead optimization comprises an emerging strategy for success in modern drug discovery. Small molecule libraries of sufficient size and diversity to increase the chances of discovery of novel structures make the high throughput synthesis approach the method of choice for lead generation. Despite an industry trend for smaller, more focused libraries, the need to generate novel lead structures makes larger libraries a necessary strategy. For libraries of a several thousand or more members, solid phase synthesis approaches are the most suitable. While the technology and chemistry necessary for small molecule library synthesis continue to advance, success in lead generation requires rigorous consideration in the library design process to ensure the synthesis of molecules possessing the proper characteristics for subsequent lead optimization. Without proper selection of library templates and building blocks, solid phase synthesis methods often generate molecules which are too heavy, too lipophilic and too complex to be useful for lead optimization. The appropriate filtering of virtual library designs with multiple computational tools allows the generation of information-rich libraries within a drug-like molecular property space. An understanding of the hit-to-lead process provides a practical guide to molecular design characteristics. Examples of leads generated from library approaches also provide a benchmarking of successes as well as aspects for continued development of library design practices.

  11. Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics.

    PubMed

    Smolle, Maria A; Calin, Horatiu N; Pichler, Martin; Calin, George A

    2017-07-01

    A major mechanism of tumor development and progression is silencing of the patient's immune response to cancer-specific antigens. Defects in the so-called cancer immunity cycle may occur at any stage of tumor development. Within the tumor microenvironment, aberrant expression of immune checkpoint molecules with activating or inhibitory effects on T lymphocytes induces immune tolerance and cellular immune escape. Targeting immune checkpoint molecules such as programmed cell death protein 1 (PD-1) and its ligand PD-L1 with specific antibodies has proven to be a major advance in the treatment of several types of cancer. Another way to therapeutically influence the tumor microenvironment is by modulating the levels of microRNAs (miRNAs), small noncoding RNAs that shuttle bidirectionally between malignant and tumor microenvironmental cells. These small RNA transcripts have two features: (a) their expression is quite specific to distinct tumors, and (b) they are involved in early regulation of immune responses. Consequently, miRNAs may be ideal molecules for use in cancer therapy. Many miRNAs are aberrantly expressed in human cancer cells, opening new opportunities for cancer therapy, but the exact functions of these miRNAs and their interactions with immune checkpoint molecules have yet to be investigated. This review summarizes recently reported findings about miRNAs as modulators of immune checkpoint molecules and their potential application as cancer therapeutics in clinical practice. © 2017 Federation of European Biochemical Societies.

  12. Recent Developments of Liposomes as Nanocarriers for Theranostic Applications

    PubMed Central

    Xing, Hang; Hwang, Kevin; Lu, Yi

    2016-01-01

    Liposomes are nanocarriers comprised of lipid bilayers encapsulating an aqueous core. The ability of liposomes to encapsulate a wide variety of diagnostic and therapeutic agents has led to significant interest in utilizing liposomes as nanocarriers for theranostic applications. In this review, we highlight recent progress in developing liposomes as nanocarriers for a) diagnostic applications to detect proteins, DNA, and small molecule targets using fluorescence, magnetic resonance, ultrasound, and nuclear imaging; b) therapeutic applications based on small molecule-based therapy, gene therapy and immunotherapy; and c) theranostic applications for simultaneous detection and treatment of heavy metal toxicity and cancers. In addition, we summarize recent studies towards understanding of interactions between liposomes and biological components. Finally, perspectives on future directions in advancing the field for clinical translations are also discussed. PMID:27375783

  13. Targeting RSV with Vaccines and Small Molecule Drugs

    PubMed Central

    Costello, Heather M.; Ray, William C.; Chaiwatpongsakorn, Supranee; Peeples, Mark E.

    2012-01-01

    Respiratory syncytial virus (RSV) is the most significant cause of pediatric respiratory infections. Palivizumab (Synagis®), a humanized monoclonal antibody, has been used successfully for a number of years to prevent severe RSV disease in at-risk infants. However, despite intense efforts, there is no approved vaccine or small molecule drug for RSV. As an enveloped virus, RSV must fuse its envelope with the host cell membrane, which is accomplished through the actions of the fusion (F) glycoprotein, with attachment help from the G glycoprotein. Because of their integral role in initiation of infection and their accessibility outside the lipid bilayer, these proteins have been popular targets in the discovery and development of antiviral compounds and vaccines against RSV. This review examines advances in the development of antiviral compounds and vaccine candidates. PMID:22335496

  14. The arrival of JAK inhibitors: advancing the treatment of immune and hematologic disorders

    PubMed Central

    Furumoto, Yasuko; Gadina, Massimo

    2013-01-01

    Altered production of cytokines can result in pathologies ranging from autoimmune diseases to malignancies. The Janus Kinases family is a small group of receptor-associated signaling molecules that is essential to the signal cascade originating from type I and type II cytokine receptors. Inhibition of tyrosine kinases enzymatic activity using small molecules has recently become a powerful tool for treatment of several malignancies. Twenty years after the discovery of these enzymes, two inhibitors for this class of kinases have been approved for clinical use and others are currently in the final stage of development. Here we review the principles of cytokines signaling, we summarize our current knowledge of the approved inhibitors, and briefly introduce some of the inhibitors that are currently under development. PMID:23743669

  15. Exploring biology with small organic molecules

    PubMed Central

    Stockwell, Brent R.

    2011-01-01

    Small organic molecules have proven to be invaluable tools for investigating biological systems, but there is still much to learn from their use. To discover and to use more effectively new chemical tools to understand biology, strategies are needed that allow us to systematically explore ‘biological-activity space’. Such strategies involve analysing both protein binding of, and phenotypic responses to, small organic molecules. The mapping of biological-activity space using small molecules is akin to mapping the stars — uncharted territory is explored using a system of coordinates that describes where each new feature lies. PMID:15602550

  16. Allosteric Communication Disrupted by a Small Molecule Binding to the Imidazole Glycerol Phosphate Synthase Protein-Protein Interface.

    PubMed

    Rivalta, Ivan; Lisi, George P; Snoeberger, Ning-Shiuan; Manley, Gregory; Loria, J Patrick; Batista, Victor S

    2016-11-29

    Allosteric enzymes regulate a wide range of catalytic transformations, including biosynthetic mechanisms of important human pathogens, upon binding of substrate molecules to an orthosteric (or active) site and effector ligands at distant (allosteric) sites. We find that enzymatic activity can be impaired by small molecules that bind along the allosteric pathway connecting the orthosteric and allosteric sites, without competing with endogenous ligands. Noncompetitive allosteric inhibitors disrupted allostery in the imidazole glycerol phosphate synthase (IGPS) enzyme from Thermotoga maritima as evidenced by nuclear magnetic resonance, microsecond time-scale molecular dynamics simulations, isothermal titration calorimetry, and kinetic assays. The findings are particularly relevant for the development of allosteric antibiotics, herbicides, and antifungal compounds because IGPS is absent in mammals but provides an entry point to fundamental biosynthetic pathways in plants, fungi, and bacteria.

  17. Morphological study on small molecule acceptor-based organic solar cells with efficiencies beyond 7% (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Yan, He

    2015-10-01

    Despite the essential role of fullerenes in achieving best-performance organic solar cells (OSCs), fullerene acceptors have several drawbacks including poor light absorption, high-cost production and purification. For this reason, small molecule acceptor (SMA)-based OSCs have attracted much attention due to the easy tunability of electronic and optical properties of SMA materials. In this study, polymers with temperature dependent aggregation behaviors are combined with various small molecule acceptor materials, which lead to impressive power conversion efficiencies of up to 7.3%. The morphological and aggregation properties of the polymer:small molecule blends are studied in details. It is found that the temperature-dependent aggregation behavior of polymers allows for the processing of the polymer solutions at moderately elevated temperature, and more importantly, controlled aggregation and strong crystallization of the polymer during the film cooling and drying process. This results in a well-controlled and near-ideal polymer:small molecule morphology that is controlled by polymer aggregation during warm casting and thus insensitive to the choice of small molecules. As a result, several cases of highly efficient (PCE between 6-7.3%) SMA OSCs are achieved. The second part of this presentation will describe the morphology of a new small molecule acceptor with a unique 3D structure. The relationship between molecular structure and morphology is revealed.

  18. Identification of small molecule inhibitors of cytokinesis and single cell wound repair

    PubMed Central

    Clark, Andrew G.; Sider, Jenny R.; Verbrugghe, Koen; Fenteany, Gabriel; von Dassow, George; Bement, William M.

    2013-01-01

    Screening of small molecule libraries offers the potential to identify compounds that inhibit specific biological processes and, ultimately, to identify macromolecules that are important players in such processes. To date, however, most screens of small molecule libraries have focused on identification of compounds that inhibit known proteins or particular steps in a given process, and have emphasized automated primary screens. Here we have used “low tech” in vivo primary screens to identify small molecules that inhibit both cytokinesis and single cell wound repair, two complex cellular processes that possess many common features. The “diversity set”, an ordered array of 1990 compounds available from the National Cancer Institute, was screened in parallel to identify compounds that inhibit cytokinesis in D. excentricus (sand dollar) embryos and single cell wound repair in X. laevis (frog) oocytes. Two small molecules were thus identified: Sph1 and Sph2. Sph1 reduces Rho activation in wound repair and suppresses formation of the spindle midzone during cytokinesis. Sph2 also reduces Rho activation in wound repair and may inhibit cytokinesis by blocking membrane fusion. The results identify two small molecules of interest for analysis of wound repair and cytokinesis, reveal that these processes are more similar than often realized and reveal the potential power of low tech screens of small molecule libraries for analysis of complex cellular processes. PMID:23125193

  19. Development of Potential Small Molecule Therapeutics for Treatment of Ebola Virus.

    PubMed

    Schafer, Adam Michael; Cheng, Han; Lee, Charles; Du, Ruikun; Han, Julianna; Perez, Jasmine; Peet, Norton; Manicassamy, Balaji; Rong, Lijun

    2017-10-10

    Ebola virus has caused 26 outbreaks in 10 different countries since its identification in 1976, making it one of the deadliest emerging viral pathogens. The most recent outbreak in West Africa from 2014-16 was the deadliest yet and culminated in 11,310 deaths out of 28,616 confirmed cases. Currently there are no FDA-approved therapeutics or vaccines to treat Ebola virus infections. The slow development of effective vaccines combined with the severity of past outbreaks emphasizes the need to accelerate research into understanding the virus lifecycle and the development of therapeutics for post exposure treatment. Here we present a summary of the major findings on the Ebola virus replication cycle and the therapeutic approaches explored to treat this devastating disease. The major focus of this review is on small molecule inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Deep Learning for Drug Design: an Artificial Intelligence Paradigm for Drug Discovery in the Big Data Era.

    PubMed

    Jing, Yankang; Bian, Yuemin; Hu, Ziheng; Wang, Lirong; Xie, Xiang-Qun Sean

    2018-03-30

    Over the last decade, deep learning (DL) methods have been extremely successful and widely used to develop artificial intelligence (AI) in almost every domain, especially after it achieved its proud record on computational Go. Compared to traditional machine learning (ML) algorithms, DL methods still have a long way to go to achieve recognition in small molecular drug discovery and development. And there is still lots of work to do for the popularization and application of DL for research purpose, e.g., for small molecule drug research and development. In this review, we mainly discussed several most powerful and mainstream architectures, including the convolutional neural network (CNN), recurrent neural network (RNN), and deep auto-encoder networks (DAENs), for supervised learning and nonsupervised learning; summarized most of the representative applications in small molecule drug design; and briefly introduced how DL methods were used in those applications. The discussion for the pros and cons of DL methods as well as the main challenges we need to tackle were also emphasized.

  1. High-Resolution Photoionization, Photoelectron and Photodissociation Studies. Determination of Accurate Energetic and Spectroscopic Database for Combustion Radicals and Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Cheuk-Yiu

    2016-04-25

    The main goal of this research program was to obtain accurate thermochemical and spectroscopic data, such as ionization energies (IEs), 0 K bond dissociation energies, 0 K heats of formation, and spectroscopic constants for radicals and molecules and their ions of relevance to combustion chemistry. Two unique, generally applicable vacuum ultraviolet (VUV) laser photoion-photoelectron apparatuses have been developed in our group, which have used for high-resolution photoionization, photoelectron, and photodissociation studies for many small molecules of combustion relevance.

  2. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    PubMed

    Wambaugh, Morgan A; Shakya, Viplendra P S; Lewis, Adam J; Mulvey, Matthew A; Brown, Jessica C S

    2017-06-01

    Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine) also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance.

  3. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance

    PubMed Central

    Lewis, Adam J.; Mulvey, Matthew A.

    2017-01-01

    Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine) also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance. PMID:28632788

  4. X-ray characterization of solid small molecule organic materials

    DOEpatents

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  5. Group specific internal standard technology (GSIST) for simultaneous identification and quantification of small molecules

    DOEpatents

    Adamec, Jiri; Yang, Wen-Chu; Regnier, Fred E

    2014-01-14

    Reagents and methods are provided that permit simultaneous analysis of multiple diverse small molecule analytes present in a complex mixture. Samples are labeled with chemically identical but isotopically distince forms of the labeling reagent, and analyzed using mass spectrometry. A single reagent simultaneously derivatizes multiple small molecule analytes having different reactive functional groups.

  6. Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system

    PubMed Central

    Stevens, Richard C.; Soelberg, Scott D.; Near, Steve; Furlong, Clement E.

    2011-01-01

    Saliva provides a useful and non-invasive alternative to blood for many biomedical diagnostic assays. The level of the hormone cortisol in blood and saliva is related to the level of stress. We present here the development of a portable surface plasmon resonance (SPR) biosensor system for detection of cortisol in saliva. Cortisol-specific monoclonal antibodies were used to develop a competition assay with a 6-channel portable SPR biosensor designed in our laboratory. The detection limit of cortisol in laboratory buffers was 0.36 ng/ml (1.0 nM). An in-line filter based on diffusion through a hollow fiber hydrophilic membrane served to separate small molecules from the complex macromolecular matrix of saliva prior to introduction to the sensor surface. The filtering flow cell provided in-line separation of small molecules from salivary mucins and other large molecules with only a 29% reduction of signal compared with direct flow of the same concentration of analyte over the sensor surface. A standard curve for detection of cortisol in saliva was generated with a detection limit of 1.0 ng/ml (3.6 nM), sufficiently sensitive for clinical use. The system will also be useful for a wide range of applications where small molecular weight analytes are found in complex matrices. PMID:18656950

  7. Rapid parameterization of small molecules using the Force Field Toolkit.

    PubMed

    Mayne, Christopher G; Saam, Jan; Schulten, Klaus; Tajkhorshid, Emad; Gumbart, James C

    2013-12-15

    The inability to rapidly generate accurate and robust parameters for novel chemical matter continues to severely limit the application of molecular dynamics simulations to many biological systems of interest, especially in fields such as drug discovery. Although the release of generalized versions of common classical force fields, for example, General Amber Force Field and CHARMM General Force Field, have posited guidelines for parameterization of small molecules, many technical challenges remain that have hampered their wide-scale extension. The Force Field Toolkit (ffTK), described herein, minimizes common barriers to ligand parameterization through algorithm and method development, automation of tedious and error-prone tasks, and graphical user interface design. Distributed as a VMD plugin, ffTK facilitates the traversal of a clear and organized workflow resulting in a complete set of CHARMM-compatible parameters. A variety of tools are provided to generate quantum mechanical target data, setup multidimensional optimization routines, and analyze parameter performance. Parameters developed for a small test set of molecules using ffTK were comparable to existing CGenFF parameters in their ability to reproduce experimentally measured values for pure-solvent properties (<15% error from experiment) and free energy of solvation (±0.5 kcal/mol from experiment). Copyright © 2013 Wiley Periodicals, Inc.

  8. Hypoxia-inducible factor stabilizers and other small-molecule erythropoiesis-stimulating agents in current and preventive doping analysis.

    PubMed

    Beuck, Simon; Schänzer, Wilhelm; Thevis, Mario

    2012-11-01

    Increasing the blood's capacity for oxygen transport by erythropoiesis-stimulating agents (ESAs) constitutes a prohibited procedure of performance enhancement according to the World Anti-Doping Agency (WADA). The advent of orally bio-available small-molecule ESAs such as hypoxia-inducible factor (HIF) stabilizers in the development of novel anti-anaemia therapies expands the list of potential ESA doping techniques. Here, the erythropoiesis-stimulating properties and doping relevance of experimental HIF-stabilizers, such as cobaltous chloride, 3,4-dihydroxybenzoic acid or GSK360A, amongst others, are discussed. The stage of clinical trials is reviewed for the anti-anaemia drug candidates FG-2216, FG-4592, GSK1278863, AKB-6548, and BAY85-3934. Currently available methods and strategies for the determination of selected HIF stabilizers in sports drug testing are based on liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). For the support of further analytical assay development, patents claiming distinct compounds for the use in HIF-mediated therapies are evaluated and exemplary molecular structures of HIF stabilizers presented. Moreover, data concerning the erythropoiesis-enhancing effects of the GATA inhibitors K7174 and K11706 as well as the lipidic small-molecule ESA PBI-1402 are elucidated the context of doping analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Inhibition of Akt with small molecules and biologics: historical perspective and current status of the patent landscape

    PubMed Central

    Mattmann, Margrith E; Stoops, Sydney L; Lindsley, Craig W

    2014-01-01

    Introduction Akt plays a pivotal role in cell survival and proliferation through a number of downstream effectors; unregulated activation of the PI3K/PTEN/Akt pathway is a prominent feature of many human cancers. Akt is considered an attractive target for cancer therapy by the inhibition of Akt alone or in combination with standard cancer chemotherapeutics. Both preclinical animal studies and clinical trials in humans have validated Akt as an important target of cancer drug discovery. Area covered A historical perspective of Akt inhibitors, including PI analogs, ATP-competitive and allosteric Akt inhibitors, along with other inhibitory mechanisms are reviewed in this paper with a focus on issued patents, patent applications and a summary of clinical trial updates since the last review in 2007. Expert opinion A vast diversity of inhibitors of Akt, both small molecule and biologic, have been developed in the past 5 years, with over a dozen in various phases of clinical development, and several displaying efficacy in humans. While it is not yet clear which mechanism of Akt inhibition will be optimal in humans, or which Akt isoforms to inhibit, or whether a small molecule or biologic agent will be best, data to all of these points will be available in the near future. PMID:21635152

  10. Targeting thyroid diseases with TSH receptor analogs.

    PubMed

    Galofré, Juan C; Chacón, Ana M; Latif, Rauf

    2013-12-01

    The thyroid-stimulating hormone (TSH) receptor (TSHR) is a major regulator of thyroid function and growth, and is the key antigen in several pathological conditions including hyperthyroidism, hypothyroidism, and thyroid tumors. Various effective treatment strategies are currently available for many of these clinical conditions such as antithyroid drugs or radioiodine therapy, but they are not devoid of side effects. In addition, treatment of complications of Graves' disease such as Graves' ophthalmopathy is often difficult and unsatisfactory using current methods. Recent advances in basic research on both in vitro and in vivo models have suggested that TSH analogs could be used for diagnosis and treatment of some of the thyroid diseases. The advent of high-throughput screening methods has resulted in a group of TSH analogs called small molecules, which have the potential to be developed as promising drugs. Small molecules are low molecular weight compounds with agonist, antagonist and, in some cases, inverse agonist activity on TSHR. This short review will focus on current advances in development of TSH analogs and their potential clinical applications. Rapid advances in this field may lead to the conduct of clinical trials of small molecules related to TSHR for the management of Graves' disease, thyroid cancer, and thyroid-related osteoporosis in the coming years. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  11. Membrane Fusion Induced by Small Molecules and Ions

    PubMed Central

    Mondal Roy, Sutapa; Sarkar, Munna

    2011-01-01

    Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles. These steps are governed by energy barriers, which need to be overcome to complete fusion. Structural reorganization of big molecules like proteins/peptides, supplies the required driving force to overcome the energy barrier of the different intermediate steps. Small molecules/ions do not share this advantage. Hence fusion induced by small molecules/ions is expected to be different from that induced by proteins/peptides. Although several reviews exist on membrane fusion, no recent review is devoted solely to small moleculs/ions induced membrane fusion. Here we intend to present, how a variety of small molecules/ions act as independent fusogens. The detailed mechanism of some are well understood but for many it is still an unanswered question. Clearer understanding of how a particular small molecule can control fusion will open up a vista to use these moleucles instead of proteins/peptides to induce fusion both in vivo and in vitro fusion processes. PMID:21660306

  12. Strategies in the design of small-molecule fluorescent probes for peptidases.

    PubMed

    Chen, Laizhong; Li, Jing; Du, Lupei; Li, Minyong

    2014-11-01

    Peptidases, which can cleave specific peptide bonds in innumerable categories of substrates, usually present pivotal positions in protein activation, cell signaling and regulation as well as in the origination of amino acids for protein generation or application in other metabolic pathways. They are also involved in many pathological conditions, such as cancer, atherosclerosis, arthritis, and neurodegenerative disorders. This review article aims to conduct a wide-ranging survey on the development of small-molecule fluorescent probes for peptidases, as well as to realize the state of the art in the tailor-made probes for diverse types of peptidases. © 2014 Wiley Periodicals, Inc.

  13. Docking and scoring in virtual screening for drug discovery: methods and applications.

    PubMed

    Kitchen, Douglas B; Decornez, Hélène; Furr, John R; Bajorath, Jürgen

    2004-11-01

    Computational approaches that 'dock' small molecules into the structures of macromolecular targets and 'score' their potential complementarity to binding sites are widely used in hit identification and lead optimization. Indeed, there are now a number of drugs whose development was heavily influenced by or based on structure-based design and screening strategies, such as HIV protease inhibitors. Nevertheless, there remain significant challenges in the application of these approaches, in particular in relation to current scoring schemes. Here, we review key concepts and specific features of small-molecule-protein docking methods, highlight selected applications and discuss recent advances that aim to address the acknowledged limitations of established approaches.

  14. Targeting oxidant-dependent mechanisms for the treatment of respiratory diseases and their comorbidities.

    PubMed

    Thomson, Neil C

    2018-06-01

    Oxidative stress is implicated in the pathogenesis of respiratory diseases, such as COPD and its comorbidities, asthma, idiopathic pulmonary fibrosis and radiation pneumonitis. Antioxidants drugs, such as small molecule thiols, nuclear erythroid-2 related factor 2 activators and catalytic enzyme mimetics have been developed to target oxidant-dependent mechanisms. The therapeutic effects of antioxidants have been generally disappointing. A small number of antioxidants are approved for clinical use, such as the small molecule thiol N-acetyl-l-cysteine for chronic obstructive pulmonary disease, and in the United States, the superoxide dismutase mimetic AEOL 10150 for severe radiation pneumonitis. The future use of antioxidants for the treatment of chronic respiratory diseases may require a precision medicine approach to identify responsive patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Chemical chronobiology: Toward drugs manipulating time.

    PubMed

    Wallach, Thomas; Kramer, Achim

    2015-06-22

    Circadian clocks are endogenous timing systems orchestrating the daily regulation of a huge variety of physiological, metabolic and behavioral processes. These clocks are important for health - in mammals, their disruption leads to a diverse number of pathologies. While genetic and biochemical approaches largely uncovered the molecular bases of circadian rhythm generation, chemical biology strategies targeting the circadian oscillator by small chemical compounds are increasingly developed. Here, we review the recent progress in the identification of small molecules modulating circadian rhythms. We focus on high-throughput screening approaches using circadian bioluminescence reporter cell lines as well as describe alternative mechanistic screens. Furthermore, we discuss the potential for chemical optimization of small molecule ligands with regard to the recent progress in structural chronobiology. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Hierarchical virtual screening approaches in small molecule drug discovery.

    PubMed

    Kumar, Ashutosh; Zhang, Kam Y J

    2015-01-01

    Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Synthesis of many different types of organic small molecules using one automated process.

    PubMed

    Li, Junqi; Ballmer, Steven G; Gillis, Eric P; Fujii, Seiko; Schmidt, Michael J; Palazzolo, Andrea M E; Lehmann, Jonathan W; Morehouse, Greg F; Burke, Martin D

    2015-03-13

    Small-molecule synthesis usually relies on procedures that are highly customized for each target. A broadly applicable automated process could greatly increase the accessibility of this class of compounds to enable investigations of their practical potential. Here we report the synthesis of 14 distinct classes of small molecules using the same fully automated process. This was achieved by strategically expanding the scope of a building block-based synthesis platform to include even C(sp3)-rich polycyclic natural product frameworks and discovering a catch-and-release chromatographic purification protocol applicable to all of the corresponding intermediates. With thousands of compatible building blocks already commercially available, many small molecules are now accessible with this platform. More broadly, these findings illuminate an actionable roadmap to a more general and automated approach for small-molecule synthesis. Copyright © 2015, American Association for the Advancement of Science.

  18. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry

    DOE PAGES

    Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.; ...

    2016-08-30

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less

  19. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less

  20. Small Molecule Signaling Agents: The Integrated Chemistry and Biochemistry of Nitrogen Oxides, Oxides of Carbon, Dioxygen, Hydrogen Sulfide, and Their Derived Species

    PubMed Central

    Fukuto, Jon M.; Carrington, Samantha J.; Tantillo, Dean J.; Harrison, Jason G.; Ignarro, Louis J.; Freeman, Bruce A.; Chen, Andrew; Wink, David A.

    2014-01-01

    Several small molecule species formally known primarily as toxic gases have, over the past 20 years, been shown to be endogenously generated signaling molecules. The biological signaling associated with the small molecules NO, CO, H2S (and the nonendogenously generated O2), and their derived species have become a topic of extreme interest. It has become increasingly clear that these small molecule signaling agents form an integrated signaling web that affects/regulates numerous physiological processes. The chemical interactions between these species and each other or biological targets is an important factor in their roles as signaling agents. Thus, a fundamental understanding of the chemistry of these molecules is essential to understanding their biological/physiological utility. This review focuses on this chemistry and attempts to establish the chemical basis for their signaling functions. PMID:22263838

  1. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells

    PubMed Central

    Deng, Dan; Zhang, Yajie; Zhang, Jianqi; Wang, Zaiyu; Zhu, Lingyun; Fang, Jin; Xia, Benzheng; Wang, Zhen; Lu, Kun; Ma, Wei; Wei, Zhixiang

    2016-01-01

    Solution-processable small molecules for organic solar cells have attracted intense attention for their advantages of definite molecular structures compared with their polymer counterparts. However, the device efficiencies based on small molecules are still lower than those of polymers, especially for inverted devices, the highest efficiency of which is <9%. Here we report three novel solution-processable small molecules, which contain π-bridges with gradient-decreased electron density and end acceptors substituted with various fluorine atoms (0F, 1F and 2F, respectively). Fluorination leads to an optimal active layer morphology, including an enhanced domain purity, the formation of hierarchical domain size and a directional vertical phase gradation. The optimal morphology balances charge separation and transfer, and facilitates charge collection. As a consequence, fluorinated molecules exhibit excellent inverted device performance, and an average power conversion efficiency of 11.08% is achieved for a two-fluorine atom substituted molecule. PMID:27991486

  2. p38 MAPK inhibitors: a patent review (2012 - 2013).

    PubMed

    Bühler, Stefanie; Laufer, Stefan A

    2014-05-01

    The p38 MAPK is a ubiquitous target in the research-based pharmaceutical industry. It plays a decisive role in the regulation of the production of proinflammatory cytokines. Since novel biological therapies have revolutionized the treatment of chronic inflammatory diseases, an intensive global search is underway for small molecules for the same application. Herein, the patents and the corresponding publications of international companies, which focus on the development and identification of a new generation of small-molecule p38 inhibitors, are summarized. The most promising approach is the development of linear binders, which induce a glycine flip at Gly110 of the kinase hinge region by a carbonyl oxygen atom of the respective ligand. The major focus of the patent works was the application of molecules in new indications. Previous applications were in the treatment of rheumatoid arthritis; currently, there are several new applications, including pulmonary diseases, cancer and Alzheimer's disease. Targeting p38 upstream kinases and downstream effectors has also proved to be a very promising step in the development of more effective inhibitors. A further trend is drug combination, applied to a wide range of indications, such as chronic obstructive pulmonary disease and cancer.

  3. [Effect of annealing temperature on the crystallization and spectroscopic response of a small-molecule semiconductor doped in polymer film].

    PubMed

    Yin, Ming; Zhang, Xin-Ping; Liu, Hong-Mei

    2012-11-01

    The crystallization properties of the perylene (EPPTC) molecules doped in the solid film of the derivative of polyfluorene (F8BT) at different annealing temperatures, as well as the consequently induced spectroscopic response of the exciplex emission in the heterojunction structures, were studied in the present paper. Experimental results showed that the phase separation between the small and the polymer molecules in the blend film is enhanced with increasing the annealing temperature, which leads to the crystallization of the EPPTC molecules due to the strong pi-pi stacking. The size of the crystal phase increases with increasing the annealing temperature. However, this process weakens the mechanisms of the heterojunction configuration, thus, the total interfacial area between the small and the polymer molecules and the amount of exciplex are reduced significantly in the blend film. Meanwhile, the energy transfer from the polymer to the small molecules is also reduced. As a result, the emission from the exciplex becomes weaker with increasing the annealing temperature, whereas the stronger emission from the polymer molecules and from the crystal phase of the small molecules can be observed. These experimental results are very important for understanding and tailoring the organic heterojunction structures. Furthermore, this provides photophysics for improving the performance of photovoltaic or solar cell devices.

  4. Summary of the EMA Joint Regulators/Industry QbD workshop (London, UK; 28-29 January 2014).

    PubMed

    Cook, Graham; France, Georges; Holte, Øyvind; Lorenti, Giampiero; Tainsh, David

    2016-01-01

    This paper summarizes the discussions and insights gained from the key themes that emerged during the Quality by Design (QbD) Workshop held at the European Medicines Agency (EMA) offices in London, UK, on 28-29 January 2014. Industry and regulators shared practical experiences from six case studies (five approved small molecule products and one phase 3 biotechnological product) based on QbD submissions by five companies (AstraZeneca, GlaxoSmithKline, Novartis, NovoNordisk, and Pfizer).The case studies covered a range of different development, regulatory submission, and post-approval aspects of QbD and were developed through confidential discussions between the company representatives and regulators. Key themes that emerged from the workshop discussions were: 1. presentation of information in submissions (development story and the presentation of information in marketing authorization applications; risk assessment and criticality); 2. development aspects (design space; use of models; control strategy); and 3. post-approval aspects (lifecycle management; dossier-quality system interactions; handling of deviations). Many aspects of QbD for biotechnological products are similar to small molecules, but there are some important differences highlighted in this paper.The final section of the paper discusses some proposals for future developments to address the issues that were identified. This paper summarizes the discussions and insights gained from the key themes that emerged during the Quality by Design (QbD) Workshop held at the European Medicines Agency offices in London, UK, on 28-29 January 2014. Industry and regulators shared practical experiences from six case studies (five approved small-molecule products and one phase 3 biotechnological product) based on QbD submissions by five companies (AstraZeneca, GlaxoSmithKline, Novartis, NovoNordisk, and Pfizer).The case studies covered a range of different development, regulatory submission, and post-approval aspects of QbD and were developed through confidential discussions between the company representatives and regulators. Key themes that emerged from the workshop discussions were: 1. presentation of information in submissions (development story and the presentation of information in marketing authorization applications; risk assessment and criticality); 2. development aspects (design space; use of models; control strategy); and 3. post-approval aspects (lifecycle management; dossier-quality system interactions; handling of deviations). Many aspects of QbD for biotechnological products are similar to small molecules, but there are some important differences highlighted in this paper.The final section of the paper discusses some proposals for future developments to address the issues that were identified. © PDA, Inc. 2016.

  5. Hippocampal and cortical neuronal growth mediated by the small molecule natural product clovanemagnolol.

    PubMed

    Khaing, Zin; Kang, Danby; Camelio, Andrew M; Schmidt, Christine E; Siegel, Dionicio

    2011-08-15

    The use of small molecule surrogates of growth factors that directly or indirectly promote growth represents an attractive approach to regenerative medicine. With synthetic access to clovanemagnolol, a small molecule initially isolated from the bark of the Bigleaf Magnolia tree, we have examined the small molecule's ability to promote growth of embryonic hippocampal and cortical neurons in serum-free medium. Comparisons with magnolol, a known promoter of growth, reveals that clovanmagnolol is a potent neurotrophic agent, promoting neuronal growth at concentrations of 10 nM. In addition, both clovanemagnolol and magnolol promote growth through a biphasic dose response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Fractal analysis of lateral movement in biomembranes.

    PubMed

    Gmachowski, Lech

    2018-04-01

    Lateral movement of a molecule in a biomembrane containing small compartments (0.23-μm diameter) and large ones (0.75 μm) is analyzed using a fractal description of its walk. The early time dependence of the mean square displacement varies from linear due to the contribution of ballistic motion. In small compartments, walking molecules do not have sufficient time or space to develop an asymptotic relation and the diffusion coefficient deduced from the experimental records is lower than that measured without restrictions. The model makes it possible to deduce the molecule step parameters, namely the step length and time, from data concerning confined and unrestricted diffusion coefficients. This is also possible using experimental results for sub-diffusive transport. The transition from normal to anomalous diffusion does not affect the molecule step parameters. The experimental literature data on molecular trajectories recorded at a high time resolution appear to confirm the modeled value of the mean free path length of DOPE for Brownian and anomalous diffusion. Although the step length and time give the proper values of diffusion coefficient, the DOPE speed calculated as their quotient is several orders of magnitude lower than the thermal speed. This is interpreted as a result of intermolecular interactions, as confirmed by lateral diffusion of other molecules in different membranes. The molecule step parameters are then utilized to analyze the problem of multiple visits in small compartments. The modeling of the diffusion exponent results in a smooth transition to normal diffusion on entering a large compartment, as observed in experiments.

  7. Electric-field controlled capture or release of phosgene molecule on graphene-based materials: First principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Sun, Hao; Wang, Fengdi; Zhang, Wanqiao; Ma, Junmei; Tang, Shuwei; Gong, Hongwei; Zhang, Jingping

    2018-01-01

    Phosgene, one of the common chemicals in many industry areas, is extremely harmful to human and the environment. Thus, it is necessary to design the advanced materials to detect or remove phosgene effectively. In fact, detection or adsorption of some small gas molecules are not the most difficult to actualize. Whereas, one of the primary challenges is the gas molecules desorption from the adsorbent for the purpose of recycling of substrate materials since the small gas molecules interacts strongly with the substrates. In this work, the interaction between the phosgene molecule and pristine or Mn-doped graphene sheets with different electric field and charge state are investigated by using first-principles simulations. Our results show that the adsorption energy of phosgene on Mn-doped graphene is dramatically weakened by applying an external negative electric field but is obviously enhanced by introducing a positive electric field. These processes can be easily controlled by transform the direction of the electric field. Thus, introducing an external electric field or charge in the system may be an excellent method to control the phosgene molecule adsorption and desorption on Mn-doped graphene sheet. All energy needed is just a small quantity of electricity, which satisfies well the requirement of green chemistry and sustainable development. The mechanism and reason of reversible adsorption/desorption is also revealed in terms of energy, charge distribution and orbital analysis. Such spontaneous adsorption or desorption makes Mn-doped graphene to be used as an excellent reusable scavenger of phosgene.

  8. Biosynthesis of Lincosamide Antibiotics: Reactions Associated with Degradation and Detoxification Pathways Play a Constructive Role.

    PubMed

    Zhang, Daozhong; Tang, Zhijun; Liu, Wen

    2018-06-19

    Natural products typically are small molecules produced by living organisms. These products possess a wide variety of biological activities and thus have historically played a critical role in medicinal chemistry and chemical biology either as chemotherapeutic agents or as useful tools. Natural products are not synthesized for use by human beings; rather, living organisms produce them in response to various biochemical processes and environmental concerns, both internal and external. These processes/concerns are often dynamic and thus motivate the diversification, optimization, and selection of small molecules in line with changes in biological function. Consequently, the interactions between living organisms and their environments serve as an engine that drives coevolution of natural products and their biological functions and ultimately programs the constant theme of small-molecule development in nature based on biosynthesis generality and specificity. Following this theme, we herein review the biosynthesis of lincosamide antibiotics and dissect the process through which nature creates an unusual eight-carbon aminosugar (lincosamide) and then functionalizes this common high-carbon chain-containing sugar core with diverse l-proline derivatives and sulfur appendages to form individual members, including the clinically useful anti-infective agent lincomycin A and its naturally occurring analogues celesticetin and Bu-2545. The biosynthesis of lincosamide antibiotics is unique in that it results from an intersection of anabolic and catabolic chemistry. Many reactions that are usually involved in degradation and detoxification play a constructive role in biosynthetic processes. Formation of the trans-4-propyl-l-proline residue in lincomycin A biosynthesis requires an oxidation-associated degradation-like pathway composed of heme peroxidase-catalyzed ortho-hydroxylation and non-heme 2,3-dioxygenase-catalyzed extradiol cleavage for l-tyrosine processing prior to the building-up process. Mycothiol (MSH) and ergothioneine (EGT), two small-molecule thiols that are known for their redox-relevant roles in protection against various endogenous and exogenous stresses, function through two unusual S-glycosylations to mediate an eight-carbon aminosugar transfer, activation, and modification during the molecular assembly and tailoring processes in lincosamide antibiotic biosynthesis. Related intermediates include an MSH S-conjugate, mercapturic acid, and a thiomethyl product, which are reminiscent of intermediates found in thiol-mediated detoxification metabolism. In these biosynthetic pathways, "old" protein folds can result in "new" enzymatic activity, such as the DinB-2 fold protein for thiol exchange between EGT and MSH, the γ-glutamyltranspeptidase homologue for C-C bond cleavage, and the pyridoxal-5'-phosphate-dependent enzyme for diverse S-functionalization, generating interest in how nature develops remarkably diverse biochemical functions using a limited range of protein scaffolds. These findings highlight what we can learn from natural product biosynthesis, the recognition of its generality and specificity, and the natural theme of the development of bioactive small molecules, which enables the diversification process to advance and expand small-molecule functions.

  9. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples.

    PubMed

    Cui, Liang; Zou, Yuan; Lin, Ninghang; Zhu, Zhi; Jenkins, Gareth; Yang, Chaoyong James

    2012-07-03

    Fluorescence anisotropy (FA) is a reliable and excellent choice for fluorescence sensing. One of the key factors influencing the FA value for any molecule is the molar mass of the molecule being measured. As a result, the FA method with functional nucleic acid aptamers has been limited to macromolecules such as proteins and is generally not applicable for the analysis of small molecules because their molecular masses are relatively too small to produce observable FA value changes. We report here a molecular mass amplifying strategy to construct anisotropy aptamer probes for small molecules. The probe is designed in such a way that only when a target molecule binds to the probe does it activate its binding ability to an anisotropy amplifier (a high molecular mass molecule such as protein), thus significantly increasing the molecular mass and FA value of the probe/target complex. Specifically, a mass amplifying probe (MAP) consists of a targeting aptamer domain against a target molecule and molecular mass amplifying aptamer domain for the amplifier protein. The probe is initially rendered inactive by a small blocking strand partially complementary to both target aptamer and amplifier protein aptamer so that the mass amplifying aptamer domain would not bind to the amplifier protein unless the probe has been activated by the target. In this way, we prepared two probes that constitute a target (ATP and cocaine respectively) aptamer, a thrombin (as the mass amplifier) aptamer, and a fluorophore. Both probes worked well against their corresponding small molecule targets, and the detection limits for ATP and cocaine were 0.5 μM and 0.8 μM, respectively. More importantly, because FA is less affected by environmental interferences, ATP in cell media and cocaine in urine were directly detected without any tedious sample pretreatment. Our results established that our molecular mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective detection of small molecules by means of FA in complex biological samples.

  10. RAMBAs for Breast Cancer Prevention and Treatment

    DTIC Science & Technology

    2009-01-01

    activated by CYPs only in cancer cells. Finally, the expression of CYPs within tumors has been utilized in the development of bioreductive molecules...enable us to utilize the Catalyst molecular modeling program to create a general phar- macophore model that can differentiate compounds as active or...the discovery and char- acterization of retinoid receptor and the realization of these compounds as nonsteroidal small-molecule hor- mones .1 All-trans

  11. Call for Action: Invasive Fungal Infections Associated With Ibrutinib and Other Small Molecule Kinase Inhibitors Targeting Immune Signaling Pathways.

    PubMed

    Chamilos, Georgios; Lionakis, Michail S; Kontoyiannis, Dimitrios P

    2018-01-06

    Opportunistic infections caused by Pneumocystis jirovecii, Cryptococcus neoformans, and ubiquitous airborne filamentous fungi have been recently reported in patients with hematological cancers historically considered at low risk for invasive fungal infections (IFIs), after receipt of the Bruton tyrosine kinase inhibitor ibrutinib. The spectrum and severity of IFIs often observed in these patients implies the presence of a complex immunodeficiency that may not be solely attributed to mere inhibition of Bruton tyrosine kinase. In view of the surge in development of small molecule kinase inhibitors for treatment of malignant and autoimmune diseases, it is possible that there would be an emergence of IFIs associated with the effects of these molecules on the immune system. Preclinical assessment of the immunosuppressive effects of kinase inhibitors and human studies aimed at improving patient risk stratification for development of IFIs could lead to prevention, earlier diagnosis, and better outcomes in affected patients. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  12. High-throughput identification of promiscuous inhibitors from screening libraries with the use of a thiol-containing fluorescent probe.

    PubMed

    McCallum, Megan M; Nandhikonda, Premchendar; Temmer, Jonathan J; Eyermann, Charles; Simeonov, Anton; Jadhav, Ajit; Yasgar, Adam; Maloney, David; Arnold, Alexander Leggy

    2013-07-01

    Testing small molecules for their ability to modify cysteine residues of proteins in the early stages of drug discovery is expected to accelerate our ability to develop more selective drugs with lesser side effects. In addition, this approach also enables the rapid evaluation of the mode of binding of new drug candidates with respect to thiol reactivity and metabolism by glutathione. Herein, we describe the development of a fluorescence-based high-throughput assay that allows the identification of thiol-reactive compounds. A thiol-containing fluorescent probe, MSTI, was synthesized and used to evaluate small molecules from the Library of Pharmacologically Active Compounds (LOPAC) collection of bioactive molecules. LOPAC compounds that are known to react with sulfur nucleophiles were identified with this assay, for example, irreversible protease inhibitors, nitric oxide-releasing compounds, and proton-pump inhibitors. The results confirm that both electrophilic and redox reactive compounds can be quickly identified in a high-throughput manner, enabling the assessment of screening libraries with respect to thiol-reactive compounds.

  13. Emergence of complex chemistry on an organic monolayer.

    PubMed

    Prins, Leonard J

    2015-07-21

    In many origin-of-life scenarios, inorganic materials, such as FeS or mineral clays, play an important role owing to their ability to concentrate and select small organic molecules on their surface and facilitate their chemical transformations into new molecules. However, considering that life is made up of organic matter, at a certain stage during the evolution the role of the inorganic material must have been taken over by organic molecules. How this exactly happened is unclear, and, indeed, a big gap separates the rudimentary level of organization involving inorganic materials and the complex organization of cells, which are the building blocks of life. Over the past years, we have extensively studied the interaction of small molecules with monolayer-protected gold nanoparticles (Au NPs) for the purpose of developing innovative sensing and catalytic systems. During the course of these studies, we realized that the functional role of this system is very similar to that typically attributed to inorganic surfaces in the early stages of life, with the important being difference that the functional properties (molecular recognition, catalysis, signaling, adaptation) originate entirely from the organic monolayer rather than the inorganic support. This led us to the proposition that this system may serve as a model that illustrates how the important role of inorganic surfaces in dictating chemical processes in the early stages of life may have been taken over by organic matter. Here, we reframe our previously obtained results in the context of the origin-of-life question. The following functional roles of Au NPs will be discussed: the ability to concentrate small molecules and create different local populations, the ability to catalyze the chemical transformation of bound molecules, and, finally, the ability to install rudimentary signaling pathways and display primitive adaptive behavior. In particular, we will show that many of the functional properties of the system originate from two features: the presence of metal ions that are complexed in the organic monolayer and the multivalent nature of the system. Complexed metal ions play an important role in determining the affinity and selectivity of the interaction with small molecules, but serve also as regulatory elements for determining how many molecules are bound simultaneously. Importantly, neighboring metal ion complexes also create catalytic pockets in which two metal ions cooperatively catalyze the cleavage of an RNA-model compound. The multivalent nature of the system permits multiple noncovalent interactions with small molecules that enhances the affinity, but is also at the basis of simple signal transduction pathways and adaptive behavior.

  14. Influence of thermocleavable functionality on organic field-effect transistor performance of small molecules

    NASA Astrophysics Data System (ADS)

    Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar; Venugopalan, Vijay

    2017-06-01

    Diketopyrrolopyrrole based donor-acceptor-donor conjugated small molecules using ethylene dioxythiophene as a donor was synthesized. Electron deficient diketopyrrolopyrrole unit was substituted with thermocleavable (tert-butyl acetate) side chains. The thermal treatment of the molecules at 160 °C eliminated the tert-butyl ester group results in the formation of corresponding acid. Optical and theoretical studies revealed that the molecules adopted a change in molecular arrangement after thermolysis. The conjugated small molecules possessed p-channel charge transport characteristics in organic field effect transistors. The charge carrier mobility was increased after thermolysis of tert-butyl ester group to 5.07 × 10-5 cm2/V s.

  15. Development of small bisquaternary cholinesterase inhibitors as drugs for pre-treatment of nerve agent poisonings

    PubMed Central

    Kuca, Kamil; Karasova, Jana Zdarova; Soukup, Ondrej; Kassa, Jiri; Novotna, Eva; Sepsova, Vendula; Horova, Anna; Pejchal, Jaroslav; Hrabinova, Martina; Vodakova, Eva; Jun, Daniel; Nepovimova, Eugenie; Valis, Martin; Musilek, Kamil

    2018-01-01

    Background Intoxication by nerve agents could be prevented by using small acetylcholinesterase inhibitors (eg, pyridostigmine) for potentially exposed personnel. However, the serious side effects of currently used drugs led to research of novel potent molecules for prophylaxis of organophosphorus intoxication. Methods The molecular design, molecular docking, chemical synthesis, in vitro methods (enzyme inhibition, cytotoxicity, and nicotinic receptors modulation), and in vivo methods (acute toxicity and prophylactic effect) were used to study bispyridinium, bisquinolinium, bisisoquinolinium, and pyridinium-quinolinium/isoquinolinium molecules presented in this study. Results The studied molecules showed non-competitive inhibitory ability towards human acetylcholinesterase in vitro that was further confirmed by molecular modelling studies. Several compounds were selected for further studies. First, their cytotoxicity, nicotinic receptors modulation, and acute toxicity (lethal dose for 50% of laboratory animals [LD50]; mice and rats) were tested to evaluate their safety with promising results. Furthermore, their blood levels were measured to select the appropriate time for prophylactic administration. Finally, the protective ratio of selected compounds against soman-induced toxicity was determined when selected compounds were found similarly potent or only slightly better to standard pyridostigmine. Conclusion The presented small bisquaternary molecules did not show overall benefit in prophylaxis of soman-induced in vivo toxicity. PMID:29563775

  16. Small Molecule Inhibition of cAMP Response Element Binding Protein in Human Acute Myeloid Leukemia Cells

    PubMed Central

    Mitton, Bryan; Chae, Hee-Don; Hsu, Katie; Dutta, Ritika; Aldana-Masangkay, Grace; Ferrari, Roberto; Davis, Kara; Tiu, Bruce C.; Kaul, Arya; Lacayo, Norman; Dahl, Gary; Xie, Fuchun; Li, Bingbing X.; Breese, Marcus R.; Landaw, Elliot M.; Nolan, Garry; Pellegrini, Matteo; Romanov, Sergei; Xiao, Xiangshu; Sakamoto, Kathleen M.

    2016-01-01

    The transcription factor CREB (cAMP Response Element Binding Protein) is overexpressed in the majority of acute myeloid leukemia (AML) patients, and this is associated with a worse prognosis. Previous work revealed that CREB overexpression augmented AML cell growth, while CREB knockdown disrupted key AML cell functions in vitro. In contrast, CREB knockdown had no effect on long-term hematopoietic stem cell activity in mouse transduction/transplantation assays. Together, these studies position CREB as a promising drug target for AML. To test this concept, a small molecule inhibitor of CREB, XX-650-23, was developed. This molecule blocks a critical interaction between CREB and its required co-activator CBP (CREB Binding Protein), leading to disruption of CREB-driven gene expression. Inhibition of CBP-CREB interaction induced apoptosis and cell cycle arrest in AML cells, and prolonged survival in vivo in mice injected with human AML cells. XX-650-23 had little toxicity on normal human hematopoietic cells and tissues in mice. To understand the mechanism of XX-650-23, we performed RNA-seq, ChIP-seq and Cytometry Time of Flight with human AML cells. Our results demonstrate that small molecule inhibition of CBP-CREB interaction mostly affects apoptotic, cell cycle, and survival pathways, which may represent a novel approach for AML therapy. PMID:27211267

  17. Nanoprobe-Enhanced, Split Aptamer-Based Electrochemical Sandwich Assay for Ultrasensitive Detection of Small Molecules.

    PubMed

    Zhao, Tao; Liu, Ran; Ding, Xiaofan; Zhao, Juncai; Yu, Haixiang; Wang, Lei; Xu, Qing; Wang, Xuan; Lou, Xinhui; He, Miao; Xiao, Yi

    2015-08-04

    It is quite challenging to improve the binding affinity of antismall molecule aptamers. We report that the binding affinity of anticocaine split aptamer pairs improved by up to 66-fold by gold nanoparticles (AuNP)-attached aptamers due to the substantially increased local concentration of aptamers and multiple and simultaneous ligand interactions. The significantly improved binding affinity enables the detection of small molecule targets with unprecedented sensitivity, as demonstrated in nanoprobe-enhanced split aptamer-based electrochemical sandwich assays (NE-SAESA). NE-SAESA replaces the traditional molecular reporter probe with AuNPs conjugated to multiple reporter probes. The increased binding affinity allowed us to use 1,000-fold lower reporter probe concentrations relative to those employed in SAESA. We show that the near-elimination of background in NE-SAESA effectively improves assay sensitivity by ∼1,000-100,000-fold for ATP and cocaine detection, relative to equivalent SAESA. With the ongoing development of new strategies for the selection of aptamers, we anticipate that our sensor platform should offer a generalizable approach for the high-sensitivity detection of diverse targets. More importantly, we believe that NE-SAESA represents a novel strategy to improve the binding affinity between a small molecule and its aptamer and potentially can be extended to other detection platforms.

  18. Screening for small molecule inhibitors of Toxoplasma gondii.

    PubMed

    Kortagere, Sandhya

    2012-12-01

    Toxoplasma gondii, the agent that causes toxoplasmosis, is an opportunistic parasite that infects many mammalian species. It is an obligate intracellular parasite that causes severe congenital neurological and ocular disease mostly in immunocompromised humans. The current regimen of therapy includes only a few medications that often lead to hypersensitivity and toxicity. In addition, there are no vaccines available to prevent the transmission of this agent. Therefore, safer and more effective medicines to treat toxoplasmosis are urgently needed. The author presents in silico and in vitro strategies that are currently used to screen for novel targets and unique chemotypes against T. gondii. Furthermore, this review highlights the screening technologies and characterization of some novel targets and new chemical entities that could be developed into highly efficacious treatments for toxoplasmosis. A number of diverse methods are being used to design inhibitors against T. gondii. These include ligand-based methods, in which drugs that have been shown to be efficacious against other Apicomplexa parasites can be repurposed to identify lead molecules against T. gondii. In addition, structure-based methods use currently available repertoire of structural information in various databases to rationally design small-molecule inhibitors of T. gondii. Whereas the screening methods have their advantages and limitations, a combination of methods is ideally suited to design small-molecule inhibitors of complex parasites such as T. gondii.

  19. Cell Lines Expressing Nuclear and/or Mitochondrial RNAse H1 | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Institute of Child Health & Human Development (NICHD), Program in Genomics of Differentiation, seeks interested parties to further co-develop small molecule inhibitors of RNase H1, especially in regards to genome instability, transcription, and translation.

  20. Discovery of Small Molecules that Inhibit the Disordered Protein, p27Kip1

    PubMed Central

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha; Ramanathan, Arvind; Zhang, Weixing; Shelat, Anang A.; Zuo, Jian; Kriwacki, Richard W.

    2015-01-01

    Disordered proteins are highly prevalent in biological systems, they control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27Kip1 (p27). Two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groups of small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule:disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of-principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A). PMID:26507530

  1. Discovery of Small Molecules that Inhibit the Disordered Protein, p27 Kip1

    DOE PAGES

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha; ...

    2015-10-28

    In disordered proteins we see that they are highly prevalent in biological systems. They control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27 Kip1 (p27). Moreover, two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groupsmore » of small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule: disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of- principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A).« less

  2. The Free Energy of Small Solute Permeation through the Escherichia coli Outer Membrane Has a Distinctly Asymmetric Profile

    DOE PAGES

    Carpenter, Timothy S.; Parkin, Jamie; Khalid, Syma

    2016-08-12

    Permeation of small molecules across cell membranes is a ubiquitous process in biology and is dependent on the principles of physical chemistry at the molecular level. Here we use atomistic molecular dynamics simulations to calculate the free energy of permeation of a range of small molecules through a model of the outer membrane of Escherichia coli, an archetypical Gram-negative bacterium. The model membrane contains lipopolysaccharide (LPS) molecules in the outer leaflet and phospholipids in the inner leaflet. Our results show that the energetic barriers to permeation through the two leaflets of the membrane are distinctly asymmetric; the LPS headgroups providemore » a less energetically favorable environment for organic compounds than do phospholipids. In summary, we provide the first reported estimates of the relative free energies associated with the different chemical environments experienced by solutes as they attempt to cross the outer membrane of a Gram-negative bacterium. Furthermore, these results provide key insights for the development of novel antibiotics that target these bacteria.« less

  3. The Free Energy of Small Solute Permeation through the Escherichia coli Outer Membrane Has a Distinctly Asymmetric Profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Timothy S.; Parkin, Jamie; Khalid, Syma

    Permeation of small molecules across cell membranes is a ubiquitous process in biology and is dependent on the principles of physical chemistry at the molecular level. Here we use atomistic molecular dynamics simulations to calculate the free energy of permeation of a range of small molecules through a model of the outer membrane of Escherichia coli, an archetypical Gram-negative bacterium. The model membrane contains lipopolysaccharide (LPS) molecules in the outer leaflet and phospholipids in the inner leaflet. Our results show that the energetic barriers to permeation through the two leaflets of the membrane are distinctly asymmetric; the LPS headgroups providemore » a less energetically favorable environment for organic compounds than do phospholipids. In summary, we provide the first reported estimates of the relative free energies associated with the different chemical environments experienced by solutes as they attempt to cross the outer membrane of a Gram-negative bacterium. Furthermore, these results provide key insights for the development of novel antibiotics that target these bacteria.« less

  4. Combined small-molecule inhibition accelerates the derivation of functional, early-born, cortical neurons from human pluripotent stem cells

    PubMed Central

    Qi, Yuchen; Zhang, Xin-Jun; Renier, Nicolas; Wu, Zhuhao; Atkin, Talia; Sun, Ziyi; Ozair, M. Zeeshan; Tchieu, Jason; Zimmer, Bastian; Fattahi, Faranak; Ganat, Yosif; Azevedo, Ricardo; Zeltner, Nadja; Brivanlou, Ali H.; Karayiorgou, Maria; Gogos, Joseph; Tomishima, Mark; Tessier-Lavigne, Marc; Shi, Song-Hai; Studer, Lorenz

    2017-01-01

    Considerable progress has been made in converting human pluripotent stem cells (hPSCs) into functional neurons. However, the protracted timing of human neuron specification and functional maturation remains a key challenge that hampers the routine application of hPSC-derived lineages in disease modeling and regenerative medicine. Using a combinatorial small-molecule screen, we previously identified conditions for the rapid differentiation of hPSCs into peripheral sensory neurons. Here we generalize the approach to central nervous system (CNS) fates by developing a small-molecule approach for accelerated induction of early-born cortical neurons. Combinatorial application of 6 pathway inhibitors induces post-mitotic cortical neurons with functional electrophysiological properties by day 16 of differentiation, in the absence of glial cell co-culture. The resulting neurons, transplanted at 8 days of differentiation into the postnatal mouse cortex, are functional and establish long-distance projections, as shown using iDISCO whole brain imaging. Accelerated differentiation into cortical neuron fates should facilitate hPSC-based strategies for disease modeling and cell therapy in CNS disorders. PMID:28112759

  5. In Situ Formation of an Azo Bridge on Proteins Controllable by Visible Light.

    PubMed

    Hoppmann, Christian; Maslennikov, Innokentiy; Choe, Senyon; Wang, Lei

    2015-09-09

    Optical modulation of proteins provides superior spatiotemporal resolution for understanding biological processes, and photoswitches built on light-sensitive proteins have been significantly advancing neuronal and cellular studies. Small molecule photoswitches could complement protein-based switches by mitigating potential interference and affording high specificity for modulation sites. However, genetic encodability and responsiveness to nonultraviolet light, two desired properties possessed by protein photoswitches, are challenging to be engineered into small molecule photoswitches. Here we developed a small molecule photoswitch that can be genetically installed onto proteins in situ and controlled by visible light. A pentafluoro azobenzene-based photoswitchable click amino acid (F-PSCaa) was designed to isomerize in response to visible light. After genetic incorporation into proteins via the expansion of the genetic code, F-PSCaa reacts with a nearby cysteine within the protein generating an azo bridge in situ. The resultant bridge is switchable by visible light and allows conformation and binding of CaM to be regulated by such light. This photoswitch should prove valuable in optobiology for its minimal interference, site flexibility, genetic encodability, and response to the more biocompatible visible light.

  6. Discovery and development of small molecule SHIP phosphatase modulators.

    PubMed

    Viernes, Dennis R; Choi, Lydia B; Kerr, William G; Chisholm, John D

    2014-07-01

    Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds. © 2013 Wiley Periodicals, Inc.

  7. Small-molecule inhibitors directly target CARD9 and mimic its protective variant in inflammatory bowel disease.

    PubMed

    Leshchiner, Elizaveta S; Rush, Jason S; Durney, Michael A; Cao, Zhifang; Dančík, Vlado; Chittick, Benjamin; Wu, Huixian; Petrone, Adam; Bittker, Joshua A; Phillips, Andrew; Perez, Jose R; Shamji, Alykhan F; Kaushik, Virendar K; Daly, Mark J; Graham, Daniel B; Schreiber, Stuart L; Xavier, Ramnik J

    2017-10-24

    Advances in human genetics have dramatically expanded our understanding of complex heritable diseases. Genome-wide association studies have identified an allelic series of CARD9 variants associated with increased risk of or protection from inflammatory bowel disease (IBD). The predisposing variant of CARD9 is associated with increased NF-κB-mediated cytokine production. Conversely, the protective variant lacks a functional C-terminal domain and is unable to recruit the E3 ubiquitin ligase TRIM62. Here, we used biochemical insights into CARD9 variant proteins to create a blueprint for IBD therapeutics and recapitulated the mechanism of the CARD9 protective variant using small molecules. We developed a multiplexed bead-based technology to screen compounds for disruption of the CARD9-TRIM62 interaction. We identified compounds that directly and selectively bind CARD9, disrupt TRIM62 recruitment, inhibit TRIM62-mediated ubiquitinylation of CARD9, and demonstrate cellular activity and selectivity in CARD9-dependent pathways. Taken together, small molecules targeting CARD9 illustrate a path toward improved IBD therapeutics. Published under the PNAS license.

  8. Rational design of small molecules as vaccine adjuvants.

    PubMed

    Wu, Tom Y-H; Singh, Manmohan; Miller, Andrew T; De Gregorio, Ennio; Doro, Francesco; D'Oro, Ugo; Skibinski, David A G; Mbow, M Lamine; Bufali, Simone; Herman, Ann E; Cortez, Alex; Li, Yongkai; Nayak, Bishnu P; Tritto, Elaine; Filippi, Christophe M; Otten, Gillis R; Brito, Luis A; Monaci, Elisabetta; Li, Chun; Aprea, Susanna; Valentini, Sara; Calabrό, Samuele; Laera, Donatello; Brunelli, Brunella; Caproni, Elena; Malyala, Padma; Panchal, Rekha G; Warren, Travis K; Bavari, Sina; O'Hagan, Derek T; Cooke, Michael P; Valiante, Nicholas M

    2014-11-19

    Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically. We describe new principles for the rational optimization of small-molecule immune potentiators (SMIPs) targeting Toll-like receptor 7 as adjuvants with a predicted increase in their therapeutic indices. Unlike traditional drugs, SMIP-based adjuvants need to have limited bioavailability and remain localized for optimal efficacy. These features also lead to temporally and spatially restricted inflammation that should decrease side effects. Through medicinal and formulation chemistry and extensive immunopharmacology, we show that in vivo potency can be increased with little to no systemic exposure, localized innate immune activation and short in vivo residence times of SMIP-based adjuvants. This work provides a systematic and generalizable approach to engineering small molecules for use as vaccine adjuvants. Copyright © 2014, American Association for the Advancement of Science.

  9. Fabrication and characterization of SPR chips with the modified bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Zhang, Lu-lu; Cui, Da-fu

    2016-03-01

    A facile surface plasmon resonance (SPR) chip is developed for small molecule determination and analysis. The SPR chip was prepared based on a self assembling principle, in which the modified bovine serum albumin (BSA) was directly self-assembled onto the bare gold surface. The surface morphology of the chip with the modified BSA was investigated by atomic force microscopy (AFM) and its optical properties were characterized. The surface binding capacity of the bare facile SPR chip with a uniform morphology is 8 times of that of the bare control SPR chip. Based on the experiments of immune reaction between cortisol antibody and cortisol derivative, the sensitivity of the facile SPR chip with the modified BSA is much higher than that of the control SPR chip with the un-modified BSA. The facile SPR chip has been successfully used to detect small molecules. The lowest detection limit is 5 ng/mL with a linear range of 5—100 ng/mL for cortisol analysis. The novel facile SPR chip can also be applied to detect other small molecules.

  10. Discovery of a Small-Molecule Inhibitor of Interleukin 15: Pharmacophore-Based Virtual Screening and Hit Optimization.

    PubMed

    Quéméner, Agnès; Maillasson, Mike; Arzel, Laurence; Sicard, Benoit; Vomiandry, Romy; Mortier, Erwan; Dubreuil, Didier; Jacques, Yannick; Lebreton, Jacques; Mathé-Allainmat, Monique

    2017-07-27

    Interleukin (IL)-15 is a pleiotropic cytokine, which is structurally close to IL-2 and shares with it the IL-2 β and γ receptor (R) subunits. By promoting the activation and proliferation of NK, NK-T, and CD8+ T cells, IL-15 plays important roles in innate and adaptative immunity. Moreover, the association of high levels of IL-15 expression with inflammatory and autoimmune diseases has led to the development of various antagonistic approaches targeting IL-15. This study is an original approach aimed at discovering small-molecule inhibitors impeding IL-15/IL-15R interaction. A pharmacophore and docking-based virtual screening of compound libraries led to the selection of 240 high-scoring compounds, 36 of which were found to bind IL-15, to inhibit the binding of IL-15 to the IL-2Rβ chain or the proliferation of IL-15-dependent cells or both. One of them was selected as a hit and optimized by a structure-activity relationship approach, leading to the first small-molecule IL-15 inhibitor with sub-micromolar activity.

  11. Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice

    PubMed Central

    Qin, Cheng Xue; May, Lauren T.; Li, Renming; Cao, Nga; Rosli, Sarah; Deo, Minh; Alexander, Amy E.; Horlock, Duncan; Bourke, Jane E.; Yang, Yuan H.; Stewart, Alastair G.; Kaye, David M.; Du, Xiao-Jun; Sexton, Patrick M.; Christopoulos, Arthur; Gao, Xiao-Ming; Ritchie, Rebecca H.

    2017-01-01

    Effective treatment for managing myocardial infarction (MI) remains an urgent, unmet clinical need. Formyl peptide receptors (FPR) regulate inflammation, a major contributing mechanism to cardiac injury following MI. Here we demonstrate that FPR1/FPR2-biased agonism may represent a novel therapeutic strategy for the treatment of MI. The small-molecule FPR1/FPR2 agonist, Compound 17b (Cmpd17b), exhibits a distinct signalling fingerprint to the conventional FPR1/FPR2 agonist, Compound-43 (Cmpd43). In Chinese hamster ovary (CHO) cells stably transfected with human FPR1 or FPR2, Compd17b is biased away from potentially detrimental FPR1/2-mediated calcium mobilization, but retains the pro-survival signalling, ERK1/2 and Akt phosphorylation, relative to Compd43. The pathological importance of the biased agonism of Cmpd17b is demonstrable as superior cardioprotection in both in vitro (cardiomyocytes and cardiofibroblasts) and MI injury in mice in vivo. These findings reveal new insights for development of small molecule FPR agonists with an improved cardioprotective profile for treating MI. PMID:28169296

  12. Post-transcriptional bursting in genes regulated by small RNA molecules

    NASA Astrophysics Data System (ADS)

    Rodrigo, Guillermo

    2018-03-01

    Gene expression programs in living cells are highly dynamic due to spatiotemporal molecular signaling and inherent biochemical stochasticity. Here we study a mechanism based on molecule-to-molecule variability at the RNA level for the generation of bursts of protein production, which can lead to heterogeneity in a cell population. We develop a mathematical framework to show numerically and analytically that genes regulated post transcriptionally by small RNA molecules can exhibit such bursts due to different states of translation activity (on or off), mostly revealed in a regime of few molecules. We exploit this framework to compare transcriptional and post-transcriptional bursting and also to illustrate how to tune the resulting protein distribution with additional post-transcriptional regulations. Moreover, because RNA-RNA interactions are predictable with an energy model, we define the kinetic constants of on-off switching as functions of the two characteristic free-energy differences of the system, activation and formation, with a nonequilibrium scheme. Overall, post-transcriptional bursting represents a distinctive principle linking gene regulation to gene expression noise, which highlights the importance of the RNA layer beyond the simple information transfer paradigm and significantly contributes to the understanding of the intracellular processes from a first-principles perspective.

  13. Chemoinformatic Analysis of Combinatorial Libraries, Drugs, Natural Products and Molecular Libraries Small Molecule Repository

    PubMed Central

    Singh, Narender; Guha, Rajarshi; Giulianotti, Marc; Pinilla, Clemencia; Houghten, Richard; Medina-Franco, Jose L.

    2009-01-01

    A multiple criteria approach is presented, that is used to perform a comparative analysis of four recently developed combinatorial libraries to drugs, Molecular Libraries Small Molecule Repository (MLSMR) and natural products. The compound databases were assessed in terms of physicochemical properties, scaffolds and fingerprints. The approach enables the analysis of property space coverage, degree of overlap between collections, scaffold and structural diversity and overall structural novelty. The degree of overlap between combinatorial libraries and drugs was assessed using the R-NN curve methodology, which measures the density of chemical space around a query molecule embedded in the chemical space of a target collection. The combinatorial libraries studied in this work exhibit scaffolds that were not observed in the drug, MLSMR and natural products collections. The fingerprint-based comparisons indicate that these combinatorial libraries are structurally different to current drugs. The R-NN curve methodology revealed that a proportion of molecules in the combinatorial libraries are located within the property space of the drugs. However, the R-NN analysis also showed that there are a significant number of molecules in several combinatorial libraries that are located in sparse regions of the drug space. PMID:19301827

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, III, Ramiro; Cai, Min; Tlach, Brian

    Four new cross-conjugated small molecules based on a central benzo[1,2-d:4,5-d']bisoxazole moiety possessing semi-independently tunable HOMO and LUMO levels were synthesized and the properties of these materials were evaluated experimentally and theoretically. The molecules were thermally stable with 5% weight loss occurring well above 350 °C. The cruciforms all exhibited blue emission in solution ranging from 433–450 nm. Host–guest OLEDs fabricated from various concentrations of these materials using the small molecule host 4,4'-bis(9-carbazolyl)-biphenyl (CBP) exhibited deep blue-emission with Commission Internationale de L'Eclairage (CIE) coordinates of (0.15 ≤ x ≤ 0.17, 0.05 ≤ y ≤ 0.11), and maximum luminance efficiencies as highmore » as ~2 cd A–1. Lastly, these results demonstrate the potential of benzobisoxazole cruciforms as emitters for developing high-performance deep blue OLEDs.« less

  15. Benzobisoxazole cruciforms: A tunable, cross-conjugated platform for the generation of deep blue OLED materials

    DOE PAGES

    Chavez, III, Ramiro; Cai, Min; Tlach, Brian; ...

    2016-01-20

    Four new cross-conjugated small molecules based on a central benzo[1,2-d:4,5-d']bisoxazole moiety possessing semi-independently tunable HOMO and LUMO levels were synthesized and the properties of these materials were evaluated experimentally and theoretically. The molecules were thermally stable with 5% weight loss occurring well above 350 °C. The cruciforms all exhibited blue emission in solution ranging from 433–450 nm. Host–guest OLEDs fabricated from various concentrations of these materials using the small molecule host 4,4'-bis(9-carbazolyl)-biphenyl (CBP) exhibited deep blue-emission with Commission Internationale de L'Eclairage (CIE) coordinates of (0.15 ≤ x ≤ 0.17, 0.05 ≤ y ≤ 0.11), and maximum luminance efficiencies as highmore » as ~2 cd A–1. Lastly, these results demonstrate the potential of benzobisoxazole cruciforms as emitters for developing high-performance deep blue OLEDs.« less

  16. Metabolomics analyses identify platelet activating factors and heme breakdown products as Lassa fever biomarkers.

    PubMed

    Gale, Trevor V; Horton, Timothy M; Grant, Donald S; Garry, Robert F

    2017-09-01

    Lassa fever afflicts tens of thousands of people in West Africa annually. The rapid progression of patients from febrile illness to fulminant syndrome and death provides incentive for development of clinical prognostic markers that can guide case management. The small molecule profile of serum from febrile patients triaged to the Viral Hemorrhagic Fever Ward at Kenema Government Hospital in Sierra Leone was assessed using untargeted Ultra High Performance Liquid Chromatography Mass Spectrometry. Physiological dysregulation resulting from Lassa virus (LASV) infection occurs at the small molecule level. Effects of LASV infection on pathways mediating blood coagulation, and lipid, amino acid, nucleic acid metabolism are manifest in changes in the levels of numerous metabolites in the circulation. Several compounds, including platelet activating factor (PAF), PAF-like molecules and products of heme breakdown emerged as candidates that may prove useful in diagnostic assays to inform better care of Lassa fever patients.

  17. 1,5-Disubstituted benzimidazoles that direct cardiomyocyte differentiation from mouse embryonic stem cells.

    PubMed

    Okolotowicz, Karl J; Bushway, Paul; Lanier, Marion; Gilley, Cynthia; Mercola, Mark; Cashman, John R

    2015-09-01

    Cardiomyopathy is the leading cause of death worldwide. Despite progress in medical treatments, heart transplantation is one of the only current options for those with infarcted heart muscle. Stem cell differentiation technology may afford cell-based therapeutics that may lead to the generation of new, healthy heart muscle cells from undifferentiated stem cells. Our approach is to use small molecules to stimulate stem cell differentiation. Herein, we describe a novel class of 1,5-disubstituted benzimidazoles that induce differentiation of stem cells into cardiac cells. We report on the evaluation in vitro for cardiomyocyte differentiation and describe structure-activity relationship results that led to molecules with drug-like properties. The results of this study show the promise of small molecules to direct stem cell lineage commitment, to probe signaling pathways and to develop compounds for the stimulation of stem cells to repair damaged heart tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. 1,5-Disubstituted benzimidazoles that direct cardiomyocyte differentiation from mouse embryonic stem cells

    PubMed Central

    Okolotowicz, Karl J.; Bushway, Paul; Lanier, Marion; Gilley, Cynthia; Cynthia, Mark; Cashman, John R.

    2016-01-01

    Cardiomyopathy is the leading cause of death worldwide. Despite progress in medical treatments, heart transplantation is one of the only current options for those with infarcted heart muscle. Stem cell differentiation technology may afford cell-based therapeutics that may lead to the generation of new, healthy heart muscle cells from undifferentiated stem cells. Our approach is to use small molecules to stimulate stem cell differentiation. Herein, we describe a novel class of 1,5-disubstituted benzimidazoles that induce differentiation of stem cells into cardiac cells. We report on the evaluation in vitro for cardiomyocyte differentiation and describe structure–activity relationship results that led to molecules with drug-like properties. The results of this study show the promise of small molecules to direct stem cell lineage commitment, to probe signaling pathways and to develop compounds for the stimulation of stem cells to repair damaged heart tissue. PMID:26278027

  19. Metabolomics analyses identify platelet activating factors and heme breakdown products as Lassa fever biomarkers

    PubMed Central

    Gale, Trevor V.; Horton, Timothy M.; Grant, Donald S.

    2017-01-01

    Lassa fever afflicts tens of thousands of people in West Africa annually. The rapid progression of patients from febrile illness to fulminant syndrome and death provides incentive for development of clinical prognostic markers that can guide case management. The small molecule profile of serum from febrile patients triaged to the Viral Hemorrhagic Fever Ward at Kenema Government Hospital in Sierra Leone was assessed using untargeted Ultra High Performance Liquid Chromatography Mass Spectrometry. Physiological dysregulation resulting from Lassa virus (LASV) infection occurs at the small molecule level. Effects of LASV infection on pathways mediating blood coagulation, and lipid, amino acid, nucleic acid metabolism are manifest in changes in the levels of numerous metabolites in the circulation. Several compounds, including platelet activating factor (PAF), PAF-like molecules and products of heme breakdown emerged as candidates that may prove useful in diagnostic assays to inform better care of Lassa fever patients. PMID:28922385

  20. Hot spot-based design of small-molecule inhibitors for protein-protein interactions.

    PubMed

    Guo, Wenxing; Wisniewski, John A; Ji, Haitao

    2014-06-01

    Protein-protein interactions (PPIs) are important targets for the development of chemical probes and therapeutic agents. From the initial discovery of the existence of hot spots at PPI interfaces, it has been proposed that hot spots might provide the key for developing small-molecule PPI inhibitors. However, there has been no review on the ways in which the knowledge of hot spots can be used to achieve inhibitor design, nor critical examination of successful examples. This Digest discusses the characteristics of hot spots and the identification of druggable hot spot pockets. An analysis of four examples of hot spot-based design reveals the importance of this strategy in discovering potent and selective PPI inhibitors. A general procedure for hot spot-based design of PPI inhibitors is outlined. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Therapeutic approaches to preventing cell death in Huntington disease.

    PubMed

    Kaplan, Anna; Stockwell, Brent R

    2012-12-01

    Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors-fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Structure-Guided Strategy for the Development of Potent Bivalent ERK Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lechtenberg, Bernhard C.; Mace, Peter D.; Sessions, E. Hampton

    ERK is the effector kinase of the RAS-RAF-MEK-ERK signaling cascade, which promotes cell transformation and malignancy in many cancers and is thus a major drug target in oncology. Kinase inhibitors targeting RAF or MEK are already used for the treatment of certain cancers, such as melanoma. Although the initial response to these drugs can be dramatic, development of drug resistance is a major challenge, even with combination therapies targeting both RAF and MEK. Importantly, most resistance mechanisms still rely on activation of the downstream effector kinase ERK, making it a promising target for drug development efforts. Here, we report themore » design and structural/functional characterization of a set of bivalent ERK inhibitors that combine a small molecule inhibitor that binds to the ATP-binding pocket with a peptide that selectively binds to an ERK protein interaction surface, the D-site recruitment site (DRS). Our studies show that the lead bivalent inhibitor, SBP3, has markedly improved potency compared to the small molecule inhibitor alone. Unexpectedly, we found that SBP3 also binds to several ERK-related kinases that contain a DRS, highlighting the importance of experimentally verifying the predicted specificity of bivalent inhibitors. However, SBP3 does not target any other kinases belonging to the same CMGC branch of the kinome. Additionally, our modular click chemistry inhibitor design facilitates the generation of different combinations of small molecule inhibitors with ERK-targeting peptides.« less

  3. Prediction of small molecule binding property of protein domains with Bayesian classifiers based on Markov chains.

    PubMed

    Bulashevska, Alla; Stein, Martin; Jackson, David; Eils, Roland

    2009-12-01

    Accurate computational methods that can help to predict biological function of a protein from its sequence are of great interest to research biologists and pharmaceutical companies. One approach to assume the function of proteins is to predict the interactions between proteins and other molecules. In this work, we propose a machine learning method that uses a primary sequence of a domain to predict its propensity for interaction with small molecules. By curating the Pfam database with respect to the small molecule binding ability of its component domains, we have constructed a dataset of small molecule binding and non-binding domains. This dataset was then used as training set to learn a Bayesian classifier, which should distinguish members of each class. The domain sequences of both classes are modelled with Markov chains. In a Jack-knife test, our classification procedure achieved the predictive accuracies of 77.2% and 66.7% for binding and non-binding classes respectively. We demonstrate the applicability of our classifier by using it to identify previously unknown small molecule binding domains. Our predictions are available as supplementary material and can provide very useful information to drug discovery specialists. Given the ubiquitous and essential role small molecules play in biological processes, our method is important for identifying pharmaceutically relevant components of complete proteomes. The software is available from the author upon request.

  4. Rational design of small-molecule stabilizers of spermine synthase dimer by virtual screening and free energy-based approach.

    PubMed

    Zhang, Zhe; Martiny, Virginie; Lagorce, David; Ikeguchi, Yoshihiko; Alexov, Emil; Miteva, Maria A

    2014-01-01

    Snyder-Robinson Syndrome (SRS) is a rare mental retardation disorder which is caused by the malfunctioning of an enzyme, the spermine synthase (SMS), which functions as a homo-dimer. The malfunctioning of SMS in SRS patients is associated with several identified missense mutations that occur away from the active site. This investigation deals with a particular SRS-causing mutation, the G56S mutation, which was shown computationally and experimentally to destabilize the SMS homo-dimer and thus to abolish SMS enzymatic activity. As a proof-of-concept, we explore the possibility to restore the enzymatic activity of the malfunctioning SMS mutant G56S by stabilizing the dimer through small molecule binding at the mutant homo-dimer interface. For this purpose, we designed an in silico protocol that couples virtual screening and a free binding energy-based approach to identify potential small-molecule binders on the destabilized G56S dimer, with the goal to stabilize it and thus to increase SMS G56S mutant activity. The protocol resulted in extensive list of plausible stabilizers, among which we selected and tested 51 compounds experimentally for their capability to increase SMS G56S mutant enzymatic activity. In silico analysis of the experimentally identified stabilizers suggested five distinctive chemical scaffolds. This investigation suggests that druggable pockets exist in the vicinity of the mutation sites at protein-protein interfaces which can be used to alter the disease-causing effects by small molecule binding. The identified chemical scaffolds are drug-like and can serve as original starting points for development of lead molecules to further rescue the disease-causing effects of the Snyder-Robinson syndrome for which no efficient treatment exists up to now.

  5. Validation and extraction of molecular-geometry information from small-molecule databases.

    PubMed

    Long, Fei; Nicholls, Robert A; Emsley, Paul; Graǽulis, Saulius; Merkys, Andrius; Vaitkus, Antanas; Murshudov, Garib N

    2017-02-01

    A freely available small-molecule structure database, the Crystallography Open Database (COD), is used for the extraction of molecular-geometry information on small-molecule compounds. The results are used for the generation of new ligand descriptions, which are subsequently used by macromolecular model-building and structure-refinement software. To increase the reliability of the derived data, and therefore the new ligand descriptions, the entries from this database were subjected to very strict validation. The selection criteria made sure that the crystal structures used to derive atom types, bond and angle classes are of sufficiently high quality. Any suspicious entries at a crystal or molecular level were removed from further consideration. The selection criteria included (i) the resolution of the data used for refinement (entries solved at 0.84 Å resolution or higher) and (ii) the structure-solution method (structures must be from a single-crystal experiment and all atoms of generated molecules must have full occupancies), as well as basic sanity checks such as (iii) consistency between the valences and the number of connections between atoms, (iv) acceptable bond-length deviations from the expected values and (v) detection of atomic collisions. The derived atom types and bond classes were then validated using high-order moment-based statistical techniques. The results of the statistical analyses were fed back to fine-tune the atom typing. The developed procedure was repeated four times, resulting in fine-grained atom typing, bond and angle classes. The procedure will be repeated in the future as and when new entries are deposited in the COD. The whole procedure can also be applied to any source of small-molecule structures, including the Cambridge Structural Database and the ZINC database.

  6. Small Molecule Protection of Bone Marrow Hematopoietic Stem Cells

    DTIC Science & Technology

    2015-10-01

    several recently identified small molecules can protect hematopoietic stem cells (HSCs) from damage or killing by endogenous aldehydes . Proof-of-concept...anemia bone marrow failure CD34+ hematopoietic stem cells aldehydes formaldehyde DNA damage DNA base adduct DNA-protein crosslink mass...below. Revised Specific Aim 1: Small molecule protection of human cells from aldehyde - induced killing (in vitro studies - no mice or human subjects

  7. Sub-lethal activity of small molecules from natural sources and their synthetic derivatives against biofilm forming nosocomial pathogens.

    PubMed

    Villa, Federica; Villa, Stefania; Gelain, Arianna; Cappitelli, Francesca

    2013-01-01

    Nowadays, the patient safety is seriously jeopardized by the emergence and spread of nosocomial pathogens in the form of biofilm that is resistant to traditional and affordable antimicrobials. Although advances in organic synthesis have extended the lifetime of classic antibiotics through synthetic modifications, the search of innovative antibiofilm compounds from natural sources can provide new templates, novel targets and unique mechanisms that should have advantages over known antimicrobial agents. Testing sub-lethal concentrations of crude extracts and/or isolated compounds from plants and microorganisms is critical to acting on mechanisms subtler than the killing activity, e.g. those influencing the multicellular behavior, offering an elegant way to develop novel antimicrobial-free antibiofilm strategies. Herein we discussed the search and biological activity of small molecules from natural sources and their synthetic derivatives able to modulate biofilm genesis of nosocomial pathogens through non-microbicidal mechanisms (sub-lethal concentrations). The present work offers an overview about the approaches applied to the discovery of lead small molecules including a) conventional drug design methods like screening of chemical compounds obtained from nature and b) computer- aided drug design approaches. Finally, a classification (not exhaustive but representative) based on the natural origin of small molecules and their synthetic derivatives was reported. The information presented in this review should be of interest to a broad range of disciplines and represents an effort to summarize experimental research and advances in this field.

  8. Targeting Programmed Cell Death Using Small-Molecule Compounds to Improve Potential Cancer Therapy.

    PubMed

    Ke, Bowen; Tian, Mao; Li, Jingjing; Liu, Bo; He, Gu

    2016-11-01

    Evasion of cell death is one of the hallmarks of cancer cells, beginning with long-established apoptosis and extending to other new forms of cell death. An elaboration of cell death pathways thus will contribute to a better understanding of cancer pathogenesis and therapeutics. With the recent substantial biochemical and genetic explorations of cell death subroutines, their classification has switched from primarily morphological to more molecular definitions. According to their measurable biochemical features and intricate mechanisms, cell death subroutines can be divided into apoptosis, autophagic cell death, mitotic catastrophe, necroptosis, parthanatos, ferroptosis, pyroptosis, pyronecrosis, anoikis, cornification, entosis, and NETosis. Supportive evidence has gradually revealed the prime molecular mechanisms of each subroutine and thus providing series of possible targets in cancer therapy, while the intricate relationships between different cell death subroutines still remain to be clarified. Over the past decades, cancer drug discovery has significantly benefited from the use of small-molecule compounds to target classical modalities of cell death such as apoptosis, while newly identified cell death subroutines has also emerging their potential for cancer drug discovery in recent years. In this review, we comprehensively focus on summarizing 12 cell death subroutines and discussing their corresponding small-molecule compounds in potential cancer therapy. Together, these inspiring findings may provide more evidence to fill in the gaps between cell death subroutines and small-molecule compounds to better develop novel cancer therapeutic strategies. © 2016 Wiley Periodicals, Inc.

  9. Molecular imaging of drug-modulated protein-protein interactions in living subjects.

    PubMed

    Paulmurugan, Ramasamy; Massoud, Tarik F; Huang, Jing; Gambhir, Sanjiv S

    2004-03-15

    Networks of protein interactions mediate cellular responses to environmental stimuli and direct the execution of many different cellular functional pathways. Small molecules synthesized within cells or recruited from the external environment mediate many protein interactions. The study of small molecule-mediated interactions of proteins is important to understand abnormal signal transduction pathways in cancer and in drug development and validation. In this study, we used split synthetic renilla luciferase (hRLUC) protein fragment-assisted complementation to evaluate heterodimerization of the human proteins FRB and FKBP12 mediated by the small molecule rapamycin. The concentration of rapamycin required for efficient dimerization and that of its competitive binder ascomycin required for dimerization inhibition were studied in cell lines. The system was dually modulated in cell culture at the transcription level, by controlling nuclear factor kappaB promoter/enhancer elements using tumor necrosis factor alpha, and at the interaction level, by controlling the concentration of the dimerizer rapamycin. The rapamycin-mediated dimerization of FRB and FKBP12 also was studied in living mice by locating, quantifying, and timing the hRLUC complementation-based bioluminescence imaging signal using a cooled charged coupled device camera. This split reporter system can be used to efficiently screen small molecule drugs that modulate protein-protein interactions and also to assess drugs in living animals. Both are essential steps in the preclinical evaluation of candidate pharmaceutical agents targeting protein-protein interactions, including signaling pathways in cancer cells.

  10. An autonomous chemically fuelled small-molecule motor

    NASA Astrophysics Data System (ADS)

    Wilson, Miriam R.; Solà, Jordi; Carlone, Armando; Goldup, Stephen M.; Lebrasseur, Nathalie; Leigh, David A.

    2016-06-01

    Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.

  11. Multiscale Molecular Simulation of Solution Processing of SMDPPEH: PCBM Small-Molecule Organic Solar Cells.

    PubMed

    Lee, Cheng-Kuang; Pao, Chun-Wei

    2016-08-17

    Solution-processed small-molecule organic solar cells are a promising renewable energy source because of their low production cost, mechanical flexibility, and light weight relative to their pure inorganic counterparts. In this work, we developed a coarse-grained (CG) Gay-Berne ellipsoid molecular simulation model based on atomistic trajectories from all-atom molecular dynamics simulations of smaller system sizes to systematically study the nanomorphology of the SMDPPEH/PCBM/solvent ternary blend during solution processing, including the blade-coating process by applying external shear to the solution. With the significantly reduced overall system degrees of freedom and computational acceleration from GPU, we were able to go well beyond the limitation of conventional all-atom molecular simulations with a system size on the order of hundreds of nanometers with mesoscale molecular detail. Our simulations indicate that, similar to polymer solar cells, the optimal blending ratio in small-molecule organic solar cells must provide the highest specific interfacial area for efficient exciton dissociation, while retaining balanced hole/electron transport pathway percolation. We also reveal that blade-coating processes have a significant impact on nanomorphology. For given donor/acceptor blending ratios, applying an external shear force can effectively promote donor/acceptor phase segregation and stacking in the SMDPPEH domains. The present study demonstrated the capability of an ellipsoid-based coarse-grained model for studying the nanomorphology evolution of small-molecule organic solar cells during solution processing/blade-coating and provided links between fabrication protocols and device nanomorphologies.

  12. License Compliance Issues For Biopharmaceuticals: Special Challenges For Negotiations Between Companies And Non-Profit Research Institutions.

    PubMed

    Ponzio, Todd A; Feindt, Hans; Ferguson, Steven

    2011-09-01

    Biopharmaceuticals are therapeutic products based on biotechnology. They are manufactured by or from living organisms and are the most complex of all commercial medicines to develop, manufacture and qualify for regulatory approval. In recent years biopharmaceuticals have rapidly increased in number and importance with over 400() already marketed in the U.S. and European markets alone. Many companies throughout the world are now ramping up investments in biopharmaceutical R&D and expanding their portfolios through licensing of early-stage biotechnologies from universities and other non-profit research institutions, and there is an increasing number of license agreements for biopharmaceutical product development relative to traditional small molecule drug compounds. This trend will only continue as large numbers of biosimilars and biogenerics enter the market.A primary goal of technology transfer offices associated with publicly-funded, non-profit research institutions is to establish patent protection for inventions deemed to have commercial potential and license them for product development. Such licenses help stimulate economic development and job creation, bring a stream of royalty revenue to the institution and, hopefully, advance the public good or public health by bringing new and useful products to market. In the course of applying for such licenses, a commercial development plan is usually put forth by the license applicant. This plan indicates the path the applicant expects to follow to bring the licensed invention to market. In the case of small molecule drug compounds, there exists a widely-recognized series of clinical development steps, dictated by regulatory requirements, that must be met to bring a new drug to market, such as completion of preclinical toxicology, Phase 1, 2 and 3 testing and product approvals. These steps often become the milestone/benchmark schedule incorporated into license agreements which technology transfer offices use to monitor the licensee's diligence and progress; most exclusive licenses include a commercial development plan, with penalties, financial or even revocation of the license, if the plan is not followed, e.g., the license falls too far behind.This study examines whether developmental milestone schedules based on a small molecule drug development model are useful and realistic in setting expectations for biopharmaceutical product development. We reviewed the monitoring records of all exclusive Public Health Service (PHS) commercial development license agreements for small molecule drugs or therapeutics based on biotechnology (biopharmaceuticals) executed by the National Institutes of Health (NIH) Office of Technology Transfer (OTT) between 2003 and 2009. We found that most biopharmaceutical development license agreements required amending because developmental milestones in the negotiated schedule could not be met by the licensee. This was in stark contrast with license agreements for small molecule chemical compounds which rarely needed changes to their developmental milestone schedules. As commercial development licenses for biopharmaceuticals make up the vast majority of NIH's exclusive license agreements, there is clearly a need to: 1) more closely examine how these benchmark schedules are formed, 2) try to understand the particular risk factors contributing to benchmark schedule non-compliance, and 3) devise alternatives to the current license benchmark schedule structural model. Schedules that properly weigh the most relevant risk factors such as technology classification (e.g., vaccine vs recombinant antibody vs gene therapy), likelihood of unforeseen regulatory issues, and company size/structure may help assure compliance with original license benchmark schedules. This understanding, coupled with a modified approach to the license negotiation process that makes use of a clear and comprehensive term sheet to minimize ambiguities should result in a more realistic benchmark schedule.

  13. License Compliance Issues For Biopharmaceuticals: Special Challenges For Negotiations Between Companies And Non-Profit Research Institutions

    PubMed Central

    Ponzio, Todd A.; Feindt, Hans; Ferguson, Steven

    2011-01-01

    Summary Biopharmaceuticals are therapeutic products based on biotechnology. They are manufactured by or from living organisms and are the most complex of all commercial medicines to develop, manufacture and qualify for regulatory approval. In recent years biopharmaceuticals have rapidly increased in number and importance with over 4001 already marketed in the U.S. and European markets alone. Many companies throughout the world are now ramping up investments in biopharmaceutical R&D and expanding their portfolios through licensing of early-stage biotechnologies from universities and other non-profit research institutions, and there is an increasing number of license agreements for biopharmaceutical product development relative to traditional small molecule drug compounds. This trend will only continue as large numbers of biosimilars and biogenerics enter the market. A primary goal of technology transfer offices associated with publicly-funded, non-profit research institutions is to establish patent protection for inventions deemed to have commercial potential and license them for product development. Such licenses help stimulate economic development and job creation, bring a stream of royalty revenue to the institution and, hopefully, advance the public good or public health by bringing new and useful products to market. In the course of applying for such licenses, a commercial development plan is usually put forth by the license applicant. This plan indicates the path the applicant expects to follow to bring the licensed invention to market. In the case of small molecule drug compounds, there exists a widely-recognized series of clinical development steps, dictated by regulatory requirements, that must be met to bring a new drug to market, such as completion of preclinical toxicology, Phase 1, 2 and 3 testing and product approvals. These steps often become the milestone/benchmark schedule incorporated into license agreements which technology transfer offices use to monitor the licensee’s diligence and progress; most exclusive licenses include a commercial development plan, with penalties, financial or even revocation of the license, if the plan is not followed, e.g., the license falls too far behind. This study examines whether developmental milestone schedules based on a small molecule drug development model are useful and realistic in setting expectations for biopharmaceutical product development. We reviewed the monitoring records of all exclusive Public Health Service (PHS) commercial development license agreements for small molecule drugs or therapeutics based on biotechnology (biopharmaceuticals) executed by the National Institutes of Health (NIH) Office of Technology Transfer (OTT) between 2003 and 2009. We found that most biopharmaceutical development license agreements required amending because developmental milestones in the negotiated schedule could not be met by the licensee. This was in stark contrast with license agreements for small molecule chemical compounds which rarely needed changes to their developmental milestone schedules. As commercial development licenses for biopharmaceuticals make up the vast majority of NIH’s exclusive license agreements, there is clearly a need to: 1) more closely examine how these benchmark schedules are formed, 2) try to understand the particular risk factors contributing to benchmark schedule non-compliance, and 3) devise alternatives to the current license benchmark schedule structural model. Schedules that properly weigh the most relevant risk factors such as technology classification (e.g., vaccine vs recombinant antibody vs gene therapy), likelihood of unforeseen regulatory issues, and company size/structure may help assure compliance with original license benchmark schedules. This understanding, coupled with a modified approach to the license negotiation process that makes use of a clear and comprehensive term sheet to minimize ambiguities should result in a more realistic benchmark schedule. PMID:22162900

  14. DG-AMMOS: a new tool to generate 3d conformation of small molecules using distance geometry and automated molecular mechanics optimization for in silico screening.

    PubMed

    Lagorce, David; Pencheva, Tania; Villoutreix, Bruno O; Miteva, Maria A

    2009-11-13

    Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats. Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine. DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.

  15. Profiling protein function with small molecule microarrays

    PubMed Central

    Winssinger, Nicolas; Ficarro, Scott; Schultz, Peter G.; Harris, Jennifer L.

    2002-01-01

    The regulation of protein function through posttranslational modification, local environment, and protein–protein interaction is critical to cellular function. The ability to analyze on a genome-wide scale protein functional activity rather than changes in protein abundance or structure would provide important new insights into complex biological processes. Herein, we report the application of a spatially addressable small molecule microarray to an activity-based profile of proteases in crude cell lysates. The potential of this small molecule-based profiling technology is demonstrated by the detection of caspase activation upon induction of apoptosis, characterization of the activated caspase, and inhibition of the caspase-executed apoptotic phenotype using the small molecule inhibitor identified in the microarray-based profile. PMID:12167675

  16. HAPTEN DESIGN FOR COMPOUND-SELECTIVE ANTIBODIES: ELISAS FOR ENVIRONMENTALLY DELETERIOUS SMALL MOLECULES. (R825433)

    EPA Science Inventory

    We have developed an enzyme-linked immunosorbent assay (ELISA) for the herbicide simazine with virtually no recognition of propazine and very low (8%) recognition of atrazine. In this research we have developed a generalized "size-exclusion" concept for designing immun...

  17. Structure-Activity Relationships of Small Molecule Autotaxin Inhibitors with a Discrete Binding Mode.

    PubMed

    Miller, Lisa M; Keune, Willem-Jan; Castagna, Diana; Young, Louise C; Duffy, Emma L; Potjewyd, Frances; Salgado-Polo, Fernando; Engel García, Paloma; Semaan, Dima; Pritchard, John M; Perrakis, Anastassis; Macdonald, Simon J F; Jamieson, Craig; Watson, Allan J B

    2017-01-26

    Autotaxin (ATX) is a secreted enzyme responsible for the hydrolysis of lysophosphatidylcholine (LPC) to the bioactive lysophosphatidic acid (LPA) and choline. The ATX-LPA signaling pathway is implicated in cell survival, migration, and proliferation; thus, the inhibition of ATX is a recognized therapeutic target for a number of diseases including fibrotic diseases, cancer, and inflammation, among others. Many of the developed synthetic inhibitors for ATX have resembled the lipid chemotype of the native ligand; however, a small number of inhibitors have been described that deviate from this common scaffold. Herein, we report the structure-activity relationships (SAR) of a previously reported small molecule ATX inhibitor. We show through enzyme kinetics studies that analogues of this chemotype are noncompetitive inhibitors, and by using a crystal structure with ATX we confirm the discrete binding mode.

  18. Osteoclast-targeting small molecules for the treatment of neoplastic bone metastases.

    PubMed

    Kawatani, Makoto; Osada, Hiroyuki

    2009-11-01

    Osteoclasts are highly specialized cells that resorb bone, and their abnormal activity is implicated in a variety of human bone diseases. In neoplastic bone metastasis, the bone destruction caused by osteoclasts is not only associated with the formation and progression of metastatic lesions, but also could contribute to frequent complications such as severe pain and pathological fractures, which greatly diminish the quality of life of patients. Bisphosphonates, potent antiresorptive drugs, have been shown to have efficacy for treating bone metastases in many types of cancer, and the development of various molecularly targeted agents is currently proceeding. Thus, inhibition of osteoclast function is now established as an important treatment strategy for bony metastases. This review focuses on promising small molecules that disrupt osteoclast function and introduces our chemical/biological approach for identifying osteoclast-targeting small molecular inhibitors.

  19. Free-standing few-layered graphene oxide films: selective, steady and lasting permeation of organic molecules with adjustable speeds

    NASA Astrophysics Data System (ADS)

    Huang, Tao; An, Qi; Luan, Xinglong; Zhang, Qian; Zhang, Yihe

    2016-01-01

    A variety of small molecules with diameters around 1 nm possess a range of functions, such as antibiotic, antimicrobic, anticoagulant, pesticidal and chemotherapy effects, making these molecules especially useful in various applications ranging from medical treatment to environmental microbiological control. However, the long-term steady delivery (release or permeation) of these small molecules with adjustable and controllable speeds has remained an especially challenging task. In this study, we prepared covalently cross-linked free-standing few-layered GO films using a layer-by-layer technique in combination with photochemical cross-linkages, and achieved a controlled release of positively charged, negatively charged, and zwitterionic small molecules with adjustable and controllable speeds. The steady delivery of the small molecule lasted up to 9 days. Other functionalities, such as graphene-enhanced Raman spectra and electrochemical properties that could also be integrated or employed in delivery systems, were also studied for our films. We expect the special molecular delivery properties of our films to lead to new possibilities in drug/fertilizer delivery and environmental microbiological control applications.A variety of small molecules with diameters around 1 nm possess a range of functions, such as antibiotic, antimicrobic, anticoagulant, pesticidal and chemotherapy effects, making these molecules especially useful in various applications ranging from medical treatment to environmental microbiological control. However, the long-term steady delivery (release or permeation) of these small molecules with adjustable and controllable speeds has remained an especially challenging task. In this study, we prepared covalently cross-linked free-standing few-layered GO films using a layer-by-layer technique in combination with photochemical cross-linkages, and achieved a controlled release of positively charged, negatively charged, and zwitterionic small molecules with adjustable and controllable speeds. The steady delivery of the small molecule lasted up to 9 days. Other functionalities, such as graphene-enhanced Raman spectra and electrochemical properties that could also be integrated or employed in delivery systems, were also studied for our films. We expect the special molecular delivery properties of our films to lead to new possibilities in drug/fertilizer delivery and environmental microbiological control applications. Electronic supplementary information (ESI) available: AFM images of GO and GO films, UV-vis spectra of delayed release, and permeation fidelities. See DOI: 10.1039/c5nr08129g

  20. Why trash don't pass? pharmaceutical licensing and safety performance of drugs.

    PubMed

    Banerjee, Tannista; Nayak, Arnab

    2017-01-01

    This paper examines how asymmetric information in pharmaceutical licensing affects the safety standards of licensed drugs. Pharmaceutical companies often license potential drug molecules at different stages of drug development from other pharmaceutical or biotechnology companies and complete the remaining of research stages before submitting the new drug application(NDA) to the food and drug administration. The asymmetric information associated with the quality of licensed molecules might result in the molecules which are less likely to succeed to be licensed out, while those with greater potential of success being held internally for development. We identify the NDAs submitted between 1993 and 2004 where new molecular entities were acquired through licensing. Controlling for other drug area specific and applicant firm specific factors, we investigate whether drugs developed with licensed molecules face higher probability of safety based recall and ultimate withdrawal from the market than drugs developed internally. Results suggest the opposite of Akerlof's (Q J Econ 84:488-500, 1970) lemons problem. Licensed molecules rather have less probability of facing safety based recalls and ultimate withdrawal from the market comparing to internally developed drug molecules. This suggests that biotechnology and small pharmaceutical firms specializing in pharmaceutical research are more efficient in developing good potential molecules because of their concentrated research. Biotechnology firms license out good potential molecules because it increases their market value and reputation. In addition, results suggest that both the number of previous approved drugs in the disease area, and also the applicant firms' total number of previous approvals in all disease areas reduce the probability that an additional approved drug in the same drug area will potentially be harmful.

  1. Microbial small molecules - weapons of plant subversion.

    PubMed

    Stringlis, Ioannis A; Zhang, Hao; Pieterse, Corné M J; Bolton, Melvin D; de Jonge, Ronnie

    2018-05-25

    Covering: up to 2018 Plants live in close association with a myriad of microbes that are generally harmless. However, the minority of microbes that are pathogens can severely impact crop quality and yield, thereby endangering food security. By contrast, beneficial microbes provide plants with important services, such as enhanced nutrient uptake and protection against pests and diseases. Like pathogens, beneficial microbes can modulate host immunity to efficiently colonize the nutrient-rich niches within and around the roots and aerial tissues of a plant, a phenomenon mirroring the establishment of commensal microbes in the human gut. Numerous ingenious mechanisms have been described by which pathogenic and beneficial microbes in the plant microbiome communicate with their host, including the delivery of immune-suppressive effector proteins and the production of phytohormones, toxins and other bioactive molecules. Plants signal to their associated microbes via exudation of photosynthetically fixed carbon sources, quorum-sensing mimicry molecules and selective secondary metabolites such as strigolactones and flavonoids. Molecular communication thus forms an integral part of the establishment of both beneficial and pathogenic plant-microbe relations. Here, we review the current knowledge on microbe-derived small molecules that can act as signalling compounds to stimulate plant growth and health by beneficial microbes on the one hand, but also as weapons for plant invasion by pathogens on the other. As an exemplary case, we used comparative genomics to assess the small molecule biosynthetic capabilities of the Pseudomonas genus; a genus rich in both plant pathogenic and beneficial microbes. We highlight the biosynthetic potential of individual microbial genomes and the population at large, providing evidence for the hypothesis that the distinction between detrimental and beneficial microbes is increasingly fading. Knowledge on the biosynthesis and molecular activity of microbial small molecules will aid in the development of successful biological agents boosting crop resiliency in a sustainable manner and could also provide scientific routes to pathogen inhibition or eradication.

  2. X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates

    DOE PAGES

    Yin, Panchao; Wu, Bin; Mamontov, Eugene; ...

    2016-02-05

    A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types ofmore » water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures. A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.« less

  3. An update on the application of physical technologies to enhance intradermal and transdermal drug delivery.

    PubMed

    Herwadkar, Anushree; Banga, Ajay K

    2012-03-01

    A large number of biopharmaceuticals and other macromolecules are being developed for therapeutic applications. Conventional oral delivery is not always possible due to first-pass metabolism and degradation in the GI tract. Parenteral delivery is invasive and has poor patient compliance. Transdermal delivery provides one attractive route of administration. Transdermal administration can achieve the continuous and non-invasive delivery of drugs. However, passive transdermal delivery is restricted to small lipophilic molecules. Active physical-enhancement technologies are being investigated to increase the scope of transdermal delivery to hydrophilic molecules and macromolecules. Recent developments in transdermal technologies, such as microporation, iontophoresis and sonophoresis can enable therapeutic delivery of many drug molecules, biopharmaceuticals, cosmeceuticals and vaccines. This review provides an update of recent developments in transdermal delivery focusing on physical-enhancement technologies.

  4. Quantitative Whole Body Biodistribution of Fluorescent-Labeled Agents by Non-Invasive Tomographic Imaging

    PubMed Central

    Vasquez, Kristine O.; Casavant, Chelsea; Peterson, Jeffrey D.

    2011-01-01

    When small molecules or proteins are injected into live animals, their physical and chemical properties will significantly affect pharmacokinetics, tissue penetration, and the ultimate routes of metabolism and clearance. Fluorescence molecular tomography (FMT) offers the ability to non-invasively image and quantify temporal changes in fluorescence throughout the major organ systems of living animals, in a manner analogous to traditional approaches with radiolabeled agents. This approach is best used with biotherapeutics (therapeutic antibodies, or other large proteins) or large-scaffold drug-delivery vectors, that are minimally affected by low-level fluorophore conjugation. Application to small molecule drugs should take into account the significant impact of fluorophore labeling on size and physicochemical properties, however, the presents studies show that this technique is readily applied to small molecule agents developed for far-red (FR) or near infrared (NIR) imaging. Quantification by non-invasive FMT correlated well with both fluorescence from tissue homogenates as well as with planar (2D) fluorescence reflectance imaging of excised intact organs (r2 = 0.996 and 0.969, respectively). Dynamic FMT imaging (multiple times from 0 to 24 h) performed in live mice after the injection of four different FR/NIR-labeled agents, including immunoglobulin, 20–50 nm nanoparticles, a large vascular imaging agent, and a small molecule integrin antagonist, showed clear differences in the percentage of injected dose per gram of tissue (%ID/g) in liver, kidney, and bladder signal. Nanoparticles and IgG1 favored liver over kidney signal, the small molecule integrin-binding agent favored rapid kidney and bladder clearance, and the vascular agent, showed both liver and kidney clearance. Further assessment of the volume of distribution of these agents by fluorescent volume added information regarding their biodistribution and highlighted the relatively poor extravasation into tissue by IgG1. These studies demonstrate the ability of quantitative FMT imaging of FR/NIR agents to non-invasively visualize and quantify the biodistribution of different agents over time. PMID:21731618

  5. A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins.

    PubMed

    Joshi, Priyanka; Chia, Sean; Habchi, Johnny; Knowles, Tuomas P J; Dobson, Christopher M; Vendruscolo, Michele

    2016-03-14

    The aggregation process of intrinsically disordered proteins (IDPs) has been associated with a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Currently, however, no drug in clinical use targets IDP aggregation. To facilitate drug discovery programs in this important and challenging area, we describe a fragment-based approach of generating small-molecule libraries that target specific IDPs. The method is based on the use of molecular fragments extracted from compounds reported in the literature to inhibit of the aggregation of IDPs. These fragments are used to screen existing large generic libraries of small molecules to form smaller libraries specific for given IDPs. We illustrate this approach by describing three distinct small-molecule libraries to target, Aβ, tau, and α-synuclein, which are three IDPs implicated in Alzheimer's and Parkinson's diseases. The strategy described here offers novel opportunities for the identification of effective molecular scaffolds for drug discovery for neurodegenerative disorders and to provide insights into the mechanism of small-molecule binding to IDPs.

  6. Identifying the preferred RNA motifs and chemotypes that interact by probing millions of combinations.

    PubMed

    Tran, Tuan; Disney, Matthew D

    2012-01-01

    RNA is an important therapeutic target but information about RNA-ligand interactions is limited. Here, we report a screening method that probes over 3,000,000 combinations of RNA motif-small molecule interactions to identify the privileged RNA structures and chemical spaces that interact. Specifically, a small molecule library biased for binding RNA was probed for binding to over 70,000 unique RNA motifs in a high throughput solution-based screen. The RNA motifs that specifically bind each small molecule were identified by microarray-based selection. In this library-versus-library or multidimensional combinatorial screening approach, hairpin loops (among a variety of RNA motifs) were the preferred RNA motif space that binds small molecules. Furthermore, it was shown that indole, 2-phenyl indole, 2-phenyl benzimidazole and pyridinium chemotypes allow for specific recognition of RNA motifs. As targeting RNA with small molecules is an extremely challenging area, these studies provide new information on RNA-ligand interactions that has many potential uses.

  7. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10.

    PubMed

    Yang, Wang-Yong; Gao, Rui; Southern, Mark; Sarkar, Partha S; Disney, Matthew D

    2016-06-01

    RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells.

  8. Identifying the Preferred RNA Motifs and Chemotypes that Interact by Probing Millions of Combinations

    PubMed Central

    Tran, Tuan; Disney, Matthew D.

    2012-01-01

    RNA is an important therapeutic target but information about RNA-ligand interactions is limited. Here we report a screening method that probes over 3,000,000 combinations of RNA motif-small molecule interactions to identify the privileged RNA structures and chemical spaces that interact. Specifically, a small molecule library biased for binding RNA was probed for binding to over 70,000 unique RNA motifs in a high throughput solution-based screen. The RNA motifs that specifically bind each small molecule were identified by microarray-based selection. In this library-versus-library or multidimensional combinatorial screening approach, hairpin loops (amongst a variety of RNA motifs) were the preferred RNA motif space that binds small molecules. Furthermore, it was shown that indole, 2-phenyl indole, 2-phenyl benzimidazole, and pyridinium chemotypes allow for specific recognition of RNA motifs. Since targeting RNA with small molecules is an extremely challenging area, these studies provide new information on RNA-ligand interactions that has many potential uses. PMID:23047683

  9. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo

    NASA Astrophysics Data System (ADS)

    Ye, Deju; Shuhendler, Adam J.; Cui, Lina; Tong, Ling; Tee, Sui Seng; Tikhomirov, Grigory; Felsher, Dean W.; Rao, Jianghong

    2014-06-01

    Directed self-assembly of small molecules in living systems could enable a myriad of applications in biology and medicine, and already this has been used widely to synthesize supramolecules and nano/microstructures in solution and in living cells. However, controlling the self-assembly of synthetic small molecules in living animals is challenging because of the complex and dynamic in vivo physiological environment. Here we employ an optimized first-order bioorthogonal cyclization reaction to control the self-assembly of a fluorescent small molecule, and demonstrate its in vivo applicability by imaging caspase-3/7 activity in human tumour xenograft mouse models of chemotherapy. The fluorescent nanoparticles assembled in situ were imaged successfully in both apoptotic cells and tumour tissues using three-dimensional structured illumination microscopy. This strategy combines the advantages offered by small molecules with those of nanomaterials and should find widespread use for non-invasive imaging of enzyme activity in vivo.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yung-Ting; Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan; Liu, Shun-Wei

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less lightmore » than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.« less

  11. Discovery and development of 5-[(5S,9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro[4.4]non-7-yl-methyl]-3-thiophenecarboxylic acid (BMS-587101)--a small molecule antagonist of leukocyte function associated antigen-1.

    PubMed

    Potin, Dominique; Launay, Michele; Monatlik, Francoise; Malabre, Patrice; Fabreguettes, Maud; Fouquet, Andre; Maillet, Magali; Nicolai, Eric; Dorgeret, Loïc; Chevallier, François; Besse, Dominique; Dufort, Monique; Caussade, François; Ahmad, Syed Z; Stetsko, Dawn K; Skala, Stacey; Davis, Patricia M; Balimane, Praveen; Patel, Karishma; Yang, Zheng; Marathe, Punit; Postelneck, Jennifer; Townsend, Robert M; Goldfarb, Valentina; Sheriff, Steven; Einspahr, Howard; Kish, Kevin; Malley, Mary F; DiMarco, John D; Gougoutas, Jack Z; Kadiyala, Pathanjali; Cheney, Daniel L; Tejwani, Ravindra W; Murphy, Denette K; Mcintyre, Kim W; Yang, Xiaoxia; Chao, Sam; Leith, Leslie; Xiao, Zili; Mathur, Arvind; Chen, Bang-Chi; Wu, Daugh-Rurng; Traeger, Sarah C; McKinnon, Murray; Barrish, Joel C; Robl, Jeffrey A; Iwanowicz, Edwin J; Suchard, Suzanne J; Dhar, T G Murali

    2006-11-30

    LFA-1 (leukocyte function-associated antigen-1), is a member of the beta2-integrin family and is expressed on all leukocytes. This letter describes the discovery and preliminary SAR of spirocyclic hydantoin based LFA-1 antagonists that culminated in the identification of analog 8 as a clinical candidate. We also report the first example of the efficacy of a small molecule LFA-1 antagonist in combination with CTLA-4Ig in an animal model of transplant rejection.

  12. Development of Functional Fluorescent Molecular Probes for the Detection of Biological Substances

    PubMed Central

    Suzuki, Yoshio; Yokoyama, Kenji

    2015-01-01

    This review is confined to sensors that use fluorescence to transmit biochemical information. Fluorescence is, by far, the most frequently exploited phenomenon for chemical sensors and biosensors. Parameters that define the application of such sensors include intensity, decay time, anisotropy, quenching efficiency, and luminescence energy transfer. To achieve selective (bio)molecular recognition based on these fluorescence phenomena, various fluorescent elements such as small organic molecules, enzymes, antibodies, and oligonucleotides have been designed and synthesized over the past decades. This review describes the immense variety of fluorescent probes that have been designed for the recognitions of ions, small and large molecules, and their biological applications in terms of intracellular fluorescent imaging techniques. PMID:26095660

  13. Small molecule therapeutics targeting F-box proteins in cancer.

    PubMed

    Liu, Yuan; Mallampalli, Rama K

    2016-02-01

    The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well-characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Opportunities for Merging Chemical and Biological Synthesis

    PubMed Central

    Wallace, Stephen; Balskus, Emily P.

    2014-01-01

    Organic chemists and metabolic engineers use largely orthogonal technologies to access small molecules like pharmaceuticals and commodity chemicals. As the use of biological catalysts and engineered organisms for chemical production grows, it is becoming increasingly evident that future efforts for chemical manufacture will benefit from the integration and unified expansion of these two fields. This review will discuss approaches that combine chemical and biological synthesis for small molecule production. We highlight recent advances in combining enzymatic and non-enzymatic catalysis in vitro, discuss the application of design principles from organic chemistry for engineering non-biological reactivity into enzymes, and describe the development of biocompatible chemistry that can be interfaced with microbial metabolism. PMID:24747284

  15. Molecular insights into the stabilization of protein-protein interactions with small molecule: The FKBP12-rapamycin-FRB case study

    NASA Astrophysics Data System (ADS)

    Chaurasia, Shilpi; Pieraccini, Stefano; De Gonda, Riccardo; Conti, Simone; Sironi, Maurizio

    2013-11-01

    Targetting protein-protein interactions is a challenging task in drug discovery process. Despite the challenges, several studies provided evidences for the development of small molecules modulating protein-protein interactions. Here we consider a typical case of protein-protein interaction stabilization: the complex between FKBP12 and FRB with rapamycin. We have analyzed the stability of the complex and characterized its interactions at the atomic level by performing free energy calculations and computational alanine scanning. It is shown that rapamycin stabilizes the complex by acting as a bridge between the two proteins; and the complex is stable only in the presence of rapamycin.

  16. Plasmonic Aptamer-Gold Nanoparticle Sensors for Small Molecule Fingerprint Identification

    DTIC Science & Technology

    2014-08-01

    AFRL-RH-WP-TR-2014-0107 PLASMONIC APTAMER -GOLD NANOPARTICLE SENSORS FOR SMALL MOLECULE FINGERPRINT IDENTIFICATION Jorge Chávez Grant Slusher...Plasmonic Aptamer -Gold Nanoparticle Sensors for Small Molecule Fingerprint Identification 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER 5c. PROGRAM...The utilization of the plasmonic response of aptamer -gold nanoparticle conjugates (Apt-AuNPs) to design cross- reactive arrays for fingerprint

  17. Covalent small-molecule-RNA complex formation enables cellular profiling of small-molecule-RNA interactions.

    PubMed

    Guan, Lirui; Disney, Matthew D

    2013-09-16

    Won't let you go! A strategy is described to design small molecules that react with their cellular RNA targets. This approach not only improves the activity of compounds targeting RNA in cell culture by a factor of about 2500 but also enables cell-wide profiling of its RNA targets. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Small Molecules Affect Human Dental Pulp Stem Cell Properties Via Multiple Signaling Pathways

    PubMed Central

    Al-Habib, Mey; Yu, Zongdong

    2013-01-01

    One fundamental issue regarding stem cells for regenerative medicine is the maintenance of stem cell stemness. The purpose of the study was to test whether small molecules can enhance stem cell properties of mesenchymal stem cells (MSCs) derived from human dental pulp (hDPSCs), which have potential for multiple clinical applications. We identified the effects of small molecules (Pluripotin (SC1), 6-bromoindirubin-3-oxime and rapamycin) on the maintenance of hDPSC properties in vitro and the mechanisms involved in exerting the effects. Primary cultures of hDPSCs were exposed to optimal concentrations of these small molecules. Treated hDPSCs were analyzed for their proliferation, the expression levels of pluripotent and MSC markers, differentiation capacities, and intracellular signaling activations. We found that small molecule treatments decreased cell proliferation and increased the expression of STRO-1, NANOG, OCT4, and SOX2, while diminishing cell differentiation into odonto/osteogenic, adipogenic, and neurogenic lineages in vitro. These effects involved Ras-GAP-, ERK1/2-, and mTOR-signaling pathways, which may preserve the cell self-renewal capacity, while suppressing differentiation. We conclude that small molecules appear to enhance the immature state of hDPSCs in culture, which may be used as a strategy for adult stem cell maintenance and extend their capacity for regenerative applications. PMID:23573877

  19. Inhibition of Oncogenic functionality of STAT3 Protein by Membrane Anchoring

    NASA Astrophysics Data System (ADS)

    Liu, Baoxu; Fletcher, Steven; Gunning, Patrick; Gradinaru, Claudiu

    2009-03-01

    Signal Transducer and Activator of Transcription 3 (STAT3) protein plays an important role in oncogenic processes. A novel molecular therapeutic approach to inhibit the oncogenic functionality of STAT3 is to design a prenylated small peptide sequence which could sequester STAT3 to the plasma membrane. We have also developed a novel fluorescein derivative label (F-NAc), which is much more photostable compared to the popular fluorescein label FITC. Remarkably, the new dye shows fluorescent properties that are invariant over a wide pH range, which is advantageous for our application. We have shown that F-NAc is suitable for single-molecule measurements and its properties are not affected by ligation to biomolecules. The membrane localization via high-affinity prenylated small-molecule binding agents is studied by encapsulating FNAc-labeled STAT3 and inhibitors within a liposome model cell system. The dynamics of the interaction between the protein and the prenylated ligands is investigated at single molecule level. The efficiency and stability of the STAT3 anchoring in lipid membranes are addressed via quantitative confocal imaging and single-molecule spectroscopy using a custom-built multiparameter fluorescence microscope.

  20. The hemodialysis membranes: a historical perspective, current state and future prospect.

    PubMed

    Cheung, A K; Leypoldt, J K

    1997-05-01

    Transport and biocompatibility characteristics are two important considerations when choosing hemodialysis membranes. Dialyzer performance depends on clearances of small solutes, middle molecules, and oncotically active proteins. Although complement and neutrophil activation have become the gold standards for biocompatibility testing of dialysis membranes, alterations of other cellular and noncellular blood elements as a result of blood-membrane interactions are also important. Because of concerns about middle molecule transport and biocompatibility, the original cellophane membrane has been gradually replaced by modified cellulosic membranes and synthetic membranes for clinical use. Recent studies suggest that the choice of dialysis membrane influences the clinical outcome of patients in several areas, including intradialytic acute anaphylactoid reactions, beta 2-microglobulin associated amyloidosis, recovery from acute renal failure, and mortality of chronic hemodialysis patients. However, the relative contributions of middle molecule transport, biocompatibility, and other factors in determining these differences in outcome are unclear. Future development of hemodialysis membranes should focus on improving biocompatibility and enhancing clearances of small solutes and middle molecules, while minimizing the loss of larger plasma proteins.

  1. I. Development of Metal-Mediated SPOT-Synthesis Methods for the Efficient Construction of Small-Molecule Macroarrays. II. Design and Synthesis of Novel Bacterial Biofilm Inhibitors

    NASA Astrophysics Data System (ADS)

    Frei, Reto

    I. The use of small molecule probes to explore biological phenomena has become a valuable tool in chemical biology. As a result, methods that permit the rapid synthesis and biological evaluation of such compounds are highly sought-after. The small molecule macroarray represents one such approach for the synthesis and identification of novel bioactive agents. Macroarrays are readily constructed via the SPOT-synthesis technique on planar cellulose membranes, yielding spatially addressed libraries of ˜10-1000 unique compounds. We sought to expand the arsenal of chemical reactions compatible with this solid-phase platform, and developed highly efficient SPOT-synthesis protocols for the Mizoroki-Heck, Suzuki-Miyaura, and copper-catalyzed azide-alkyne cycloaddition reaction. We demonstrated that these metal-mediated reactions can be implemented, either individually or sequentially, for the efficient construction of small molecules in high purity on rapid time scales. Utilizing these powerful C-C and C-N bond forming coupling reactions, we constructed a series of macroarrays based on novel stilbene, phenyl-naphthalene, and triazole scaliblds. Subsequent biological testing of the stilbene and phenyl-naphthalene libraries revealed several potent antagonists and agonists, respectively, of the quorum sensing (QS) receptor LuxR in Vibrio fischeri. II. Bacteria living within biofilms are notorious for their resistance to known antibiotic agents, and constitute a major human health threat. Methods to attenuate biofilm growth would have a significant impact on the management of bacterial infections. Despite intense research efforts, small molecules capable of either inhibiting or dispersing biolilms remain scarce. We utilized natural products with purported anti-biofilm or QS inhibitory activity as sources of structural insight to guide the synthesis of novel biofilm modulators with improved activities. These studies revealed 2-aminobenzimidazole derivatives as highly potent biofilm inhibitors and dispersers in the opportunistic pathogen Pseudomonas aeruginosa. Studies of second-generation 2-aminobenzimidazoles revealed important structure-activity relationships that guided the design of yet more potent analogs. These compounds are amongst the most potent inhibitors of biofilm formation in wild-type P. aeruginosa to be reported. Mechanistic studies of the most active compounds suggest that QS inhibition is one pathway by which 2-aminobenzimidazoles modulate biofilm growth.

  2. Smart multifunctional nanoagents for in situ monitoring of small molecules with a switchable affinity towards biomedical targets

    NASA Astrophysics Data System (ADS)

    Shevchenko, Konstantin G.; Cherkasov, Vladimir R.; Nikitina, Irina L.; Babenyshev, Andrey V.; Nikitin, Maxim P.

    2018-02-01

    The great diversity of nanomaterials provides ample opportunities for constructing effective agents for biomedical applications ranging from biosensing to drug delivery. Multifunctional nanoagents that combine several features in a single particle are of special interest due to capabilities that substantially exceed those of molecular drugs. An ideal theranostic agent should simultaneously be an advanced biosensor to identify a disease and report the diagnosis and a biomedical actuator to treat the disease. While many approaches were developed to load a nanoparticle with various drugs for actuation of the diseased cells (e.g., to kill them), the nanoparticle-based approaches for the localized biosensing with real-time reporting of the marker concentration severely lag behind. Here, we show a smart in situ nanoparticle-based biosensor/actuator system that dynamically and reversibly changes its structural and optical properties in response to a small molecule marker to allow real-time monitoring of the marker concentration and adjustment of the system ability to bind its biomedical target. Using the synergistic combination of signal readout based on the localized surface plasmon resonance and an original method of fabrication of smart ON/OFF-switchable nanoagents, we demonstrate reversible responsiveness of the system to a model small molecule marker (antibiotic chloramphenicol) in a wide concentration range. The proposed approach can be used for the development of advanced multifunctional nanoagents for theranostic applications.

  3. A Small Molecule that Targets r(CGG)exp and Improves Defects in Fragile X-Associated Tremor Ataxia Syndrome

    PubMed Central

    Disney, Matthew D.; Liu, Biao; Yang, Wang-Yong; Sellier, Chantal; Tran, Tuan; Charlet-Berguerand, Nicolas; Childs-Disney, Jessica L.

    2012-01-01

    The development of small molecule chemical probes or therapeutics that target RNA remains a significant challenge despite the great interest in such compounds. The most significant barrier to compound development is a lack of knowledge of the chemical and RNA motif spaces that interact specifically. Herein, we describe a bioactive small molecule probe that targets expanded r(CGG) repeats, or r(CGG)exp , that causes Fragile X-associated Tremor Ataxia Syndrome (FXTAS). The compound was identified by using information on the chemotypes and RNA motifs that interact. Specifically, 9-hydroxy-5,11-dimethyl-2-(2-(piperidin-1-yl)ethyl)-6H-pyrido[4,3-b]carbazol-2-ium, binds the 5’CGG/3’GGC motifs in r(CGG)exp and disrupts a toxic r(CGG)exp -protein complex in vitro. Structure-activity relationships (SAR) studies determined that the alkylated pyridyl and phenolic side chains are important chemotypes that drive molecular recognition to r(CGG)exp . Importantly, the compound is efficacious in FXTAS model cellular systems as evidenced by its ability to improve FXTAS-associated pre-mRNA splicing defects and to reduce the size and number of r(CGG)exp -protein aggregates. This approach may establish a general strategy to identify lead ligands that target RNA while also providing a chemical probe to dissect the varied mechanisms by which r(CGG)exp promotes toxicity. PMID:22948243

  4. A small molecule that targets r(CGG)(exp) and improves defects in fragile X-associated tremor ataxia syndrome.

    PubMed

    Disney, Matthew D; Liu, Biao; Yang, Wang-Yong; Sellier, Chantal; Tran, Tuan; Charlet-Berguerand, Nicolas; Childs-Disney, Jessica L

    2012-10-19

    The development of small molecule chemical probes or therapeutics that target RNA remains a significant challenge despite the great interest in such compounds. The most significant barrier to compound development is defining which chemical and RNA motif spaces interact specifically. Herein, we describe a bioactive small molecule probe that targets expanded r(CGG) repeats, or r(CGG)(exp), that causes Fragile X-associated Tremor Ataxia Syndrome (FXTAS). The compound was identified by using information on the chemotypes and RNA motifs that interact. Specifically, 9-hydroxy-5,11-dimethyl-2-(2-(piperidin-1-yl)ethyl)-6H-pyrido[4,3-b]carbazol-2-ium binds the 5'CGG/3'GGC motifs in r(CGG)(exp) and disrupts a toxic r(CGG)(exp)-protein complex in vitro. Structure-activity relationship studies determined that the alkylated pyridyl and phenolic side chains are important chemotypes that drive molecular recognition of r(CGG)(exp). Importantly, the compound is efficacious in FXTAS model cellular systems as evidenced by its ability to improve FXTAS-associated pre-mRNA splicing defects and to reduce the size and number of r(CGG)(exp)-containing nuclear foci. This approach may establish a general strategy to identify lead ligands that target RNA while also providing a chemical probe to dissect the varied mechanisms by which r(CGG)(exp) promotes toxicity.

  5. High-throughput screening based on label-free detection of small molecule microarrays

    NASA Astrophysics Data System (ADS)

    Zhu, Chenggang; Fei, Yiyan; Zhu, Xiangdong

    2017-02-01

    Based on small-molecule microarrays (SMMs) and oblique-incidence reflectivity difference (OI-RD) scanner, we have developed a novel high-throughput drug preliminary screening platform based on label-free monitoring of direct interactions between target proteins and immobilized small molecules. The screening platform is especially attractive for screening compounds against targets of unknown function and/or structure that are not compatible with functional assay development. In this screening platform, OI-RD scanner serves as a label-free detection instrument which is able to monitor about 15,000 biomolecular interactions in a single experiment without the need to label any biomolecule. Besides, SMMs serves as a novel format for high-throughput screening by immobilization of tens of thousands of different compounds on a single phenyl-isocyanate functionalized glass slide. Based on the high-throughput screening platform, we sequentially screened five target proteins (purified target proteins or cell lysate containing target protein) in high-throughput and label-free mode. We found hits for respective target protein and the inhibition effects for some hits were confirmed by following functional assays. Compared to traditional high-throughput screening assay, the novel high-throughput screening platform has many advantages, including minimal sample consumption, minimal distortion of interactions through label-free detection, multi-target screening analysis, which has a great potential to be a complementary screening platform in the field of drug discovery.

  6. CTD² Dashboard: a searchable web interface to connect validated results from the Cancer Target Discovery and Development Network* | Office of Cancer Genomics

    Cancer.gov

    The Cancer Target Discovery and Development (CTD2) Network aims to use functional genomics to accelerate the translation of high-throughput and high-content genomic and small-molecule data towards use in precision oncology.

  7. TSH Receptor Signaling Abrogation by a Novel Small Molecule

    PubMed Central

    Latif, Rauf; Realubit, Ronald B.; Karan, Charles; Mezei, Mihaly; Davies, Terry F.

    2016-01-01

    Pathological activation of the thyroid-stimulating hormone receptor (TSHR) is caused by thyroid-stimulating antibodies in patients with Graves’ disease (GD) or by somatic and rare genomic mutations that enhance constitutive activation of the receptor influencing both G protein and non-G protein signaling. Potential selective small molecule antagonists represent novel therapeutic compounds for abrogation of such abnormal TSHR signaling. In this study, we describe the identification and in vitro characterization of a novel small molecule antagonist by high-throughput screening (HTS). The identification of the TSHR antagonist was performed using a transcription-based TSH-inhibition bioassay. TSHR-expressing CHO cells, which also expressed a luciferase-tagged CRE response element, were optimized using bovine TSH as the activator, in a 384 well plate format, which had a Z score of 0.3–0.6. Using this HTS assay, we screened a diverse library of ~80,000 compounds at a final concentration of 16.7 μM. The selection criteria for a positive hit were based on a mean signal threshold of ≥50% inhibition of control TSH stimulation. The screening resulted in 450 positive hits giving a hit ratio of 0.56%. A secondary confirmation screen against TSH and forskolin – a post receptor activator of adenylyl cyclase – confirmed one TSHR-specific candidate antagonist molecule (named VA-K-14). This lead molecule had an IC50 of 12.3 μM and a unique chemical structure. A parallel analysis for cell viability indicated that the lead inhibitor was non-cytotoxic at its effective concentrations. In silico docking studies performed using a TSHR transmembrane model showed the hydrophobic contact locations and the possible mode of inhibition of TSHR signaling. Furthermore, this molecule was capable of inhibiting TSHR stimulation by GD patient sera and monoclonal-stimulating TSHR antibodies. In conclusion, we report the identification of a novel small molecule TSHR inhibitor, which has the potential to be developed as a therapeutic antagonist for abrogation of TSHR signaling by TSHR autoantibodies in GD. PMID:27729899

  8. The role of MicroRNA molecules and MicroRNA-regulating machinery in the pathogenesis and progression of epithelial ovarian cancer.

    PubMed

    Wang, Xiyin; Ivan, Mircea; Hawkins, Shannon M

    2017-11-01

    MicroRNA molecules are small, single-stranded RNA molecules that function to regulate networks of genes. They play important roles in normal female reproductive tract biology, as well as in the pathogenesis and progression of epithelial ovarian cancer. DROSHA, DICER, and Argonaute proteins are components of the microRNA-regulatory machinery and mediate microRNA production and function. This review discusses aberrant expression of microRNA molecules and microRNA-regulating machinery associated with clinical features of epithelial ovarian cancer. Understanding the regulation of microRNA molecule production and function may facilitate the development of novel diagnostic and therapeutic strategies to improve the prognosis of women with epithelial ovarian cancer. Additionally, understanding microRNA molecules and microRNA-regulatory machinery associations with clinical features may influence prevention and early detection efforts. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Electronic Structure of Small Lanthanide Containing Molecules

    NASA Astrophysics Data System (ADS)

    Kafader, Jared O.; Ray, Manisha; Topolski, Josey E.; Chick Jarrold, Caroline

    2016-06-01

    Lanthanide-based materials have unusual electronic properties because of the high number of electronic degrees of freedom arising from partial occupation of 4f orbitals, which make these materials optimal for their utilization in many applications including electronics and catalysis. Electronic spectroscopy of small lanthanide molecules helps us understand the role of these 4f electrons, which are generally considered core-like because of orbital contraction, but are energetically similar to valence electrons. The spectroscopy of small lanthanide-containing molecules is relatively unexplored and to broaden this understanding we have completed the characterization of small cerium, praseodymium, and europium molecules using photoelectron spectroscopy coupled with DFT calculations. The characterization of PrO, EuH, EuO/EuOH, and CexOy molecules have allowed for the determination of their electron affinity, the assignment of numerous anion to neutral state transitions, modeling of anion/neutral structures and electron orbital occupation.

  10. System dynamics of subcellular transport.

    PubMed

    Chen, Vivien Y; Khersonsky, Sonya M; Shedden, Kerby; Chang, Young Tae; Rosania, Gus R

    2004-01-01

    In pharmacokinetic experiments, interpretations often hinge on treating cells as a "black box": a single, lumped compartment or boundary. Here, a combinatorial library of fluorescent small molecules was used to visualize subcellular transport pathways in living cells, using a kinetic, high content imaging system to monitor spatiotemporal variations of intracellular probe distribution. Most probes accumulate in cytoplasmic vesicles and probe kinetics conform to a nested, two-compartment dynamical system. At steady state, probes preferentially partition from the extracellular medium to the cytosol, and from the cytosol to cytoplasmic vesicles, with hydrophobic molecules favoring sequestration. Altogether, these results point to a general organizing principle underlying the system dynamics of subcellular, small molecule transport. In addition to plasma membrane permeability, subcellular transport phenomena can determine the active concentration of small molecules in the cytosol and the efflux of small molecules from cells. Fundamentally, direct observation of intracellular probe distribution challenges the simple boundary model of classical pharmacokinetics, which considers cells as static permeability barriers.

  11. A-D-A small molecules for solution-processed organic photovoltaic cells.

    PubMed

    Ni, Wang; Wan, Xiangjian; Li, Miaomiao; Wang, Yunchuang; Chen, Yongsheng

    2015-03-25

    A-D-A small molecules have drawn more and more attention in solution-processed organic solar cells due to the advantages of a diversity of structures, easy control of energy levels, etc. Recently, a power conversion efficiency of nearly 10% has been achieved through careful material design and device optimization. This feature article reviews recent representative progress in the design and application of A-D-A small molecules in organic photovoltaic cells.

  12. Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications

    PubMed Central

    Laurencin, Cato T.; Ashe, Keshia M.; Henry, Nicole; Kan, Ho Man; Lo, Kevin W-H.

    2014-01-01

    Stimulation of bone regeneration using growth factors is a promising approach for musculoskeletal regenerative engineering. Common limitations with protein growth factors are high manufacturing costs, protein instability, contamination issues, and unwanted immunogenic responses of the host. New strategies for bone regeneration that obviate these problems can have a significant impact on the treatment of skeletal injury and diseases. Over the past decade, a large number of small molecules with the potential of regenerating skeletal tissue have been reported in the literature. Here, we review this literature, paying specific attention to the prospects for small molecule-based bone-regenerative engineering. We also review the preclinical study of small molecules associated with bone regeneration. PMID:24508820

  13. Mapping small molecule binding data to structural domains

    PubMed Central

    2012-01-01

    Background Large-scale bioactivity/SAR Open Data has recently become available, and this has allowed new analyses and approaches to be developed to help address the productivity and translational gaps of current drug discovery. One of the current limitations of these data is the relative sparsity of reported interactions per protein target, and complexities in establishing clear relationships between bioactivity and targets using bioinformatics tools. We detail in this paper the indexing of targets by the structural domains that bind (or are likely to bind) the ligand within a full-length protein. Specifically, we present a simple heuristic to map small molecule binding to Pfam domains. This profiling can be applied to all proteins within a genome to give some indications of the potential pharmacological modulation and regulation of all proteins. Results In this implementation of our heuristic, ligand binding to protein targets from the ChEMBL database was mapped to structural domains as defined by profiles contained within the Pfam-A database. Our mapping suggests that the majority of assay targets within the current version of the ChEMBL database bind ligands through a small number of highly prevalent domains, and conversely the majority of Pfam domains sampled by our data play no currently established role in ligand binding. Validation studies, carried out firstly against Uniprot entries with expert binding-site annotation and secondly against entries in the wwPDB repository of crystallographic protein structures, demonstrate that our simple heuristic maps ligand binding to the correct domain in about 90 percent of all assessed cases. Using the mappings obtained with our heuristic, we have assembled ligand sets associated with each Pfam domain. Conclusions Small molecule binding has been mapped to Pfam-A domains of protein targets in the ChEMBL bioactivity database. The result of this mapping is an enriched annotation of small molecule bioactivity data and a grouping of activity classes following the Pfam-A specifications of protein domains. This is valuable for data-focused approaches in drug discovery, for example when extrapolating potential targets of a small molecule with known activity against one or few targets, or in the assessment of a potential target for drug discovery or screening studies. PMID:23282026

  14. Combinatorics of feedback in cellular uptake and metabolism of small molecules.

    PubMed

    Krishna, Sandeep; Semsey, Szabolcs; Sneppen, Kim

    2007-12-26

    We analyze the connection between structure and function for regulatory motifs associated with cellular uptake and usage of small molecules. Based on the boolean logic of the feedback we suggest four classes: the socialist, consumer, fashion, and collector motifs. We find that the socialist motif is good for homeostasis of a useful but potentially poisonous molecule, whereas the consumer motif is optimal for nutrition molecules. Accordingly, examples of these motifs are found in, respectively, the iron homeostasis system in various organisms and in the uptake of sugar molecules in bacteria. The remaining two motifs have no obvious analogs in small molecule regulation, but we illustrate their behavior using analogies to fashion and obesity. These extreme motifs could inspire construction of synthetic systems that exhibit bistable, history-dependent states, and homeostasis of flux (rather than concentration).

  15. Docking ligands into flexible and solvated macromolecules. 7. Impact of protein flexibility and water molecules on docking-based virtual screening accuracy.

    PubMed

    Therrien, Eric; Weill, Nathanael; Tomberg, Anna; Corbeil, Christopher R; Lee, Devin; Moitessier, Nicolas

    2014-11-24

    The use of predictive computational methods in the drug discovery process is in a state of continual growth. Over the last two decades, an increasingly large number of docking tools have been developed to identify hits or optimize lead molecules through in-silico screening of chemical libraries to proteins. In recent years, the focus has been on implementing protein flexibility and water molecules. Our efforts led to the development of Fitted first reported in 2007 and further developed since then. In this study, we wished to evaluate the impact of protein flexibility and occurrence of water molecules on the accuracy of the Fitted docking program to discriminate active compounds from inactive compounds in virtual screening (VS) campaigns. For this purpose, a total of 171 proteins cocrystallized with small molecules representing 40 unique enzymes and receptors as well as sets of known ligands and decoys were selected from the Protein Data Bank (PDB) and the Directory of Useful Decoys (DUD), respectively. This study revealed that implementing displaceable crystallographic or computationally placed particle water molecules and protein flexibility can improve the enrichment in active compounds. In addition, an informed decision based on library diversity or research objectives (hit discovery vs lead optimization) on which implementation to use may lead to significant improvements.

  16. Diabetes, Obesity, and Other Insulin-Related Diseases | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Urologic Oncology Branch seeks partners interested in collaborative research to co-develop small molecule epoxy-guaiane derivative englerin A and related compounds for diseases associated with insulin resistance.

  17. Ex Vivo Expansion of CD34+CD90+CD49f+ Hematopoietic Stem and Progenitor Cells from Non‐Enriched Umbilical Cord Blood with Azole Compounds

    PubMed Central

    Bari, Sudipto; Zhong, Qixing; Fan, Xiubo; Poon, Zhiyong; Lim, Alvin Soon Tiong; Lim, Tse Hui; Dighe, Niraja; Li, Shang; Chiu, Gigi Ngar Chee; Chai, Christina Li Lin

    2018-01-01

    Abstract Umbilical cord blood (UCB) transplants in adults have slower hematopoietic recovery compared to bone marrow (BM) or peripheral blood (PB) stem cells mainly due to low number of total nucleated cells and hematopoietic stem and progenitor cells (HSPC). As such in this study, we aimed to perform ex vivo expansion of UCB HSPC from non‐enriched mononucleated cells (MNC) using novel azole‐based small molecules. Freshly‐thawed UCB–MNC were cultured in expansion medium supplemented with small molecules and basal cytokine cocktail. The effects of the expansion protocol were measured based on in vitro and in vivo assays. The proprietary library of >50 small molecules were developed using structure‐activity‐relationship studies of SB203580, a known p38‐MAPK inhibitor. A particular analog, C7, resulted in 1,554.1 ± 27.8‐fold increase of absolute viable CD45+CD34+CD38–CD45RA– progenitors which was at least 3.7‐fold higher than control cultures (p < .001). In depth phenotypic analysis revealed >600‐fold expansion of CD34+/CD90+/CD49f+ rare HSPCs coupled with significant (p < .01) increase of functional colonies from C7 treated cells. Transplantation of C7 expanded UCB grafts to immunodeficient mice resulted in significantly (p < .001) higher engraftment of human CD45+ and CD45+CD34+ cells in the PB and BM by day 21 compared to non‐expanded and cytokine expanded grafts. The C7 expanded grafts maintained long‐term human multilineage chimerism in the BM of primary recipients with sustained human CD45 cell engraftment in secondary recipients. In conclusion, a small molecule, C7, could allow for clinical development of expanded UCB grafts without pre‐culture stem cell enrichment that maintains in vitro and in vivo functionality. Stem Cells Translational Medicine 2018;7:376–393 PMID:29392885

  18. Development of A Cell-Based Assay to Identify Small Molecule Inhibitors of FGF23 Signaling.

    PubMed

    Diener, Susanne; Schorpp, Kenji; Strom, Tim-Matthias; Hadian, Kamyar; Lorenz-Depiereux, Bettina

    2015-10-01

    Fibroblast growth factor 23 (FGF23) is a bone-derived endocrine key regulator of phosphate homeostasis. It inhibits renal tubular phosphate reabsorption by activating receptor complexes composed of FGF receptor 1c (FGFR1c) and the co-receptor Klotho. As a major signaling pathway mitogen-activated protein kinase (MAPK) pathway is employed. In this study, we established an FGF23-inducible cell model by stably expressing human Klotho in HEK293 cells (HEK293-KL cells) containing endogenous FGF receptors. To identify novel small molecule compounds that modulate FGF23/FGFR1c/Klotho signaling, we developed and optimized a cell-based assay that is suited for high-throughput screening. The assay monitors the phosphorylation of endogenous extracellular signal-regulated kinase 1 and 2 in cellular lysates of HEK293-KL cells after induction with FGF23. This cell-based assay was highly robust (Z' factor >0.5) and the induction of the system is strictly dependent on the presence of FGF23. The inhibitor response curves generated using two known MAPK pathway inhibitors correlate well with data obtained by another assay format. This assay was further used to identify small molecule modulators of the FGF23 signaling cascade by screening the 1,280 food and drug administration-approved small molecule library of Prestwick Chemical. The primary hit rate was 2% and false positives were efficiently identified by retesting the hits in primary and secondary validation screening assays and in western blot analysis. Intriguingly, by using a basic FGF (bFGF)/FGFR counterscreening approach, one validated hit compound retained specificity toward FGF23 signaling, while bFGF signaling was not affected. Since increased plasma concentrations of FGF23 are the main cause of many hypophosphatemic disorders, a modulation of its effect could be a potential novel strategy for therapeutic intervention. Moreover, this strategy may be valuable for other disorders affecting phosphate homeostasis.

  19. The perception of strigolactones in vascular plants.

    PubMed

    Lumba, Shelley; Holbrook-Smith, Duncan; McCourt, Peter

    2017-05-17

    Small-molecule hormones play central roles in plant development, ranging from cellular differentiation and organ formation to developmental response instruction in changing environments. A recently discovered collection of related small molecules collectively called strigolactones are of particular interest, as these hormones also function as ecological communicators between plants and fungi and between parasitic plants and their hosts. Advances from model plant systems have begun to unravel how, as a hormone, strigolactone is perceived and transduced. In this Review, we summarize this information and examine how understanding strigolactone hormone signaling is leading to insights into parasitic plant infections. We specifically focus on how the development of chemical probes can be used in combination with model plant systems to dissect strigolactone's perception in the parasitic plant Striga hermonthica. This information is particularly relevant since Striga is considered one of the largest impediments to food security in sub-Saharan Africa.

  20. Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes.

    PubMed

    Xu, Wang; Zeng, Zebing; Jiang, Jian-Hui; Chang, Young-Tae; Yuan, Lin

    2016-10-24

    Principle has it that even the most advanced super-resolution microscope would be futile in providing biological insight into subcellular matrices without well-designed fluorescent tags/probes. Developments in biology have increasingly been boosted by advances of chemistry, with one prominent example being small-molecule fluorescent probes that not only allow cellular-level imaging, but also subcellular imaging. A majority, if not all, of the chemical/biological events take place inside cellular organelles, and researchers have been shifting their attention towards these substructures with the help of fluorescence techniques. This Review summarizes the existing fluorescent probes that target chemical/biological events within a single organelle. More importantly, organelle-anchoring strategies are described and emphasized to inspire the design of new generations of fluorescent probes, before concluding with future prospects on the possible further development of chemical biology. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development.

    PubMed

    Krishnan, Navasona; Bonham, Christopher A; Rus, Ioana A; Shrestha, Om Kumar; Gauss, Carla M; Haque, Aftabul; Tocilj, Ante; Joshua-Tor, Leemor; Tonks, Nicholas K

    2018-01-18

    The protein tyrosine phosphatase PTP1B is a major regulator of glucose homeostasis and energy metabolism, and a validated target for therapeutic intervention in diabetes and obesity. Nevertheless, it is a challenging target for inhibitor development. Previously, we generated a recombinant antibody (scFv45) that recognizes selectively the oxidized, inactive conformation of PTP1B. Here, we provide a molecular basis for its interaction with reversibly oxidized PTP1B. Furthermore, we have identified a small molecule inhibitor that mimics the effects of scFv45. Our data provide proof-of-concept that stabilization of PTP1B in an inactive, oxidized conformation by small molecules can promote insulin and leptin signaling. This work illustrates a novel paradigm for inhibiting the signaling function of PTP1B that may be exploited for therapeutic intervention in diabetes and obesity.

  2. Small-molecule xenomycins inhibit all stages of the Plasmodium life cycle.

    PubMed

    Erath, Jessey; Gallego-Delgado, Julio; Xu, Wenyue; Andriani, Grasiella; Tanghe, Scott; Gurova, Katerina V; Gudkov, Andrei; Purmal, Andrei; Rydkina, Elena; Rodriguez, Ana

    2015-03-01

    Widespread resistance to most antimalaria drugs in use has prompted the search for novel candidate compounds with activity against Plasmodium asexual blood stages to be developed for treatment. In addition, the current malaria eradication programs require the development of drugs that are effective against all stages of the parasite life cycle. We have analyzed the antimalarial properties of xenomycins, a novel subclass of small molecule compounds initially isolated for anticancer activity and similarity to quinacrine in biological effects on mammalian cells. In vitro studies show potent activity of Xenomycins against Plasmodium falciparum. Oral administration of xenomycins in mouse models result in effective clearance of liver and blood asexual and sexual stages, as well as effective inhibition of transmission to mosquitoes. These characteristics position xenomycins as antimalarial candidates with potential activity in prevention, treatment and elimination of this disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

    PubMed

    Yao, Huifeng; Ye, Long; Zhang, Hao; Li, Sunsun; Zhang, Shaoqing; Hou, Jianhui

    2016-06-22

    Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future.

  4. Fluxes in ;Free; and Total Zinc Are Essential for Progression of Intraerythrocytic Stages of Plasmodium falciparum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marvin, Rebecca G.; Wolford, Janet L.; Kidd, Matthew J.

    2012-10-23

    Dynamic fluxes in the concentration of ions and small molecules are fundamental features of cell signaling, differentiation, and development. Similar roles for fluxes in transition metal concentrations are less well established. Here, we show that massive zinc fluxes are essential in the infection cycle of an intracellular eukaryotic parasite. Using single-cell quantitative imaging, we show that growth of the blood-stage Plasmodium falciparum parasite requires acquisition of 30 million zinc atoms per erythrocyte before host cell rupture, corresponding to a 400% increase in total zinc concentration. Zinc accumulates in a freely available form in parasitophorous compartments outside the food vacuole, includingmore » mitochondria. Restriction of zinc availability via small molecule treatment causes a drop in mitochondrial membrane potential and severely inhibits parasite growth. Thus, extraordinary zinc acquisition and trafficking are essential for parasite development.« less

  5. A concise review on advances in development of small molecule anti-inflammatory therapeutics emphasising AMPK: An emerging target.

    PubMed

    Gejjalagere Honnappa, Chethan; Mazhuvancherry Kesavan, Unnikrishnan

    2016-12-01

    Inflammatory diseases are complex, multi-factorial outcomes of evolutionarily conserved tissue repair processes. For decades, non-steroidal anti-inflammatory drugs and cyclooxygenase inhibitors, the primary drugs of choice for the management of inflammatory diseases, addressed individual targets in the arachidonic acid pathway. Unsatisfactory safety and efficacy profiles of the above have necessitated the development of multi-target agents to treat complex inflammatory diseases. Current anti-inflammatory therapies still fall short of clinical needs and the clinical trial results of multi-target therapeutics are anticipated. Additionally, new drug targets are emerging with improved understanding of molecular mechanisms controlling the pathophysiology of inflammation. This review presents an outline of small molecules and drug targets in anti-inflammatory therapeutics with a summary of a newly identified target AMP-activated protein kinase, which constitutes a novel therapeutic pathway in inflammatory pathology. © The Author(s) 2016.

  6. Progress in Small Molecule Therapeutics for the Treatment of Retinoblastoma

    PubMed Central

    Pritchard, Eleanor M.; Dyer, Michael A.; Guy, R. Kiplin

    2017-01-01

    While mortality is low for intraocular retinoblastoma patients in the developed world who receive aggressive multimodal therapy, partial or full loss of vision occurs in approximately 50% of patients with advanced bilateral retinoblastoma. Therapies that preserve vision and reduce late effects are needed. Because clinical trials for retinoblastoma are difficult due to the young age of the patient population and relative rarity of the disease, robust preclinical testing of new therapies is critical. The last decade has seen advances towards identifying new therapies including the development of animal models of retinoblastoma for preclinical testing, progress in local drug delivery to reach intraocular targets, and improved understanding of the underlying biological mechanisms that give rise to retinoblastoma. This review discusses advances in these areas, with a focus on discovery and development of small molecules for the treatment of retinoblastoma, including novel targeted therapeutics such as inhibitors of the MDMX-p53 interaction (nutlin-3a), histone deacetylase (HDAC) inhibitors, and spleen tyrosine kinase (SYK) inhibitors. PMID:26202204

  7. Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ferreira, Rubén; Nilsson, Jesper R.; Solano, Carlos; Andréasson, Joakim; Grøtli, Morten

    2015-05-01

    REarranged during Transfection (RET) is a transmembrane receptor tyrosine kinase required for normal development and maintenance of neurons of the central and peripheral nervous systems. Deregulation of RET and hyperactivity of the RET kinase is intimately connected to several types of human cancers, most notably thyroid cancers, making it an attractive therapeutic target for small-molecule kinase inhibitors. Novel approaches, allowing external control of the activity of RET, would be key additions to the signal transduction toolbox. In this work, photoswitchable RET kinase inhibitors based on azo-functionalized pyrazolopyrimidines were developed, enabling photonic control of RET activity. The most promising compound displays excellent switching properties and stability with good inhibitory effect towards RET in cell-free as well as live-cell assays and a significant difference in inhibitory activity between its two photoisomeric forms. As the first reported photoswitchable small-molecule kinase inhibitor, we consider the herein presented effector to be a significant step forward in the development of tools for kinase signal transduction studies with spatiotemporal control over inhibitor concentration in situ.

  8. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission

    PubMed Central

    Plouffe, David M.; Wree, Melanie; Du, Alan Y.; Meister, Stephan; Li, Fengwu; Patra, Kailash; Lubar, Aristea; Okitsu, Shinji L.; Flannery, Erika L.; Kato, Nobutaka; Tanaseichuk, Olga; Comer, Eamon; Zhou, Bin; Kuhen, Kelli; Zhou, Yingyao; Leroy, Didier; Schreiber, Stuart L.; Scherer, Christina A.; Vinetz, Joseph; Winzeler, Elizabeth A.

    2016-01-01

    Summary Preventing transmission is an important element of malaria control. However, most of the current available methods to assay for malaria transmission blocking are relatively low throughput and cannot be applied to large chemical libraries. We have developed a high-throughput and cost-effective assay, the Saponin-lysis Sexual Stage Assay (SaLSSA), for identifying small molecules with transmission-blocking capacity. SaLSSA analysis of 13,983 unique compounds uncovered that >90% of well-characterized antimalarials, including endoperoxides and 4-aminoquinolines, as well as compounds active against asexual blood stages, lost most of their killing activity when parasites developed into metabolically quiescent stage V gametocytes. On the other hand, we identified compounds with consistent low nanomolar transmission-blocking activity, some of which showed cross-reactivity against asexual blood and liver stages. The data clearly emphasize substantial physiological differences between sexual and asexual parasites and provide a tool and starting points for the discovery and development of transmission-blocking drugs. PMID:26749441

  9. Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells.

    PubMed

    Maruotti, Julien; Sripathi, Srinivas R; Bharti, Kapil; Fuller, John; Wahlin, Karl J; Ranganathan, Vinod; Sluch, Valentin M; Berlinicke, Cynthia A; Davis, Janine; Kim, Catherine; Zhao, Lijun; Wan, Jun; Qian, Jiang; Corneo, Barbara; Temple, Sally; Dubey, Ramin; Olenyuk, Bogdan Z; Bhutto, Imran; Lutty, Gerard A; Zack, Donald J

    2015-09-01

    Age-related macular degeneration (AMD) is associated with dysfunction and death of retinal pigment epithelial (RPE) cells. Cell-based approaches using RPE-like cells derived from human pluripotent stem cells (hPSCs) are being developed for AMD treatment. However, most efficient RPE differentiation protocols rely on complex, stepwise treatments and addition of growth factors, whereas small-molecule-only approaches developed to date display reduced yields. To identify new compounds that promote RPE differentiation, we developed and performed a high-throughput quantitative PCR screen complemented by a novel orthogonal human induced pluripotent stem cell (hiPSC)-based RPE reporter assay. Chetomin, an inhibitor of hypoxia-inducible factors, was found to strongly increase RPE differentiation; combination with nicotinamide resulted in conversion of over one-half of the differentiating cells into RPE. Single passage of the whole culture yielded a highly pure hPSC-RPE cell population that displayed many of the morphological, molecular, and functional characteristics of native RPE.

  10. Progress in Small Molecule Therapeutics for the Treatment of Retinoblastoma.

    PubMed

    Pritchard, Eleanor M; Dyer, Michael A; Guy, R Kiplin

    2016-01-01

    While mortality is low for intraocular retinoblastoma patients in the developed world who receive aggressive multimodal therapy, partial or full loss of vision occurs in approximately 50% of patients with advanced bilateral retinoblastoma. Therapies that preserve vision and reduce late effects are needed. Because clinical trials for retinoblastoma are difficult due to the young age of the patient population and relative rarity of the disease, robust preclinical testing of new therapies is critical. The last decade has seen advances towards identifying new therapies including the development of animal models of retinoblastoma for preclinical testing, progress in local drug delivery to reach intraocular targets, and improved understanding of the underlying biological mechanisms that give rise to retinoblastoma. This review discusses advances in these areas, with a focus on discovery and development of small molecules for the treatment of retinoblastoma, including novel targeted therapeutics such as inhibitors of the MDMX-p53 interaction (nutlin-3a), histone deacetylase (HDAC) inhibitors, and spleen tyrosine kinase (SYK) inhibitors.

  11. A TiS2 nanosheet enhanced fluorescence polarization biosensor for ultra-sensitive detection of biomolecules

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Ding, Xuelian; Li, Yongfang; Wang, Linsong; Fan, Jing

    2016-05-01

    Development of new strategies for the sensitive and selective detection of ultra-low concentrations of specific cancer markers is of great importance for assessing cancer therapeutics due to its crucial role in early clinical diagnoses and biomedical applications. In this work, we have developed two types of fluorescence polarization (FP) amplification assay strategies for the detection of biomolecules by using TiS2 as a FP enhancer and Zn2+-dependent self-hydrolyzing deoxyribozymes as catalysts to realize enzyme-catalyzed target-recycling signal amplification. One approach is based on the terminal protection of small-molecule-linked DNA, in which biomolecular binding to small molecules in DNA-small-molecule chimeras can protect the conjugated DNA from degradation by exonuclease I (Exo I); the other approach is based on the terminal protection of biomolecular bound aptamer DNA, in which biomolecules directly bound to the single strand aptamer DNA can protect the ssDNA from degradation by Exo I. We select folate receptor (FR) and thrombin (Tb) as model analytes to verify the current concept. It is shown that under optimized conditions, our strategies exhibit high sensitivity and selectivity for the quantification of FR and Tb with low detection limits (0.003 ng mL-1 and 0.01 pM, respectively). Additionally, this strategy is a simple ``mix and detect'' approach, and does not require any separation steps. This biosensor is also utilized in the analysis of real biological samples, the results agree well with those obtained by the enzyme-linked immunosorbent assay (ELISA).Development of new strategies for the sensitive and selective detection of ultra-low concentrations of specific cancer markers is of great importance for assessing cancer therapeutics due to its crucial role in early clinical diagnoses and biomedical applications. In this work, we have developed two types of fluorescence polarization (FP) amplification assay strategies for the detection of biomolecules by using TiS2 as a FP enhancer and Zn2+-dependent self-hydrolyzing deoxyribozymes as catalysts to realize enzyme-catalyzed target-recycling signal amplification. One approach is based on the terminal protection of small-molecule-linked DNA, in which biomolecular binding to small molecules in DNA-small-molecule chimeras can protect the conjugated DNA from degradation by exonuclease I (Exo I); the other approach is based on the terminal protection of biomolecular bound aptamer DNA, in which biomolecules directly bound to the single strand aptamer DNA can protect the ssDNA from degradation by Exo I. We select folate receptor (FR) and thrombin (Tb) as model analytes to verify the current concept. It is shown that under optimized conditions, our strategies exhibit high sensitivity and selectivity for the quantification of FR and Tb with low detection limits (0.003 ng mL-1 and 0.01 pM, respectively). Additionally, this strategy is a simple ``mix and detect'' approach, and does not require any separation steps. This biosensor is also utilized in the analysis of real biological samples, the results agree well with those obtained by the enzyme-linked immunosorbent assay (ELISA). Electronic supplementary information (ESI) available: Tables S1-S4, Scheme S1, Fig. S1-S10. See DOI: 10.1039/c6nr00946h

  12. Calixarene-Mediated Liquid-Membrane Transport of Choline Conjugates.

    PubMed

    Adhikari, Birendra Babu; Fujii, Ayu; Schramm, Michael P

    2014-05-01

    A series of supramolecular calixarenes efficiently transport distinct molecular species through a liquid membrane when attached to a receptor-complementary choline handle. Calix-[6]arene hexacarboxylic acid was highly effective at transporting different target molecules against a pH gradient. Both carboxylic- and phosphonic-acid-functionalized calix[4]arenes effect transport without requiring a pH or ion gradient. NMR binding studies, two-phase solvent extraction, and three-phase transport experiments reveal the necessary and subtle parameters to effect the transport of molecules attached to a choline "handle". On the other hand, rescorin[4]arene cavitands, which have similar guest recognition profiles, did not transport guest molecules. These developments reveal new approaches towards attempting synthetic-receptor-mediated selective small-molecule transport in vesicular and cellular systems.

  13. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy

    PubMed Central

    Webb, Thomas R; Slavish, Jake; George, Rani E; Look, A Thomas; Xue, Liquan; Jiang, Qin; Cui, Xiaoli; Rentrop, Walter B; Morris, Stephan W

    2009-01-01

    Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase in the insulin receptor superfamily, was initially identified in constitutively activated oncogenic fusion forms – the most common being nucleophosmin-ALK – in anaplastic large-cell lymphomas, and subsequent studies have identified ALK fusions in diffuse large B-cell lymphomas, systemic histiocytosis, inflammatory myofibroblastic tumors, esophageal squamous cell carcinomas and non-small-cell lung carcinomas. More recently, genomic DNA amplification and protein overexpression, as well as activating point mutations, of ALK have been described in neuroblastomas. In addition to those cancers for which a causative role for aberrant ALK activity is well validated, more circumstantial links implicate the full-length, normal ALK receptor in the genesis of other malignancies – including glioblastoma and breast cancer – via a mechanism of receptor activation involving autocrine and/or paracrine growth loops with the reported ALK ligands, pleiotrophin and midkine. This review summarizes normal ALK biology, the confirmed and putative roles of ALK in the development of human cancers and efforts to target ALK using small-molecule kinase inhibitors. PMID:19275511

  14. Accurate Induction Energies for Small Organic Molecules. 2. Development and Testing of Distributed Polarizability Models against SAPT(DFT) Energies.

    PubMed

    Misquitta, Alston J; Stone, Anthony J; Price, Sarah L

    2008-01-01

    In part 1 of this two-part investigation we set out the theoretical basis for constructing accurate models of the induction energy of clusters of moderately sized organic molecules. In this paper we use these techniques to develop a variety of accurate distributed polarizability models for a set of representative molecules that include formamide, N-methyl propanamide, benzene, and 3-azabicyclo[3.3.1]nonane-2,4-dione. We have also explored damping, penetration, and basis set effects. In particular, we have provided a way to treat the damping of the induction expansion. Different approximations to the induction energy are evaluated against accurate SAPT(DFT) energies, and we demonstrate the accuracy of our induction models on the formamide-water dimer.

  15. Lipid-Mediated Clusters of Guest Molecules in Model Membranes and Their Dissolving in the Presence of Lipid Rafts.

    PubMed

    Kardash, Maria E; Dzuba, Sergei A

    2017-05-25

    The clustering of molecules is an important feature of plasma membrane organization. It is challenging to develop methods for quantifying membrane heterogeneities because of their transient nature and small size. Here, we obtained evidence that transient membrane heterogeneities can be frozen at cryogenic temperatures which allows the application of solid-state experimental techniques sensitive to the nanoscale distance range. We employed the pulsed version of electron paramagnetic resonance (EPR) spectroscopy, the electron spin echo (ESE) technique, for spin-labeled molecules in multilamellar lipid bilayers. ESE decays were refined for pure contribution of spin-spin magnetic dipole-dipolar interaction between the labels; these interactions manifest themselves at a nanometer distance range. The bilayers were prepared from different types of saturated and unsaturated lipids and cholesterol (Chol); in all cases, a small amount of guest spin-labeled substances 5-doxyl-stearic-acid (5-DSA) or 3β-doxyl-5α-cholestane (DChl) was added. The local concentration found of 5-DSA and DChl molecules was remarkably higher than the mean concentration in the bilayer, evidencing the formation of lipid-mediated clusters of these molecules. To our knowledge, formation of nanoscale clusters of guest amphiphilic molecules in biological membranes is a new phenomenon suggested only recently. Two-dimensional 5-DSA molecular clusters were found, whereas flat DChl molecules were found to be clustered into stacked one-dimensional structures. These clusters disappear when the Chol content is varied between the boundaries known for lipid raft formation at room temperatures. The room temperature EPR evidenced entrapping of DChl molecules in the rafts.

  16. Aqueous alkali halide solutions: can osmotic coefficients be explained on the basis of the ionic sizes alone?

    PubMed

    Kalyuzhnyi, Yu V; Vlachy, Vojko; Dill, Ken A

    2010-06-21

    We use the AMSA, associative mean spherical theory of associative fluids, to study ion-ion interactions in explicit water. We model water molecules as hard spheres with four off-center square-well sites and ions as charged hard spheres with sticky sites that bind to water molecules or other ions. We consider alkali halide salts. The choice of model parameters is based on two premises: (i) The strength of the interaction between a monovalent ion and a water molecule is inversely proportional to the ionic (crystal) diameter sigma(i). Smaller ions bind to water more strongly than larger ions do, taking into account the asymmetry of the cation-water and anion-water interactions. (ii) The number of contacts an ion can make is proportional to sigma2(i). In short, small ions bind waters strongly, but only a few of them. Large ions bind waters weakly, but many of them. When both a monovalent cation and anion are large, it yields a small osmotic coefficient of the salt, since the water molecules avoid the space in between large ions. On the other hand, salts formed from one small and one large ion remain hydrated and their osmotic coefficient is high. The osmotic coefficients, calculated using this model in combination with the integral equation theory developed for associative fluids, follow the experimental trends, including the unusual behavior of caesium salts.

  17. Shaping Small Bioactive Molecules to Untangle Their Biological Function: A Focus on Fluorescent Plant Hormones.

    PubMed

    Lace, Beatrice; Prandi, Cristina

    2016-08-01

    Modern biology overlaps with chemistry in explaining the structure and function of all cellular processes at the molecular level. Plant hormone research is perfectly located at the interface between these two disciplines, taking advantage of synthetic and computational chemistry as a tool to decipher the complex biological mechanisms regulating the action of plant hormones. These small signaling molecules regulate a wide range of developmental processes, adapting plant growth to ever changing environmental conditions. The synthesis of small bioactive molecules mimicking the activity of endogenous hormones allows us to unveil many molecular features of their functioning, giving rise to a new field, plant chemical biology. In this framework, fluorescence labeling of plant hormones is emerging as a successful strategy to track the fate of these challenging molecules inside living organisms. Thanks to the increasing availability of new fluorescent probes as well as advanced and innovative imaging technologies, we are now in a position to investigate many of the dynamic mechanisms through which plant hormones exert their action. Such a deep and detailed comprehension is mandatory for the development of new green technologies for practical applications. In this review, we summarize the results obtained so far concerning the fluorescent labeling of plant hormones, highlighting the basic steps leading to the design and synthesis of these compelling molecular tools and their applications. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  18. A systematic approach to prioritize drug targets using machine learning, a molecular descriptor-based classification model, and high-throughput screening of plant derived molecules: a case study in oral cancer.

    PubMed

    Randhawa, Vinay; Kumar Singh, Anil; Acharya, Vishal

    2015-12-01

    Systems-biology inspired identification of drug targets and machine learning-based screening of small molecules which modulate their activity have the potential to revolutionize modern drug discovery by complementing conventional methods. To utilize the effectiveness of such pipelines, we first analyzed the dysregulated gene pairs between control and tumor samples and then implemented an ensemble-based feature selection approach to prioritize targets in oral squamous cell carcinoma (OSCC) for therapeutic exploration. Based on the structural information of known inhibitors of CXCR4-one of the best targets identified in this study-a feature selection was implemented for the identification of optimal structural features (molecular descriptor) based on which a classification model was generated. Furthermore, the CXCR4-centered descriptor-based classification model was finally utilized to screen a repository of plant derived small-molecules to obtain potential inhibitors. The application of our methodology may assist effective selection of the best targets which may have previously been overlooked, that in turn will lead to the development of new oral cancer medications. The small molecules identified in this study can be ideal candidates for trials as potential novel anti-oral cancer agents. Importantly, distinct steps of this whole study may provide reference for the analysis of other complex human diseases.

  19. Recent advance in the pharmacology of dihydropyrimidinone.

    PubMed

    Wan, J-P; Pan, Y

    2012-04-01

    Dihydropyrimidinones (DHPMs) are a series of highly valuable small molecules possessing versatile pharmaceutical properties. Although the first one-pot synthesis of DHPMs had been reported more than 100 years ago, the fascinating achievement in DHPMs-based pharmacology during the past century promoted durative interests to the pharmacological and related studies of the scaffold, which lead to the discovery of many new biological functions of DHPMs. Recent pharmacological development on DHPMs-based molecules have been summarized in this review.

  20. Microgravity

    NASA Image and Video Library

    2001-01-24

    The Protein Crystallization for Microgravity (DCAM) was developed at NASA's Marshall Space Flight Center. A droplet of solution with protein molecules dissolved in it is isolated in the center of a small well. In orbit, an elastomer seal is lifted so the solution can evaporate and be absorbed by a wick material. This raises the concentration of the solution, thus prompting protein molecules in the solution to form crystals. The principal investigator is Dr. Dan Carter of New Century Pharmaceuticals in Huntsville, AL.

Top