Sample records for develop spatial models

  1. Exploring component-based approaches in forest landscape modeling

    Treesearch

    H. S. He; D. R. Larsen; D. J. Mladenoff

    2002-01-01

    Forest management issues are increasingly required to be addressed in a spatial context, which has led to the development of spatially explicit forest landscape models. The numerous processes, complex spatial interactions, and diverse applications in spatial modeling make the development of forest landscape models difficult for any single research group. New...

  2. A spatial panel ordered-response model with application to the analysis of urban land-use development intensity patterns

    NASA Astrophysics Data System (ADS)

    Ferdous, Nazneen; Bhat, Chandra R.

    2013-01-01

    This paper proposes and estimates a spatial panel ordered-response probit model with temporal autoregressive error terms to analyze changes in urban land development intensity levels over time. Such a model structure maintains a close linkage between the land owner's decision (unobserved to the analyst) and the land development intensity level (observed by the analyst) and accommodates spatial interactions between land owners that lead to spatial spillover effects. In addition, the model structure incorporates spatial heterogeneity as well as spatial heteroscedasticity. The resulting model is estimated using a composite marginal likelihood (CML) approach that does not require any simulation machinery and that can be applied to data sets of any size. A simulation exercise indicates that the CML approach recovers the model parameters very well, even in the presence of high spatial and temporal dependence. In addition, the simulation results demonstrate that ignoring spatial dependency and spatial heterogeneity when both are actually present will lead to bias in parameter estimation. A demonstration exercise applies the proposed model to examine urban land development intensity levels using parcel-level data from Austin, Texas.

  3. A New Methodology of Spatial Cross-Correlation Analysis

    PubMed Central

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120

  4. A new methodology of spatial cross-correlation analysis.

    PubMed

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran's index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson's correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China's urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.

  5. Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.

    PubMed

    Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J

    2010-12-01

    Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies conservation planning. Journal compilation © 2010 Society for Conservation Biology. No claim to original US government works.

  6. Updates to the Demographic and Spatial Allocation Models to ...

    EPA Pesticide Factsheets

    EPA's announced the availability of the final report, Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) (Version 2). This update furthered land change modeling by providing nationwide housing development scenarios up to 2100. This newest version includes updated population and land use data sets and addresses limitations identified in ICLUS v1 in both the migration and spatial allocation models. The companion user guide (Final Report) describes the development of ICLUS v2 and the updates that were made to the original data sets and the demographic and spatial allocation models. The GIS tool enables users to run SERGoM with the population projections developed for the ICLUS project and allows users to modify the spatial allocation housing density across the landscape.

  7. Application of geo-spatial technology in schistosomiasis modelling in Africa: a review.

    PubMed

    Manyangadze, Tawanda; Chimbari, Moses John; Gebreslasie, Michael; Mukaratirwa, Samson

    2015-11-04

    Schistosomiasis continues to impact socio-economic development negatively in sub-Saharan Africa. The advent of spatial technologies, including geographic information systems (GIS), Earth observation (EO) and global positioning systems (GPS) assist modelling efforts. However, there is increasing concern regarding the accuracy and precision of the current spatial models. This paper reviews the literature regarding the progress and challenges in the development and utilization of spatial technology with special reference to predictive models for schistosomiasis in Africa. Peer-reviewed papers identified through a PubMed search using the following keywords: geo-spatial analysis OR remote sensing OR modelling OR earth observation OR geographic information systems OR prediction OR mapping AND schistosomiasis AND Africa were used. Statistical uncertainty, low spatial and temporal resolution satellite data and poor validation were identified as some of the factors that compromise the precision and accuracy of the existing predictive models. The need for high spatial resolution of remote sensing data in conjunction with ancillary data viz. ground-measured climatic and environmental information, local presence/absence intermediate host snail surveys as well as prevalence and intensity of human infection for model calibration and validation are discussed. The importance of a multidisciplinary approach in developing robust, spatial data capturing, modelling techniques and products applicable in epidemiology is highlighted.

  8. Predicting the Overall Spatial Quality of Automotive Audio Systems

    NASA Astrophysics Data System (ADS)

    Koya, Daisuke

    The spatial quality of automotive audio systems is often compromised due to their unideal listening environments. Automotive audio systems need to be developed quickly due to industry demands. A suitable perceptual model could evaluate the spatial quality of automotive audio systems with similar reliability to formal listening tests but take less time. Such a model is developed in this research project by adapting an existing model of spatial quality for automotive audio use. The requirements for the adaptation were investigated in a literature review. A perceptual model called QESTRAL was reviewed, which predicts the overall spatial quality of domestic multichannel audio systems. It was determined that automotive audio systems are likely to be impaired in terms of the spatial attributes that were not considered in developing the QESTRAL model, but metrics are available that might predict these attributes. To establish whether the QESTRAL model in its current form can accurately predict the overall spatial quality of automotive audio systems, MUSHRA listening tests using headphone auralisation with head tracking were conducted to collect results to be compared against predictions by the model. Based on guideline criteria, the model in its current form could not accurately predict the overall spatial quality of automotive audio systems. To improve prediction performance, the QESTRAL model was recalibrated and modified using existing metrics of the model, those that were proposed from the literature review, and newly developed metrics. The most important metrics for predicting the overall spatial quality of automotive audio systems included those that were interaural cross-correlation (IACC) based, relate to localisation of the frontal audio scene, and account for the perceived scene width in front of the listener. Modifying the model for automotive audio systems did not invalidate its use for domestic audio systems. The resulting model predicts the overall spatial quality of 2- and 5-channel automotive audio systems with a cross-validation performance of R. 2 = 0.85 and root-mean-squareerror (RMSE) = 11.03%.

  9. Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring

    Treesearch

    Carlos Carroll; Devin S. Johnson; Jeffrey R. Dunk; William J. Zielinski

    2010-01-01

    Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data’s spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and...

  10. Spatial durbin error model for human development index in Province of Central Java.

    NASA Astrophysics Data System (ADS)

    Septiawan, A. R.; Handajani, S. S.; Martini, T. S.

    2018-05-01

    The Human Development Index (HDI) is an indicator used to measure success in building the quality of human life, explaining how people access development outcomes when earning income, health and education. Every year HDI in Central Java has improved to a better direction. In 2016, HDI in Central Java was 69.98 %, an increase of 0.49 % over the previous year. The objective of this study was to apply the spatial Durbin error model using angle weights queen contiguity to measure HDI in Central Java Province. Spatial Durbin error model is used because the model overcomes the spatial effect of errors and the effects of spatial depedency on the independent variable. Factors there use is life expectancy, mean years of schooling, expected years of schooling, and purchasing power parity. Based on the result of research, we get spatial Durbin error model for HDI in Central Java with influencing factors are life expectancy, mean years of schooling, expected years of schooling, and purchasing power parity.

  11. Modeling spatial variation in avian survival and residency probabilities

    USGS Publications Warehouse

    Saracco, James F.; Royle, J. Andrew; DeSante, David F.; Gardner, Beth

    2010-01-01

    The importance of understanding spatial variation in processes driving animal population dynamics is widely recognized. Yet little attention has been paid to spatial modeling of vital rates. Here we describe a hierarchical spatial autoregressive model to provide spatially explicit year-specific estimates of apparent survival (phi) and residency (pi) probabilities from capture-recapture data. We apply the model to data collected on a declining bird species, Wood Thrush (Hylocichla mustelina), as part of a broad-scale bird-banding network, the Monitoring Avian Productivity and Survivorship (MAPS) program. The Wood Thrush analysis showed variability in both phi and pi among years and across space. Spatial heterogeneity in residency probability was particularly striking, suggesting the importance of understanding the role of transients in local populations. We found broad-scale spatial patterning in Wood Thrush phi and pi that lend insight into population trends and can direct conservation and research. The spatial model developed here represents a significant advance over approaches to investigating spatial pattern in vital rates that aggregate data at coarse spatial scales and do not explicitly incorporate spatial information in the model. Further development and application of hierarchical capture-recapture models offers the opportunity to more fully investigate spatiotemporal variation in the processes that drive population changes.

  12. A computational model of spatial visualization capacity.

    PubMed

    Lyon, Don R; Gunzelmann, Glenn; Gluck, Kevin A

    2008-09-01

    Visualizing spatial material is a cornerstone of human problem solving, but human visualization capacity is sharply limited. To investigate the sources of this limit, we developed a new task to measure visualization accuracy for verbally-described spatial paths (similar to street directions), and implemented a computational process model to perform it. In this model, developed within the Adaptive Control of Thought-Rational (ACT-R) architecture, visualization capacity is limited by three mechanisms. Two of these (associative interference and decay) are longstanding characteristics of ACT-R's declarative memory. A third (spatial interference) is a new mechanism motivated by spatial proximity effects in our data. We tested the model in two experiments, one with parameter-value fitting, and a replication without further fitting. Correspondence between model and data was close in both experiments, suggesting that the model may be useful for understanding why visualizing new, complex spatial material is so difficult.

  13. Development of input data layers for the FARSITE fire growth model for the Selway-Bitterroot Wilderness Complex, USA

    Treesearch

    Robert E. Keane; Janice L. Garner; Kirsten M. Schmidt; Donald G. Long; James P. Menakis; Mark A. Finney

    1998-01-01

    Fuel and vegetation spatial data layers required by the spatially explicit fire growth model FARSITE were developed for all lands in and around the Selway-Bitterroot Wilderness Area in Idaho and Montana. Satellite imagery and terrain modeling were used to create the three base vegetation spatial data layers of potential vegetation, cover type, and structural stage....

  14. Spatial Dynamics and Determinants of County-Level Education Expenditure in China

    ERIC Educational Resources Information Center

    Gu, Jiafeng

    2012-01-01

    In this paper, a multivariate spatial autoregressive model of local public education expenditure determination with autoregressive disturbance is developed and estimated. The existence of spatial interdependence is tested using Moran's I statistic and Lagrange multiplier test statistics for both the spatial error and spatial lag models. The full…

  15. A physically based analytical spatial air temperature and humidity model

    Treesearch

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2013-01-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...

  16. Spatial Patterns of Development Drive Water Use

    NASA Astrophysics Data System (ADS)

    Sanchez, G. M.; Smith, J. W.; Terando, A.; Sun, G.; Meentemeyer, R. K.

    2018-03-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non-spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio-economic and environmental variables and two water use variables: a) domestic water use, and b) total development-related water use (a combination of public supply, domestic self-supply and industrial self-supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio-economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water-efficient land use planning.

  17. Geospatial Modelling Approach for 3d Urban Densification Developments

    NASA Astrophysics Data System (ADS)

    Koziatek, O.; Dragićević, S.; Li, S.

    2016-06-01

    With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.

  18. Updates to the Demographic and Spatial Allocation Models to ...

    EPA Pesticide Factsheets

    EPA announced the availability of the draft report, Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) for a 30-day public comment period. The ICLUS version 2 (v2) modeling tool furthered land change modeling by providing nationwide housing development scenarios up to 2100. ICLUS V2 includes updated population and land use data sets and addressing limitations identified in ICLUS v1 in both the migration and spatial allocation models. The companion user guide describes the development of ICLUS v2 and the updates that were made to the original data sets and the demographic and spatial allocation models. [2017 UPDATE] Get the latest version of ICLUS and stay up-to-date by signing up to the ICLUS mailing list. The GIS tool enables users to run SERGoM with the population projections developed for the ICLUS project and allows users to modify the spatial allocation housing density across the landscape.

  19. Spatial analysis of highway incident durations in the context of Hurricane Sandy.

    PubMed

    Xie, Kun; Ozbay, Kaan; Yang, Hong

    2015-01-01

    The objectives of this study are (1) to develop an incident duration model which can account for the spatial dependence of duration observations, and (2) to investigate the impacts of a hurricane on incident duration. Highway incident data from New York City and its surrounding regions before and after Hurricane Sandy was used for the study. Moran's I statistics confirmed that durations of the neighboring incidents were spatially correlated. Moreover, Lagrange Multiplier tests suggested that the spatial dependence should be captured in a spatial lag specification. A spatial error model, a spatial lag model and a standard model without consideration of spatial effects were developed. The spatial lag model is found to outperform the others by capturing the spatial dependence of incident durations via a spatially lagged dependent variable. It was further used to assess the effects of hurricane-related variables on incident duration. The results show that the incidents during and post the hurricane are expected to have 116.3% and 79.8% longer durations than those that occurred in the regular time. However, no significant increase in incident duration is observed in the evacuation period before Sandy's landfall. Results of temporal stability tests further confirm the existence of the significant changes in incident duration patterns during and post the hurricane. Those findings can provide insights to aid in the development of hurricane evacuation plans and emergency management strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Spatial analysis of rural land development

    Treesearch

    Seong-Hoon Cho; David H. Newman

    2005-01-01

    This article examines patterns of rural land development and density using spatial econometric models with the application of Geographical Information System (GIS). The cluster patterns of both development and high-density development indicate that the spatially continuous expansions of development and high-density development exist in relatively remote rural areas....

  1. Applications of spatial statistical network models to stream data

    USGS Publications Warehouse

    Isaak, Daniel J.; Peterson, Erin E.; Ver Hoef, Jay M.; Wenger, Seth J.; Falke, Jeffrey A.; Torgersen, Christian E.; Sowder, Colin; Steel, E. Ashley; Fortin, Marie-Josée; Jordan, Chris E.; Ruesch, Aaron S.; Som, Nicholas; Monestiez, Pascal

    2014-01-01

    Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for terrestrial applications and are not optimized for streams. A new class of spatial statistical model, based on valid covariance structures for stream networks, can be used with many common types of stream data (e.g., water quality attributes, habitat conditions, biological surveys) through application of appropriate distributions (e.g., Gaussian, binomial, Poisson). The spatial statistical network models account for spatial autocorrelation (i.e., nonindependence) among measurements, which allows their application to databases with clustered measurement locations. Large amounts of stream data exist in many areas where spatial statistical analyses could be used to develop novel insights, improve predictions at unsampled sites, and aid in the design of efficient monitoring strategies at relatively low cost. We review the topic of spatial autocorrelation and its effects on statistical inference, demonstrate the use of spatial statistics with stream datasets relevant to common research and management questions, and discuss additional applications and development potential for spatial statistics on stream networks. Free software for implementing the spatial statistical network models has been developed that enables custom applications with many stream databases.

  2. Spatial patterns of development drive water use

    USGS Publications Warehouse

    Sanchez, G.M.; Smith, J.W.; Terando, Adam J.; Sun, G.; Meentemeyer, R.K.

    2018-01-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non‐spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio‐economic and environmental variables and two water use variables: a) domestic water use, and b) total development‐related water use (a combination of public supply, domestic self‐supply and industrial self‐supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio‐economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water‐efficient land use planning.

  3. Spatial landscape model to characterize biological diversity using R statistical computing environment.

    PubMed

    Singh, Hariom; Garg, R D; Karnatak, Harish C; Roy, Arijit

    2018-01-15

    Due to urbanization and population growth, the degradation of natural forests and associated biodiversity are now widely recognized as a global environmental concern. Hence, there is an urgent need for rapid assessment and monitoring of biodiversity on priority using state-of-art tools and technologies. The main purpose of this research article is to develop and implement a new methodological approach to characterize biological diversity using spatial model developed during the study viz. Spatial Biodiversity Model (SBM). The developed model is scale, resolution and location independent solution for spatial biodiversity richness modelling. The platform-independent computation model is based on parallel computation. The biodiversity model based on open-source software has been implemented on R statistical computing platform. It provides information on high disturbance and high biological richness areas through different landscape indices and site specific information (e.g. forest fragmentation (FR), disturbance index (DI) etc.). The model has been developed based on the case study of Indian landscape; however it can be implemented in any part of the world. As a case study, SBM has been tested for Uttarakhand state in India. Inputs for landscape ecology are derived through multi-criteria decision making (MCDM) techniques in an interactive command line environment. MCDM with sensitivity analysis in spatial domain has been carried out to illustrate the model stability and robustness. Furthermore, spatial regression analysis has been made for the validation of the output. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Review of forest landscape models: types, methods, development and applications

    Treesearch

    Weimin Xi; Robert N. Coulson; Andrew G. Birt; Zong-Bo Shang; John D. Waldron; Charles W. Lafon; David M. Cairns; Maria D. Tchakerian; Kier D. Klepzig

    2009-01-01

    Forest landscape models simulate forest change through time using spatially referenced data across a broad spatial scale (i.e. landscape scale) generally larger than a single forest stand. Spatial interactions between forest stands are a key component of such models. These models can incorporate other spatio-temporal processes such as...

  5. The stock-flow model of spatial data infrastructure development refined by fuzzy logic.

    PubMed

    Abdolmajidi, Ehsan; Harrie, Lars; Mansourian, Ali

    2016-01-01

    The system dynamics technique has been demonstrated to be a proper method by which to model and simulate the development of spatial data infrastructures (SDI). An SDI is a collaborative effort to manage and share spatial data at different political and administrative levels. It is comprised of various dynamically interacting quantitative and qualitative (linguistic) variables. To incorporate linguistic variables and their joint effects in an SDI-development model more effectively, we suggest employing fuzzy logic. Not all fuzzy models are able to model the dynamic behavior of SDIs properly. Therefore, this paper aims to investigate different fuzzy models and their suitability for modeling SDIs. To that end, two inference and two defuzzification methods were used for the fuzzification of the joint effect of two variables in an existing SDI model. The results show that the Average-Average inference and Center of Area defuzzification can better model the dynamics of SDI development.

  6. `spup' - An R Package for Analysis of Spatial Uncertainty Propagation and Application to Trace Gas Emission Simulations

    NASA Astrophysics Data System (ADS)

    Sawicka, K.; Breuer, L.; Houska, T.; Santabarbara Ruiz, I.; Heuvelink, G. B. M.

    2016-12-01

    Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Advances in uncertainty propagation analysis and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability, including case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the `spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo techniques, as well as several uncertainty visualization functions. Here we will demonstrate that the 'spup' package is an effective and easy-to-use tool to be applied even in a very complex study case, and that it can be used in multi-disciplinary research and model-based decision support. As an example, we use the ecological LandscapeDNDC model to analyse propagation of uncertainties associated with spatial variability of the model driving forces such as rainfall, nitrogen deposition and fertilizer inputs. The uncertainty propagation is analysed for the prediction of emissions of N2O and CO2 for a German low mountainous, agriculturally developed catchment. The study tests the effect of spatial correlations on spatially aggregated model outputs, and could serve as an advice for developing best management practices and model improvement strategies.

  7. Development and assessment of 30-meter pine density maps for landscape-level modeling of mountain pine beetle dynamics

    Treesearch

    Benjamin A. Crabb; James A. Powell; Barbara J. Bentz

    2012-01-01

    Forecasting spatial patterns of mountain pine beetle (MPB) population success requires spatially explicit information on host pine distribution. We developed a means of producing spatially explicit datasets of pine density at 30-m resolution using existing geospatial datasets of vegetation composition and structure. Because our ultimate goal is to model MPB population...

  8. Developing Spatially Explicit Habitat Models for Grassland Bird Conservation Planning in the Prairie Pothole Region of North Dakota

    Treesearch

    Neal D. Niemuth; Michael E. Estey; Charles R. Loesch

    2005-01-01

    Conservation planning for birds is increasingly focused on landscapes. However, little spatially explicit information is available to guide landscape-level conservation planning for many species of birds. We used georeferenced 1995 Breeding Bird Survey (BBS) data in conjunction with land-cover information to develop a spatially explicit habitat model predicting the...

  9. CHARACTERIZING SPATIAL AND TEMPORAL DYNAMICS: DEVELOPMENT OF A GRID-BASED WATERSHED MERCURY LOADING MODEL

    EPA Science Inventory

    A distributed grid-based watershed mercury loading model has been developed to characterize spatial and temporal dynamics of mercury from both point and non-point sources. The model simulates flow, sediment transport, and mercury dynamics on a daily time step across a diverse lan...

  10. Functional CAR models for large spatially correlated functional datasets.

    PubMed

    Zhang, Lin; Baladandayuthapani, Veerabhadran; Zhu, Hongxiao; Baggerly, Keith A; Majewski, Tadeusz; Czerniak, Bogdan A; Morris, Jeffrey S

    2016-01-01

    We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.

  11. Local accumulation times for spatial difference in morphogen concentration

    NASA Astrophysics Data System (ADS)

    Wen, Xiaoqing; Yin, Hongwei

    During development of multicellular organisms, spatial patterns of cells and tissue organizations rely on the action of morphogens, which are signaling molecules and act as dose-dependent regulators of gene expression and cellular differentiation. Since some experimental evidences have indicated that the spatial difference in morphogen concentration regulates cellular proliferation rather than this concentration profile in developing tissues, we propose spatially discrete models to describe this difference for a synthesis-diffusion-degradation process of morphogen in infinite and finite development fields, respectively. For both of models, we respectively derive analytical expressions of local accumulation times, which are required to form the steady state of the spatial difference in morphogen concentration. Our results show that the local accumulation times for the spatial difference in morphogen concentrations are different from the ones for morphogen concentration profiles.

  12. Benefits of incorporating spatial organisation of catchments for a semi-distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Schumann, Andreas; Oppel, Henning

    2017-04-01

    To represent the hydrological behaviour of catchments a model should reproduce/reflect the hydrologically most relevant catchment characteristics. These are heterogeneously distributed within a watershed but often interrelated and subject of a certain spatial organisation. Since common models are mostly based on fundamental assumptions about hydrological processes, the reduction of variance of catchment properties as well as the incorporation of the spatial organisation of the catchment is desirable. We have developed a method that combines the idea of the width-function used for determination of the geomorphologic unit hydrograph with information about soil or topography. With this method we are able to assess the spatial organisation of selected catchment characteristics. An algorithm was developed that structures a watershed into sub-basins and other spatial units to minimise its heterogeneity. The outcomes of this algorithm are used for the spatial setup of a semi-distributed model. Since the spatial organisation of a catchment is not bound to a single characteristic, we have to embed information of multiple catchment properties. For this purpose we applied a fuzzy-based method to combine the spatial setup for multiple single characteristics into a union, optimal spatial differentiation. Utilizing this method, we are able to propose a spatial structure for a semi-distributed hydrological model, comprising the definition of sub-basins and a zonal classification within each sub-basin. Besides the improved spatial structuring, the performed analysis ameliorates modelling in another way. The spatial variability of catchment characteristics, which is considered by a minimum of heterogeneity in the zones, can be considered in a parameter constrained calibration scheme in a case study both options were used to explore the benefits of incorporating the spatial organisation and derived parameter constraints for the parametrisation of a HBV-96 model. We use two benchmark model setups (lumped and semi-distributed by common approaches) to address the benefits for different time and spatial scales. Moreover, the benefits for calibration effort, model performance in validation periods and process extrapolation are shown.

  13. Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Holm, Darryl D.

    2018-01-01

    Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.

  14. Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Holm, Darryl D.

    2018-06-01

    Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.

  15. USING THE ECLPSS SOFTWARE ENVIRONMENT TO BUILD A SPATIALLY EXPLICIT COMPONENT-BASED MODEL OF OZONE EFFECTS ON FOREST ECOSYSTEMS. (R827958)

    EPA Science Inventory

    We have developed a modeling framework to support grid-based simulation of ecosystems at multiple spatial scales, the Ecological Component Library for Parallel Spatial Simulation (ECLPSS). ECLPSS helps ecologists to build robust spatially explicit simulations of ...

  16. Predictive computation of genomic logic processing functions in embryonic development

    PubMed Central

    Peter, Isabelle S.; Faure, Emmanuel; Davidson, Eric H.

    2012-01-01

    Gene regulatory networks (GRNs) control the dynamic spatial patterns of regulatory gene expression in development. Thus, in principle, GRN models may provide system-level, causal explanations of developmental process. To test this assertion, we have transformed a relatively well-established GRN model into a predictive, dynamic Boolean computational model. This Boolean model computes spatial and temporal gene expression according to the regulatory logic and gene interactions specified in a GRN model for embryonic development in the sea urchin. Additional information input into the model included the progressive embryonic geometry and gene expression kinetics. The resulting model predicted gene expression patterns for a large number of individual regulatory genes each hour up to gastrulation (30 h) in four different spatial domains of the embryo. Direct comparison with experimental observations showed that the model predictively computed these patterns with remarkable spatial and temporal accuracy. In addition, we used this model to carry out in silico perturbations of regulatory functions and of embryonic spatial organization. The model computationally reproduced the altered developmental functions observed experimentally. Two major conclusions are that the starting GRN model contains sufficiently complete regulatory information to permit explanation of a complex developmental process of gene expression solely in terms of genomic regulatory code, and that the Boolean model provides a tool with which to test in silico regulatory circuitry and developmental perturbations. PMID:22927416

  17. Spatial Modeling for Resources Framework (SMRF)

    USDA-ARS?s Scientific Manuscript database

    Spatial Modeling for Resources Framework (SMRF) was developed by Dr. Scott Havens at the USDA Agricultural Research Service (ARS) in Boise, ID. SMRF was designed to increase the flexibility of taking measured weather data and distributing the point measurements across a watershed. SMRF was developed...

  18. A Spatial Probit Econometric Model of Land Change: The Case of Infrastructure Development in Western Amazonia, Peru

    PubMed Central

    Arima, E. Y.

    2016-01-01

    Tropical forests are now at the center stage of climate mitigation policies worldwide given their roles as sources of carbon emissions resulting from deforestation and forest degradation. Although the international community has created mechanisms such as REDD+ to reduce those emissions, developing tropical countries continue to invest in infrastructure development in an effort to spur economic growth. Construction of roads in particular is known to be an important driver of deforestation. This article simulates the impact of road construction on deforestation in Western Amazonia, Peru, and quantifies the amount of carbon emissions associated with projected deforestation. To accomplish this objective, the article adopts a Bayesian probit land change model in which spatial dependencies are defined between regions or groups of pixels instead of between individual pixels, thereby reducing computational requirements. It also compares and contrasts the patterns of deforestation predicted by both spatial and non-spatial probit models. The spatial model replicates complex patterns of deforestation whereas the non-spatial model fails to do so. In terms of policy, both models suggest that road construction will increase deforestation by a modest amount, between 200–300 km2. This translates into aboveground carbon emissions of 1.36 and 1.85 x 106 tons. However, recent introduction of palm oil in the region serves as a cautionary example that the models may be underestimating the impact of roads. PMID:27010739

  19. A Spatial Probit Econometric Model of Land Change: The Case of Infrastructure Development in Western Amazonia, Peru.

    PubMed

    Arima, E Y

    2016-01-01

    Tropical forests are now at the center stage of climate mitigation policies worldwide given their roles as sources of carbon emissions resulting from deforestation and forest degradation. Although the international community has created mechanisms such as REDD+ to reduce those emissions, developing tropical countries continue to invest in infrastructure development in an effort to spur economic growth. Construction of roads in particular is known to be an important driver of deforestation. This article simulates the impact of road construction on deforestation in Western Amazonia, Peru, and quantifies the amount of carbon emissions associated with projected deforestation. To accomplish this objective, the article adopts a Bayesian probit land change model in which spatial dependencies are defined between regions or groups of pixels instead of between individual pixels, thereby reducing computational requirements. It also compares and contrasts the patterns of deforestation predicted by both spatial and non-spatial probit models. The spatial model replicates complex patterns of deforestation whereas the non-spatial model fails to do so. In terms of policy, both models suggest that road construction will increase deforestation by a modest amount, between 200-300 km2. This translates into aboveground carbon emissions of 1.36 and 1.85 x 106 tons. However, recent introduction of palm oil in the region serves as a cautionary example that the models may be underestimating the impact of roads.

  20. Hierarchical spatial models of abundance and occurrence from imperfect survey data

    USGS Publications Warehouse

    Royle, J. Andrew; Kery, M.; Gautier, R.; Schmid, Hans

    2007-01-01

    Many estimation and inference problems arising from large-scale animal surveys are focused on developing an understanding of patterns in abundance or occurrence of a species based on spatially referenced count data. One fundamental challenge, then, is that it is generally not feasible to completely enumerate ('census') all individuals present in each sample unit. This observation bias may consist of several components, including spatial coverage bias (not all individuals in the Population are exposed to sampling) and detection bias (exposed individuals may go undetected). Thus, observations are biased for the state variable (abundance, occupancy) that is the object of inference. Moreover, data are often sparse for most observation locations, requiring consideration of methods for spatially aggregating or otherwise combining sparse data among sample units. The development of methods that unify spatial statistical models with models accommodating non-detection is necessary to resolve important spatial inference problems based on animal survey data. In this paper, we develop a novel hierarchical spatial model for estimation of abundance and occurrence from survey data wherein detection is imperfect. Our application is focused on spatial inference problems in the Swiss Survey of Common Breeding Birds. The observation model for the survey data is specified conditional on the unknown quadrat population size, N(s). We augment the observation model with a spatial process model for N(s), describing the spatial variation in abundance of the species. The model includes explicit sources of variation in habitat structure (forest, elevation) and latent variation in the form of a correlated spatial process. This provides a model-based framework for combining the spatially referenced samples while at the same time yielding a unified treatment of estimation problems involving both abundance and occurrence. We provide a Bayesian framework for analysis and prediction based on the integrated likelihood, and we use the model to obtain estimates of abundance and occurrence maps for the European Jay (Garrulus glandarius), a widespread, elusive, forest bird. The naive national abundance estimate ignoring imperfect detection and incomplete quadrat coverage was 77 766 territories. Accounting for imperfect detection added approximately 18 000 territories, and adjusting for coverage bias added another 131 000 territories to yield a fully corrected estimate of the national total of about 227 000 territories. This is approximately three times as high as previous estimates that assume every territory is detected in each quadrat.

  1. A spatial model of land use change for western Oregon and western Washington.

    Treesearch

    Jeffrey D. Kline; Ralph J. Alig

    2001-01-01

    We developed an empirical model describing the probability that forests and farmland in western Oregon and western Washington were developed for residential, commercial, or industrial uses during a 30-year period, as a function of spatial socioeconomic variables, ownership, and geographic and physical land characteristics. The empirical model is based on a conceptual...

  2. Spatial Statistical Network Models for Stream and River Temperature in the Chesapeake Bay Watershed, USA

    EPA Science Inventory

    Regional temperature models are needed for characterizing and mapping stream thermal regimes, establishing reference conditions, predicting future impacts and identifying critical thermal refugia. Spatial statistical models have been developed to improve regression modeling techn...

  3. Measuring directional urban spatial interaction in China: A migration perspective

    PubMed Central

    Li, Fangzhou; Feng, Zhiming; Li, Peng; You, Zhen

    2017-01-01

    The study of urban spatial interaction is closely linked to that of economic geography, urban planning, regional development, and so on. Currently, this topic is generating a great deal of interest among researchers who are striving to find accurate ways to measure urban spatial interaction. Classical spatial interaction models lack theoretical guidance and require complicated parameter-adjusting processes. The radiation model, however, as proposed by Simini et al. with rigorous formula derivation, can simulate directional urban spatial interaction. We applied the radiation model in China to simulate the directional migration number among 337 nationwide research units, comprising 4 municipalities and 333 prefecture-level cities. We then analyzed the overall situation in Chinese cities, the interaction intensity hierarchy, and the prime urban agglomerations from the perspective of migration. This was done to ascertain China’s urban spatial interaction and regional development from 2000 to 2010 to reveal ground realities. PMID:28141853

  4. Measuring directional urban spatial interaction in China: A migration perspective.

    PubMed

    Li, Fangzhou; Feng, Zhiming; Li, Peng; You, Zhen

    2017-01-01

    The study of urban spatial interaction is closely linked to that of economic geography, urban planning, regional development, and so on. Currently, this topic is generating a great deal of interest among researchers who are striving to find accurate ways to measure urban spatial interaction. Classical spatial interaction models lack theoretical guidance and require complicated parameter-adjusting processes. The radiation model, however, as proposed by Simini et al. with rigorous formula derivation, can simulate directional urban spatial interaction. We applied the radiation model in China to simulate the directional migration number among 337 nationwide research units, comprising 4 municipalities and 333 prefecture-level cities. We then analyzed the overall situation in Chinese cities, the interaction intensity hierarchy, and the prime urban agglomerations from the perspective of migration. This was done to ascertain China's urban spatial interaction and regional development from 2000 to 2010 to reveal ground realities.

  5. Multidimensional extended spatial evolutionary games.

    PubMed

    Krześlak, Michał; Świerniak, Andrzej

    2016-02-01

    The goal of this paper is to study the classical hawk-dove model using mixed spatial evolutionary games (MSEG). In these games, played on a lattice, an additional spatial layer is introduced for dependence on more complex parameters and simulation of changes in the environment. Furthermore, diverse polymorphic equilibrium points dependent on cell reproduction, model parameters, and their simulation are discussed. Our analysis demonstrates the sensitivity properties of MSEGs and possibilities for further development. We discuss applications of MSEGs, particularly algorithms for modelling cell interactions during the development of tumours. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Using graph approach for managing connectivity in integrative landscape modelling

    NASA Astrophysics Data System (ADS)

    Rabotin, Michael; Fabre, Jean-Christophe; Libres, Aline; Lagacherie, Philippe; Crevoisier, David; Moussa, Roger

    2013-04-01

    In cultivated landscapes, a lot of landscape elements such as field boundaries, ditches or banks strongly impact water flows, mass and energy fluxes. At the watershed scale, these impacts are strongly conditionned by the connectivity of these landscape elements. An accurate representation of these elements and of their complex spatial arrangements is therefore of great importance for modelling and predicting these impacts.We developped in the framework of the OpenFLUID platform (Software Environment for Modelling Fluxes in Landscapes) a digital landscape representation that takes into account the spatial variabilities and connectivities of diverse landscape elements through the application of the graph theory concepts. The proposed landscape representation consider spatial units connected together to represent the flux exchanges or any other information exchanges. Each spatial unit of the landscape is represented as a node of a graph and relations between units as graph connections. The connections are of two types - parent-child connection and up/downstream connection - which allows OpenFLUID to handle hierarchical graphs. Connections can also carry informations and graph evolution during simulation is possible (connections or elements modifications). This graph approach allows a better genericity on landscape representation, a management of complex connections and facilitate development of new landscape representation algorithms. Graph management is fully operational in OpenFLUID for developers or modelers ; and several graph tools are available such as graph traversal algorithms or graph displays. Graph representation can be managed i) manually by the user (for example in simple catchments) through XML-based files in easily editable and readable format or ii) by using methods of the OpenFLUID-landr library which is an OpenFLUID library relying on common open-source spatial libraries (ogr vector, geos topologic vector and gdal raster libraries). OpenFLUID-landr library has been developed in order i) to be used with no GIS expert skills needed (common gis formats can be read and simplified spatial management is provided), ii) to easily develop adapted rules of landscape discretization and graph creation to follow spatialized model requirements and iii) to allow model developers to manage dynamic and complex spatial topology. Graph management in OpenFLUID are shown with i) examples of hydrological modelizations on complex farmed landscapes and ii) the new implementation of Geo-MHYDAS tool based on the OpenFLUID-landr library, which allows to discretize a landscape and create graph structure for the MHYDAS model requirements.

  7. Spatial modeling of the geographic distribution of wildlife populations: A case study in the lower Mississippi River region

    USGS Publications Warehouse

    Ji, W.; Jeske, C.

    2000-01-01

    A geographic information system (GIS)-based spatial modeling approach was developed to study environmental and land use impacts on the geographic distribution of wintering northern pintails (Arias acuta) in the Lower Mississippi River region. Pintails were fitted with backpack radio transmitter packages at Catahoula Lake, LA, in October 1992-1994 and located weekly through the following March. Pintail survey data were converted into a digital database in ARC/INFO GIS format and integrated with environmental GIS data through a customized modeling interface. The study verified the relationship between pintail distributions and major environmental factors and developed a conceptual relation model. Visualization-based spatial simulations were used to display the movement patterns of specific population groups under spatial and temporal constraints. The spatial modeling helped understand the seasonal movement patterns of pintails in relation to their habitat usage in Arkansas and southwestern Louisiana for wintering and interchange situations among population groups wintering in Texas and southeastern Louisiana. (C) 2000 Elsevier Science B.V.

  8. On the predictive ability of mechanistic models for the Haitian cholera epidemic.

    PubMed

    Mari, Lorenzo; Bertuzzo, Enrico; Finger, Flavio; Casagrandi, Renato; Gatto, Marino; Rinaldo, Andrea

    2015-03-06

    Predictive models of epidemic cholera need to resolve at suitable aggregation levels spatial data pertaining to local communities, epidemiological records, hydrologic drivers, waterways, patterns of human mobility and proxies of exposure rates. We address the above issue in a formal model comparison framework and provide a quantitative assessment of the explanatory and predictive abilities of various model settings with different spatial aggregation levels and coupling mechanisms. Reference is made to records of the recent Haiti cholera epidemics. Our intensive computations and objective model comparisons show that spatially explicit models accounting for spatial connections have better explanatory power than spatially disconnected ones for short-to-intermediate calibration windows, while parsimonious, spatially disconnected models perform better with long training sets. On average, spatially connected models show better predictive ability than disconnected ones. We suggest limits and validity of the various approaches and discuss the pathway towards the development of case-specific predictive tools in the context of emergency management. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Towards a 3d Spatial Urban Energy Modelling Approach

    NASA Astrophysics Data System (ADS)

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies conceptually and practically integrate urban spatial and energy planning approaches. The combined modelling approach that will be developed based on the described sectorial models holds the potential to represent hybrid energy systems coupling distributed generation of electricity with thermal conversion systems.

  10. Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses.

    PubMed

    Griffith, Daniel A; Peres-Neto, Pedro R

    2006-10-01

    Recently, analytical approaches based on the eigenfunctions of spatial configuration matrices have been proposed in order to consider explicitly spatial predictors. The present study demonstrates the usefulness of eigenfunctions in spatial modeling applied to ecological problems and shows equivalencies of and differences between the two current implementations of this methodology. The two approaches in this category are the distance-based (DB) eigenvector maps proposed by P. Legendre and his colleagues, and spatial filtering based upon geographic connectivity matrices (i.e., topology-based; CB) developed by D. A. Griffith and his colleagues. In both cases, the goal is to create spatial predictors that can be easily incorporated into conventional regression models. One important advantage of these two approaches over any other spatial approach is that they provide a flexible tool that allows the full range of general and generalized linear modeling theory to be applied to ecological and geographical problems in the presence of nonzero spatial autocorrelation.

  11. A GIS-based multi-source and multi-box modeling approach (GMSMB) for air pollution assessment--a North American case study.

    PubMed

    Wang, Bao-Zhen; Chen, Zhi

    2013-01-01

    This article presents a GIS-based multi-source and multi-box modeling approach (GMSMB) to predict the spatial concentration distributions of airborne pollutant on local and regional scales. In this method, an extended multi-box model combined with a multi-source and multi-grid Gaussian model are developed within the GIS framework to examine the contributions from both point- and area-source emissions. By using GIS, a large amount of data including emission sources, air quality monitoring, meteorological data, and spatial location information required for air quality modeling are brought into an integrated modeling environment. It helps more details of spatial variation in source distribution and meteorological condition to be quantitatively analyzed. The developed modeling approach has been examined to predict the spatial concentration distribution of four air pollutants (CO, NO(2), SO(2) and PM(2.5)) for the State of California. The modeling results are compared with the monitoring data. Good agreement is acquired which demonstrated that the developed modeling approach could deliver an effective air pollution assessment on both regional and local scales to support air pollution control and management planning.

  12. Spatial downscaling of soil prediction models based on weighted generalized additive models in smallholder farm settings.

    PubMed

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P; Nair, Vimala D

    2017-09-11

    Digital soil mapping (DSM) is gaining momentum as a technique to help smallholder farmers secure soil security and food security in developing regions. However, communications of the digital soil mapping information between diverse audiences become problematic due to the inconsistent scale of DSM information. Spatial downscaling can make use of accessible soil information at relatively coarse spatial resolution to provide valuable soil information at relatively fine spatial resolution. The objective of this research was to disaggregate the coarse spatial resolution soil exchangeable potassium (K ex ) and soil total nitrogen (TN) base map into fine spatial resolution soil downscaled map using weighted generalized additive models (GAMs) in two smallholder villages in South India. By incorporating fine spatial resolution spectral indices in the downscaling process, the soil downscaled maps not only conserve the spatial information of coarse spatial resolution soil maps but also depict the spatial details of soil properties at fine spatial resolution. The results of this study demonstrated difference between the fine spatial resolution downscaled maps and fine spatial resolution base maps is smaller than the difference between coarse spatial resolution base maps and fine spatial resolution base maps. The appropriate and economical strategy to promote the DSM technique in smallholder farms is to develop the relatively coarse spatial resolution soil prediction maps or utilize available coarse spatial resolution soil maps at the regional scale and to disaggregate these maps to the fine spatial resolution downscaled soil maps at farm scale.

  13. Fragmentation of urban forms and the environmental consequences: results from a high-spatial resolution model system

    NASA Astrophysics Data System (ADS)

    Tang, U. W.; Wang, Z. S.

    2008-10-01

    Each city has its unique urban form. The importance of urban form on sustainable development has been recognized in recent years. Traditionally, air quality modelling in a city is in a mesoscale with grid resolution of kilometers, regardless of its urban form. This paper introduces a GIS-based air quality and noise model system developed to study the built environment of highly compact urban forms. Compared with traditional mesoscale air quality model system, the present model system has a higher spatial resolution down to individual buildings along both sides of the street. Applying the developed model system in the Macao Peninsula with highly compact urban forms, the average spatial resolution of input and output data is as high as 174 receptor points per km2. Based on this input/output dataset with a high spatial resolution, this study shows that even the highly compact urban forms can be fragmented into a very small geographic scale of less than 3 km2. This is due to the significant temporal variation of urban development. The variation of urban form in each fragment in turn affects air dispersion, traffic condition, and thus air quality and noise in a measurable scale.

  14. A Computational Model of Spatial Visualization Capacity

    ERIC Educational Resources Information Center

    Lyon, Don R.; Gunzelmann, Glenn; Gluck, Kevin A.

    2008-01-01

    Visualizing spatial material is a cornerstone of human problem solving, but human visualization capacity is sharply limited. To investigate the sources of this limit, we developed a new task to measure visualization accuracy for verbally-described spatial paths (similar to street directions), and implemented a computational process model to…

  15. Thermodynamic Model of Spatial Memory

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Allen, P.

    1998-03-01

    We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.

  16. China's Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model.

    PubMed

    Cao, Qilong; Liang, Ying; Niu, Xueting

    2017-09-18

    Background : Air pollution has become an important factor restricting China's economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods : Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM 2.5 . Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results : It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM 2.5 pollutions in the control of other variables. Conclusions : Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables.

  17. Stochastic Spatial Models in Ecology: A Statistical Physics Approach

    NASA Astrophysics Data System (ADS)

    Pigolotti, Simone; Cencini, Massimo; Molina, Daniel; Muñoz, Miguel A.

    2018-07-01

    Ecosystems display a complex spatial organization. Ecologists have long tried to characterize them by looking at how different measures of biodiversity change across spatial scales. Ecological neutral theory has provided simple predictions accounting for general empirical patterns in communities of competing species. However, while neutral theory in well-mixed ecosystems is mathematically well understood, spatial models still present several open problems, limiting the quantitative understanding of spatial biodiversity. In this review, we discuss the state of the art in spatial neutral theory. We emphasize the connection between spatial ecological models and the physics of non-equilibrium phase transitions and how concepts developed in statistical physics translate in population dynamics, and vice versa. We focus on non-trivial scaling laws arising at the critical dimension D = 2 of spatial neutral models, and their relevance for biological populations inhabiting two-dimensional environments. We conclude by discussing models incorporating non-neutral effects in the form of spatial and temporal disorder, and analyze how their predictions deviate from those of purely neutral theories.

  18. Stochastic Spatial Models in Ecology: A Statistical Physics Approach

    NASA Astrophysics Data System (ADS)

    Pigolotti, Simone; Cencini, Massimo; Molina, Daniel; Muñoz, Miguel A.

    2017-11-01

    Ecosystems display a complex spatial organization. Ecologists have long tried to characterize them by looking at how different measures of biodiversity change across spatial scales. Ecological neutral theory has provided simple predictions accounting for general empirical patterns in communities of competing species. However, while neutral theory in well-mixed ecosystems is mathematically well understood, spatial models still present several open problems, limiting the quantitative understanding of spatial biodiversity. In this review, we discuss the state of the art in spatial neutral theory. We emphasize the connection between spatial ecological models and the physics of non-equilibrium phase transitions and how concepts developed in statistical physics translate in population dynamics, and vice versa. We focus on non-trivial scaling laws arising at the critical dimension D = 2 of spatial neutral models, and their relevance for biological populations inhabiting two-dimensional environments. We conclude by discussing models incorporating non-neutral effects in the form of spatial and temporal disorder, and analyze how their predictions deviate from those of purely neutral theories.

  19. Microplume model of spatial-yield spectra. [applying to electron gas degradation in molecular nitrogen gas

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.; Singhal, R. P.

    1979-01-01

    An analytic representation for the spatial (radial and longitudinal) yield spectra is developed in terms of a model containing three simple 'microplumes'. The model is applied to electron energy degradation in molecular nitrogen gas for 0.1 to 5 keV incident electrons. From the nature of the cross section input to this model it is expected that the scaled spatial yield spectra for other gases will be quite similar. The model indicates that each excitation, ionization, etc. plume should have its individual spatial and energy dependence. Extensions and aeronomical and radiological applications of the model are discussed.

  20. A Computational Model of Spatial Development

    NASA Astrophysics Data System (ADS)

    Hiraki, Kazuo; Sashima, Akio; Phillips, Steven

    Psychological experiments on children's development of spatial knowledge suggest experience at self-locomotion with visual tracking as important factors. Yet, the mechanism underlying development is unknown. We propose a robot that learns to mentally track a target object (i.e., maintaining a representation of an object's position when outside the field-of-view) as a model for spatial development. Mental tracking is considered as prediction of an object's position given the previous environmental state and motor commands, and the current environment state resulting from movement. Following Jordan & Rumelhart's (1992) forward modeling architecture the system consists of two components: an inverse model of sensory input to desired motor commands; and a forward model of motor commands to desired sensory input (goals). The robot was tested on the `three cups' paradigm (where children are required to select the cup containing the hidden object under various movement conditions). Consistent with child development, without the capacity for self-locomotion the robot's errors are self-center based. When given the ability of self-locomotion the robot responds allocentrically.

  1. Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution

    Treesearch

    Robert M. Scheller; James B. Domingo; Brian R. Sturtevant; Jeremy S. Williams; Arnold Rudy; Eric J. Gustafson; David J. Mladenoff

    2007-01-01

    We introduce LANDIS-II, a landscape model designed to simulate forest succession and disturbances. LANDIS-II builds upon and preserves the functionality of previous LANDIS forest landscape simulation models. LANDIS-II is distinguished by the inclusion of variable time steps for different ecological processes; our use of a rigorous development and testing process used...

  2. A spatial multi-objective optimization model for sustainable urban wastewater system layout planning.

    PubMed

    Dong, X; Zeng, S; Chen, J

    2012-01-01

    Design of a sustainable city has changed the traditional centralized urban wastewater system towards a decentralized or clustering one. Note that there is considerable spatial variability of the factors that affect urban drainage performance including urban catchment characteristics. The potential options are numerous for planning the layout of an urban wastewater system, which are associated with different costs and local environmental impacts. There is thus a need to develop an approach to find the optimal spatial layout for collecting, treating, reusing and discharging the municipal wastewater of a city. In this study, a spatial multi-objective optimization model, called Urban wastewateR system Layout model (URL), was developed. It is solved by a genetic algorithm embedding Monte Carlo sampling and a series of graph algorithms. This model was illustrated by a case study in a newly developing urban area in Beijing, China. Five optimized system layouts were recommended to the local municipality for further detailed design.

  3. The quantitative modelling of human spatial habitability

    NASA Technical Reports Server (NTRS)

    Wise, James A.

    1988-01-01

    A theoretical model for evaluating human spatial habitability (HuSH) in the proposed U.S. Space Station is developed. Optimizing the fitness of the space station environment for human occupancy will help reduce environmental stress due to long-term isolation and confinement in its small habitable volume. The development of tools that operationalize the behavioral bases of spatial volume for visual kinesthetic, and social logic considerations is suggested. This report further calls for systematic scientific investigations of how much real and how much perceived volume people need in order to function normally and with minimal stress in space-based settings. The theoretical model presented in this report can be applied to any size or shape interior, at any scale of consideration, for the Space Station as a whole to an individual enclosure or work station. Using as a point of departure the Isovist model developed by Dr. Michael Benedikt of the U. of Texas, the report suggests that spatial habitability can become as amenable to careful assessment as engineering and life support concerns.

  4. Development and testing of an assessment to measure spatial thinking about enhanced greenhouse effect

    NASA Astrophysics Data System (ADS)

    Skaza, Heather Jean

    Americans, in general, do not behave in environmentally sustainable ways. We drive cars and fly in planes that emit planet-warming carbon. We purchase food in nearly indestructible packaging that is not recycled or repurposed. We do not consider the environmental impact of the "stuff" stuffed into our grocery and department stores, most of which is made of materials that had to be dug out of the ground, leaving rivers and skies full of pollution in its place. Citizens have a responsibility to understand complex global and local environmental problems. A person's ability to think about the way that an environmental problem they are tasked with understanding changes over time and space can better prepare them to make sustainable decisions in the face of this complexity. Spatial thinking serves the learner's ability to understand the impact of environmental actions and should be given a consistent place in environmental education. Teaching practices and pedagogies that focus on spatial thinking are necessary to learners' success. In order to know if these strategies are successful, educators need an assessment tool that targets the spatial thinking skills necessary to understanding environmental problems. This dissertation project used a models and modeling theoretical framework to develop and test an assessment of students' spatial thinking abilities related to the environmental problem of enhanced greenhouse effect. This assessment was developed from a review of existing spatial thinking literature, research on existing assessments of spatial thinking abilities, and existing assessment of enhanced greenhouse effect. In addition, I interviewed and surveyed experts in science, math, and environmental education to elicit their perspectives on the spatial thinking skills necessary for learners to understand enhanced greenhouse effect. All of this information was synthesized into 14 Central Concepts of spatial thinking for enhanced greenhouse effect. The assessment was developed for students to express their mental models related to these 14 Central Concepts. The assessment was reviewed and tested by experts related to the project's content, as well as students from the target population for assessment delivery. It was revised based on feedback and data collect from these groups. Here I describe my findings, that students are more proficient at modeling simple spatial relationships, one at a time, than modeling more complex relationships; that students understand human-scale spatial relationships related to enhanced greenhouse effect better than very small or very large ones; and that students can associate and correlate spatially distributed features and phenomena to describe enhanced greenhouse effect. Finally, I describe the ways in which student and expert feedback has informed not only revisions of this assessment specifically, but also to the assessment development process, for better assessment design, when spatial thinking assessments related to other environmental problems are developed in the future.

  5. Secondary dispersal driven by overland flow in drylands: Review and mechanistic model development.

    PubMed

    Thompson, Sally E; Assouline, Shmuel; Chen, Li; Trahktenbrot, Ana; Svoray, Tal; Katul, Gabriel G

    2014-01-01

    Seed dispersal alters gene flow, reproduction, migration and ultimately spatial organization of dryland ecosystems. Because many seeds in drylands lack adaptations for long-distance dispersal, seed transport by secondary processes such as tumbling in the wind or mobilization in overland flow plays a dominant role in determining where seeds ultimately germinate. Here, recent developments in modeling runoff generation in spatially complex dryland ecosystems are reviewed with the aim of proposing improvements to mechanistic modeling of seed dispersal processes. The objective is to develop a physically-based yet operational framework for determining seed dispersal due to surface runoff, a process that has gained recent experimental attention. A Buoyant OBject Coupled Eulerian - Lagrangian Closure model (BOB-CELC) is proposed to represent seed movement in shallow surface flows. The BOB-CELC is then employed to investigate the sensitivity of seed transport to landscape and storm properties and to the spatial configuration of vegetation patches interspersed within bare earth. The potential to simplify seed transport outcomes by considering the limiting behavior of multiple runoff events is briefly considered, as is the potential for developing highly mechanistic, spatially explicit models that link seed transport, vegetation structure and water movement across multiple generations of dryland plants.

  6. On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables.

    DOT National Transportation Integrated Search

    2015-12-01

    We develop an econometric framework for incorporating spatial dependence in integrated model systems of latent variables and multidimensional mixed data outcomes. The framework combines Bhats Generalized Heterogeneous Data Model (GHDM) with a spat...

  7. Program SPACECAP: software for estimating animal density using spatially explicit capture-recapture models

    USGS Publications Warehouse

    Gopalaswamy, Arjun M.; Royle, J. Andrew; Hines, James E.; Singh, Pallavi; Jathanna, Devcharan; Kumar, N. Samba; Karanth, K. Ullas

    2012-01-01

    1. The advent of spatially explicit capture-recapture models is changing the way ecologists analyse capture-recapture data. However, the advantages offered by these new models are not fully exploited because they can be difficult to implement. 2. To address this need, we developed a user-friendly software package, created within the R programming environment, called SPACECAP. This package implements Bayesian spatially explicit hierarchical models to analyse spatial capture-recapture data. 3. Given that a large number of field biologists prefer software with graphical user interfaces for analysing their data, SPACECAP is particularly useful as a tool to increase the adoption of Bayesian spatially explicit capture-recapture methods in practice.

  8. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.

  9. SPATIAL PREDICTION USING COMBINED SOURCES OF DATA

    EPA Science Inventory

    For improved environmental decision-making, it is important to develop new models for spatial prediction that accurately characterize important spatial and temporal patterns of air pollution. As the U .S. Environmental Protection Agency begins to use spatial prediction in the reg...

  10. A novel spatial performance metric for robust pattern optimization of distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Demirel, C.; Koch, J.

    2017-12-01

    Evaluation of performance is an integral part of model development and calibration as well as it is of paramount importance when communicating modelling results to stakeholders and the scientific community. There exists a comprehensive and well tested toolbox of metrics to assess temporal model performance in the hydrological modelling community. On the contrary, the experience to evaluate spatial performance is not corresponding to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study aims at making a contribution towards advancing spatial pattern oriented model evaluation for distributed hydrological models. This is achieved by introducing a novel spatial performance metric which provides robust pattern performance during model calibration. The promoted SPAtial EFficiency (spaef) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multi-component approach is necessary in order to adequately compare spatial patterns. spaef, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are tested in a spatial pattern oriented model calibration of a catchment model in Denmark. The calibration is constrained by a remote sensing based spatial pattern of evapotranspiration and discharge timeseries at two stations. Our results stress that stand-alone metrics tend to fail to provide holistic pattern information to the optimizer which underlines the importance of multi-component metrics. The three spaef components are independent which allows them to complement each other in a meaningful way. This study promotes the use of bias insensitive metrics which allow comparing variables which are related but may differ in unit in order to optimally exploit spatial observations made available by remote sensing platforms. We see great potential of spaef across environmental disciplines dealing with spatially distributed modelling.

  11. A Simple Iterative Model Accurately Captures Complex Trapline Formation by Bumblebees Across Spatial Scales and Flower Arrangements

    PubMed Central

    Reynolds, Andrew M.; Lihoreau, Mathieu; Chittka, Lars

    2013-01-01

    Pollinating bees develop foraging circuits (traplines) to visit multiple flowers in a manner that minimizes overall travel distance, a task analogous to the travelling salesman problem. We report on an in-depth exploration of an iterative improvement heuristic model of bumblebee traplining previously found to accurately replicate the establishment of stable routes by bees between flowers distributed over several hectares. The critical test for a model is its predictive power for empirical data for which the model has not been specifically developed, and here the model is shown to be consistent with observations from different research groups made at several spatial scales and using multiple configurations of flowers. We refine the model to account for the spatial search strategy of bees exploring their environment, and test several previously unexplored predictions. We find that the model predicts accurately 1) the increasing propensity of bees to optimize their foraging routes with increasing spatial scale; 2) that bees cannot establish stable optimal traplines for all spatial configurations of rewarding flowers; 3) the observed trade-off between travel distance and prioritization of high-reward sites (with a slight modification of the model); 4) the temporal pattern with which bees acquire approximate solutions to travelling salesman-like problems over several dozen foraging bouts; 5) the instability of visitation schedules in some spatial configurations of flowers; 6) the observation that in some flower arrays, bees' visitation schedules are highly individually different; 7) the searching behaviour that leads to efficient location of flowers and routes between them. Our model constitutes a robust theoretical platform to generate novel hypotheses and refine our understanding about how small-brained insects develop a representation of space and use it to navigate in complex and dynamic environments. PMID:23505353

  12. Temporal consistency of spatial pattern in growth of the mussel, Mytilus edulis: Implications for predictive modelling

    NASA Astrophysics Data System (ADS)

    Bergström, Per; Lindegarth, Susanne; Lindegarth, Mats

    2013-10-01

    Human pressures on coastal seas are increasing and methods for sustainable management, including spatial planning and mitigative actions, are therefore needed. In coastal areas worldwide, the development of mussel farming as an economically and ecologically sustainable industry requires geographic information on the growth and potential production capacity. In practice this means that coherent maps of temporally stable spatial patterns of growth need to be available in the planning process and that maps need to be based on mechanistic or empirical models. Therefore, as a first step towards development of models of growth, we assessed empirically the fundamental requirement that there are temporally consistent spatial patterns of growth in the blue mussel, Mytilus edulis. Using a pilot study we designed and dimensioned a transplant experiment, where the spatial consistency in the growth of mussels was evaluated at two resolutions. We found strong temporal and scale-dependent spatial variability in growth but patterns suggested that spatial patterns were uncoupled between growth of shell and that of soft tissue. Spatial patterns of shell growth were complex and largely inconsistent among years. Importantly, however, the growth of soft tissue was qualitatively consistent among years at the scale of km. The results suggest that processes affecting the whole coastal area cause substantial differences in growth of soft tissue among years but that factors varying at the scale of km create strong and persistent spatial patterns of growth, with a potential doubling of productivity by identifying the most suitable locations. We conclude that the observed spatial consistency provides a basis for further development of predictive modelling and mapping of soft tissue growth in these coastal areas. Potential causes of observed patterns, consequences for mussel-farming as a tool for mitigating eutrophication, aspects of precision of modelling and sampling of mussel growth as well as ecological functions in general are discussed.

  13. China’s Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model

    PubMed Central

    Cao, Qilong; Liang, Ying; Niu, Xueting

    2017-01-01

    Background: Air pollution has become an important factor restricting China’s economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods: Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM2.5. Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results: It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM2.5 pollutions in the control of other variables. Conclusions: Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables. PMID:28927016

  14. The spatial structure of chronic morbidity: evidence from UK census returns.

    PubMed

    Dutey-Magni, Peter F; Moon, Graham

    2016-08-24

    Disease prevalence models have been widely used to estimate health, lifestyle and disability characteristics for small geographical units when other data are not available. Yet, knowledge is often lacking about how to make informed decisions around the specification of such models, especially regarding spatial assumptions placed on their covariance structure. This paper is concerned with understanding processes of spatial dependency in unexplained variation in chronic morbidity. 2011 UK census data on limiting long-term illness (LLTI) is used to look at the spatial structure in chronic morbidity across England and Wales. The variance and spatial clustering of the odds of LLTI across local authority districts (LADs) and middle layer super output areas are measured across 40 demographic cross-classifications. A series of adjacency matrices based on distance, contiguity and migration flows are tested to examine the spatial structure in LLTI. Odds are then modelled using a logistic mixed model to examine the association with district-level covariates and their predictive power. The odds of chronic illness are more dispersed than local age characteristics, mortality, hospitalisation rates and chance alone would suggest. Of all adjacency matrices, the three-nearest neighbour method is identified as the best fitting. Migration flows can also be used to construct spatial weights matrices which uncover non-negligible autocorrelation. Once the most important characteristics observable at the LAD-level are taken into account, substantial spatial autocorrelation remains which can be modelled explicitly to improve disease prevalence predictions. Systematic investigation of spatial structures and dependency is important to develop model-based estimation tools in chronic disease mapping. Spatial structures reflecting migration interactions are easy to develop and capture autocorrelation in LLTI. Patterns of spatial dependency in the geographical distribution of LLTI are not comparable across ethnic groups. Ethnic stratification of local health information is needed and there is potential to further address complexity in prevalence models by improving access to disaggregated data.

  15. Habitat models to predict wetland bird occupancy influenced by scale, anthropogenic disturbance, and imperfect detection

    USGS Publications Warehouse

    Glisson, Wesley J.; Conway, Courtney J.; Nadeau, Christopher P.; Borgmann, Kathi L.

    2017-01-01

    Understanding species–habitat relationships for endangered species is critical for their conservation. However, many studies have limited value for conservation because they fail to account for habitat associations at multiple spatial scales, anthropogenic variables, and imperfect detection. We addressed these three limitations by developing models for an endangered wetland bird, Yuma Ridgway's rail (Rallus obsoletus yumanensis), that examined how the spatial scale of environmental variables, inclusion of anthropogenic disturbance variables, and accounting for imperfect detection in validation data influenced model performance. These models identified associations between environmental variables and occupancy. We used bird survey and spatial environmental data at 2473 locations throughout the species' U.S. range to create and validate occupancy models and produce predictive maps of occupancy. We compared habitat-based models at three spatial scales (100, 224, and 500 m radii buffers) with and without anthropogenic disturbance variables using validation data adjusted for imperfect detection and an unadjusted validation dataset that ignored imperfect detection. The inclusion of anthropogenic disturbance variables improved the performance of habitat models at all three spatial scales, and the 224-m-scale model performed best. All models exhibited greater predictive ability when imperfect detection was incorporated into validation data. Yuma Ridgway's rail occupancy was negatively associated with ephemeral and slow-moving riverine features and high-intensity anthropogenic development, and positively associated with emergent vegetation, agriculture, and low-intensity development. Our modeling approach accounts for common limitations in modeling species–habitat relationships and creating predictive maps of occupancy probability and, therefore, provides a useful framework for other species.

  16. Network-based spatial clustering technique for exploring features in regional industry

    NASA Astrophysics Data System (ADS)

    Chou, Tien-Yin; Huang, Pi-Hui; Yang, Lung-Shih; Lin, Wen-Tzu

    2008-10-01

    In the past researches, industrial cluster mainly focused on single or particular industry and less on spatial industrial structure and mutual relations. Industrial cluster could generate three kinds of spillover effects, including knowledge, labor market pooling, and input sharing. In addition, industrial cluster indeed benefits industry development. To fully control the status and characteristics of district industrial cluster can facilitate to improve the competitive ascendancy of district industry. The related researches on industrial spatial cluster were of great significance for setting up industrial policies and promoting district economic development. In this study, an improved model, GeoSOM, that combines DBSCAN (Density-Based Spatial Clustering of Applications with Noise) and SOM (Self-Organizing Map) was developed for analyzing industrial cluster. Different from former distance-based algorithm for industrial cluster, the proposed GeoSOM model can calculate spatial characteristics between firms based on DBSCAN algorithm and evaluate the similarity between firms based on SOM clustering analysis. The demonstrative data sets, the manufacturers around Taichung County in Taiwan, were analyzed for verifying the practicability of the proposed model. The analyzed results indicate that GeoSOM is suitable for evaluating spatial industrial cluster.

  17. Predictive spatial modeling of narcotic crop growth patterns

    USGS Publications Warehouse

    Waltz, Frederick A.; Moore, D.G.

    1986-01-01

    Spatial models for predicting the geographic distribution of marijuana crops have been developed and are being evaluated for use in law enforcement programs. The models are based on growing condition preferences and on psychological inferences regarding grower behavior. Experiences of local law officials were used to derive the initial model, which was updated and improved as data from crop finds were archived and statistically analyzed. The predictive models are changed as crop locations are moved in response to the pressures of law enforcement. The models use spatial data in a raster geographic information system. The spatial data are derived from the U.S. Geological Survey's US GeoData, standard 7.5-minute topographic quadrangle maps, interpretations of aerial photographs, and thematic maps. Updating of cultural patterns, canopy closure, and other dynamic features is conducted through interpretation of aerial photographs registered to the 7.5-minute quadrangle base. The model is used to numerically weight various data layers that have been processed using spread functions, edge definition, and categorization. The building of the spatial data base, model development, model application, product generation, and use are collectively referred to as the Area Reduction Program (ARP). The goal of ARP is to provide law enforcement officials with tactical maps that show the most likely locations for narcotic crops.

  18. An investigation of the development of the topological spatial structures in elementary school students

    NASA Astrophysics Data System (ADS)

    Everett, Susan Ann

    1999-09-01

    In this study the relationships among the topological spatial structures were examined in students in kindergarten, second, and fourth grades. These topological spatial structures are part of the three major types of spatial thinking: topological, projective, and Euclidean (as defined by Jean Piaget and associates). According to Piaget's model of spatial thinking, the spatial structures enable humans to think about spatial relationships at a conceptual or representational level rather than only at a simpler, perceptual level. The clinical interview technique was used to interact individually with 72 children to assess the presence of each of the different topological spatial structures. This was accomplished through the use of seven task protocols and simple objects which are familiar to young children. These task protocols allowed the investigator to interact with each child in a consistent manner. The results showed that most of the children in this study (97.2%) had not developed all of the topological spatial structures. The task scores, were analyzed using non-parametric statistical tests due to the ordinal nature of the data. From the data the following results were obtained: (1) the spatial structures did not develop in random order based on the task scores but developed in the sequence expected from Piaget's model, (2) task performance improved with grade level with fourth grade students outperforming second graders and kindergartners on each of the seven tasks, and (3) no significant differences on task performance due to gender were found. Based on these results, young elementary children are beginning to develop topological spatial thinking. This is critical since it provides the foundation for the other types of spatial thinking, projective and Euclidean. Since spatial thinking is not a "gift" but can be developed, educators need to provide more opportunities for students to increase their level of spatial thinking since it is necessary for conceptual understanding of many different topics in math and science.

  19. Extended experience benefits spatial mental model development with route but not survey descriptions.

    PubMed

    Brunyé, Tad T; Taylor, Holly A

    2008-02-01

    Spatial descriptions symbolically represent environmental information through language and are written in two primary perspectives: survey, analogous to viewing a map, and route, analogous to navigation. Readers of survey or route descriptions form abstracted perspective flexible representations of the described environment, or spatial mental models. The present two experiments investigated the maintenance of perspective in spatial mental models as a function of description perspective and experience (operationalized through repetition), and as reflected in self-paced reading times. Experiment 1 involved studying survey and route descriptions either once or three times, then completing map drawing and true/false statement verification. Results demonstrated that spatial mental models are readily formed with survey descriptions, but require relatively more experience with route descriptions; further, some limited evidence suggests perspective dependence in spatial mental models, even following extended experience. Experiment 2 measured self-paced reading during three successive description presentations. Average reading times over the three presentations reduced more for survey relative to route descriptions, and there was no evidence for perspective specificity in resulting spatial mental models. This supports Experiment 1 findings demonstrating the relatively time-consuming nature of acquiring spatial mental models from route, but not survey descriptions. Results are discussed with regard to developmental, discourse processing, and spatial mental model theory.

  20. On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City

    PubMed Central

    Scheuer, Sebastian; Haase, Dagmar; Volk, Martin

    2016-01-01

    A number of concepts exist regarding how urbanization can be described as a process. Understanding this process that affects billions of people and its future development in a spatial manner is imperative to address related issues such as human quality of life. In the focus of spatially explicit studies on urbanization is typically a city, a particular urban region, an agglomeration. However, gaps remain in spatially explicit global models. This paper addresses that issue by examining the spatial dynamics of urban areas over time, for a full coverage of the world. The presented model identifies past, present and potential future hotspots of urbanization as a function of an urban area's spatial variation and age, whose relation could be depicted both as a proxy and as a path of urban development. PMID:27490199

  1. On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City.

    PubMed

    Scheuer, Sebastian; Haase, Dagmar; Volk, Martin

    2016-01-01

    A number of concepts exist regarding how urbanization can be described as a process. Understanding this process that affects billions of people and its future development in a spatial manner is imperative to address related issues such as human quality of life. In the focus of spatially explicit studies on urbanization is typically a city, a particular urban region, an agglomeration. However, gaps remain in spatially explicit global models. This paper addresses that issue by examining the spatial dynamics of urban areas over time, for a full coverage of the world. The presented model identifies past, present and potential future hotspots of urbanization as a function of an urban area's spatial variation and age, whose relation could be depicted both as a proxy and as a path of urban development.

  2. Spatial capture-recapture models for search-encounter data

    USGS Publications Warehouse

    Royle, J. Andrew; Kery, Marc; Guelat, Jerome

    2011-01-01

    1. Spatial capture–recapture models make use of auxiliary data on capture location to provide density estimates for animal populations. Previously, models have been developed primarily for fixed trap arrays which define the observable locations of individuals by a set of discrete points. 2. Here, we develop a class of models for 'search-encounter' data, i.e. for detections of recognizable individuals in continuous space, not restricted to trap locations. In our hierarchical model, detection probability is related to the average distance between individual location and the survey path. The locations are allowed to change over time owing to movements of individuals, and individual locations are related formally by a model describing individual activity or home range centre which is itself regarded as a latent variable in the model. We provide a Bayesian analysis of the model in WinBUGS, and develop a custom MCMC algorithm in the R language. 3. The model is applied to simulated data and to territory mapping data for the Willow Tit from the Swiss Breeding Bird Survey MHB. While the observed density was 15 territories per nominal 1 km2 plot of unknown effective sample area, the model produced a density estimate of 21∙12 territories per square km (95% posterior interval: 17–26). 4. Spatial capture–recapture models are relevant to virtually all animal population studies that seek to estimate population size or density, yet existing models have been proposed mainly for conventional sampling using arrays of traps. Our model for search-encounter data, where the spatial pattern of searching can be arbitrary and may change over occasions, greatly expands the scope and utility of spatial capture–recapture models.

  3. The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models

    NASA Astrophysics Data System (ADS)

    Koch, Julian; Cüneyd Demirel, Mehmet; Stisen, Simon

    2018-05-01

    The process of model evaluation is not only an integral part of model development and calibration but also of paramount importance when communicating modelling results to the scientific community and stakeholders. The modelling community has a large and well-tested toolbox of metrics to evaluate temporal model performance. In contrast, spatial performance evaluation does not correspond to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study makes a contribution towards advancing spatial-pattern-oriented model calibration by rigorously testing a multiple-component performance metric. The promoted SPAtial EFficiency (SPAEF) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multiple-component approach is found to be advantageous in order to achieve the complex task of comparing spatial patterns. SPAEF, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are applied in a spatial-pattern-oriented model calibration of a catchment model in Denmark. Results suggest the importance of multiple-component metrics because stand-alone metrics tend to fail to provide holistic pattern information. The three SPAEF components are found to be independent, which allows them to complement each other in a meaningful way. In order to optimally exploit spatial observations made available by remote sensing platforms, this study suggests applying bias insensitive metrics which further allow for a comparison of variables which are related but may differ in unit. This study applies SPAEF in the hydrological context using the mesoscale Hydrologic Model (mHM; version 5.8), but we see great potential across disciplines related to spatially distributed earth system modelling.

  4. Efficient statistical mapping of avian count data

    USGS Publications Warehouse

    Royle, J. Andrew; Wikle, C.K.

    2005-01-01

    We develop a spatial modeling framework for count data that is efficient to implement in high-dimensional prediction problems. We consider spectral parameterizations for the spatially varying mean of a Poisson model. The spectral parameterization of the spatial process is very computationally efficient, enabling effective estimation and prediction in large problems using Markov chain Monte Carlo techniques. We apply this model to creating avian relative abundance maps from North American Breeding Bird Survey (BBS) data. Variation in the ability of observers to count birds is modeled as spatially independent noise, resulting in over-dispersion relative to the Poisson assumption. This approach represents an improvement over existing approaches used for spatial modeling of BBS data which are either inefficient for continental scale modeling and prediction or fail to accommodate important distributional features of count data thus leading to inaccurate accounting of prediction uncertainty.

  5. Introducing Perception and Modelling of Spatial Randomness in Classroom

    ERIC Educational Resources Information Center

    De Nóbrega, José Renato

    2017-01-01

    A strategy to facilitate understanding of spatial randomness is described, using student activities developed in sequence: looking at spatial patterns, simulating approximate spatial randomness using a grid of equally-likely squares, using binomial probabilities for approximations and predictions and then comparing with given Poisson…

  6. Modeling of non-uniform spatial arrangement of fibers in a ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, S.; Tewari, A.; Gokhale, A.M.

    In the unidirectional fiber reinforced composites, the spatial agreement of fibers is often non-uniform. These non-uniformities are linked to the processing conditions, and they affect the properties of the composite. In this contribution, a recently developed digital image analysis technique is used to quantify the non-uniform spatial arrangement of Nicalon fibers in a ceramic matrix composite (CMC). These quantitative data are utilized to develop a six parameter computer simulated microstructure model that is statistically equivalent to the non-uniform microstructure of the CMC. The simulated microstructure can be utilized as a RVE for the micro-mechanical modeling studies.

  7. Modelling spatial patterns of urban growth in Africa

    PubMed Central

    Linard, Catherine; Tatem, Andrew J.; Gilbert, Marius

    2013-01-01

    The population of Africa is predicted to double over the next 40 years, driving exceptionally high urban expansion rates that will induce significant socio-economic, environmental and health changes. In order to prepare for these changes, it is important to better understand urban growth dynamics in Africa and better predict the spatial pattern of rural-urban conversions. Previous work on urban expansion has been carried out at the city level or at the global level with a relatively coarse 5–10 km resolution. The main objective of the present paper was to develop a modelling approach at an intermediate scale in order to identify factors that influence spatial patterns of urban expansion in Africa. Boosted Regression Tree models were developed to predict the spatial pattern of rural-urban conversions in every large African city. Urban change data between circa 1990 and circa 2000 available for 20 large cities across Africa were used as training data. Results showed that the urban land in a 1 km neighbourhood and the accessibility to the city centre were the most influential variables. Results obtained were generally more accurate than results obtained using a distance-based urban expansion model and showed that the spatial pattern of small, compact and fast growing cities were easier to simulate than cities with lower population densities and a lower growth rate. The simulation method developed here will allow the production of spatially detailed urban expansion forecasts for 2020 and 2025 for Africa, data that are increasingly required by global change modellers. PMID:25152552

  8. Tigers on trails: occupancy modeling for cluster sampling.

    PubMed

    Hines, J E; Nichols, J D; Royle, J A; MacKenzie, D I; Gopalaswamy, A M; Kumar, N Samba; Karanth, K U

    2010-07-01

    Occupancy modeling focuses on inference about the distribution of organisms over space, using temporal or spatial replication to allow inference about the detection process. Inference based on spatial replication strictly requires that replicates be selected randomly and with replacement, but the importance of these design requirements is not well understood. This paper focuses on an increasingly popular sampling design based on spatial replicates that are not selected randomly and that are expected to exhibit Markovian dependence. We develop two new occupancy models for data collected under this sort of design, one based on an underlying Markov model for spatial dependence and the other based on a trap response model with Markovian detections. We then simulated data under the model for Markovian spatial dependence and fit the data to standard occupancy models and to the two new models. Bias of occupancy estimates was substantial for the standard models, smaller for the new trap response model, and negligible for the new spatial process model. We also fit these models to data from a large-scale tiger occupancy survey recently conducted in Karnataka State, southwestern India. In addition to providing evidence of a positive relationship between tiger occupancy and habitat, model selection statistics and estimates strongly supported the use of the model with Markovian spatial dependence. This new model provides another tool for the decomposition of the detection process, which is sometimes needed for proper estimation and which may also permit interesting biological inferences. In addition to designs employing spatial replication, we note the likely existence of temporal Markovian dependence in many designs using temporal replication. The models developed here will be useful either directly, or with minor extensions, for these designs as well. We believe that these new models represent important additions to the suite of modeling tools now available for occupancy estimation in conservation monitoring. More generally, this work represents a contribution to the topic of cluster sampling for situations in which there is a need for specific modeling (e.g., reflecting dependence) for the distribution of the variable(s) of interest among subunits.

  9. Visuo-spatial abilities are key for young children's verbal number skills.

    PubMed

    Cornu, Véronique; Schiltz, Christine; Martin, Romain; Hornung, Caroline

    2018-02-01

    Children's development of verbal number skills (i.e., counting abilities and knowledge of the number names) presents a milestone in mathematical development. Different factors such as visuo-spatial and verbal abilities have been discussed as contributing to the development of these foundational skills. To understand the cognitive nature of verbal number skills in young children, the current study assessed the relation of preschoolers' verbal and visuo-spatial abilities to their verbal number skills. In total, 141 children aged 5 or 6 years participated in the current study. Verbal number skills were regressed on vocabulary, phonological awareness and visuo-spatial abilities, and verbal and visuo-spatial working memory in a structural equation model. Only visuo-spatial abilities emerged as a significant predictor of verbal number skills in the estimated model. Our results suggest that visuo-spatial abilities contribute to a larger extent to children's verbal number skills than verbal abilities. From a theoretical point of view, these results suggest a visuo-spatial, rather than a verbal, grounding of verbal number skills. These results are potentially informative for the conception of early mathematics assessments and interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Influence of spatial beam inhomogeneities on the parameters of a petawatt laser system based on multi-stage parametric amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, S A; Trunov, V I; Pestryakov, Efim V

    2013-05-31

    We have developed a technique for investigating the evolution of spatial inhomogeneities in high-power laser systems based on multi-stage parametric amplification. A linearised model of the inhomogeneity development is first devised for parametric amplification with the small-scale self-focusing taken into account. It is shown that the application of this model gives the results consistent (with high accuracy and in a wide range of inhomogeneity parameters) with the calculation without approximations. Using the linearised model, we have analysed the development of spatial inhomogeneities in a petawatt laser system based on multi-stage parametric amplification, developed at the Institute of Laser Physics, Siberianmore » Branch of the Russian Academy of Sciences (ILP SB RAS). (control of laser radiation parameters)« less

  11. Spiking Neurons in a Hierarchical Self-Organizing Map Model Can Learn to Develop Spatial and Temporal Properties of Entorhinal Grid Cells and Hippocampal Place Cells

    PubMed Central

    Pilly, Praveen K.; Grossberg, Stephen

    2013-01-01

    Medial entorhinal grid cells and hippocampal place cells provide neural correlates of spatial representation in the brain. A place cell typically fires whenever an animal is present in one or more spatial regions, or places, of an environment. A grid cell typically fires in multiple spatial regions that form a regular hexagonal grid structure extending throughout the environment. Different grid and place cells prefer spatially offset regions, with their firing fields increasing in size along the dorsoventral axes of the medial entorhinal cortex and hippocampus. The spacing between neighboring fields for a grid cell also increases along the dorsoventral axis. This article presents a neural model whose spiking neurons operate in a hierarchy of self-organizing maps, each obeying the same laws. This spiking GridPlaceMap model simulates how grid cells and place cells may develop. It responds to realistic rat navigational trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with one or more firing fields that match neurophysiological data about these cells and their development in juvenile rats. The place cells represent much larger spaces than the grid cells, which enable them to support navigational behaviors. Both self-organizing maps amplify and learn to categorize the most frequent and energetic co-occurrences of their inputs. The current results build upon a previous rate-based model of grid and place cell learning, and thus illustrate a general method for converting rate-based adaptive neural models, without the loss of any of their analog properties, into models whose cells obey spiking dynamics. New properties of the spiking GridPlaceMap model include the appearance of theta band modulation. The spiking model also opens a path for implementation in brain-emulating nanochips comprised of networks of noisy spiking neurons with multiple-level adaptive weights for controlling autonomous adaptive robots capable of spatial navigation. PMID:23577130

  12. Modelling space of spread Dengue Hemorrhagic Fever (DHF) in Central Java use spatial durbin model

    NASA Astrophysics Data System (ADS)

    Ispriyanti, Dwi; Prahutama, Alan; Taryono, Arkadina PN

    2018-05-01

    Dengue Hemorrhagic Fever is one of the major public health problems in Indonesia. From year to year, DHF causes Extraordinary Event in most parts of Indonesia, especially Central Java. Central Java consists of 35 districts or cities where each region is close to each other. Spatial regression is an analysis that suspects the influence of independent variables on the dependent variables with the influences of the region inside. In spatial regression modeling, there are spatial autoregressive model (SAR), spatial error model (SEM) and spatial autoregressive moving average (SARMA). Spatial Durbin model is the development of SAR where the dependent and independent variable have spatial influence. In this research dependent variable used is number of DHF sufferers. The independent variables observed are population density, number of hospitals, residents and health centers, and mean years of schooling. From the multiple regression model test, the variables that significantly affect the spread of DHF disease are the population and mean years of schooling. By using queen contiguity and rook contiguity, the best model produced is the SDM model with queen contiguity because it has the smallest AIC value of 494,12. Factors that generally affect the spread of DHF in Central Java Province are the number of population and the average length of school.

  13. A Comparative Study of Spatial Aggregation Methodologies under the BioEarth Framework

    NASA Astrophysics Data System (ADS)

    Chandrasekharan, B.; Rajagopalan, K.; Malek, K.; Stockle, C. O.; Adam, J. C.; Brady, M.

    2014-12-01

    The increasing probability of water resource scarcity due to climate change has highlighted the need for adopting an economic focus in modelling water resource uses. Hydro-economic models, developed by integrating economic optimization with biophysical crop models, are driven by the economic value of water, revealing it's most efficient uses and helping policymakers evaluate different water management strategies. One of the challenges in integrating biophysical models with economic models is the difference in the spatial scales in which they operate. Biophysical models that provide crop production functions typically run at smaller scale than economic models, and substantial spatial aggregation is required. However, any aggregation introduces a bias, i.e., a discrepancy between the functional value at the higher spatial scale and the value at the spatial scale of the aggregated units. The objective of this work is to study the sensitivity of net economic benefits in the Yakima River basin (YRB) to different spatial aggregation methods for crop production functions. The spatial aggregation methodologies that we compare involve agro-ecological zones (AEZs) and aggregation levels that reflect water management regimes (e.g. irrigation districts). Aggregation bias can distort the underlying data and result in extreme solutions. In order to avoid this we use an economic optimization model that incorporates the synthetic and historical crop mixes approach (Onal & Chen, 2012). This restricts the solutions between the weighted averages of historical and simulated feasible planting decisions, with the weights associated with crop mixes being treated as endogenous variables. This study is focused on 5 major irrigation districts of the YRB in the Pacific Northwest US. The biophysical modeling framework we use, BioEarth, includes the coupled hydrology and crop growth model, VIC-Cropsyst and an economic optimization model. Preliminary findings indicate that the standard approach of developing AEZs does not perform well when overlaid with irrigation districts. Moreover, net economic benefits were significantly different between the two aggregation methodologies. Therefore, while developing hydro-economic models, significant consideration should be placed on the aggregation methodology.

  14. Modeling the Land Use/Cover Change in an Arid Region Oasis City Constrained by Water Resource and Environmental Policy Change using Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Hu, X.; Li, X.; Lu, L.

    2017-12-01

    Land use/cover change (LUCC) is an important subject in the research of global environmental change and sustainable development, while spatial simulation on land use/cover change is one of the key content of LUCC and is also difficult due to the complexity of the system. The cellular automata (CA) model had an irreplaceable role in simulating of land use/cover change process due to the powerful spatial computing power. However, the majority of current CA land use/cover models were binary-state model that could not provide more general information about the overall spatial pattern of land use/cover change. Here, a multi-state logistic-regression-based Markov cellular automata (MLRMCA) model and a multi-state artificial-neural-network-based Markov cellular automata (MANNMCA) model were developed and were used to simulate complex land use/cover evolutionary process in an arid region oasis city constrained by water resource and environmental policy change, the Zhangye city during the period of 1990-2010. The results indicated that the MANNMCA model was superior to MLRMCA model in simulated accuracy. These indicated that by combining the artificial neural network with CA could more effectively capture the complex relationships between the land use/cover change and a set of spatial variables. Although the MLRMCA model were also some advantages, the MANNMCA model was more appropriate for simulating complex land use/cover dynamics. The two proposed models were effective and reliable, and could reflect the spatial evolution of regional land use/cover changes. These have also potential implications for the impact assessment of water resources, ecological restoration, and the sustainable urban development in arid areas.

  15. The dynamic and indirect spatial effects of neighborhood conditions on land value, spatial panel dynamic econometrics model

    NASA Astrophysics Data System (ADS)

    Fitriani, Rahma; Sumarminingsih, Eni; Astutik, Suci

    2017-05-01

    Land value is the product of past decision of its use leading to its value, as well as the value of the surrounded land. It is also affected by the local characteristic and the spillover development demand of the previous time period. The effect of each factor on land value will have dynamic and spatial virtues. Thus, a spatial panel dynamic model is used to estimate the particular effects. The model will be useful for predicting the future land value or the effect of implemented policy on land value. The objective of this paper is to derive the dynamic and indirect spatial marginal effects of the land characteristic and the spillover development demand on land value. Each effect is the partial derivative of the expected land value based on the spatial dynamic model with respect to each variable, by considering different time period and different location. The results indicate that the instant change of local or neighborhood characteristics on land value affect the local and the immediate neighborhood land value. However, the longer the change take place, the effect will spread further, not only on the immediate neighborhood.

  16. Locally adaptive, spatially explicit projection of US population for 2030 and 2050.

    PubMed

    McKee, Jacob J; Rose, Amy N; Bright, Edward A; Huynh, Timmy; Bhaduri, Budhendra L

    2015-02-03

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census's projection methodology, with the US Census's official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.

  17. A space-time multiscale modelling of Earth's gravity field variations

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric

    2017-04-01

    The mass distribution within the Earth varies over a wide range of spatial and temporal scales, generating variations in the Earth's gravity field in space and time. These variations are monitored by satellites as the GRACE mission, with a 400 km spatial resolution and 10 days to 1 month temporal resolution. They are expressed in the form of gravity field models, often with a fixed spatial or temporal resolution. The analysis of these models allows us to study the mass transfers within the Earth system. Here, we have developed space-time multi-scale models of the gravity field, in order to optimize the estimation of gravity signals resulting from local processes at different spatial and temporal scales, and to adapt the time resolution of the model to its spatial resolution according to the satellites sampling. For that, we first build a 4D wavelet family combining spatial Poisson wavelets with temporal Haar wavelets. Then, we set-up a regularized inversion of inter-satellites gravity potential differences in a bayesian framework, to estimate the model parameters. To build the prior, we develop a spectral analysis, localized in time and space, of geophysical models of mass transport and associated gravity variations. Finally, we test our approach to the reconstruction of space-time variations of the gravity field due to hydrology. We first consider a global distribution of observations along the orbit, from a simplified synthetic hydrology signal comprising only annual variations at large spatial scales. Then, we consider a regional distribution of observations in Africa, and a larger number of spatial and temporal scales. We test the influence of an imperfect prior and discuss our results.

  18. Spatial demographic models to inform conservation planning of golden eagles in renewable energy landscapes

    USGS Publications Warehouse

    Wiens, J. David; Schumaker, Nathan H.; Inman, Richard D.; Esque, Todd C.; Longshore, Kathleen M.; Nussear, Kenneth E

    2017-01-01

    Spatial demographic models can help guide monitoring and management activities targeting at-risk species, even in cases where baseline data are lacking. Here, we provide an example of how site-specific changes in land use and anthropogenic stressors can be incorporated into a spatial demographic model to investigate effects on population dynamics of Golden Eagles (Aquila chrysaetos). Our study focused on a population of Golden Eagles exposed to risks associated with rapid increases in renewable energy development in southern California, U.S.A. We developed a spatially explicit, individual-based simulation model that integrated empirical data on demography of Golden Eagles with spatial data on the arrangement of nesting habitats, prey resources, and planned renewable energy development sites. Our model permitted simulated eagles of different stage-classes to disperse, establish home ranges, acquire prey resources, prospect for breeding sites, and reproduce. The distribution of nesting habitats, prey resources, and threats within each individual's home range influenced movement, reproduction, and survival. We used our model to explore potential effects of alternative disturbance scenarios, and proposed conservation strategies, on the future distribution and abundance of Golden Eagles in the study region. Results from our simulations suggest that probable increases in mortality associated with renewable energy infrastructure (e.g., collisions with wind turbines and vehicles, electrocution on power poles) could have negative consequences for population trajectories, but that site-specific conservation actions could reduce the magnitude of negative effects. Our study demonstrates the use of a flexible and expandable modeling framework to incorporate spatially dependent processes when determining relative effects of proposed management options to Golden Eagles and their habitats.

  19. Increasingly, Data Availability Limits Model Predictive Capacity: the Western Lake Erie Basin, a Case Study

    NASA Astrophysics Data System (ADS)

    Behrman, K. D.; Johnson, M. V. V.; Atwood, J. D.; Norfleet, M. L.

    2016-12-01

    Recent algal blooms in Western Lake Erie Basin (WLEB) have renewed scientific community's interest in developing process based models to better understand and predict the drivers of eutrophic conditions in the lake. At the same time, in order to prevent future blooms, farmers, local communities and policy makers are interested in developing spatially explicit nutrient and sediment management plans at various scales, from field to watershed. These interests have fueled several modeling exercises intended to locate "hotspots" in the basin where targeted adoption of additional agricultural conservation practices could provide the most benefit to water quality. The models have also been used to simulate various scenarios representing potential agricultural solutions. The Soil and Water Assessment Tool (SWAT) and its sister model, the Agricultural Policy Environmental eXtender (APEX), have been used to simulate hydrology of interacting land uses in thousands of scientific studies around the world. High performance computing allows SWAT and APEX users to continue to improve and refine the model specificity to make predictions at small-spatial scales. Consequently, data inputs and calibration/validation data are now becoming the limiting factor to model performance. Water quality data for the tributaries and rivers that flow through WLEB is spatially and temporally limited. Land management data, including conservation practice and nutrient management data, are not publicly available at fine spatial and temporal scales. Here we show the data uncertainties associated with modeling WLEB croplands at a relatively large spatial scale (HUC-4) using site management data from over 1,000 farms collected by the Conservation Effects Assessment Project (CEAP). The error associated with downscaling this data to the HUC-8 and HUC-12 scale is shown. Simulations of spatially explicit dynamics can be very informative, but care must be taken when policy decisions are made based on models with unstated, but implicit assumptions. As we interpret modeling results, we must communicate the spatial and temporal scale for which the model was developed and at which the data is valid. When there is little to no data to enable appropriate validation and calibration, the results must be interpreted with appropriate skepticism.

  20. Spatially explicit models for inference about density in unmarked or partially marked populations

    USGS Publications Warehouse

    Chandler, Richard B.; Royle, J. Andrew

    2013-01-01

    Recently developed spatial capture–recapture (SCR) models represent a major advance over traditional capture–recapture (CR) models because they yield explicit estimates of animal density instead of population size within an unknown area. Furthermore, unlike nonspatial CR methods, SCR models account for heterogeneity in capture probability arising from the juxtaposition of animal activity centers and sample locations. Although the utility of SCR methods is gaining recognition, the requirement that all individuals can be uniquely identified excludes their use in many contexts. In this paper, we develop models for situations in which individual recognition is not possible, thereby allowing SCR concepts to be applied in studies of unmarked or partially marked populations. The data required for our model are spatially referenced counts made on one or more sample occasions at a collection of closely spaced sample units such that individuals can be encountered at multiple locations. Our approach includes a spatial point process for the animal activity centers and uses the spatial correlation in counts as information about the number and location of the activity centers. Camera-traps, hair snares, track plates, sound recordings, and even point counts can yield spatially correlated count data, and thus our model is widely applicable. A simulation study demonstrated that while the posterior mean exhibits frequentist bias on the order of 5–10% in small samples, the posterior mode is an accurate point estimator as long as adequate spatial correlation is present. Marking a subset of the population substantially increases posterior precision and is recommended whenever possible. We applied our model to avian point count data collected on an unmarked population of the northern parula (Parula americana) and obtained a density estimate (posterior mode) of 0.38 (95% CI: 0.19–1.64) birds/ha. Our paper challenges sampling and analytical conventions in ecology by demonstrating that neither spatial independence nor individual recognition is needed to estimate population density—rather, spatial dependence can be informative about individual distribution and density.

  1. Learning Low-Rank Decomposition for Pan-Sharpening With Spatial-Spectral Offsets.

    PubMed

    Yang, Shuyuan; Zhang, Kai; Wang, Min

    2017-08-25

    Finding accurate injection components is the key issue in pan-sharpening methods. In this paper, a low-rank pan-sharpening (LRP) model is developed from a new perspective of offset learning. Two offsets are defined to represent the spatial and spectral differences between low-resolution multispectral and high-resolution multispectral (HRMS) images, respectively. In order to reduce spatial and spectral distortions, spatial equalization and spectral proportion constraints are designed and cast on the offsets, to develop a spatial and spectral constrained stable low-rank decomposition algorithm via augmented Lagrange multiplier. By fine modeling and heuristic learning, our method can simultaneously reduce spatial and spectral distortions in the fused HRMS images. Moreover, our method can efficiently deal with noises and outliers in source images, for exploring low-rank and sparse characteristics of data. Extensive experiments are taken on several image data sets, and the results demonstrate the efficiency of the proposed LRP.

  2. Comparative analysis of zonal systems for macro-level crash modeling.

    PubMed

    Cai, Qing; Abdel-Aty, Mohamed; Lee, Jaeyoung; Eluru, Naveen

    2017-06-01

    Macro-level traffic safety analysis has been undertaken at different spatial configurations. However, clear guidelines for the appropriate zonal system selection for safety analysis are unavailable. In this study, a comparative analysis was conducted to determine the optimal zonal system for macroscopic crash modeling considering census tracts (CTs), state-wide traffic analysis zones (STAZs), and a newly developed traffic-related zone system labeled traffic analysis districts (TADs). Poisson lognormal models for three crash types (i.e., total, severe, and non-motorized mode crashes) are developed based on the three zonal systems without and with consideration of spatial autocorrelation. The study proposes a method to compare the modeling performance of the three types of geographic units at different spatial configurations through a grid based framework. Specifically, the study region is partitioned to grids of various sizes and the model prediction accuracy of the various macro models is considered within these grids of various sizes. These model comparison results for all crash types indicated that the models based on TADs consistently offer a better performance compared to the others. Besides, the models considering spatial autocorrelation outperform the ones that do not consider it. Based on the modeling results and motivation for developing the different zonal systems, it is recommended using CTs for socio-demographic data collection, employing TAZs for transportation demand forecasting, and adopting TADs for transportation safety planning. The findings from this study can help practitioners select appropriate zonal systems for traffic crash modeling, which leads to develop more efficient policies to enhance transportation safety. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  3. Predicting thermal regimes of stream networks across the northeast United States: Natural and anthropogenic influences

    EPA Science Inventory

    We used STARS (Spatial Tools for the Analysis of River Systems), an ArcGIS geoprocessing toolbox, to create spatial stream networks. We then developed and assessed spatial statistical models for each of these metrics, incorporating spatial autocorrelation based on both distance...

  4. A spatial model to aggregate point-source and nonpoint-source water-quality data for large areas

    USGS Publications Warehouse

    White, D.A.; Smith, R.A.; Price, C.V.; Alexander, R.B.; Robinson, K.W.

    1992-01-01

    More objective and consistent methods are needed to assess water quality for large areas. A spatial model, one that capitalizes on the topologic relationships among spatial entities, to aggregate pollution sources from upstream drainage areas is described that can be implemented on land surfaces having heterogeneous water-pollution effects. An infrastructure of stream networks and drainage basins, derived from 1:250,000-scale digital-elevation models, define the hydrologic system in this spatial model. The spatial relationships between point- and nonpoint pollution sources and measurement locations are referenced to the hydrologic infrastructure with the aid of a geographic information system. A maximum-branching algorithm has been developed to simulate the effects of distance from a pollutant source to an arbitrary downstream location, a function traditionally employed in deterministic water quality models. ?? 1992.

  5. A Formal Investigation of Human Spatial Control Skills: Mathematical Formalization, Skill Development, and Skill Assessment

    NASA Astrophysics Data System (ADS)

    Li, Bin

    Spatial control behaviors account for a large proportion of human everyday activities from normal daily tasks, such as reaching for objects, to specialized tasks, such as driving, surgery, or operating equipment. These behaviors involve intensive interactions within internal processes (i.e. cognitive, perceptual, and motor control) and with the physical world. This dissertation builds on a concept of interaction pattern and a hierarchical functional model. Interaction pattern represents a type of behavior synergy that humans coordinates cognitive, perceptual, and motor control processes. It contributes to the construction of the hierarchical functional model that delineates humans spatial control behaviors as the coordination of three functional subsystems: planning, guidance, and tracking/pursuit. This dissertation formalizes and validates these two theories and extends them for the investigation of human spatial control skills encompassing development and assessment. Specifically, this dissertation first presents an overview of studies in human spatial control skills encompassing definition, characteristic, development, and assessment, to provide theoretical evidence for the concept of interaction pattern and the hierarchical functional model. The following, the human experiments for collecting motion and gaze data and techniques to register and classify gaze data, are described. This dissertation then elaborates and mathematically formalizes the hierarchical functional model and the concept of interaction pattern. These theories then enables the construction of a succinct simulation model that can reproduce a variety of human performance with a minimal set of hypotheses. This validates the hierarchical functional model as a normative framework for interpreting human spatial control behaviors. The dissertation then investigates human skill development and captures the emergence of interaction pattern. The final part of the dissertation applies the hierarchical functional model for skill assessment and introduces techniques to capture interaction patterns both from the top down using their geometric features and from the bottom up using their dynamical characteristics. The validity and generality of the skill assessment is illustrated using two the remote-control flight and laparoscopic surgical training experiments.

  6. Application of GIS Rapid Mapping Technology in Disaster Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Tu, J.; Liu, G.; Zhao, Q.

    2018-04-01

    With the rapid development of GIS and RS technology, especially in recent years, GIS technology and its software functions have been increasingly mature and enhanced. And with the rapid development of mathematical statistical tools for spatial modeling and simulation, has promoted the widespread application and popularization of quantization in the field of geology. Based on the investigation of field disaster and the construction of spatial database, this paper uses remote sensing image, DEM and GIS technology to obtain the data information of disaster vulnerability analysis, and makes use of the information model to carry out disaster risk assessment mapping.Using ArcGIS software and its spatial data modeling method, the basic data information of the disaster risk mapping process was acquired and processed, and the spatial data simulation tool was used to map the disaster rapidly.

  7. A spatial age-structured model for describing sea lamprey (Petromyzon marinus) population dynamics

    USGS Publications Warehouse

    Robinson, Jason M.; Wilberg, Michael J.; Adams, Jean V.; Jones, Michael L.

    2013-01-01

    The control of invasive sea lampreys (Petromyzon marinus) presents large scale management challenges in the Laurentian Great Lakes. No modeling approach has been developed that describes spatial dynamics of lamprey populations. We developed and validated a spatial and age-structured model and applied it to a sea lamprey population in a large river in the Great Lakes basin. We considered 75 discrete spatial areas, included a stock-recruitment function, spatial recruitment patterns, natural mortality, chemical treatment mortality, and larval metamorphosis. Recruitment was variable, and an upstream shift in recruitment location was observed over time. From 1993–2011 recruitment, larval abundance, and the abundance of metamorphosing individuals decreased by 80, 84, and 86%, respectively. The model successfully identified areas of high larval abundance and showed that areas of low larval density contribute significantly to the population. Estimated treatment mortality was less than expected but had a large population-level impact. The results and general approach of this work have applications for sea lamprey control throughout the Great Lakes and for the restoration and conservation of native lamprey species globally.

  8. SimAlba: A Spatial Microsimulation Approach to the Analysis of Health Inequalities

    PubMed Central

    Campbell, Malcolm; Ballas, Dimitris

    2016-01-01

    This paper presents applied geographical research based on a spatial microsimulation model, SimAlba, aimed at estimating geographically sensitive health variables in Scotland. SimAlba has been developed in order to answer a variety of “what-if” policy questions pertaining to health policy in Scotland. Using the SimAlba model, it is possible to simulate the distributions of previously unknown variables at the small area level such as smoking, alcohol consumption, mental well-being, and obesity. The SimAlba microdataset has been created by combining Scottish Health Survey and Census data using a deterministic reweighting spatial microsimulation algorithm developed for this purpose. The paper presents SimAlba outputs for Scotland’s largest city, Glasgow, and examines the spatial distribution of the simulated variables for small geographical areas in Glasgow as well as the effects on individuals of different policy scenario outcomes. In simulating previously unknown spatial data, a wealth of new perspectives can be examined and explored. This paper explores a small set of those potential avenues of research and shows the power of spatial microsimulation modeling in an urban context. PMID:27818989

  9. Spatial information and modeling system for transportation (SIMST) : final report.

    DOT National Transportation Integrated Search

    1992-06-01

    This project was directed toward research in the development of spatial information systems for transportation. The project and all software development was done in the Intergraph MGE environment. One objective was to investigate software tools for l...

  10. The role of geomatics in supporting sustainable development policy-making

    NASA Astrophysics Data System (ADS)

    Zhang, Aining

    Sustainable development has been on national policy agendas since 1992 when Agenda 21, an international agreement on sustainable development, was signed by over 150 countries. A key to sustainable development policy-making is information. Spatial information is an integral part of this information pool given the spatial nature of sustainable development. Geomatics, a technology dealing specifically with spatial information, can play a major role in support of the policy-making process. This thesis is aimed at advancing this role. The thesis starts with a discussion of theories and methodologies for sustainable development. The policy process for sustainable development is characterized, followed by an analysis of the requirements of sustainable development policy-making for geomatics support. The current status of geomatics in meeting these requirements is then examined, and the challenges and potential for geomatics to further address the needs are identified. To deal with these challenges, an integrated solution, namely the development of an on-line national policy atlas for sustainable development, is proposed, with a focus to support policy action formulation. The thesis further addresses one of the major research topics required for the implementation of the proposed solution, namely the exploration of the feasibility of a spatial statistics approach to predictive modelling in support of policy scenario assessments. The study is based on the case of national climate change policy formulation, with a focus on the development of new light duty vehicle sales mix models in support of transportation fuel efficiency policy-making aimed at greenhouse gas reductions. The conceptual framework and methodology for the case study are followed by the presentation of outcomes including models and policy scenario forecasts. The case study has illustrated that a spatial statistics approach is not only feasible for the development of predictive models in support of policy-making, but also provides several unique advantages that could potentially improve sustainable development policymaking.

  11. Incorporating GIS data into an agent-based model to support planning policy making for the development of creative industries

    NASA Astrophysics Data System (ADS)

    Liu, Helin; Silva, Elisabete A.; Wang, Qian

    2016-07-01

    This paper presents an extension to the agent-based model "Creative Industries Development-Urban Spatial Structure Transformation" by incorporating GIS data. Three agent classes, creative firms, creative workers and urban government, are considered in the model, and the spatial environment represents a set of GIS data layers (i.e. road network, key housing areas, land use). With the goal to facilitate urban policy makers to draw up policies locally and optimise the land use assignment in order to support the development of creative industries, the improved model exhibited its capacity to assist the policy makers conducting experiments and simulating different policy scenarios to see the corresponding dynamics of the spatial distributions of creative firms and creative workers across time within a city/district. The spatiotemporal graphs and maps record the simulation results and can be used as a reference by the policy makers to adjust land use plans adaptively at different stages of the creative industries' development process.

  12. Development and Validation of Spatially Explicit Habitat Models for Cavity-nesting Birds in Fishlake National Forest, Utah

    Treesearch

    Randall A., Jr. Schultz; Thomas C., Jr. Edwards; Gretchen G. Moisen; Tracey S. Frescino

    2005-01-01

    The ability of USDA Forest Service Forest Inventory and Analysis (FIA) generated spatial products to increase the predictive accuracy of spatially explicit, macroscale habitat models was examined for nest-site selection by cavity-nesting birds in Fishlake National Forest, Utah. One FIA-derived variable (percent basal area of aspen trees) was significant in the habitat...

  13. Regional assessments of the Nation's water quality—Improved understanding of stream nutrient sources through enhanced modeling capabilities

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed assessments of stream nutrients in six major regions extending over much of the conterminous United States. SPARROW (SPAtially Referenced Regressions On Watershed attributes) models were developed for each region to explain spatial patterns in monitored stream nutrient loads in relation to human activities and natural resources and processes. The model information, reported by stream reach and catchment, provides contrasting views of the spatial patterns of nutrient source contributions, including those from urban (wastewater effluent and diffuse runoff from developed land), agricultural (farm fertilizers and animal manure), and specific background sources (atmospheric nitrogen deposition, soil phosphorus, forest nitrogen fixation, and channel erosion).

  14. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    PubMed Central

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A.D.; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation. PMID:23599905

  15. Tethys: A Platform for Water Resources Modeling and Decision Support Apps

    NASA Astrophysics Data System (ADS)

    Swain, N. R.; Christensen, S. D.; Jones, N.; Nelson, E. J.

    2014-12-01

    Cloud-based applications or apps are a promising medium through which water resources models and data can be conveyed in a user-friendly environment—making them more accessible to decision-makers and stakeholders. In the context of this work, a water resources web app is a web application that exposes limited modeling functionality for a scenario exploration activity in a structured workflow (e.g.: land use change runoff analysis, snowmelt runoff prediction, and flood potential analysis). The technical expertise required to develop water resources web apps can be a barrier to many potential developers of water resources apps. One challenge that developers face is in providing spatial storage, analysis, and visualization for the spatial data that is inherent to water resources models. The software projects that provide this functionality are non-standard to web development and there are a large number of free and open source software (FOSS) projects to choose from. In addition, it is often required to synthesize several software projects to provide all of the needed functionality. Another challenge for the developer will be orchestrating the use of several software components. Consequently, the initial software development investment required to deploy an effective water resources cloud-based application can be substantial. The Tethys Platform has been developed to lower the technical barrier and minimize the initial development investment that prohibits many scientists and engineers from making use of the web app medium. Tethys synthesizes several software projects including PostGIS for spatial storage, 52°North WPS for spatial analysis, GeoServer for spatial publishing, Google Earth™, Google Maps™ and OpenLayers for spatial visualization, and Highcharts for plotting tabular data. The software selection came after a literature review of software projects being used to create existing earth sciences web apps. All of the software is linked via a Python-powered software development kit (SDK). Tethys developers use the SDK to build their apps and incorporate the needed functionality from the software suite. The presentation will include several apps that have been developed using Tethys to demonstrate its capabilities. Based upon work supported by the National Science Foundation under Grant No. 1135483.

  16. Linear models of coregionalization for multivariate lattice data: Order-dependent and order-free cMCARs.

    PubMed

    MacNab, Ying C

    2016-08-01

    This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.

  17. Bayesian spatial transformation models with applications in neuroimaging data

    PubMed Central

    Miranda, Michelle F.; Zhu, Hongtu; Ibrahim, Joseph G.

    2013-01-01

    Summary The aim of this paper is to develop a class of spatial transformation models (STM) to spatially model the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) and a set of covariates. Our STMs include a varying Box-Cox transformation model for dealing with the issue of non-Gaussian distributed imaging data and a Gaussian Markov Random Field model for incorporating spatial smoothness of the imaging data. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations and real data analysis demonstrate that the STM significantly outperforms the voxel-wise linear model with Gaussian noise in recovering meaningful geometric patterns. Our STM is able to reveal important brain regions with morphological changes in children with attention deficit hyperactivity disorder. PMID:24128143

  18. Impact of spatial proxies on the representation of bottom-up emission inventories: A satellite-based analysis

    NASA Astrophysics Data System (ADS)

    Geng, Guannan; Zhang, Qiang; Martin, Randall V.; Lin, Jintai; Huo, Hong; Zheng, Bo; Wang, Siwen; He, Kebin

    2017-03-01

    Spatial proxies used in bottom-up emission inventories to derive the spatial distributions of emissions are usually empirical and involve additional levels of uncertainty. Although uncertainties in current emission inventories have been discussed extensively, uncertainties resulting from improper spatial proxies have rarely been evaluated. In this work, we investigate the impact of spatial proxies on the representation of gridded emissions by comparing six gridded NOx emission datasets over China developed from the same magnitude of emissions and different spatial proxies. GEOS-Chem-modeled tropospheric NO2 vertical columns simulated from different gridded emission inventories are compared with satellite-based columns. The results show that differences between modeled and satellite-based NO2 vertical columns are sensitive to the spatial proxies used in the gridded emission inventories. The total population density is less suitable for allocating NOx emissions than nighttime light data because population density tends to allocate more emissions to rural areas. Determining the exact locations of large emission sources could significantly strengthen the correlation between modeled and observed NO2 vertical columns. Using vehicle population and an updated road network for the on-road transport sector could substantially enhance urban emissions and improve the model performance. When further applying industrial gross domestic product (IGDP) values for the industrial sector, modeled NO2 vertical columns could better capture pollution hotspots in urban areas and exhibit the best performance of the six cases compared to satellite-based NO2 vertical columns (slope = 1.01 and R2 = 0. 85). This analysis provides a framework for information from satellite observations to inform bottom-up inventory development. In the future, more effort should be devoted to the representation of spatial proxies to improve spatial patterns in bottom-up emission inventories.

  19. Model-assisted analysis of spatial and temporal variations in fruit temperature and transpiration highlighting the role of fruit development.

    PubMed

    Nordey, Thibault; Léchaudel, Mathieu; Saudreau, Marc; Joas, Jacques; Génard, Michel

    2014-01-01

    Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.

  20. Swarm Intelligence for Urban Dynamics Modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.

    2009-04-16

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  1. Swarm Intelligence for Urban Dynamics Modelling

    NASA Astrophysics Data System (ADS)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.

    2009-04-01

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  2. Retrieving and Indexing Spatial Data in the Cloud Computing Environment

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Wang, Sheng; Zhou, Daliang

    In order to solve the drawbacks of spatial data storage in common Cloud Computing platform, we design and present a framework for retrieving, indexing, accessing and managing spatial data in the Cloud environment. An interoperable spatial data object model is provided based on the Simple Feature Coding Rules from the OGC such as Well Known Binary (WKB) and Well Known Text (WKT). And the classic spatial indexing algorithms like Quad-Tree and R-Tree are re-designed in the Cloud Computing environment. In the last we develop a prototype software based on Google App Engine to implement the proposed model.

  3. An Empirical Bayes Approach to Spatial Analysis

    NASA Technical Reports Server (NTRS)

    Morris, C. N.; Kostal, H.

    1983-01-01

    Multi-channel LANDSAT data are collected in several passes over agricultural areas during the growing season. How empirical Bayes modeling can be used to develop crop identification and discrimination techniques that account for spatial correlation in such data is considered. The approach models the unobservable parameters and the data separately, hoping to take advantage of the fact that the bulk of spatial correlation lies in the parameter process. The problem is then framed in terms of estimating posterior probabilities of crop types for each spatial area. Some empirical Bayes spatial estimation methods are used to estimate the logits of these probabilities.

  4. Multiphysics Modeling and Simulations of Mil A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yen, C.-F.; Cheeseman, B. A.; Montgomery, J. S.

    2013-10-01

    A multiphysics computational model has been developed for the conventional Gas Metal Arc Welding (GMAW) joining process and used to analyze butt-welding of MIL A46100, a prototypical high-hardness armor martensitic steel. The model consists of five distinct modules, each covering a specific aspect of the GMAW process, i.e., (a) dynamics of welding-gun behavior; (b) heat transfer from the electric arc and mass transfer from the electrode to the weld; (c) development of thermal and mechanical fields during the GMAW process; (d) the associated evolution and spatial distribution of the material microstructure throughout the weld region; and (e) the final spatial distribution of the as-welded material properties. To make the newly developed GMAW process model applicable to MIL A46100, the basic physical-metallurgy concepts and principles for this material have to be investigated and properly accounted for/modeled. The newly developed GMAW process model enables establishment of the relationship between the GMAW process parameters (e.g., open circuit voltage, welding current, electrode diameter, electrode-tip/weld distance, filler-metal feed speed, and gun travel speed), workpiece material chemistry, and the spatial distribution of as-welded material microstructure and properties. The predictions of the present GMAW model pertaining to the spatial distribution of the material microstructure and properties within the MIL A46100 weld region are found to be consistent with general expectations and prior observations.

  5. Design and Development Computer-Based E-Learning Teaching Material for Improving Mathematical Understanding Ability and Spatial Sense of Junior High School Students

    NASA Astrophysics Data System (ADS)

    Nurjanah; Dahlan, J. A.; Wibisono, Y.

    2017-02-01

    This paper aims to make a design and development computer-based e-learning teaching material for improving mathematical understanding ability and spatial sense of junior high school students. Furthermore, the particular aims are (1) getting teaching material design, evaluation model, and intrument to measure mathematical understanding ability and spatial sense of junior high school students; (2) conducting trials computer-based e-learning teaching material model, asessment, and instrument to develop mathematical understanding ability and spatial sense of junior high school students; (3) completing teaching material models of computer-based e-learning, assessment, and develop mathematical understanding ability and spatial sense of junior high school students; (4) resulting research product is teaching materials of computer-based e-learning. Furthermore, the product is an interactive learning disc. The research method is used of this study is developmental research which is conducted by thought experiment and instruction experiment. The result showed that teaching materials could be used very well. This is based on the validation of computer-based e-learning teaching materials, which is validated by 5 multimedia experts. The judgement result of face and content validity of 5 validator shows that the same judgement result to the face and content validity of each item test of mathematical understanding ability and spatial sense. The reliability test of mathematical understanding ability and spatial sense are 0,929 and 0,939. This reliability test is very high. While the validity of both tests have a high and very high criteria.

  6. EVALUATING HYDROLOGICAL RESPONSE TO ...

    EPA Pesticide Factsheets

    Studies of future management and policy options based on different assumptions provide a mechanism to examine possible outcomes and especially their likely benefits or consequences. Planning and assessment in land and water resource management are evolving toward complex, spatially explicit regional assessments. These problems have to be addressed with distributed models that can compute runoff and erosion at different spatial and temporal scales. The extensive data requirements and the difficult task of building input parameter files, however, have long been an obstacle to the timely and cost-effective use of such complex models by resource managers. The U.S. EPA Landscape Ecology Branch in collaboration with the USDA-ARS Southwest Watershed Research Center has developed a geographic information system (GIS) tool to facilitate this process. A GIS provides the framework within which spatially distributed data are collected and used to prepare model input files, and model results are evaluated. The Automated Geospatial Watershed Assessment (AGWA) tool uses widely available standardized spatial datasets that can be obtained via the internet at no cost to the user. The data are used to develop input parameter files for KINEROS2 and SWAT, two watershed runoff and erosion simulation models that operate at different spatial and temporal scales. AGWA automates the process of transforming digital data into simulation model results and provides a visualization tool

  7. Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies

    USGS Publications Warehouse

    Gardner, Beth; Reppucci, Juan; Lucherini, Mauro; Royle, J. Andrew

    2010-01-01

    We develop a hierarchical capture–recapture model for demographically open populations when auxiliary spatial information about location of capture is obtained. Such spatial capture–recapture data arise from studies based on camera trapping, DNA sampling, and other situations in which a spatial array of devices records encounters of unique individuals. We integrate an individual-based formulation of a Jolly-Seber type model with recently developed spatially explicit capture–recapture models to estimate density and demographic parameters for survival and recruitment. We adopt a Bayesian framework for inference under this model using the method of data augmentation which is implemented in the software program WinBUGS. The model was motivated by a camera trapping study of Pampas cats Leopardus colocolo from Argentina, which we present as an illustration of the model in this paper. We provide estimates of density and the first quantitative assessment of vital rates for the Pampas cat in the High Andes. The precision of these estimates is poor due likely to the sparse data set. Unlike conventional inference methods which usually rely on asymptotic arguments, Bayesian inferences are valid in arbitrary sample sizes, and thus the method is ideal for the study of rare or endangered species for which small data sets are typical.

  8. Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies.

    PubMed

    Gardner, Beth; Reppucci, Juan; Lucherini, Mauro; Royle, J Andrew

    2010-11-01

    We develop a hierarchical capture-recapture model for demographically open populations when auxiliary spatial information about location of capture is obtained. Such spatial capture-recapture data arise from studies based on camera trapping, DNA sampling, and other situations in which a spatial array of devices records encounters of unique individuals. We integrate an individual-based formulation of a Jolly-Seber type model with recently developed spatially explicit capture-recapture models to estimate density and demographic parameters for survival and recruitment. We adopt a Bayesian framework for inference under this model using the method of data augmentation which is implemented in the software program WinBUGS. The model was motivated by a camera trapping study of Pampas cats Leopardus colocolo from Argentina, which we present as an illustration of the model in this paper. We provide estimates of density and the first quantitative assessment of vital rates for the Pampas cat in the High Andes. The precision of these estimates is poor due likely to the sparse data set. Unlike conventional inference methods which usually rely on asymptotic arguments, Bayesian inferences are valid in arbitrary sample sizes, and thus the method is ideal for the study of rare or endangered species for which small data sets are typical.

  9. Spatial Analysis of China Province-level Perinatal Mortality

    PubMed Central

    XIANG, Kun; SONG, Deyong

    2016-01-01

    Background: Using spatial analysis tools to determine the spatial patterns of China province-level perinatal mortality and using spatial econometric model to examine the impacts of health care resources and different socio-economic factors on perinatal mortality. Methods: The Global Moran’s I index is used to examine whether the spatial autocorrelation exists in selected regions and Moran’s I scatter plot to examine the spatial clustering among regions. Spatial econometric models are used to investigate the spatial relationships between perinatal mortality and contributing factors. Results: The overall Moran’s I index indicates that perinatal mortality displays positive spatial autocorrelation. Moran’s I scatter plot analysis implies that there is a significant clustering of mortality in both high-rate regions and low-rate regions. The spatial econometric models analyses confirm the existence of a direct link between perinatal mortality and health care resources, socio-economic factors. Conclusions: Since a positive spatial autocorrelation has been detected in China province-level perinatal mortality, the upgrading of regional economic development and medical service level will affect the mortality not only in region itself but also its adjacent regions. PMID:27398334

  10. Optimal timber harvest scheduling with spatially defined sediment objectives

    Treesearch

    Jon Hof; Michael Bevers

    2000-01-01

    This note presents a simple model formulation that focuses on the spatial relationships over time between timber harvesting and sediment levels in water runoff courses throughout the watershed being managed. A hypothetical example is developed to demonstrate the formulation and show how sediment objectives can be spatially defined anywhere in the watershed. Spatial...

  11. Simulating Spatial Growth Patterns in Developing Countries: A Case of Shama in the Western Region of Ghana.

    NASA Astrophysics Data System (ADS)

    Inkoom, J. N.; Nyarko, B. K.

    2014-12-01

    The integration of geographic information systems (GIS) and agent-based modelling (ABM) can be an efficient tool to improve spatial planning practices. This paper utilizes GIS and ABM approaches to simulate spatial growth patterns of settlement structures in Shama. A preliminary household survey on residential location decision-making choice served as the behavioural rule for household agents in the model. Physical environment properties of the model were extracted from a 2005 image implemented in NetLogo. The resulting growth pattern model was compared with empirical growth patterns to ascertain the model's accuracy. The paper establishes that the development of unplanned structures and its evolving structural pattern are a function of land price, proximity to economic centres, household economic status and location decision-making patterns. The application of the proposed model underlines its potential for integration into urban planning policies and practices, and for understanding residential decision-making processes in emerging cities in developing countries. Key Words: GIS; Agent-based modelling; Growth patterns; NetLogo; Location decision making; Computational Intelligence.

  12. Optimal estimator model for human spatial orientation

    NASA Technical Reports Server (NTRS)

    Borah, J.; Young, L. R.; Curry, R. E.

    1979-01-01

    A model is being developed to predict pilot dynamic spatial orientation in response to multisensory stimuli. Motion stimuli are first processed by dynamic models of the visual, vestibular, tactile, and proprioceptive sensors. Central nervous system function is then modeled as a steady-state Kalman filter which blends information from the various sensors to form an estimate of spatial orientation. Where necessary, this linear central estimator has been augmented with nonlinear elements to reflect more accurately some highly nonlinear human response characteristics. Computer implementation of the model has shown agreement with several important qualitative characteristics of human spatial orientation, and it is felt that with further modification and additional experimental data the model can be improved and extended. Possible means are described for extending the model to better represent the active pilot with varying skill and work load levels.

  13. RADSS: an integration of GIS, spatial statistics, and network service for regional data mining

    NASA Astrophysics Data System (ADS)

    Hu, Haitang; Bao, Shuming; Lin, Hui; Zhu, Qing

    2005-10-01

    Regional data mining, which aims at the discovery of knowledge about spatial patterns, clusters or association between regions, has widely applications nowadays in social science, such as sociology, economics, epidemiology, crime, and so on. Many applications in the regional or other social sciences are more concerned with the spatial relationship, rather than the precise geographical location. Based on the spatial continuity rule derived from Tobler's first law of geography: observations at two sites tend to be more similar to each other if the sites are close together than if far apart, spatial statistics, as an important means for spatial data mining, allow the users to extract the interesting and useful information like spatial pattern, spatial structure, spatial association, spatial outlier and spatial interaction, from the vast amount of spatial data or non-spatial data. Therefore, by integrating with the spatial statistical methods, the geographical information systems will become more powerful in gaining further insights into the nature of spatial structure of regional system, and help the researchers to be more careful when selecting appropriate models. However, the lack of such tools holds back the application of spatial data analysis techniques and development of new methods and models (e.g., spatio-temporal models). Herein, we make an attempt to develop such an integrated software and apply it into the complex system analysis for the Poyang Lake Basin. This paper presents a framework for integrating GIS, spatial statistics and network service in regional data mining, as well as their implementation. After discussing the spatial statistics methods involved in regional complex system analysis, we introduce RADSS (Regional Analysis and Decision Support System), our new regional data mining tool, by integrating GIS, spatial statistics and network service. RADSS includes the functions of spatial data visualization, exploratory spatial data analysis, and spatial statistics. The tool also includes some fundamental spatial and non-spatial database in regional population and environment, which can be updated by external database via CD or network. Utilizing this data mining and exploratory analytical tool, the users can easily and quickly analyse the huge mount of the interrelated regional data, and better understand the spatial patterns and trends of the regional development, so as to make a credible and scientific decision. Moreover, it can be used as an educational tool for spatial data analysis and environmental studies. In this paper, we also present a case study on Poyang Lake Basin as an application of the tool and spatial data mining in complex environmental studies. At last, several concluding remarks are discussed.

  14. Thinking Egyptian: Active Models for Understanding Spatial Representation.

    ERIC Educational Resources Information Center

    Schiferl, Ellen

    This paper highlights how introductory textbooks on Egyptian art inhibit understanding by reinforcing student preconceptions, and demonstrates another approach to discussing space with a classroom exercise and software. The alternative approach, an active model for spatial representation, introduced here was developed by adapting classroom…

  15. Modeling trends from North American Breeding Bird Survey data: a spatially explicit approach

    USGS Publications Warehouse

    Bled, Florent; Sauer, John R.; Pardieck, Keith L.; Doherty, Paul; Royle, J. Andy

    2013-01-01

    Population trends, defined as interval-specific proportional changes in population size, are often used to help identify species of conservation interest. Efficient modeling of such trends depends on the consideration of the correlation of population changes with key spatial and environmental covariates. This can provide insights into causal mechanisms and allow spatially explicit summaries at scales that are of interest to management agencies. We expand the hierarchical modeling framework used in the North American Breeding Bird Survey (BBS) by developing a spatially explicit model of temporal trend using a conditional autoregressive (CAR) model. By adopting a formal spatial model for abundance, we produce spatially explicit abundance and trend estimates. Analyses based on large-scale geographic strata such as Bird Conservation Regions (BCR) can suffer from basic imbalances in spatial sampling. Our approach addresses this issue by providing an explicit weighting based on the fundamental sample allocation unit of the BBS. We applied the spatial model to three species from the BBS. Species have been chosen based upon their well-known population change patterns, which allows us to evaluate the quality of our model and the biological meaning of our estimates. We also compare our results with the ones obtained for BCRs using a nonspatial hierarchical model (Sauer and Link 2011). Globally, estimates for mean trends are consistent between the two approaches but spatial estimates provide much more precise trend estimates in regions on the edges of species ranges that were poorly estimated in non-spatial analyses. Incorporating a spatial component in the analysis not only allows us to obtain relevant and biologically meaningful estimates for population trends, but also enables us to provide a flexible framework in order to obtain trend estimates for any area.

  16. Spatial econometric analysis of factors influencing regional energy efficiency in China.

    PubMed

    Song, Malin; Chen, Yu; An, Qingxian

    2018-05-01

    Increased environmental pollution and energy consumption caused by the country's rapid development has raised considerable public concern, and has become the focus of the government and public. This study employs the super-efficiency slack-based model-data envelopment analysis (SBM-DEA) to measure the total factor energy efficiency of 30 provinces in China. The estimation model for the spatial interaction intensity of regional total factor energy efficiency is based on Wilson's maximum entropy model. The model is used to analyze the factors that affect the potential value of total factor energy efficiency using spatial dynamic panel data for 30 provinces during 2000-2014. The study found that there are differences and spatial correlations of energy efficiency among provinces and regions in China. The energy efficiency in the eastern, central, and western regions fluctuated significantly, and was mainly because of significant energy efficiency impacts on influences of industrial structure, energy intensity, and technological progress. This research is of great significance to China's energy efficiency and regional coordinated development.

  17. Radiative transfer modeling and analysis of spatially variant and coherent illumination for undersea object detection

    NASA Astrophysics Data System (ADS)

    Bailey, Bernard Charles

    Increasing the optical range of target detection and recognition continues to be an area of great interest in the ocean environment. Light attenuation limits radiative and information transfer for image formation in water. These limitations are difficult to surmount in conventional underwater imaging system design. Methods for the formation of images in scattering media generally rely upon temporal or spatial methodologies. Some interesting designs have been developed in an attempt to circumvent or overcome the scattering problem. This document describes a variation of the spatial interferometric technique that relies upon projected spatial gratings with subsequent detection against a coherent return signal for the purpose of noise reduction and image enhancement. A model is developed that simulates the projected structured illumination through turbid water to a target and its return to a detector. The model shows an unstructured backscatter superimposed on a structured return signal. The model can predict the effect on received signal to noise of variations in the projected spatial frequency and turbidity. The model has been extended to predict what a camera would actually see so that various noise reduction schemes can be modeled. Finally, some water tank tests are presented validating original hypothesis and model predictions. The method is advantageous in not requiring temporal synchronization between reference and signal beams and may use a continuous illumination source. Spatial coherency of the beam allows detection of the direct return, while scattered light appears as a noncoherent noise term. Both model and illumination method should prove to be valuable tools in ocean research.

  18. Cognitive memory and mapping in a brain-like system for robotic navigation.

    PubMed

    Tang, Huajin; Huang, Weiwei; Narayanamoorthy, Aditya; Yan, Rui

    2017-03-01

    Electrophysiological studies in animals may provide a great insight into developing brain-like models of spatial cognition for robots. These studies suggest that the spatial ability of animals requires proper functioning of the hippocampus and the entorhinal cortex (EC). The involvement of the hippocampus in spatial cognition has been extensively studied, both in animal as well as in theoretical studies, such as in the brain-based models by Edelman and colleagues. In this work, we extend these earlier models, with a particular focus on the spatial coding properties of the EC and how it functions as an interface between the hippocampus and the neocortex, as proposed by previous work. By realizing the cognitive memory and mapping functions of the hippocampus and the EC, respectively, we develop a neurobiologically-inspired system to enable a mobile robot to perform task-based navigation in a maze environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Kinematic modeling of a 7-degree of freedom spatial hybrid manipulator for medical surgery.

    PubMed

    Singh, Amanpreet; Singla, Ekta; Soni, Sanjeev; Singla, Ashish

    2018-01-01

    The prime objective of this work is to deal with the kinematics of spatial hybrid manipulators. In this direction, in 1955, Denavit and Hartenberg proposed a consistent and concise method, known as D-H parameters method, to deal with kinematics of open serial chains. From literature review, it is found that D-H parameter method is widely used to model manipulators consisting of lower pairs. However, the method leads to ambiguities when applied to closed-loop, tree-like and hybrid manipulators. Furthermore, in the dearth of any direct method to model closed-loop, tree-like and hybrid manipulators, revisions of this method have been proposed from time-to-time by different researchers. One such kind of revision using the concept of dummy frames has successfully been proposed and implemented by the authors on spatial hybrid manipulators. In that work, authors have addressed the orientational inconsistency of the D-H parameter method, restricted to body-attached frames only. In the current work, the condition of body-attached frames is relaxed and spatial frame attachment is considered to derive the kinematic model of a 7-degree of freedom spatial hybrid robotic arm, along with the development of closed-loop constraints. The validation of the new kinematic model has been performed with the help of a prototype of this 7-degree of freedom arm, which is being developed at Council of Scientific & Industrial Research-Central Scientific Instruments Organisation Chandigarh to aid the surgeon during a medical surgical task. Furthermore, the developed kinematic model is used to develop the first column of the Jacobian matrix, which helps in providing the estimate of the tip velocity of the 7-degree of freedom manipulator when the first joint velocity is known.

  20. Calibration of a Spatial-Temporal Discrimination Model from Forward, Simultaneous, and Backward Masking

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J.; Beard, B. L.; Stone, Leland (Technical Monitor)

    1997-01-01

    We have been developing a simplified spatial-temporal discrimination model similar to our simplified spatial model in that masking is assumed to be a function of the local visible contrast energy. The overall spatial-temporal sensitivity of the model is calibrated to predict the detectability of targets on a uniform background. To calibrate the spatial-temporal integration functions that define local visible contrast energy, spatial-temporal masking data are required. Observer thresholds were measured (2IFC) for the detection of a 12 msec target stimulus in the presence of a 700 msec mask. Targets were 1, 3 or 9 c/deg sine wave gratings. Masks were either one of these gratings or two of them combined. The target was presented in 17 temporal positions with respect to the mask, including positions before, during and after the mask. Peak masking was found near mask onset and offset for 1 and 3 c/deg targets, while masking effects were more nearly uniform during the mask for the 9 c/deg target. As in the purely spatial case, the simplified model can not predict all the details of masking as a function of masking component spatial frequencies, but overall the prediction errors are small.

  1. Effects of Topography-based Subgrid Structures on Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Tesfa, T. K.; Ruby, L.; Brunke, M.; Thornton, P. E.; Zeng, X.; Ghan, S. J.

    2017-12-01

    Topography has major control on land surface processes through its influence on atmospheric forcing, soil and vegetation properties, network topology and drainage area. Consequently, accurate climate and land surface simulations in mountainous regions cannot be achieved without considering the effects of topographic spatial heterogeneity. To test a computationally less expensive hyper-resolution land surface modeling approach, we developed topography-based landunits within a hierarchical subgrid spatial structure to improve representation of land surface processes in the ACME Land Model (ALM) with minimal increase in computational demand, while improving the ability to capture the spatial heterogeneity of atmospheric forcing and land cover influenced by topography. This study focuses on evaluation of the impacts of the new spatial structures on modeling land surface processes. As a first step, we compare ALM simulations with and without subgrid topography and driven by grid cell mean atmospheric forcing to isolate the impacts of the subgrid topography on the simulated land surface states and fluxes. Recognizing that subgrid topography also has important effects on atmospheric processes that control temperature, radiation, and precipitation, methods are being developed to downscale atmospheric forcings. Hence in the second step, the impacts of the subgrid topographic structure on land surface modeling will be evaluated by including spatial downscaling of the atmospheric forcings. Preliminary results on the atmospheric downscaling and the effects of the new spatial structures on the ALM simulations will be presented.

  2. Study on Spatial Spillover Effects of Logistics Industry Development for Economic Growth in the Yangtze River Delta City Cluster Based on Spatial Durbin Model

    PubMed Central

    Xu, Xinxing

    2017-01-01

    The overall entropy method is used to evaluate the development level of the logistics industry in the city based on a mechanism analysis of the spillover effect of the development of the logistics industry on economic growth, according to the panel data of 26 cities in the Yangtze River delta. On this basis, the paper uses the spatial durbin model to study the direct impact of the development of the logistics industry on economic growth and the spatial spillover effect. The results show that the direct impact coefficient of the development of the logistics industry in the Yangtze River Delta urban agglomeration on local economic growth is 0.092, and the significant spatial spillover effect on the economic growth in the surrounding area is 0.197. Compared with the labor force input, capital investment and the degree of opening to the world, and government functions, the logistics industry’s direct impact coefficient is the largest, other than capital investment; the coefficient of the spillover effect is higher than other control variables, making it a “strong engine” of the Yangtze River Delta urban agglomeration economic growth. PMID:29207555

  3. Study on Spatial Spillover Effects of Logistics Industry Development for Economic Growth in the Yangtze River Delta City Cluster Based on Spatial Durbin Model.

    PubMed

    Xu, Xinxing; Wang, Yuhong

    2017-12-04

    The overall entropy method is used to evaluate the development level of the logistics industry in the city based on a mechanism analysis of the spillover effect of the development of the logistics industry on economic growth, according to the panel data of 26 cities in the Yangtze River delta. On this basis, the paper uses the spatial durbin model to study the direct impact of the development of the logistics industry on economic growth and the spatial spillover effect. The results show that the direct impact coefficient of the development of the logistics industry in the Yangtze River Delta urban agglomeration on local economic growth is 0.092, and the significant spatial spillover effect on the economic growth in the surrounding area is 0.197. Compared with the labor force input, capital investment and the degree of opening to the world, and government functions, the logistics industry's direct impact coefficient is the largest, other than capital investment; the coefficient of the spillover effect is higher than other control variables, making it a "strong engine" of the Yangtze River Delta urban agglomeration economic growth.

  4. Integrated Spatial Modeling using Geoinformatics: A Prerequisite for Natural Resources Management

    NASA Astrophysics Data System (ADS)

    Katpatal, Y. B.

    2014-12-01

    Every natural system calls for complete visualization for its holistic and sustainable development. Many a times, especially in developing countries, the approaches deviate from this basic paradigm and results in ineffective management of the natural resources. This becomes more relevant in these countries which are witnessing heavy exodus of the rural population to urban areas increasing the pressures on the basic commodities. Spatial technologies which provide the opportunity to enhance the knowledge visualization of the policy makers and administrators which facilitates technical and scientific management of the resources. Increasing population has created negative impacts on the per capita availability of several resources, which has been well accepted in the statistical records of several developing countries. For instance, the per capita availability of water in India has decreased substantially in last decade and groundwater depletion is on the rise. There is hence a need of tool which helps in restoring the resource through visualization and evaluation temporally. Geological parameters play an important role in operation of several natural systems and earth sciences parameters may not be ignored. Spatial technologies enables application of 2D as well as 3D modeling taking into account variety of natural parameters related to diverse areas. The paper presents case studies where spatial technology has helped in not only understanding the natural systems but also providing solutions, especially in Indian context. The case studies relate to Groundwater Management, Watershed and Basin Management, Groundwater recharge, Environment sustainability using spatial technology. Key Words: Spatial model, Groundwater, Hydrogeology, Geoinformatics, Sustainable Development.

  5. A geostatistical approach to the change-of-support problem and variable-support data fusion in spatial analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wang, Yang; Zeng, Hui

    2016-01-01

    A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.

  6. Virtual Embryo: Cell-Agent Based Modeling of Developmental Processes and Toxicities (CSS BOSC)

    EPA Science Inventory

    Spatial regulation of cellular dynamics is fundamental to morphological development. As such, chemical disruption of spatial dynamics is a determinant of developmental toxicity. Incorporating spatial dynamics into AOPs for developmental toxicity is desired but constrained by the ...

  7. Linking linear programming and spatial simulation models to predict landscape effects of forest management alternatives

    Treesearch

    Eric J. Gustafson; L. Jay Roberts; Larry A. Leefers

    2006-01-01

    Forest management planners require analytical tools to assess the effects of alternative strategies on the sometimes disparate benefits from forests such as timber production and wildlife habitat. We assessed the spatial patterns of alternative management strategies by linking two models that were developed for different purposes. We used a linear programming model (...

  8. Modeling Alaska boreal forests with a controlled trend surface approach

    Treesearch

    Mo Zhou; Jingjing Liang

    2012-01-01

    An approach of Controlled Trend Surface was proposed to simultaneously take into consideration large-scale spatial trends and nonspatial effects. A geospatial model of the Alaska boreal forest was developed from 446 permanent sample plots, which addressed large-scale spatial trends in recruitment, diameter growth, and mortality. The model was tested on two sets of...

  9. WATGIS: A GIS-Based Lumped Parameter Water Quality Model

    Treesearch

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2002-01-01

    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  10. Cohen's Kappa and classification table metrics 2.0: An ArcView 3.x extension for accuracy assessment of spatially explicit models

    Treesearch

    Jeff Jenness; J. Judson Wynne

    2005-01-01

    In the field of spatially explicit modeling, well-developed accuracy assessment methodologies are often poorly applied. Deriving model accuracy metrics have been possible for decades, but these calculations were made by hand or with the use of a spreadsheet application. Accuracy assessments may be useful for: (1) ascertaining the quality of a model; (2) improving model...

  11. Modelling the development and arrangement of the primary vascular structure in plants.

    PubMed

    Cartenì, Fabrizio; Giannino, Francesco; Schweingruber, Fritz Hans; Mazzoleni, Stefano

    2014-09-01

    The process of vascular development in plants results in the formation of a specific array of bundles that run throughout the plant in a characteristic spatial arrangement. Although much is known about the genes involved in the specification of procambium, phloem and xylem, the dynamic processes and interactions that define the development of the radial arrangement of such tissues remain elusive. This study presents a spatially explicit reaction-diffusion model defining a set of logical and functional rules to simulate the differentiation of procambium, phloem and xylem and their spatial patterns, starting from a homogeneous group of undifferentiated cells. Simulation results showed that the model is capable of reproducing most vascular patterns observed in plants, from primitive and simple structures made up of a single strand of vascular bundles (protostele), to more complex and evolved structures, with separated vascular bundles arranged in an ordered pattern within the plant section (e.g. eustele). The results presented demonstrate, as a proof of concept, that a common genetic-molecular machinery can be the basis of different spatial patterns of plant vascular development. Moreover, the model has the potential to become a useful tool to test different hypotheses of genetic and molecular interactions involved in the specification of vascular tissues.

  12. A Microfluidics and Agent-Based Modeling Framework for Investigating Spatial Organization in Bacterial Colonies: The Case of Pseudomonas Aeruginosa and H1-Type VI Secretion Interactions.

    PubMed

    Wilmoth, Jared L; Doak, Peter W; Timm, Andrea; Halsted, Michelle; Anderson, John D; Ginovart, Marta; Prats, Clara; Portell, Xavier; Retterer, Scott T; Fuentes-Cabrera, Miguel

    2018-01-01

    The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P . aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density and local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.

  13. A Microfluidics and Agent-Based Modeling Framework for Investigating Spatial Organization in Bacterial Colonies: The Case of Pseudomonas Aeruginosa and H1-Type VI Secretion Interactions

    PubMed Central

    Wilmoth, Jared L.; Doak, Peter W.; Timm, Andrea; Halsted, Michelle; Anderson, John D.; Ginovart, Marta; Prats, Clara; Portell, Xavier; Retterer, Scott T.; Fuentes-Cabrera, Miguel

    2018-01-01

    The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density and local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models. PMID:29467721

  14. Considering the Spatial Layout Information of Bag of Features (BoF) Framework for Image Classification.

    PubMed

    Mu, Guangyu; Liu, Ying; Wang, Limin

    2015-01-01

    The spatial pooling method such as spatial pyramid matching (SPM) is very crucial in the bag of features model used in image classification. SPM partitions the image into a set of regular grids and assumes that the spatial layout of all visual words obey the uniform distribution over these regular grids. However, in practice, we consider that different visual words should obey different spatial layout distributions. To improve SPM, we develop a novel spatial pooling method, namely spatial distribution pooling (SDP). The proposed SDP method uses an extension model of Gauss mixture model to estimate the spatial layout distributions of the visual vocabulary. For each visual word type, SDP can generate a set of flexible grids rather than the regular grids from the traditional SPM. Furthermore, we can compute the grid weights for visual word tokens according to their spatial coordinates. The experimental results demonstrate that SDP outperforms the traditional spatial pooling methods, and is competitive with the state-of-the-art classification accuracy on several challenging image datasets.

  15. Effect of Modeling-Based Activities Developed Using Virtual Environments and Concrete Objects on Spatial Thinking and Mental Rotation Skills

    ERIC Educational Resources Information Center

    Yurt, Eyup; Sunbul, Ali Murat

    2012-01-01

    In this study, the effect of modeling based activities using virtual environments and concrete objects on spatial thinking and mental rotation skills was investigated. The study was designed as a pretest-posttest model with a control group, which is one of the experimental research models. The study was carried out on sixth grade students…

  16. Modeling a beaver population on the Prescott Peninsula, Massachusetts: Feasibility of LANDSAT as an input

    NASA Technical Reports Server (NTRS)

    Finn, J. T.; Howard, R.

    1981-01-01

    A preliminary dynamic model of beaver spatial distribution and population growth was developed. The feasibility of locating beaver ponds on LANDSAT digital tapes, and of using this information to provide initial conditions of beaver spatial distribution for the model, and to validate model predictions is discussed. The techniques used to identify beaver ponds on LANDSAT are described.

  17. HIGH-RESOLUTION SPATIAL MODELING OF DAILY WEATHER ELEMENTS FOR A CATCHMENT IN THE OREGON CASCADE MOUNTAINS, UNITED STATES

    EPA Science Inventory

    High-quality, daily meteorological data at high spatial resolution are essential for a variety of hydrologic and ecological modeling applications that support environmental risk assessments and decision making. This paper describes the development, application, and assessment of ...

  18. A SOIL SPATIAL DATA FRAMEWORK FOR ENVIRONMENTAL MODELING IN THE CONTIGUOUS US

    EPA Science Inventory

    A suite of soil and related data-layers have been developed for environmental assessments of the effects of tropospheric ozone exposure and nitrogen deposition on forests, and global change (soil C pools and landuse impacts, water balance modeling). These spatial data depict s...

  19. Bayesian spatial transformation models with applications in neuroimaging data.

    PubMed

    Miranda, Michelle F; Zhu, Hongtu; Ibrahim, Joseph G

    2013-12-01

    The aim of this article is to develop a class of spatial transformation models (STM) to spatially model the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) and a set of covariates. The proposed STM include a varying Box-Cox transformation model for dealing with the issue of non-Gaussian distributed imaging data and a Gaussian Markov random field model for incorporating spatial smoothness of the imaging data. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations and real data analysis demonstrate that the STM significantly outperforms the voxel-wise linear model with Gaussian noise in recovering meaningful geometric patterns. Our STM is able to reveal important brain regions with morphological changes in children with attention deficit hyperactivity disorder. © 2013, The International Biometric Society.

  20. Open space preservation, property value, and optimal spatial configuration

    Treesearch

    Yong Jiang; Stephen K. Swallow

    2007-01-01

    The public has increasingly demonstrated a strong support for open space preservation. How to finance the socially efficient level of open space with the optimal spatial structure is of high policy relevance to local governments. In this study, we developed a spatially explicit open space model to help identify the socially optimal amount and optimal spatial...

  1. Landscapes for Energy and Wildlife: Conservation Prioritization for Golden Eagles across Large Spatial Scales

    PubMed Central

    Tack, Jason D.; Fedy, Bradley C.

    2015-01-01

    Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development. PMID:26262876

  2. Landscapes for energy and wildlife: conservation prioritization for golden eagles across large spatial scales

    USGS Publications Warehouse

    Tack, Jason D.; Fedy, Bradley C.

    2015-01-01

    Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.

  3. Landscapes for Energy and Wildlife: Conservation Prioritization for Golden Eagles across Large Spatial Scales.

    PubMed

    Tack, Jason D; Fedy, Bradley C

    2015-01-01

    Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.

  4. Exploring spatial change and gravity center movement for ecosystem services value using a spatially explicit ecosystem services value index and gravity model.

    PubMed

    He, Yingbin; Chen, Youqi; Tang, Huajun; Yao, Yanmin; Yang, Peng; Chen, Zhongxin

    2011-04-01

    Spatially explicit ecosystem services valuation and change is a newly developing area of research in the field of ecology. Using the Beijing region as a study area, the authors have developed a spatially explicit ecosystem services value index and implemented this to quantify and spatially differentiate ecosystem services value at 1-km grid resolution. A gravity model was developed to trace spatial change in the total ecosystem services value of the Beijing study area from a holistic point of view. Study results show that the total value of ecosystem services for the study area decreased by 19.75% during the period 1996-2006 (3,226.2739 US$×10(6) in 1996, 2,589.0321 US$×10(6) in 2006). However, 27.63% of the total area of the Beijing study area increased in ecosystem services value. Spatial differences in ecosystem services values for both 1996 and 2006 are very clear. The center of gravity of total ecosystem services value for the study area moved 32.28 km northwestward over the 10 years due to intensive human intervention taking place in southeast Beijing. The authors suggest that policy-makers should pay greater attention to ecological protection under conditions of rapid socio-economic development and increase the area of green belt in the southeastern part of Beijing.

  5. Modeling the Round Earth through Diagrams

    NASA Astrophysics Data System (ADS)

    Padalkar, Shamin; Ramadas, Jayashree

    Earlier studies have found that students, including adults, have problems understanding the scientifically accepted model of the Sun-Earth-Moon system and explaining day-to-day astronomical phenomena based on it. We have been examining such problems in the context of recent research on visual-spatial reasoning. Working with middle school students in India, we have developed a pedagogical sequence to build the mental model of the Earth and tried it in three schools for socially and educationally disadvantaged students. This pedagogy was developed on the basis of (1) a reading of current research in imagery and visual-spatial reasoning and (2) students' difficulties identified during the course of pretests and interviews. Visual-spatial tools such as concrete (physical) models, gestures, and diagrams are used extensively in the teaching sequence. The building of a mental model is continually integrated with drawing inferences to understand and explain everyday phenomena. The focus of this article is inferences drawn with diagrams.

  6. Research on mixed network architecture collaborative application model

    NASA Astrophysics Data System (ADS)

    Jing, Changfeng; Zhao, Xi'an; Liang, Song

    2009-10-01

    When facing complex requirements of city development, ever-growing spatial data, rapid development of geographical business and increasing business complexity, collaboration between multiple users and departments is needed urgently, however conventional GIS software (such as Client/Server model or Browser/Server model) are not support this well. Collaborative application is one of the good resolutions. Collaborative application has four main problems to resolve: consistency and co-edit conflict, real-time responsiveness, unconstrained operation, spatial data recoverability. In paper, application model called AMCM is put forward based on agent and multi-level cache. AMCM can be used in mixed network structure and supports distributed collaborative. Agent is an autonomous, interactive, initiative and reactive computing entity in a distributed environment. Agent has been used in many fields such as compute science and automation. Agent brings new methods for cooperation and the access for spatial data. Multi-level cache is a part of full data. It reduces the network load and improves the access and handle of spatial data, especially, in editing the spatial data. With agent technology, we make full use of its characteristics of intelligent for managing the cache and cooperative editing that brings a new method for distributed cooperation and improves the efficiency.

  7. Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations.

    PubMed

    Grossberg, Stephen; Pilly, Praveen K

    2014-02-05

    A neural model proposes how entorhinal grid cells and hippocampal place cells may develop as spatial categories in a hierarchy of self-organizing maps (SOMs). The model responds to realistic rat navigational trajectories by learning both grid cells with hexagonal grid firing fields of multiple spatial scales, and place cells with one or more firing fields, that match neurophysiological data about their development in juvenile rats. Both grid and place cells can develop by detecting, learning and remembering the most frequent and energetic co-occurrences of their inputs. The model's parsimonious properties include: similar ring attractor mechanisms process linear and angular path integration inputs that drive map learning; the same SOM mechanisms can learn grid cell and place cell receptive fields; and the learning of the dorsoventral organization of multiple spatial scale modules through medial entorhinal cortex to hippocampus (HC) may use mechanisms homologous to those for temporal learning through lateral entorhinal cortex to HC ('neural relativity'). The model clarifies how top-down HC-to-entorhinal attentional mechanisms may stabilize map learning, simulates how hippocampal inactivation may disrupt grid cells, and explains data about theta, beta and gamma oscillations. The article also compares the three main types of grid cell models in the light of recent data.

  8. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-03-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shaanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modeled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modeled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI), elevation and aspect have small and additive effects on improving the spatial scaling between these two resolutions.

  9. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling between these two resolutions.

  10. Novel probabilistic models of spatial genetic ancestry with applications to stratification correction in genome-wide association studies.

    PubMed

    Bhaskar, Anand; Javanmard, Adel; Courtade, Thomas A; Tse, David

    2017-03-15

    Genetic variation in human populations is influenced by geographic ancestry due to spatial locality in historical mating and migration patterns. Spatial population structure in genetic datasets has been traditionally analyzed using either model-free algorithms, such as principal components analysis (PCA) and multidimensional scaling, or using explicit spatial probabilistic models of allele frequency evolution. We develop a general probabilistic model and an associated inference algorithm that unify the model-based and data-driven approaches to visualizing and inferring population structure. Our spatial inference algorithm can also be effectively applied to the problem of population stratification in genome-wide association studies (GWAS), where hidden population structure can create fictitious associations when population ancestry is correlated with both the genotype and the trait. Our algorithm Geographic Ancestry Positioning (GAP) relates local genetic distances between samples to their spatial distances, and can be used for visually discerning population structure as well as accurately inferring the spatial origin of individuals on a two-dimensional continuum. On both simulated and several real datasets from diverse human populations, GAP exhibits substantially lower error in reconstructing spatial ancestry coordinates compared to PCA. We also develop an association test that uses the ancestry coordinates inferred by GAP to accurately account for ancestry-induced correlations in GWAS. Based on simulations and analysis of a dataset of 10 metabolic traits measured in a Northern Finland cohort, which is known to exhibit significant population structure, we find that our method has superior power to current approaches. Our software is available at https://github.com/anand-bhaskar/gap . abhaskar@stanford.edu or ajavanma@usc.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  11. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    NASA Astrophysics Data System (ADS)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p < 0.01) in the Everglades of Florida over the years 1996-2001. The modeled monthly soil moisture for Illinois of the US agrees well (R2 = 0.79, p < 0.01) with the observed over the years 1984-2001. The modeled monthly stream flow for most 12 major rivers in the US is consistent R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficients >0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.

  12. Predictors of Visualization: A Structural Equation Model.

    ERIC Educational Resources Information Center

    Robichaux, Rebecca R.; Guarino, A. J.

    This study tested a causal model of the development of spatial visualization based on a synthesis of past and present research. During the summer and fall of 1999, 117 third- and fourth-year undergraduates majoring in architecture, mathematics, mathematics education, and mechanical engineering completed a spatial visualization test and a…

  13. SADA: A FREEWARE DECISION SUPPORT TOOL INTEGRATING GIS, SAMPLE DESIGN, SPATIAL MODELING AND RISK ASSESSMENT (SLIDE PRESENTATION)

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  14. MEETING IN CHICAGO: SADA: A FREEWARE DECISION SUPPORT TOOL INTEGRATING GIS, SAMPLE DESIGN, SPATIAL MODELING, AND ENVIRONMENTAL RISK ASSESSMENT

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  15. MEETING IN CZECH REPUBLIC: SADA: A FREEWARE DECISION SUPPORT TOOL INTEGRATING GIS, SAMPLE DESIGN, SPATIAL MODELING, AND RISK ASSESSMENT

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  16. Estimating the spatial distribution of wintering little brown bat populations in the eastern United States

    USGS Publications Warehouse

    Russell, Robin E.; Tinsley, Karl; Erickson, Richard A.; Thogmartin, Wayne E.; Jennifer A. Szymanski,

    2014-01-01

    Depicting the spatial distribution of wildlife species is an important first step in developing management and conservation programs for particular species. Accurate representation of a species distribution is important for predicting the effects of climate change, land-use change, management activities, disease, and other landscape-level processes on wildlife populations. We developed models to estimate the spatial distribution of little brown bat (Myotis lucifugus) wintering populations in the United States east of the 100th meridian, based on known hibernacula locations. From this data, we developed several scenarios of wintering population counts per county that incorporated uncertainty in the spatial distribution of the hibernacula as well as uncertainty in the size of the current little brown bat population. We assessed the variability in our results resulting from effects of uncertainty. Despite considerable uncertainty in the known locations of overwintering little brown bats in the eastern United States, we believe that models accurately depicting the effects of the uncertainty are useful for making management decisions as these models are a coherent organization of the best available information.

  17. Spatial analysis of toxic emissions in LCA: a sub-continental nested USEtox model with freshwater archetypes.

    PubMed

    Kounina, Anna; Margni, Manuele; Shaked, Shanna; Bulle, Cécile; Jolliet, Olivier

    2014-08-01

    This paper develops continent-specific factors for the USEtox model and analyses the accuracy of different model architectures, spatial scales and archetypes in evaluating toxic impacts, with a focus on freshwater pathways. Inter-continental variation is analysed by comparing chemical fate and intake fractions between sub-continental zones of two life cycle impact assessment models: (1) the nested USEtox model parameterized with sub-continental zones and (2) the spatially differentiated IMPACTWorld model with 17 interconnected sub-continental regions. Substance residence time in water varies by up to two orders of magnitude among the 17 zones assessed with IMPACTWorld and USEtox, and intake fraction varies by up to three orders of magnitude. Despite this variation, the nested USEtox model succeeds in mimicking the results of the spatially differentiated model, with the exception of very persistent volatile pollutants that can be transported to polar regions. Intra-continental variation is analysed by comparing fate and intake fractions modelled with the a-spatial (one box) IMPACT Europe continental model vs. the spatially differentiated version of the same model. Results show that the one box model might overestimate chemical fate and characterisation factors for freshwater eco-toxicity of persistent pollutants by up to three orders of magnitude for point source emissions. Subdividing Europe into three archetypes, based on freshwater residence time (how long it takes water to reach the sea), improves the prediction of fate and intake fractions for point source emissions, bringing them within a factor five compared to the spatial model. We demonstrated that a sub-continental nested model such as USEtox, with continent-specific parameterization complemented with freshwater archetypes, can thus represent inter- and intra-continental spatial variations, whilst minimizing model complexity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. International Society for Terrain-Vehicle Systems European Conference (5th) Held in Budapest, Hungary on September 4-6, 1991: Proceedings, Volume 1

    DTIC Science & Technology

    1991-09-01

    spatial rigid - body equations of motion . The predicted data was accurately correlated with the experimental data of scale model tests in the soil bin...models on hard level ground [1, 2] and on soft level ground [3]. For spatial motion on nonlevel ground a rigid - body mobility model was recently developed...Vehicles (1) Kinematics of the vehicle and coordinate systems A spatial motion of a tracked vehicle represented as a rigid body in a Euclidian 3-space

  19. Water balance model for Kings Creek

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.

    1990-01-01

    Particular attention is given to the spatial variability that affects the representation of water balance at the catchment scale in the context of macroscale water-balance modeling. Remotely sensed data are employed for parameterization, and the resulting model is developed so that subgrid spatial variability is preserved and therefore influences the grid-scale fluxes of the model. The model permits the quantitative evaluation of the surface-atmospheric interactions related to the large-scale hydrologic water balance.

  20. Optimal Spatial Design of Capacity and Quantity of Rainwater Catchment Systems for Urban Flood Mitigation

    NASA Astrophysics Data System (ADS)

    Huang, C.; Hsu, N.

    2013-12-01

    This study imports Low-Impact Development (LID) technology of rainwater catchment systems into a Storm-Water runoff Management Model (SWMM) to design the spatial capacity and quantity of rain barrel for urban flood mitigation. This study proposes a simulation-optimization model for effectively searching the optimal design. In simulation method, we design a series of regular spatial distributions of capacity and quantity of rainwater catchment facilities, and thus the reduced flooding circumstances using a variety of design forms could be simulated by SWMM. Moreover, we further calculate the net benefit that is equal to subtract facility cost from decreasing inundation loss and the best solution of simulation method would be the initial searching solution of the optimization model. In optimizing method, first we apply the outcome of simulation method and Back-Propagation Neural Network (BPNN) for developing a water level simulation model of urban drainage system in order to replace SWMM which the operating is based on a graphical user interface and is hard to combine with optimization model and method. After that we embed the BPNN-based simulation model into the developed optimization model which the objective function is minimizing the negative net benefit. Finally, we establish a tabu search-based algorithm to optimize the planning solution. This study applies the developed method in Zhonghe Dist., Taiwan. Results showed that application of tabu search and BPNN-based simulation model into the optimization model not only can find better solutions than simulation method in 12.75%, but also can resolve the limitations of previous studies. Furthermore, the optimized spatial rain barrel design can reduce 72% of inundation loss according to historical flood events.

  1. Integrating GIS, cellular automata, and genetic algorithm in urban spatial optimization: a case study of Lanzhou

    NASA Astrophysics Data System (ADS)

    Xu, Xibao; Zhang, Jianming; Zhou, Xiaojian

    2006-10-01

    This paper presents a model integrating GIS, cellular automata (CA) and genetic algorithm (GA) in urban spatial optimization. The model involves three objectives of the maximization of land-use efficiency, the maximization of urban spatial harmony and appropriate proportion of each land-use type. CA submodel is designed with standard Moore neighbor and three transition rules to maximize the land-use efficiency and urban spatial harmony, according to the land-use suitability and spatial harmony index. GA submodel is designed with four constraints and seven steps for the maximization of urban spatial harmony and appropriate proportion of each land-use type, including encoding, initializing, calculating fitness, selection, crossover, mutation and elitism. GIS is used to prepare for the input data sets for the model and perform spatial analysis on the results, while CA and GA are integrated to optimize urban spatial structure, programmed with Matlab 7 and coupled with GIS loosely. Lanzhou, a typical valley-basin city with fast urban development, is chosen as the case study. At the end, a detail analysis and evaluation of the spatial optimization with the model are made, and it proves to be a powerful tool in optimizing urban spatial structure and make supplement for urban planning and policy-makers.

  2. Applying spatial regression to evaluate risk factors for microbiological contamination of urban groundwater sources in Juba, South Sudan

    NASA Astrophysics Data System (ADS)

    Engström, Emma; Mörtberg, Ulla; Karlström, Anders; Mangold, Mikael

    2017-06-01

    This study developed methodology for statistically assessing groundwater contamination mechanisms. It focused on microbial water pollution in low-income regions. Risk factors for faecal contamination of groundwater-fed drinking-water sources were evaluated in a case study in Juba, South Sudan. The study was based on counts of thermotolerant coliforms in water samples from 129 sources, collected by the humanitarian aid organisation Médecins Sans Frontières in 2010. The factors included hydrogeological settings, land use and socio-economic characteristics. The results showed that the residuals of a conventional probit regression model had a significant positive spatial autocorrelation (Moran's I = 3.05, I-stat = 9.28); therefore, a spatial model was developed that had better goodness-of-fit to the observations. The most significant factor in this model ( p-value 0.005) was the distance from a water source to the nearest Tukul area, an area with informal settlements that lack sanitation services. It is thus recommended that future remediation and monitoring efforts in the city be concentrated in such low-income regions. The spatial model differed from the conventional approach: in contrast with the latter case, lowland topography was not significant at the 5% level, as the p-value was 0.074 in the spatial model and 0.040 in the traditional model. This study showed that statistical risk-factor assessments of groundwater contamination need to consider spatial interactions when the water sources are located close to each other. Future studies might further investigate the cut-off distance that reflects spatial autocorrelation. Particularly, these results advise research on urban groundwater quality.

  3. Spatial occupancy models for large data sets

    USGS Publications Warehouse

    Johnson, Devin S.; Conn, Paul B.; Hooten, Mevin B.; Ray, Justina C.; Pond, Bruce A.

    2013-01-01

    Since its development, occupancy modeling has become a popular and useful tool for ecologists wishing to learn about the dynamics of species occurrence over time and space. Such models require presence–absence data to be collected at spatially indexed survey units. However, only recently have researchers recognized the need to correct for spatially induced overdisperison by explicitly accounting for spatial autocorrelation in occupancy probability. Previous efforts to incorporate such autocorrelation have largely focused on logit-normal formulations for occupancy, with spatial autocorrelation induced by a random effect within a hierarchical modeling framework. Although useful, computational time generally limits such an approach to relatively small data sets, and there are often problems with algorithm instability, yielding unsatisfactory results. Further, recent research has revealed a hidden form of multicollinearity in such applications, which may lead to parameter bias if not explicitly addressed. Combining several techniques, we present a unifying hierarchical spatial occupancy model specification that is particularly effective over large spatial extents. This approach employs a probit mixture framework for occupancy and can easily accommodate a reduced-dimensional spatial process to resolve issues with multicollinearity and spatial confounding while improving algorithm convergence. Using open-source software, we demonstrate this new model specification using a case study involving occupancy of caribou (Rangifer tarandus) over a set of 1080 survey units spanning a large contiguous region (108 000 km2) in northern Ontario, Canada. Overall, the combination of a more efficient specification and open-source software allows for a facile and stable implementation of spatial occupancy models for large data sets.

  4. A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders

    USGS Publications Warehouse

    Dorazio, Robert; Karanth, K. Ullas

    2017-01-01

    MotivationSeveral spatial capture-recapture (SCR) models have been developed to estimate animal abundance by analyzing the detections of individuals in a spatial array of traps. Most of these models do not use the actual dates and times of detection, even though this information is readily available when using continuous-time recorders, such as microphones or motion-activated cameras. Instead most SCR models either partition the period of trap operation into a set of subjectively chosen discrete intervals and ignore multiple detections of the same individual within each interval, or they simply use the frequency of detections during the period of trap operation and ignore the observed times of detection. Both practices make inefficient use of potentially important information in the data.Model and data analysisWe developed a hierarchical SCR model to estimate the spatial distribution and abundance of animals detected with continuous-time recorders. Our model includes two kinds of point processes: a spatial process to specify the distribution of latent activity centers of individuals within the region of sampling and a temporal process to specify temporal patterns in the detections of individuals. We illustrated this SCR model by analyzing spatial and temporal patterns evident in the camera-trap detections of tigers living in and around the Nagarahole Tiger Reserve in India. We also conducted a simulation study to examine the performance of our model when analyzing data sets of greater complexity than the tiger data.BenefitsOur approach provides three important benefits: First, it exploits all of the information in SCR data obtained using continuous-time recorders. Second, it is sufficiently versatile to allow the effects of both space use and behavior of animals to be specified as functions of covariates that vary over space and time. Third, it allows both the spatial distribution and abundance of individuals to be estimated, effectively providing a species distribution model, even in cases where spatial covariates of abundance are unknown or unavailable. We illustrated these benefits in the analysis of our data, which allowed us to quantify differences between nocturnal and diurnal activities of tigers and to estimate their spatial distribution and abundance across the study area. Our continuous-time SCR model allows an analyst to specify many of the ecological processes thought to be involved in the distribution, movement, and behavior of animals detected in a spatial trapping array of continuous-time recorders. We plan to extend this model to estimate the population dynamics of animals detected during multiple years of SCR surveys.

  5. Land cover mapping at sub-pixel scales

    NASA Astrophysics Data System (ADS)

    Makido, Yasuyo Kato

    One of the biggest drawbacks of land cover mapping from remotely sensed images relates to spatial resolution, which determines the level of spatial details depicted in an image. Fine spatial resolution images from satellite sensors such as IKONOS and QuickBird are now available. However, these images are not suitable for large-area studies, since a single image is very small and therefore it is costly for large area studies. Much research has focused on attempting to extract land cover types at sub-pixel scale, and little research has been conducted concerning the spatial allocation of land cover types within a pixel. This study is devoted to the development of new algorithms for predicting land cover distribution using remote sensory imagery at sub-pixel level. The "pixel-swapping" optimization algorithm, which was proposed by Atkinson for predicting sub-pixel land cover distribution, is investigated in this study. Two limitations of this method, the arbitrary spatial range value and the arbitrary exponential model of spatial autocorrelation, are assessed. Various weighting functions, as alternatives to the exponential model, are evaluated in order to derive the optimum weighting function. Two different simulation models were employed to develop spatially autocorrelated binary class maps. In all tested models, Gaussian, Exponential, and IDW, the pixel swapping method improved classification accuracy compared with the initial random allocation of sub-pixels. However the results suggested that equal weight could be used to increase accuracy and sub-pixel spatial autocorrelation instead of using these more complex models of spatial structure. New algorithms for modeling the spatial distribution of multiple land cover classes at sub-pixel scales are developed and evaluated. Three methods are examined: sequential categorical swapping, simultaneous categorical swapping, and simulated annealing. These three methods are applied to classified Landsat ETM+ data that has been resampled to 210 meters. The result suggested that the simultaneous method can be considered as the optimum method in terms of accuracy performance and computation time. The case study employs remote sensing imagery at the following sites: tropical forests in Brazil and temperate multiple land mosaic in East China. Sub-areas for both sites are used to examine how the characteristics of the landscape affect the ability of the optimum technique. Three types of measurement: Moran's I, mean patch size (MPS), and patch size standard deviation (STDEV), are used to characterize the landscape. All results suggested that this technique could increase the classification accuracy more than traditional hard classification. The methods developed in this study can benefit researchers who employ coarse remote sensing imagery but are interested in detailed landscape information. In many cases, the satellite sensor that provides large spatial coverage has insufficient spatial detail to identify landscape patterns. Application of the super-resolution technique described in this dissertation could potentially solve this problem by providing detailed land cover predictions from the coarse resolution satellite sensor imagery.

  6. Modeling structural change in spatial system dynamics: A Daisyworld example.

    PubMed

    Neuwirth, C; Peck, A; Simonović, S P

    2015-03-01

    System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems' spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed.

  7. Crime Modeling using Spatial Regression Approach

    NASA Astrophysics Data System (ADS)

    Saleh Ahmar, Ansari; Adiatma; Kasim Aidid, M.

    2018-01-01

    Act of criminality in Indonesia increased both variety and quantity every year. As murder, rape, assault, vandalism, theft, fraud, fencing, and other cases that make people feel unsafe. Risk of society exposed to crime is the number of reported cases in the police institution. The higher of the number of reporter to the police institution then the number of crime in the region is increasing. In this research, modeling criminality in South Sulawesi, Indonesia with the dependent variable used is the society exposed to the risk of crime. Modelling done by area approach is the using Spatial Autoregressive (SAR) and Spatial Error Model (SEM) methods. The independent variable used is the population density, the number of poor population, GDP per capita, unemployment and the human development index (HDI). Based on the analysis using spatial regression can be shown that there are no dependencies spatial both lag or errors in South Sulawesi.

  8. Prediction of hourly PM2.5 using a space-time support vector regression model

    NASA Astrophysics Data System (ADS)

    Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang

    2018-05-01

    Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.

  9. Spatial effects in discrete generation population models.

    PubMed

    Carrillo, C; Fife, P

    2005-02-01

    A framework is developed for constructing a large class of discrete generation, continuous space models of evolving single species populations and finding their bifurcating patterned spatial distributions. Our models involve, in separate stages, the spatial redistribution (through movement laws) and local regulation of the population; and the fundamental properties of these events in a homogeneous environment are found. Emphasis is placed on the interaction of migrating individuals with the existing population through conspecific attraction (or repulsion), as well as on random dispersion. The nature of the competition of these two effects in a linearized scenario is clarified. The bifurcation of stationary spatially patterned population distributions is studied, with special attention given to the role played by that competition.

  10. Integration agent-based models and GIS as a virtual urban dynamic laboratory

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Liu, Miaolong

    2007-06-01

    Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.

  11. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model

    NASA Astrophysics Data System (ADS)

    Demirel, Mehmet C.; Mai, Juliane; Mendiguren, Gorka; Koch, Julian; Samaniego, Luis; Stisen, Simon

    2018-02-01

    Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex evolution optimiser. The calibration results reveal a limited trade-off between streamflow dynamics and spatial patterns illustrating the benefit of combining separate observation types and objective functions. At the same time, the simulated spatial patterns of AET significantly improved when an objective function based on observed AET patterns and a novel spatial performance metric compared to traditional streamflow-only calibration were included. Since the overall water balance is usually a crucial goal in hydrologic modelling, spatial-pattern-oriented optimisation should always be accompanied by traditional discharge measurements. In such a multi-objective framework, the current study promotes the use of a novel bias-insensitive spatial pattern metric, which exploits the key information contained in the observed patterns while allowing the water balance to be informed by discharge observations.

  12. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    NASA Astrophysics Data System (ADS)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  13. Projecting Future Urbanization with Prescott College's Spatial Growth Model to Promote Environmental Sustainability and Smart Growth, A Case Study in Atlanta, Georgia

    NASA Technical Reports Server (NTRS)

    Estes, Maurice G., Jr.; Crosson, William; Limaye, Ashutosh; Johnson, Hoyt; Quattrochi, Dale; Lapenta, William; Khan, Maudood

    2006-01-01

    Planning is an integral element of good management and necessary to anticipate events not merely respond to them. Projecting the quantity and spatial distribution of urban growth is essential to effectively plan for the delivery of city services and to evaluate potential environmental impacts. The major drivers of growth in large urban areas are increasing population, employment opportunities, and quality of life attractors such as a favorable climate and recreation opportunities. The spatial distribution of urban growth is dictated by the amount and location of developable land, topography, energy and water resources, transportation network, climate change, and the existing land use configuration. The Atlanta region is growing very rapidly both in population and the consumption of forestland or low-density residential development. Air pollution and water availability are significant ongoing environmental issues. The Prescott Spatial Growth Model (SGM) was used to make growth projections for the metropolitan Atlanta region to 2010,2020 and 2030 and results used for environmental assessment in both business as usual and smart growth scenarios. The Prescott SGM is a tool that uses an ESRI ArcView extension and can be applied at the parcel level or more coarse spatial scales and can accommodate a wide range of user inputs to develop any number of growth rules each of which can be weighted depending on growth assumptions. These projections were used in conjunction with meteorological and air quality models to evaluate future environmental impacts. This presentation will focus on the application of the SGM to the 13-County Atlanta Regional Commission planning jurisdiction as a case study. The SGM will be described, including how rule sets are developed and the decision process for allocation of future development to available land use categories. Data inputs required to effectively run the model will be discussed. Spatial growth projections for ten, twenty, and thirty year planning horizons will be presented and results discussed, including regional climate and air quality impacts.

  14. Comparison of Adjacency and Distance-Based Approaches for Spatial Analysis of Multimodal Traffic Crash Data

    NASA Astrophysics Data System (ADS)

    Gill, G.; Sakrani, T.; Cheng, W.; Zhou, J.

    2017-09-01

    Many studies have utilized the spatial correlations among traffic crash data to develop crash prediction models with the aim to investigate the influential factors or predict crash counts at different sites. The spatial correlation have been observed to account for heterogeneity in different forms of weight matrices which improves the estimation performance of models. But very rarely have the weight matrices been compared for the prediction accuracy for estimation of crash counts. This study was targeted at the comparison of two different approaches for modelling the spatial correlations among crash data at macro-level (County). Multivariate Full Bayesian crash prediction models were developed using Decay-50 (distance-based) and Queen-1 (adjacency-based) weight matrices for simultaneous estimation crash counts of four different modes: vehicle, motorcycle, bike, and pedestrian. The goodness-of-fit and different criteria for accuracy at prediction of crash count reveled the superiority of Decay-50 over Queen-1. Decay-50 was essentially different from Queen-1 with the selection of neighbors and more robust spatial weight structure which rendered the flexibility to accommodate the spatially correlated crash data. The consistently better performance of Decay-50 at prediction accuracy further bolstered its superiority. Although the data collection efforts to gather centroid distance among counties for Decay-50 may appear to be a downside, but the model has a significant edge to fit the crash data without losing the simplicity of computation of estimated crash count.

  15. Residential Racial Isolation and Spatial Patterning of Type 2 Diabetes Mellitus in Durham, North Carolina.

    PubMed

    Bravo, Mercedes A; Anthopolos, Rebecca; Kimbro, Rachel T; Miranda, Marie Lynn

    2018-05-14

    Neighborhood characteristics such as racial segregation may be associated with type 2 diabetes mellitus, but studies have not examined these relationships using spatial models appropriate for geographically patterned health outcomes. We construct a local, spatial index of racial isolation (RI) for blacks, which measures the extent to which blacks are exposed to only one another, to estimate associations of diabetes with RI and examine how RI relates to spatial patterning in diabetes. We obtained 2007-2011 electronic health records from the Duke Medicine Enterprise Data Warehouse. Patient data were linked to RI based on census block of residence. We use aspatial and spatial Bayesian models to assess spatial variation in diabetes and relationships with RI. Compared to spatial models with patient age and sex, residual geographic heterogeneity in diabetes in spatial models that also included RI was 29% and 24% lower for non-Hispanic whites and blacks, respectively. A 0.20 unit increase in RI was associated with 1.24 (95% credible interval: 1.17, 1.31) and 1.07 (1.05, 1.10) increased risk of diabetes for whites and blacks, respectively. Improved understanding of neighborhood characteristics associated with diabetes can inform development of policy interventions.

  16. Solving Large-scale Spatial Optimization Problems in Water Resources Management through Spatial Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Wang, J.; Cai, X.

    2007-12-01

    A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators to represent spatial variables in a more efficient way. The hyper-population consists of a set of populations, which correspond to the spatial distributions of the individual agents (organisms). Furthermore spatial crossover and mutation operators are designed in accordance with the tree representation and then applied to both organisms and populations. This study applies the SEA to a specific problem of water resources management- maximizing the riparian vegetation coverage in accordance with the distributed groundwater system in an arid region. The vegetation coverage is impacted greatly by the nonlinear feedbacks and interactions between vegetation and groundwater and the spatial variability of groundwater. The SEA is applied to search for an optimal vegetation configuration compatible to the groundwater flow. The results from this example demonstrate the effectiveness of the SEA. Extension of the algorithm for other water resources management problems is discussed.

  17. A statistical model of extreme storm rainfall

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Karr, Alan F.

    1990-02-01

    A model of storm rainfall is developed for the central Appalachian region of the United States. The model represents the temporal occurrence of major storms and, for a given storm, the spatial distribution of storm rainfall. Spatial inhomogeneities of storm rainfall and temporal inhomogeneities of the storm occurrence process are explicitly represented. The model is used for estimating recurrence intervals of extreme storms. The parameter estimation procedure developed for the model is based on the substitution principle (method of moments) and requires data from a network of rain gages. The model is applied to a 5000 mi2 (12,950 km2) region in the Valley and Ridge Province of Virginia and West Virginia.

  18. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model

    NASA Astrophysics Data System (ADS)

    Verburg, Peter H.; Soepboer, Welmoed; Veldkamp, A.; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S. A.

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  19. Modeling the spatial dynamics of regional land use: the CLUE-S model.

    PubMed

    Verburg, Peter H; Soepboer, Welmoed; Veldkamp, A; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S A

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  20. Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050

    DOE PAGES

    McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; ...

    2015-02-03

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less

  1. Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less

  2. Lateral specialization in unilateral spatial neglect: a cognitive robotics model.

    PubMed

    Conti, Daniela; Di Nuovo, Santo; Cangelosi, Angelo; Di Nuovo, Alessandro

    2016-08-01

    In this paper, we present the experimental results of an embodied cognitive robotic approach for modelling the human cognitive deficit known as unilateral spatial neglect (USN). To this end, we introduce an artificial neural network architecture designed and trained to control the spatial attentional focus of the iCub robotic platform. Like the human brain, the architecture is divided into two hemispheres and it incorporates bio-inspired plasticity mechanisms, which allow the development of the phenomenon of the specialization of the right hemisphere for spatial attention. In this study, we validate the model by replicating a previous experiment with human patients affected by the USN and numerical results show that the robot mimics the behaviours previously exhibited by humans. We also simulated recovery after the damage to compare the performance of each of the two hemispheres as additional validation of the model. Finally, we highlight some possible advantages of modelling cognitive dysfunctions of the human brain by means of robotic platforms, which can supplement traditional approaches for studying spatial impairments in humans.

  3. Modeling spatial accessibility of immigrants to culturally diverse family physicians.

    PubMed

    Wanga, Lu; Roisman, Deborah

    2011-01-01

    This article uses accessibility as an analytical tool to examine health care access among immigrants in a multicultural urban setting. It applies and improves on two widely used accessibility models—the gravity model and the two-step floating catchment area model—in measuring spatial accessibility by Mainland Chinese immigrants in the Toronto Census Metropolitan Area. Empirical data on physician-seeking behaviors are collected through two rounds of questionnaire surveys. Attention is focused on journey to physician location and utilization of linguistically matched family physicians. Based on the survey data, a two-zone accessibility model is developed by relaxing the travel threshold and distance impedance parameters that are traditionally treated as a constant in the accessibility models. General linear models are used to identify relationships among spatial accessibility, geography, and socioeconomic characteristics of Mainland Chinese immigrants. The results suggest a spatial mismatch in the supply of and demand for culturally sensitive care, and residential location is the primary factor that determines spatial accessibility to family physicians. The article yields important policy implications.

  4. A Microfluidics and Agent-Based Modeling Framework for Investigating Spatial Organization in Bacterial Colonies: The Case of Pseudomonas Aeruginosa and H1-Type VI Secretion Interactions

    DOE PAGES

    Wilmoth, Jared L.; Doak, Peter W.; Timm, Andrea; ...

    2018-02-06

    The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density andmore » local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.« less

  5. A model of tumor architecture and spatial interactions with tumor microenvironment in breast carcinoma

    NASA Astrophysics Data System (ADS)

    Ben Cheikh, Bassem; Bor-Angelier, Catherine; Racoceanu, Daniel

    2017-03-01

    Breast carcinomas are cancers that arise from the epithelial cells of the breast, which are the cells that line the lobules and the lactiferous ducts. Breast carcinoma is the most common type of breast cancer and can be divided into different subtypes based on architectural features and growth patterns, recognized during a histopathological examination. Tumor microenvironment (TME) is the cellular environment in which tumor cells develop. Being composed of various cell types having different biological roles, TME is recognized as playing an important role in the progression of the disease. The architectural heterogeneity in breast carcinomas and the spatial interactions with TME are, to date, not well understood. Developing a spatial model of tumor architecture and spatial interactions with TME can advance our understanding of tumor heterogeneity. Furthermore, generating histological synthetic datasets can contribute to validating, and comparing analytical methods that are used in digital pathology. In this work, we propose a modeling method that applies to different breast carcinoma subtypes and TME spatial distributions based on mathematical morphology. The model is based on a few morphological parameters that give access to a large spectrum of breast tumor architectures and are able to differentiate in-situ ductal carcinomas (DCIS) and histological subtypes of invasive carcinomas such as ductal (IDC) and lobular carcinoma (ILC). In addition, a part of the parameters of the model controls the spatial distribution of TME relative to the tumor. The validation of the model has been performed by comparing morphological features between real and simulated images.

  6. A Microfluidics and Agent-Based Modeling Framework for Investigating Spatial Organization in Bacterial Colonies: The Case of Pseudomonas Aeruginosa and H1-Type VI Secretion Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilmoth, Jared L.; Doak, Peter W.; Timm, Andrea

    The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density andmore » local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.« less

  7. Visible Geology - Interactive online geologic block modelling

    NASA Astrophysics Data System (ADS)

    Cockett, R.

    2012-12-01

    Geology is a highly visual science, and many disciplines require spatial awareness and manipulation. For example, interpreting cross-sections, geologic maps, or plotting data on a stereonet all require various levels of spatial abilities. These skills are often not focused on in undergraduate geoscience curricula and many students struggle with spatial relations, manipulations, and penetrative abilities (e.g. Titus & Horsman, 2009). A newly developed program, Visible Geology, allows for students to be introduced to many geologic concepts and spatial skills in a virtual environment. Visible Geology is a web-based, three-dimensional environment where students can create and interrogate their own geologic block models. The program begins with a blank model, users then add geologic beds (with custom thickness and color) and can add geologic deformation events like tilting, folding, and faulting. Additionally, simple intrusive dikes can be modelled, as well as unconformities. Students can also explore the interaction of geology with topography by drawing elevation contours to produce their own topographic models. Students can not only spatially manipulate their model, but can create cross-sections and boreholes to practice their visual penetrative abilities. Visible Geology is easy to access and use, with no downloads required, so it can be incorporated into current, paper-based, lab activities. Sample learning activities are being developed that target introductory and structural geology curricula with learning objectives such as relative geologic history, fault characterization, apparent dip and thickness, interference folding, and stereonet interpretation. Visible Geology provides a richly interactive, and immersive environment for students to explore geologic concepts and practice their spatial skills.; Screenshot of Visible Geology showing folding and faulting interactions on a ridge topography.

  8. Optimization of Land Use Suitability for Agriculture Using Integrated Geospatial Model and Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Mansor, S. B.; Pormanafi, S.; Mahmud, A. R. B.; Pirasteh, S.

    2012-08-01

    In this study, a geospatial model for land use allocation was developed from the view of simulating the biological autonomous adaptability to environment and the infrastructural preference. The model was developed based on multi-agent genetic algorithm. The model was customized to accommodate the constraint set for the study area, namely the resource saving and environmental-friendly. The model was then applied to solve the practical multi-objective spatial optimization allocation problems of land use in the core region of Menderjan Basin in Iran. The first task was to study the dominant crops and economic suitability evaluation of land. Second task was to determine the fitness function for the genetic algorithms. The third objective was to optimize the land use map using economical benefits. The results has indicated that the proposed model has much better performance for solving complex multi-objective spatial optimization allocation problems and it is a promising method for generating land use alternatives for further consideration in spatial decision-making.

  9. Land use change modeling through scenario-based cellular automata Markov: improving spatial forecasting.

    PubMed

    Jahanishakib, Fatemeh; Mirkarimi, Seyed Hamed; Salmanmahiny, Abdolrassoul; Poodat, Fatemeh

    2018-05-08

    Efficient land use management requires awareness of past changes, present actions, and plans for future developments. Part of these requirements is achieved using scenarios that describe a future situation and the course of changes. This research aims to link scenario results with spatially explicit and quantitative forecasting of land use development. To develop land use scenarios, SMIC PROB-EXPERT and MORPHOL methods were used. It revealed eight scenarios as the most probable. To apply the scenarios, we considered population growth rate and used a cellular automata-Markov chain (CA-MC) model to implement the quantified changes described by each scenario. For each scenario, a set of landscape metrics was used to assess the ecological integrity of land use classes in terms of fragmentation and structural connectivity. The approach enabled us to develop spatial scenarios of land use change and detect their differences for choosing the most integrated landscape pattern in terms of landscape metrics. Finally, the comparison between paired forecasted scenarios based on landscape metrics indicates that scenarios 1-1, 2-2, 3-2, and 4-1 have a more suitable integrity. The proposed methodology for developing spatial scenarios helps executive managers to create scenarios with many repetitions and customize spatial patterns in real world applications and policies.

  10. Review of applications for SIMDEUM, a stochastic drinking water demand model with a small temporal and spatial scale

    NASA Astrophysics Data System (ADS)

    Blokker, Mirjam; Agudelo-Vera, Claudia; Moerman, Andreas; van Thienen, Peter; Pieterse-Quirijns, Ilse

    2017-04-01

    Many researchers have developed drinking water demand models with various temporal and spatial scales. A limited number of models is available at a temporal scale of 1 s and a spatial scale of a single home. The reasons for building these models were described in the papers in which the models were introduced, along with a discussion on their potential applications. However, the predicted applications are seldom re-examined. SIMDEUM, a stochastic end-use model for drinking water demand, has often been applied in research and practice since it was developed. We are therefore re-examining its applications in this paper. SIMDEUM's original purpose was to calculate maximum demands in order to design self-cleaning networks. Yet, the model has been useful in many more applications. This paper gives an overview of the many fields of application for SIMDEUM and shows where this type of demand model is indispensable and where it has limited practical value. This overview also leads to an understanding of the requirements for demand models in various applications.

  11. A data-model integration approach toward improved understanding on wetland functions and hydrological benefits at the catchment scale

    NASA Astrophysics Data System (ADS)

    Yeo, I. Y.; Lang, M.; Lee, S.; Huang, C.; Jin, H.; McCarty, G.; Sadeghi, A.

    2017-12-01

    The wetland ecosystem plays crucial roles in improving hydrological function and ecological integrity for the downstream water and the surrounding landscape. However, changing behaviours and functioning of wetland ecosystems are poorly understood and extremely difficult to characterize. Improved understanding on hydrological behaviours of wetlands, considering their interaction with surrounding landscapes and impacts on downstream waters, is an essential first step toward closing the knowledge gap. We present an integrated wetland-catchment modelling study that capitalizes on recently developed inundation maps and other geospatial data. The aim of the data-model integration is to improve spatial prediction of wetland inundation and evaluate cumulative hydrological benefits at the catchment scale. In this paper, we highlight problems arising from data preparation, parameterization, and process representation in simulating wetlands within a distributed catchment model, and report the recent progress on mapping of wetland dynamics (i.e., inundation) using multiple remotely sensed data. We demonstrate the value of spatially explicit inundation information to develop site-specific wetland parameters and to evaluate model prediction at multi-spatial and temporal scales. This spatial data-model integrated framework is tested using Soil and Water Assessment Tool (SWAT) with improved wetland extension, and applied for an agricultural watershed in the Mid-Atlantic Coastal Plain, USA. This study illustrates necessity of spatially distributed information and a data integrated modelling approach to predict inundation of wetlands and hydrologic function at the local landscape scale, where monitoring and conservation decision making take place.

  12. On Spatially Explicit Models of Epidemic and Endemic Cholera: The Haiti and Lake Kivu Case Studies.

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.; Bertuzzo, E.; Mari, L.; Finger, F.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.

    2014-12-01

    The first part of the Lecture deals with the predictive ability of mechanistic models for the Haitian cholera epidemic. Predictive models of epidemic cholera need to resolve at suitable aggregation levels spatial data pertaining to local communities, epidemiological records, hydrologic drivers, waterways, patterns of human mobility and proxies of exposure rates. A formal model comparison framework provides a quantitative assessment of the explanatory and predictive abilities of various model settings with different spatial aggregation levels. Intensive computations and objective model comparisons show that parsimonious spatially explicit models accounting for spatial connections have superior explanatory power than spatially disconnected ones for short-to intermediate calibration windows. In general, spatially connected models show better predictive ability than disconnected ones. We suggest limits and validity of the various approaches and discuss the pathway towards the development of case-specific predictive tools in the context of emergency management. The second part deals with approaches suitable to describe patterns of endemic cholera. Cholera outbreaks have been reported in the Democratic Republic of the Congo since the 1970s. Here we employ a spatially explicit, inhomogeneous Markov chain model to describe cholera incidence in eight health zones on the shore of lake Kivu. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers in addition to baseline seasonality. The effect of human mobility is also modelled mechanistically. We test several models on a multi-year dataset of reported cholera cases. Fourteen models, accounting for different environmental drivers, are selected in calibration. Among these, the one accounting for seasonality, El Nino Southern Oscillation, precipitation and human mobility outperforms the others in cross-validation.

  13. Hierarchical spatial models for predicting pygmy rabbit distribution and relative abundance

    USGS Publications Warehouse

    Wilson, T.L.; Odei, J.B.; Hooten, M.B.; Edwards, T.C.

    2010-01-01

    Conservationists routinely use species distribution models to plan conservation, restoration and development actions, while ecologists use them to infer process from pattern. These models tend to work well for common or easily observable species, but are of limited utility for rare and cryptic species. This may be because honest accounting of known observation bias and spatial autocorrelation are rarely included, thereby limiting statistical inference of resulting distribution maps. We specified and implemented a spatially explicit Bayesian hierarchical model for a cryptic mammal species (pygmy rabbit Brachylagus idahoensis). Our approach used two levels of indirect sign that are naturally hierarchical (burrows and faecal pellets) to build a model that allows for inference on regression coefficients as well as spatially explicit model parameters. We also produced maps of rabbit distribution (occupied burrows) and relative abundance (number of burrows expected to be occupied by pygmy rabbits). The model demonstrated statistically rigorous spatial prediction by including spatial autocorrelation and measurement uncertainty. We demonstrated flexibility of our modelling framework by depicting probabilistic distribution predictions using different assumptions of pygmy rabbit habitat requirements. Spatial representations of the variance of posterior predictive distributions were obtained to evaluate heterogeneity in model fit across the spatial domain. Leave-one-out cross-validation was conducted to evaluate the overall model fit. Synthesis and applications. Our method draws on the strengths of previous work, thereby bridging and extending two active areas of ecological research: species distribution models and multi-state occupancy modelling. Our framework can be extended to encompass both larger extents and other species for which direct estimation of abundance is difficult. ?? 2010 The Authors. Journal compilation ?? 2010 British Ecological Society.

  14. A dam-reservoir module for a semi-distributed hydrological model

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles; Ramos, Maria-Helena

    2017-04-01

    Developing modeling tools that help to assess the spatial distribution of water resources is a key issue to achieve better solutions for the optimal management of water availability among users in a river basin. Streamflow dynamics depends on (i) the spatial variability of rainfall, (ii) the heterogeneity of catchment behavior and response, and (iii) local human regulations (e.g., reservoirs) that store and control surface water. These aspects can be successfully handled by distributed or semi-distributed hydrological models. In this study, we develop a dam-reservoir module within a semi-distributed rainfall-runoff model (de Lavenne et al. 2016). The model runs at the daily time step, and has five parameters for each sub-catchment as well as a streamflow velocity parameter for flow routing. Its structure is based on two stores, one for runoff production and one for routing. The calibration of the model is performed from upstream to downstream sub-catchments, which efficiently uses spatially-distributed streamflow measurements. In a previous study, Payan et al. (2008) described a strategy to implement a dam module within a lumped rainfall-runoff model. Here we propose to adapt this strategy to a semi-distributed hydrological modelling framework. In this way, the specific location of existing reservoirs inside a river basin is explicitly accounted for. Our goal is to develop a tool that can provide answers to the different issues involved in spatial water management in human-influenced contexts and at large modelling scales. The approach is tested for the Seine basin in France. Results are shown for model performance with and without the dam module. Also, a comparison with the lumped GR5J model highlights the improvements obtained in model performance by considering human influences more explicitly, and by facilitating parameter identifiability. This work opens up new perspectives for streamflow naturalization analyses and scenario-based spatial assessment of water resources under global change. References de Lavenne, A.; Thirel, G.; Andréassian, V.; Perrin, C. & Ramos, M.-H. (2016), 'Spatial variability of the parameters of a semi-distributed hydrological model', PIAHS 373, 87-94. Payan, J.-L.; Perrin, C.; Andréassian, V. & Michel, C. (2008), 'How can man-made water reservoirs be accounted for in a lumped rainfall-runoff model?', Water Resour. Res. 44(3), W03420.

  15. REMOTE SENSING AND SPATIALLY EXPLICIT LANDSCAPE-BASED NITROGEN MODELING METHODS DEVELOPMENT IN THE NEUSE RIVER BASIN, NC

    EPA Science Inventory

    The objective of this research was to model and map the spatial patterns of excess nitrogen (N) sources across the landscape within the Neuse River Basin (NRB) of North
    Carolina. The process included an initial land cover characterization effort to map landscape "patches" at ...

  16. Classifying and comparing spatial models of fire dynamics

    Treesearch

    Geoffrey J. Cary; Robert E. Keane; Mike D. Flannigan

    2007-01-01

    Wildland fire is a significant disturbance in many ecosystems worldwide and the interaction of fire with climate and vegetation over long time spans has major effects on vegetation dynamics, ecosystem carbon budgets, and patterns of biodiversity. Landscape-Fire-Succession Models (LFSMs) that simulate the linked processes of fire and vegetation development in a spatial...

  17. Integrated landscape/hydrologic modeling tool for semiarid watersheds

    Treesearch

    Mariano Hernandez; Scott N. Miller

    2000-01-01

    An integrated hydrologic modeling/watershed assessment tool is being developed to aid in determining the susceptibility of semiarid landscapes to natural and human-induced changes across a range of scales. Watershed processes are by definition spatially distributed and are highly variable through time, and this approach is designed to account for their spatial and...

  18. Spatial extremes modeling applied to extreme precipitation data in the state of Paraná

    NASA Astrophysics Data System (ADS)

    Olinda, R. A.; Blanchet, J.; dos Santos, C. A. C.; Ozaki, V. A.; Ribeiro, P. J., Jr.

    2014-11-01

    Most of the mathematical models developed for rare events are based on probabilistic models for extremes. Although the tools for statistical modeling of univariate and multivariate extremes are well developed, the extension of these tools to model spatial extremes includes an area of very active research nowadays. A natural approach to such a modeling is the theory of extreme spatial and the max-stable process, characterized by the extension of infinite dimensions of multivariate extreme value theory, and making it possible then to incorporate the existing correlation functions in geostatistics and therefore verify the extremal dependence by means of the extreme coefficient and the Madogram. This work describes the application of such processes in modeling the spatial maximum dependence of maximum monthly rainfall from the state of Paraná, based on historical series observed in weather stations. The proposed models consider the Euclidean space and a transformation referred to as space weather, which may explain the presence of directional effects resulting from synoptic weather patterns. This method is based on the theorem proposed for de Haan and on the models of Smith and Schlather. The isotropic and anisotropic behavior of these models is also verified via Monte Carlo simulation. Estimates are made through pairwise likelihood maximum and the models are compared using the Takeuchi Information Criterion. By modeling the dependence of spatial maxima, applied to maximum monthly rainfall data from the state of Paraná, it was possible to identify directional effects resulting from meteorological phenomena, which, in turn, are important for proper management of risks and environmental disasters in countries with its economy heavily dependent on agribusiness.

  19. Spatially distributed modelling of pesticide leaching at European scale with the PyCatch modelling framework

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver; van der Perk, Marcel; Karssenberg, Derek; Häring, Tim; Jene, Bernhard

    2017-04-01

    The modelling of pesticide transport through the soil and estimating its leaching to groundwater is essential for an appropriate environmental risk assessment. Pesticide leaching models commonly used in regulatory processes often lack the capability of providing a comprehensive spatial view, as they are implemented as non-spatial point models or only use a few combinations of representative soils to simulate specific plots. Furthermore, their handling of spatial input and output data and interaction with available Geographical Information Systems tools is limited. Therefore, executing several scenarios simulating and assessing the potential leaching on national or continental scale at high resolution is rather inefficient and prohibits the straightforward identification of areas prone to leaching. We present a new pesticide leaching model component of the PyCatch framework developed in PCRaster Python, an environmental modelling framework tailored to the development of spatio-temporal models (http://www.pcraster.eu). To ensure a feasible computational runtime of large scale models, we implemented an elementary field capacity approach to model soil water. Currently implemented processes are evapotranspiration, advection, dispersion, sorption, degradation and metabolite transformation. Not yet implemented relevant additional processes such as surface runoff, snowmelt, erosion or other lateral flows can be integrated with components already implemented in PyCatch. A preliminary version of the model executes a 20-year simulation of soil water processes for Germany (20 soil layers, 1 km2 spatial resolution, and daily timestep) within half a day using a single CPU. A comparison of the soil moisture and outflow obtained from the PCRaster implementation and PELMO, a commonly used pesticide leaching model, resulted in an R2 of 0.98 for the FOCUS Hamburg scenario. We will further discuss the validation of the pesticide transport processes and show case studies applied to European countries.

  20. SAP Minutes No.2015-03 for FIFRA meeting held 9/15-17/2015. A set of scientific issues being considered by the Environmental Protection Agency regarding development of a spatial aquatic model(SAM)for pesticide risk assessment

    USDA-ARS?s Scientific Manuscript database

    On September 15-17th, 2014, the US Environmental Protection Agency convened a public meeting of the FIFRA Scientific Advisory Panel (SAP) to address scientific issues associated with the agency’s “Development of a Spatial Aquatic Model (SAM) for Pesticide Risk Assessment”. The goal of SAM is to impr...

  1. A simple homogeneous model for regular and irregular metallic wire media samples

    NASA Astrophysics Data System (ADS)

    Kosulnikov, S. Y.; Mirmoosa, M. S.; Simovski, C. R.

    2018-02-01

    To simplify the solution of electromagnetic problems with wire media samples, it is reasonable to treat them as the samples of a homogeneous material without spatial dispersion. The account of spatial dispersion implies additional boundary conditions and makes the solution of boundary problems difficult especially if the sample is not an infinitely extended layer. Moreover, for a novel type of wire media - arrays of randomly tilted wires - a spatially dispersive model has not been developed. Here, we introduce a simplistic heuristic model of wire media samples shaped as bricks. Our model covers WM of both regularly and irregularly stretched wires.

  2. Comparison of alternative spatial resolutions in the application of a spatially distributed biogeochemical model over complex terrain

    USGS Publications Warehouse

    Turner, D.P.; Dodson, R.; Marks, D.

    1996-01-01

    Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the study of the potential impacts of climate change.

  3. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Spatial-temporal distribution of a mechanical load resulting from interaction of laser radiation with a barrier (analytic model)

    NASA Astrophysics Data System (ADS)

    Fedyushin, B. T.

    1992-01-01

    The concepts developed earlier are used to propose a simple analytic model describing the spatial-temporal distribution of a mechanical load (pressure, impulse) resulting from interaction of laser radiation with a planar barrier surrounded by air. The correctness of the model is supported by a comparison with experimental results.

  4. Hierarchical spatial capture-recapture models: Modeling population density from stratified populations

    USGS Publications Warehouse

    Royle, J. Andrew; Converse, Sarah J.

    2014-01-01

    Capture–recapture studies are often conducted on populations that are stratified by space, time or other factors. In this paper, we develop a Bayesian spatial capture–recapture (SCR) modelling framework for stratified populations – when sampling occurs within multiple distinct spatial and temporal strata.We describe a hierarchical model that integrates distinct models for both the spatial encounter history data from capture–recapture sampling, and also for modelling variation in density among strata. We use an implementation of data augmentation to parameterize the model in terms of a latent categorical stratum or group membership variable, which provides a convenient implementation in popular BUGS software packages.We provide an example application to an experimental study involving small-mammal sampling on multiple trapping grids over multiple years, where the main interest is in modelling a treatment effect on population density among the trapping grids.Many capture–recapture studies involve some aspect of spatial or temporal replication that requires some attention to modelling variation among groups or strata. We propose a hierarchical model that allows explicit modelling of group or strata effects. Because the model is formulated for individual encounter histories and is easily implemented in the BUGS language and other free software, it also provides a general framework for modelling individual effects, such as are present in SCR models.

  5. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wei; Minnick, Matthew; Geza, Mengistu

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings frommore » the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and visualization techniques of the Piceance Basin structure spatial distribution of the oil shale resources. The sur- face water/groundwater models quantify the water shortage and better understanding the spatial distribution of the available water resources. The energy resource development systems model reveals the phase shift of water usage and the oil shale production, which will facilitate better planning for oil shale development. Detailed descriptions about the key findings from the project activity, major accomplishments, and expected impacts of the research will be given in the sec- tion of “ACCOMPLISHMENTS, RESULTS, AND DISCUSSION” of this report.« less

  6. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2013-11-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP) with spatial data and query processing capabilities of Geographic Information Systems (GIS), multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP) based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM) and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  7. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  8. Characterization and spatial modeling of urban sprawl in the Wuhan Metropolitan Area, China

    NASA Astrophysics Data System (ADS)

    Zeng, Chen; Liu, Yaolin; Stein, Alfred; Jiao, Limin

    2015-02-01

    Urban sprawl has led to environmental problems and large losses of arable land in China. In this study, we monitor and model urban sprawl by means of a combination of remote sensing, geographical information system and spatial statistics. We use time-series data to explore the potential socio-economic driving forces behind urban sprawl, and spatial models in different scenarios to explore the spatio-temporal interactions. The methodology is applied to the city of Wuhan, China, for the period from 1990 to 2013. The results reveal that the built-up land has expanded and has dispersed in urban clusters. Population growth, and economic and transportation development are still the main causes of urban sprawl; however, when they have developed to certain levels, the area affected by construction in urban areas (Jian Cheng Qu (JCQ)) and the area of cultivated land (ACL) tend to be stable. Spatial regression models are shown to be superior to the traditional models. The interaction among districts with the same administrative status is stronger than if one of those neighbors is in the city center and the other in the suburban area. The expansion of urban built-up land is driven by the socio-economic development at the same period, and greatly influenced by its spatio-temporal neighbors. We conclude that the integration of remote sensing, a geographical information system, and spatial statistics offers an excellent opportunity to explore the spatio-temporal variation and interactions among the districts in the sprawling metropolitan areas. Relevant regulations to control the urban sprawl process are suggested accordingly.

  9. Estimating temporal trend in the presence of spatial complexity: A Bayesian hierarchical model for a wetland plant population undergoing restoration

    USGS Publications Warehouse

    Rodhouse, T.J.; Irvine, K.M.; Vierling, K.T.; Vierling, L.A.

    2011-01-01

    Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed Bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones") with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity-a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.

  10. Predicting crash frequency for multi-vehicle collision types using multivariate Poisson-lognormal spatial model: A comparative analysis.

    PubMed

    Hosseinpour, Mehdi; Sahebi, Sina; Zamzuri, Zamira Hasanah; Yahaya, Ahmad Shukri; Ismail, Noriszura

    2018-06-01

    According to crash configuration and pre-crash conditions, traffic crashes are classified into different collision types. Based on the literature, multi-vehicle crashes, such as head-on, rear-end, and angle crashes, are more frequent than single-vehicle crashes, and most often result in serious consequences. From a methodological point of view, the majority of prior studies focused on multivehicle collisions have employed univariate count models to estimate crash counts separately by collision type. However, univariate models fail to account for correlations which may exist between different collision types. Among others, multivariate Poisson lognormal (MVPLN) model with spatial correlation is a promising multivariate specification because it not only allows for unobserved heterogeneity (extra-Poisson variation) and dependencies between collision types, but also spatial correlation between adjacent sites. However, the MVPLN spatial model has rarely been applied in previous research for simultaneously modelling crash counts by collision type. Therefore, this study aims at utilizing a MVPLN spatial model to estimate crash counts for four different multi-vehicle collision types, including head-on, rear-end, angle, and sideswipe collisions. To investigate the performance of the MVPLN spatial model, a two-stage model and a univariate Poisson lognormal model (UNPLN) spatial model were also developed in this study. Detailed information on roadway characteristics, traffic volume, and crash history were collected on 407 homogeneous segments from Malaysian federal roads. The results indicate that the MVPLN spatial model outperforms the other comparing models in terms of goodness-of-fit measures. The results also show that the inclusion of spatial heterogeneity in the multivariate model significantly improves the model fit, as indicated by the Deviance Information Criterion (DIC). The correlation between crash types is high and positive, implying that the occurrence of a specific collision type is highly associated with the occurrence of other crash types on the same road segment. These results support the utilization of the MVPLN spatial model when predicting crash counts by collision manner. In terms of contributing factors, the results show that distinct crash types are attributed to different subsets of explanatory variables. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. ANIMAL MODELS OF COGNITIVE DEVELOPMENT IN NEUROTOXICITY

    EPA Science Inventory

    The thesis of this chapter has been that spatial delayed alternation versus position discrimination learning can serve as a valuable rodent model of cognitive development in neurotoxicology. his model captures dual process conceptualizations of memory in human neuropsychology and...

  12. State of the Art of the Landscape Architecture Spatial Data Model from a Geospatial Perspective

    NASA Astrophysics Data System (ADS)

    Kastuari, A.; Suwardhi, D.; Hanan, H.; Wikantika, K.

    2016-10-01

    Spatial data and information had been used for some time in planning or landscape design. For a long time, architects were using spatial data in the form of topographic map for their designs. This method is not efficient, and it is also not more accurate than using spatial analysis by utilizing GIS. Architects are sometimes also only accentuating the aesthetical aspect for their design, but not taking landscape process into account which could cause the design could be not suitable for its use and its purpose. Nowadays, GIS role in landscape architecture has been formalized by the emergence of Geodesign terminology that starts in Representation Model and ends in Decision Model. The development of GIS could be seen in several fields of science that now have the urgency to use 3 dimensional GIS, such as in: 3D urban planning, flood modeling, or landscape planning. In this fields, 3 dimensional GIS is able to support the steps in modeling, analysis, management, and integration from related data, that describe the human activities and geophysics phenomena in more realistic way. Also, by applying 3D GIS and geodesign in landscape design, geomorphology information can be better presented and assessed. In some research, it is mentioned that the development of 3D GIS is not established yet, either in its 3D data structure, or in its spatial analysis function. This study literature will able to accommodate those problems by providing information on existing development of 3D GIS for landscape architecture, data modeling, the data accuracy, representation of data that is needed by landscape architecture purpose, specifically in the river area.

  13. Global and 3D Spatial Assessment of Neuroinflammation in Rodent Models of Multiple Sclerosis

    PubMed Central

    Gupta, Shashank; Utoft, Regine; Hasseldam, Henrik; Schmidt-Christensen, Anja; Hannibal, Tine Dahlbaek; Hansen, Lisbeth; Fransén-Pettersson, Nina; Agarwal-Gupta, Noopur; Rozell, Björn; Andersson, Åsa; Holmberg, Dan

    2013-01-01

    Multiple Sclerosis (MS) is a progressive autoimmune inflammatory and demyelinating disease of the central nervous system (CNS). T cells play a key role in the progression of neuroinflammation in MS and also in the experimental autoimmune encephalomyelitis (EAE) animal models for the disease. A technology for quantitative and 3 dimensional (3D) spatial assessment of inflammation in this and other CNS inflammatory conditions is much needed. Here we present a procedure for 3D spatial assessment and global quantification of the development of neuroinflammation based on Optical Projection Tomography (OPT). Applying this approach to the analysis of rodent models of MS, we provide global quantitative data of the major inflammatory component as a function of the clinical course. Our data demonstrates a strong correlation between the development and progression of neuroinflammation and clinical disease in several mouse and a rat model of MS refining the information regarding the spatial dynamics of the inflammatory component in EAE. This method provides a powerful tool to investigate the effect of environmental and genetic forces and for assessing the therapeutic effects of drug therapy in animal models of MS and other neuroinflammatory/neurodegenerative disorders. PMID:24124545

  14. Modeling urbanization patterns at a global scale with generative adversarial networks

    NASA Astrophysics Data System (ADS)

    Albert, A. T.; Strano, E.; Gonzalez, M.

    2017-12-01

    Current demographic projections show that, in the next 30 years, global population growth will mostly take place in developing countries. Coupled with a decrease in density, such population growth could potentially double the land occupied by settlements by 2050. The lack of reliable and globally consistent socio-demographic data, coupled with the limited predictive performance underlying traditional urban spatial explicit models, call for developing better predictive methods, calibrated using a globally-consistent dataset. Thus, richer models of the spatial interplay between the urban built-up land, population distribution and energy use are central to the discussion around the expansion and development of cities, and their impact on the environment in the context of a changing climate. In this talk we discuss methods for, and present an analysis of, urban form, defined as the spatial distribution of macroeconomic quantities that characterize a city, using modern machine learning methods and best-available remote-sensing data for the world's largest 25,000 cities. We first show that these cities may be described by a small set of patterns in radial building density, nighttime luminosity, and population density, which highlight, to first order, differences in development and land use across the world. We observe significant, spatially-dependent variance around these typical patterns, which would be difficult to model using traditional statistical methods. We take a first step in addressing this challenge by developing CityGAN, a conditional generative adversarial network model for simulating realistic urban forms. To guide learning and measure the quality of the simulated synthetic cities, we develop a specialized loss function for GAN optimization that incorporates standard spatial statistics used by urban analysis experts. Our framework is a stark departure from both the standard physics-based approaches in the literature (that view urban forms as fractals with a scale-free behavior), and the traditional statistical learning approaches (whereby values of individual pixels are modeled as functions of locally-defined, hand-engineered features). This is a first-of-its-kind analysis of urban forms using data at a planetary scale.

  15. A spatial mark–resight model augmented with telemetry data

    USGS Publications Warehouse

    Sollmann, Rachel; Gardner, Beth; Parsons, Arielle W.; Stocking, Jessica J.; McClintock, Brett T.; Simons, Theodore R.; Pollock, Kenneth H.; O’Connell, Allan F.

    2013-01-01

    Abundance and population density are fundamental pieces of information for population ecology and species conservation, but they are difficult to estimate for rare and elusive species. Mark-resight models are popular for estimating population abundance because they are less invasive and expensive than traditional mark-recapture. However, density estimation using mark-resight is difficult because the area sampled must be explicitly defined, historically using ad-hoc approaches. We develop a spatial mark-resight model for estimating population density that combines spatial resighting data and telemetry data. Incorporating telemetry data allows us to inform model parameters related to movement and individual location. Our model also allows 2. The model presented here will have widespread utility in future applications, especially for species that are not naturally marked.

  16. Classification of Farmland Landscape Structure in Multiple Scales

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Cheng, Q.; Li, M.

    2017-12-01

    Farmland is one of the basic terrestrial resources that support the development and survival of human beings and thus plays a crucial role in the national security of every country. Pattern change is the intuitively spatial representation of the scale and quality variation of farmland. Through the characteristic development of spatial shapes as well as through changes in system structures, functions and so on, farmland landscape patterns may indicate the landscape health level. Currently, it is still difficult to perform positioning analyses of landscape pattern changes that reflect the landscape structure variations of farmland with an index model. Depending on a number of spatial properties such as locations and adjacency relations, distance decay, fringe effect, and on the model of patch-corridor-matrix that is applied, this study defines a type system of farmland landscape structure on the national, provincial, and city levels. According to such a definition, the classification model of farmland landscape-structure type at the pixel scale is developed and validated based on mathematical-morphology concepts and on spatial-analysis methods. Then, the laws that govern farmland landscape-pattern change in multiple scales are analyzed from the perspectives of spatial heterogeneity, spatio-temporal evolution, and function transformation. The result shows that the classification model of farmland landscape-structure type can reflect farmland landscape-pattern change and its effects on farmland production function. Moreover, farmland landscape change in different scales displayed significant disparity in zonality, both within specific regions and in urban-rural areas.

  17. A spectral method for spatial downscaling | Science Inventory ...

    EPA Pesticide Factsheets

    Complex computer models play a crucial role in air quality research. These models are used to evaluate potential regulatory impacts of emission control strategies and to estimate air quality in areas without monitoring data. For both of these purposes, it is important to calibrate model output with monitoring data to adjust for model biases and improve spatial prediction. In this paper, we propose a new spectral method to study and exploit complex relationships between model output and monitoring data. Spectral methods allow us to estimate the relationship between model output and monitoring data separately at different spatial scales, and to use model output for prediction only at the appropriate scales. The proposed method is computationally efficient and can be implemented using standard software. We apply the method to compare Community Multiscale Air Quality (CMAQ) model output with ozone measurements in the United States in July, 2005. We find that CMAQ captures large-scale spatial trends, but has low correlation with the monitoring data at small spatial scales. The National Exposure Research Laboratory′s (NERL′s)Atmospheric Modeling Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing ch

  18. Anticipating Forest and Range Land Development in Central Oregon (USA) for Landscape Analysis, with an Example Application Involving Mule Deer

    NASA Astrophysics Data System (ADS)

    Kline, Jeffrey D.; Moses, Alissa; Burcsu, Theresa

    2010-05-01

    Forest policymakers, public lands managers, and scientists in the Pacific Northwest (USA) seek ways to evaluate the landscape-level effects of policies and management through the multidisciplinary development and application of spatially explicit methods and models. The Interagency Mapping and Analysis Project (IMAP) is an ongoing effort to generate landscape-wide vegetation data and models to evaluate the integrated effects of disturbances and management activities on natural resource conditions in Oregon and Washington (USA). In this initial analysis, we characterized the spatial distribution of forest and range land development in a four-county pilot study region in central Oregon. The empirical model describes the spatial distribution of buildings and new building construction as a function of population growth, existing development, topography, land-use zoning, and other factors. We used the model to create geographic information system maps of likely future development based on human population projections to inform complementary landscape analyses underway involving vegetation, habitat, and wildfire interactions. In an example application, we use the model and resulting maps to show the potential impacts of future forest and range land development on mule deer ( Odocoileus hemionus) winter range. Results indicate significant development encroachment and habitat loss already in 2000 with development located along key migration routes and increasing through the projection period to 2040. The example application illustrates a simple way for policymakers and public lands managers to combine existing data and preliminary model outputs to begin to consider the potential effects of development on future landscape conditions.

  19. Univariate and multivariate spatial models of health facility utilisation for childhood fevers in an area on the coast of Kenya.

    PubMed

    Ouma, Paul O; Agutu, Nathan O; Snow, Robert W; Noor, Abdisalan M

    2017-09-18

    Precise quantification of health service utilisation is important for the estimation of disease burden and allocation of health resources. Current approaches to mapping health facility utilisation rely on spatial accessibility alone as the predictor. However, other spatially varying social, demographic and economic factors may affect the use of health services. The exclusion of these factors can lead to the inaccurate estimation of health facility utilisation. Here, we compare the accuracy of a univariate spatial model, developed only from estimated travel time, to a multivariate model that also includes relevant social, demographic and economic factors. A theoretical surface of travel time to the nearest public health facility was developed. These were assigned to each child reported to have had fever in the Kenya demographic and health survey of 2014 (KDHS 2014). The relationship of child treatment seeking for fever with travel time, household and individual factors from the KDHS2014 were determined using multilevel mixed modelling. Bayesian information criterion (BIC) and likelihood ratio test (LRT) tests were carried out to measure how selected factors improve parsimony and goodness of fit of the time model. Using the mixed model, a univariate spatial model of health facility utilisation was fitted using travel time as the predictor. The mixed model was also used to compute a multivariate spatial model of utilisation, using travel time and modelled surfaces of selected household and individual factors as predictors. The univariate and multivariate spatial models were then compared using the receiver operating area under the curve (AUC) and a percent correct prediction (PCP) test. The best fitting multivariate model had travel time, household wealth index and number of children in household as the predictors. These factors reduced BIC of the time model from 4008 to 2959, a change which was confirmed by the LRT test. Although there was a high correlation of the two modelled probability surfaces (Adj R 2  = 88%), the multivariate model had better AUC compared to the univariate model; 0.83 versus 0.73 and PCP 0.61 versus 0.45 values. Our study shows that a model that uses travel time, as well as household and individual-level socio-demographic factors, results in a more accurate estimation of use of health facilities for the treatment of childhood fever, compared to one that relies on only travel time.

  20. New tools for linking human and earth system models: The Toolbox for Human-Earth System Interaction & Scaling (THESIS)

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; Kauffman, B.; Lawrence, P.

    2016-12-01

    Integrated analysis of questions regarding land, water, and energy resources often requires integration of models of different types. One type of integration is between human and earth system models, since both societal and physical processes influence these resources. For example, human processes such as changes in population, economic conditions, and policies govern the demand for land, water and energy, while the interactions of these resources with physical systems determine their availability and environmental consequences. We have begun to develop and use a toolkit for linking human and earth system models called the Toolbox for Human-Earth System Integration and Scaling (THESIS). THESIS consists of models and software tools to translate, scale, and synthesize information from and between human system models and earth system models (ESMs), with initial application to linking the NCAR integrated assessment model, iPETS, with the NCAR earth system model, CESM. Initial development is focused on urban areas and agriculture, sectors that are both explicitly represented in both CESM and iPETS. Tools are being made available to the community as they are completed (see https://www2.cgd.ucar.edu/sections/tss/iam/THESIS_tools). We discuss four general types of functions that THESIS tools serve (Spatial Distribution, Spatial Properties, Consistency, and Outcome Evaluation). Tools are designed to be modular and can be combined in order to carry out more complex analyses. We illustrate their application to both the exposure of population to climate extremes and to the evaluation of climate impacts on the agriculture sector. For example, projecting exposure to climate extremes involves use of THESIS tools for spatial population, spatial urban land cover, the characteristics of both, and a tool to bring urban climate information together with spatial population information. Development of THESIS tools is continuing and open to the research community.

  1. Utilizing remote sensing of thematic mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, Joan A.; May, L. Nelson, Jr.; Rosenthal, Alan; Baumann, Robert H.; Gosselink, James G.

    1987-01-01

    A stochastic spatial computer model addressing coastal resource problems in Lousiana is being refined and validated using thematic mapper (TM) imagery. The TM images of brackish marsh sites were processed and data were tabulated on spatial parameters from TM images of the salt marsh sites. The Fisheries Image Processing Systems (FIPS) was used to analyze the TM scene. Activities were concentrated on improving the structure of the model and developing a structure and methodology for calibrating the model with spatial-pattern data from the TM imagery.

  2. Gaussian Process Regression Model in Spatial Logistic Regression

    NASA Astrophysics Data System (ADS)

    Sofro, A.; Oktaviarina, A.

    2018-01-01

    Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.

  3. Data integration for inference about spatial processes: A model-based approach to test and account for data inconsistency

    PubMed Central

    Pedrini, Paolo; Bragalanti, Natalia; Groff, Claudio

    2017-01-01

    Recently-developed methods that integrate multiple data sources arising from the same ecological processes have typically utilized structured data from well-defined sampling protocols (e.g., capture-recapture and telemetry). Despite this new methodological focus, the value of opportunistic data for improving inference about spatial ecological processes is unclear and, perhaps more importantly, no procedures are available to formally test whether parameter estimates are consistent across data sources and whether they are suitable for integration. Using data collected on the reintroduced brown bear population in the Italian Alps, a population of conservation importance, we combined data from three sources: traditional spatial capture-recapture data, telemetry data, and opportunistic data. We developed a fully integrated spatial capture-recapture (SCR) model that included a model-based test for data consistency to first compare model estimates using different combinations of data, and then, by acknowledging data-type differences, evaluate parameter consistency. We demonstrate that opportunistic data lend itself naturally to integration within the SCR framework and highlight the value of opportunistic data for improving inference about space use and population size. This is particularly relevant in studies of rare or elusive species, where the number of spatial encounters is usually small and where additional observations are of high value. In addition, our results highlight the importance of testing and accounting for inconsistencies in spatial information from structured and unstructured data so as to avoid the risk of spurious or averaged estimates of space use and consequently, of population size. Our work supports the use of a single modeling framework to combine spatially-referenced data while also accounting for parameter consistency. PMID:28973034

  4. Digital spatial data for predicted nitrate and arsenic concentrations in basin-fill aquifers of the Southwest Principal Aquifers study area

    USGS Publications Warehouse

    McKinney, Tim S.; Anning, David W.

    2012-01-01

    This product "Digital spatial data for predicted nitrate and arsenic concentrations in basin-fill aquifers of the Southwest Principal Aquifers study area" is a 1:250,000-scale vector spatial dataset developed as part of a regional Southwest Principal Aquifers (SWPA) study (Anning and others, 2012). The study examined the vulnerability of basin-fill aquifers in the southwestern United States to nitrate contamination and arsenic enrichment. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid that represents local- and basin-scale measures of source, aquifer susceptibility, and geochemical conditions.

  5. Spatial and spectral imaging of point-spread functions using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Munagavalasa, Sravan; Schroeder, Bryce; Hua, Xuanwen; Jia, Shu

    2017-12-01

    We develop a point-spread function (PSF) engineering approach to imaging the spatial and spectral information of molecular emissions using a spatial light modulator (SLM). We show that a dispersive grating pattern imposed upon the emission reveals spectral information. We also propose a deconvolution model that allows the decoupling of the spectral and 3D spatial information in engineered PSFs. The work is readily applicable to single-molecule measurements and fluorescent microscopy.

  6. A Study on the Effects of Spatial Scale on Snow Process in Hyper-Resolution Hydrological Modelling over Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.

    2017-12-01

    Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.

  7. Examining heterogeneity and wildfire management expenditures using spatially and temporally descriptive data

    Treesearch

    Michael S. Hand; Matthew P. Thompson; Dave Calkin

    2016-01-01

    Increasing costs of wildfire management have highlighted the need to better understand suppression expenditures and potential tradeoffs of land management activities that may affect fire risks. Spatially and temporally descriptive data is used to develop a model of wildfire suppression expenditures, providing new insights into the role of spatial and temporal...

  8. Spatial regression analysis of traffic crashes in Seoul.

    PubMed

    Rhee, Kyoung-Ah; Kim, Joon-Ki; Lee, Young-ihn; Ulfarsson, Gudmundur F

    2016-06-01

    Traffic crashes can be spatially correlated events and the analysis of the distribution of traffic crash frequency requires evaluation of parameters that reflect spatial properties and correlation. Typically this spatial aspect of crash data is not used in everyday practice by planning agencies and this contributes to a gap between research and practice. A database of traffic crashes in Seoul, Korea, in 2010 was developed at the traffic analysis zone (TAZ) level with a number of GIS developed spatial variables. Practical spatial models using available software were estimated. The spatial error model was determined to be better than the spatial lag model and an ordinary least squares baseline regression. A geographically weighted regression model provided useful insights about localization of effects. The results found that an increased length of roads with speed limit below 30 km/h and a higher ratio of residents below age of 15 were correlated with lower traffic crash frequency, while a higher ratio of residents who moved to the TAZ, more vehicle-kilometers traveled, and a greater number of access points with speed limit difference between side roads and mainline above 30 km/h all increased the number of traffic crashes. This suggests, for example, that better control or design for merging lower speed roads with higher speed roads is important. A key result is that the length of bus-only center lanes had the largest effect on increasing traffic crashes. This is important as bus-only center lanes with bus stop islands have been increasingly used to improve transit times. Hence the potential negative safety impacts of such systems need to be studied further and mitigated through improved design of pedestrian access to center bus stop islands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees

    NASA Astrophysics Data System (ADS)

    Pham, Binh Thai; Prakash, Indra; Tien Bui, Dieu

    2018-02-01

    A hybrid machine learning approach of Random Subspace (RSS) and Classification And Regression Trees (CART) is proposed to develop a model named RSSCART for spatial prediction of landslides. This model is a combination of the RSS method which is known as an efficient ensemble technique and the CART which is a state of the art classifier. The Luc Yen district of Yen Bai province, a prominent landslide prone area of Viet Nam, was selected for the model development. Performance of the RSSCART model was evaluated through the Receiver Operating Characteristic (ROC) curve, statistical analysis methods, and the Chi Square test. Results were compared with other benchmark landslide models namely Support Vector Machines (SVM), single CART, Naïve Bayes Trees (NBT), and Logistic Regression (LR). In the development of model, ten important landslide affecting factors related with geomorphology, geology and geo-environment were considered namely slope angles, elevation, slope aspect, curvature, lithology, distance to faults, distance to rivers, distance to roads, and rainfall. Performance of the RSSCART model (AUC = 0.841) is the best compared with other popular landslide models namely SVM (0.835), single CART (0.822), NBT (0.821), and LR (0.723). These results indicate that performance of the RSSCART is a promising method for spatial landslide prediction.

  10. Validating spatiotemporal predictions of an important pest of small grains.

    PubMed

    Merrill, Scott C; Holtzer, Thomas O; Peairs, Frank B; Lester, Philip J

    2015-01-01

    Arthropod pests are typically managed using tactics applied uniformly to the whole field. Precision pest management applies tactics under the assumption that within-field pest pressure differences exist. This approach allows for more precise and judicious use of scouting resources and management tactics. For example, a portion of a field delineated as attractive to pests may be selected to receive extra monitoring attention. Likely because of the high variability in pest dynamics, little attention has been given to developing precision pest prediction models. Here, multimodel synthesis was used to develop a spatiotemporal model predicting the density of a key pest of wheat, the Russian wheat aphid, Diuraphis noxia (Kurdjumov). Spatially implicit and spatially explicit models were synthesized to generate spatiotemporal pest pressure predictions. Cross-validation and field validation were used to confirm model efficacy. A strong within-field signal depicting aphid density was confirmed with low prediction errors. Results show that the within-field model predictions will provide higher-quality information than would be provided by traditional field scouting. With improvements to the broad-scale model component, the model synthesis approach and resulting tool could improve pest management strategy and provide a template for the development of spatially explicit pest pressure models. © 2014 Society of Chemical Industry.

  11. Spatial variability of intake fractions for Canadian emission scenarios: a comparison between three resolution scales.

    PubMed

    Manneh, Rima; Margni, Manuele; Deschênes, Louise

    2010-06-01

    Spatially differentiated intake fractions (iFs) linked to Canadian emissions of toxic organic chemicals were developed using the multimedia and multipathways fate and exposure model IMPACT 2002. The fate and exposure of chemicals released to the Canadian environment were modeled with a single regional mass-balance model and three models that provided multiple mass-balance regions within Canada. These three models were based on the Canadian subwatersheds (172 zones), ecozones (15 zones), and provinces (13 zones). Releases of 32 organic chemicals into water and air were considered. This was done in order to (i) assess and compare the spatial variability of iFs within and across the three levels of regionalization and (ii) compare the spatial iFs to nonspatial ones. Results showed that iFs calculated using the subwatershed resolution presented a higher spatial variability (up to 10 orders of magnitude for emissions into water) than the ones based on the ecozones and provinces, implying that higher spatial resolution could potentially reduce uncertainty in iFs and, therefore, increase the discriminating power when assessing and comparing toxic releases for known emission locations. Results also indicated that, for an unknown emission location, a model with high spatial resolution such as the subwatershed model could significantly improve the accuracy of a generic iF. Population weighted iFs span up to 3 orders of magnitude compared to nonspatial iFs calculated by the one-box model. Less significant differences were observed when comparing spatial versus nonspatial iFs from the ecozones and provinces, respectively.

  12. Spatial Predictive Modeling and Remote Sensing of Land Use Change in the Chesapeake Bay Watershed

    NASA Technical Reports Server (NTRS)

    Goetz, Scott J.; Bockstael, Nancy E.; Jantz, Claire A.

    2005-01-01

    This project was focused on modeling the processes by which increasing demand for developed land uses, brought about by changes in the regional economy and the socio-demographics of the region, are translated into a changing spatial pattern of land use. Our study focused on a portion of the Chesapeake Bay Watershed where the spatial patterns of sprawl represent a set of conditions generally prevalent in much of the U.S. Working in the region permitted us access to (i) a time-series of multi-scale and multi-temporal (including historical) satellite imagery and (ii) an established network of collaborating partners and agencies willing to share resources and to utilize developed techniques and model results. In addition, a unique parcel-level tax assessment database and linked parcel boundary maps exists for two counties in the Maryland portion of this region that made it possible to establish a historical cross-section time-series database of parcel level development decisions. Scenario analyses of future land use dynamics provided critical quantitative insight into the impact of alternative land management and policy decisions. These also have been specifically aimed at addressing growth control policies aimed at curbing exurban (sprawl) development. Our initial technical approach included three components: (i) spatial econometric modeling of the development decision, (ii) remote sensing of suburban change and residential land use density, including comparisons of past change from Landsat analyses and more traditional sources, and (iii) linkages between the two through variable initialization and supplementation of parcel level data. To these we added a fourth component, (iv) cellular automata modeling of urbanization, which proved to be a valuable addition to the project. This project has generated both remote sensing and spatially explicit socio-economic data to estimate and calibrate the parameters for two different types of land use change models and has undertaken analyses of these models. One (the CA model) is driven largely by observations on past patterns of land use change, while the other (the EC model) is driven by mechanisms of the land use change decision at the parcel level. Our project may be the first serious attempt at developing both types of models for the same area, using as much common data as possible. We have identified the strengths and weaknesses of the two approaches and plan to continue to revise each model in the light of new data and new lessons learned through continued collaboration. Questions, approaches, findings, publication and presentation lists concerning the research are also presented.

  13. Exploration of Urban Spatial Planning Evaluation Based on Humanland Harmony

    NASA Astrophysics Data System (ADS)

    Hu, X. S.; Ma, Q. R.; Liang, W. Q.; Wang, C. X.; Xiong, X. Q.; Han, X. H.

    2017-09-01

    This study puts forward a new concept, "population urbanization level forecast - driving factor analysis - urban spatial planning analysis" for achieving efficient and intensive development of urbanization considering human-land harmony. We analyzed big data for national economic and social development, studied the development trends of population urbanization and its influencing factors using the grey system model in Chengmai county of Hainan province, China. In turn, we calculated the population of Chengmai coming years based on the forecasting urbanization rate and the corresponding amount of urban construction land, and evaluated the urban spatial planning with GIS spatial analysis method in the study area. The result shows that the proposed concept is feasible for evaluation of urban spatial planning, and is meaningful for guiding the rational distribution of urban space, controlling the scale of development, improving the quality of urbanization and thus promoting highly-efficient and intensive use of limited land resource.

  14. Infant mortality in Brazil, 1980-2000: A spatial panel data analysis

    PubMed Central

    2012-01-01

    Background Infant mortality is an important measure of human development, related to the level of welfare of a society. In order to inform public policy, various studies have tried to identify the factors that influence, at an aggregated level, infant mortality. The objective of this paper is to analyze the regional pattern of infant mortality in Brazil, evaluating the effect of infrastructure, socio-economic, and demographic variables to understand its distribution across the country. Methods Regressions including socio-economic and living conditions variables are conducted in a structure of panel data. More specifically, a spatial panel data model with fixed effects and a spatial error autocorrelation structure is used to help to solve spatial dependence problems. The use of a spatial modeling approach takes into account the potential presence of spillovers between neighboring spatial units. The spatial units considered are Minimum Comparable Areas, defined to provide a consistent definition across Census years. Data are drawn from the 1980, 1991 and 2000 Census of Brazil, and from data collected by the Ministry of Health (DATASUS). In order to identify the influence of health care infrastructure, variables related to the number of public and private hospitals are included. Results The results indicate that the panel model with spatial effects provides the best fit to the data. The analysis confirms that the provision of health care infrastructure and social policy measures (e.g. improving education attainment) are linked to reduced rates of infant mortality. An original finding concerns the role of spatial effects in the analysis of IMR. Spillover effects associated with health infrastructure and water and sanitation facilities imply that there are regional benefits beyond the unit of analysis. Conclusions A spatial modeling approach is important to produce reliable estimates in the analysis of panel IMR data. Substantively, this paper contributes to our understanding of the physical and social factors that influence IMR in the case of a developing country. PMID:22410079

  15. Comparing apples with apples: Using spatially distributed time series of monitoring data for model evaluation

    NASA Astrophysics Data System (ADS)

    Solazzo, E.; Galmarini, S.

    2015-07-01

    A more sensible use of monitoring data for the evaluation and development of regional-scale atmospheric models is proposed. The motivation stems from observing current practices in this realm where the quality of monitoring data is seldom questioned and model-to-data deviation is uniquely attributed to model deficiency. Efforts are spent to quantify the uncertainty intrinsic to the measurement process, but aspects connected to model evaluation and development have recently emerged that remain obscure, such as the spatial representativeness and the homogeneity of signals subjects of our investigation. By using time series of hourly records of ozone for a whole year (2006) collected by the European AirBase network the area of representativeness is firstly analysed showing, for similar class of stations (urban, suburban, rural), large heterogeneity and high sensitivity to the density of the network and to the noise of the signal, suggesting the mere station classification to be not a suitable candidate to help select the pool of stations used in model evaluation. Therefore a novel, more robust technique is developed based on the spatial properties of the associativity of the spectral components of the ozone time series, in an attempt to determine the level of homogeneity. The spatial structure of the associativity among stations is informative of the spatial representativeness of that specific component and automatically tells about spatial anisotropy. Time series of ozone data from North American networks have also been analysed to support the methodology. We find that the low energy components (especially the intra-day signal) suffer from a too strong influence of country-level network set-up in Europe, and different networks in North America, showing spatial heterogeneity exactly at the administrative border that separates countries in Europe and at areas separating different networks in North America. For model evaluation purposes these elements should be treated as purely stochastic and discarded, while retaining the portion of the signal useful to the evaluation process. Trans-boundary discontinuity of the intra-day signal along with cross-network grouping has been found to be predominant. Skills of fifteen regional chemical-transport modelling systems have been assessed in light of this result, finding an improved accuracy of up to 5% when the intra-day signal is removed with respect to the case where all components are analysed.

  16. Analyzing spatial and temporal trends in Aboveground Biomass within the Acadian New England Forests using the complete Landsat Archive

    NASA Astrophysics Data System (ADS)

    Kilbride, J. B.; Fraver, S.; Ayrey, E.; Weiskittel, A.; Braaten, J.; Hughes, J. M.; Hayes, D. J.

    2017-12-01

    Forests within the New England states and Canadian Maritime provinces, here described as the Acadian New England (ANE) forests, have undergone substantial disturbances due to insect, fire, and anthropogenic factors. Through repeated satellite observations captures by USGS's Landsat program, 45 years of disturbance information can be incorporated into modeling efforts to better understand the spatial and temporal trends in forest above ground biomass (AGB). Using Google's Earth Engine, annual mosaics were developed for the ANE study area and then disturbance and recovery metrics were developed using the temporal segmentation algorithm VeRDET. Normalization procedures were developed to incorporate the Landsat Multispectral Scanner (MSS, 1972 - 1985) data alongside the modern era of Landsat Thematic Mapper (TM, 1984-2013), Enhanced Thematic Mapper plus (ETM+, 1999 - present), and Operational Land Imager (OLI, 2013- present) data products. This has enabled the creation of a dataset with an unprecedented spatial and temporal view of forest landscape change. Model training was performed using was the Forest Inventory Analysis (FIA) and New Brunswick Permanent Sample Plot data datasets. Modeling was performed using parametric techniques such as mixed effects models and non-parametric techniques such as k-NN imputation and generalized boosted regression. We compare the biomass estimate and model accuracy to other inventory and modeling studies produced within this study area. The spatial and temporal patterns of stock changes are analyzed against resource policy, land ownership changes, and forest management.

  17. Forecasting the spatial and seasonal dynamic of Aedes albopictus oviposition activity in Albania and Balkan countries.

    PubMed

    Tisseuil, Clément; Velo, Enkelejda; Bino, Silvia; Kadriaj, Perparim; Mersini, Kujtim; Shukullari, Ada; Simaku, Artan; Rogozi, Elton; Caputo, Beniamino; Ducheyne, Els; Della Torre, Alessandra; Reiter, Paul; Gilbert, Marius

    2018-02-01

    The increasing spread of the Asian tiger mosquito, Aedes albopictus, in Europe and US raises public health concern due to the species competence to transmit several exotic human arboviruses, among which dengue, chikungunya and Zika, and urges the development of suitable modeling approach to forecast the spatial and temporal distribution of the mosquito. Here we developed a dynamical species distribution modeling approach forecasting Ae. albopictus eggs abundance at high spatial (0.01 degree WGS84) and temporal (weekly) resolution over 10 Balkan countries, using temperature times series of Modis data products and altitude as input predictors. The model was satisfactorily calibrated and validated over Albania based observed eggs abundance data weekly monitored during three years. For a given week of the year, eggs abundance was mainly predicted by the number of eggs and the mean temperature recorded in the preceding weeks. That is, results are in agreement with the biological cycle of the mosquito, reflecting the effect temperature on eggs spawning, maturation and hatching. The model, seeded by initial egg values derived from a second model, was then used to forecast the spatial and temporal distribution of eggs abundance over the selected Balkan countries, weekly in 2011, 2012 and 2013. The present study is a baseline to develop an easy-handling forecasting model able to provide information useful for promoting active surveillance and possibly prevention of Ae. albopictus colonization in presently non-infested areas in the Balkans as well as in other temperate regions.

  18. A gravity model for the spread of a pollinator-borne plant pathogen.

    PubMed

    Ferrari, Matthew J; Bjørnstad, Ottar N; Partain, Jessica L; Antonovics, Janis

    2006-09-01

    Many pathogens of plants are transmitted by arthropod vectors whose movement between individual hosts is influenced by foraging behavior. Insect foraging has been shown to depend on both the quality of hosts and the distances between hosts. Given the spatial distribution of host plants and individual variation in quality, vector foraging patterns may therefore produce predictable variation in exposure to pathogens. We develop a "gravity" model to describe the spatial spread of a vector-borne plant pathogen from underlying models of insect foraging in response to host quality using the pollinator-borne smut fungus Microbotryum violaceum as a case study. We fit the model to spatially explicit time series of M. violaceum transmission in replicate experimental plots of the white campion Silene latifolia. The gravity model provides a better fit than a mean field model or a model with only distance-dependent transmission. The results highlight the importance of active vector foraging in generating spatial patterns of disease incidence and for pathogen-mediated selection for floral traits.

  19. Determination of Spatially Resolved Tablet Density and Hardness Using Near-Infrared Chemical Imaging (NIR-CI).

    PubMed

    Talwar, Sameer; Roopwani, Rahul; Anderson, Carl A; Buckner, Ira S; Drennen, James K

    2017-08-01

    Near-infrared chemical imaging (NIR-CI) combines spectroscopy with digital imaging, enabling spatially resolved analysis and characterization of pharmaceutical samples. Hardness and relative density are critical quality attributes (CQA) that affect tablet performance. Intra-sample density or hardness variability can reveal deficiencies in formulation design or the tableting process. This study was designed to develop NIR-CI methods to predict spatially resolved tablet density and hardness. The method was implemented using a two-step procedure. First, NIR-CI was used to develop a relative density/solid fraction (SF) prediction method for pure microcrystalline cellulose (MCC) compacts only. A partial least squares (PLS) model for predicting SF was generated by regressing the spectra of certain representative pixels selected from each image against the compact SF. Pixel selection was accomplished with a threshold based on the Euclidean distance from the median tablet spectrum. Second, micro-indentation was performed on the calibration compacts to obtain hardness values. A univariate model was developed by relating the empirical hardness values to the NIR-CI predicted SF at the micro-indented pixel locations: this model generated spatially resolved hardness predictions for the entire tablet surface.

  20. Publically accessible decision support system of the spatially referenced regressions on watershed attributes (SPARROW) model and model enhancements in South Carolina

    Treesearch

    Celeste Journey; Anne B. Hoos; David E. Ladd; John W. brakebill; Richard A. Smith

    2016-01-01

    The U.S. Geological Survey (USGS) National Water Quality Assessment program has developed a web-based decision support system (DSS) to provide free public access to the steady-stateSPAtially Referenced Regressions On Watershed attributes (SPARROW) model simulation results on nutrient conditions in streams and rivers and to offer scenario testing capabilities for...

  1. A polygon-based modeling approach to assess exposure of resources and assets to wildfire

    Treesearch

    Matthew P. Thompson; Joe Scott; Jeffrey D. Kaiden; Julie W. Gilbertson-Day

    2013-01-01

    Spatially explicit burn probability modeling is increasingly applied to assess wildfire risk and inform mitigation strategy development. Burn probabilities are typically expressed on a per-pixel basis, calculated as the number of times a pixel burns divided by the number of simulation iterations. Spatial intersection of highly valued resources and assets (HVRAs) with...

  2. SPATIAL LANDSCAPE INDICES IN A HEDONIC FRAMEWORK: AN ECOLOGICAL ECONOMICS ANALYSIS USING GIS. (R825309)

    EPA Science Inventory

    Abstract

    This paper develops a spatial hedonic model to explain residential values in a region within a 30-mile radius of Washington DC. Hedonic models of housing or land values are commonplace, but are rarely estimated for non-urban problems and never using the type o...

  3. SPATIAL LANDSCAPE INDICES IN A HEDONIC FRAMEWORK: AN ECOLOGICAL ECONOMICS ANALYSIS USING GIS. (R824766)

    EPA Science Inventory

    Abstract

    This paper develops a spatial hedonic model to explain residential values in a region within a 30-mile radius of Washington DC. Hedonic models of housing or land values are commonplace, but are rarely estimated for non-urban problems and never using the type o...

  4. Modeling the Radiance of the Moon for On-orbit Calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Becker, K.J.; ,

    2003-01-01

    The RObotic Lunar Observatory (ROLO) project has developed radiometric models of the Moon for disk-integrated irradiance and spatially resolved radiance. Although the brightness of the Moon varies spatially and with complex dependencies upon illumination and viewing geometry, the surface photometric properties are extremely stable, and therefore potentially knowable to high accuracy. The ROLO project has acquired 5+ years of spatially resolved lunar images in 23 VNIR and 9 SWIR filter bands at phase angles up to 90??. These images are calibrated to exoatmospheric radiance using nightly stellar observations in a band-coupled extinction algorithm and a radiometric scale based upon observations of the star Vega. An effort is currently underway to establish an absolute scale with direct traceability to NIST radiometric standards. The ROLO radiance model performs linear fitting of the spatially resolved lunar image data on an individual pixel basis. The results are radiance images directly comparable to spacecraft observations of the Moon. Model-generated radiance images have been produced for the ASTER lunar view conducted on 14 April 2003. The radiance model is still experimental - simplified photometric functions have been used, and initial results show evidence of computational instabilities, particularly at the lunar poles. The ROLO lunar image dataset is unique and extensive and presents opportunities for development of novel approaches to lunar photometric modeling.

  5. Density estimation in a wolverine population using spatial capture-recapture models

    USGS Publications Warehouse

    Royle, J. Andrew; Magoun, Audrey J.; Gardner, Beth; Valkenbury, Patrick; Lowell, Richard E.; McKelvey, Kevin

    2011-01-01

    Classical closed-population capture-recapture models do not accommodate the spatial information inherent in encounter history data obtained from camera-trapping studies. As a result, individual heterogeneity in encounter probability is induced, and it is not possible to estimate density objectively because trap arrays do not have a well-defined sample area. We applied newly-developed, capture-recapture models that accommodate the spatial attribute inherent in capture-recapture data to a population of wolverines (Gulo gulo) in Southeast Alaska in 2008. We used camera-trapping data collected from 37 cameras in a 2,140-km2 area of forested and open habitats largely enclosed by ocean and glacial icefields. We detected 21 unique individuals 115 times. Wolverines exhibited a strong positive trap response, with an increased tendency to revisit previously visited traps. Under the trap-response model, we estimated wolverine density at 9.7 individuals/1,000-km2(95% Bayesian CI: 5.9-15.0). Our model provides a formal statistical framework for estimating density from wolverine camera-trapping studies that accounts for a behavioral response due to baited traps. Further, our model-based estimator does not have strict requirements about the spatial configuration of traps or length of trapping sessions, providing considerable operational flexibility in the development of field studies.

  6. Species sorting and patch dynamics in harlequin metacommunities affect the relative importance of environment and space.

    PubMed

    Leibold, Mathew A; Loeuille, Nicolas

    2015-12-01

    Metacommunity theory indicates that variation in local community structure can be partitioned into components including those related to local environmental conditions vs. spatial effects and that these can be quantified using statistical methods based on variation partitioning. It has been hypothesized that joint associations of community composition with environment and space could be due to patch dynamics involving colonization-extinction processes in environmentally heterogeneous landscapes but this has yet to be theoretically shown. We develop a two-patch, type-two, species competition model in such a "harlequin" landscape (where different patches have different environments) to evaluate how composition is related to environmental and spatial effects as a function of background extinction rate. Using spatially implicit analytical models, we find that the environmental association of community composition declines with extinction rate as expected. Using spatially explicit simulation models, we further find that there is an increase in the spatial structure with extinction due to spatial patterning into clusters that are not related to environmental conditions but that this increase is limited. Natural metacommunities often show both environment and spatial determination even under conditions of relatively high isolation and these could be more easily explained by our model than alternative metacommunity models.

  7. Methods for landslide susceptibility modelling in Lower Austria

    NASA Astrophysics Data System (ADS)

    Bell, Rainer; Petschko, Helene; Glade, Thomas; Leopold, Philip; Heiss, Gerhard; Proske, Herwig; Granica, Klaus; Schweigl, Joachim; Pomaroli, Gilbert

    2010-05-01

    Landslide susceptibility modelling and implementation of the resulting maps is still a challenge for geoscientists, spatial and infrastructure planners. Particularly on a regional scale landslide processes and their dynamics are poorly understood. Furthermore, the availability of appropriate spatial data in high resolution is often a limiting factor for modelling high quality landslide susceptibility maps for large study areas. However, these maps form an important basis for preventive spatial planning measures. Thus, new methods have to be developed, especially focussing on the implementation of final maps into spatial planning processes. The main objective of the project "MoNOE" (Method development for landslide susceptibility modelling in Lower Austria) is to design a method for landslide susceptibility modelling for a large study area (about 10.200 km²) and to produce landslide susceptibility maps which are finally implemented in the spatial planning strategies of the Federal state of Lower Austria. The project focuses primarily on the landslide types fall and slide. To enable susceptibility modelling, landslide inventories for the respective landslide types must be compiled and relevant data has to be gathered, prepared and homogenized. Based on this data new methods must be developed to tackle the needs of the spatial planning strategies. Considerable efforts will also be spent on the validation of the resulting maps for each landslide type. A great challenge will be the combination of the susceptibility maps for slides and falls in just one single susceptibility map (which is requested by the government) and the definition of the final visualisation. Since numerous landslides have been favoured or even triggered by human impact, the human influence on landslides will also have to be investigated. Furthermore possibilities to integrate respective findings in regional susceptibility modelling will be explored. According to these objectives the project is structured in four work packages namely data preparation and homogenization (WP1), susceptibility modelling and validation (WP2), integrative susceptibility assessment (WP3) and human impact (WP4). The expected results are a landslide inventory map covering all endangered parts of the Federal state of Lower Austria, a land cover map of Lower Austria with high spatial resolution, processed spatial input data and an optimized integrative susceptibility map visualized at a scale of 1:25.000. The structure of the research project, research strategies as well as first results will be presented at the conference. The project is funded by the Federal state government of Lower Austria.

  8. Analysis of Mining Terrain Deformation Characteristics with Deformation Information System

    NASA Astrophysics Data System (ADS)

    Blachowski, Jan; Milczarek, Wojciech; Grzempowski, Piotr

    2014-05-01

    Mapping and prediction of mining related deformations of the earth surface is an important measure for minimising threat to surface infrastructure, human population, the environment and safety of the mining operation itself arising from underground extraction of useful minerals. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and increasing with the development of geographical information technologies. These include for example: terrestrial geodetic measurements, global positioning systems, remote sensing, spatial interpolation, finite element method modelling, GIS based modelling, geological modelling, empirical modelling using the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The aim of this paper is to introduce the concept of an integrated Deformation Information System (DIS) developed in geographic information systems environment for analysis and modelling of various spatial data related to mining activity and demonstrate its applications for mapping and visualising, as well as identifying possible mining terrain deformation areas with various spatial modelling methods. The DIS concept is based on connected modules that include: the spatial database - the core of the system, the spatial data collection module formed by: terrestrial, satellite and remote sensing measurements of the ground changes, the spatial data mining module for data discovery and extraction, the geological modelling module, the spatial data modeling module with data processing algorithms for spatio-temporal analysis and mapping of mining deformations and their characteristics (e.g. deformation parameters: tilt, curvature and horizontal strain), the multivariate spatial data classification module and the visualization module allowing two-dimensional interactive and static mapping and three-dimensional visualizations of mining ground characteristics. The Systems's functionality has been presented on the case study of a coal mining region in SW Poland where it has been applied to study characteristics and map mining induced ground deformations in a city in the last two decades of underground coal extraction and in the first decade after the end of mining. The mining subsidence area and its deformation parameters (tilt and curvature) have been calculated and the latter classified and mapped according to the Polish regulations. In addition possible areas of ground deformation have been indicated based on multivariate spatial data analysis of geological and mining operation characteristics with the geographically weighted regression method.

  9. Spatial-Operator Algebra For Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.

    1991-01-01

    Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.

  10. Can spatial statistical river temperature models be transferred between catchments?

    NASA Astrophysics Data System (ADS)

    Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.

    2017-09-01

    There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across multiple catchments and larger spatial scales.

  11. Spatial Growth of Informal Settlements in Delhi; An Application of Remote Sensing

    NASA Astrophysics Data System (ADS)

    Prakash, Mihir

    Slum development and growth is quite popular in developing countries. Many studies have been done on what social and economic factors are the drivers in establishment of informal settlements at a single cross-section of time, however limited work has been done in studying their spatial growth patterns over time. This study attempts to study a sample of 30 informal settlements that exist in the National Capital Territory of India over a period of 40 years and identify relationships between the spatial growth rates and relevant factors identified in previous socio-economic studies of slums using advanced statistical methods. One of the key contributions of this paper is indicating the usefulness of satellite imagery or remote sensing data in spatial-longitudinal studies. This research utilizes readily available LANDSAT images to recognize the decadal spatial growth from 1970 to 2000, and also in extension, calculate the BI (transformed NDVI) as a proxy for the intensity of development for the settlements. A series of regression models were run after processing the data, and the levels of significance were then studied and compared to see which relationships indicated the highest levels of significance. It was observed that the change in BI had a higher strength of relationships with the change in independent variables than the settlement area growth. Also, logarithmic and cubic models showed the highest R-Square values than any other tested models.

  12. Ecotoxicology and spatial modeling in population dynamics: an illustration with brown trout.

    PubMed

    Chaumot, Arnaud; Charles, Sandrine; Flammarion, Patrick; Auger, Pierre

    2003-05-01

    We developed a multiregion matrix population model to explore how the demography of a hypothetical brown trout population living in a river network varies in response to different spatial scenarios of cadmium contamination. Age structure, spatial distribution, and demographic and migration processes are taken into account in the model. Chronic or acute cadmium concentrations affect the demographic parameters at the scale of the river range. The outputs of the model constitute population-level end points (the asymptotic population growth rate, the stable age structure, and the asymptotic spatial distribution) that allow comparing the different spatial scenarios of contamination regarding the demographic response at the scale of the whole river network. An analysis of the sensitivity of these end points to lower order parameters enables us to link the local effects of cadmium to the global demographic behavior of the brown trout population. Such a link is of broad interest in the point of view of ecotoxicological management.

  13. A Spatial Poisson Hurdle Model for Exploring Geographic Variation in Emergency Department Visits

    PubMed Central

    Neelon, Brian; Ghosh, Pulak; Loebs, Patrick F.

    2012-01-01

    Summary We develop a spatial Poisson hurdle model to explore geographic variation in emergency department (ED) visits while accounting for zero inflation. The model consists of two components: a Bernoulli component that models the probability of any ED use (i.e., at least one ED visit per year), and a truncated Poisson component that models the number of ED visits given use. Together, these components address both the abundance of zeros and the right-skewed nature of the nonzero counts. The model has a hierarchical structure that incorporates patient- and area-level covariates, as well as spatially correlated random effects for each areal unit. Because regions with high rates of ED use are likely to have high expected counts among users, we model the spatial random effects via a bivariate conditionally autoregressive (CAR) prior, which introduces dependence between the components and provides spatial smoothing and sharing of information across neighboring regions. Using a simulation study, we show that modeling the between-component correlation reduces bias in parameter estimates. We adopt a Bayesian estimation approach, and the model can be fit using standard Bayesian software. We apply the model to a study of patient and neighborhood factors influencing emergency department use in Durham County, North Carolina. PMID:23543242

  14. Spatial operator approach to flexible multibody system dynamics and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1991-01-01

    The inverse and forward dynamics problems for flexible multibody systems were solved using the techniques of spatially recursive Kalman filtering and smoothing. These algorithms are easily developed using a set of identities associated with mass matrix factorization and inversion. These identities are easily derived using the spatial operator algebra developed by the author. Current work is aimed at computational experiments with the described algorithms and at modelling for control design of limber manipulator systems. It is also aimed at handling and manipulation of flexible objects.

  15. Shift-variant linear system modeling for multispectral scanners

    NASA Astrophysics Data System (ADS)

    Amini, Abolfazl M.; Ioup, George E.; Ioup, Juliette W.

    1995-07-01

    Multispectral scanner data are affected both by the spatial impulse response of the sensor and the spectral response of each channel. To achieve a realistic representation for the output data for a given scene spectral input, both of these effects must be incorporated into a forward model. Each channel can have a different spatial response and each has its characteristic spectral response. A forward model is built which includes the shift invariant spatial broadening of the input for the channels and the shift variant spectral response across channels. The model is applied to the calibrated airborne multispectral scanner as well as the airborne terrestrial applications sensor developed at NASA Stennis Space Center.

  16. Spatial autocorrelation of West Nile virus vector mosquito abundance in a seasonally wet suburban environment

    NASA Astrophysics Data System (ADS)

    Trawinski, P. R.; Mackay, D. S.

    2009-03-01

    The objective of this study is to quantify and model spatial dependence in mosquito vector populations and develop predictions for unsampled locations using geostatistics. Mosquito control program trap sites are often located too far apart to detect spatial dependence but the results show that integration of spatial data over time for Cx. pipiens-restuans and according to meteorological conditions for Ae. vexans enables spatial analysis of sparse sample data. This study shows that mosquito abundance is spatially correlated and that spatial dependence differs between Cx. pipiens-restuans and Ae. vexans mosquitoes.

  17. Modeling Global Spatial-Temporal Evolution of Society: Hyperbolic Growth and Historical Cycles

    NASA Astrophysics Data System (ADS)

    Kurkina, E. S.

    2011-09-01

    The global historical processes are under consideration; and laws of global evolution of the world community are studied. The world community is considered as a united complex self-developing and self-organizing system. It supposed that the main driving force of social-economical evolution was the positive feedback between the population size and the level of technological development, which was a cause of growth in blow-up regime both of population and of global economic indexes. The study is supported by the results of mathematical modeling founded on a nonlinear heat equation with a source. Every social-economical epoch characterizes by own specific spatial distributed structures. So the global dynamics of world community during the whole history is investigated throughout the prism of the developing of spatial-temporal structures. The model parameters have been chosen so that 1) total population follows stable hyperbolic growth, consistently with the demographic data; 2) the evolution of the World-System goes through 11 stages corresponding to the main historical epochs.

  18. Mapping and modeling the urban landscape in Bangkok, Thailand: Physical-spectral-spatial relations of population-environmental interactions

    NASA Astrophysics Data System (ADS)

    Shao, Yang

    This research focuses on the application of remote sensing, geographic information systems, statistical modeling, and spatial analysis to examine the dynamics of urban land cover, urban structure, and population-environment interactions in Bangkok, Thailand, with an emphasis on rural-to-urban migration from rural Nang Rong District, Northeast Thailand to the primate city of Bangkok. The dissertation consists of four main sections: (1) development of remote sensing image classification and change-detection methods for characterizing imperviousness for Bangkok, Thailand from 1993-2002; (2) development of 3-D urban mapping methods, using high spatial resolution IKONOS satellite images, to assess high-rises and other urban structures; (3) assessment of urban spatial structure from 2-D and 3-D perspectives; and (4) an analysis of the spatial clustering of migrants from Nang Rong District in Bangkok and the neighborhood environments of migrants' locations. Techniques are developed to improve the accuracy of the neural network classification approach for the analysis of remote sensing data, with an emphasis on the spectral unmixing problem. The 3-D building heights are derived using the shadow information on the high-resolution IKONOS image. The results from the 2-D and 3-D mapping are further examined to assess urban structure and urban feature identification. This research contributes to image processing of remotely-sensed images and urban studies. The rural-urban migration process and migrants' settlement patterns are examined using spatial statistics, GIS, and remote sensing perspectives. The results show that migrants' spatial clustering in urban space is associated with the source village and a number of socio-demographic variables. In addition, the migrants' neighborhood environments in urban setting are modeled using a set of geographic and socio-demographic variables, and the results are scale-dependent.

  19. A full Bayes before-after study accounting for temporal and spatial effects: Evaluating the safety impact of new signal installations.

    PubMed

    Sacchi, Emanuele; Sayed, Tarek; El-Basyouny, Karim

    2016-09-01

    Recently, important advances in road safety statistics have been brought about by methods able to address issues other than the choice of the best error structure for modeling crash data. In particular, accounting for spatial and temporal interdependence, i.e., the notion that the collision occurrence of a site or unit times depend on those of others, has become an important issue that needs further research. Overall, autoregressive models can be used for this purpose as they can specify that the output variable depends on its own previous values and on a stochastic term. Spatial effects have been investigated and applied mostly in the context of developing safety performance functions (SPFs) to relate crash occurrence to highway characteristics. Hence, there is a need for studies that attempt to estimate the effectiveness of safety countermeasures by including the spatial interdependence of road sites within the context of an observational before-after (BA) study. Moreover, the combination of temporal dynamics and spatial effects on crash frequency has not been explored in depth for SPF development. Therefore, the main goal of this research was to carry out a BA study accounting for spatial effects and temporal dynamics in evaluating the effectiveness of a road safety treatment. The countermeasure analyzed was the installation of traffic signals at unsignalized urban/suburban intersections in British Columbia (Canada). The full Bayes approach was selected as the statistical framework to develop the models. The results demonstrated that zone variation was a major component of total crash variability and that spatial effects were alleviated by clustering intersections together. Finally, the methodology used also allowed estimation of the treatment's effectiveness in the form of crash modification factors and functions with time trends. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The importance of spatial ability and mental models in learning anatomy

    NASA Astrophysics Data System (ADS)

    Chatterjee, Allison K.

    As a foundational course in medical education, gross anatomy serves to orient medical and veterinary students to the complex three-dimensional nature of the structures within the body. Understanding such spatial relationships is both fundamental and crucial for achievement in gross anatomy courses, and is essential for success as a practicing professional. Many things contribute to learning spatial relationships; this project focuses on a few key elements: (1) the type of multimedia resources, particularly computer-aided instructional (CAI) resources, medical students used to study and learn; (2) the influence of spatial ability on medical and veterinary students' gross anatomy grades and their mental models; and (3) how medical and veterinary students think about anatomy and describe the features of their mental models to represent what they know about anatomical structures. The use of computer-aided instruction (CAI) by gross anatomy students at Indiana University School of Medicine (IUSM) was assessed through a questionnaire distributed to the regional centers of the IUSM. Students reported using internet browsing, PowerPoint presentation software, and email on a daily bases to study gross anatomy. This study reveals that first-year medical students at the IUSM make limited use of CAI to study gross anatomy. Such studies emphasize the importance of examining students' use of CAI to study gross anatomy prior to development and integration of electronic media into the curriculum and they may be important in future decisions regarding the development of alternative learning resources. In order to determine how students think about anatomical relationships and describe the features of their mental models, personal interviews were conducted with select students based on students' ROT scores. Five typologies of the characteristics of students' mental models were identified and described: spatial thinking, kinesthetic approach, identification of anatomical structures, problem solving strategies, and study methods. Students with different levels of spatial ability visualize and think about anatomy in qualitatively different ways, which is reflected by the features of their mental models. Low spatial ability students thought about and used two-dimensional images from the textbook. They possessed basic two-dimensional models of anatomical structures; they placed emphasis on diagrams and drawings in their studies; and they re-read anatomical problems many times before answering. High spatial ability students thought fully in three-dimensional and imagined rotation and movement of the structures; they made use of many types of images and text as they studied and solved problems. They possessed elaborate three-dimensional models of anatomical structures which they were able to manipulate to solve problems; and they integrated diagrams, drawings, and written text in their studies. Middle spatial ability students were a mix between both low and high spatial ability students. They imagined two-dimensional images popping out of the flat paper to become more three-dimensional, but still relied on drawings and diagrams. Additionally, high spatial ability students used a higher proportion of anatomical terminology than low spatial ability or middle spatial ability students. This provides additional support to the premise that high spatial students' mental models are a complex mixture of imagistic representations and propositional representations that incorporate correct anatomical terminology. Low spatial ability students focused on the function of structures and ways to group information primarily for the purpose of recall. This supports the theory that low spatial students' mental models will be characterized by more on imagistic representations that are general in nature. (Abstract shortened by UMI.)

  1. Annual and seasonal spatial models for nitrogen oxides in Tehran, Iran

    NASA Astrophysics Data System (ADS)

    Amini, Heresh; Taghavi-Shahri, Seyed-Mahmood; Henderson, Sarah B.; Hosseini, Vahid; Hassankhany, Hossein; Naderi, Maryam; Ahadi, Solmaz; Schindler, Christian; Künzli, Nino; Yunesian, Masud

    2016-09-01

    Very few land use regression (LUR) models have been developed for megacities in low- and middle-income countries, but such models are needed to facilitate epidemiologic research on air pollution. We developed annual and seasonal LUR models for ambient oxides of nitrogen (NO, NO2, and NOX) in the Middle Eastern city of Tehran, Iran, using 2010 data from 23 fixed monitoring stations. A novel systematic algorithm was developed for spatial modeling. The R2 values for the LUR models ranged from 0.69 to 0.78 for NO, 0.64 to 0.75 for NO2, and 0.61 to 0.79 for NOx. The most predictive variables were: distance to the traffic access control zone; distance to primary schools; green space; official areas; bridges; and slope. The annual average concentrations of all pollutants were high, approaching those reported for megacities in Asia. At 1000 randomly-selected locations the correlations between cooler and warmer season estimates were 0.64 for NO, 0.58 for NOX, and 0.30 for NO2. Seasonal differences in spatial patterns of pollution are likely driven by differences in source contributions and meteorology. These models provide a basis for understanding long-term exposures and chronic health effects of air pollution in Tehran, where such research has been limited.

  2. Annual and seasonal spatial models for nitrogen oxides in Tehran, Iran

    PubMed Central

    Amini, Heresh; Taghavi-Shahri, Seyed-Mahmood; Henderson, Sarah B.; Hosseini, Vahid; Hassankhany, Hossein; Naderi, Maryam; Ahadi, Solmaz; Schindler, Christian; Künzli, Nino; Yunesian, Masud

    2016-01-01

    Very few land use regression (LUR) models have been developed for megacities in low- and middle-income countries, but such models are needed to facilitate epidemiologic research on air pollution. We developed annual and seasonal LUR models for ambient oxides of nitrogen (NO, NO2, and NOX) in the Middle Eastern city of Tehran, Iran, using 2010 data from 23 fixed monitoring stations. A novel systematic algorithm was developed for spatial modeling. The R2 values for the LUR models ranged from 0.69 to 0.78 for NO, 0.64 to 0.75 for NO2, and 0.61 to 0.79 for NOx. The most predictive variables were: distance to the traffic access control zone; distance to primary schools; green space; official areas; bridges; and slope. The annual average concentrations of all pollutants were high, approaching those reported for megacities in Asia. At 1000 randomly-selected locations the correlations between cooler and warmer season estimates were 0.64 for NO, 0.58 for NOX, and 0.30 for NO2. Seasonal differences in spatial patterns of pollution are likely driven by differences in source contributions and meteorology. These models provide a basis for understanding long-term exposures and chronic health effects of air pollution in Tehran, where such research has been limited. PMID:27622593

  3. Spatial vs. non-spatial eco-evolutionary dynamics in a tumor growth model.

    PubMed

    You, Li; Brown, Joel S; Thuijsman, Frank; Cunningham, Jessica J; Gatenby, Robert A; Zhang, Jingsong; Staňková, Kateřina

    2017-12-21

    Metastatic prostate cancer is initially treated with androgen deprivation therapy (ADT). However, resistance typically develops in about 1 year - a clinical condition termed metastatic castrate-resistant prostate cancer (mCRPC). We develop and investigate a spatial game (agent based continuous space) of mCRPC that considers three distinct cancer cell types: (1) those dependent on exogenous testosterone (T + ), (2) those with increased CYP17A expression that produce testosterone and provide it to the environment as a public good (T P ), and (3) those independent of testosterone (T - ). The interactions within and between cancer cell types can be represented by a 3 × 3 matrix. Based on the known biology of this cancer there are 22 potential matrices that give roughly three major outcomes depending upon the absence (good prognosis), near absence or high frequency (poor prognosis) of T -  cells at the evolutionarily stable strategy (ESS). When just two cell types coexist the spatial game faithfully reproduces the ESS of the corresponding matrix game. With three cell types divergences occur, in some cases just two strategies coexist in the spatial game even as a non-spatial matrix game supports all three. Discrepancies between the spatial game and non-spatial ESS happen because different cell types become more or less clumped in the spatial game - leading to non-random assortative interactions between cell types. Three key spatial scales influence the distribution and abundance of cell types in the spatial game: i. Increasing the radius at which cells interact with each other can lead to higher clumping of each type, ii. Increasing the radius at which cells experience limits to population growth can cause densely packed tumor clusters in space, iii. Increasing the dispersal radius of daughter cells promotes increased mixing of cell types. To our knowledge the effects of these spatial scales on eco-evolutionary dynamics have not been explored in cancer models. The fact that cancer interactions are spatially explicit and that our spatial game of mCRPC provides in general different outcomes than the non-spatial game might suggest that non-spatial models are insufficient for capturing key elements of tumorigenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Scaling Effects of Cr(VI) Reduction Kinetics. The Role of Geochemical Heterogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Li; Li, Li

    2015-10-22

    The natural subsurface is highly heterogeneous with minerals distributed in different spatial patterns. Fundamental understanding of how mineral spatial distribution patterns regulate sorption process is important for predicting the transport and fate of chemicals. Existing studies about the sorption was carried out in well-mixed batch reactors or uniformly packed columns, with few data available on the effects of spatial heterogeneities. As a result, there is a lack of data and understanding on how spatial heterogeneities control sorption processes. In this project, we aim to understand and develop modeling capabilities to predict the sorption of Cr(VI), an omnipresent contaminant in naturalmore » systems due to its natural occurrence and industrial utilization. We systematically examine the role of spatial patterns of illite, a common clay, in determining the extent of transport limitation and scaling effects associated with Cr(VI) sorption capacity and kinetics using column experiments and reactive transport modeling. Our results showed that the sorbed mass and rates can differ by an order of magnitude due to of the illite spatial heterogeneities and transport limitation. With constraints from data, we also developed the capabilities of modeling Cr(VI) in heterogeneous media. The developed model is then utilized to understand the general principles that govern the relationship between sorption and connectivity, a key measure of the spatial pattern characteristics. This correlation can be used to estimate Cr(VI) sorption characteristics in heterogeneous porous media. Insights gained here bridge gaps between laboratory and field application in hydrogeology and geochemical field, and advance predictive understanding of reactive transport processes in the natural heterogeneous subsurface. We believe that these findings will be of interest to a large number of environmental geochemists and engineers, hydrogeologists, and those interested in contaminant fate and transport, water quality and water composition, and natural attenuation processes in natural systems.« less

  5. Modeling Above-Ground Biomass Across Multiple Circum-Arctic Tundra Sites Using High Spatial Resolution Remote Sensing

    NASA Astrophysics Data System (ADS)

    Räsänen, Aleksi; Juutinen, Sari; Aurela, Mika; Virtanen, Tarmo

    2017-04-01

    Biomass is one of the central bio-geophysical variables in Earth observation for tracking plant productivity, and flow of carbon, nutrients, and water. Most of the satellite based biomass mapping exercises in Arctic environments have been performed by using rather coarse spatial resolution data, e.g. Landsat and AVHRR which have spatial resolutions of 30 m and >1 km, respectively. While the coarse resolution images have high temporal resolution, they are incapable of capturing the fragmented nature of tundra environment and fine-scale changes in vegetation and carbon exchange patterns. Very high spatial resolution (VHSR, spatial resolution 0.5-2 m) satellite images have the potential to detect environmental variables with an ecologically sound spatial resolution. The usage of VHSR images has, nevertheless, been modest so far in biomass modeling in the Arctic. Our objectives were to use VHSR for predicting above ground biomass in tundra landscapes, evaluate whether a common predictive model can be applied across circum-Arctic tundra and peatland sites having different types of vegetation, and produce knowledge on distribution of plant functional types (PFT) in these sites. Such model development is dependent on ground-based surveys of vegetation with the same spatial resolution and extent with the VHSR images. In this study, we conducted ground-based surveys of vegetation composition and biomass in four different arctic tundra or peatland areas located in Russia, Canada, and Finland. First, we sorted species into PFTs and developed PFT-specific models to predict biomass on the basis of non-destructive measurements (cover, height). Second, we predicted overall biomass on landscape scale by combinations of single bands and vegetation indices of very high resolution satellite images (QuickBird or WorldView-2 images of the eight sites). We compared area-specific empirical regression models and common models that were applied across all sites. We found that NDVI was usually the highest scoring spectral indices in explaining biomass distribution with good explanatory power. Furthermore, models which had more than one explanatory variable had higher explanatory power than models with a single index. The dissimilarity between common and site-specific model estimates was, however, high and data indicates that variation in vegetation properties and its impact on spectral reflectance needs to be acknowledged. Our work produced knowledge on above-ground biomass distribution and contribution of PFTs across circum-Arctic low-growth landscapes and will contribute to developing space-borne vegetation monitoring schemes utilizing VHSR satellite images.

  6. Using a spatially-distributed hydrologic biogeochemistry model with nitrogen transport to study the spatial variation of carbon stocks and fluxes in a Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.

    2017-12-01

    Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation without the nitrogen transport module is also executed. The model without nitrogen transport fails in predicting the spatial patterns of vegetation carbon, which indicates the importance of having a nitrogen transport module in spatially distributed ecohydrologic modeling.

  7. Transportation Network Role for Central Italy Macroregion Development in a Territorial Frames Model Based

    NASA Astrophysics Data System (ADS)

    Di Ludovico, Donato; D'Ovidio, Gino

    2017-10-01

    This paper refers to an interdisciplinary planning research approach that aims to combine urban aspects related to a territorial spatial development with transport requirements connected to an efficiency and sustainable mobility. The proposed research method is based on “Territorial Frames” (TFs) model that derived from an original interpretation of the local context divided into a summation of territorial settlement fabrics characterized in terms of spatial tile, morphology and mobility axes. The TFs, with their own autonomous, different size and structure, are used as the main plot, able to assemble the settlement systems and their posturbane forms. With a view to polycentric and spatial development, the research method allows us to analyse the completeness of the TFs and their connective potential, in order to locate the missing/inefficient elements of the transportation network and planning other TFs essential to support economic and social development processes of the most isolated and disadvantaged inland areas. Finally, a case study of the Italian Median Macroregion configuration based on TFs model approach is proposed, analysed and discussed.

  8. Surface Wave Tomography with Spatially Varying Smoothing Based on Continuous Model Regionalization

    NASA Astrophysics Data System (ADS)

    Liu, Chuanming; Yao, Huajian

    2017-03-01

    Surface wave tomography based on continuous regionalization of model parameters is widely used to invert for 2-D phase or group velocity maps. An inevitable problem is that the distribution of ray paths is far from homogeneous due to the spatially uneven distribution of stations and seismic events, which often affects the spatial resolution of the tomographic model. We present an improved tomographic method with a spatially varying smoothing scheme that is based on the continuous regionalization approach. The smoothness of the inverted model is constrained by the Gaussian a priori model covariance function with spatially varying correlation lengths based on ray path density. In addition, a two-step inversion procedure is used to suppress the effects of data outliers on tomographic models. Both synthetic and real data are used to evaluate this newly developed tomographic algorithm. In the synthetic tests, when the contrived model has different scales of anomalies but with uneven ray path distribution, we compare the performance of our spatially varying smoothing method with the traditional inversion method, and show that the new method is capable of improving the recovery in regions of dense ray sampling. For real data applications, the resulting phase velocity maps of Rayleigh waves in SE Tibet produced using the spatially varying smoothing method show similar features to the results with the traditional method. However, the new results contain more detailed structures and appears to better resolve the amplitude of anomalies. From both synthetic and real data tests we demonstrate that our new approach is useful to achieve spatially varying resolution when used in regions with heterogeneous ray path distribution.

  9. Spatial inter-comparison of Top-down emission inventories in European urban areas

    NASA Astrophysics Data System (ADS)

    Trombetti, Marco; Thunis, Philippe; Bessagnet, Bertrand; Clappier, Alain; Couvidat, Florian; Guevara, Marc; Kuenen, Jeroen; López-Aparicio, Susana

    2018-01-01

    This paper presents an inter-comparison of the main Top-down emission inventories currently used for air quality modelling studies at the European level. The comparison is developed for eleven European cities and compares the distribution of emissions of NOx, SO2, VOC and PPM2.5 from the road transport, residential combustion and industry sectors. The analysis shows that substantial differences in terms of total emissions, sectorial emission shares and spatial distribution exist between the datasets. The possible reasons in terms of downscaling approaches and choice of spatial proxies are analysed and recommendations are provided for each inventory in order to work towards the harmonisation of spatial downscaling and proxy calibration, in particular for policy purposes. The proposed methodology may be useful for the development of consistent and harmonised European-wide inventories with the aim of reducing the uncertainties in air quality modelling activities.

  10. Calibration of a distributed hydrologic model for six European catchments using remote sensing data

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Demirel, M. C.; Mendiguren González, G.; Kumar, R.; Rakovec, O.; Samaniego, L. E.

    2017-12-01

    While observed streamflow has been the single reference for most conventional hydrologic model calibration exercises, the availability of spatially distributed remote sensing observations provide new possibilities for multi-variable calibration assessing both spatial and temporal variability of different hydrologic processes. In this study, we first identify the key transfer parameters of the mesoscale Hydrologic Model (mHM) controlling both the discharge and the spatial distribution of actual evapotranspiration (AET) across six central European catchments (Elbe, Main, Meuse, Moselle, Neckar and Vienne). These catchments are selected based on their limited topographical and climatic variability which enables to evaluate the effect of spatial parameterization on the simulated evapotranspiration patterns. We develop a European scale remote sensing based actual evapotranspiration dataset at a 1 km grid scale driven primarily by land surface temperature observations from MODIS using the TSEB approach. Using the observed AET maps we analyze the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mHM model. This model allows calibrating one-basin-at-a-time or all-basins-together using its unique structure and multi-parameter regionalization approach. Results will indicate any tradeoffs between spatial pattern and discharge simulation during model calibration and through validation against independent internal discharge locations. Moreover, added value on internal water balances will be analyzed.

  11. Interactive classification and content-based retrieval of tissue images

    NASA Astrophysics Data System (ADS)

    Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof

    2002-11-01

    We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.

  12. The Canadian Hydrological Model (CHM): A multi-scale, variable-complexity hydrological model for cold regions

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2016-12-01

    There is a need for hydrological land surface schemes that can link to atmospheric models, provide hydrological prediction at multiple scales and guide the development of multiple objective water predictive systems. Distributed raster-based models suffer from an overrepresentation of topography, leading to wasted computational effort that increases uncertainty due to greater numbers of parameters and initial conditions. The Canadian Hydrological Model (CHM) is a modular, multiphysics, spatially distributed modelling framework designed for representing hydrological processes, including those that operate in cold-regions. Unstructured meshes permit variable spatial resolution, allowing coarse resolutions at low spatial variability and fine resolutions as required. Model uncertainty is reduced by lessening the necessary computational elements relative to high-resolution rasters. CHM uses a novel multi-objective approach for unstructured triangular mesh generation that fulfills hydrologically important constraints (e.g., basin boundaries, water bodies, soil classification, land cover, elevation, and slope/aspect). This provides an efficient spatial representation of parameters and initial conditions, as well as well-formed and well-graded triangles that are suitable for numerical discretization. CHM uses high-quality open source libraries and high performance computing paradigms to provide a framework that allows for integrating current state-of-the-art process algorithms. The impact of changes to model structure, including individual algorithms, parameters, initial conditions, driving meteorology, and spatial/temporal discretization can be easily tested. Initial testing of CHM compared spatial scales and model complexity for a spring melt period at a sub-arctic mountain basin. The meshing algorithm reduced the total number of computational elements and preserved the spatial heterogeneity of predictions.

  13. Human-environment interactions and sustainable urban development: Spatial modeling and landscape prediction the case of Nang Rong town, Thailand

    NASA Astrophysics Data System (ADS)

    Varnakovida, Pariwate

    It is now well-recognized that, at local, regional, and global scales, land use changes are significantly altering land cover, perhaps at an accelerating pace. Further, the world's scientific community is increasingly recognizing what, in retrospect, should have been obvious, that human behavior and agency is a critical driver of Land Cover and Land Use Change. In this research, using recently developed computer modeling procedures and a rich case study, I develop spatially-explicit model-based simulations of LULCC scenarios within the rubric of sustainability science for Nang Rong town, Thailand. The research draws heavily on recent work in geography and complexity theory. A series of scenarios were built to explore different development trajectories based upon empirically observed relationships. The development models incorporate a) history and spatial pattern of village settlement; b) road development and changing geographic accessibility; c) population; d) biophysical characteristics and e) social drivers. This research uses multi-temporal and spatially-explicit data, analytic results, and dynamic modeling approaches combined with to describe, explain, and explore LULCC as the consequences of different production theories for rural, small town urbanization in the South East Asian context. Two Agent Based models were built: 1) Settlement model and 2) Land-use model. The Settlement model suggests that new development will emerge along the existing road network especially along the major highway and in close proximity to the urban center. If the population doubles in 2021, the settlement process may inhibit development along some corridors creating low density sprawl. The Land-use model under the urban expansion scenario suggests that new settlements will occur in close proximity to the town center and roads; even though, the area is suitable for rice farming or located on a flood plain. The Land-use model under the cash-crop expansion scenario captures that new agriculture will occur on the flood plain and other areas suitable for rice farming. The Land-use model under the King's Theory scenario suggests that agriculture agents occupied more disperse lands than the cash-crops scenario. In addition, the King's Theory scenario provided more access to water surface than other scenarios and was the most sustainable development plan. These products offer a better understanding of the urban growth and LULCC at a regional scale and will potentially guide more systematic and effective resource management and policy decisions. Although this research focuses on a specific site, the methods employed are applicable to other rural regions with similar characteristics.

  14. Evaluation of a semi-distributed model through an assessment of the spatial coherence of Intercatchment Groundwater Flows

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles; Ramos, Maria-Helena

    2016-04-01

    Semi-distributed hydrological models aim to provide useful information to understand and manage the spatial distribution of water resources. However, their evaluation is often limited to independent and single evaluations at each sub-catchment within larger catchments. This enables to qualify model performance at different points, but does not provide a coherent assessment of the overall spatial consistency of the model. To cope with these methodological deficiencies, we propose a two-step strategy. First, we apply a sequential spatial calibration procedure to define spatially consistent model parameters. Secondly, we evaluate the hydrological simulations using variables that involve some dependency between sub-catchments to evaluate the overall coherence of model outputs. In this study, we particularly choose to look at the simulated Intercatchment Groundwater Flows (IGF). The idea is that the water that is lost in one place should be recovered somewhere else within the catchment to guarantee a spatially coherent water balance in time. The model used is a recently developed daily semi-distributed model, which is based on a spatial distribution of the lumped GR5J model. The model has five parameters for each sub-catchments and a streamflow velocity parameter for flow routing between them. It implements two reservoirs, one for production and one for routing, and estimates IGF according to the level of the second in a way that catchment can release water to IGF during high flows and receive water through IGF during low flows. The calibration of the model is performed from upstream to downstream, making an efficient use of spatially distributed streamflow measurements. To take model uncertainty into account, we implemented three variants of the original model structure, each one computing in a different way the IGF in each sub-catchment. The study is applied on over 1000 catchments in France. By exploring a wide area and a variability of hydrometeorological conditions, we aim to detect IGF even between catchments which can be quite distant from one another.

  15. Generalized estimators of avian abundance from count survey data

    USGS Publications Warehouse

    Royle, J. Andrew

    2004-01-01

    I consider modeling avian abundance from spatially referenced bird count data collected according to common protocols such as capture?recapture, multiple observer, removal sampling and simple point counts. Small sample sizes and large numbers of parameters have motivated many analyses that disregard the spatial indexing of the data, and thus do not provide an adequate treatment of spatial structure. I describe a general framework for modeling spatially replicated data that regards local abundance as a random process, motivated by the view that the set of spatially referenced local populations (at the sample locations) constitute a metapopulation. Under this view, attention can be focused on developing a model for the variation in local abundance independent of the sampling protocol being considered. The metapopulation model structure, when combined with the data generating model, define a simple hierarchical model that can be analyzed using conventional methods. The proposed modeling framework is completely general in the sense that broad classes of metapopulation models may be considered, site level covariates on detection and abundance may be considered, and estimates of abundance and related quantities may be obtained for sample locations, groups of locations, unsampled locations. Two brief examples are given, the first involving simple point counts, and the second based on temporary removal counts. Extension of these models to open systems is briefly discussed.

  16. Parameter Estimation for a Model of Space-Time Rainfall

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Karr, Alan F.

    1985-08-01

    In this paper, parameter estimation procedures, based on data from a network of rainfall gages, are developed for a class of space-time rainfall models. The models, which are designed to represent the spatial distribution of daily rainfall, have three components, one that governs the temporal occurrence of storms, a second that distributes rain cells spatially for a given storm, and a third that determines the rainfall pattern within a rain cell. Maximum likelihood and method of moments procedures are developed. We illustrate that limitations on model structure are imposed by restricting data sources to rain gage networks. The estimation procedures are applied to a 240-mi2 (621 km2) catchment in the Potomac River basin.

  17. Recent developments in computer modeling add ecological realism to landscape genetics

    EPA Science Inventory

    Background / Question / Methods A factor limiting the rate of progress in landscape genetics has been the shortage of spatial models capable of linking life history attributes such as dispersal behavior to complex dynamic landscape features. The recent development of new models...

  18. Designing Spatial Visualisation Tasks for Middle School Students with a 3D Modelling Software: An Instrumental Approach

    ERIC Educational Resources Information Center

    Turgut, Melih; Uygan, Candas

    2015-01-01

    In this work, certain task designs to enhance middle school students' spatial visualisation ability, in the context of an instrumental approach, have been developed. 3D modelling software, SketchUp®, was used. In the design process, software tools were focused on and, thereafter, the aim was to interpret the instrumental genesis and spatial…

  19. High-resolution spatial modeling of daily weather elements for a catchment in the Oregon Cascade Mountains, United States

    Treesearch

    Christopher Daly; Jonathan W. Smith; Joseph I. Smith; Robert B. McKane

    2007-01-01

    High-quality daily meteorological data at high spatial resolution are essential for a variety of hydrologic and ecological modeling applications that support environmental risk assessments and decisionmaking. This paper describes the development. application. and assessment of methods to construct daily high resolution (~50-m cell size) meteorological grids for the...

  20. Modeling Spatial and Temporal Variability in Ammonia Emissions from Agricultural Fertilization

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Koloutsou-Vakakis, S.; Rood, M. J.

    2013-12-01

    Ammonia (NH3), is an important component of the reactive nitrogen cycle and a precursor to formation of atmospheric particulate matter (PM). Predicting regional PM concentrations and deposition of nitrogen species to ecosystems requires representative emission inventories. Emission inventories have traditionally been developed using top down approaches and more recently from data assimilation based on satellite and ground based ambient concentrations and wet deposition data. The National Emission Inventory (NEI) indicates agricultural fertilization as the predominant contributor (56%) to NH3 emissions in Midwest USA, in 2002. However, due to limited understanding of the complex interactions between fertilizer usage, farm practices, soil and meteorological conditions and absence of detailed statistical data, such emission estimates are currently based on generic emission factors, time-averaged temporal factors and coarse spatial resolution. Given the significance of this source, our study focuses on developing an improved NH3 emission inventory for agricultural fertilization at finer spatial and temporal scales for air quality modeling studies. Firstly, a high-spatial resolution 4 km x 4 km NH3 emission inventory for agricultural fertilization has been developed for Illinois by modifying spatial allocation of emissions based on combining crop-specific fertilization rates with cropland distribution in the Sparse Matrix Operator Kernel Emissions model. Net emission estimates of our method are within 2% of NEI, since both methods are constrained by fertilizer sales data. However, we identified localized crop-specific NH3 emission hotspots at sub-county resolutions absent in NEI. Secondly, we have adopted the use of the DeNitrification-DeComposition (DNDC) Biogeochemistry model to simulate the physical and chemical processes that control volatilization of nitrogen as NH3 to the atmosphere after fertilizer application and resolve the variability at the hourly scale. Representative temporal factors are being developed to capture crop-specific NH3 emission variability by combining knowledge of local crop management practices with high resolution cropland and soil maps. This improved spatially and temporally dependent NH3 emission inventory for agricultural fertilization is being prepared as a direct input to a state of the art air quality model to evaluate the effects of agricultural fertilization on regional air quality and atmospheric deposition of reactive nitrogen species.

  1. Spatial memory in foraging games.

    PubMed

    Kerster, Bryan E; Rhodes, Theo; Kello, Christopher T

    2016-03-01

    Foraging and foraging-like processes are found in spatial navigation, memory, visual search, and many other search functions in human cognition and behavior. Foraging is commonly theorized using either random or correlated movements based on Lévy walks, or a series of decisions to remain or leave proximal areas known as "patches". Neither class of model makes use of spatial memory, but search performance may be enhanced when information about searched and unsearched locations is encoded. A video game was developed to test the role of human spatial memory in a canonical foraging task. Analyses of search trajectories from over 2000 human players yielded evidence that foraging movements were inherently clustered, and that clustering was facilitated by spatial memory cues and influenced by memory for spatial locations of targets found. A simple foraging model is presented in which spatial memory is used to integrate aspects of Lévy-based and patch-based foraging theories to perform a kind of area-restricted search, and thereby enhance performance as search unfolds. Using only two free parameters, the model accounts for a variety of findings that individually support competing theories, but together they argue for the integration of spatial memory into theories of foraging. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Watershed Dynamics, with focus on connectivity index and management of water related impacts on road infrastructure

    NASA Astrophysics Data System (ADS)

    Kalantari, Z.

    2015-12-01

    In Sweden, spatially explicit approaches have been applied in various disciplines such as landslide modelling based on soil type data and flood risk modelling for large rivers. Regarding flood mapping, most previous studies have focused on complex hydrological modelling on a small scale whereas just a few studies have used a robust GIS-based approach integrating most physical catchment descriptor (PCD) aspects on a larger scale. This study was built on a conceptual framework for looking at SedInConnect model, topography, land use, soil data and other PCDs and climate change in an integrated way to pave the way for more integrated policy making. The aim of the present study was to develop methodology for predicting the spatial probability of flooding on a general large scale. This framework can provide a region with an effective tool to inform a broad range of watershed planning activities within a region. Regional planners, decision-makers, etc. can utilize this tool to identify the most vulnerable points in a watershed and along roads to plan for interventions and actions to alter impacts of high flows and other extreme weather events on roads construction. The application of the model over a large scale can give a realistic spatial characterization of sediment connectivity for the optimal management of debris flow to road structures. The ability of the model to capture flooding probability was determined for different watersheds in central Sweden. Using data from this initial investigation, a method to subtract spatial data for multiple catchments and to produce soft data for statistical analysis was developed. It allowed flood probability to be predicted from spatially sparse data without compromising the significant hydrological features on the landscape. This in turn allowed objective quantification of the probability of floods at the field scale for future model development and watershed management.

  3. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME.

    PubMed

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2016-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.

  4. A compartmental-spatial system dynamics approach to ground water modeling.

    PubMed

    Roach, Jesse; Tidwell, Vince

    2009-01-01

    High-resolution, spatially distributed ground water flow models can prove unsuitable for the rapid, interactive analysis that is increasingly demanded to support a participatory decision environment. To address this shortcoming, we extend the idea of multiple cell (Bear 1979) and compartmental (Campana and Simpson 1984) ground water models developed within the context of spatial system dynamics (Ahmad and Simonovic 2004) for rapid scenario analysis. We term this approach compartmental-spatial system dynamics (CSSD). The goal is to balance spatial aggregation necessary to achieve a real-time integrative and interactive decision environment while maintaining sufficient model complexity to yield a meaningful representation of the regional ground water system. As a test case, a 51-compartment CSSD model was built and calibrated from a 100,0001 cell MODFLOW (McDonald and Harbaugh 1988) model of the Albuquerque Basin in central New Mexico (McAda and Barroll 2002). Seventy-seven percent of historical drawdowns predicted by the MODFLOW model were within 1 m of the corresponding CSSD estimates, and in 80% of the historical model run years the CSSD model estimates of river leakage, reservoir leakage, ground water flow to agricultural drains, and riparian evapotranspiration were within 30% of the corresponding estimates from McAda and Barroll (2002), with improved model agreement during the scenario period. Comparisons of model results demonstrate both advantages and limitations of the CCSD model approach.

  5. SPATIAL ANALYSIS AND DECISION ASSISTANCE (SADA) TRAINING COURSE

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  6. A spatial emergy model for Alachua County, Florida

    NASA Astrophysics Data System (ADS)

    Lambert, James David

    A spatial model of the distribution of energy flows and storages in Alachua County, Florida, was created and used to analyze spatial patterns of energy transformation hierarchy in relation to spatial patterns of human settlement. Emergy, the available energy of one kind previously required directly or indirectly to make a product or service, was used as a measure of the quality of the different forms of energy flows and storages. Emergy provides a common unit of measure for comparing the productive contributions of natural processes with those of economic and social processes---it is an alternative to using money for measuring value. A geographic information system was used to create a spatial model and make maps that show the distribution and magnitude of different types of energy and emergy flows and storages occurring in one-hectare land units. Energy transformities were used to convert individual energy flows and storages into emergy units. Maps of transformities were created that reveal a clear spatial pattern of energy transformation hierarchy. The maps display patterns of widely-dispersed areas with lower transformity energy flows and storages, and smaller, centrally-located areas with higher transformities. Energy signature graphs and spatial unit transformities were used to characterize and compare the types and amounts of energy being consumed and stored according to land use classification, planning unit, and neighborhood categories. Emergy ratio maps and spatial unit ratios were created by dividing the values for specific emergy flows or storages by the values for other emergy flows or storages. Spatial context analysis was used to analyze the spatial distribution patterns of mean and maximum values for emergy flows and storages. The modeling method developed for this study is general and applicable to all types of landscapes and could be applied at any scale. An advantage of this general approach is that the results of other studies using this method will be directly comparable with the results of this study. The results and conclusions of this study reinforce the hypothesis that an urban landscape will develop a predictable spatial pattern that can be described in terms of a universal energy transformation hierarchy.

  7. CONCEPTUAL MODEL DEVELOPMENT AND INFORMATION MANAGEMENT FRAMEWORK FOR DIAGNOSTICS RESEARCH

    EPA Science Inventory

    Conceptual model development will focus on the effects of habitat alteration, nutrients,suspended and bedded sediments, and toxic chemicals on appropriate endpoints (individuals, populations, communities, ecosystems) across spatial scales (habitats, water body, watershed, region)...

  8. Diverting the tourists: a spatial decision-support system for tourism planning on a developing island

    NASA Astrophysics Data System (ADS)

    Beedasy, Jaishree; Whyatt, Duncan

    Mauritius is a small island (1865 km 2) in the Indian Ocean. Tourism is the third largest economic sector of the country, after manufacturing and agriculture. A limitation of space and the island's vulnerable ecosystem warrants a rational approach to tourism development. The main problems so far have been to manipulate and integrate all the factors affecting tourism planning and to match spatial data with their relevant attributes. A Spatial Decision Support System (SDSS) for sustainable tourism planning is therefore proposed. The proposed SDSS design would include a GIS as its core component. A first GIS model has already been constructed with available data. Supporting decision-making in a spatial context is implicit in the use of GIS. However the analytical capability of the GIS has to be enhanced to solve semi-structured problems, where subjective judgements come into play. The second part of the paper deals with the choice, implementation and customisation of a relevant model to develop a specialised SDSS. Different types of models and techniques are discussed, in particular a comparison of compensatory and non-compensatory approaches to multicriteria evaluation (MCE). It is concluded that compensatory multicriteria evaluation techniques increase the scope of the present GIS model as a decision-support tool. This approach gives the user or decision-maker the flexibility to change the importance of each criterion depending on relevant objectives.

  9. GIS and Geodatabase Disaster Risk for Spatial Planning

    NASA Astrophysics Data System (ADS)

    Hendriawan Nur, Wawan; Kumoro, Yugo; Susilowati, Yuliana

    2018-02-01

    The spatial planning in Indonesia needs to consider the information on the potential disaster. That is because disaster is a serious and detrimental problem that often occurs and causes casualties in some areas in Indonesia as well as inhibits the development. Various models and research were developed to calculate disaster risk assessment. GIS is a system for assembling, storing, analyzing, and displaying geographically referenced disaster. The information can be collaborated with geodatabases to model and to estimate disaster risk in an automated way. It also offers the possibility to customize most of the parameters used in the models. This paper describes a framework which can improve GIS and Geodatabase for the vulnerability, capacity or disaster risk assessment to support the spatial planning activities so they can be more adaptable. By using this framework, GIS application can be used in any location by adjusting variables or calculation methods without changing or rebuilding system from scratch.

  10. Design and implementation of spatial knowledge grid for integrated spatial analysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiangnan; Guan, Li; Wang, Ping

    2006-10-01

    Supported by spatial information grid(SIG), the spatial knowledge grid (SKG) for integrated spatial analysis utilizes the middleware technology in constructing the spatial information grid computation environment and spatial information service system, develops spatial entity oriented spatial data organization technology, carries out the profound computation of the spatial structure and spatial process pattern on the basis of Grid GIS infrastructure, spatial data grid and spatial information grid (specialized definition). At the same time, it realizes the complex spatial pattern expression and the spatial function process simulation by taking the spatial intelligent agent as the core to establish space initiative computation. Moreover through the establishment of virtual geographical environment with man-machine interactivity and blending, complex spatial modeling, network cooperation work and spatial community decision knowledge driven are achieved. The framework of SKG is discussed systematically in this paper. Its implement flow and the key technology with examples of overlay analysis are proposed as well.

  11. A prototype feature system for feature retrieval using relationships

    USGS Publications Warehouse

    Choi, J.; Usery, E.L.

    2009-01-01

    Using a feature data model, geographic phenomena can be represented effectively by integrating space, theme, and time. This paper extends and implements a feature data model that supports query and visualization of geographic features using their non-spatial and temporal relationships. A prototype feature-oriented geographic information system (FOGIS) is then developed and storage of features named Feature Database is designed. Buildings from the U.S. Marine Corps Base, Camp Lejeune, North Carolina and subways in Chicago, Illinois are used to test the developed system. The results of the applications show the strength of the feature data model and the developed system 'FOGIS' when they utilize non-spatial and temporal relationships in order to retrieve and visualize individual features.

  12. Pattern-Based Inverse Modeling for Characterization of Subsurface Flow Models with Complex Geologic Heterogeneity

    NASA Astrophysics Data System (ADS)

    Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.

    2017-12-01

    Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.

  13. Spatial probabilistic pulsatility model for enhancing photoplethysmographic imaging systems

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Clausi, David A.; Wong, Alexander

    2016-11-01

    Photoplethysmographic imaging (PPGI) is a widefield noncontact biophotonic technology able to remotely monitor cardiovascular function over anatomical areas. Although spatial context can provide insight into physiologically relevant sampling locations, existing PPGI systems rely on coarse spatial averaging with no anatomical priors for assessing arterial pulsatility. Here, we developed a continuous probabilistic pulsatility model for importance-weighted blood pulse waveform extraction. Using a data-driven approach, the model was constructed using a 23 participant sample with a large demographic variability (11/12 female/male, age 11 to 60 years, BMI 16.4 to 35.1 kg·m-2). Using time-synchronized ground-truth blood pulse waveforms, spatial correlation priors were computed and projected into a coaligned importance-weighted Cartesian space. A modified Parzen-Rosenblatt kernel density estimation method was used to compute the continuous resolution-agnostic probabilistic pulsatility model. The model identified locations that consistently exhibited pulsatility across the sample. Blood pulse waveform signals extracted with the model exhibited significantly stronger temporal correlation (W=35,p<0.01) and spectral SNR (W=31,p<0.01) compared to uniform spatial averaging. Heart rate estimation was in strong agreement with true heart rate [r2=0.9619, error (μ,σ)=(0.52,1.69) bpm].

  14. Estimating thermal regimes of bull trout and assessing the potential effects of climate warming on critical habitats

    USGS Publications Warehouse

    Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.; McGlynn, Brian L.; Kershner, Jeffrey L.

    2013-01-01

    Understanding the vulnerability of aquatic species and habitats under climate change is critical for conservation and management of freshwater systems. Climate warming is predicted to increase water temperatures in freshwater ecosystems worldwide, yet few studies have developed spatially explicit modelling tools for understanding the potential impacts. We parameterized a nonspatial model, a spatial flow-routed model, and a spatial hierarchical model to predict August stream temperatures (22-m resolution) throughout the Flathead River Basin, USA and Canada. Model comparisons showed that the spatial models performed significantly better than the nonspatial model, explaining the spatial autocorrelation found between sites. The spatial hierarchical model explained 82% of the variation in summer mean (August) stream temperatures and was used to estimate thermal regimes for threatened bull trout (Salvelinus confluentus) habitats, one of the most thermally sensitive coldwater species in western North America. The model estimated summer thermal regimes of spawning and rearing habitats at <13 C° and foraging, migrating, and overwintering habitats at <14 C°. To illustrate the useful application of such a model, we simulated climate warming scenarios to quantify potential loss of critical habitats under forecasted climatic conditions. As air and water temperatures continue to increase, our model simulations show that lower portions of the Flathead River Basin drainage (foraging, migrating, and overwintering habitat) may become thermally unsuitable and headwater streams (spawning and rearing) may become isolated because of increasing thermal fragmentation during summer. Model results can be used to focus conservation and management efforts on populations of concern, by identifying critical habitats and assessing thermal changes at a local scale.

  15. Population at risk: using areal interpolation and Twitter messages to create population models for burglaries and robberies

    PubMed Central

    2018-01-01

    ABSTRACT Population at risk of crime varies due to the characteristics of a population as well as the crime generator and attractor places where crime is located. This establishes different crime opportunities for different crimes. However, there are very few efforts of modeling structures that derive spatiotemporal population models to allow accurate assessment of population exposure to crime. This study develops population models to depict the spatial distribution of people who have a heightened crime risk for burglaries and robberies. The data used in the study include: Census data as source data for the existing population, Twitter geo-located data, and locations of schools as ancillary data to redistribute the source data more accurately in the space, and finally gridded population and crime data to evaluate the derived population models. To create the models, a density-weighted areal interpolation technique was used that disaggregates the source data in smaller spatial units considering the spatial distribution of the ancillary data. The models were evaluated with validation data that assess the interpolation error and spatial statistics that examine their relationship with the crime types. Our approach derived population models of a finer resolution that can assist in more precise spatial crime analyses and also provide accurate information about crime rates to the public. PMID:29887766

  16. Simulation of the spatial stresses due to territorial land development on Yellow River Delta Nature Reserve using a GIS-based assessment model.

    PubMed

    Zhang, Baolei; Zhang, Qiaoyun; Feng, Qingyu; Cui, Bohao; Zhang, Shumin

    2017-07-01

    This study aimed at assessing the stresses from land development in or around Yellow River Delta Nature Reserve (YRDNR) and identifying the impacted areas. Major land development types (reservoirs, pond, aquafarm, salt pan, road, residential land, industry land, farming land, and fishing land) in or around the YRDNR from 1995 to 2014 were identified using spatial data sets derived from remote sensing imageries. The spatial stresses were simulated by considering disturbance due to land development activities and accessibility of disturbance using a geographic information system based model. The stresses were then used to identify the impacted area by land development (IALD). The results indicated that main increasing land development types in the study area from 1995 to 2014 were salt pan and construction land. The 98.2% of expanded land development area and 93.7% of increased pump number showed a good control of reserve function zone on land development spread. The spatial stress values and percentages of IALD increased from 1995 to 2014, and IALD percentage exceeded 50% for both parts of YRDNR in 2014. The results of this study also provided the information that detailed planning of the YRDNR (2014-2020) could decrease the spatial stress and IALD percentage of the whole YRDNR on the condition that the area of land development activities increased by 24.4 km 2 from 2014 to 2020. Effective measures should be taken to protect such areas from being further disturbed in order to achieve the goal of a more effective conservation of the YRDNR, and attention should be paid to the disordered land development activities in or around the natural reserves.

  17. Emerald ash borer and the urban forest: Changes in landslide potential due to canopy loss scenarios in the City of Pittsburgh, PA.

    PubMed

    Pfeil-McCullough, Erin; Bain, Daniel J; Bergman, Jeffery; Crumrine, Danielle

    2015-12-01

    Emerald ash borer is expected to kill thousands of ash trees in the eastern U.S. This research develops tools to predict the effect of ash tree loss from the urban canopy on landslide susceptibility in Pittsburgh, PA. A spatial model was built using the SINMAP (Stability INdex MAPping) model coupled with spatially explicit scenarios of tree loss (0%, 25%, 50%, and 75% loss of ash trees from the canopy). Ash spatial distributions were estimated via Monte Carlo methods and available vegetation plot data. Ash trees are most prevalent on steeper slopes, likely due to urban development patterns. Therefore, ash loss disproportionately increases hillslope instability. A 75% loss of ash resulted in roughly 800 new potential landslide initiation locations. Sensitivity testing reveals that variations in rainfall rates, and friction angles produce minor changes to model results relative to the magnitude of parameter variation, but reveal high model sensitivity to soil density and root cohesion values. The model predictions demonstrate the importance of large canopy species to urban hillslope stability, particularly on steep slopes and in areas where soils tend to retain water. To improve instability predictions, better characterization of urban soils, particularly spatial patterns of compaction and species specific root cohesion is necessary. The modeling framework developed in this research will enhance assessment of changes in landslide risk due to tree mortality, improving our ability to design economically and ecologically sustainable urban systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Estimation of skeletal movement of human locomotion from body surface shapes using dynamic spatial video camera (DSVC) and 4D human model.

    PubMed

    Saito, Toshikuni; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Hayashibe, Mitsuhiro; Otake, Yoshito

    2006-01-01

    We have been developing a DSVC (Dynamic Spatial Video Camera) system to measure and observe human locomotion quantitatively and freely. A 4D (four-dimensional) human model with detailed skeletal structure, joint, muscle, and motor functionality has been built. The purpose of our research was to estimate skeletal movements from body surface shapes using DSVC and the 4D human model. For this purpose, we constructed a body surface model of a subject and resized the standard 4D human model to match with geometrical features of the subject's body surface model. Software that integrates the DSVC system and the 4D human model, and allows dynamic skeletal state analysis from body surface movement data was also developed. We practically applied the developed system in dynamic skeletal state analysis of a lower limb in motion and were able to visualize the motion using geometrically resized standard 4D human model.

  19. Spatial Models for Prediction and Early Warning of Aedes aegypti Proliferation from Data on Climate Change and Variability in Cuba.

    PubMed

    Ortiz, Paulo L; Rivero, Alina; Linares, Yzenia; Pérez, Alina; Vázquez, Juan R

    2015-04-01

    Climate variability, the primary expression of climate change, is one of the most important environmental problems affecting human health, particularly vector-borne diseases. Despite research efforts worldwide, there are few studies addressing the use of information on climate variability for prevention and early warning of vector-borne infectious diseases. Show the utility of climate information for vector surveillance by developing spatial models using an entomological indicator and information on predicted climate variability in Cuba to provide early warning of danger of increased risk of dengue transmission. An ecological study was carried out using retrospective and prospective analyses of time series combined with spatial statistics. Several entomological and climatic indicators were considered using complex Bultó indices -1 and -2. Moran's I spatial autocorrelation coefficient specified for a matrix of neighbors with a radius of 20 km, was used to identify the spatial structure. Spatial structure simulation was based on simultaneous autoregressive and conditional autoregressive models; agreement between predicted and observed values for number of Aedes aegypti foci was determined by the concordance index Di and skill factor Bi. Spatial and temporal distributions of populations of Aedes aegypti were obtained. Models for describing, simulating and predicting spatial patterns of Aedes aegypti populations associated with climate variability patterns were put forward. The ranges of climate variability affecting Aedes aegypti populations were identified. Forecast maps were generated for the municipal level. Using the Bultó indices of climate variability, it is possible to construct spatial models for predicting increased Aedes aegypti populations in Cuba. At 20 x 20 km resolution, the models are able to provide warning of potential changes in vector populations in rainy and dry seasons and by month, thus demonstrating the usefulness of climate information for epidemiological surveillance.

  20. Spatial analysis of instream nitrogen loads and factors controlling nitrogen delivery to streams in the southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frameworks

    USGS Publications Warehouse

    Hoos, A.B.; McMahon, G.

    2009-01-01

    Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States - higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow.

  1. Spatial analysis of instream nitrogen loads and factors controlling nitrogen delivery to streams in the southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frameworks

    USGS Publications Warehouse

    Hoos, Anne B.; McMahon, Gerard

    2009-01-01

    Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States—higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow.

  2. Using a Data-Driven Approach to Understand the Interaction between Catchment Characteristics and Water Quality Responses

    NASA Astrophysics Data System (ADS)

    Western, A. W.; Lintern, A.; Liu, S.; Ryu, D.; Webb, J. A.; Leahy, P.; Wilson, P.; Waters, D.; Bende-Michl, U.; Watson, M.

    2016-12-01

    Many streams, lakes and estuaries are experiencing increasing concentrations and loads of nutrient and sediments. Models that can predict the spatial and temporal variability in water quality of aquatic systems are required to help guide the management and restoration of polluted aquatic systems. We propose that a Bayesian hierarchical modelling framework could be used to predict water quality responses over varying spatial and temporal scales. Stream water quality data and spatial data of catchment characteristics collected throughout Victoria and Queensland (in Australia) over two decades will be used to develop this Bayesian hierarchical model. In this paper, we present the preliminary exploratory data analysis required for the development of the Bayesian hierarchical model. Specifically, we present the results of exploratory data analysis of Total Nitrogen (TN) concentrations in rivers in Victoria (in South-East Australia) to illustrate the catchment characteristics that appear to be influencing spatial variability in (1) mean concentrations of TN; and (2) the relationship between discharge and TN throughout the state. These important catchment characteristics were identified using: (1) monthly TN concentrations measured at 28 water quality gauging stations and (2) climate, land use, topographic and geologic characteristics of the catchments of these 28 sites. Spatial variability in TN concentrations had a positive correlation to fertiliser use in the catchment and average temperature. There were negative correlations between TN concentrations and catchment forest cover, annual runoff, runoff perenniality, soil erosivity and catchment slope. The relationship between discharge and TN concentrations showed spatial variability, possibly resulting from climatic and topographic differences between the sites. The results of this study will feed into the hierarchical Bayesian model of river water quality.

  3. Evaluating Middle School Students' Spatial-Scientific Performance within Earth/Space Astronomy in Terms of Gender and Race/Ethnicity

    ERIC Educational Resources Information Center

    Wilhelm, Jennifer; Toland, Michael D.; Cole, Merryn

    2017-01-01

    Differences were examined between groups of sixth grade students? spatial-scientific development pre/post implementation of an Earth/Space unit. Treatment teachers employed a spatially-integrated Earth/Space curriculum, while control teachers implemented their Business as Usual (BAU) Earth/Space units. A multi-level modeling approach was used in a…

  4. The Effects of 3-Dimensional CADD Modeling on the Development of the Spatial Ability of Technology Education Students

    ERIC Educational Resources Information Center

    Basham, K. Lynn; Kotrlik, Joe W.

    2008-01-01

    Spatial abilities are fundamental to human functioning in the physical world. Spatial reasoning allows people to use concepts of shape, features, and relationships in both concrete and abstract ways, to make and use things in the world, to navigate, and to communicate. Surgeons, pilots, architects, engineers, mechanics, builders, farmers, trades…

  5. Development of a spatially-distributed hydroecological model to simulate cottonwood seedling recruitment along rivers.

    PubMed

    Benjankar, Rohan; Burke, Michael; Yager, Elowyn; Tonina, Daniele; Egger, Gregory; Rood, Stewart B; Merz, Norm

    2014-12-01

    Dam operations have altered flood and flow patterns and prevented successful cottonwood seedling recruitment along many rivers. To guide reservoir flow releases to meet cottonwood recruitment needs, we developed a spatially-distributed, GIS-based model that analyzes the hydrophysical requirements for cottonwood recruitment. These requirements are indicated by five physical parameters: (1) annual peak flow timing relative to the interval of seed dispersal, (2) shear stress, which characterizes disturbance, (3) local stage recession after seedling recruitment, (4) recruitment elevation above base flow stage, and (5) duration of winter flooding, which may contribute to seedling mortality. The model categorizes the potential for cottonwood recruitment in four classes and attributes a suitability value at each individual spatial location. The model accuracy was estimated with an error matrix analysis by comparing simulated and field-observed recruitment success. The overall accuracies of this Spatially-Distributed Cottonwood Recruitment model were 47% for a braided reach and 68% for a meander reach along the Kootenai River in Idaho, USA. Model accuracies increased to 64% and 72%, respectively, when fewer favorability classes were considered. The model predicted areas of similarly favorable recruitment potential for 1997 and 2006, two recent years with successful cottonwood recruitment. This model should provide a useful tool to quantify impacts of human activities and climatic variability on cottonwood recruitment, and to prescribe instream flow regimes for the conservation and restoration of riparian woodlands. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Assessing Visual-Spatial Creativity in Youth on the Autism Spectrum

    ERIC Educational Resources Information Center

    Diener, Marissa L.; Wright, Cheryl A.; Smith, Katherine N.; Wright, Scott D.

    2014-01-01

    The goal of this study was to develop a measure of creativity that builds on the strengths of youth with autism spectrum disorders (ASD). The assessment of creativity focused on the visual-spatial abilities of these youth using 3D modeling software. One of the objectives of the research was to develop a measure of creativity in an authentic…

  7. Exploring the Specifications of Spatial Adjacencies and Weights in Bayesian Spatial Modeling with Intrinsic Conditional Autoregressive Priors in a Small-area Study of Fall Injuries

    PubMed Central

    Law, Jane

    2016-01-01

    Intrinsic conditional autoregressive modeling in a Bayeisan hierarchical framework has been increasingly applied in small-area ecological studies. This study explores the specifications of spatial structure in this Bayesian framework in two aspects: adjacency, i.e., the set of neighbor(s) for each area; and (spatial) weight for each pair of neighbors. Our analysis was based on a small-area study of falling injuries among people age 65 and older in Ontario, Canada, that was aimed to estimate risks and identify risk factors of such falls. In the case study, we observed incorrect adjacencies information caused by deficiencies in the digital map itself. Further, when equal weights was replaced by weights based on a variable of expected count, the range of estimated risks increased, the number of areas with probability of estimated risk greater than one at different probability thresholds increased, and model fit improved. More importantly, significance of a risk factor diminished. Further research to thoroughly investigate different methods of variable weights; quantify the influence of specifications of spatial weights; and develop strategies for better defining spatial structure of a map in small-area analysis in Bayesian hierarchical spatial modeling is recommended. PMID:29546147

  8. [Human body meridian spatial decision support system for clinical treatment and teaching of acupuncture and moxibustion].

    PubMed

    Wu, Dehua

    2016-01-01

    The spatial position and distribution of human body meridian are expressed limitedly in the decision support system (DSS) of acupuncture and moxibustion at present, which leads to the failure to give the effective quantitative analysis on the spatial range and the difficulty for the decision-maker to provide a realistic spatial decision environment. Focusing on the limit spatial expression in DSS of acupuncture and moxibustion, it was proposed that on the basis of the geographic information system, in association of DSS technology, the design idea was developed on the human body meridian spatial DSS. With the 4-layer service-oriented architecture adopted, the data center integrated development platform was taken as the system development environment. The hierarchical organization was done for the spatial data of human body meridian via the directory tree. The structured query language (SQL) server was used to achieve the unified management of spatial data and attribute data. The technologies of architecture, configuration and plug-in development model were integrated to achieve the data inquiry, buffer analysis and program evaluation of the human body meridian spatial DSS. The research results show that the human body meridian spatial DSS could reflect realistically the spatial characteristics of the spatial position and distribution of human body meridian and met the constantly changeable demand of users. It has the powerful spatial analysis function and assists with the scientific decision in clinical treatment and teaching of acupuncture and moxibustion. It is the new attempt to the informatization research of human body meridian.

  9. Evaluation of land use regression models for NO2 in El Paso, Texas, USA

    PubMed Central

    Gonzales, Melissa; Myers, Orrin; Smith, Luther; Olvera, Hector A.; Mukerjee, Shaibal; Li, Wen-Whai; Pingitore, Nicholas; Amaya, Maria; Burchiel, Scott; Berwick, Marianne

    2012-01-01

    Developing suitable exposure estimates for air pollution health studies is problematic due to spatial and temporal variation in concentrations and often limited monitoring data. Though land use regression models (LURs) are often used for this purpose, their applicability to later periods of time, larger geographic areas, and seasonal variation is largely untested. We evaluate a series of mixed model LURs to describe the spatial-temporal gradients of NO2 across El Paso County, Texas based on measurements collected during cool and warm seasons in 2006–2007 (2006–7). We also evaluated performance of a general additive model (GAM) developed for central El Paso in 1999 to assess spatial gradients across the County in 2006–7. Five LURs were developed iteratively from the study data and their predictions were averaged to provide robust nitrogen dioxide (NO2) concentration gradients across the county. Despite differences in sampling time frame, model covariates and model estimation methods, predicted NO2 concentration gradients were similar in the current study as compared to the 1999 study. Through a comprehensive LUR modeling campaign, it was shown that the nature of the most influential predictive variables remained the same for El Paso between the 1999 and 2006–7. The similar LUR results obtained here demonstrate that, at least for El Paso, LURs developed from prior years may still be applicable to assess exposure conditions in subsequent years and in different seasons when seasonal variation is taken into consideration. PMID:22728301

  10. The Construction of Visual-spatial Situation Models in Children's Reading and Their Relation to Reading Comprehension

    PubMed Central

    Barnes, Marcia A.; Raghubar, Kimberly P.; Faulkner, Heather; Denton, Carolyn A.

    2014-01-01

    Readers construct mental models of situations described by text to comprehend what they read, updating these situation models based on explicitly described and inferred information about causal, temporal, and spatial relations. Fluent adult readers update their situation models while reading narrative text based in part on spatial location information that is consistent with the perspective of the protagonist. The current study investigates whether children update spatial situation models in a similar way, whether there are age-related changes in children's formation of spatial situation models during reading, and whether measures of the ability to construct and update spatial situation models are predictive of reading comprehension. Typically-developing children from ages 9 through 16 years (n=81) were familiarized with a physical model of a marketplace. Then the model was covered, and children read stories that described the movement of a protagonist through the marketplace and were administered items requiring memory for both explicitly stated and inferred information about the character's movements. Accuracy of responses and response times were evaluated. Results indicated that: (a) location and object information during reading appeared to be activated and updated not simply from explicit text-based information but from a mental model of the real world situation described by the text; (b) this pattern showed no age-related differences; and (c) the ability to update the situation model of the text based on inferred information, but not explicitly stated information, was uniquely predictive of reading comprehension after accounting for word decoding. PMID:24315376

  11. Modeling fuel succession

    USGS Publications Warehouse

    Davis, Brett; Van Wagtendonk, Jan W.; Beck, Jen; van Wagtendonk, Kent A.

    2009-01-01

    Surface fuels data are of critical importance for supporting fire incident management, risk assessment, and fuel management planning, but the development of surface fuels data can be expensive and time consuming. The data development process is extensive, generally beginning with acquisition of remotely sensed spatial data such as aerial photography or satellite imagery (Keane and others 2001). The spatial vegetation data are then crosswalked to a set of fire behavior fuel models that describe the available fuels (the burnable portions of the vegetation) (Anderson 1982, Scott and Burgan 2005). Finally, spatial fuels data are used as input to tools such as FARSITE and FlamMap to model current and potential fire spread and behavior (Finney 1998, Finney 2006). The capture date of the remotely sensed data defines the period for which the vegetation, and, therefore, fuels, data are most accurate. The more time that passes after the capture date, the less accurate the data become due to vegetation growth and processes such as fire. Subsequently, the results of any fire simulation based on these data become less accurate as the data age. Because of the amount of labor and expense required to develop these data, keeping them updated may prove to be a challenge. In this article, we describe the Sierra Nevada Fuel Succession Model, a modeling tool that can quickly and easily update surface fuel models with a minimum of additional input data. Although it was developed for use by Yosemite, Sequoia, and Kings Canyon National Parks, it is applicable to much of the central and southern Sierra Nevada. Furthermore, the methods used to develop the model have national applicability.

  12. Improving removal-based estimates of abundance by sampling a population of spatially distinct subpopulations

    USGS Publications Warehouse

    Dorazio, R.M.; Jelks, H.L.; Jordan, F.

    2005-01-01

     A statistical modeling framework is described for estimating the abundances of spatially distinct subpopulations of animals surveyed using removal sampling. To illustrate this framework, hierarchical models are developed using the Poisson and negative-binomial distributions to model variation in abundance among subpopulations and using the beta distribution to model variation in capture probabilities. These models are fitted to the removal counts observed in a survey of a federally endangered fish species. The resulting estimates of abundance have similar or better precision than those computed using the conventional approach of analyzing the removal counts of each subpopulation separately. Extension of the hierarchical models to include spatial covariates of abundance is straightforward and may be used to identify important features of an animal's habitat or to predict the abundance of animals at unsampled locations.

  13. Analysis of Extreme Snow Water Equivalent Data in Central New Hampshire

    NASA Astrophysics Data System (ADS)

    Vuyovich, C.; Skahill, B. E.; Kanney, J. F.; Carr, M.

    2017-12-01

    Heavy snowfall and snowmelt-related events have been linked to widespread flooding and damages in many regions of the U.S. Design of critical infrastructure in these regions requires spatial estimates of extreme snow water equivalent (SWE). In this study, we develop station specific and spatially explicit estimates of extreme SWE using data from fifteen snow sampling stations maintained by the New Hampshire Department of Environmental Services. The stations are located in the Mascoma, Pemigewasset, Winnipesaukee, Ossipee, Salmon Falls, Lamprey, Sugar, and Isinglass basins in New Hampshire. The average record length for the fifteen stations is approximately fifty-nine years. The spatial analysis of extreme SWE involves application of two Bayesian Hierarchical Modeling methods, one that assumes conditional independence, and another which uses the Smith max-stable process model to account for spatial dependence. We also apply additional max-stable process models, albeit not in a Bayesian framework, that better model the observed dependence among the extreme SWE data. The spatial process modeling leverages readily available and relevant spatially explicit covariate data. The noted additional max-stable process models also used the nonstationary winter North Atlantic Oscillation index, which has been observed to influence snowy weather along the east coast of the United States. We find that, for this data set, SWE return level estimates are consistently higher when derived using methods which account for the observed spatial dependence among the extreme data. This is particularly significant for design scenarios of relevance for critical infrastructure evaluation.

  14. Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets.

    PubMed

    Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O; Gelfand, Alan E

    2016-01-01

    Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online.

  15. Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets

    PubMed Central

    Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O.; Gelfand, Alan E.

    2018-01-01

    Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online. PMID:29720777

  16. State-and-transition simulation models: a framework for forecasting landscape change

    USGS Publications Warehouse

    Daniel, Colin; Frid, Leonardo; Sleeter, Benjamin M.; Fortin, Marie-Josée

    2016-01-01

    SummaryA wide range of spatially explicit simulation models have been developed to forecast landscape dynamics, including models for projecting changes in both vegetation and land use. While these models have generally been developed as separate applications, each with a separate purpose and audience, they share many common features.We present a general framework, called a state-and-transition simulation model (STSM), which captures a number of these common features, accompanied by a software product, called ST-Sim, to build and run such models. The STSM method divides a landscape into a set of discrete spatial units and simulates the discrete state of each cell forward as a discrete-time-inhomogeneous stochastic process. The method differs from a spatially interacting Markov chain in several important ways, including the ability to add discrete counters such as age and time-since-transition as state variables, to specify one-step transition rates as either probabilities or target areas, and to represent multiple types of transitions between pairs of states.We demonstrate the STSM method using a model of land-use/land-cover (LULC) change for the state of Hawai'i, USA. Processes represented in this example include expansion/contraction of agricultural lands, urbanization, wildfire, shrub encroachment into grassland and harvest of tree plantations; the model also projects shifts in moisture zones due to climate change. Key model output includes projections of the future spatial and temporal distribution of LULC classes and moisture zones across the landscape over the next 50 years.State-and-transition simulation models can be applied to a wide range of landscapes, including questions of both land-use change and vegetation dynamics. Because the method is inherently stochastic, it is well suited for characterizing uncertainty in model projections. When combined with the ST-Sim software, STSMs offer a simple yet powerful means for developing a wide range of models of landscape dynamics.

  17. Exploring the Mechanisms of Ecological Land Change Based on the Spatial Autoregressive Model: A Case Study of the Poyang Lake Eco-Economic Zone, China

    PubMed Central

    Xie, Hualin; Liu, Zhifei; Wang, Peng; Liu, Guiying; Lu, Fucai

    2013-01-01

    Ecological land is one of the key resources and conditions for the survival of humans because it can provide ecosystem services and is particularly important to public health and safety. It is extremely valuable for effective ecological management to explore the evolution mechanisms of ecological land. Based on spatial statistical analyses, we explored the spatial disparities and primary potential drivers of ecological land change in the Poyang Lake Eco-economic Zone of China. The results demonstrated that the global Moran’s I value is 0.1646 during the 1990 to 2005 time period and indicated significant positive spatial correlation (p < 0.05). The results also imply that the clustering trend of ecological land changes weakened in the study area. Some potential driving forces were identified by applying the spatial autoregressive model in this study. The results demonstrated that the higher economic development level and industrialization rate were the main drivers for the faster change of ecological land in the study area. This study also tested the superiority of the spatial autoregressive model to study the mechanisms of ecological land change by comparing it with the traditional linear regressive model. PMID:24384778

  18. Do marginalized neighbourhoods have less healthy retail food environments? An analysis using Bayesian spatial latent factor and hurdle models.

    PubMed

    Luan, Hui; Minaker, Leia M; Law, Jane

    2016-08-22

    Findings of whether marginalized neighbourhoods have less healthy retail food environments (RFE) are mixed across countries, in part because inconsistent approaches have been used to characterize RFE 'healthfulness' and marginalization, and researchers have used non-spatial statistical methods to respond to this ultimately spatial issue. This study uses in-store features to categorize healthy and less healthy food outlets. Bayesian spatial hierarchical models are applied to explore the association between marginalization dimensions and RFE healthfulness (i.e., relative healthy food access that modelled via a probability distribution) at various geographical scales. Marginalization dimensions are derived from a spatial latent factor model. Zero-inflation occurring at the walkable-distance scale is accounted for with a spatial hurdle model. Neighbourhoods with higher residential instability, material deprivation, and population density are more likely to have access to healthy food outlets within a walkable distance from a binary 'have' or 'not have' access perspective. At the walkable distance scale however, materially deprived neighbourhoods are found to have less healthy RFE (lower relative healthy food access). Food intervention programs should be developed for striking the balance between healthy and less healthy food access in the study region as well as improving opportunities for residents to buy and consume foods consistent with dietary recommendations.

  19. Developing a spatial-statistical model and map of historical malaria prevalence in Botswana using a staged variable selection procedure

    PubMed Central

    Craig, Marlies H; Sharp, Brian L; Mabaso, Musawenkosi LH; Kleinschmidt, Immo

    2007-01-01

    Background Several malaria risk maps have been developed in recent years, many from the prevalence of infection data collated by the MARA (Mapping Malaria Risk in Africa) project, and using various environmental data sets as predictors. Variable selection is a major obstacle due to analytical problems caused by over-fitting, confounding and non-independence in the data. Testing and comparing every combination of explanatory variables in a Bayesian spatial framework remains unfeasible for most researchers. The aim of this study was to develop a malaria risk map using a systematic and practicable variable selection process for spatial analysis and mapping of historical malaria risk in Botswana. Results Of 50 potential explanatory variables from eight environmental data themes, 42 were significantly associated with malaria prevalence in univariate logistic regression and were ranked by the Akaike Information Criterion. Those correlated with higher-ranking relatives of the same environmental theme, were temporarily excluded. The remaining 14 candidates were ranked by selection frequency after running automated step-wise selection procedures on 1000 bootstrap samples drawn from the data. A non-spatial multiple-variable model was developed through step-wise inclusion in order of selection frequency. Previously excluded variables were then re-evaluated for inclusion, using further step-wise bootstrap procedures, resulting in the exclusion of another variable. Finally a Bayesian geo-statistical model using Markov Chain Monte Carlo simulation was fitted to the data, resulting in a final model of three predictor variables, namely summer rainfall, mean annual temperature and altitude. Each was independently and significantly associated with malaria prevalence after allowing for spatial correlation. This model was used to predict malaria prevalence at unobserved locations, producing a smooth risk map for the whole country. Conclusion We have produced a highly plausible and parsimonious model of historical malaria risk for Botswana from point-referenced data from a 1961/2 prevalence survey of malaria infection in 1–14 year old children. After starting with a list of 50 potential variables we ended with three highly plausible predictors, by applying a systematic and repeatable staged variable selection procedure that included a spatial analysis, which has application for other environmentally determined infectious diseases. All this was accomplished using general-purpose statistical software. PMID:17892584

  20. Spatial and seasonal dynamics of surface soil carbon in the Luquillo Experimental Forest, Puerto Rico.

    Treesearch

    Hongqing Wang; Joseph D. Cornell; Charles A.S. Hall; David P. Marley

    2002-01-01

    We developed a spatially-explicit version of the CENTURY soil model to characterize the storage and flux of soil organic carbon (SOC, 0–30 cm depth) in the Luquillo Experimental Forest (LEF), Puerto Rico as a function of climate, vegetation, and soils. The model was driven by monthly estimates of average air temperature, precipitation, and potential evapotranspiration...

  1. Spatial-temporal modeling of malware propagation in networks.

    PubMed

    Chen, Zesheng; Ji, Chuanyi

    2005-09-01

    Network security is an important task of network management. One threat to network security is malware (malicious software) propagation. One type of malware is called topological scanning that spreads based on topology information. The focus of this work is on modeling the spread of topological malwares, which is important for understanding their potential damages, and for developing countermeasures to protect the network infrastructure. Our model is motivated by probabilistic graphs, which have been widely investigated in machine learning. We first use a graphical representation to abstract the propagation of malwares that employ different scanning methods. We then use a spatial-temporal random process to describe the statistical dependence of malware propagation in arbitrary topologies. As the spatial dependence is particularly difficult to characterize, the problem becomes how to use simple (i.e., biased) models to approximate the spatially dependent process. In particular, we propose the independent model and the Markov model as simple approximations. We conduct both theoretical analysis and extensive simulations on large networks using both real measurements and synthesized topologies to test the performance of the proposed models. Our results show that the independent model can capture temporal dependence and detailed topology information and, thus, outperforms the previous models, whereas the Markov model incorporates a certain spatial dependence and, thus, achieves a greater accuracy in characterizing both transient and equilibrium behaviors of malware propagation.

  2. Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States

    USGS Publications Warehouse

    Sohl, Terry L.; Sleeter, Benjamin M.; Sayler, Kristi L.; Bouchard, Michelle A.; Reker, Ryan R.; Bennett, Stacie L.; Sleeter, Rachel R.; Kanengieter, Ronald L.; Zhu, Zhi-Liang

    2012-01-01

    The Great Plains of the United States has undergone extensive land-use and land-cover change in the past 150 years, with much of the once vast native grasslands and wetlands converted to agricultural crops, and much of the unbroken prairie now heavily grazed. Future land-use change in the region could have dramatic impacts on ecological resources and processes. A scenario-based modeling framework is needed to support the analysis of potential land-use change in an uncertain future, and to mitigate potentially negative future impacts on ecosystem processes. We developed a scenario-based modeling framework to analyze potential future land-use change in the Great Plains. A unique scenario construction process, using an integrated modeling framework, historical data, workshops, and expert knowledge, was used to develop quantitative demand for future land-use change for four IPCC scenarios at the ecoregion level. The FORE-SCE model ingested the scenario information and produced spatially explicit land-use maps for the region at relatively fine spatial and thematic resolutions. Spatial modeling of the four scenarios provided spatial patterns of land-use change consistent with underlying assumptions and processes associated with each scenario. Economically oriented scenarios were characterized by significant loss of natural land covers and expansion of agricultural and urban land uses. Environmentally oriented scenarios experienced modest declines in natural land covers to slight increases. Model results were assessed for quantity and allocation disagreement between each scenario pair. In conjunction with the U.S. Geological Survey's Biological Carbon Sequestration project, the scenario-based modeling framework used for the Great Plains is now being applied to the entire United States.

  3. Spatial pattern of diarrhea based on regional economic and environment by spatial autoregressive model

    NASA Astrophysics Data System (ADS)

    Bekti, Rokhana Dwi; Nurhadiyanti, Gita; Irwansyah, Edy

    2014-10-01

    The diarrhea case pattern information, especially for toddler, is very important. It is used to show the distribution of diarrhea in every region, relationship among that locations, and regional economic characteristic or environmental behavior. So, this research uses spatial pattern to perform them. This method includes: Moran's I, Spatial Autoregressive Models (SAR), and Local Indicator of Spatial Autocorrelation (LISA). It uses sample from 23 sub districts of Bekasi Regency, West Java, Indonesia. Diarrhea case, regional economic, and environmental behavior of households have a spatial relationship among sub district. SAR shows that the percentage of Regional Gross Domestic Product is significantly effect on diarrhea at α = 10%. Therefore illiteracy and health center facilities are significant at α = 5%. With LISA test, sub districts in southern Bekasi have high dependencies with Cikarang Selatan, Serang Baru, and Setu. This research also builds development application that is based on java and R to support data analysis.

  4. Spatial Heterogeneity in the Effects of Immigration and Diversity on Neighborhood Homicide Rates

    PubMed Central

    Graif, Corina; Sampson, Robert J.

    2010-01-01

    This paper examines the connection of immigration and diversity to homicide by advancing a recently developed approach to modeling spatial dynamics—geographically weighted regression. In contrast to traditional global averaging, we argue on substantive grounds that neighborhood characteristics vary in their effects across neighborhood space, a process of “spatial heterogeneity.” Much like treatment-effect heterogeneity and distinct from spatial spillover, our analysis finds considerable evidence that neighborhood characteristics in Chicago vary significantly in predicting homicide, in some cases showing countervailing effects depending on spatial location. In general, however, immigrant concentration is either unrelated or inversely related to homicide, whereas language diversity is consistently linked to lower homicide. The results shed new light on the immigration-homicide nexus and suggest the pitfalls of global averaging models that hide the reality of a highly diversified and spatially stratified metropolis. PMID:20671811

  5. A Probabilistic Model of Illegal Drug Trafficking Operations in the Eastern Pacific and Caribbean Sea

    DTIC Science & Technology

    2013-09-01

    partner agencies and nations, detects, tracks, and interdicts illegal drug-trafficking in this region. In this thesis, we develop a probability model based...trafficking in this region. In this thesis, we develop a probability model based on intelligence inputs to generate a spatial temporal heat map specifying the...complement and vet such complicated simulation by developing more analytically tractable models. We develop probability models to generate a heat map

  6. Tidal Prism Modeling of Phytoplankton and Nitrogen Concentrations in Narragansett Bay and its Sub-Embayments

    EPA Science Inventory

    A tidal prism model was developed to calculate temporal changes in the spatially averaged concentration of three state variables: phytoplankton, dissolved inorganic nitrogen, and detritus. Our main objective was to develop a model to help us understand the causes of phytoplankton...

  7. Coupled stochastic spatial and non-spatial simulations of ErbB1 signaling pathways demonstrate the importance of spatial organization in signal transduction.

    PubMed

    Costa, Michelle N; Radhakrishnan, Krishnan; Wilson, Bridget S; Vlachos, Dionisios G; Edwards, Jeremy S

    2009-07-23

    The ErbB family of receptors activates intracellular signaling pathways that control cellular proliferation, growth, differentiation and apoptosis. Given these central roles, it is not surprising that overexpression of the ErbB receptors is often associated with carcinogenesis. Therefore, extensive laboratory studies have been devoted to understanding the signaling events associated with ErbB activation. Systems biology has contributed significantly to our current understanding of ErbB signaling networks. However, although computational models have grown in complexity over the years, little work has been done to consider the spatial-temporal dynamics of receptor interactions and to evaluate how spatial organization of membrane receptors influences signaling transduction. Herein, we explore the impact of spatial organization of the epidermal growth factor receptor (ErbB1/EGFR) on the initiation of downstream signaling. We describe the development of an algorithm that couples a spatial stochastic model of membrane receptors with a nonspatial stochastic model of the reactions and interactions in the cytosol. This novel algorithm provides a computationally efficient method to evaluate the effects of spatial heterogeneity on the coupling of receptors to cytosolic signaling partners. Mathematical models of signal transduction rarely consider the contributions of spatial organization due to high computational costs. A hybrid stochastic approach simplifies analyses of the spatio-temporal aspects of cell signaling and, as an example, demonstrates that receptor clustering contributes significantly to the efficiency of signal propagation from ligand-engaged growth factor receptors.

  8. Integrating global socio-economic influences into a regional land use change model for China

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Gao, Qiong; Peng, Changhui; Cui, Xuefeng; Liu, Yinghui; Jiang, Li

    2014-03-01

    With rapid economic development and urbanization, land use in China has experienced huge changes in recent years; and this will probably continue in the future. Land use problems in China are urgent and need further study. Rapid land-use change and economic development make China an ideal region for integrated land use change studies, particularly the examination of multiple factors and global-regional interactions in the context of global economic integration. This paper presents an integrated modeling approach to examine the impact of global socio-economic processes on land use changes at a regional scale. We develop an integrated model system by coupling a simple global socio-economic model (GLOBFOOD) and regional spatial allocation model (CLUE). The model system is illustrated with an application to land use in China. For a given climate change, population growth, and various socio-economic situations, a global socio-economic model simulates the impact of global market and economy on land use, and quantifies changes of different land use types. The land use spatial distribution model decides the type of land use most appropriate in each spatial grid by employing a weighted suitability index, derived from expert knowledge about the ecosystem state and site conditions. A series of model simulations will be conducted and analyzed to demonstrate the ability of the integrated model to link global socioeconomic factors with regional land use changes in China. The results allow an exploration of the future dynamics of land use and landscapes in China.

  9. Development of a distributed air pollutant dry deposition modeling framework.

    PubMed

    Hirabayashi, Satoshi; Kroll, Charles N; Nowak, David J

    2012-12-01

    A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Comparing two remote video survey methods for spatial predictions of the distribution and environmental niche suitability of demersal fishes.

    PubMed

    Galaiduk, Ronen; Radford, Ben T; Wilson, Shaun K; Harvey, Euan S

    2017-12-15

    Information on habitat associations from survey data, combined with spatial modelling, allow the development of more refined species distribution modelling which may identify areas of high conservation/fisheries value and consequentially improve conservation efforts. Generalised additive models were used to model the probability of occurrence of six focal species after surveys that utilised two remote underwater video sampling methods (i.e. baited and towed video). Models developed for the towed video method had consistently better predictive performance for all but one study species although only three models had a good to fair fit, and the rest were poor fits, highlighting the challenges associated with modelling habitat associations of marine species in highly homogenous, low relief environments. Models based on baited video dataset regularly included large-scale measures of structural complexity, suggesting fish attraction to a single focus point by bait. Conversely, models based on the towed video data often incorporated small-scale measures of habitat complexity and were more likely to reflect true species-habitat relationships. The cost associated with use of the towed video systems for surveying low-relief seascapes was also relatively low providing additional support for considering this method for marine spatial ecological modelling.

  11. Modelling Geomechanical Heterogeneity of Rock Masses Using Direct and Indirect Geostatistical Conditional Simulation Methods

    NASA Astrophysics Data System (ADS)

    Eivazy, Hesameddin; Esmaieli, Kamran; Jean, Raynald

    2017-12-01

    An accurate characterization and modelling of rock mass geomechanical heterogeneity can lead to more efficient mine planning and design. Using deterministic approaches and random field methods for modelling rock mass heterogeneity is known to be limited in simulating the spatial variation and spatial pattern of the geomechanical properties. Although the applications of geostatistical techniques have demonstrated improvements in modelling the heterogeneity of geomechanical properties, geostatistical estimation methods such as Kriging result in estimates of geomechanical variables that are not fully representative of field observations. This paper reports on the development of 3D models for spatial variability of rock mass geomechanical properties using geostatistical conditional simulation method based on sequential Gaussian simulation. A methodology to simulate the heterogeneity of rock mass quality based on the rock mass rating is proposed and applied to a large open-pit mine in Canada. Using geomechanical core logging data collected from the mine site, a direct and an indirect approach were used to model the spatial variability of rock mass quality. The results of the two modelling approaches were validated against collected field data. The study aims to quantify the risks of pit slope failure and provides a measure of uncertainties in spatial variability of rock mass properties in different areas of the pit.

  12. A multivariate spatial mixture model for areal data: examining regional differences in standardized test scores

    PubMed Central

    Neelon, Brian; Gelfand, Alan E.; Miranda, Marie Lynn

    2013-01-01

    Summary Researchers in the health and social sciences often wish to examine joint spatial patterns for two or more related outcomes. Examples include infant birth weight and gestational length, psychosocial and behavioral indices, and educational test scores from different cognitive domains. We propose a multivariate spatial mixture model for the joint analysis of continuous individual-level outcomes that are referenced to areal units. The responses are modeled as a finite mixture of multivariate normals, which accommodates a wide range of marginal response distributions and allows investigators to examine covariate effects within subpopulations of interest. The model has a hierarchical structure built at the individual level (i.e., individuals are nested within areal units), and thus incorporates both individual- and areal-level predictors as well as spatial random effects for each mixture component. Conditional autoregressive (CAR) priors on the random effects provide spatial smoothing and allow the shape of the multivariate distribution to vary flexibly across geographic regions. We adopt a Bayesian modeling approach and develop an efficient Markov chain Monte Carlo model fitting algorithm that relies primarily on closed-form full conditionals. We use the model to explore geographic patterns in end-of-grade math and reading test scores among school-age children in North Carolina. PMID:26401059

  13. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling

    PubMed Central

    Wisz, Mary Susanne; Pottier, Julien; Kissling, W Daniel; Pellissier, Loïc; Lenoir, Jonathan; Damgaard, Christian F; Dormann, Carsten F; Forchhammer, Mads C; Grytnes, John-Arvid; Guisan, Antoine; Heikkinen, Risto K; Høye, Toke T; Kühn, Ingolf; Luoto, Miska; Maiorano, Luigi; Nilsson, Marie-Charlotte; Normand, Signe; Öckinger, Erik; Schmidt, Niels M; Termansen, Mette; Timmermann, Allan; Wardle, David A; Aastrup, Peter; Svenning, Jens-Christian

    2013-01-01

    Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km2 to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere. PMID:22686347

  14. Toward micro-scale spatial modeling of gentrification

    NASA Astrophysics Data System (ADS)

    O'Sullivan, David

    A simple preliminary model of gentrification is presented. The model is based on an irregular cellular automaton architecture drawing on the concept of proximal space, which is well suited to the spatial externalities present in housing markets at the local scale. The rent gap hypothesis on which the model's cell transition rules are based is discussed. The model's transition rules are described in detail. Practical difficulties in configuring and initializing the model are described and its typical behavior reported. Prospects for further development of the model are discussed. The current model structure, while inadequate, is well suited to further elaboration and the incorporation of other interesting and relevant effects.

  15. Characterizing China's energy consumption with selective economic factors and energy-resource endowment: a spatial econometric approach

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Ji, Minhe; Bai, Ling

    2015-06-01

    Coupled with intricate regional interactions, the provincial disparity of energy-resource endowment and other economic conditions in China have created spatially complex energy consumption patterns that require analyses beyond the traditional ones. To distill the spatial effect out of the resource and economic factors on China's energy consumption, this study recast the traditional econometric model in a spatial context. Several analytic steps were taken to reveal different aspects of the issue. Per capita energy consumption (AVEC) at the provincial level was first mapped to reveal spatial clusters of high energy consumption being located in either well developed or energy resourceful regions. This visual spatial autocorrelation pattern of AVEC was quantitatively tested to confirm its existence among Chinese provinces. A Moran scatterplot was employed to further display a relatively centralized trend occurring in those provinces that had parallel AVEC, revealing a spatial structure with attraction among high-high or low-low regions and repellency among high-low or low-high regions. By a comparison between the ordinary least square (OLS) model and its spatial econometric counterparts, a spatial error model (SEM) was selected to analyze the impact of major economic determinants on AVEC. While the analytic results revealed a significant positive correlation between AVEC and economic development, other determinants showed some intricate influential patterns. The provinces endowed with rich energy reserves were inclined to consume much more energy than those otherwise, whereas changing the economic structure by increasing the proportion of secondary and tertiary industries also tended to consume more energy. Both situations seem to underpin the fact that these provinces were largely trapped in the economies that were supported by technologies of low energy efficiency during the period, while other parts of the country were rapidly modernized by adopting advanced technologies and more efficient industries. On the other hand, institutional change (i.e., marketization) and innovation (i.e., technological progress) exerted positive impacts on AVEC improvement, as always expected in this and other studies. Finally, the model comparison indicated that SEM was capable of separating spatial effect from the error term of OLS, so as to improve goodness-of-fit and the significance level of individual determinants.

  16. Spatial Visualization by Isometric View

    ERIC Educational Resources Information Center

    Yue, Jianping

    2007-01-01

    Spatial visualization is a fundamental skill in technical graphics and engineering designs. From conventional multiview drawing to modern solid modeling using computer-aided design, visualization skills have always been essential for representing three-dimensional objects and assemblies. Researchers have developed various types of tests to measure…

  17. The Association between Environmental Factors and Scarlet Fever Incidence in Beijing Region: Using GIS and Spatial Regression Models

    PubMed Central

    Mahara, Gehendra; Wang, Chao; Yang, Kun; Chen, Sipeng; Guo, Jin; Gao, Qi; Wang, Wei; Wang, Quanyi; Guo, Xiuhua

    2016-01-01

    (1) Background: Evidence regarding scarlet fever and its relationship with meteorological, including air pollution factors, is not very available. This study aimed to examine the relationship between ambient air pollutants and meteorological factors with scarlet fever occurrence in Beijing, China. (2) Methods: A retrospective ecological study was carried out to distinguish the epidemic characteristics of scarlet fever incidence in Beijing districts from 2013 to 2014. Daily incidence and corresponding air pollutant and meteorological data were used to develop the model. Global Moran’s I statistic and Anselin’s local Moran’s I (LISA) were applied to detect the spatial autocorrelation (spatial dependency) and clusters of scarlet fever incidence. The spatial lag model (SLM) and spatial error model (SEM) including ordinary least squares (OLS) models were then applied to probe the association between scarlet fever incidence and meteorological including air pollution factors. (3) Results: Among the 5491 cases, more than half (62%) were male, and more than one-third (37.8%) were female, with the annual average incidence rate 14.64 per 100,000 population. Spatial autocorrelation analysis exhibited the existence of spatial dependence; therefore, we applied spatial regression models. After comparing the values of R-square, log-likelihood and the Akaike information criterion (AIC) among the three models, the OLS model (R2 = 0.0741, log likelihood = −1819.69, AIC = 3665.38), SLM (R2 = 0.0786, log likelihood = −1819.04, AIC = 3665.08) and SEM (R2 = 0.0743, log likelihood = −1819.67, AIC = 3665.36), identified that the spatial lag model (SLM) was best for model fit for the regression model. There was a positive significant association between nitrogen oxide (p = 0.027), rainfall (p = 0.036) and sunshine hour (p = 0.048), while the relative humidity (p = 0.034) had an adverse association with scarlet fever incidence in SLM. (4) Conclusions: Our findings indicated that meteorological, as well as air pollutant factors may increase the incidence of scarlet fever; these findings may help to guide scarlet fever control programs and targeting the intervention. PMID:27827946

  18. The Association between Environmental Factors and Scarlet Fever Incidence in Beijing Region: Using GIS and Spatial Regression Models.

    PubMed

    Mahara, Gehendra; Wang, Chao; Yang, Kun; Chen, Sipeng; Guo, Jin; Gao, Qi; Wang, Wei; Wang, Quanyi; Guo, Xiuhua

    2016-11-04

    (1) Background: Evidence regarding scarlet fever and its relationship with meteorological, including air pollution factors, is not very available. This study aimed to examine the relationship between ambient air pollutants and meteorological factors with scarlet fever occurrence in Beijing, China. (2) Methods: A retrospective ecological study was carried out to distinguish the epidemic characteristics of scarlet fever incidence in Beijing districts from 2013 to 2014. Daily incidence and corresponding air pollutant and meteorological data were used to develop the model. Global Moran's I statistic and Anselin's local Moran's I (LISA) were applied to detect the spatial autocorrelation (spatial dependency) and clusters of scarlet fever incidence. The spatial lag model (SLM) and spatial error model (SEM) including ordinary least squares (OLS) models were then applied to probe the association between scarlet fever incidence and meteorological including air pollution factors. (3) Results: Among the 5491 cases, more than half (62%) were male, and more than one-third (37.8%) were female, with the annual average incidence rate 14.64 per 100,000 population. Spatial autocorrelation analysis exhibited the existence of spatial dependence; therefore, we applied spatial regression models. After comparing the values of R-square, log-likelihood and the Akaike information criterion (AIC) among the three models, the OLS model (R² = 0.0741, log likelihood = -1819.69, AIC = 3665.38), SLM (R² = 0.0786, log likelihood = -1819.04, AIC = 3665.08) and SEM (R² = 0.0743, log likelihood = -1819.67, AIC = 3665.36), identified that the spatial lag model (SLM) was best for model fit for the regression model. There was a positive significant association between nitrogen oxide ( p = 0.027), rainfall ( p = 0.036) and sunshine hour ( p = 0.048), while the relative humidity ( p = 0.034) had an adverse association with scarlet fever incidence in SLM. (4) Conclusions: Our findings indicated that meteorological, as well as air pollutant factors may increase the incidence of scarlet fever; these findings may help to guide scarlet fever control programs and targeting the intervention.

  19. Advances in the use of observed spatial patterns of catchment hydrological response

    NASA Astrophysics Data System (ADS)

    Grayson, Rodger B.; Blöschl, Günter; Western, Andrew W.; McMahon, Thomas A.

    Over the past two decades there have been repeated calls for the collection of new data for use in developing hydrological science. The last few years have begun to bear fruit from the seeds sown by these calls, through increases in the availability and utility of remote sensing data, as well as the execution of campaigns in research catchments aimed at providing new data for advancing hydrological understanding and predictive capability. In this paper we discuss some philosophical considerations related to model complexity, data availability and predictive performance, highlighting the potential of observed patterns in moving the science and practice of catchment hydrology forward. We then review advances that have arisen from recent work on spatial patterns, including in the characterisation of spatial structure and heterogeneity, and the use of patterns for developing, calibrating and testing distributed hydrological models. We illustrate progress via examples using observed patterns of snow cover, runoff occurrence and soil moisture. Methods for the comparison of patterns are presented, illustrating how they can be used to assess hydrologically important characteristics of model performance. These methods include point-to-point comparisons, spatial relationships between errors and landscape parameters, transects, and optimal local alignment. It is argued that the progress made to date augers well for future developments, but there is scope for improvements in several areas. These include better quantitative methods for pattern comparisons, better use of pattern information in data assimilation and modelling, and a call for improved archiving of data from field studies to assist in comparative studies for generalising results and developing fundamental understanding.

  20. GIS, remote sensing and spatial modeling for conservation of stone forest landscape in Lunan, China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanrong

    The Lunan Stone Forest is the World's premier pinnacle karst landscape, with considerable scientific and cultural importance. Because of its inherent ecological fragility and ongoing human disruption, especially recently burgeoning tourism development, the landscape is stressed and is in danger of being destroyed. Conservation policies have been implemented by the local and national governments, but many problems remain in the national park. For example, there is no accurate detailed map and no computer system to help authorities manage the natural resources. By integrating GIS, remote sensing and spatial modeling this dissertation investigates the issue of landscape conservation and develops some methodologies to assist in management of the natural resources in the national park. Four elements are involved: (1) To help decision-makers and residents understand the scope of resource exploitation and develop appropriate protective strategies, the dissertation documents how the landscape has been changed by human activities over the past 3 decades; (2) To help authorities scientifically designate different levels of protection in the park and to let the public actively participate in conservation decision making, a web-based Spatial Decision Support System for the conservation of the landscape was developed; (3) To make data sharing and integration easy in the future, a GML-based interoperable database for the park was implemented; and (4) To acquire more information and provide the uncertainty information to landscape conservation decision-makers, spatial land use patterns were modeled and the distributional uncertainty of land cover categories was assessed using a triplex Markov chain (TMC) model approach.

  1. Species extinction thresholds in the face of spatially correlated periodic disturbance.

    PubMed

    Liao, Jinbao; Ying, Zhixia; Hiebeler, David E; Wang, Yeqiao; Takada, Takenori; Nijs, Ivan

    2015-10-20

    The spatial correlation of disturbance is gaining attention in landscape ecology, but knowledge is still lacking on how species traits determine extinction thresholds under spatially correlated disturbance regimes. Here we develop a pair approximation model to explore species extinction risk in a lattice-structured landscape subject to aggregated periodic disturbance. Increasing disturbance extent and frequency accelerated population extinction irrespective of whether dispersal was local or global. Spatial correlation of disturbance likewise increased species extinction risk, but only for local dispersers. This indicates that models based on randomly simulated disturbances (e.g., mean-field or non-spatial models) may underestimate real extinction rates. Compared to local dispersal, species with global dispersal tolerated more severe disturbance, suggesting that the spatial correlation of disturbance favors long-range dispersal from an evolutionary perspective. Following disturbance, intraspecific competition greatly enhanced the extinction risk of distance-limited dispersers, while it surprisingly did not influence the extinction thresholds of global dispersers, apart from decreasing population density to some degree. As species respond differently to disturbance regimes with different spatiotemporal properties, different regimes may accommodate different species.

  2. Canopies to Continents: What spatial scales are needed to represent landcover distributions in earth system models?

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Duhl, T.

    2011-12-01

    Increasing computational resources have enabled a steady improvement in the spatial resolution used for earth system models. Land surface models and landcover distributions have kept ahead by providing higher spatial resolution than typically used in these models. Satellite observations have played a major role in providing high resolution landcover distributions over large regions or the entire earth surface but ground observations are needed to calibrate these data and provide accurate inputs for models. As our ability to resolve individual landscape components improves, it is important to consider what scale is sufficient for providing inputs to earth system models. The required spatial scale is dependent on the processes being represented and the scientific questions being addressed. This presentation will describe the development a contiguous U.S. landcover database using high resolution imagery (1 to 1000 meters) and surface observations of species composition and other landcover characteristics. The database includes plant functional types and species composition and is suitable for driving land surface models (CLM and MEGAN) that predict land surface exchange of carbon, water, energy and biogenic reactive gases (e.g., isoprene, sesquiterpenes, and NO). We investigate the sensitivity of model results to landcover distributions with spatial scales ranging over six orders of magnitude (1 meter to 1000000 meters). The implications for predictions of regional climate and air quality will be discussed along with recommendations for regional and global earth system modeling.

  3. A Behavioral Model of Landscape Change in the Amazon Basin: The Colonist Case

    NASA Technical Reports Server (NTRS)

    Walker, R. A.; Drzyzga, S. A.; Li, Y. L.; Wi, J. G.; Caldas, M.; Arima, E.; Vergara, D.

    2004-01-01

    This paper presents the prototype of a predictive model capable of describing both magnitudes of deforestation and its spatial articulation into patterns of forest fragmentation. In a departure from other landscape models, it establishes an explicit behavioral foundation for algorithm development, predicated on notions of the peasant economy and on household production theory. It takes a 'bottom-up' approach, generating the process of land-cover change occurring at lot level together with the geography of a transportation system to describe regional landscape change. In other words, it translates the decentralized decisions of individual households into a collective, spatial impact. In so doing, the model unites the richness of survey research on farm households with the analytical rigor of spatial analysis enabled by geographic information systems (GIs). The paper describes earlier efforts at spatial modeling, provides a critique of the so-called spatially explicit model, and elaborates a behavioral foundation by considering farm practices of colonists in the Amazon basin. It then uses, insight from the behavioral statement to motivate a GIs-based model architecture. The model is implemented for a long-standing colonization frontier in the eastern sector of the basin, along the Trans-Amazon Highway in the State of Para, Brazil. Results are subjected to both sensitivity analysis and error assessment, and suggestions are made about how the model could be improved.

  4. Performance analysis of improved methodology for incorporation of spatial/spectral variability in synthetic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Scanlan, Neil W.; Schott, John R.; Brown, Scott D.

    2004-01-01

    Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.

  5. Performance analysis of improved methodology for incorporation of spatial/spectral variability in synthetic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Scanlan, Neil W.; Schott, John R.; Brown, Scott D.

    2003-12-01

    Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.

  6. Regional-specific Stochastic Simulation of Spatially-distributed Ground-motion Time Histories using Wavelet Packet Analysis

    NASA Astrophysics Data System (ADS)

    Huang, D.; Wang, G.

    2014-12-01

    Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.

  7. A Biophysical Modeling Framework for Assessing the Environmental Impact of Biofuel Production

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Izaurradle, C.; Manowitz, D.; West, T. O.; Post, W. M.; Thomson, A. M.; Nichols, J.; Bandaru, V.; Williams, J. R.

    2009-12-01

    Long-term sustainability of a biofuel economy necessitates environmentally friendly biofuel production systems. We describe a biophysical modeling framework developed to understand and quantify the environmental value and impact (e.g. water balance, nutrients balance, carbon balance, and soil quality) of different biomass cropping systems. This modeling framework consists of three major components: 1) a Geographic Information System (GIS) based data processing system, 2) a spatially-explicit biophysical modeling approach, and 3) a user friendly information distribution system. First, we developed a GIS to manage the large amount of geospatial data (e.g. climate, land use, soil, and hydrograhy) and extract input information for the biophysical model. Second, the Environmental Policy Integrated Climate (EPIC) biophysical model is used to predict the impact of various cropping systems and management intensities on productivity, water balance, and biogeochemical variables. Finally, a geo-database is developed to distribute the results of ecosystem service variables (e.g. net primary productivity, soil carbon balance, soil erosion, nitrogen and phosphorus losses, and N2O fluxes) simulated by EPIC for each spatial modeling unit online using PostgreSQL. We applied this framework in a Regional Intensive Management Area (RIMA) of 9 counties in Michigan. A total of 4,833 spatial units with relatively homogeneous biophysical properties were derived using SSURGO, Crop Data Layer, County, and 10-digit watershed boundaries. For each unit, EPIC was executed from 1980 to 2003 under 54 cropping scenarios (eg. corn, switchgrass, and hybrid poplar). The simulation results were compared with historical crop yields from USDA NASS. Spatial mapping of the results show high variability among different cropping scenarios in terms of the simulated ecosystem services variables. Overall, the framework developed in this study enables the incorporation of environmental factors into economic and life-cycle analysis in order to optimize biomass cropping production scenarios.

  8. A SCR Model Calibration Approach with Spatially Resolved Measurements and NH 3 Storage Distributions

    DOE PAGES

    Song, Xiaobo; Parker, Gordon G.; Johnson, John H.; ...

    2014-11-27

    The selective catalytic reduction (SCR) is a technology used for reducing NO x emissions in the heavy-duty diesel (HDD) engine exhaust. In this study, the spatially resolved capillary inlet infrared spectroscopy (Spaci-IR) technique was used to study the gas concentration and NH 3 storage distributions in a SCR catalyst, and to provide data for developing a SCR model to analyze the axial gaseous concentration and axial distributions of NH 3 storage. A two-site SCR model is described for simulating the reaction mechanisms. The model equations and a calculation method was developed using the Spaci-IR measurements to determine the NH 3more » storage capacity and the relationships between certain kinetic parameters of the model. Moreover, a calibration approach was then applied for tuning the kinetic parameters using the spatial gaseous measurements and calculated NH3 storage as a function of axial position instead of inlet and outlet gaseous concentrations of NO, NO 2, and NH 3. The equations and the approach for determining the NH 3 storage capacity of the catalyst and a method of dividing the NH 3 storage capacity between the two storage sites are presented. It was determined that the kinetic parameters of the adsorption and desorption reactions have to follow certain relationships for the model to simulate the experimental data. Finally, the modeling results served as a basis for developing full model calibrations to SCR lab reactor and engine data and state estimator development as described in the references (Song et al. 2013a, b; Surenahalli et al. 2013).« less

  9. Geospatial Information Informs Bonobo (pan Paniscus) Conservation Efforts in the Democratic Republic of the Congo

    NASA Astrophysics Data System (ADS)

    Nackoney, J.; Hickey, J.; Williams, D.; Facheux, C.; Dupain, J.

    2014-12-01

    The bonobo (Pan paniscus), a great ape that is endemic to the Democratic Republic of the Congo (DRC), has been listed as Endangered on the IUCN Red List since 2007. Hunting and habitat loss are primary threats. Two recent wars and ongoing conflicts in the DRC have resulted in political and economic instability that hampers on-the-ground work, thereby accentuating the importance of spatial data and maps as tools for monitoring threats remotely and prioritizing locations for safeguarding bonobo habitat. Several regional and rangewide efforts have leveraged the utility of existing spatial data to help focus limited resources for effective broad-scale conservation of these great apes. At local scales, we developed spatial models to identify locations of highest hunting pressure, predict future human settlement and agricultural expansion, map areas of highest conservation value to bonobos, and identify the connective corridors linking them. We identified 42 least-disturbed wildland blocks meeting the minimum home range size needed for bonobos, and 32 potential corridors. At the range-wide scale, we developed a first range-wide spatial model of suitable conditions for the bonobo; this was a major contribution to the development of a Bonobo Conservation Strategy for 2012-2022, recently published by IUCN. The model used a forest edge density metric and other biotic and abiotic variables in conjunction with bonobo nest data collected during 2003-2010 by over 40 bonobo researchers. Approximately 28% of the range was predicted suitable; of that, about 27.5% was located in official protected areas. Highlighting these examples, this presentation will discuss the conservation status of bonobos and how spatial data and models are being utilized for the formation of strategic conservation plans.

  10. Development and Validation of a New Methodology to Assess the Vineyard Water Status by On-the-Go Near Infrared Spectroscopy

    PubMed Central

    Diago, Maria P.; Fernández-Novales, Juan; Gutiérrez, Salvador; Marañón, Miguel; Tardaguila, Javier

    2018-01-01

    Assessing water status and optimizing irrigation is of utmost importance in most winegrowing countries, as the grapevine vegetative growth, yield, and grape quality can be impaired under certain water stress situations. Conventional plant-based methods for water status monitoring are either destructive or time and labor demanding, therefore unsuited to detect the spatial variation of moisten content within a vineyard plot. In this context, this work aims at the development and comprehensive validation of a novel, non-destructive methodology to assess the vineyard water status distribution using on-the-go, contactless, near infrared (NIR) spectroscopy. Likewise, plant water status prediction models were built and intensely validated using the stem water potential (ψs) as gold standard. Predictive models were developed making use of a vast number of measurements, acquired on 15 dates with diverse environmental conditions, at two different spatial scales, on both sides of vertical shoot positioned canopies, over two consecutive seasons. Different cross-validation strategies were also tested and compared. Predictive models built from east-acquired spectra yielded the best performance indicators in both seasons, with determination coefficient of prediction (RP2) ranging from 0.68 to 0.85, and sensitivity (expressed as prediction root mean square error) between 0.131 and 0.190 MPa, regardless the spatial scale. These predictive models were implemented to map the spatial variability of the vineyard water status at two different dates, and provided useful, practical information to help delineating specific irrigation schedules. The performance and the large amount of data that this on-the-go spectral solution provides, facilitates the exploitation of this non-destructive technology to monitor and map the vineyard water status variability with high spatial and temporal resolution, in the context of precision and sustainable viticulture. PMID:29441086

  11. Development and Validation of a New Methodology to Assess the Vineyard Water Status by On-the-Go Near Infrared Spectroscopy.

    PubMed

    Diago, Maria P; Fernández-Novales, Juan; Gutiérrez, Salvador; Marañón, Miguel; Tardaguila, Javier

    2018-01-01

    Assessing water status and optimizing irrigation is of utmost importance in most winegrowing countries, as the grapevine vegetative growth, yield, and grape quality can be impaired under certain water stress situations. Conventional plant-based methods for water status monitoring are either destructive or time and labor demanding, therefore unsuited to detect the spatial variation of moisten content within a vineyard plot. In this context, this work aims at the development and comprehensive validation of a novel, non-destructive methodology to assess the vineyard water status distribution using on-the-go, contactless, near infrared (NIR) spectroscopy. Likewise, plant water status prediction models were built and intensely validated using the stem water potential (ψ s ) as gold standard. Predictive models were developed making use of a vast number of measurements, acquired on 15 dates with diverse environmental conditions, at two different spatial scales, on both sides of vertical shoot positioned canopies, over two consecutive seasons. Different cross-validation strategies were also tested and compared. Predictive models built from east-acquired spectra yielded the best performance indicators in both seasons, with determination coefficient of prediction ([Formula: see text]) ranging from 0.68 to 0.85, and sensitivity (expressed as prediction root mean square error) between 0.131 and 0.190 MPa, regardless the spatial scale. These predictive models were implemented to map the spatial variability of the vineyard water status at two different dates, and provided useful, practical information to help delineating specific irrigation schedules. The performance and the large amount of data that this on-the-go spectral solution provides, facilitates the exploitation of this non-destructive technology to monitor and map the vineyard water status variability with high spatial and temporal resolution, in the context of precision and sustainable viticulture.

  12. Development and deployment of a water-crop-nutrient simulation model embedded in a web application

    NASA Astrophysics Data System (ADS)

    Langella, Giuliano; Basile, Angelo; Coppola, Antonio; Manna, Piero; Orefice, Nadia; Terribile, Fabio

    2016-04-01

    It is long time by now that scientific research on environmental and agricultural issues spent large effort in the development and application of models for prediction and simulation in spatial and temporal domains. This is fulfilled by studying and observing natural processes (e.g. rainfall, water and chemicals transport in soils, crop growth) whose spatiotemporal behavior can be reproduced for instance to predict irrigation and fertilizer requirements and yield quantities/qualities. In this work a mechanistic model to simulate water flow and solute transport in the soil-plant-atmosphere continuum is presented. This desktop computer program was written according to the specific requirement of developing web applications. The model is capable to solve the following issues all together: (a) water balance and (b) solute transport; (c) crop modelling; (d) GIS-interoperability; (e) embedability in web-based geospatial Decision Support Systems (DSS); (f) adaptability at different scales of application; and (g) ease of code modification. We maintained the desktop characteristic in order to further develop (e.g. integrate novel features) and run the key program modules for testing and validation purporses, but we also developed a middleware component to allow the model run the simulations directly over the web, without software to be installed. The GIS capabilities allows the web application to make simulations in a user-defined region of interest (delimited over a geographical map) without the need to specify the proper combination of model parameters. It is possible since the geospatial database collects information on pedology, climate, crop parameters and soil hydraulic characteristics. Pedological attributes include the spatial distribution of key soil data such as soil profile horizons and texture. Further, hydrological parameters are selected according to the knowledge about the spatial distribution of soils. The availability and definition in the geospatial domain of these attributes allow the simulation outputs at a different spatial scale. Two different applications were implemented using the same framework but with different configurations of the software pieces making the physically based modelling chain: an irrigation tool simulating water requirements and their dates and a fertilization tool for optimizing in particular mineral nitrogen adds.

  13. Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability

    NASA Technical Reports Server (NTRS)

    Entekhabi, D.; Eagleson, P. S.

    1989-01-01

    Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.

  14. Control of experimental uncertainties in filtered Rayleigh scattering measurements

    NASA Technical Reports Server (NTRS)

    Forkey, Joseph N.; Finkelstein, N. D.; Lempert, Walter R.; Miles, Richard B.

    1995-01-01

    Filtered Rayleigh Scattering is a technique which allows for measurement of velocity, temperature, and pressure in unseeded flows, spatially resolved in 2-dimensions. We present an overview of the major components of a Filtered Rayleigh Scattering system. In particular, we develop and discuss a detailed theoretical model along with associated model parameters and related uncertainties. Based on this model, we then present experimental results for ambient room air and for a Mach 2 free jet, including spatially resolved measurements of velocity, temperature, and pressure.

  15. Predicting the mixed-mode I/II spatial damage propagation along 3D-printed soft interfacial layer via a hyperelastic softening model

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Yaning

    2018-07-01

    A methodology was developed to use a hyperelastic softening model to predict the constitutive behavior and the spatial damage propagation of nonlinear materials with damage-induced softening under mixed-mode loading. A user subroutine (ABAQUS/VUMAT) was developed for numerical implementation of the model. 3D-printed wavy soft rubbery interfacial layer was used as a material system to verify and validate the methodology. The Arruda - Boyce hyperelastic model is incorporated with the softening model to capture the nonlinear pre-and post- damage behavior of the interfacial layer under mixed Mode I/II loads. To characterize model parameters of the 3D-printed rubbery interfacial layer, a series of scarf-joint specimens were designed, which enabled systematic variation of stress triaxiality via a single geometric parameter, the slant angle. It was found that the important model parameter m is exponentially related to the stress triaxiality. Compact tension specimens of the sinusoidal wavy interfacial layer with different waviness were designed and fabricated via multi-material 3D printing. Finite element (FE) simulations were conducted to predict the spatial damage propagation of the material within the wavy interfacial layer. Compact tension experiments were performed to verify the model prediction. The results show that the model developed is able to accurately predict the damage propagation of the 3D-printed rubbery interfacial layer under complicated stress-state without pre-defined failure criteria.

  16. Development of Spatiotemporal Bias-Correction Techniques for Downscaling GCM Predictions

    NASA Astrophysics Data System (ADS)

    Hwang, S.; Graham, W. D.; Geurink, J.; Adams, A.; Martinez, C. J.

    2010-12-01

    Accurately representing the spatial variability of precipitation is an important factor for predicting watershed response to climatic forcing, particularly in small, low-relief watersheds affected by convective storm systems. Although Global Circulation Models (GCMs) generally preserve spatial relationships between large-scale and local-scale mean precipitation trends, most GCM downscaling techniques focus on preserving only observed temporal variability on point by point basis, not spatial patterns of events. Downscaled GCM results (e.g., CMIP3 ensembles) have been widely used to predict hydrologic implications of climate variability and climate change in large snow-dominated river basins in the western United States (Diffenbaugh et al., 2008; Adam et al., 2009). However fewer applications to smaller rain-driven river basins in the southeastern US (where preserving spatial variability of rainfall patterns may be more important) have been reported. In this study a new method was developed to bias-correct GCMs to preserve both the long term temporal mean and variance of the precipitation data, and the spatial structure of daily precipitation fields. Forty-year retrospective simulations (1960-1999) from 16 GCMs were collected (IPCC, 2007; WCRP CMIP3 multi-model database: https://esg.llnl.gov:8443/), and the daily precipitation data at coarse resolution (i.e., 280km) were interpolated to 12km spatial resolution and bias corrected using gridded observations over the state of Florida (Maurer et al., 2002; Wood et al, 2002; Wood et al, 2004). In this method spatial random fields which preserved the observed spatial correlation structure of the historic gridded observations and the spatial mean corresponding to the coarse scale GCM daily rainfall were generated. The spatiotemporal variability of the spatio-temporally bias-corrected GCMs were evaluated against gridded observations, and compared to the original temporally bias-corrected and downscaled CMIP3 data for the central Florida. The hydrologic response of two southwest Florida watersheds to the gridded observation data, the original bias corrected CMIP3 data, and the new spatiotemporally corrected CMIP3 predictions was compared using an integrated surface-subsurface hydrologic model developed by Tampa Bay Water.

  17. Rapid Response Tools and Datasets for Post-fire Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Miller, Mary Ellen; MacDonald, Lee H.; Billmire, Michael; Elliot, William J.; Robichaud, Pete R.

    2016-04-01

    Rapid response is critical following natural disasters. Flooding, erosion, and debris flows are a major threat to life, property and municipal water supplies after moderate and high severity wildfires. The problem is that mitigation measures must be rapidly implemented if they are to be effective, but they are expensive and cannot be applied everywhere. Fires, runoff, and erosion risks also are highly heterogeneous in space, so there is an urgent need for a rapid, spatially-explicit assessment. Past post-fire modeling efforts have usually relied on lumped, conceptual models because of the lack of readily available, spatially-explicit data layers on the key controls of topography, vegetation type, climate, and soil characteristics. The purpose of this project is to develop a set of spatially-explicit data layers for use in process-based models such as WEPP, and to make these data layers freely available. The resulting interactive online modeling database (http://geodjango.mtri.org/geowepp/) is now operational and publically available for 17 western states in the USA. After a fire, users only need to upload a soil burn severity map, and this is combined with the pre-existing data layers to generate the model inputs needed for spatially explicit models such as GeoWEPP (Renschler, 2003). The development of this online database has allowed us to predict post-fire erosion and various remediation scenarios in just 1-7 days for six fires ranging in size from 4-540 km2. These initial successes have stimulated efforts to further improve the spatial extent and amount of data, and add functionality to support the USGS debris flow model, batch processing for Disturbed WEPP (Elliot et al., 2004) and ERMiT (Robichaud et al., 2007), and to support erosion modeling for other land uses, such as agriculture or mining. The design and techniques used to create the database and the modeling interface are readily repeatable for any area or country that has the necessary topography, climate, soil, and land cover datasets.

  18. SAS macro programs for geographically weighted generalized linear modeling with spatial point data: applications to health research.

    PubMed

    Chen, Vivian Yi-Ju; Yang, Tse-Chuan

    2012-08-01

    An increasing interest in exploring spatial non-stationarity has generated several specialized analytic software programs; however, few of these programs can be integrated natively into a well-developed statistical environment such as SAS. We not only developed a set of SAS macro programs to fill this gap, but also expanded the geographically weighted generalized linear modeling (GWGLM) by integrating the strengths of SAS into the GWGLM framework. Three features distinguish our work. First, the macro programs of this study provide more kernel weighting functions than the existing programs. Second, with our codes the users are able to better specify the bandwidth selection process compared to the capabilities of existing programs. Third, the development of the macro programs is fully embedded in the SAS environment, providing great potential for future exploration of complicated spatially varying coefficient models in other disciplines. We provided three empirical examples to illustrate the use of the SAS macro programs and demonstrated the advantages explained above. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. MONET: multidimensional radiative cloud scene model

    NASA Astrophysics Data System (ADS)

    Chervet, Patrick

    1999-12-01

    All cloud fields exhibit variable structures (bulge) and heterogeneities in water distributions. With the development of multidimensional radiative models by the atmospheric community, it is now possible to describe horizontal heterogeneities of the cloud medium, to study these influences on radiative quantities. We have developed a complete radiative cloud scene generator, called MONET (French acronym for: MOdelisation des Nuages En Tridim.) to compute radiative cloud scene from visible to infrared wavelengths for various viewing and solar conditions, different spatial scales, and various locations on the Earth. MONET is composed of two parts: a cloud medium generator (CSSM -- Cloud Scene Simulation Model) developed by the Air Force Research Laboratory, and a multidimensional radiative code (SHDOM -- Spherical Harmonic Discrete Ordinate Method) developed at the University of Colorado by Evans. MONET computes images for several scenario defined by user inputs: date, location, viewing angles, wavelength, spatial resolution, meteorological conditions (atmospheric profiles, cloud types)... For the same cloud scene, we can output different viewing conditions, or/and various wavelengths. Shadowing effects on clouds or grounds are taken into account. This code is useful to study heterogeneity effects on satellite data for various cloud types and spatial resolutions, and to determine specifications of new imaging sensor.

  20. The Effects of Web-Based Interactive Virtual Tours on the Development of Prospective Mathematics Teachers' Spatial Skills

    ERIC Educational Resources Information Center

    Kurtulus, Aytac

    2013-01-01

    The aim of this study was to investigate the effects of web-based interactive virtual tours on the development of prospective mathematics teachers' spatial skills. The study was designed based on experimental method. The "one-group pre-test post-test design" of this method was taken as the research model. The study was conducted with 3rd year…

  1. Developing spatial inequalities in carbon appropriation: a sociological analysis of changing local emissions across the United States.

    PubMed

    Elliott, James R; Clement, Matthew Thomas

    2015-05-01

    This study examines an overlooked dynamic in sociological research on greenhouse gas emissions: how local areas appropriate the global carbon cycle for use and exchange purposes as they develop. Drawing on theories of place and space, we hypothesize that development differentially drives and spatially decouples use- and exchange-oriented emissions at the local level. To test our hypotheses, we integrate longitudinal, county-level data on residential and industrial emissions from the Vulcan Project with demographic, economic and environmental data from the U.S. Census Bureau and National Land Change Database. Results from spatial regression models with two-way fixed-effects indicate that alongside innovations and efficiencies capable of reducing environmentally harmful effects of development comes a spatial disarticulation between carbon-intensive production and consumption within as well as across societies. Implications for existing theory, methods and policy are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Development of water environment information management and water pollution accident response system

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ruan, H.

    2009-12-01

    In recent years, many water pollution accidents occurred with the rapid economical development. In this study, water environment information management and water pollution accident response system are developed based on geographic information system (GIS) techniques. The system integrated spatial database, attribute database, hydraulic model, and water quality model under a user-friendly interface in a GIS environment. System ran in both Client/Server (C/S) and Browser/Server (B/S) platform which focused on model and inquiry respectively. System provided spatial and attribute data inquiry, water quality evaluation, statics, water pollution accident response case management (opening reservoir etc) and 2D and 3D visualization function, and gave assistant information to make decision on water pollution accident response. Polluted plume in Huaihe River were selected to simulate the transport of pollutes.

  3. A Spatial Faithful Cooperative System Based on Mixed Presence Groupware Model

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Xiangyu; Wang, Rui

    Traditional groupware platforms are found restrained and cumbersome for supporting geographically dispersed design collaboration. This paper starts with two groupware models, which are Single Display Groupware and Mixed Presence Groupware, and then discusses some of the limitations and argues how these limitations could possibly impair efficient communication among remote designers. Next, it suggests that the support for spatial faithfulness and Tangible User Interface (TUI) could help fill the gap between Face-to-Face (F2F) collaboration and computer-mediated remote collaboration. A spatial faithful groupware with TUI support is then developed to illustrate this concept.

  4. An Integer Programming Model for the Management of a Forest in the North of Portugal

    NASA Astrophysics Data System (ADS)

    Cerveira, Adelaide; Fonseca, Teresa; Mota, Artur; Martins, Isabel

    2011-09-01

    This study aims to develop an approach for the management of a forest of maritime pine located in the north region of Portugal. The forest is classified into five public lands, the so-called baldios, extending over 4432 ha. These baldios are co-managed by the Official Forest Services and the local communities mainly for timber production purposes. The forest planning involves non-spatial and spatial constraints. Spatial constraints dictate a maximum clearcut area and an exclusion time. An integer programming model is presented and the computational results are discussed.

  5. A Predictive Risk Model for A(H7N9) Human Infections Based on Spatial-Temporal Autocorrelation and Risk Factors: China, 2013–2014

    PubMed Central

    Dong, Wen; Yang, Kun; Xu, Quan-Li; Yang, Yu-Lian

    2015-01-01

    This study investigated the spatial distribution, spatial autocorrelation, temporal cluster, spatial-temporal autocorrelation and probable risk factors of H7N9 outbreaks in humans from March 2013 to December 2014 in China. The results showed that the epidemic spread with significant spatial-temporal autocorrelation. In order to describe the spatial-temporal autocorrelation of H7N9, an improved model was developed by introducing a spatial-temporal factor in this paper. Logistic regression analyses were utilized to investigate the risk factors associated with their distribution, and nine risk factors were significantly associated with the occurrence of A(H7N9) human infections: the spatial-temporal factor φ (OR = 2546669.382, p < 0.001), migration route (OR = 0.993, p < 0.01), river (OR = 0.861, p < 0.001), lake(OR = 0.992, p < 0.001), road (OR = 0.906, p < 0.001), railway (OR = 0.980, p < 0.001), temperature (OR = 1.170, p < 0.01), precipitation (OR = 0.615, p < 0.001) and relative humidity (OR = 1.337, p < 0.001). The improved model obtained a better prediction performance and a higher fitting accuracy than the traditional model: in the improved model 90.1% (91/101) of the cases during February 2014 occurred in the high risk areas (the predictive risk > 0.70) of the predictive risk map, whereas 44.6% (45/101) of which overlaid on the high risk areas (the predictive risk > 0.70) for the traditional model, and the fitting accuracy of the improved model was 91.6% which was superior to the traditional model (86.1%). The predictive risk map generated based on the improved model revealed that the east and southeast of China were the high risk areas of A(H7N9) human infections in February 2014. These results provided baseline data for the control and prevention of future human infections. PMID:26633446

  6. Engineering-Geological Data Model - The First Step to Build National Polish Standard for Multilevel Information Management

    NASA Astrophysics Data System (ADS)

    Ryżyński, Grzegorz; Nałęcz, Tomasz

    2016-10-01

    The efficient geological data management in Poland is necessary to support multilevel decision processes for government and local authorities in case of spatial planning, mineral resources and groundwater supply and the rational use of subsurface. Vast amount of geological information gathered in the digital archives and databases of Polish Geological Survey (PGS) is a basic resource for multi-scale national subsurface management. Data integration is the key factor to allow development of GIS and web tools for decision makers, however the main barrier for efficient geological information management is the heterogeneity of data in the resources of the Polish Geological Survey. Engineering-geological database is the first PGS thematic domain applied in the whole data integration plan. The solutions developed within this area will facilitate creation of procedures and standards for multilevel data management in PGS. Twenty years of experience in delivering digital engineering-geological mapping in 1:10 000 scale and archival geotechnical reports acquisition and digitisation allowed gathering of more than 300 thousands engineering-geological boreholes database as well as set of 10 thematic spatial layers (including foundation conditions map, depth to the first groundwater level, bedrock level, geohazards). Historically, the desktop approach was the source form of the geological-engineering data storage, resulting in multiple non-correlated interbase datasets. The need for creation of domain data model emerged and an object-oriented modelling (UML) scheme has been developed. The aim of the aforementioned development was to merge all datasets in one centralised Oracle server and prepare the unified spatial data structure for efficient web presentation and applications development. The presented approach will be the milestone toward creation of the Polish national standard for engineering-geological information management. The paper presents the approach and methodology of data unification, thematic vocabularies harmonisation, assumptions and results of data modelling as well as process of the integration of domain model with enterprise architecture implemented in PGS. Currently, there is no geological data standard in Poland. Lack of guidelines for borehole and spatial data management results in an increasing data dispersion as well as in growing barrier for multilevel data management and implementation of efficient decision support tools. Building the national geological data standard makes geotechnical information accessible to multiple institutions, universities, administration and research organisations and gather their data in the same, unified digital form according to the presented data model. Such approach is compliant with current digital trends and the idea of Spatial Data Infrastructure. Efficient geological data management is essential to support the sustainable development and the economic growth, as they allow implementation of geological information to assist the idea of Smart Cites, deliver information for Building Information Management (BIM) and support modern spatial planning. The engineering-geological domain data model presented in the paper is a scalable solution. Future implementation of developed procedures on other domains of PGS geological data is possible.

  7. Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters.

    PubMed

    Son, Yeongkwon; Osornio-Vargas, Álvaro R; O'Neill, Marie S; Hystad, Perry; Texcalac-Sangrador, José L; Ohman-Strickland, Pamela; Meng, Qingyu; Schwander, Stephan

    2018-05-17

    The Mexico City Metropolitan Area (MCMA) is one of the largest and most populated urban environments in the world and experiences high air pollution levels. To develop models that estimate pollutant concentrations at fine spatiotemporal scales and provide improved air pollution exposure assessments for health studies in Mexico City. We developed finer spatiotemporal land use regression (LUR) models for PM 2.5 , PM 10 , O 3 , NO 2 , CO and SO 2 using mixed effect models with the Least Absolute Shrinkage and Selection Operator (LASSO). Hourly traffic density was included as a temporal variable besides meteorological and holiday variables. Models of hourly, daily, monthly, 6-monthly and annual averages were developed and evaluated using traditional and novel indices. The developed spatiotemporal LUR models yielded predicted concentrations with good spatial and temporal agreements with measured pollutant levels except for the hourly PM 2.5 , PM 10 and SO 2 . Most of the LUR models met performance goals based on the standardized indices. LUR models with temporal scales greater than one hour were successfully developed using mixed effect models with LASSO and showed superior model performance compared to earlier LUR models, especially for time scales of a day or longer. The newly developed LUR models will be further refined with ongoing Mexico City air pollution sampling campaigns to improve personal exposure assessments. Copyright © 2018. Published by Elsevier B.V.

  8. Development of efficient and cost-effective distributed hydrological modeling tool MWEasyDHM based on open-source MapWindow GIS

    NASA Astrophysics Data System (ADS)

    Lei, Xiaohui; Wang, Yuhui; Liao, Weihong; Jiang, Yunzhong; Tian, Yu; Wang, Hao

    2011-09-01

    Many regions are still threatened with frequent floods and water resource shortage problems in China. Consequently, the task of reproducing and predicting the hydrological process in watersheds is hard and unavoidable for reducing the risks of damage and loss. Thus, it is necessary to develop an efficient and cost-effective hydrological tool in China as many areas should be modeled. Currently, developed hydrological tools such as Mike SHE and ArcSWAT (soil and water assessment tool based on ArcGIS) show significant power in improving the precision of hydrological modeling in China by considering spatial variability both in land cover and in soil type. However, adopting developed commercial tools in such a large developing country comes at a high cost. Commercial modeling tools usually contain large numbers of formulas, complicated data formats, and many preprocessing or postprocessing steps that may make it difficult for the user to carry out simulation, thus lowering the efficiency of the modeling process. Besides, commercial hydrological models usually cannot be modified or improved to be suitable for some special hydrological conditions in China. Some other hydrological models are open source, but integrated into commercial GIS systems. Therefore, by integrating hydrological simulation code EasyDHM, a hydrological simulation tool named MWEasyDHM was developed based on open-source MapWindow GIS, the purpose of which is to establish the first open-source GIS-based distributed hydrological model tool in China by integrating modules of preprocessing, model computation, parameter estimation, result display, and analysis. MWEasyDHM provides users with a friendly manipulating MapWindow GIS interface, selectable multifunctional hydrological processing modules, and, more importantly, an efficient and cost-effective hydrological simulation tool. The general construction of MWEasyDHM consists of four major parts: (1) a general GIS module for hydrological analysis, (2) a preprocessing module for modeling inputs, (3) a model calibration module, and (4) a postprocessing module. The general GIS module for hydrological analysis is developed on the basis of totally open-source GIS software, MapWindow, which contains basic GIS functions. The preprocessing module is made up of three submodules including a DEM-based submodule for hydrological analysis, a submodule for default parameter calculation, and a submodule for the spatial interpolation of meteorological data. The calibration module contains parallel computation, real-time computation, and visualization. The postprocessing module includes model calibration and model results spatial visualization using tabular form and spatial grids. MWEasyDHM makes it possible for efficient modeling and calibration of EasyDHM, and promises further development of cost-effective applications in various watersheds.

  9. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling: GEOSTATISTICAL SENSITIVITY ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Chen, Xingyuan; Ye, Ming

    Sensitivity analysis is an important tool for quantifying uncertainty in the outputs of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a hierarchical sensitivity analysis method that (1) constructs an uncertainty hierarchy by analyzing the input uncertainty sources, and (2) accounts for the spatial correlation among parameters at each level ofmore » the hierarchy using geostatistical tools. The contribution of uncertainty source at each hierarchy level is measured by sensitivity indices calculated using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport in model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally as driven by the dynamic interaction between groundwater and river water at the site. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed parameters.« less

  10. Developing and testing a global-scale regression model to quantify mean annual streamflow

    NASA Astrophysics Data System (ADS)

    Barbarossa, Valerio; Huijbregts, Mark A. J.; Hendriks, A. Jan; Beusen, Arthur H. W.; Clavreul, Julie; King, Henry; Schipper, Aafke M.

    2017-01-01

    Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF based on a dataset unprecedented in size, using observations of discharge and catchment characteristics from 1885 catchments worldwide, measuring between 2 and 106 km2. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area and catchment averaged mean annual precipitation and air temperature, slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error (RMSE) values were lower (0.29-0.38 compared to 0.49-0.57) and the modified index of agreement (d) was higher (0.80-0.83 compared to 0.72-0.75). Our regression model can be applied globally to estimate MAF at any point of the river network, thus providing a feasible alternative to spatially explicit process-based global hydrological models.

  11. Mapping vegetation and fuels for fire management on the Gila National Forest Complex, New Mexico

    Treesearch

    Robert E. Keane; Scott A. Mincemoyer; Kirsten M. Schmidt; Donald G. Long; Janice L. Garner

    2000-01-01

    (Please note: This PDF is part of a CD-ROM package only and was not printed on paper.) Fuels and vegetation spatial data layers required by the spatially explicit fire growth model FARSITE were developed for all lands in and around the Gila National Forest in New Mexico. Satellite imagery, terrain modeling, and biophysical simulation were used to create the three...

  12. A spatial econometric analysis of land-use change with land cover trends data: an application to the Pacific Northwest

    Treesearch

    David J. Lewis; Ralph J. Alig

    2014-01-01

    This paper develops a plot-level spatial econometric land-use model and estimates it with U.S. Geological Survey Land Cover Trends (LCT) geographic information system panel data for the western halves of the states of Oregon and Washington. The discrete-choice framework we use models plot-scale choices of the three dominant land uses in this region: forest, agriculture...

  13. The Effect of 3D-Modeling Training on Students' Spatial Reasoning Relative to Gender and Grade

    ERIC Educational Resources Information Center

    Šafhalter, Andrej; Vukman, Karin Bakracevic; Glodež, Srecko

    2016-01-01

    The aim of this research was to establish whether gender and age have an impact on spatial reasoning and its development through the use of 3D modeling. The study was conducted on a sample of 196 children from sixth to ninth grade, of whom 95 represented the experimental group and 101 the control group. The experimental group received 3D modeling…

  14. Modeling Spatial Dependence of Rainfall Extremes Across Multiple Durations

    NASA Astrophysics Data System (ADS)

    Le, Phuong Dong; Leonard, Michael; Westra, Seth

    2018-03-01

    Determining the probability of a flood event in a catchment given that another flood has occurred in a nearby catchment is useful in the design of infrastructure such as road networks that have multiple river crossings. These conditional flood probabilities can be estimated by calculating conditional probabilities of extreme rainfall and then transforming rainfall to runoff through a hydrologic model. Each catchment's hydrological response times are unlikely to be the same, so in order to estimate these conditional probabilities one must consider the dependence of extreme rainfall both across space and across critical storm durations. To represent these types of dependence, this study proposes a new approach for combining extreme rainfall across different durations within a spatial extreme value model using max-stable process theory. This is achieved in a stepwise manner. The first step defines a set of common parameters for the marginal distributions across multiple durations. The parameters are then spatially interpolated to develop a spatial field. Storm-level dependence is represented through the max-stable process for rainfall extremes across different durations. The dependence model shows a reasonable fit between the observed pairwise extremal coefficients and the theoretical pairwise extremal coefficient function across all durations. The study demonstrates how the approach can be applied to develop conditional maps of the return period and return level across different durations.

  15. Monitoring Method of Cow Anthrax Based on Gis and Spatial Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Li, Lin; Yang, Yong; Wang, Hongbin; Dong, Jing; Zhao, Yujun; He, Jianbin; Fan, Honggang

    Geographic information system (GIS) is a computer application system, which possesses the ability of manipulating spatial information and has been used in many fields related with the spatial information management. Many methods and models have been established for analyzing animal diseases distribution models and temporal-spatial transmission models. Great benefits have been gained from the application of GIS in animal disease epidemiology. GIS is now a very important tool in animal disease epidemiological research. Spatial analysis function of GIS can be widened and strengthened by using spatial statistical analysis, allowing for the deeper exploration, analysis, manipulation and interpretation of spatial pattern and spatial correlation of the animal disease. In this paper, we analyzed the cow anthrax spatial distribution characteristics in the target district A (due to the secret of epidemic data we call it district A) based on the established GIS of the cow anthrax in this district in combination of spatial statistical analysis and GIS. The Cow anthrax is biogeochemical disease, and its geographical distribution is related closely to the environmental factors of habitats and has some spatial characteristics, and therefore the correct analysis of the spatial distribution of anthrax cow for monitoring and the prevention and control of anthrax has a very important role. However, the application of classic statistical methods in some areas is very difficult because of the pastoral nomadic context. The high mobility of livestock and the lack of enough suitable sampling for the some of the difficulties in monitoring currently make it nearly impossible to apply rigorous random sampling methods. It is thus necessary to develop an alternative sampling method, which could overcome the lack of sampling and meet the requirements for randomness. The GIS computer application software ArcGIS9.1 was used to overcome the lack of data of sampling sites.Using ArcGIS 9.1 and GEODA to analyze the cow anthrax spatial distribution of district A. we gained some conclusions about cow anthrax' density: (1) there is a spatial clustering model. (2) there is an intensely spatial autocorrelation. We established a prediction model to estimate the anthrax distribution based on the spatial characteristic of the density of cow anthrax. Comparing with the true distribution, the prediction model has a well coincidence and is feasible to the application. The method using a GIS tool facilitates can be implemented significantly in the cow anthrax monitoring and investigation, and the space statistics - related prediction model provides a fundamental use for other study on space-related animal diseases.

  16. Environmental enrichment normalizes hippocampal timing coding in a malformed hippocampus.

    PubMed

    Hernan, Amanda E; Mahoney, J Matthew; Curry, Willie; Richard, Greg; Lucas, Marcella M; Massey, Andrew; Holmes, Gregory L; Scott, Rod C

    2018-01-01

    Neurodevelopmental insults leading to malformations of cortical development (MCD) are a common cause of psychiatric disorders, learning impairments and epilepsy. In the methylazoxymethanol (MAM) model of MCDs, animals have impairments in spatial cognition that, remarkably, are improved by post-weaning environmental enrichment (EE). To establish how EE impacts network-level mechanisms of spatial cognition, hippocampal in vivo single unit recordings were performed in freely moving animals in an open arena. We took a generalized linear modeling approach to extract fine spike timing (FST) characteristics and related these to place cell fidelity used as a surrogate of spatial cognition. We find that MAM disrupts FST and place-modulated rate coding in hippocampal CA1 and that EE improves many FST parameters towards normal. Moreover, FST parameters predict spatial coherence of neurons, suggesting that mechanisms determining altered FST are responsible for impaired cognition in MCDs. This suggests that FST parameters could represent a therapeutic target to improve cognition even in the context of a brain that develops with a structural abnormality.

  17. Spatial patterns of schistosomiasis in Burkina Faso: relevance of human mobility and water resources development

    NASA Astrophysics Data System (ADS)

    Perez-Saez, Javier; Bertuzzo, Enrico; Frohelich, Jean-Marc; Mande, Theophile; Ceperley, Natalie; Sou, Mariam; Yacouba, Hamma; Maiga, Hamadou; Sokolow, Susanne; De Leo, Giulio; Casagrandi, Renato; Gatto, Marino; Mari, Lorenzo; Rinaldo, Andrea

    2015-04-01

    We study the spatial geography of schistosomiasis in the african context of Burkina Faso by means of a spatially explicit model of disease dynamics and spread. The relevance of our work lies in its ability to describe quantitatively a geographic stratification of the disease burden capable of reproducing important spatial differences, and drivers/controls of disease spread. Among the latters, we consider specifically the development and management of water resources which have been singled out empirically as an important risk factor for schistosomiasis. The model includes remotely acquired and objectively manipulated information on the distributions of population, infrastructure, elevation and climatic drivers. It also includes a general description of human mobility and addresses a first-order characterization of the ecology of the intermediate host of the parasite causing the disease based on maximum entropy learning of relevant environmenal covariates. Spatial patterns of the disease were analyzed about their disease-free equilibrium by proper extraction and mapping of suitable eigenvectors of the Jacobian matrix subsuming all stability properties of the system. Human mobility was found to be a primary control of both pathogen invasion success and of the overall distribution of disease burden. The effects of water resources development were studied by accounting for the (prior and posterior) average distances of human settlements from water bodies that may serve as suitable habitats to the intermediate host of the parasite. Water developments, in combination with human mobility, were quantitatively related to disease spread into regions previously nearly disease-free and to large-scale empirical incidence patterns. We concluded that while the model still needs refinements based on field and epidemiological evidence, the framework proposed provides a powerful tool for large-scale, long-term public health planning and management of schistosomiasis.

  18. A study on spatial decision support systems for HIV/AIDS prevention based on COM GIS technology

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Luo, Huasong; Peng, Shungyun; Xu, Quanli

    2007-06-01

    Based on the deeply analysis of the current status and the existing problems of GIS technology applications in Epidemiology, this paper has proposed the method and process for establishing the spatial decision support systems of AIDS epidemic prevention by integrating the COM GIS, Spatial Database, GPS, Remote Sensing, and Communication technologies, as well as ASP and ActiveX software development technologies. One of the most important issues for constructing the spatial decision support systems of AIDS epidemic prevention is how to integrate the AIDS spreading models with GIS. The capabilities of GIS applications in the AIDS epidemic prevention have been described here in this paper firstly. Then some mature epidemic spreading models have also been discussed for extracting the computation parameters. Furthermore, a technical schema has been proposed for integrating the AIDS spreading models with GIS and relevant geospatial technologies, in which the GIS and model running platforms share a common spatial database and the computing results can be spatially visualized on Desktop or Web GIS clients. Finally, a complete solution for establishing the decision support systems of AIDS epidemic prevention has been offered in this paper based on the model integrating methods and ESRI COM GIS software packages. The general decision support systems are composed of data acquisition sub-systems, network communication sub-systems, model integrating sub-systems, AIDS epidemic information spatial database sub-systems, AIDS epidemic information querying and statistical analysis sub-systems, AIDS epidemic dynamic surveillance sub-systems, AIDS epidemic information spatial analysis and decision support sub-systems, as well as AIDS epidemic information publishing sub-systems based on Web GIS.

  19. Sensitivity of snowpack storage to precipitation and temperature using spatial and temporal analog models

    NASA Astrophysics Data System (ADS)

    Luce, Charles H.; Lopez-Burgos, Viviana; Holden, Zachary

    2014-12-01

    Empirical sensitivity analyses are important for evaluation of the effects of a changing climate on water resources and ecosystems. Although mechanistic models are commonly applied for evaluation of climate effects for snowmelt, empirical relationships provide a first-order validation of the various postulates required for their implementation. Previous studies of empirical sensitivity for April 1 snow water equivalent (SWE) in the western United States were developed by regressing interannual variations in SWE to winter precipitation and temperature. This offers a temporal analog for climate change, positing that a warmer future looks like warmer years. Spatial analogs are used to hypothesize that a warmer future may look like warmer places, and are frequently applied alternatives for complex processes, or states/metrics that show little interannual variability (e.g., forest cover). We contrast spatial and temporal analogs for sensitivity of April 1 SWE and the mean residence time of snow (SRT) using data from 524 Snowpack Telemetry (SNOTEL) stations across the western U.S. We built relatively strong models using spatial analogs to relate temperature and precipitation climatology to snowpack climatology (April 1 SWE, R2=0.87, and SRT, R2=0.81). Although the poorest temporal analog relationships were in areas showing the highest sensitivity to warming, spatial analog models showed consistent performance throughout the range of temperature and precipitation. Generally, slopes from the spatial relationships showed greater thermal sensitivity than the temporal analogs, and high elevation stations showed greater vulnerability using a spatial analog than shown in previous modeling and sensitivity studies. The spatial analog models provide a simple perspective to evaluate potential futures and may be useful in further evaluation of snowpack with warming.

  20. Area-based tests for association between spatial patterns

    NASA Astrophysics Data System (ADS)

    Maruca, Susan L.; Jacquez, Geoffrey M.

    Edge effects pervade natural systems, and the processes that determine spatial heterogeneity (e.g. physical, geochemical, biological, ecological factors) occur on diverse spatial scales. Hence, tests for association between spatial patterns should be unbiased by edge effects and be based on null spatial models that incorporate the spatial heterogeneity characteristic of real-world systems. This paper develops probabilistic pattern association tests that are appropriate when edge effects are present, polygon size is heterogeneous, and the number of polygons varies from one classification to another. The tests are based on the amount of overlap between polygons in each of two partitions. Unweighted and area-weighted versions of the statistics are developed and verified using scenarios representing both polygon overlap and avoidance at different spatial scales and for different distributions of polygon sizes. These statistics were applied to Soda Butte Creek, Wyoming, to determine whether stream microhabitats, such as riffles, pools and glides, can be identified remotely using high spatial resolution hyperspectral imagery. These new ``spatially explicit'' techniques provide information and insights that cannot be obtained from the spectral information alone.

  1. Linking Meteorology, Air Quality Models and Observations to ...

    EPA Pesticide Factsheets

    Epidemiologic studies are critical in establishing the association between exposure to air pollutants and adverse health effects. Results of epidemiologic studies are used by U.S. EPA in developing air quality standards to protect the public from the health effects of air pollutants. A major challenge in environmental epidemiology is adequate exposure characterization. Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal variability in ambient concentrations, nor the influence of infiltration and indoor sources. Central-site monitoring becomes even more problematic for certain air pollutants that exhibit significant spatial heterogeneity. Statistical interpolation techniques and passive monitoring methods can provide additional spatial resolution in ambient concentration estimates. In addition, spatio-temporal models, which integrate GIS data and other factors, such as meteorology, have also been developed to produce more resolved estimates of ambient concentrations. Models, such as the Community Multi-Scale Air Quality (CMAQ) model, estimate ambient concentrations by combining information on meteorology, source emissions, and chemical-fate and transport. Hybrid modeling approaches, which integrate regional scale models with local scale dispersion

  2. Development and application of a spatial hydrology model of Okefenokee Swamp, Georgia

    USGS Publications Warehouse

    Loftin, C.S.; Kitchens, W.M.; Ansay, N.

    2001-01-01

    The model described herein was used to assess effects of the Suwannee River sill (a low earthen dam constructed to impound the Suwannee River within the Okefenokee National Wildlife Refuge to eliminate wildfires) on the hydrologic environment of Okefenokee Swamp, Georgia. Developed with Arc/Info Macro Language routines in the GRID environment, the model distributes water in the swamp landscape using precipitation, inflow, evapotranspiration, outflow, and standing water. Water movement direction and rate are determined by the neighborhood topographic gradient, determined using survey grade Global Positioning Systems technology. Model data include flow rates from USGS monitored gauges, precipitation volumes and water levels measured within the swamp, and estimated evapotranspiration volumes spatially modified by vegetation type. Model output in semi-monthly time steps includes water depth, water surface elevation above mean sea level, and movement direction and volume. Model simulations indicate the sill impoundment affects 18 percent of the swamp during high water conditions when wildfires are scarce and has minimal spatial effect (increasing hydroperiods in less than 5 percent of the swamp) during low water and drought conditions when fire occurrence is high but precipitation and inflow volumes are limited.

  3. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    USGS Publications Warehouse

    Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.

    2015-01-01

    Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  4. Accounting for system dynamics in reserve design.

    PubMed

    Leroux, Shawn J; Schmiegelow, Fiona K A; Cumming, Steve G; Lessard, Robert B; Nagy, John

    2007-10-01

    Systematic conservation plans have only recently considered the dynamic nature of ecosystems. Methods have been developed to incorporate climate change, population dynamics, and uncertainty in reserve design, but few studies have examined how to account for natural disturbance. Considering natural disturbance in reserve design may be especially important for the world's remaining intact areas, which still experience active natural disturbance regimes. We developed a spatially explicit, dynamic simulation model, CONSERV, which simulates patch dynamics and fire, and used it to evaluate the efficacy of hypothetical reserve networks in northern Canada. We designed six networks based on conventional reserve design methods, with different conservation targets for woodland caribou habitat, high-quality wetlands, vegetation, water bodies, and relative connectedness. We input the six reserve networks into CONSERV and tracked the ability of each to maintain initial conservation targets through time under an active natural disturbance regime. None of the reserve networks maintained all initial targets, and some over-represented certain features, suggesting that both effectiveness and efficiency of reserve design could be improved through use of spatially explicit dynamic simulation during the planning process. Spatial simulation models of landscape dynamics are commonly used in natural resource management, but we provide the first illustration of their potential use for reserve design. Spatial simulation models could be used iteratively to evaluate competing reserve designs and select targets that have a higher likelihood of being maintained through time. Such models could be combined with dynamic planning techniques to develop a general theory for reserve design in an uncertain world.

  5. Models as Feedback: Developing Representational Competence in Chemistry

    ERIC Educational Resources Information Center

    Padalkar, Shamin; Hegarty, Mary

    2015-01-01

    Spatial information in science is often expressed through representations such as diagrams and models. Learning the strengths and limitations of these representations and how to relate them are important aspects of developing scientific understanding, referred to as "representational competence." Diagram translation is particularly…

  6. Forecast and virtual weather driven plant disease risk modeling system

    USDA-ARS?s Scientific Manuscript database

    We describe a system in use and development that leverages public weather station data, several spatialized weather forecast types, leaf wetness estimation, generic plant disease models, and online statistical evaluation. Convergent technological developments in all these areas allow, with funding f...

  7. Environmental Assessment and Monitoring with ICAMS (Image Characterization and Modeling System) Using Multiscale Remote-Sensing Data

    NASA Technical Reports Server (NTRS)

    Lam, N.; Qiu, H.-I.; Quattrochi, Dale A.; Zhao, Wei

    1997-01-01

    With the rapid increase in spatial data, especially in the NASA-EOS (Earth Observing System) era, it is necessary to develop efficient and innovative tools to handle and analyze these data so that environmental conditions can be assessed and monitored. A main difficulty facing geographers and environmental scientists in environmental assessment and measurement is that spatial analytical tools are not easily accessible. We have recently developed a remote sensing/GIS software module called Image Characterization and Modeling System (ICAMS) to provide specialized spatial analytical tools for the measurement and characterization of satellite and other forms of spatial data. ICAMS runs on both the Intergraph-MGE and Arc/info UNIX and Windows-NT platforms. The main techniques in ICAMS include fractal measurement methods, variogram analysis, spatial autocorrelation statistics, textural measures, aggregation techniques, normalized difference vegetation index (NDVI), and delineation of land/water and vegetated/non-vegetated boundaries. In this paper, we demonstrate the main applications of ICAMS on the Intergraph-MGE platform using Landsat Thematic Mapper images from the city of Lake Charles, Louisiana. While the utilities of ICAMS' spatial measurement methods (e.g., fractal indices) in assessing environmental conditions remain to be researched, making the software available to a wider scientific community can permit the techniques in ICAMS to be evaluated and used for a diversity of applications. The findings from these various studies should lead to improved algorithms and more reliable models for environmental assessment and monitoring.

  8. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory

    DOE PAGES

    Shi, Yuning; Eissenstat, David M.; He, Yuting; ...

    2018-05-12

    Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less

  9. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yuning; Eissenstat, David M.; He, Yuting

    Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less

  10. Esophageal wall dose-surface maps do not improve the predictive performance of a multivariable NTCP model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-modulated (chemo-)radiotherapy.

    PubMed

    Dankers, Frank; Wijsman, Robin; Troost, Esther G C; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L

    2017-05-07

    In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade  ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC  =  0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.

  11. A spatial model to assess the effects of hydropower operations on Columbia River fall Chinook Salmon spawning habitat

    USGS Publications Warehouse

    Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard

    2009-01-01

    Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.

  12. Esophageal wall dose-surface maps do not improve the predictive performance of a multivariable NTCP model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-modulated (chemo-)radiotherapy

    NASA Astrophysics Data System (ADS)

    Dankers, Frank; Wijsman, Robin; Troost, Esther G. C.; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L.

    2017-05-01

    In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade  ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC  =  0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.

  13. Approach to spatial information security based on digital certificate

    NASA Astrophysics Data System (ADS)

    Cong, Shengri; Zhang, Kai; Chen, Baowen

    2005-11-01

    With the development of the online applications of geographic information systems (GIS) and the spatial information services, the spatial information security becomes more important. This work introduced digital certificates and authorization schemes into GIS to protect the crucial spatial information combining the techniques of the role-based access control (RBAC), the public key infrastructure (PKI) and the privilege management infrastructure (PMI). We investigated the spatial information granularity suited for sensitivity marking and digital certificate model that fits the need of GIS security based on the semantics analysis of spatial information. It implements a secure, flexible, fine-grained data access based on public technologies in GIS in the world.

  14. A Phenomenological Two-Ribbon Model for Spatially Unresolved Observations of Stellar Flares

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam

    2018-06-01

    Solar flares and flares that occur in much more magnetically active stars share some striking properties, such as the observed Neupert effect. However, stellar flares with the most impressive multi-wavelength data sets are typically much more energetic than solar flares, thus making robust connections difficult to establish. Whereas solar data have the advantage of high spatial resolution providing critical information about the development of flare ribbons, the major advantage of stellar flare data is the readily available broad-wavelength coverage of the white-light radiation and the Balmer jump spectral region. Due to the lack of direct spatial resolution for stellar flares and rarely coverage of the Balmer jump region for solar flares, it is not clear how to make a direct comparison. I will present a new method for modeling stellar flares based on high spatial resolution information of solar flare two-ribbon development for comparisons of the physics of their observed phenomena, such as the red-wing asymmetries in chromospheric lines and the white-light continuum radiation. The new modeling method combines aspects of "multi-thread" modeling and 1D radiative-hydrodynamic modeling. Our algorithm is important for interpreting the impulsive phase of superflares in young G dwarfs in Kepler and understanding how hour-long decay timescales are attained in the gradual phase of some very energetic stellar flares.

  15. The Influence of Spatial Configuration of Residential Area and Vector Populations on Dengue Incidence Patterns in an Individual-Level Transmission Model.

    PubMed

    Kang, Jeon-Young; Aldstadt, Jared

    2017-07-15

    Dengue is a mosquito-borne infectious disease that is endemic in tropical and subtropical countries. Many individual-level simulation models have been developed to test hypotheses about dengue virus transmission. Often these efforts assume that human host and mosquito vector populations are randomly or uniformly distributed in the environment. Although, the movement of mosquitoes is affected by spatial configuration of buildings and mosquito populations are highly clustered in key buildings, little research has focused on the influence of the local built environment in dengue transmission models. We developed an agent-based model of dengue transmission in a village setting to test the importance of using realistic environments in individual-level models of dengue transmission. The results from one-way ANOVA analysis of simulations indicated that the differences between scenarios in terms of infection rates as well as serotype-specific dominance are statistically significant. Specifically, the infection rates in scenarios of a realistic environment are more variable than those of a synthetic spatial configuration. With respect to dengue serotype-specific cases, we found that a single dengue serotype is more often dominant in realistic environments than in synthetic environments. An agent-based approach allows a fine-scaled analysis of simulated dengue incidence patterns. The results provide a better understanding of the influence of spatial heterogeneity on dengue transmission at a local scale.

  16. Overcoming Spatial and Temporal Barriers to Public Access Defibrillators Via Optimization

    PubMed Central

    Sun, Christopher L. F.; Demirtas, Derya; Brooks, Steven C.; Morrison, Laurie J.; Chan, Timothy C.Y.

    2016-01-01

    BACKGROUND Immediate access to an automated external defibrillator (AED) increases the chance of survival from out-of-hospital cardiac arrest (OHCA). Current deployment usually considers spatial AED access, assuming AEDs are available 24 h a day. OBJECTIVES We sought to develop an optimization model for AED deployment, accounting for spatial and temporal accessibility, to evaluate if OHCA coverage would improve compared to deployment based on spatial accessibility alone. METHODS This was a retrospective population-based cohort study using data from the Toronto Regional RescuNET cardiac arrest database. We identified all nontraumatic public-location OHCAs in Toronto, Canada (January 2006 through August 2014) and obtained a list of registered AEDs (March 2015) from Toronto emergency medical services. We quantified coverage loss due to limited temporal access by comparing the number of OHCAs that occurred within 100 meters of a registered AED (assumed 24/7 coverage) with the number that occurred both within 100 meters of a registered AED and when the AED was available (actual coverage). We then developed a spatiotemporal optimization model that determined AED locations to maximize OHCA actual coverage and overcome the reported coverage loss. We computed the coverage gain between the spatiotemporal model and a spatial-only model using 10-fold cross-validation. RESULTS We identified 2,440 atraumatic public OHCAs and 737 registered AED locations. A total of 451 OHCAs were covered by registered AEDs under assumed 24/7 coverage, and 354 OHCAs under actual coverage, representing a coverage loss of 21.5% (p < 0.001). Using the spatiotemporal model to optimize AED deployment, a 25.3% relative increase in actual coverage was achieved over the spatial-only approach (p < 0.001). CONCLUSIONS One in 5 OHCAs occurred near an inaccessible AED at the time of the OHCA. Potential AED use was significantly improved with a spatiotemporal optimization model guiding deployment. PMID:27539176

  17. Time Series Remote Sensing in Monitoring the Spatio-Temporal Dynamics of Plant Invasions: A Study of Invasive Saltcedar (Tamarix Spp.)

    NASA Astrophysics Data System (ADS)

    Diao, Chunyuan

    In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.

  18. Development and validation of a habitat suitability model for the non-indigenous seagrass Zostera japonica in North America

    EPA Science Inventory

    We developed a spatially-explicit, flexible 3-parameter habitat suitability model that can be used to identify and predict areas at higher risk for non-native dwarf eelgrass (Zostera japonica) invasion. The model uses simple environmental parameters (depth, nearshore slope, and s...

  19. Spatially distributed modeling of soil organic carbon across China with improved accuracy

    NASA Astrophysics Data System (ADS)

    Li, Qi-quan; Zhang, Hao; Jiang, Xin-ye; Luo, Youlin; Wang, Chang-quan; Yue, Tian-xiang; Li, Bing; Gao, Xue-song

    2017-06-01

    There is a need for more detailed spatial information on soil organic carbon (SOC) for the accurate estimation of SOC stock and earth system models. As it is effective to use environmental factors as auxiliary variables to improve the prediction accuracy of spatially distributed modeling, a combined method (HASM_EF) was developed to predict the spatial pattern of SOC across China using high accuracy surface modeling (HASM), artificial neural network (ANN), and principal component analysis (PCA) to introduce land uses, soil types, climatic factors, topographic attributes, and vegetation cover as predictors. The performance of HASM_EF was compared with ordinary kriging (OK), OK, and HASM combined, respectively, with land uses and soil types (OK_LS and HASM_LS), and regression kriging combined with land uses and soil types (RK_LS). Results showed that HASM_EF obtained the lowest prediction errors and the ratio of performance to deviation (RPD) presented the relative improvements of 89.91%, 63.77%, 55.86%, and 42.14%, respectively, compared to the other four methods. Furthermore, HASM_EF generated more details and more realistic spatial information on SOC. The improved performance of HASM_EF can be attributed to the introduction of more environmental factors, to explicit consideration of the multicollinearity of selected factors and the spatial nonstationarity and nonlinearity of relationships between SOC and selected factors, and to the performance of HASM and ANN. This method may play a useful tool in providing more precise spatial information on soil parameters for global modeling across large areas.

  20. The Geographic Concentration of Enterprise in Developing Countries

    PubMed Central

    Felkner, John S.; Townsend, Robert M.

    2011-01-01

    A nation’s economic geography can have an enormous impact on its development. In Thailand, we show that a high concentration of enterprise in an area predicts high subsequent growth in and around that area. We also find spatially contiguous convergence of enterprise with stagnant areas left behind. Exogenous physiographic conditions are correlated with enterprise location and growth. We fit a structural, micro-founded model of occupation transitions with fine-tuned geographic capabilities to village data and replicate these salient facts. Key elements of the model include costs, credit constraints on occupation choice, and spatially varying expansion of financial service providers. PMID:22844158

  1. Diverging Narratives: Evaluating the Uses of the Ideal-Typical Sequence of Transport Network Development

    ERIC Educational Resources Information Center

    Weber, Joe

    2004-01-01

    The development of new transport systems has been an important and highly visible component of economic development and spatial reorganization in the past two centuries. The Ideal-Typical Sequence of network development has been a widely used model of transport development. This paper shows that this model has been used in several different ways,…

  2. Does spatial variation in environmental conditions affect recruitment? A study using a 3-D model of Peruvian anchovy

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Rose, Kenneth A.; Chai, Fei; Chavez, Francisco P.; Ayón, Patricia

    2015-11-01

    We used a 3-dimensional individual-based model (3-D IBM) of Peruvian anchovy to examine how spatial variation in environmental conditions affects larval and juvenile growth and survival, and recruitment. Temperature, velocity, and phytoplankton and zooplankton concentrations generated from a coupled hydrodynamic Nutrients-Phytoplankton-Zooplankton-Detritus (NPZD) model, mapped to a three dimensional rectangular grid, were used to simulate anchovy populations. The IBM simulated individuals as they progressed from eggs to recruitment at 10 cm. Eggs and yolk-sac larvae were followed hourly through the processes of development, mortality, and movement (advection), and larvae and juveniles were followed daily through the processes of growth, mortality, and movement (advection plus behavior). A bioenergetics model was used to grow larvae and juveniles. The NPZD model provided prey fields which influence both food consumption rate as well as behavior mediated movement with individuals going to grids cells having optimal growth conditions. We compared predicted recruitment for monthly cohorts for 1990 through 2004 between the full 3-D IBM and a point (0-D) model that used spatially-averaged environmental conditions. The 3-D and 0-D versions generated similar interannual patterns in monthly recruitment for 1991-2004, with the 3-D results yielding consistently higher survivorship. Both versions successfully captured the very poor recruitment during the 1997-1998 El Niño event. Higher recruitment in the 3-D simulations was due to higher survival during the larval stage resulting from individuals searching for more favorable temperatures that lead to faster growth rates. The strong effect of temperature was because both model versions provided saturating food conditions for larval and juvenile anchovies. We conclude with a discussion of how explicit treatment of spatial variation affected simulated recruitment, other examples of fisheries modeling analyses that have used a similar approach to assess the influence of spatial variation, and areas for further model development.

  3. Fractals and Spatial Methods for Mining Remote Sensing Imagery

    NASA Technical Reports Server (NTRS)

    Lam, Nina; Emerson, Charles; Quattrochi, Dale

    2003-01-01

    The rapid increase in digital remote sensing and GIS data raises a critical problem -- how can such an enormous amount of data be handled and analyzed so that useful information can be derived quickly? Efficient handling and analysis of large spatial data sets is central to environmental research, particularly in global change studies that employ time series. Advances in large-scale environmental monitoring and modeling require not only high-quality data, but also reliable tools to analyze the various types of data. A major difficulty facing geographers and environmental scientists in environmental assessment and monitoring is that spatial analytical tools are not easily accessible. Although many spatial techniques have been described recently in the literature, they are typically presented in an analytical form and are difficult to transform to a numerical algorithm. Moreover, these spatial techniques are not necessarily designed for remote sensing and GIS applications, and research must be conducted to examine their applicability and effectiveness in different types of environmental applications. This poses a chicken-and-egg problem: on one hand we need more research to examine the usability of the newer techniques and tools, yet on the other hand, this type of research is difficult to conduct if the tools to be explored are not accessible. Another problem that is fundamental to environmental research are issues related to spatial scale. The scale issue is especially acute in the context of global change studies because of the need to integrate remote-sensing and other spatial data that are collected at different scales and resolutions. Extrapolation of results across broad spatial scales remains the most difficult problem in global environmental research. There is a need for basic characterization of the effects of scale on image data, and the techniques used to measure these effects must be developed and implemented to allow for a multiple scale assessment of the data before any useful process-oriented modeling involving scale-dependent data can be conducted. Through the support of research grants from NASA, we have developed a software module called ICAMS (Image Characterization And Modeling System) to address the need to develop innovative spatial techniques and make them available to the broader scientific communities. ICAMS provides new spatial techniques, such as fractal analysis, geostatistical functions, and multiscale analysis that are not easily available in commercial GIS/image processing software. By bundling newer spatial methods in a user-friendly software module, researchers can begin to test and experiment with the new spatial analysis methods and they can gauge scale effects using a variety of remote sensing imagery. In the following, we describe briefly the development of ICAMS and present application examples.

  4. Spatial analysis of agri-environmental policy uptake and expenditure in Scotland.

    PubMed

    Yang, Anastasia L; Rounsevell, Mark D A; Wilson, Ronald M; Haggett, Claire

    2014-01-15

    Agri-environment is one of the most widely supported rural development policy measures in Scotland in terms of number of participants and expenditure. It comprises 69 management options and sub-options that are delivered primarily through the competitive 'Rural Priorities scheme'. Understanding the spatial determinants of uptake and expenditure would assist policy-makers in guiding future policy targeting efforts for the rural environment. This study is unique in examining the spatial dependency and determinants of Scotland's agri-environmental measures and categorised options uptake and payments at the parish level. Spatial econometrics is applied to test the influence of 40 explanatory variables on farming characteristics, land capability, designated sites, accessibility and population. Results identified spatial dependency for each of the dependent variables, which supported the use of spatially-explicit models. The goodness of fit of the spatial models was better than for the aspatial regression models. There was also notable improvement in the models for participation compared with the models for expenditure. Furthermore a range of expected explanatory variables were found to be significant and varied according to the dependent variable used. The majority of models for both payment and uptake showed a significant positive relationship with SSSI (Sites of Special Scientific Interest), which are designated sites prioritised in Scottish policy. These results indicate that environmental targeting efforts by the government for AEP uptake in designated sites can be effective. However habitats outside of SSSI, termed here the 'wider countryside' may not be sufficiently competitive to receive funding in the current policy system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Spatial Reasoning Training Through Light Curves Of Model Asteroids

    NASA Astrophysics Data System (ADS)

    Ziffer, Julie; Nakroshis, Paul A.; Rudnick, Benjamin T.; Brautigam, Maxwell J.; Nelson, Tyler W.

    2015-11-01

    Recent research has demonstrated that spatial reasoning skills, long known to be crucial to math and science success, are teachable. Even short stints of training can improve spatial reasoning skills among students who lack them (Sorby et al., 2006). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their spatial reasoning skill (Hill et al., 2010). We have designed a hands on asteroid rotation lab that provides practice in spatial reasoning tasks while building the student’s understanding of photometry. For our tool, we mount a model asteroid, with any shape of our choosing, on a slowly rotating motor shaft, whose speed is controlled by the experimenter. To mimic an asteroid light curve, we place the model asteroid in a dark box, shine a movable light source upon our asteroid, and record the light reflected onto a moveable camera. Students may then observe changes in the light curve that result from varying a) the speed of rotation, b) the model asteroid’s orientation with respect to the motor axis, c) the model asteroid’s shape or albedo, and d) the phase angle. After practicing with our tool, students are asked to pair new objects to their corresponding light curves. To correctly pair objects to their light curves, students must imagine how light scattering off of a three dimensional rotating object is imaged on a ccd sensor plane, and then reduced to a series of points on a light curve plot. Through the use of our model asteroid, the student develops confidence in spatial reasoning skills.

  6. Nitrate variability in groundwater of North Carolina using monitoring and private well data models.

    PubMed

    Messier, Kyle P; Kane, Evan; Bolich, Rick; Serre, Marc L

    2014-09-16

    Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. Results show significant differences in the spatial distribution of groundwater NO3- contamination in monitoring versus private wells; high NO3- concentrations in the southeastern plains of North Carolina; and wastewater treatment residuals and swine confined animal feeding operations as local sources of NO3- in monitoring wells. Results are of interest to agencies that regulate drinking water sources or monitor health outcomes from ingestion of drinking water. Lastly, LUR-BME model estimates can be integrated into surface water models for more accurate management of nonpoint sources of nitrogen.

  7. Graph Theory Roots of Spatial Operators for Kinematics and Dynamics

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan

    2011-01-01

    Spatial operators have been used to analyze the dynamics of robotic multibody systems and to develop novel computational dynamics algorithms. Mass matrix factorization, inversion, diagonalization, and linearization are among several new insights obtained using such operators. While initially developed for serial rigid body manipulators, the spatial operators and the related mathematical analysis have been shown to extend very broadly including to tree and closed topology systems, to systems with flexible joints, links, etc. This work uses concepts from graph theory to explore the mathematical foundations of spatial operators. The goal is to study and characterize the properties of the spatial operators at an abstract level so that they can be applied to a broader range of dynamics problems. The rich mathematical properties of the kinematics and dynamics of robotic multibody systems has been an area of strong research interest for several decades. These properties are important to understand the inherent physical behavior of systems, for stability and control analysis, for the development of computational algorithms, and for model development of faithful models. Recurring patterns in spatial operators leads one to ask the more abstract question about the properties and characteristics of spatial operators that make them so broadly applicable. The idea is to step back from the specific application systems, and understand more deeply the generic requirements and properties of spatial operators, so that the insights and techniques are readily available across different kinematics and dynamics problems. In this work, techniques from graph theory were used to explore the abstract basis for the spatial operators. The close relationship between the mathematical properties of adjacency matrices for graphs and those of spatial operators and their kernels were established. The connections hold across very basic requirements on the system topology, the nature of the component bodies, the indexing schemes, etc. The relationship of the underlying structure is intimately connected with efficient, recursive computational algorithms. The results provide the foundational groundwork for a much broader look at the key problems in kinematics and dynamics. The properties of general graphs and trees of nodes and edge were examined, as well as the properties of adjacency matrices that are used to describe graph connectivity. The nilpotency property of such matrices for directed trees was reviewed, and the adjacency matrices were generalized to the notion of block weighted adjacency matrices that support block matrix elements. This leads us to the development of the notion of Spatial Kernel Operator SKO kernels. These kernels provide the basis for the development of SKO resolvent operators.

  8. Multi-objective spatial tools to inform maritime spatial planning in the Adriatic Sea.

    PubMed

    Depellegrin, Daniel; Menegon, Stefano; Farella, Giulio; Ghezzo, Michol; Gissi, Elena; Sarretta, Alessandro; Venier, Chiara; Barbanti, Andrea

    2017-12-31

    This research presents a set of multi-objective spatial tools for sea planning and environmental management in the Adriatic Sea Basin. The tools address four objectives: 1) assessment of cumulative impacts from anthropogenic sea uses on environmental components of marine areas; 2) analysis of sea use conflicts; 3) 3-D hydrodynamic modelling of nutrient dispersion (nitrogen and phosphorus) from riverine sources in the Adriatic Sea Basin and 4) marine ecosystem services capacity assessment from seabed habitats based on an ES matrix approach. Geospatial modelling results were illustrated, analysed and compared on country level and for three biogeographic subdivisions, Northern-Central-Southern Adriatic Sea. The paper discusses model results for their spatial implications, relevance for sea planning, limitations and concludes with an outlook towards the need for more integrated, multi-functional tools development for sea planning. Copyright © 2017. Published by Elsevier B.V.

  9. Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils

    NASA Technical Reports Server (NTRS)

    Kicklighter, David W.; Melillo, Jerry M.; Peterjohn, William T.; Rastetter, Edward B.; Mcguire, A. David; Steudler, Paul A.; Aber, John D.

    1994-01-01

    We examine the influence of aggregation errors on developing estimates of regional soil-CO2 flux from temperate forests. We find daily soil-CO2 fluxes to be more sensitive to changes in soil temperatures (Q(sub 10) = 3.08) than air temperatures (Q(sub 10) = 1.99). The direct use of mean monthly air temperatures with a daily flux model underestimates regional fluxes by approximately 4%. Temporal aggregation error varies with spatial resolution. Overall, our calibrated modeling approach reduces spatial aggregation error by 9.3% and temporal aggregation error by 15.5%. After minimizing spatial and temporal aggregation errors, mature temperate forest soils are estimated to contribute 12.9 Pg C/yr to the atmosphere as carbon dioxide. Georeferenced model estimates agree well with annual soil-CO2 fluxes measured during chamber studies in mature temperate forest stands around the globe.

  10. Environmental characteristics associated with pedestrian-motor vehicle collisions in Denver, Colorado.

    PubMed

    Sebert Kuhlmann, Anne K; Brett, John; Thomas, Deborah; Sain, Stephan R

    2009-09-01

    We examined patterns of pedestrian-motor vehicle collisions and associated environmental characteristics in Denver, Colorado. We integrated publicly available data on motor vehicle collisions, liquor licenses, land use, and sociodemographic characteristics to analyze spatial patterns and other characteristics of collisions involving pedestrians. We developed both linear and spatially weighted regression models of these collisions. Spatial analysis revealed global clustering of pedestrian-motor vehicle collisions with concentrations in downtown, in a contiguous neighborhood, and along major arterial streets. Walking to work, population density, and liquor license outlet density all contributed significantly to both linear and spatial models of collisions involving pedestrians and were each significantly associated with these collisions. These models, constructed with data from Denver, identified conditions that likely contribute to patterns of pedestrian-motor vehicle collisions. Should these models be verified elsewhere, they will have implications for future research directions, public policy to enhance pedestrian safety, and public health programs aimed at decreasing unintentional injury from pedestrian-motor vehicle collisions and promoting walking as a routine physical activity.

  11. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME

    PubMed Central

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2017-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments. PMID:28190948

  12. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models

    NASA Astrophysics Data System (ADS)

    Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P.

    2018-01-01

    We perform landslide susceptibility zonation with slope units using three digital elevation models (DEMs) of varying spatial resolution of the Ubaye Valley (South French Alps). In so doing, we applied a recently developed algorithm automating slope unit delineation, given a number of parameters, in order to optimize simultaneously the partitioning of the terrain and the performance of a logistic regression susceptibility model. The method allowed us to obtain optimal slope units for each available DEM spatial resolution. For each resolution, we studied the susceptibility model performance by analyzing in detail the relevance of the conditioning variables. The analysis is based on landslide morphology data, considering either the whole landslide or only the source area outline as inputs. The procedure allowed us to select the most useful information, in terms of DEM spatial resolution, thematic variables and landslide inventory, in order to obtain the most reliable slope unit-based landslide susceptibility assessment.

  13. Spatial working memory capacity predicts bias in estimates of location.

    PubMed

    Crawford, L Elizabeth; Landy, David; Salthouse, Timothy A

    2016-09-01

    Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intraindividual stability and interindividual variation in these patterns of bias. In the current work, we align recent empirical and theoretical work on working memory capacity limits and spatial memory bias to generate the prediction that those with lower working memory capacity will show greater bias in memory of the location of a single item. Reanalyzing data from a large study of cognitive aging, we find support for this prediction. Fitting separate models to individuals' data revealed a surprising variety of strategies. Some were consistent with Bayesian models of spatial category use, however roughly half of participants biased estimates outward in a way not predicted by current models and others seemed to combine these strategies. These analyses highlight the importance of studying individuals when developing general models of cognition. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Spatial Working Memory Capacity Predicts Bias in Estimates of Location

    PubMed Central

    Crawford, L. Elizabeth; Landy, David H.; Salthouse, Timothy A.

    2016-01-01

    Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intra-individual stability and inter-individual variation in these patterns of bias. In the current work we align recent empirical and theoretical work on working memory capacity limits and spatial memory bias to generate the prediction that those with lower working memory capacity will show greater bias in memory of the location of a single item. Reanalyzing data from a large study of cognitive aging, we find support for this prediction. Fitting separate models to individuals’ data revealed a surprising variety of strategies. Some were consistent with Bayesian models of spatial category use, however roughly half of participants biased estimates outward in a way not predicted by current models and others seemed to combine these strategies. These analyses highlight the importance of studying individuals when developing general models of cognition. PMID:26900708

  15. Networks of volatility spillovers among stock markets

    NASA Astrophysics Data System (ADS)

    Baumöhl, Eduard; Kočenda, Evžen; Lyócsa, Štefan; Výrost, Tomáš

    2018-01-01

    In our network analysis of 40 developed, emerging and frontier stock markets during the 2006-2014 period, we describe and model volatility spillovers during both the global financial crisis and tranquil periods. The resulting market interconnectedness is depicted by fitting a spatial model incorporating several exogenous characteristics. We document the presence of significant temporal proximity effects between markets and somewhat weaker temporal effects with regard to the US equity market - volatility spillovers decrease when markets are characterized by greater temporal proximity. Volatility spillovers also present a high degree of interconnectedness, which is measured by high spatial autocorrelation. This finding is confirmed by spatial regression models showing that indirect effects are much stronger than direct effects; i.e., market-related changes in 'neighboring' markets (within a network) affect volatility spillovers more than changes in the given market alone, suggesting that spatial effects simply cannot be ignored when modeling stock market relationships. Our results also link spillovers of escalating magnitude with increasing market size, market liquidity and economic openness.

  16. Genome-scale modelling of microbial metabolism with temporal and spatial resolution.

    PubMed

    Henson, Michael A

    2015-12-01

    Most natural microbial systems have evolved to function in environments with temporal and spatial variations. A major limitation to understanding such complex systems is the lack of mathematical modelling frameworks that connect the genomes of individual species and temporal and spatial variations in the environment to system behaviour. The goal of this review is to introduce the emerging field of spatiotemporal metabolic modelling based on genome-scale reconstructions of microbial metabolism. The extension of flux balance analysis (FBA) to account for both temporal and spatial variations in the environment is termed spatiotemporal FBA (SFBA). Following a brief overview of FBA and its established dynamic extension, the SFBA problem is introduced and recent progress is described. Three case studies are reviewed to illustrate the current state-of-the-art and possible future research directions are outlined. The author posits that SFBA is the next frontier for microbial metabolic modelling and a rapid increase in methods development and system applications is anticipated. © 2015 Authors; published by Portland Press Limited.

  17. A necessarily complex model to explain the biogeography of the amphibians and reptiles of Madagascar.

    PubMed

    Brown, Jason L; Cameron, Alison; Yoder, Anne D; Vences, Miguel

    2014-10-09

    Pattern and process are inextricably linked in biogeographic analyses, though we can observe pattern, we must infer process. Inferences of process are often based on ad hoc comparisons using a single spatial predictor. Here, we present an alternative approach that uses mixed-spatial models to measure the predictive potential of combinations of hypotheses. Biodiversity patterns are estimated from 8,362 occurrence records from 745 species of Malagasy amphibians and reptiles. By incorporating 18 spatially explicit predictions of 12 major biogeographic hypotheses, we show that mixed models greatly improve our ability to explain the observed biodiversity patterns. We conclude that patterns are influenced by a combination of diversification processes rather than by a single predominant mechanism. A 'one-size-fits-all' model does not exist. By developing a novel method for examining and synthesizing spatial parameters such as species richness, endemism and community similarity, we demonstrate the potential of these analyses for understanding the diversification history of Madagascar's biota.

  18. Development and applications of a radar-attenuation model for polar ice sheets

    NASA Astrophysics Data System (ADS)

    MacGregor, Joseph A.

    Modern ice sheets are currently responding to significant climatic forcings and undergoing ice-dynamics changes that are not yet well understood. Ice-penetrating radar surveys are often used to infer their basal condition (e.g., is the bed wet or dry?) and internal properties. However, such inferences typically require a model of the electromagnetic attenuation through the ice sheet. Here I first develop and test a radar-attenuation model that is based on a synthesis of existing laboratory measurements of the dielectric properties of ice. This synthesis shows that radar attenuation in polar ice has a strong non-linear temperature dependence and a weaker linear dependence on the concentrations of acid and sea-salt chloride. This model was tested at Siple Dome, West Antarctica, using ice-core-chemistry and borehole-temperature data, and the model agreed well with an existing radar-attenuation measurement. I then use this model to investigate the nature of radar detection of accreted ice over Lake Vostok, East Antarctica. My analysis of ice-core and radar data found that the observed reflection is likely due to a fabric contrast near the boundary between the dirty and clean accreted ices. This reflection mechanism is also consistent with the spatial pattern of detection of the reflection. In anticipation of the requirements of a thermomechanical ice-sheet model to predict the spatial variation of attenuation over Lake Vostok, I develop an accumulation-rate map for the Lake Vostok region using radar data, a steady-state flow-band model, and inverse methods. I found that accumulation rates there are not inversely correlated with surface elevation, that there is a broad maximum above the lake's northwestern corner, and a minimum above most of its eastern shoreline. Finally, I investigate the spatial variability of attenuation in an ice sheet, using the flowline that crosses through the Vostok ice core as an example. I use radar layers and ice-velocity and temperature outputs from an ice-sheet model to estimate the spatial variation of attenuation using a series of progressively more complex models. I found that an attenuation-rate model that uses non-uniform ice temperatures and radar layers to rescale impurity-conentration profiles can satisfactorily capture most of the spatial variability of attenuation.

  19. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    NASA Astrophysics Data System (ADS)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  20. The consequences of landscape change on ecological resources: An assessment of the United States mid-Atlantic region, 1973-1993

    USGS Publications Warehouse

    Jones, K.B.; Neale, A.C.; Wade, T.G.; Wickham, J.D.; Cross, C.L.; Edmonds, C.M.; Loveland, Thomas R.; Nash, M.S.; Riitters, K.H.; Smith, E.R.

    2001-01-01

    Spatially explicit identification of changes in ecological conditions over large areas is key to targeting and prioritizing areas for environmental protection and restoration by managers at watershed, basin, and regional scales. A critical limitation to this point has been the development of methods to conduct such broad-scale assessments. Field-based methods have proven to be too costly and too inconsistent in their application to make estimates of ecological conditions over large areas. New spatial data derived from satellite imagery and other sources, the development of statistical models relating landscape composition and pattern to ecological endpoints, and geographic information systems (GIS) make it possible to evaluate ecological conditions at multiple scales over broad geographic regions. In this study, we demonstrate the application of spatially distributed models for bird habitat quality and nitrogen yield to streams to assess the consequences of landcover change across the mid-Atlantic region between the 1970s and 1990s. Moreover, we present a way to evaluate spatial concordance between models related to different environmental endpoints. Results of this study should help environmental managers in the mid-Atlantic region target those areas in need of conservation and protection.

  1. Contributions of Dynamic Systems Theory to Cognitive Development

    PubMed Central

    Spencer, John P.; Austin, Andrew; Schutte, Anne R.

    2015-01-01

    This paper examines the contributions of dynamic systems theory to the field of cognitive development, focusing on modeling using dynamic neural fields. A brief overview highlights the contributions of dynamic systems theory and the central concepts of dynamic field theory (DFT). We then probe empirical predictions and findings generated by DFT around two examples—the DFT of infant perseverative reaching that explains the Piagetian A-not-B error, and the DFT of spatial memory that explain changes in spatial cognition in early development. A systematic review of the literature around these examples reveals that computational modeling is having an impact on empirical research in cognitive development; however, this impact does not extend to neural and clinical research. Moreover, there is a tendency for researchers to interpret models narrowly, anchoring them to specific tasks. We conclude on an optimistic note, encouraging both theoreticians and experimentalists to work toward a more theory-driven future. PMID:26052181

  2. Genetic analysis across differential spatial scales reveals multiple dispersal mechanisms for the invasive hydrozoan Cordylophora in the Great Lakes

    EPA Science Inventory

    Understanding patterns of post-establishment spread by invasive species is critically important for the design of effective management strategies and the development of appropriate theoretical models predicting spatial expansion of introduced populations. Here we explore genetic ...

  3. Spatial capture-recapture models allowing Markovian transience or dispersal

    USGS Publications Warehouse

    Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris

    2016-01-01

    Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.

  4. Deriving pragmatic factors behind geo-spatial variation of public sanitation relating to health: A case from a mega-city in lower-middle income developing country

    NASA Astrophysics Data System (ADS)

    Biswas, R.; Arya, K.; Deshpande, S. C.

    2017-12-01

    Sanitation is the daily water-human interaction, but Billions of people are still far away from access to improved public sanitation - mostly in developing countries. This challenges Millennium Development Goals across the globe. Economic growth with provision of basic services is unable to assure improvements in sanitation & health. Policymakers & researchers often focus on building infrastructural-capacity without considering empirical factors behind poor sanitation. What are these driving factors? Is there a nexus between sanitation & health? How it is spatially distributed? We have conducted geo-spatial assessment and exploratory regression to interpret spatial-distribution data and deriving influential pragmatic factors in the process. Mumbai is our test-bed, where we have accumulated and applied a total of 40 ward-wise-attributes related to socio-demographic, spatial, services, diseases and infrastructural data. The results indicate that: higher population per toilet-seat, numerous toilet-issues, low toilet density and poor/moderate toilet-condition may be the reason behind the spread of Diarrhoea. On the other hand, illiteracy, per capita waste generation, excreta overflow to open gutter/nallah from toilets and poor/moderate toilet-condition may be the reasons for the spread of Malaria. Strong correlation or associations observed, as in our Malaria-model has an adjusted R2 of 0.65 and the Diarrhoea-model has 0.76. The identified variables are significant enough, since the p-value is <0.05 for the Malaria-model and <0.08 for the Diarrhoea-model. The spatial assessment identifies that ward-FS is most vulnerable followed by ward-GN, considering poor public sanitation & excessive waste generation along with Malaria & Diarrhoea disease-cases. This study and its methods contribute to the advancement of scientific method as a tool that may be useful for researchers, stakeholders and policymakers to conduct further scientific studies in analogous cities. This also permits us to model them to explore policy amendments to mitigate poor sanitation practices that affect public health in contemporary societies.

  5. The centrifugal and centripetal force influence on spatial competition of agricultural land in Bandung Metropolitan Region

    NASA Astrophysics Data System (ADS)

    Sadewo, E.

    2017-06-01

    Agricultural activity has suffered a massive land functional shift caused by market mechanism in Bandung metropolitan region (BMR). We argue that the existence of agricultural land in urban spatial structure is the result of interaction between centrifugal and centripetal force on spatial competition. This research aims to explore how several recognized centrifugal and centripetal force influence to the existence of agricultural land in BMR land development. The analysis using multivariate regression indicates that there exists spatial competition between population density and degree of urbanization with agricultural land areas. Its extended spatial regression model suggested that neighboring situation plays an important role to preserve agricultural land areas existences in BMR. Meanwhile, the influence of distance between the location of the city center and employment opportunities is found to be insignificant in the spatial competition. It is opposed to the theory of von Thünen and monocentric model in general. One of the possible explanation of such condition is that the assumption of centrality does not met. In addition, the agricultural land density decay in the southern parts of the area was related to its geographical conditions as protected areas or unfavorable for farming activity. It is suggested that BMR was in the early phase of polycentric development. Hence, better policies that lead redirected development to the southern part of the region is needed as well as population control and regulation of land use.

  6. Spatiotemporal estimation of historical PM2.5 concentrations using PM10, meteorological variables, and spatial effect

    NASA Astrophysics Data System (ADS)

    Li, Lianfa; Wu, Anna H.; Cheng, Iona; Chen, Jiu-Chiuan; Wu, Jun

    2017-10-01

    Monitoring of fine particulate matter with diameter <2.5 μm (PM2.5) started from 1999 in the US and even later in many other countries. The lack of historical PM2.5 data limits epidemiological studies of long-term exposure of PM2.5 and health outcomes such as cancer. In this study, we aimed to design a flexible approach to reliably estimate historical PM2.5 concentrations by incorporating spatial effect and the measurements of existing co-pollutants such as particulate matter with diameter <10 μm (PM10) and meteorological variables. Monitoring data of PM10, PM2.5, and meteorological variables covering the entire state of California were obtained from 1999 through 2013. We developed a spatiotemporal model that quantified non-linear associations between PM2.5 concentrations and the following predictor variables: spatiotemporal factors (PM10 and meteorological variables), spatial factors (land-use patterns, traffic, elevation, distance to shorelines, and spatial autocorrelation), and season. Our model accounted for regional-(county) scale spatial autocorrelation, using spatial weight matrix, and local-scale spatiotemporal variability, using local covariates in additive non-linear model. The spatiotemporal model was evaluated, using leaving-one-site-month-out cross validation. Our final daily model had an R2 of 0.81, with PM10, meteorological variables, and spatial autocorrelation, explaining 55%, 10%, and 10% of the variance in PM2.5 concentrations, respectively. The model had a cross-validation R2 of 0.83 for monthly PM2.5 concentrations (N = 8170) and 0.79 for daily PM2.5 concentrations (N = 51,421) with few extreme values in prediction. Further, the incorporation of spatial effects reduced bias in predictions. Our approach achieved a cross validation R2 of 0.61 for the daily model when PM10 was replaced by total suspended particulate. Our model can robustly estimate historical PM2.5 concentrations in California when PM2.5 measurements were not available.

  7. OpenFLUID: an open-source software environment for modelling fluxes in landscapes

    NASA Astrophysics Data System (ADS)

    Fabre, Jean-Christophe; Rabotin, Michaël; Crevoisier, David; Libres, Aline; Dagès, Cécile; Moussa, Roger; Lagacherie, Philippe; Raclot, Damien; Voltz, Marc

    2013-04-01

    Integrative landscape functioning has become a common concept in environmental management. Landscapes are complex systems where many processes interact in time and space. In agro-ecosystems, these processes are mainly physical processes, including hydrological-processes, biological processes and human activities. Modelling such systems requires an interdisciplinary approach, coupling models coming from different disciplines, developed by different teams. In order to support collaborative works, involving many models coupled in time and space for integrative simulations, an open software modelling platform is a relevant answer. OpenFLUID is an open source software platform for modelling landscape functioning, mainly focused on spatial fluxes. It provides an advanced object-oriented architecture allowing to i) couple models developed de novo or from existing source code, and which are dynamically plugged to the platform, ii) represent landscapes as hierarchical graphs, taking into account multi-scale, spatial heterogeneities and landscape objects connectivity, iii) run and explore simulations in many ways : using the OpenFLUID software interfaces for users (command line interface, graphical user interface), or using external applications such as GNU R through the provided ROpenFLUID package. OpenFLUID is developed in C++ and relies on open source libraries only (Boost, libXML2, GLib/GTK, OGR/GDAL, …). For modelers and developers, OpenFLUID provides a dedicated environment for model development, which is based on an open source toolchain, including the Eclipse editor, the GCC compiler and the CMake build system. OpenFLUID is distributed under the GPLv3 open source license, with a special exception allowing to plug existing models licensed under any license. It is clearly in the spirit of sharing knowledge and favouring collaboration in a community of modelers. OpenFLUID has been involved in many research applications, such as modelling of hydrological network transfer, diagnosis and prediction of water quality taking into account human activities, study of the effect of spatial organization on hydrological fluxes, modelling of surface-subsurface water exchanges, … At LISAH research unit, OpenFLUID is the supporting development platform of the MHYDAS model, which is a distributed model for agrosystems (Moussa et al., 2002, Hydrological Processes, 16, 393-412). OpenFLUID web site : http://www.openfluid-project.org

  8. Spatial Variation in Development of Epibenthic Assemblages in a Coastal Lagoon

    NASA Astrophysics Data System (ADS)

    Benedetti-Cecchi, L.; Rindi, F.; Bertocci, I.; Bulleri, F.; Cinelli, F.

    2001-05-01

    Spatial and temporal patterns in colonization of epibenthic assemblages were measured in a coastal lagoon on the west coast of Italy using recruitment panels. It was proposed that if the ecological processes influencing development of assemblages were homogeneous within the lagoon, then there should be no differences in mean cover of colonists nor in spatial patterns of variance in abundance in different areas of the lagoon. In contrast, heterogeneity in ecological processes affecting development would be revealed by spatial variability in colonization. To test these hypotheses, two sticks each with five replicate panels were placed 3-5 m apart in each of two sites 30-100 m apart in each of three locations 500-100 m apart; the experiment was repeated three times between April and December 1999, using new sites at each location each time. The results revealed considerable spatial variation in the structure of developing assemblages across locations. There were significant Location or Time×Location effects in the mean abundance of common taxa, such as Enteromorpha intestinalis , Ulva rigida, Cladophora spp., bryozoans and serpulids. Patterns in spatial variation differed among locations for these organisms. Collectively, the results supported a model of spatial heterogeneity in intensity of processes influencing patterns of recruitment and development of epibenthic assemblages in the Lagoon of Orbetello. The implications of these results for management of environmental problems in complex, variable habitats such as coastal lagoons, are discussed.

  9. Aggregating pixel-level basal area predictions derived from LiDAR data to industrial forest stands in North-Central Idaho

    Treesearch

    Andrew T. Hudak; Jeffrey S. Evans; Nicholas L. Crookston; Michael J. Falkowski; Brant K. Steigers; Rob Taylor; Halli Hemingway

    2008-01-01

    Stand exams are the principal means by which timber companies monitor and manage their forested lands. Airborne LiDAR surveys sample forest stands at much finer spatial resolution and broader spatial extent than is practical on the ground. In this paper, we developed models that leverage spatially intensive and extensive LiDAR data and a stratified random sample of...

  10. Students’ Spatial Ability through Open-Ended Approach Aided by Cabri 3D

    NASA Astrophysics Data System (ADS)

    Priatna, N.

    2017-09-01

    The use of computer software such as Cabri 3D for learning activities is very unlimited. Students can adjust their learning speed according to their level of ability. Open-ended approach strongly supports the use of computer software in learning, because the goal of open-ended learning is to help developing creative activities and mathematical mindset of students through problem solving simultaneously. In other words, creative activities and mathematical mindset of students should be developed as much as possible in accordance with the ability of spatial ability of each student. Spatial ability is the ability of students in constructing and representing geometry models. This study aims to determine the improvement of spatial ability of junior high school students who obtained learning with open-ended approach aided by Cabri 3D. It adopted a quasi-experimental method with the non-randomized control group pretest-posttest design and the 2×3 factorial model. The instrument of the study is spatial ability test. Based on analysis of the data, it is found that the improvement of spatial ability of students who received open-ended learning aided by Cabri 3D was greater than students who received expository learning, both as a whole and based on the categories of students’ initial mathematical ability.

  11. An Updating System for the Gridded Population Database of China Based on Remote Sensing, GIS and Spatial Database Technologies.

    PubMed

    Yang, Xiaohuan; Huang, Yaohuan; Dong, Pinliang; Jiang, Dong; Liu, Honghui

    2009-01-01

    The spatial distribution of population is closely related to land use and land cover (LULC) patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS) have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS) is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B) data integrated with a Pattern Decomposition Method (PDM) and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM). The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable.

  12. Geostatistical Characterization of Cereal Leaf Beetle (Coleoptera: Chrysomelidae) Distributions in Wheat.

    PubMed

    Reay-Jones, Francis P F

    2017-08-01

    A 3-yr study was conducted in wheat, Triticum aestivum L., in South Carolina to characterize the spatial distribution of Oulema melanopus (L.) adults, eggs, and larvae using semivariograms, which provides a measure of spatial dependence among sampling data. Moran's I coefficients for peak densities of each life stage indicated significant positive autocorrelation for seven (two for eggs, one for larvae, and four for adults) of the 16 datasets. Aggregation was detected in 13 of these 16 datasets when analyzed by semivariogram modeling, with spherical, Gaussian, and exponential models best fitting for eight, four, and one dataset, respectively, and with models for two datasets having only one parameter (nugget) significantly different from zero. The nugget-to-sill ratios ranged from 0.043 to 0.774, and indicated strong spatial dependence in six models (three for adults, two for eggs, and one for larvae), moderate spatial dependence in six models (three for adults and six for eggs), and weak spatial dependence in one model (adults). Range values varied from 39.1 m to 234.1 m, with an average of 120.1 ± 14.0 m. Average range values were 104.9, 135.2, and 161.2 m for adults, eggs, and larvae, respectively. Because the majority of semivariogram models in our study indicated aggregated distributions, spatial sampling will provide more information than nonspatial random sampling. Developing our understanding of spatial dependence of crop pests is needed to optimize sampling plans and can provide a basis for exploring site-specific management tactics. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Hydrological model uncertainty due to spatial evapotranspiration estimation methods

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Lamačová, Anna; Duffy, Christopher; Krám, Pavel; Hruška, Jakub

    2016-05-01

    Evapotranspiration (ET) continues to be a difficult process to estimate in seasonal and long-term water balances in catchment models. Approaches to estimate ET typically use vegetation parameters (e.g., leaf area index [LAI], interception capacity) obtained from field observation, remote sensing data, national or global land cover products, and/or simulated by ecosystem models. In this study we attempt to quantify the uncertainty that spatial evapotranspiration estimation introduces into hydrological simulations when the age of the forest is not precisely known. The Penn State Integrated Hydrologic Model (PIHM) was implemented for the Lysina headwater catchment, located 50°03‧N, 12°40‧E in the western part of the Czech Republic. The spatial forest patterns were digitized from forest age maps made available by the Czech Forest Administration. Two ET methods were implemented in the catchment model: the Biome-BGC forest growth sub-model (1-way coupled to PIHM) and with the fixed-seasonal LAI method. From these two approaches simulation scenarios were developed. We combined the estimated spatial forest age maps and two ET estimation methods to drive PIHM. A set of spatial hydrologic regime and streamflow regime indices were calculated from the modeling results for each method. Intercomparison of the hydrological responses to the spatial vegetation patterns suggested considerable variation in soil moisture and recharge and a small uncertainty in the groundwater table elevation and streamflow. The hydrologic modeling with ET estimated by Biome-BGC generated less uncertainty due to the plant physiology-based method. The implication of this research is that overall hydrologic variability induced by uncertain management practices was reduced by implementing vegetation models in the catchment models.

  14. Camera traps and mark-resight models: The value of ancillary data for evaluating assumptions

    USGS Publications Warehouse

    Parsons, Arielle W.; Simons, Theodore R.; Pollock, Kenneth H.; Stoskopf, Michael K.; Stocking, Jessica J.; O'Connell, Allan F.

    2015-01-01

    Unbiased estimators of abundance and density are fundamental to the study of animal ecology and critical for making sound management decisions. Capture–recapture models are generally considered the most robust approach for estimating these parameters but rely on a number of assumptions that are often violated but rarely validated. Mark-resight models, a form of capture–recapture, are well suited for use with noninvasive sampling methods and allow for a number of assumptions to be relaxed. We used ancillary data from continuous video and radio telemetry to evaluate the assumptions of mark-resight models for abundance estimation on a barrier island raccoon (Procyon lotor) population using camera traps. Our island study site was geographically closed, allowing us to estimate real survival and in situ recruitment in addition to population size. We found several sources of bias due to heterogeneity of capture probabilities in our study, including camera placement, animal movement, island physiography, and animal behavior. Almost all sources of heterogeneity could be accounted for using the sophisticated mark-resight models developed by McClintock et al. (2009b) and this model generated estimates similar to a spatially explicit mark-resight model previously developed for this population during our study. Spatially explicit capture–recapture models have become an important tool in ecology and confer a number of advantages; however, non-spatial models that account for inherent individual heterogeneity may perform nearly as well, especially where immigration and emigration are limited. Non-spatial models are computationally less demanding, do not make implicit assumptions related to the isotropy of home ranges, and can provide insights with respect to the biological traits of the local population.

  15. Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models.

    PubMed

    Rogers, Lauren A; Storvik, Geir O; Knutsen, Halvor; Olsen, Esben M; Stenseth, Nils C

    2017-07-01

    Identifying the spatial scale of population structuring is critical for the conservation of natural populations and for drawing accurate ecological inferences. However, population studies often use spatially aggregated data to draw inferences about population trends and drivers, potentially masking ecologically relevant population sub-structure and dynamics. The goals of this study were to investigate how population dynamics models with and without spatial structure affect inferences on population trends and the identification of intrinsic drivers of population dynamics (e.g. density dependence). Specifically, we developed dynamic, age-structured, state-space models to test different hypotheses regarding the spatial structure of a population complex of coastal Atlantic cod (Gadus morhua). Data were from a 93-year survey of juvenile (age 0 and 1) cod sampled along >200 km of the Norwegian Skagerrak coast. We compared two models: one which assumes all sampled cod belong to one larger population, and a second which assumes that each fjord contains a unique population with locally determined dynamics. Using the best supported model, we then reconstructed the historical spatial and temporal dynamics of Skagerrak coastal cod. Cross-validation showed that the spatially structured model with local dynamics had better predictive ability. Furthermore, posterior predictive checks showed that a model which assumes one homogeneous population failed to capture the spatial correlation pattern present in the survey data. The spatially structured model indicated that population trends differed markedly among fjords, as did estimates of population parameters including density-dependent survival. Recent biomass was estimated to be at a near-record low all along the coast, but the finer scale model indicated that the decline occurred at different times in different regions. Warm temperatures were associated with poor recruitment, but local changes in habitat and fishing pressure may have played a role in driving local dynamics. More generally, we demonstrated how state-space models can be used to test evidence for population spatial structure based on survey time-series data. Our study shows the importance of considering spatially structured dynamics, as the inferences from such an approach can lead to a different ecological understanding of the drivers of population declines, and fundamentally different management actions to restore populations. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  16. Digital spatial data for observed, predicted, and misclassification errors for observations in the training dataset for nitrate and arsenic concentrations in basin-fill aquifers in the Southwest Principal Aquifers study area

    USGS Publications Warehouse

    McKinney, Tim S.; Anning, David W.

    2012-01-01

    This product "Digital spatial data for observed, predicted, and misclassification errors for observations in the training dataset for nitrate and arsenic concentrations in basin-fill aquifers in the Southwest Principal Aquifers study area" is a 1:250,000-scale point spatial dataset developed as part of a regional Southwest Principal Aquifers (SWPA) study (Anning and others, 2012). The study examined the vulnerability of basin-fill aquifers in the southwestern United States to nitrate contamination and arsenic enrichment. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid that represents local- and basin-scale measures of source, aquifer susceptibility, and geochemical conditions.

  17. Probabilistic Common Spatial Patterns for Multichannel EEG Analysis

    PubMed Central

    Chen, Zhe; Gao, Xiaorong; Li, Yuanqing; Brown, Emery N.; Gao, Shangkai

    2015-01-01

    Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of one EEG data set recorded in a Stroop color naming task. PMID:26005228

  18. Advances in Parameter and Uncertainty Quantification Using Bayesian Hierarchical Techniques with a Spatially Referenced Watershed Model (Invited)

    NASA Astrophysics Data System (ADS)

    Alexander, R. B.; Boyer, E. W.; Schwarz, G. E.; Smith, R. A.

    2013-12-01

    Estimating water and material stores and fluxes in watershed studies is frequently complicated by uncertainties in quantifying hydrological and biogeochemical effects of factors such as land use, soils, and climate. Although these process-related effects are commonly measured and modeled in separate catchments, researchers are especially challenged by their complexity across catchments and diverse environmental settings, leading to a poor understanding of how model parameters and prediction uncertainties vary spatially. To address these concerns, we illustrate the use of Bayesian hierarchical modeling techniques with a dynamic version of the spatially referenced watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes). The dynamic SPARROW model is designed to predict streamflow and other water cycle components (e.g., evapotranspiration, soil and groundwater storage) for monthly varying hydrological regimes, using mechanistic functions, mass conservation constraints, and statistically estimated parameters. In this application, the model domain includes nearly 30,000 NHD (National Hydrologic Data) stream reaches and their associated catchments in the Susquehanna River Basin. We report the results of our comparisons of alternative models of varying complexity, including models with different explanatory variables as well as hierarchical models that account for spatial and temporal variability in model parameters and variance (error) components. The model errors are evaluated for changes with season and catchment size and correlations in time and space. The hierarchical models consist of a two-tiered structure in which climate forcing parameters are modeled as random variables, conditioned on watershed properties. Quantification of spatial and temporal variations in the hydrological parameters and model uncertainties in this approach leads to more efficient (lower variance) and less biased model predictions throughout the river network. Moreover, predictions of water-balance components are reported according to probabilistic metrics (e.g., percentiles, prediction intervals) that include both parameter and model uncertainties. These improvements in predictions of streamflow dynamics can inform the development of more accurate predictions of spatial and temporal variations in biogeochemical stores and fluxes (e.g., nutrients and carbon) in watersheds.

  19. Determination of excitation profile and dielectric function spatial nonuniformity in porous silicon by using WKB approach.

    PubMed

    He, Wei; Yurkevich, Igor V; Canham, Leigh T; Loni, Armando; Kaplan, Andrey

    2014-11-03

    We develop an analytical model based on the WKB approach to evaluate the experimental results of the femtosecond pump-probe measurements of the transmittance and reflectance obtained on thin membranes of porous silicon. The model allows us to retrieve a pump-induced nonuniform complex dielectric function change along the membrane depth. We show that the model fitting to the experimental data requires a minimal number of fitting parameters while still complying with the restriction imposed by the Kramers-Kronig relation. The developed model has a broad range of applications for experimental data analysis and practical implementation in the design of devices involving a spatially nonuniform dielectric function, such as in biosensing, wave-guiding, solar energy harvesting, photonics and electro-optical devices.

  20. A Modular GIS-Based Software Architecture for Model Parameter Estimation using the Method of Anchored Distributions (MAD)

    NASA Astrophysics Data System (ADS)

    Ames, D. P.; Osorio-Murillo, C.; Over, M. W.; Rubin, Y.

    2012-12-01

    The Method of Anchored Distributions (MAD) is an inverse modeling technique that is well-suited for estimation of spatially varying parameter fields using limited observations and Bayesian methods. This presentation will discuss the design, development, and testing of a free software implementation of the MAD technique using the open source DotSpatial geographic information system (GIS) framework, R statistical software, and the MODFLOW groundwater model. This new tool, dubbed MAD-GIS, is built using a modular architecture that supports the integration of external analytical tools and models for key computational processes including a forward model (e.g. MODFLOW, HYDRUS) and geostatistical analysis (e.g. R, GSLIB). The GIS-based graphical user interface provides a relatively simple way for new users of the technique to prepare the spatial domain, to identify observation and anchor points, to perform the MAD analysis using a selected forward model, and to view results. MAD-GIS uses the Managed Extensibility Framework (MEF) provided by the Microsoft .NET programming platform to support integration of different modeling and analytical tools at run-time through a custom "driver." Each driver establishes a connection with external programs through a programming interface, which provides the elements for communicating with core MAD software. This presentation gives an example of adapting the MODFLOW to serve as the external forward model in MAD-GIS for inferring the distribution functions of key MODFLOW parameters. Additional drivers for other models are being developed and it is expected that the open source nature of the project will engender the development of additional model drivers by 3rd party scientists.

  1. Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.

    Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less

  2. Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals

    DOE PAGES

    Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.; ...

    2018-02-09

    Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less

  3. Flavor instabilities in the neutrino line model

    NASA Astrophysics Data System (ADS)

    Duan, Huaiyu; Shalgar, Shashank

    2015-07-01

    A dense neutrino medium can experience collective flavor oscillations through nonlinear neutrino-neutrino refraction. To make this multi-dimensional flavor transport problem more tractable, all existing studies have assumed certain symmetries (e.g., the spatial homogeneity and directional isotropy in the early universe) to reduce the dimensionality of the problem. In this work we show that, if both the directional and spatial symmetries are not enforced in the neutrino line model, collective oscillations can develop in the physical regimes where the symmetry-preserving oscillation modes are stable. Our results suggest that collective neutrino oscillations in real astrophysical environments (such as core-collapse supernovae and black-hole accretion discs) can be qualitatively different from the predictions based on existing models in which spatial and directional symmetries are artificially imposed.

  4. A Physically Based Runoff Routing Model for Land Surface and Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongyi; Wigmosta, Mark S.; Wu, Huan

    2013-06-13

    A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed across hillslopes and then discharged along with subsurface runoff into a ‘‘tributary subnetwork’’ before entering the main channel. The spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way across different spatial resolutions. All model parameters are physically based, and only a small subset requires calibration.MOSART has been applied to the Columbia River basinmore » at 1/ 168, 1/ 88, 1/ 48, and 1/ 28 spatial resolutions and was evaluated using naturalized or observed streamflow at a number of gauge stations. MOSART is compared to two other routing models widely used with land surface models, the River Transport Model (RTM) in the Community Land Model (CLM) and the Lohmann routing model, included as a postprocessor in the Variable Infiltration Capacity (VIC) model package, yielding consistent performance at multiple resolutions. MOSART is further evaluated using the channel velocities derived from field measurements or a hydraulic model at various locations and is shown to be capable of producing the seasonal variation and magnitude of channel velocities reasonably well at different resolutions. Moreover, the impacts of spatial resolution on model simulations are systematically examined at local and regional scales. Finally, the limitations ofMOSART and future directions for improvements are discussed.« less

  5. Spatial Rule-Based Modeling: A Method and Its Application to the Human Mitotic Kinetochore

    PubMed Central

    Ibrahim, Bashar; Henze, Richard; Gruenert, Gerd; Egbert, Matthew; Huwald, Jan; Dittrich, Peter

    2013-01-01

    A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models. PMID:24709796

  6. Computational models of human vision with applications

    NASA Technical Reports Server (NTRS)

    Wandell, B. A.

    1985-01-01

    Perceptual problems in aeronautics were studied. The mechanism by which color constancy is achieved in human vision was examined. A computable algorithm was developed to model the arrangement of retinal cones in spatial vision. The spatial frequency spectra are similar to the spectra of actual cone mosaics. The Hartley transform as a tool of image processing was evaluated and it is suggested that it could be used in signal processing applications, GR image processing.

  7. Exploring complex dynamics in multi agent-based intelligent systems: Theoretical and experimental approaches using the Multi Agent-based Behavioral Economic Landscape (MABEL) model

    NASA Astrophysics Data System (ADS)

    Alexandridis, Konstantinos T.

    This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land use change. Finally, the major contributions to the science are presented along with valuable directions for future research.

  8. Accounting for regional background and population size in the detection of spatial clusters and outliers using geostatistical filtering and spatial neutral models: the case of lung cancer in Long Island, New York

    PubMed Central

    Goovaerts, Pierre; Jacquez, Geoffrey M

    2004-01-01

    Background Complete Spatial Randomness (CSR) is the null hypothesis employed by many statistical tests for spatial pattern, such as local cluster or boundary analysis. CSR is however not a relevant null hypothesis for highly complex and organized systems such as those encountered in the environmental and health sciences in which underlying spatial pattern is present. This paper presents a geostatistical approach to filter the noise caused by spatially varying population size and to generate spatially correlated neutral models that account for regional background obtained by geostatistical smoothing of observed mortality rates. These neutral models were used in conjunction with the local Moran statistics to identify spatial clusters and outliers in the geographical distribution of male and female lung cancer in Nassau, Queens, and Suffolk counties, New York, USA. Results We developed a typology of neutral models that progressively relaxes the assumptions of null hypotheses, allowing for the presence of spatial autocorrelation, non-uniform risk, and incorporation of spatially heterogeneous population sizes. Incorporation of spatial autocorrelation led to fewer significant ZIP codes than found in previous studies, confirming earlier claims that CSR can lead to over-identification of the number of significant spatial clusters or outliers. Accounting for population size through geostatistical filtering increased the size of clusters while removing most of the spatial outliers. Integration of regional background into the neutral models yielded substantially different spatial clusters and outliers, leading to the identification of ZIP codes where SMR values significantly depart from their regional background. Conclusion The approach presented in this paper enables researchers to assess geographic relationships using appropriate null hypotheses that account for the background variation extant in real-world systems. In particular, this new methodology allows one to identify geographic pattern above and beyond background variation. The implementation of this approach in spatial statistical software will facilitate the detection of spatial disparities in mortality rates, establishing the rationale for targeted cancer control interventions, including consideration of health services needs, and resource allocation for screening and diagnostic testing. It will allow researchers to systematically evaluate how sensitive their results are to assumptions implicit under alternative null hypotheses. PMID:15272930

  9. Improving 3d Spatial Queries Search: Newfangled Technique of Space Filling Curves in 3d City Modeling

    NASA Astrophysics Data System (ADS)

    Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.

    2013-09-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its clustering in 2D.

  10. A Bayesian Framework for Analysis of Pseudo-Spatial Models of Comparable Engineered Systems with Application to Spacecraft Anomaly Prediction Based on Precedent Data

    NASA Astrophysics Data System (ADS)

    Ndu, Obibobi Kamtochukwu

    To ensure that estimates of risk and reliability inform design and resource allocation decisions in the development of complex engineering systems, early engagement in the design life cycle is necessary. An unfortunate constraint on the accuracy of such estimates at this stage of concept development is the limited amount of high fidelity design and failure information available on the actual system under development. Applying the human ability to learn from experience and augment our state of knowledge to evolve better solutions mitigates this limitation. However, the challenge lies in formalizing a methodology that takes this highly abstract, but fundamentally human cognitive, ability and extending it to the field of risk analysis while maintaining the tenets of generalization, Bayesian inference, and probabilistic risk analysis. We introduce an integrated framework for inferring the reliability, or other probabilistic measures of interest, of a new system or a conceptual variant of an existing system. Abstractly, our framework is based on learning from the performance of precedent designs and then applying the acquired knowledge, appropriately adjusted based on degree of relevance, to the inference process. This dissertation presents a method for inferring properties of the conceptual variant using a pseudo-spatial model that describes the spatial configuration of the family of systems to which the concept belongs. Through non-metric multidimensional scaling, we formulate the pseudo-spatial model based on rank-ordered subjective expert perception of design similarity between systems that elucidate the psychological space of the family. By a novel extension of Kriging methods for analysis of geospatial data to our "pseudo-space of comparable engineered systems", we develop a Bayesian inference model that allows prediction of the probabilistic measure of interest.

  11. Towards a meaningful assessment of marine ecological impacts in life cycle assessment (LCA).

    PubMed

    Woods, John S; Veltman, Karin; Huijbregts, Mark A J; Verones, Francesca; Hertwich, Edgar G

    2016-01-01

    Human demands on marine resources and space are currently unprecedented and concerns are rising over observed declines in marine biodiversity. A quantitative understanding of the impact of industrial activities on the marine environment is thus essential. Life cycle assessment (LCA) is a widely applied method for quantifying the environmental impact of products and processes. LCA was originally developed to assess the impacts of land-based industries on mainly terrestrial and freshwater ecosystems. As such, impact indicators for major drivers of marine biodiversity loss are currently lacking. We review quantitative approaches for cause-effect assessment of seven major drivers of marine biodiversity loss: climate change, ocean acidification, eutrophication-induced hypoxia, seabed damage, overexploitation of biotic resources, invasive species and marine plastic debris. Our review shows that impact indicators can be developed for all identified drivers, albeit at different levels of coverage of cause-effect pathways and variable levels of uncertainty and spatial coverage. Modeling approaches to predict the spatial distribution and intensity of human-driven interventions in the marine environment are relatively well-established and can be employed to develop spatially-explicit LCA fate factors. Modeling approaches to quantify the effects of these interventions on marine biodiversity are less well-developed. We highlight specific research challenges to facilitate a coherent incorporation of marine biodiversity loss in LCA, thereby making LCA a more comprehensive and robust environmental impact assessment tool. Research challenges of particular importance include i) incorporation of the non-linear behavior of global circulation models (GCMs) within an LCA framework and ii) improving spatial differentiation, especially the representation of coastal regions in GCMs and ocean-carbon cycle models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Exploring behavior of an unusual megaherbivore: A spatially explicit foraging model of the hippopotamus

    USGS Publications Warehouse

    Lewison, R.L.; Carter, J.

    2004-01-01

    Herbivore foraging theories have been developed for and tested on herbivores across a range of sizes. Due to logistical constraints, however, little research has focused on foraging behavior of megaherbivores. Here we present a research approach that explores megaherbivore foraging behavior, and assesses the applicability of foraging theories developed on smaller herbivores to megafauna. With simulation models as reference points for the analysis of empirical data, we investigate foraging strategies of the common hippopotamus (Hippopotamus amphibius). Using a spatially explicit individual based foraging model, we apply traditional herbivore foraging strategies to a model hippopotamus, compare model output, and then relate these results to field data from wild hippopotami. Hippopotami appear to employ foraging strategies that respond to vegetation characteristics, such as vegetation quality, as well as spatial reference information, namely distance to a water source. Model predictions, field observations, and comparisons of the two support that hippopotami generally conform to the central place foraging construct. These analyses point to the applicability of general herbivore foraging concepts to megaherbivores, but also point to important differences between hippopotami and other herbivores. Our synergistic approach of models as reference points for empirical data highlights a useful method of behavioral analysis for hard-to-study megafauna. ?? 2003 Elsevier B.V. All rights reserved.

  13. Integrating remote sensing and spatially explicit epidemiological modeling

    NASA Astrophysics Data System (ADS)

    Finger, Flavio; Knox, Allyn; Bertuzzo, Enrico; Mari, Lorenzo; Bompangue, Didier; Gatto, Marino; Rinaldo, Andrea

    2015-04-01

    Spatially explicit epidemiological models are a crucial tool for the prediction of epidemiological patterns in time and space as well as for the allocation of health care resources. In addition they can provide valuable information about epidemiological processes and allow for the identification of environmental drivers of the disease spread. Most epidemiological models rely on environmental data as inputs. They can either be measured in the field by the means of conventional instruments or using remote sensing techniques to measure suitable proxies of the variables of interest. The later benefit from several advantages over conventional methods, including data availability, which can be an issue especially in developing, and spatial as well as temporal resolution of the data, which is particularly crucial for spatially explicit models. Here we present the case study of a spatially explicit, semi-mechanistic model applied to recurring cholera outbreaks in the Lake Kivu area (Democratic Republic of the Congo). The model describes the cholera incidence in eight health zones on the shore of the lake. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers. Human mobility and its effect on the disease spread is also taken into account. Several model configurations are tested on a data set of reported cases. The best models, accounting for different environmental drivers, and selected using the Akaike information criterion, are formally compared via cross validation. The best performing model accounts for seasonality, El Niño Southern Oscillation, precipitation and human mobility.

  14. Model interpretation of type III radio burst characteristics. I - Spatial aspects

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.

    1988-01-01

    The ways that the finite size of the source region and directivity of the emitted radiation modify the observed characteristics of type III radio bursts as they propagate through the interplanetary medium are investigated. A simple model that simulates the radio source region is developed to provide insight into the spatial behavior of the parameters that characterize radio bursts. The model is used to demonstrate that observed radio azimuths are systematically displaced from the geometric centroid of the exciter electron beam in such a way as to cause trajectories of the radio bursts to track back to the observer at low frequencies, rather than to follow expected Archimedean spiral-like paths. The source region model is used to investigate the spatial behavior of the peak intensities of radio bursts, and it is found that the model can qualitatively account for both the frequency dependence and the east-west asymmetry of the observed peak flux densities.

  15. Multi-scale geospatial agroecosystem modeling: A case study on the influence of soil data resolution on carbon budget estimates

    EPA Science Inventory

    The development of effective measures to stabilize atmospheric 22 CO2 concentration and mitigate negative impacts of climate change requires accurate quantification of the spatial variation and magnitude of the terrestrial carbon (C) flux. However, the spatial pattern and strengt...

  16. Conservation businesses and conservation planning in a biological diversity hotspot.

    PubMed

    Di Minin, Enrico; Macmillan, Douglas Craig; Goodman, Peter Styan; Escott, Boyd; Slotow, Rob; Moilanen, Atte

    2013-08-01

    The allocation of land to biological diversity conservation competes with other land uses and the needs of society for development, food, and extraction of natural resources. Trade-offs between biological diversity conservation and alternative land uses are unavoidable, given the realities of limited conservation resources and the competing demands of society. We developed a conservation-planning assessment for the South African province of KwaZulu-Natal, which forms the central component of the Maputaland-Pondoland-Albany biological diversity hotspot. Our objective was to enhance biological diversity protection while promoting sustainable development and providing spatial guidance in the resolution of potential policy conflicts over priority areas for conservation at risk of transformation. The conservation-planning assessment combined spatial-distribution models for 646 conservation features, spatial economic-return models for 28 alternative land uses, and spatial maps for 4 threats. Nature-based tourism businesses were competitive with other land uses and could provide revenues of >US$60 million/year to local stakeholders and simultaneously help meeting conservation goals for almost half the conservation features in the planning region. Accounting for opportunity costs substantially decreased conflicts between biological diversity, agricultural use, commercial forestry, and mining. Accounting for economic benefits arising from conservation and reducing potential policy conflicts with alternative plans for development can provide opportunities for successful strategies that combine conservation and sustainable development and facilitate conservation action. © 2013 Society for Conservation Biology.

  17. The biogeodynamics of microbial landscapes

    NASA Astrophysics Data System (ADS)

    Battin, T. J.; Hödl, I.; Bertuzzo, E.; Mari, L.; Suweis, S. S.; Rinaldo, A.

    2011-12-01

    Spatial configuration is fundamental in defining the structural and functional properties of biological systems. Biofilms, surface-attached and matrix-enclosed microorganisms, are a striking example of spatial organisation. Coupled biotic and abiotic processes shape the spatial organisation across scales of the landscapes formed by these benthic biofilms in streams and rivers. Experimenting with such biofilms in streams, we found that, depending on the streambed topography and the related hydrodynamic microenvironment, biofilm landscapes form increasingly diverging spatial patterns as they grow. Strikingly, however, cluster size distributions tend to converge even in contrasting hydrodynamic microenvironments. To reproduce the observed cluster size distributions we used a continuous, size-structured population model. The model accounts for the formation, growth, erosion and merging of biofilm clusters. Our results suggest not only that hydrodynamic forcing induce the diverging patterning of the microbial landscape, but also that microorganisms have developed strategies to equally exploit spatial resources independently of the physical structure of the microenvironment where they live.

  18. The spatial pattern of suicide in the US in relation to deprivation, fragmentation and rurality.

    PubMed

    Congdon, Peter

    2011-01-01

    Analysis of geographical patterns of suicide and psychiatric morbidity has demonstrated the impact of latent ecological variables (such as deprivation, rurality). Such latent variables may be derived by conventional multivariate techniques from sets of observed indices (for example, by principal components), by composite variable methods or by methods which explicitly consider the spatial framework of areas and, in particular, the spatial clustering of latent risks and outcomes. This article considers a latent random variable approach to explaining geographical contrasts in suicide in the US; and it develops a spatial structural equation model incorporating deprivation, social fragmentation and rurality. The approach allows for such latent spatial constructs to be correlated both within and between areas. Potential effects of area ethnic mix are also included. The model is applied to male and female suicide deaths over 2002–06 in 3142 US counties.

  19. Need for improved methods to collect and present spatial epidemiologic data for vectorborne diseases.

    PubMed

    Eisen, Lars; Eisen, Rebecca J

    2007-12-01

    Improved methods for collection and presentation of spatial epidemiologic data are needed for vectorborne diseases in the United States. Lack of reliable data for probable pathogen exposure site has emerged as a major obstacle to the development of predictive spatial risk models. Although plague case investigations can serve as a model for how to ideally generate needed information, this comprehensive approach is cost-prohibitive for more common and less severe diseases. New methods are urgently needed to determine probable pathogen exposure sites that will yield reliable results while taking into account economic and time constraints of the public health system and attending physicians. Recent data demonstrate the need for a change from use of the county spatial unit for presentation of incidence of vectorborne diseases to more precise ZIP code or census tract scales. Such fine-scale spatial risk patterns can be communicated to the public and medical community through Web-mapping approaches.

  20. Geospatial Database for Strata Objects Based on Land Administration Domain Model (ladm)

    NASA Astrophysics Data System (ADS)

    Nasorudin, N. N.; Hassan, M. I.; Zulkifli, N. A.; Rahman, A. Abdul

    2016-09-01

    Recently in our country, the construction of buildings become more complex and it seems that strata objects database becomes more important in registering the real world as people now own and use multilevel of spaces. Furthermore, strata title was increasingly important and need to be well-managed. LADM is a standard model for land administration and it allows integrated 2D and 3D representation of spatial units. LADM also known as ISO 19152. The aim of this paper is to develop a strata objects database using LADM. This paper discusses the current 2D geospatial database and needs for 3D geospatial database in future. This paper also attempts to develop a strata objects database using a standard data model (LADM) and to analyze the developed strata objects database using LADM data model. The current cadastre system in Malaysia includes the strata title is discussed in this paper. The problems in the 2D geospatial database were listed and the needs for 3D geospatial database in future also is discussed. The processes to design a strata objects database are conceptual, logical and physical database design. The strata objects database will allow us to find the information on both non-spatial and spatial strata title information thus shows the location of the strata unit. This development of strata objects database may help to handle the strata title and information.

  1. Remote sensing inputs to landscape models which predict future spatial land use patterns for hydrologic models

    NASA Technical Reports Server (NTRS)

    Miller, L. D.; Tom, C.; Nualchawee, K.

    1977-01-01

    A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.

  2. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling

    NASA Astrophysics Data System (ADS)

    Dai, Heng; Chen, Xingyuan; Ye, Ming; Song, Xuehang; Zachara, John M.

    2017-05-01

    Sensitivity analysis is an important tool for development and improvement of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study, we developed a new sensitivity analysis method that integrates the concept of variance-based method with a hierarchical uncertainty quantification framework. Different uncertain inputs are grouped and organized into a multilayer framework based on their characteristics and dependency relationships to reduce the dimensionality of the sensitivity analysis. A set of new sensitivity indices are defined for the grouped inputs using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially distributed input variables.

  3. A Geostatistics-Informed Hierarchical Sensitivity Analysis Method for Complex Groundwater Flow and Transport Modeling

    NASA Astrophysics Data System (ADS)

    Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.

    2017-12-01

    Sensitivity analysis is an important tool for development and improvement of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a new sensitivity analysis method that integrates the concept of variance-based method with a hierarchical uncertainty quantification framework. Different uncertain inputs are grouped and organized into a multi-layer framework based on their characteristics and dependency relationships to reduce the dimensionality of the sensitivity analysis. A set of new sensitivity indices are defined for the grouped inputs using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed input variables.

  4. Modeling the effects of fire severity and spatial complexity on Small Mammals in Yosemite National Park, California

    USGS Publications Warehouse

    Roberts, Susan L.; Van Wagtendonk, Jan W.; Miles, A. Keith; Kelt, Douglas A.; Lutz, James A.

    2008-01-01

    We evaluated the impact of fire severity and related spatial and vegetative parameters on small mammal populations in 2 yr- to 15 yr-old burns in Yosemite National Park, California, USA. We also developed habitat models that would predict small mammal responses to fires of differing severity. We hypothesized that fire severity would influence the abundances of small mammals through changes in vegetation composition, structure, and spatial habitat complexity. Deer mouse (Peromyscus maniculatus) abundance responded negatively to fire severity, and brush mouse (P. boylii) abundance increased with increasing oak tree (Quercus spp.) cover. Chipmunk (Neotamias spp.) abundance was best predicted through a combination of a negative response to oak tree cover and a positive response to spatial habitat complexity. California ground squirrel (Spermophilus beecheyi) abundance increased with increasing spatial habitat complexity. Our results suggest that fire severity, with subsequent changes in vegetation structure and habitat spatial complexity, can influence small mammal abundance patterns.

  5. Momentum Flux Increases and Coherent-Structure Dynamics in a Subsonic Axisymmetric Free Jet

    DTIC Science & Technology

    1988-08-19

    CONTENTS I1. INTRODUCTION ....................................... .. 2. THE NUMERICAL MODEL ...used to study both planar and axisymmetric shear layers. A number of these have modeled temporally developing mixing layers (Patnaik et al. 1976...Riley & Metcalfe 1980; Moin et al. 1985). Others have modeled spatially developing layers (Ashurst 1979: Davis & Moore 1985; Grinstein et al. 1986), which

  6. A Head in Virtual Reality: Development of A Dynamic Head and Neck Model

    ERIC Educational Resources Information Center

    Nguyen, Ngan; Wilson, Timothy D.

    2009-01-01

    Advances in computer and interface technologies have made it possible to create three-dimensional (3D) computerized models of anatomical structures for visualization, manipulation, and interaction in a virtual 3D environment. In the past few decades, a multitude of digital models have been developed to facilitate complex spatial learning of the…

  7. Simulation of multispectral multisource for device of consumer and medicine products analysis

    NASA Astrophysics Data System (ADS)

    Korolev, Timofey K.; Peretyagin, Vladimir S.

    2017-06-01

    One of the results of intensive development of led technology was the creation of a multi-component, managed devices and illumination/irradiation used in various fields of production (e.g., food industry analysis, food quality). The use of LEDs has become possible due to their structure determining spatial, energy, electrical, thermal and other characteristics. However, the development of the devices for illumination/irradiation require closer attention in the case if you want to provide precise illumination to the area of analysis, located at a specified distance from the radiation source. The present work is devoted to the development and modelling of a specialized source of radiation intended for solving problems of analysis of food products, medicines and water for suitability in drinking. In this work, we provided a mathematical model of spatial and spectral distribution of irridation from the source of infrared radiation ring structure. When you create this kind of source, you address factors such spectral component, the power settings, the spatial and energy components of the diodes.

  8. Modeling Transport of Turbulent Fluxes in a Heterogeneous Urban Canopy Using a Spatially Explicit Energy Balance

    NASA Astrophysics Data System (ADS)

    Moody, M.; Bailey, B.; Stoll, R., II

    2017-12-01

    Understanding how changes in the microclimate near individual plants affects the surface energy budget is integral to modeling land-atmosphere interactions and a wide range of near surface atmospheric boundary layer phenomena. In urban areas, the complex geometry of the urban canopy layer results in large spatial deviations of turbulent fluxes further complicating the development of models. Accurately accounting for this heterogeneity in order to model urban energy and water use requires a sub-plant level understanding of microclimate variables. We present analysis of new experimental field data taken in and around two Blue Spruce (Picea pungens) trees at the University of Utah in 2015. The test sites were chosen in order study the effects of heterogeneity in an urban environment. An array of sensors were placed in and around the conifers to quantify transport in the soil-plant-atmosphere continuum: radiative fluxes, temperature, sap fluxes, etc. A spatial array of LEMS (Local Energy Measurement Systems) were deployed to obtain pressure, surrounding air temperature and relative humidity. These quantities are used to calculate the radiative and turbulent fluxes. Relying on measurements alone is insufficient to capture the complexity of microclimate distribution as one reaches sub-plant scales. A spatially-explicit radiation and energy balance model previously developed for deciduous trees was extended to include conifers. The model discretizes the tree into isothermal sub-volumes on which energy balances are performed and utilizes incoming radiation as the primary forcing input. The radiative transfer component of the model yields good agreement between measured and modeled upward longwave and shortwave radiative fluxes. Ultimately, the model was validated through an examination of the full energy budget including radiative and turbulent fluxes through isolated Picea pungens in an urban environment.

  9. Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain

    NASA Astrophysics Data System (ADS)

    Gruber, A.; Crow, W. T.; Dorigo, W. A.

    2018-02-01

    Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.

  10. Inferring Spatial Variations of Microstructural Properties from Macroscopic Mechanical Response

    PubMed Central

    Liu, Tengxiao; Hall, Timothy J.; Barbone, Paul E.; Oberai, Assad A.

    2016-01-01

    Disease alters tissue microstructure, which in turn affects the macroscopic mechanical properties of tissue. In elasticity imaging, the macroscopic response is measured and is used to infer the spatial distribution of the elastic constitutive parameters. When an empirical constitutive model is used these parameters cannot be linked to the microstructure. However, when the constitutive model is derived from a microstructural representation of the material, it allows for the possibility of inferring the local averages of the spatial distribution of the microstructural parameters. This idea forms the basis of this study. In particular, we first derive a constitutive model by homogenizing the mechanical response of a network of elastic, tortuous fibers. Thereafter, we use this model in an inverse problem to determine the spatial distribution of the microstructural parameters. We solve the inverse problem as a constrained minimization problem, and develop efficient methods for solving it. We apply these methods to displacement fields obtained by deforming gelatin-agar co-gels, and determine the spatial distribution of agar concentration and fiber tortuosity, thereby demonstrating that it is possible to image local averages of microstructural parameters from macroscopic measurements of deformation. PMID:27655420

  11. Spatially structured superinfection and the evolution of disease virulence.

    PubMed

    Caraco, Thomas; Glavanakov, Stephan; Li, Shengua; Maniatty, William; Szymanski, Boleslaw K

    2006-06-01

    When pathogen strains differing in virulence compete for hosts, spatial structuring of disease transmission can govern both evolved levels of virulence and patterns in strain coexistence. We develop a spatially detailed model of superinfection, a form of contest competition between pathogen strains; the probability of superinfection depends explicitly on the difference in levels of virulence. We apply methods of adaptive dynamics to address the interplay of spatial dynamics and evolution. The mean-field approximation predicts evolution to criticality; any small increase in virulence capable of dynamical persistence is favored. Both pair approximation and simulation of the detailed model indicate that spatial structure constrains disease virulence. Increased spatial clustering reduces the maximal virulence capable of single-strain persistence and, more importantly, reduces the convergent-stable virulence level under strain competition. The spatially detailed model predicts that increasing the probability of superinfection, for given difference in virulence, increases the likelihood of between-strain coexistence. When strains differing in virulence can coexist ecologically, our results may suggest policies for managing diseases with localized transmission. Comparing equilibrium densities from the pair approximation, we find that introducing a more virulent strain into a host population infected by a less virulent strain can sometimes reduce total host mortality and increase global host density.

  12. Validation of temporal and spatial consistency of facility- and speed-specific vehicle-specific power distributions for emission estimation: A case study in Beijing, China.

    PubMed

    Zhai, Zhiqiang; Song, Guohua; Lu, Hongyu; He, Weinan; Yu, Lei

    2017-09-01

    Vehicle-specific power (VSP) has been found to be highly correlated with vehicle emissions. It is used in many studies on emission modeling such as the MOVES (Motor Vehicle Emissions Simulator) model. The existing studies develop specific VSP distributions (or OpMode distribution in MOVES) for different road types and various average speeds to represent the vehicle operating modes on road. However, it is still not clear if the facility- and speed-specific VSP distributions are consistent temporally and spatially. For instance, is it necessary to update periodically the database of the VSP distributions in the emission model? Are the VSP distributions developed in the city central business district (CBD) area applicable to its suburb area? In this context, this study examined the temporal and spatial consistency of the facility- and speed-specific VSP distributions in Beijing. The VSP distributions in different years and in different areas are developed, based on real-world vehicle activity data. The root mean square error (RMSE) is employed to quantify the difference between the VSP distributions. The maximum differences of the VSP distributions between different years and between different areas are approximately 20% of that between different road types. The analysis of the carbon dioxide (CO 2 ) emission factor indicates that the temporal and spatial differences of the VSP distributions have no significant impact on vehicle emission estimation, with relative error of less than 3%. The temporal and spatial differences have no significant impact on the development of the facility- and speed-specific VSP distributions for the vehicle emission estimation. The database of the specific VSP distributions in the VSP-based emission models can maintain in terms of time. Thus, it is unnecessary to update the database regularly, and it is reliable to use the history vehicle activity data to forecast the emissions in the future. In one city, the areas with less data can still develop accurate VSP distributions based on better data from other areas.

  13. Toward seamless hydrologic predictions across spatial scales

    NASA Astrophysics Data System (ADS)

    Samaniego, Luis; Kumar, Rohini; Thober, Stephan; Rakovec, Oldrich; Zink, Matthias; Wanders, Niko; Eisner, Stephanie; Müller Schmied, Hannes; Sutanudjaja, Edwin H.; Warrach-Sagi, Kirsten; Attinger, Sabine

    2017-09-01

    Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-scale (1-10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR) technique offers a practical and robust method that provides consistent (seamless) parameter and flux fields across scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.

  14. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inman, Daniel; Warner, Ethan; Stright, Dana

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of manymore » feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user-friendly interface for on-demand, spatially explicit, water use scenario analysis for many US agricultural crops. Built-in controls permit users to quickly make modifications to the model assumptions, such as those affecting yield, and to see the implications of those results in real time. BioSpatial H2O's dynamic capabilities and adjustable climate data allow for analyses of water use and management scenarios to inform current and potential future bioenergy policies. The model could also be adapted for scenario analysis of alternative climatic conditions and comparison of multiple crops. The results of such an analysis would help identify risks associated with water use competition among feedstocks in certain regions. Results could also inform research and development efforts that seek to reduce water-related risks of biofuel pathways.« less

  15. Magnetic Local Time Dependant Low Energy Electron Flux Models at Geostationary Earth Orbit

    NASA Astrophysics Data System (ADS)

    Boynton, R.; Balikhin, M. A.; Walker, S. N.

    2017-12-01

    The low energy electron fluxes in the outer radiation belts at Geostationary Earth Orbit (GEO) can vary widely in Magnetic Local Time (MLT). This spatial variation is due to the convective and substorm-associated electric fields and can take place on short time scales. This makes it difficult to deduce a data based model of the low energy electrons. For higher energies, where there is negligible spatial variation at a particular L-star, data based models employ averaged fluxes over the orbit. This removes the diurnal variation as GEO passes through various L-star due to the structure of Earth's magnetic field. This study develops a number of models for the low energy electron fluxes measured by GOES 13 and 15 for different MLT to capture the dynamics of the spatial variations.

  16. A Socio-Ecological Approach for Identifying and Contextualising Spatial Ecosystem-Based Adaptation Priorities at the Sub-National Level

    PubMed Central

    Bourne, Amanda; Holness, Stephen; Holden, Petra; Scorgie, Sarshen; Donatti, Camila I.; Midgley, Guy

    2016-01-01

    Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa demonstrate the replicability of this approach in rural and peri-urban areas of other developing and least developed countries around the world. PMID:27227671

  17. A Socio-Ecological Approach for Identifying and Contextualising Spatial Ecosystem-Based Adaptation Priorities at the Sub-National Level.

    PubMed

    Bourne, Amanda; Holness, Stephen; Holden, Petra; Scorgie, Sarshen; Donatti, Camila I; Midgley, Guy

    2016-01-01

    Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa demonstrate the replicability of this approach in rural and peri-urban areas of other developing and least developed countries around the world.

  18. Computational Modeling of Airway and Pulmonary Vascular Structure and Function: Development of a “Lung Physiome”

    PubMed Central

    Tawhai, M. H.; Clark, A. R.; Donovan, G. M.; Burrowes, K. S.

    2011-01-01

    Computational models of lung structure and function necessarily span multiple spatial and temporal scales, i.e., dynamic molecular interactions give rise to whole organ function, and the link between these scales cannot be fully understood if only molecular or organ-level function is considered. Here, we review progress in constructing multiscale finite element models of lung structure and function that are aimed at providing a computational framework for bridging the spatial scales from molecular to whole organ. These include structural models of the intact lung, embedded models of the pulmonary airways that couple to model lung tissue, and models of the pulmonary vasculature that account for distinct structural differences at the extra- and intra-acinar levels. Biophysically based functional models for tissue deformation, pulmonary blood flow, and airway bronchoconstriction are also described. The development of these advanced multiscale models has led to a better understanding of complex physiological mechanisms that govern regional lung perfusion and emergent heterogeneity during bronchoconstriction. PMID:22011236

  19. Impact of Spatial Scales on the Intercomparison of Climate Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wei; Steptoe, Michael; Chang, Zheng

    2017-01-01

    Scenario analysis has been widely applied in climate science to understand the impact of climate change on the future human environment, but intercomparison and similarity analysis of different climate scenarios based on multiple simulation runs remain challenging. Although spatial heterogeneity plays a key role in modeling climate and human systems, little research has been performed to understand the impact of spatial variations and scales on similarity analysis of climate scenarios. To address this issue, the authors developed a geovisual analytics framework that lets users perform similarity analysis of climate scenarios from the Global Change Assessment Model (GCAM) using a hierarchicalmore » clustering approach.« less

  20. Linking landscape characteristics to local grizzly bear abundance using multiple detection methods in a hierarchical model

    USGS Publications Warehouse

    Graves, T.A.; Kendall, Katherine C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.

    2011-01-01

    Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system.

Top