Sakamuri, Siva Sankara Vara Prasad; Putcha, Uday Kumar; Veettil, Giridharan Nappan; Ayyalasomayajula, Vajreswari
2016-09-01
Adipose tissue dysfunction in obesity is linked to the development of type 2 diabetes and cardiovascular diseases. We studied the differential gene expression in retroperitoneal adipose tissue of a novel obese rat model, WNIN/Ob, to understand the possible underlying transcriptional changes involved in the development of obesity and associatedcomorbidities in this model. Four month old, male WNIN/Ob lean and obese rats were taken, blood was collected and tissues were dissected. Body composition analysis and adipose tissue histology were performed. Global gene expression in retroperitoneal adipose tissue of lean and obese rats was studied by microarray using Affymetrix GeneChips. One thousand and seventeen probe sets were downregulated and 963 probe sets were upregulated (more than two-fold) in adipose tissue of WNIN/Ob obese rats when compared to that of lean rats. Small nucleolar RNA (SnoRNA) made most of the underexpressed probe sets, whereas immune system-related genes werethe most overexpressed in the adipose tissues of obese rats. Genes coding for cytoskeletal proteinswere downregulated, whereas genes related to lipid biosynthesis were elevated in the adipose tissue of obese rats. Majority of the altered genes and pathways in adipose tissue of WNIN/Ob obese rats were similar to the observations in other obese animal models and human obesity. Based on these observations, it is proposed that WNIN/Ob obese rat model may be a good model to study the mechanisms involved in the development of obesity and its comorbidities. Downregulation of SnoRNA appears to be a novel feature in this obese rat model.
Peterson, Richard G.; de Winter, Willem; Huebert, Norman; Hansen, Michael K.
2015-01-01
Metabolic syndrome and T2D produce significant health and economic issues. Many available animal models have monogenic leptin pathway mutations that are absent in the human population. Development of the ZDSD rat model was undertaken to produce a model that expresses polygenic obesity and diabetes with an intact leptin pathway. A lean ZDF rat with the propensity for beta-cell failure was crossed with a polygenetically obese Crl:CD (SD) rat. Offspring were selectively inbred for obesity and diabetes for >30 generations. In the current study, ZDSD rats were followed for 6 months; routine clinical metabolic endpoints were included throughout the study. In the prediabetic metabolic syndrome phase, ZDSD rats exhibited obesity with increased body fat, hyperglycemia, insulin resistance, dyslipidemia, glucose intolerance, and elevated HbA1c. As disease progressed to overt diabetes, ZDSD rats demonstrated elevated glucose levels, abnormal oral glucose tolerance, increases in HbA1c levels, reductions in body weight, increased insulin resistance with decreasing insulin levels, and dyslipidemia. The ZDSD rat develops prediabetic metabolic syndrome and T2D in a manner that mirrors the development of metabolic syndrome and T2D in humans. ZDSD rats will provide a novel, translational animal model for the study of human metabolic diseases and for the development of new therapies. PMID:25961053
Respiratory Tract Lung Geometry and Dosimetry Model for Male Sprague-Dawley Rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Frederick J.; Asgharian, Bahman; Schroeter, Jeffry D.
2015-07-24
While inhalation toxicological studies of various compounds have been conducted using a number of different strains of rats, mechanistic dosimetry models have only had tracheobronchial (TB) structural data for Long-Evans rats, detailed morphometric data on the alveolar region of Sprague-Dawley rats and limited alveolar data on other strains. Based upon CT imaging data for two male Sprague-Dawley rats, a 15-generation, symmetric typical path model was developed for the TB region. Literature data for the alveolar region of Sprague-Dawley rats were analyzed to develop an eight-generation model, and the two regions were joined to provide a complete lower respiratory tract modelmore » for Sprague-Dawley rats. The resulting lung model was used to examine particle deposition in Sprague-Dawley rats and to compare these results with predicted deposition in Long-Evans rats. Relationships of various physiologic variables and lung volumes were either developed in this study or extracted from the literature to provide the necessary input data for examining particle deposition. While the lengths, diameters and branching angles of the TB airways differed between the two Sprague-Dawley rats, the predicted deposition patterns in the three major respiratory tract regions were very similar. Between Sprague-Dawley and Long-Evans rats, significant differences in TB and alveolar predicted deposition fractions were observed over a wide range of particle sizes, with TB deposition fractions being up to 3- to 4-fold greater in Sprague-Dawley rats and alveolar deposition being significantly greater in Long-Evans rats. Thus, strain-specific lung geometry models should be used for particle deposition calculations and interspecies dose comparisons.« less
Respiratory tract lung geometry and dosimetry model for male Sprague-Dawley rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Frederick J.; Asgharian, Bahman; Schroeter, Jeffry D.
2014-08-26
While inhalation toxicological studies of various compounds have been conducted using a number of different strains of rats, mechanistic dosimetry models have only had tracheobronchial (TB) structural data for Long-Evans rats, detailed morphometric data on the alveolar region of Sprague-Dawley rats and limited alveolar data on other strains. Based upon CT imaging data for two male Sprague-Dawley rats, a 15-generation, symmetric typical path model was developed for the TB region. Literature data for the alveolar region of Sprague-Dawley rats were analyzed to develop an eight-generation model, and the two regions were joined to provide a complete lower respiratory tract modelmore » for Sprague-Dawley rats. The resulting lung model was used to examine particle deposition in Sprague-Dawley rats and to compare these results with predicted deposition in Long-Evans rats. Relationships of various physiologic variables and lung volumes were either developed in this study or extracted from the literature to provide the necessary input data for examining particle deposition. While the lengths, diameters and branching angles of the TB airways differed between the two Sprague- Dawley rats, the predicted deposition patterns in the three major respiratory tract regions were very similar. Between Sprague-Dawley and Long-Evans rats, significant differences in TB and alveolar predicted deposition fractions were observed over a wide range of particle sizes, with TB deposition fractions being up to 3- to 4-fold greater in Sprague-Dawley rats and alveolar deposition being significantly greater in Long-Evans rats. Thus, strain-specific lung geometry models should be used for particle deposition calculations and interspecies dose comparisons.« less
A novel rat model for chemotherapy-induced alopecia.
Wikramanayake, T C; Amini, S; Simon, J; Mauro, L M; Elgart, G; Schachner, L A; Jimenez, J J
2012-04-01
More than half of all people diagnosed with cancer receive chemotherapy, and approximately 65% of these develop chemotherapy-induced alopecia (CIA), a side-effect that can have considerable negative psychological repercussions. Currently, there are very few animal models available to study the mechanism and prevention of CIA. To develop a clinically relevant adult rat model for CIA. We first tested whether neonatal pigmented Long-Evans (LE) rats developed alopecia in response to the chemotherapeutic agents etoposide and cyclophosphamide. We then determined whether the rats developed CIA as adults. In the latter experiment, rat dorsal hair was clipped during the early telogen stage to synchronize the hair cycle, and starting 15 days later, the rats were treated with etoposide for 3 days. Neonatal LE pups developed CIA in response to etoposide and cyclophosphamide, similar to other murine models for CIA. Clipping of the hair shaft during early telogen resulted in synchronized anagen induction and subsequent alopecia after etoposide treatment in the clipped areas only. Hair follicles in the clipped areas had the typical chemotherapy-induced follicular dystrophy (dystrophic catagen). When the hair in the pigmented alopecic areas regrew, it had normal pigmentation. A novel, pigmented adult rat model has been established for CIA. By hair-shaft clipping during early telogen, synchronized anagen entry was induced, which resulted in alopecia in response to chemotherapy. This is the first clinically relevant adult rat model for CIA, and will be a useful tool to test agents for the prevention and treatment of CIA. © The Author(s). CED © 2012 British Association of Dermatologists.
The JCR:LA-cp rat: a novel rodent model of cystic medial necrosis.
Pung, Yuh Fen; Chilian, William M; Bennett, Martin R; Figg, Nichola; Kamarulzaman, Mohd Hamzah
2017-03-01
Although there are multiple rodent models of the metabolic syndrome, very few develop vascular complications. In contrast, the JCR:LA-cp rat develops both metabolic syndrome and early atherosclerosis in predisposed areas. However, the pathology of the normal vessel wall has not been described. We examined JCR:LA control (+/+) or cp/cp rats fed normal chow diet for 6 or 18 mo. JCR:LA-cp rats developed multiple features of advanced cystic medial necrosis including "cysts," increased collagen formation and proteoglycan deposition around cysts, apoptosis of vascular smooth muscle cells, and spotty medial calcification. These appearances began within 6 mo and were extensive by 18 mo. JCR:LA-cp rats had reduced medial cellularity, increased medial thickness, and vessel hypoxia that was most marked in the adventitia. In conclusion, the normal chow-fed JCR:LA-cp rat represents a novel rodent model of cystic medial necrosis, associated with multiple metabolic abnormalities, vascular smooth muscle cell apoptosis, and vessel hypoxia. NEW & NOTEWORTHY Triggers for cystic medial necrosis (CMN) have been difficult to study due to lack of animal models to recapitulate the pathologies seen in humans. Our study is the first description of CMN in the rat. Thus the JCR:LA-cp rat represents a useful model to investigate the underlying molecular changes leading to the development of CMN. Copyright © 2017 the American Physiological Society.
Rat Genome and Model Resources.
Shimoyama, Mary; Smith, Jennifer R; Bryda, Elizabeth; Kuramoto, Takashi; Saba, Laura; Dwinell, Melinda
2017-07-01
Rats remain a major model for studying disease mechanisms and discovery, validation, and testing of new compounds to improve human health. The rat's value continues to grow as indicated by the more than 1.4 million publications (second to human) at PubMed documenting important discoveries using this model. Advanced sequencing technologies, genome modification techniques, and the development of embryonic stem cell protocols ensure the rat remains an important mammalian model for disease studies. The 2004 release of the reference genome has been followed by the production of complete genomes for more than two dozen individual strains utilizing NextGen sequencing technologies; their analyses have identified over 80 million variants. This explosion in genomic data has been accompanied by the ability to selectively edit the rat genome, leading to hundreds of new strains through multiple technologies. A number of resources have been developed to provide investigators with access to precision rat models, comprehensive datasets, and sophisticated software tools necessary for their research. Those profiled here include the Rat Genome Database, PhenoGen, Gene Editing Rat Resource Center, Rat Resource and Research Center, and the National BioResource Project for the Rat in Japan. © The Author 2017. Published by Oxford University Press.
Mirfazaelian et al. (2006) developed a physiologically based pharmacokinetic (PBPK) model for the pyrethroid pesticide deltamethrin in the rat. This model describes gastrointestinal tract absorption as a saturable process mediated by phase III efflux transporters which pump delta...
Bell, Richard L.; Sable, Helen J.K.; Colombo, Giancarlo; Hyytia, Petri; Rodd, Zachary A.; Lumeng, Lawrence
2012-01-01
The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence. PMID:22841890
Genome Editing in Rats Using TALE Nucleases.
Tesson, Laurent; Remy, Séverine; Ménoret, Séverine; Usal, Claire; Thinard, Reynald; Savignard, Chloé; De Cian, Anne; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio
2016-01-01
The rat is an important animal model to understand gene function and model human diseases. Since recent years, the development of gene-specific nucleases has become important for generating new rat models of human diseases, to analyze the role of genes and to generate human antibodies. Transcription activator-like (TALE) nucleases efficiently create gene-specific knockout rats and lead to the possibility of gene targeting by homology-directed recombination (HDR) and generating knock-in rats. We describe a detailed protocol for generating knockout and knock-in rats via microinjection of TALE nucleases into fertilized eggs. This technology is an efficient, cost- and time-effective method for creating new rat models.
This work describes the development of a physiologically based pharmacokinetic (PBPK) model of deltamethrin, a type II pyrethroid, in the developing male Sprague-Dawley rat. Generalized Michaelis-Menten equations were used to calculate metabolic rate constants and organ weights ...
A PBPK model for TCE with specificity for the male LE rat that accurately predicts TCE tissue time-course data has not been developed, although other PBPK models for TCE exist. Development of such a model was the present aim. The PBPK model consisted of 5 compartments: fat; slowl...
This work describes the development of a physiologically based pharmacokinetic (PBPK) model of deltamethrin, a type II pyrethroid, in the developing male Sprague-Dawley rat. Generalized Michaelis-Menten equations were used to calculate metabolic rate constants and organ weights ...
Kaneko, Ryosuke; Sato, Atsuko; Hamada, Shun; Yagi, Takeshi; Ohsawa, Ichiro; Ohtsuki, Mamitaro; Kobayashi, Eiji; Hirabayashi, Masumi; Murakami, Takashi
2016-08-01
Childhood-onset dermatitis is one of the most common skin disorders in children. Although various mouse models that mirror aspects of dermatitis have become available, there is still a need for an animal model that develops dermatitis in childhood and is more suitable for performing tissue transplantation experiments. There is emerging evidence that peripheral blood T lymphocytes from patients with dermatitis have significantly increased telomerase activity. Here, we developed telomerase reverse transcriptase (TERT)-expressing transgenic (Tg) rats that spontaneously developed eczematous skin inflammation in childhood. Newborn TERT-Tg rats developed visible dermatitis in 56 % of cases, and the skin lesions microscopically showed spongiosis and acanthosis with infiltration of lymphocytes, eosinophils and mast cells. TERT-Tg rats with dermatitis exhibited increased CD4 (2.5-fold) and CD8 (fivefold) T cell numbers compared with dermatitis-free TERT-Tg rats. Stronger TERT activity was observed in the peripheral lymphocytes of dermatitis-positive TERT-Tg rats than those of dermatitis-free TERT-Tg rats. RT-PCR analysis revealed that IL-4 was markedly elevated in the spleen of dermatitis-positive TERT-Tg rats, and that interferon-gamma was increased in the dermatitis lesions. Moreover, skin grafting of TERT-Tg rats with dermatitis onto T cell-deficient nude rats demonstrated that the inflamed skin lesions could not be maintained. Taken together, the results suggest that TERT activation in T lymphocytes is one of the potential predisposing factors for dermatitis. Moreover, our results demonstrated that the TERT-Tg rats mirror aspects of human childhood-onset dermatitis and that these animals represent a potential animal model system for studying childhood-onset dermatitis.
Characterization of SV-40 Tag rats as a model to study prostate cancer
2009-01-01
Background Prostate cancer is the second most frequently diagnosed cancer in men. Animal models that closely mimic clinical disease in humans are invaluable tools in the fight against prostate cancer. Recently, a Simian Virus-40 T-antigen (SV-40 Tag) targeted probasin promoter rat model was developed. This model, however, has not been extensively characterized; hence we have investigated the ontogeny of prostate cancer and determined the role of sex steroid receptor and insulin-like growth factor-1 (IGF-1) signaling proteins in the novel SV-40 Tag rat. Methods The SV-40 Tag rat was histopathologically characterized for time to tumor development, incidence and multiplicity and in the ventral, dorsal, lateral and anterior lobes of the prostate. Immunoassay techniques were employed to measure cell proliferation, apoptosis, and sex steroid receptor and growth factor signaling-related proteins. Steroid hormone concentrations were measured via coated well enzyme linked immunosorbent assay (ELISA) kits. Results Prostatic intraepithelial neoplasia (PIN) and well-differentiated prostate cancer developed as early as 2 and 10 weeks of age, respectively in the ventral prostate (VP) followed by in the dorsolateral (DLP). At 8 weeks of age, testosterone and dihydrotestosterone (DHT) concentrations in SV-40 Tag rats were increased when compared to non-transgenic rats. High cell proliferation and apoptotic indices were found in VP and DLP of transgenic rats. Furthermore, we observed increased protein expression of androgen receptor, IGF-1, IGF-1 receptor, and extracellular signal-regulated kinases in the prostates of SV-40 Tag rats. Conclusion The rapid development of PIN and prostate cancer in conjunction with the large prostate size makes the SV-40 Tag rat a useful model for studying prostate cancer. This study provides evidence of the role of sex steroid and growth factor proteins in prostate cancer development and defines appropriate windows of opportunity for preclinical trials and aids in the rational design of chemoprevention, intervention, regression, and therapeutic studies using prostate cancer rodent models. PMID:19171036
A BBDR-HPT Axis Model for the Pregnant Rat and Fetus: Evaluation of Iodide Deficiency
A biologically based dose response (BBDR) model for the hypothalamic-pituitarythyroid (HPT) axis for the pregnant rat and fetus is being developed to advance understanding of thyroid hormone disruptions and developmental neurotoxicity (DNT). The model for the pregnant rat and fet...
A BBDR-HPT Axis Model for the Lactating Rat and Nursing Pup: Evaluation of Iodide Deficiency
A biologically based dose response (BBDR) model for the lactating rat and pup hypothalamic-pituitary-thyroid (HPT) axis is being developed to advance understanding of thyroid hormone disruptions and developmental neurotoxicity (DNT). The model for the lactating rat and pup quanti...
Huang, Yanli; Zeng, Jin; Chen, Guoqing; Xie, Xudong; Guo, Weihua; Tian, Weidong
2016-12-01
This study aimed to investigate the mechanism by which periodontitis affects the inflammatory response and systemic insulin resistance in the white adipose and liver tissues in an obese rat model. The obese model was generated by feeding rats a high fat diet. The periodontitis model was induced by ligatures and injection of "red complex", which consisted of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, for two weeks. When compared with rats without periodontitis, fasting glucose levels and homeostasis model assessment index were significantly increased in rats with periodontitis, suggesting that periodontitis promotes the development of insulin resistance in obese rats. Gene and protein expression analysis in white adipose and liver tissue revealed that experimental periodontitis stimulated the expression of inflammatory cytokines, such as tumor necrosis factors-alpha, interleukin-1 beta, toll-like receptor 2 and toll-like receptor 4. Signals associated with inflammation and insulin resistance, including nuclear factor-
Calabrese, Evan; Badea, Alexandra; Watson, Charles; Johnson, G Allan
2013-05-01
There has been growing interest in the role of postnatal brain development in the etiology of several neurologic diseases. The rat has long been recognized as a powerful model system for studying neuropathology and the safety of pharmacologic treatments. However, the complex spatiotemporal changes that occur during rat neurodevelopment remain to be elucidated. This work establishes the first magnetic resonance histology (MRH) atlas of the developing rat brain, with an emphasis on quantitation. The atlas comprises five specimens at each of nine time points, imaged with eight distinct MR contrasts and segmented into 26 developmentally defined brain regions. The atlas was used to establish a timeline of morphometric changes and variability throughout neurodevelopment and represents a quantitative database of rat neurodevelopment for characterizing rat models of human neurologic disease. Published by Elsevier Inc.
Ambient particulate matter (PM) exposure is linked to cardiovascular events and death, especially among individuals with heart disease. A model of toxic cardiomyopathy was developed in Spontaneously Hypertensive Heart Failure (SHHF) rats to explore potential mechanisms. Rats were...
Panveloski-Costa, Ana Carolina; Yokota, Caroline Naomi Fukusawa; Pereira, Joice Naiara Bertaglia; Filho, Jorge Mancini; Torres, Rosangela Pavan; Hirabara, Sandro Massao; Curi, Rui; Alba-Loureiro, Tatiana Carolina
2017-01-01
Type 2 Diabetes mellitus (T2DM) is an evident growing disease that affects different cultures throughout the world. T2DM occurs under the influence of three main factors: the genetic background, environmental and behavioral components. Obesity is strongly associated to the development of T2DM in the occident, while in the orient most of the diabetic patients are considered lean. Genetics may be a key factor in the development of T2DM in societies where obesity is not a recurrent public health problem. Herein, two different models of rats were used to understand their differences and reliability as experimental models to study the pathophysiology of T2DM, in two different approaches: the genetic (GK rats) and the environmental (HFD-induced obese rats) influences. GK rats were resistant to weight gain even though food/energy consumption (relative to body weight) was higher in this group. HFD, on the other hand, induced obesity in Wistar rats. White adipose tissue (WAT) expansion in this group was accompanied by immune cells infiltration, inflammation and insulin resistance. GK rats also presented WAT inflammation and insulin resistance; however, no immune cells infiltration was observed in the WAT of this group. Liver of HFD group presented fat accumulation without differences in inflammatory cytokines content, while liver of GK rats didn’t present fat accumulation, but showed an increase of IL-6 and IL-10 content and glycogen. Also, GK rats showed increased plasma GOT and GPT. Soleus muscle of HFD presented normal insulin signaling, contrary to GK rats, which presented higher content of basal phosphorylation of GSK-3β. Our results demonstrated that HFD developed a mild insulin resistance in Wistar rats, but was not sufficient to develop T2DM. In contrast, GK rats presented all the typical hallmarks of T2DM, such as insulin resistance, defective insulin production, fasting hyperglycemia/hyperinsulinemia and lipid plasma alteration. Thus, on the given time point of this study, we may conclude that only GK rats shown to be a reliable model to study T2DM. PMID:29220408
Generation of muscular dystrophy model rats with a CRISPR/Cas system.
Nakamura, Katsuyuki; Fujii, Wataru; Tsuboi, Masaya; Tanihata, Jun; Teramoto, Naomi; Takeuchi, Shiho; Naito, Kunihiko; Yamanouchi, Keitaro; Nishihara, Masugi
2014-07-09
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder caused by mutations in the Dmd gene encoding Dystrophin. DMD model animals, such as mdx mice and canine X-linked muscular dystrophy dogs, have been widely utilized in the development of a treatment for DMD. Here, we demonstrate the generation of Dmd-mutated rats using a clustered interspaced short palindromic repeats (CRISPR)/Cas system, an RNA-based genome engineering technique that is also adaptive to rats. We simultaneously targeted two exons in the rat Dmd gene, which resulted in the absence of Dystrophin expression in the F0 generation. Dmd-mutated rats exhibited a decline in muscle strength, and the emergence of degenerative/regenerative phenotypes in the skeletal muscle, heart, and diaphragm. These mutations were heritable by the next generation, and F1 male rats exhibited similar phenotypes in their skeletal muscles. These model rats should prove to be useful for developing therapeutic methods to treat DMD.
A physiologically based pharmacokinetic (PBPK) model was developed for the conazole fungicide triadimefon and its primary metabolite, triadimenol. Rat tissue:blood partition coefficients and metabolic constants were measured in vitro for both compounds. Kinetic time course data...
physiologically based pharmacokinetic (PBPK) model was developed for the conazole fungicide triadimefon and its primary metabolite, triadimenol. Rat tissue:blood partition coefficients and metabolic constants were measured in vitro for both compounds. Pharmacokinetic data for par...
Sawada, Yumi; Hashimoto, Hirofumi; Yoshimura, Mitsuhiro; Ohbuchi, Katsuya; Sudo, Yuka; Suzuki, Masami; Miyano, Kanako; Shiraishi, Seiji; Higami, Yoshikazu; Yanagihara, Kazuyoshi; Hattori, Tomohisa; Kase, Yoshio; Ueta, Yoichi; Uezono, Yasuhito
2017-01-01
Cancer cachexia (CC) is a multifactorial disease characterized by decreased food intake and loss of body weight due to reduced musculature with or without loss of fat mass. Patients with gastric cancer have a high incidence of cachexia. We previously established a novel CC rat model induced by human gastric cancer-derived 85As2 cells in order to examine the pathophysiology of CC and identify potential therapeutics. In patients with CC, anorexia is often observed, despite elevation of ghrelin, suggesting that ghrelin resistance may develop in these patients. In this study, we aimed to clarify the occurrence of ghrelin resistance in CC rats accompanied by anorexia and we investigated whether rikkunshito (RKT), a traditional Japanese Kampo medicine that potentiates ghrelin signaling, ameliorated CC-related anorexia through alleviation of ghrelin resistance. 85As2-tumor-bearing rats developed severe CC symptoms, including anorexia and loss of body weight/musculature, with the latter symptoms being greater in cachectic rats than in non-tumor-bearing or pair-fed rats. CC rats showed poor responses to intraperitoneal injection of ghrelin. In CC rats, plasma ghrelin levels were elevated and hypothalamic anorexigenic peptide mRNA levels were decreased, whereas hypothalamic growth hormone secretagogue receptor (GHS-R) mRNA was not affected. In vitro, RKT directly enhanced ghrelin-induced GHS-R activation. RKT administrated orally for 7 days partly alleviated the poor response to ghrelin and ameliorated anorexia without affecting the elevation of plasma ghrelin levels in CC rats. The expression of hypothalamic orexigenic neuropeptide Y mRNA but not hypothalamic GHS-R mRNA was increased by RKT. Thus, the 85As2 cell-induced CC rat model developed ghrelin resistance, possibly contributing to anorexia and body weight loss. The mechanism through which RKT ameliorated anorexia in the CC rat model may involve alleviation of ghrelin resistance by enhancement of ghrelin signaling. These findings suggest that RKT may be a promising agent for the treatment of CC. PMID:28249026
Holly, Mikaela K.; Dear, James W.; Hu, Xuzhen; Schechter, Alan N.; Gladwin, Mark T.; Hewitt, Stephen M.; Yuen, Peter S.T.; Star, Robert A.
2008-01-01
Background Sepsis is one of the common causes of acute renal failure (ARF). The objective of this study was to identify new biomarkers and therapeutic targets. We present a new rat model of sepsis-induced ARF based on cecal ligation and puncture (CLP). We used this model to find urinary proteins which may be potential biomarkers and/or drug targets. Methods Aged rats were treated with fluids and antibiotics after CLP. Urinary proteins from septic rats without ARF and urinary proteins from septic rats with ARF were compared by difference in-gel electrophoresis (DIGE). Results CLP surgery elevated IL-6 and IL-10 serum cytokines and blood nitrite compared with sham-operated rats. However there was a range of serum creatinine values at 24 hrs (0.4–2.3 mg/dL) and only 24% developed ARF. Histology confirmed renal injury in these rats. 49% of rats did not develop ARF. Rats without ARF also had less liver injury. The mortality rate at 24 hrs was 27% but was increased by housing the post-surgery rats in metabolic cages. Creatinine clearance and urine output 2–8 hours after CLP was significantly reduced in rats which died within 24 hours. Using DIGE we identified changes in a number of urinary proteins including albumin, brush-border enzymes (eg., meprin-1-alpha) and serine protease inhibitors. The meprin-1-alpha inhibitor actinonin prevented ARF in aged mice. Conclusion In summary we describe a new rat model of sepsis-induced ARF which has a heterogeneous response similar to humans. This model allowed us to use DIGE to find changes in urinary proteins and this approach identified a potential biomarker and drug target – meprin-1-alpha. PMID:16760904
An ex vivo rat eye model to aid development of high-resolution retina imaging devices for rodents
NASA Astrophysics Data System (ADS)
van Oterendorp, Christian; Martin, Keith R.; Zhong, Jiang Jian; Diaz-Santana, Luis
2010-09-01
High resolution in vivo retinal imaging in rodents is becoming increasingly important in eye research. Development of suitable imaging devices currently requires many lengthy animal procedures. We present an ex vivo rat model eye with fluorescently labelled retinal ganglion cells (RGC) and nerve fibre bundles that reduces the need for animal procedures while preserving key properties of the living rat eye. Optical aberrations and scattering of four model eyes and eight live rat eyes were quantified using a Shack-Hartmann sensor. Fluorescent images from RGCs were obtained using a prototype scanning laser ophthalmoscope. The wavefront aberration root mean square value without defocus did not significantly differ between model and living eyes. Higher order aberrations were slightly higher but RGC image quality was comparable to published in vivo work. Overall, the model allows a large reduction in number and duration of animal procedures required to develop new in vivo retinal imaging devices.
[Effect of leptin on long-term spatial memory of rats with white matter damage in developing brain].
Feng, Er-Cui; Jiang, Li
2017-12-01
To investigate the neuroprotective effect of leptin by observing its effect on spatial memory of rats with white matter damage in developing brain. A total of 80 neonatal rats were randomly divided into 3 groups: sham-operation (n=27), model (n=27) and leptin intervention (n=27). The rats in the model and leptin intervention groups were used to prepare a model of white matter damage in developing brain, and the rats in the leptin intervention group were given leptin (100 μg/kg) diluted with normal saline immediately after modelling for 4 consecutive days. The survival rate of the rats was observed and the change in body weight was monitored. When the rats reached the age of 21 days, the Morris water maze test was used to evaluate spatial memory. There was no significant difference in the survival rate of rats between the three groups (P>0.05). Within 10 days after birth, the leptin intervention group had similar body weight as the sham-operation group and significantly lower body weight than the model group (P<0.05); more than 10 days after birth, the leptin intervention group had rapid growth with higher body weight than the model and sham-operation groups (P>0.05). The results of place navigation showed that from the second day of experiment, there was a significant difference in the latency period between the three groups (P<0.05); from the fourth day of experiment, the leptin intervention group had a similar latency period as the sham-operation and a significantly shorter latency period than the model group (P<0.05). The results of space search experiment showed that compared with the sham-operation group, the model group had a significant reduction in the number of platform crossings and a significantly longer latency period (P<0.05); compared with the model group, the leptin intervention group had a significantly increased number of platform crossings and a significantly shortened latency period (P<0.05), while there was no significant difference between the leptin intervention and sham-operation groups. Leptin can alleviate spatial memory impairment of rats with white matter damage in developing brain. It thus exerts a neuroprotective effect, and is worthy of further research.
Extinction, Reacquisition, and Rapid Forgetting of Eyeblink Conditioning in Developing Rats
ERIC Educational Resources Information Center
Brown, Kevin L.; Freeman, John H.
2014-01-01
Eyeblink conditioning is a well-established model for studying the developmental neurobiology of associative learning and memory. However, age differences in extinction and subsequent reacquisition have yet to be studied using this model. The present study examined extinction and reacquisition of eyeblink conditioning in developing rats. In…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worley, Rachel Rogers, E-mail: idz7@cdc.gov; Interdisciplinary Toxicology Program, University of Georgia, 341 Pharmacy South, Athens, GA 30602; Fisher, Jeffrey
ABSTRACT: Renal elimination and the resulting clearance of perfluorooctanoic acid (PFOA) from the serum exhibit pronounced sex differences in the adult rat. The literature suggests that this is largely due to hormonally regulated expression of organic anion transporters (OATs) on the apical and basolateral membranes of the proximal tubule cells that facilitate excretion and reabsorption of PFOA from the filtrate into the blood. Previously developed PBPK models of PFOA exposure in the rat have not been parameterized to specifically account for transporter-mediated renal elimination. We developed a PBPK model for PFOA in male and female rats to explore the rolemore » of Oat1, Oat3, and Oatp1a1 in sex-specific renal reabsorption and excretion of PFOA. Descriptions of the kinetic behavior of these transporters were extrapolated from in vitro studies and the model was used to simulate time-course serum, liver, and urine data for intravenous (IV) and oral exposures in both sexes. Model predicted concentrations of PFOA in the liver, serum, and urine showed good agreement with experimental data for both male and female rats indicating that in vitro derived physiological descriptions of transporter-mediated renal reabsorption can successfully predict sex-dependent excretion of PFOA in the rat. This study supports the hypothesis that sex-specific serum half-lives for PFOA are largely driven by expression of transporters in the kidney and contribute to the development of PBPK modeling as a tool for evaluating the role of transporters in renal clearance. - Highlights: • The PBPK model for PFOA in the rat explores the role of OATs in sex-specific clearance. • Descriptions of OAT kinetics were extrapolated from in vitro studies. • Model predictions showed good fit with experimental data for male and female rats.« less
2014-01-01
Background Laparoscopic appendectomy (LA) has become one of the most common surgical procedures to date. To improve and standardize this technique further, cost-effective and reliable animal models are needed. Methods In a pilot study, 30 Wistar rats underwent laparoscopic caecum resection (as rats do not have an appendix vermiformis), to optimize the instrumental and surgical parameters. A subsequent test study was performed in another 30 rats to compare three different techniques for caecum resection and bowel closure. Results Bipolar coagulation led to an insufficiency of caecal stump closure in all operated rats (Group 1, n = 10). Endoloop ligation followed by bipolar coagulation and resection (Group 2, n = 10) or resection with a LigaSure™ device (Group 3, n = 10) resulted in sufficient caecal stump closure. Conclusions We developed a LA model enabling us to compare three different caecum resection techniques in rats. In conclusion, only endoloop closure followed by bipolar coagulation proved to be a secure and cost-effective surgical approach. PMID:24934381
Womersley, Jacqueline S; Mpeta, Bafokeng; Dimatelis, Jacqueline J; Kellaway, Lauriston A; Stein, Dan J; Russell, Vivienne A
2016-06-17
Developmental stress has been hypothesised to interact with genetic predisposition to increase the risk of developing substance use disorders. Here we have investigated the effects of maternal separation-induced developmental stress using a behavioural proxy of methamphetamine preference in an animal model of attention-deficit/hyperactivity disorder, the spontaneously hypertensive rat, versus Wistar Kyoto and Sprague-Dawley comparator strains. Analysis of results obtained using a conditioned place preference paradigm revealed a significant strain × stress interaction with maternal separation inducing preference for the methamphetamine-associated compartment in spontaneously hypertensive rats. Maternal separation increased behavioural sensitization to the locomotor-stimulatory effects of methamphetamine in both spontaneously hypertensive and Sprague-Dawley strains but not in Wistar Kyoto rats. Our findings indicate that developmental stress in a genetic rat model of attention-deficit/hyperactivity disorder may foster a vulnerability to the development of substance use disorders.
Morphofunctional analysis of experimental model of esophageal achalasia in rats.
Sabirov, A G; Raginov, I S; Burmistrov, M V; Chelyshev, Y A; Khasanov, R Sh; Moroshek, A A; Grigoriev, P N; Zefirov, A L; Mukhamedyarov, M A
2010-10-01
We carried out a detailed analysis of rat model of esophageal achalasia previously developed by us. Manifest morphological and functional disorders were observed in experimental achalasia: hyperplasia of the squamous epithelium, reduced number of nerve fibers, excessive growth of fibrous connective tissue in the esophageal wall, high contractile activity of the lower esophageal sphincter, and reduced motility of the longitudinal muscle layer. Changes in rat esophagus observed in experimental achalasia largely correlate with those in esophageal achalasia in humans. Hence, our experimental model can be used for the development of new methods of disease treatment.
Takeda, Yuji; Shimomura, Tomoko; Asao, Hironobu; Wakabayashi, Ichiro
2017-01-01
A better understanding of pathogenic mechanisms is required in order to treat diseases. However, the mechanisms of diabetes mellitus and diabetic complications are extremely complex. Immune reactions are involved in the pathogenesis of diabetes and its complications, while diabetes influences immune reactions. Furthermore, both diabetes and immune reactions are influenced by genetic and environmental factors. To address these issues, animal models are useful tools. So far, various animal models of diabetes have been developed in rats, which have advantages over mice models in terms of the larger volume of tissue samples and the variety of type 2 diabetes models. In this review, we introduce rat models of diabetes and summarize the immune reactions in diabetic rat models. Finally, we speculate on the relationship between immune reactions and diabetic episodes. For example, diabetes-prone Biobreeding rats, type 1 diabetes model rats, exhibit increased autoreactive cellular and inflammatory immune reactions, while Goto-Kakizaki rats, type 2 diabetes model rats, exhibit increased Th2 reactions and attenuation of phagocytic activity. Investigation of immunological abnormalities in various diabetic rat models is useful for elucidating complicated mechanisms in the pathophysiology of diabetes. Studying immunological alterations, such as predominance of Th1/17 or Th2 cells, humoral immunity, and innate immune reactions, may improve understanding the structure of amplification circuits for diabetes in future studies.
Rahman, Nadeem U; Phonsombat, Surat; Bochinski, Derek; Carrion, Rafael E; Nunes, Lora; Lue, Tom F
2007-09-01
To present evidence that rats fed a high-fat diet could serve as a useful animal model to study both lower urinary tract symptoms (LUTS) and erectile dysfunction (ED), as recent epidemiological studies have shown a strong association between LUTS and ED but the physiological basis behind this relationship is unknown. In all, 24 male Sprague-Dawley rats were divided into two groups: nine controls were fed a 'normal' diet and 15 were fed a high-fat diet (hyperlipidaemic rats). After 6 months all the rats had bladder and erectile functions evaluated using awake cystometry and cavernosal nerve electrostimulation, respectively. After the functional studies were completed, the penis, prostate and bladder were collected for immunohistochemical analysis. The hyperlipidaemic rats had significantly higher serum cholesterol and low-density lipoprotein than the controls (P < 0.05). The hyperlipidaemic rats also had significantly worse erectile function (P = 0.004) and developed more bladder overactivity (P = 0.004) than the controls. In the hyperlipidaemic rats there was significant muscle hypertrophy in the peri-urethral lobe of the prostate (P < 0.001) and in the bladder (P < 0.05). There was also greater P2X(1) (purinoceptor) staining as well as other molecular changes in the bladder of the hyperlipidaemic rats. In this hyperlipidaemic rat model three abnormalities were consistently detected: prostatic enlargement, bladder overactivity, and ED. This rat model could be a useful research tool for understanding the common causes of LUTS and ED, as well as facilitating the development of preventive measures and better therapies to treat both conditions.
Thent, Zar Chi; Sapri, Shaiful Ridzwan; Sahruddin, Natasya Nadia; Mohd Yusof, Mohd Rafizul; Haji Suhaimi, Farihah
2014-01-01
Background. Metabolic syndrome can be caused by modification of diet by means of consumption of high carbohydrate and high fat diet such as fructose. Aims. To develop a metabolic syndrome rat model by induction of fructose drinking water (FDW) in male Wistar rats. Methods. Eighteen male Wistar rats were fed with FDW 20% and FDW 25% for a duration of eight weeks. The physiological changes with regard to food and fluid intake, as well as calorie intake, were measured. The metabolic changes such as obesity, dyslipidaemia, hypertension, and hyperglycaemia were determined. Data was presented in mean ± SEM subjected to one-way ANOVA. Results. Male Wistar rats fed with FDW 20% for eight weeks developed significant higher obesity parameters compared to those fed with FDW 25%. There was hypertrophy of adipocytes in F20 and F25. There were also systolic hypertension, hypertriglyceridemia, and hyperglycemia in both groups. Conclusion. We conclude that the metabolic syndrome rat model is best established with the induction of FDW 20% for eight weeks. This was evident in the form of higher obesity parameter which caused the development of the metabolic syndrome. PMID:25045660
Tuchman, Shamir; Asico, Laureano D.; Escano, Crisanto; Bobb, Daniel A.; Ray, Patricio E.
2013-01-01
Background Nephrocalcinosis (NC) is an important clinical problem seen in critically ill pre-term neonates treated with loop diuretics. No reliable animal models are available to study the pathogenesis of NC in preterm infants. The purpose of this study was to develop a reproducible and clinically relevant animal model of NC for these patients, and to explore the impact of extracellular fluid (ECF) volume contraction induced by sodium and chloride depletion in this process. Methods Three-week old weanling Sprague-Dawley rats were fed diets deficient in either chloride or sodium and chloride. A sub-group of rats from each dietary group was injected daily with furosemide (40 mg/kg; i.p.). Results Rats fed a control diet, with or without furosemide, or a chloride depleted diet alone, did not develop NC. In contrast, 50% of the rats injected with furosemide and fed the chloride depleted diet developed NC. Moreover, 94% of the rats fed the combined sodium/chloride depleted diet developed NC, independently of furosemide use. NC was associated with the development of severe ECF volume contraction, hypochloremic, hypokalemic metabolic alkalosis, increased phosphaturia, and growth retardation. Conclusion Severe ECF volume contraction induced by chronic sodium and chloride depletion appears to play an important role in the pathogenesis of NC. PMID:23174703
Carcinogenicity of Individual and a Mixture of Drinking Water Disinfection By-Products in a Rat Model of Hereditary Renal Cell Carcinoma
Eker rats develop hereditary renal cell carcinoma secondary to a germline mutation in the tuberous sclerosis 2 (Tsc2) gene and are ligh...
A Rat Excised Larynx Model of Vocal Fold Scar
ERIC Educational Resources Information Center
Welham, Nathan V.; Montequin, Douglas W.; Tateya, Ichiro; Tateya, Tomoko; Choi, Seong Hee; Bless, Diane M.
2009-01-01
Purpose: To develop and evaluate a rat excised larynx model for the measurement of acoustic, aerodynamic, and vocal fold vibratory changes resulting from vocal fold scar. Method: Twenty-four 4-month-old male Sprague-Dawley rats were assigned to 1 of 4 experimental groups: chronic vocal fold scar, chronic vocal fold scar treated with 100-ng basic…
Jensen, Vivi Flou Hjorth; Mølck, Anne-Marie; Mårtensson, Martin; Strid, Mette Aagaard; Chapman, Melissa; Lykkesfeldt, Jens; Bøgh, Ingrid Brück
2017-06-01
Group housing is considered to be important for rats, which are highly sociable animals. Single housing may impact behaviour and levels of circulating stress hormones. Rats are typically used in the toxicological evaluation of insulin analogues. Human insulin (HI) is frequently used as a reference compound in these studies, and a comparator model of persistent exposure by HI infusion from external pumps has recently been developed to support toxicological evaluation of long-acting insulin analogues. However, this model requires single housing of the animals. Developing an insulin-infusion model which allows group housing would therefore greatly improve animal welfare. The aim of the present study was to investigate the suitability of implantable infusion pumps for HI infusion in group-housed rats. Group housing of rats implanted with a battery-driven pump proved to be possible. Intravenous infusion of HI lowered blood glucose levels persistently for two weeks, providing a comparator model for use in two-week repeated-dose toxicity studies with new long-acting insulin analogues, which allows group housing, and thereby increasing animal welfare compared with an external infusion model.
To better understand the relationships among carbofuran exposure, dose, and effects, a physiologically-based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed for the rat using the Exposure Related Dose Estimating Model (ERDEM) framework.
A Physiologically Based Kinetic Model of Rat and Mouse Gestation: Disposition of a Weak Acid
A physiologically based toxicokinetic model of gestation in the rat mouse has been developed. The model is superimposed on the normal growth curve for nonpregnant females. It describes the entire gestation period including organogenesis. The model consists of uterus, mammary tiss...
Orthotopic model of canine osteosarcoma in athymic rats for evaluation of stereotactic radiotherapy.
Schwartz, Anthony L; Custis, James T; Harmon, Joseph F; Powers, Barbara E; Chubb, Laura S; LaRue, Susan M; Ehrhart, Nicole P; Ryan, Stewart D
2013-03-01
To develop an orthotopic model of canine osteosarcoma in athymic rats as a model for evaluating the effects of stereotactic radiotherapy (SRT) on osteosarcoma cells. 26 athymic nude rats. 3 experiments were performed. In the first 2 experiments, rats were injected with 1 × 10(6) Abrams canine osteosarcoma cells into the proximal aspect of the tibia (n = 12) or distal aspect of the femur (6). Tumor engraftment and progression were monitored weekly via radiography, luciferase imaging, and measurement of urine pyridinoline concentration for 5 weeks and histologic evaluation after euthanasia. In the third experiment, 8 rats underwent canine osteosarcoma cell injection into the distal aspect of the femur and SRT was administered to the affected area in three 12-Gy fractions delivered on consecutive days (total radiation dose, 36 Gy). Percentage tumor necrosis and urinary pyridinoline concentrations were used to assess local tumor control. The short-term effect of SRT on skin was also evaluated. Tumors developed in 10 of 12 tibial sites and all 14 femoral sites. Administration of SRT to rats with femoral osteosarcoma was feasible and successful. Mean tumor necrosis of 95% was achieved histologically, and minimal adverse skin effects were observed. The orthotopic model of canine osteosarcoma in rats developed in this study was suitable for evaluating the effects of local tumor control and can be used in future studies to evaluate optimization of SRT duration, dose, and fractionation schemes. The model could also allow evaluation of other treatments in combination with SRT, such as chemotherapy or bisphosphonate, radioprotectant, or parathyroid hormone treatment.
Differences in social interaction- vs. cocaine reward in mouse vs. rat.
Kummer, Kai K; Hofhansel, Lena; Barwitz, Constanze M; Schardl, Aurelia; Prast, Janine M; Salti, Ahmad; El Rawas, Rana; Zernig, Gerald
2014-01-01
We previously developed rat experimental models based on the conditioned place preference (CPP) paradigm in which only four 15-min episodes of dyadic social interaction with a sex- and weight-matched male Sprague Dawley (SD) rat (1) reversed CPP from cocaine to social interaction despite continuing cocaine training, and (2) prevented the reacquisition/re-expression of cocaine CPP. In a concurrent conditioning schedule, pairing one compartment with social interaction and the other compartment with 15 mg/kg cocaine injections, rats spent the same amount of time in both compartments and the most rewarding sensory component of the composite stimulus social interaction was touch (taction). In the present study, we validated our experimental paradigm in C57BL/6 mice to investigate if our experimental paradigm may be useful for the considerable number of genetically modified mouse models. Only 71% of the tested mice developed place preference for social interaction, whereas 85% of the rats did. Accordingly, 29% of the mice developed conditioned place aversion (CPA) to social interaction, whereas this was true for only 15% of the rats. In support of the lesser likelihood of mice to develop a preference for social interaction, the average amount of time spent in direct contact was 17% for mice vs. 79% for rats. In animals that were concurrently conditioned for social interaction vs. cocaine, the relative reward strength for cocaine was 300-fold higher in mice than in rats. Considering that human addicts regularly prefer drugs of abuse to drug-free social interaction, the present findings suggest that our experimental paradigm of concurrent CPP for cocaine vs. social interaction is of even greater translational power if performed in C57BL/6 mice, the genetic background for most transgenic rodent models, than in rats.
Zallar, L J; Tunstall, B J; Richie, C T; Zhang, Y J; You, Z B; Gardner, E L; Heilig, M; Pickel, J; Koob, G F; Vendruscolo, L F; Harvey, B K; Leggio, L
2018-01-30
Ghrelin, a stomach-derived hormone implicated in numerous behaviors including feeding, reward, stress, and addictive behaviors, acts by binding to the growth hormone secretagogue receptor (GHSR). Here, we present the development, verification, and initial characterization of a novel GHSR knockout (KO) Wistar rat model created with CRISPR genome editing. Using CRISPR/Cas9, we developed a GHSR KO in a Wistar background. Loss of GHSR mRNA expression was histologically verified using RNAscope in wild-type (WT; n = 2) and KO (n = 2) rats. We tested the effects of intraperitoneal acyl-ghrelin administration on food consumption and plasma growth hormone (GH) concentrations in WT (n = 8) and KO (n = 8) rats. We also analyzed locomotion, food consumption, and body fat composition in these animals. Body weight was monitored from early development to adulthood. The RNAscope analysis revealed an abundance of GHSR mRNA expression in the hypothalamus, midbrain, and hippocampus in WTs, and no observed probe binding in KOs. Ghrelin administration increased plasma GH levels (p = 0.0067) and food consumption (p = 0.0448) in WT rats but not KOs. KO rats consumed less food overall at basal conditions and weighed significantly less compared with WTs throughout development (p = 0.0001). Compared with WTs, KOs presented higher concentrations of brown adipose tissue (BAT; p = 0.0322). We have verified GHSR deletion in our KO model using histological, physiological, neuroendocrinological, and behavioral measures. Our findings indicate that GHSR deletion in rats is not only associated with a lack of response to ghrelin, but also associated with decreases in daily food consumption and body growth, and increases in BAT. This GHSR KO Wistar rat model provides a novel tool for studying the role of the ghrelin system in obesity and in a wide range of medical and neuropsychiatric disorders.
Physiologically based pharmacokinetic modeling of tea catechin mixture in rats and humans.
Law, Francis C P; Yao, Meicun; Bi, Hui-Chang; Lam, Stephen
2017-06-01
Although green tea ( Camellia sinensis) (GT) contains a large number of polyphenolic compounds with anti-oxidative and anti-proliferative activities, little is known of the pharmacokinetics and tissue dose of tea catechins (TCs) as a chemical mixture in humans. The objectives of this study were to develop and validate a physiologically based pharmacokinetic (PBPK) model of tea catechin mixture (TCM) in rats and humans, and to predict an integrated or total concentration of TCM in the plasma of humans after consuming GT or Polyphenon E (PE). To this end, a PBPK model of epigallocatechin gallate (EGCg) consisting of 13 first-order, blood flow-limited tissue compartments was first developed in rats. The rat model was scaled up to humans by replacing its physiological parameters, pharmacokinetic parameters and tissue/blood partition coefficients (PCs) with human-specific values. Both rat and human EGCg models were then extrapolated to other TCs by substituting its physicochemical parameters, pharmacokinetic parameters, and PCs with catechin-specific values. Finally, a PBPK model of TCM was constructed by linking three rat (or human) tea catechin models together without including a description for pharmacokinetic interaction between the TCs. The mixture PBPK model accurately predicted the pharmacokinetic behaviors of three individual TCs in the plasma of rats and humans after GT or PE consumption. Model-predicted total TCM concentration in the plasma was linearly related to the dose consumed by humans. The mixture PBPK model is able to translate an external dose of TCM into internal target tissue doses for future safety assessment and dose-response analysis studies in humans. The modeling framework as described in this paper is also applicable to the bioactive chemical in other plant-based health products.
Liu, Feng; Chen, Long; Rao, Hui-Ying; Teng, Xiao; Ren, Ya-Yun; Lu, Yan-Qiang; Zhang, Wei; Wu, Nan; Liu, Fang-Fang; Wei, Lai
2017-01-01
Animal models provide a useful platform for developing and testing new drugs to treat liver fibrosis. Accordingly, we developed a novel automated system to evaluate liver fibrosis in rodent models. This system uses second-harmonic generation (SHG)/two-photon excited fluorescence (TPEF) microscopy to assess a total of four mouse and rat models, using chemical treatment with either thioacetamide (TAA) or carbon tetrachloride (CCl 4 ), and a surgical method, bile duct ligation (BDL). The results obtained by the new technique were compared with that using Ishak fibrosis scores and two currently used quantitative methods for determining liver fibrosis: the collagen proportionate area (CPA) and measurement of hydroxyproline (HYP) content. We show that 11 shared morphological parameters faithfully recapitulate Ishak fibrosis scores in the models, with high area under the receiver operating characteristic (ROC) curve (AUC) performance. The AUC values of 11 shared parameters were greater than that of the CPA (TAA: 0.758-0.922 vs 0.752-0.908; BDL: 0.874-0.989 vs 0.678-0.966) in the TAA mice and BDL rat models and similar to that of the CPA in the TAA rat and CCl 4 mouse models. Similarly, based on the trends in these parameters at different time points, 9, 10, 7, and 2 model-specific parameters were selected for the TAA rats, TAA mice, CCl 4 mice, and BDL rats, respectively. These parameters identified differences among the time points in the four models, with high AUC accuracy, and the corresponding AUC values of these parameters were greater compared with those of the CPA in the TAA rat and mouse models (rats: 0.769-0.894 vs 0.64-0.799; mice: 0.87-0.93 vs 0.739-0.836) and similar to those of the CPA in the CCl 4 mouse and BDL rat models. Similarly, the AUC values of 11 shared parameters and model-specific parameters were greater than those of HYP in the TAA rats, TAA mice, and CCl 4 mouse models and were similar to those of HYP in the BDL rat models. The automated evaluation system, combined with 11 shared parameters and model-specific parameters, could specifically, accurately, and quantitatively stage liver fibrosis in animal models.
Metabolism and physiologically based pharmacokinetic modeling of flumioxazin in pregnant animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takaku, Tomoyuki, E-mail: takakut@sc.sumitomo-chem.co.jp; Nagahori, Hirohisa; Sogame, Yoshihisa
A physiologically based pharmacokinetic (PBPK) model was developed to predict the concentration of flumioxazin, in the blood and fetus of pregnant humans during a theoretical accidental intake (1000 mg/kg). The data on flumioxazin concentration in pregnant rats (30 mg/kg po) was used to develop the PBPK model in pregnant rats using physiological parameters and chemical specific parameters. The rat PBPK model developed was extrapolated to a human model. Liver microsomes of female rats and a mixed gender of humans were used for the in vitro metabolism study. To determine the % of flumioxazin absorbed after administration at a dose ofmore » 1000 mg/kg assuming maximum accidental intake, the biliary excretion study of [phenyl-U-{sup 14}C]flumioxazin was conducted in bile duct-cannulated female rats (Crl:CD (SD)) to collect and analyze the bile, urine, feces, gastrointestinal tract, and residual carcass. The % of flumioxazin absorbed at a dose of 1000 mg/kg in rats was low (12.3%) by summing up {sup 14}C of the urine, bile, and residual carcass. The pregnant human model that was developed demonstrated that the maximum flumioxazin concentration in the blood and fetus of a pregnant human at a dose of 1000 mg/kg po was 0.86 μg/mL and 0.68 μg/mL, respectively, which is much lower than K{sub m} (202.4 μg/mL). Because the metabolism was not saturated and the absorption rate was low at a dose of 1000 mg/kg, the calculated flumioxazin concentration in pregnant humans was thought to be relatively low, considering the flumioxazin concentration in pregnant rats at a dose of 30 mg/kg. For the safety assessment of flumioxazin, these results would be useful for further in vitro toxicology experiments. - Highlights: • A PBPK model of flumioxazin in pregnant humans was developed. • Simulated flumioxazin concentration in pregnant humans was relatively low. • The results would be useful for further in vitro toxicology experiments.« less
Novel Rat Model for Neurocysticercosis Using Taenia solium
Verastegui, Manuela R.; Mejia, Alan; Clark, Taryn; Gavidia, Cesar M.; Mamani, Javier; Ccopa, Fredy; Angulo, Noelia; Chile, Nancy; Carmen, Rogger; Medina, Roxana; García, Hector H.; Rodriguez, Silvia; Ortega, Ynes; Gilman, Robert H.
2016-01-01
Neurocysticercosis is caused by Taenia solium infecting the central nervous system and is the leading cause of acquired epilepsy and convulsive conditions worldwide. Research into the pathophysiology of the disease and appropriate treatment is hindered by lack of cost-effective and physiologically similar animal models. We generated a novel rat neurocysticercosis model using intracranial infection with activated T. solium oncospheres. Holtzman rats were infected in two separate groups: the first group was inoculated extraparenchymally and the second intraparenchymally, with different doses of activated oncospheres. The groups were evaluated at three different ages. Histologic examination of the tissue surrounding T. solium cysticerci was performed. Results indicate that generally infected rats developed cysticerci in the brain tissue after 4 months, and the cysticerci were observed in the parenchymal, ventricle, or submeningeal brain tissue. The route of infection did not have a statistically significant effect on the proportion of rats that developed cysticerci, and there was no dependence on infection dose. However, rat age was crucial to the success of the infection. Epilepsy was observed in 9% of rats with neurocysticercosis. In histologic examination, a layer of collagen tissue, inflammatory infiltrate cells, perivascular infiltrate, angiogenesis, spongy change, and mass effect were observed in the tissue surrounding the cysts. This study presents a suitable animal model for the study of human neurocysticercosis. PMID:26216286
Guo, Xiufang; Das, Mainak; Rumsey, John; Gonzalez, Mercedes; Stancescu, Maria; Hickman, James
2010-12-01
To date, the coculture of motoneurons (MNs) and skeletal muscle in a defined in vitro system has only been described in one study and that was between rat MNs and rat skeletal muscle. No in vitro studies have demonstrated human MN to rat muscle synapse formation, although numerous studies have attempted to implant human stem cells into rat models to determine if they could be of therapeutic use in disease or spinal injury models, although with little evidence of neuromuscular junction (NMJ) formation. In this report, MNs differentiated from human spinal cord stem cells, together with rat skeletal myotubes, were used to build a coculture system to demonstrate that NMJ formation between human MNs and rat skeletal muscles is possible. The culture was characterized by morphology, immunocytochemistry, and electrophysiology, while NMJ formation was demonstrated by immunocytochemistry and videography. This defined system provides a highly controlled reproducible model for studying the formation, regulation, maintenance, and repair of NMJs. The in vitro coculture system developed here will be an important model system to study NMJ development, the physiological and functional mechanism of synaptic transmission, and NMJ- or synapse-related disorders such as amyotrophic lateral sclerosis, as well as for drug screening and therapy design.
Sex differences underlying orofacial varicella zoster associated pain in rats.
Stinson, Crystal; Deng, Mohong; Yee, Michael B; Bellinger, Larry L; Kinchington, Paul R; Kramer, Phillip R
2017-05-17
Most people are initially infected with varicella zoster virus (VZV) at a young age and this infection results in chickenpox. VZV then becomes latent and reactivates later in life resulting in herpes zoster (HZ) or "shingles". Often VZV infects neurons of the trigeminal ganglia to cause ocular problems, orofacial disease and occasionally a chronic pain condition termed post-herpetic neuralgia (PHN). To date, no model has been developed to study orofacial pain related to varicella zoster. Importantly, the incidence of zoster associated pain and PHN is known to be higher in women, although reasons for this sex difference remain unclear. Prior to this work, no animal model was available to study these sex-differences. Our goal was to develop an orofacial animal model for zoster associated pain which could be utilized to study the mechanisms contributing to this sex difference. To develop this model VZV was injected into the whisker pad of rats resulting in IE62 protein expression in the trigeminal ganglia; IE62 is an immediate early gene in the VZV replication program. Similar to PHN patients, rats showed retraction of neurites after VZV infection. Treatment of rats with gabapentin, an agent often used to combat PHN, ameliorated the pain response after whisker pad injection. Aversive behavior was significantly greater for up to 7 weeks in VZV injected rats over control inoculated rats. Sex differences were also seen such that ovariectomized and intact female rats given the lower dose of VZV showed a longer affective response than male rats. The phase of the estrous cycle also affected the aversive response suggesting a role for sex steroids in modulating VZV pain. These results suggest that this rat model can be utilized to study the mechanisms of 1) orofacial zoster associated pain and 2) the sex differences underlying zoster associated pain.
Nakashima, Takako; Sako, Nobutomo; Matsuda, Takakuni; Uematsu, Naoya; Sakurai, Kazushi; Ishida, Tatsuhiro
2014-01-01
This study aimed at developing a novel rebamipide liquid for an effective treatment of oral mucositis. The healing effects of a variety of liquids comprising submicronized rebamipide crystals were investigated using a rat cauterization-induced oral ulcer model. Whereas 2% rebamipide liquid comprising micro-crystals did not exhibit significant curative effect, 2% rebamipide liquids comprising submicronized crystals with moderate viscosities exhibited healing effects following intra-oral administration. The 2% and 4% optimized rebamipide liquids showed significant healing effects in the rat oral ulcer model (p<0.01). In addition, in the rat radiation-induced glossitis model, whereby the injury was caused to the tongue by exposing only around the rat's snout to a 15 Gy of X-irradiation, the 2% optimized rebamipide liquid significantly reduced the percent area of ulcerated injury (p<0.05). In conclusion, the submicronized rebamipide liquid with moderate viscosity following intra-oral administration showed better both healing effect in the rat oral ulcer model and preventive effect in the rat irradiation-induced glossitis model.
Joe, Bina
2014-01-01
Synopsis Lewis K. Dahl is regarded as an iconic figure in the field of hypertension research. During the 1960s and 1970s he published several seminal articles in the field that shed light on the relationship between salt and hypertension. Further, the Dahl rat models of hypertension that he developed by a selective breeding strategy are among the most widely used models for hypertension research. To this day, genetic studies using this model are ongoing in our laboratory. While Dr. Dahl is known for his contributions to the field of hypertension, very little, if any, of his personal history is documented. This article details a short biography of Dr. Lewis Dahl, the history behind the development of the Dahl rats and presents an overview of the results obtained through the genetic analysis of the Dahl rat as an experimental model to study the inheritance of hypertension. PMID:25646295
Stevens, Jasper; Suidgeest, Ernst; van der Graaf, Piet Hein; Danhof, Meindert; de Lange, Elizabeth C M
2009-08-01
To develop a new minimal-stress model for intranasal administration in freely moving rats and to evaluate in this model the brain distribution of acetaminophen following intranasal versus intravenous administration. Male Wistar rats received one intranasal cannula, an intra-cerebral microdialysis probe, and two blood cannulas for drug administration and serial blood sampling respectively. To evaluate this novel model, the following experiments were conducted. 1) Evans Blue was administered to verify the selectivity of intranasal exposure. 2) During a 1 min infusion 10, 20, or 40 microl saline was administered intranasally or 250 microl intravenously. Corticosterone plasma concentrations over time were compared as biomarkers for stress. 3) 200 microg of the model drug acetaminophen was given in identical setup and plasma, and brain pharmacokinetics were determined. In 96% of the rats, only the targeted nasal cavity was deeply colored. Corticosterone plasma concentrations were not influenced, neither by route nor volume of administration. Pharmacokinetics of acetaminophen were identical after intravenous and intranasal administration, although the Cmax in microdialysates was reached a little earlier following intravenous administration. A new minimal-stress model for intranasal administration in freely moving rats has been successfully developed and allows direct comparison with intravenous administration.
Motor Function and Dopamine Release Measurements in Transgenic Huntington’s Disease Model Rats
Ortiz, Andrea N.; Osterhaus, Gregory L.; Lauderdale, Kelli; Mahoney, Luke; Fowler, Stephen C.; von Hörsten, Stephan; Riess, Olaf; Johnson, Michael A.
2013-01-01
Huntington’s disease (HD) is a fatal, genetic, neurodegenerative disorder characterized by deficits in motor and cognitive function. Here, we have quantitatively characterized motor deficiencies and dopamine release dynamics in transgenic HD model rats. Behavioral analyses were conducted using a newly-developed force-sensing runway and a previously-developed force-plate actometer. Gait disturbances were readily observed in transgenic HD rats at 12 to 15 months of age. Additionally, dopamine system challenge by ip injection of amphetamine also revealed that these rats were resistant to the expression of focused stereotypy compared to wild-type controls. Moreover, dopamine release, evoked by the application of single and multiple electrical stimulus pulses applied at different frequencies, and measured using fast-scan cyclic voltammetry at carbon-fiber microelectrodes, was diminished in transgenic HD rats compared to age-matched wild-type control rats. Collectively, these results underscore the potential contribution of dopamine release alterations to the expression of motor impairments in transgenic HD rats. PMID:22418060
Atanur, Santosh S; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R; Kaisaki, Pamela J; Otto, Georg W; Ma, Man Chun John; Keane, Thomas M; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J
2013-08-01
Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Atanur, Santosh S.; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R.; Kaisaki, Pamela J.; Otto, Georg W.; Ma, Man Chun John; Keane, Thomas M.; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R.; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J.; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J.
2013-01-01
Summary Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. PaperClip PMID:23890820
A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (BPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the HPT axis. Model calibrations, carried out by adjusting key model p...
A physiologically-based pharmacokinetic (PBPK) model for inhaled toluene was developed for Long-Evans rats as a component of an exposure-dose-response (EDR) model for volatile organic compounds. The PBPK model was needed to link airborne toluene exposure to its concentration in b...
A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (HPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the 1-IPT axis. Model calibrations, carried out by adjusting key model...
Torres, Oscar V; Jayanthi, Subramanian; Ladenheim, Bruce; McCoy, Michael T; Krasnova, Irina N; Cadet, Jean Lud
2017-05-30
Methamphetamine (METH) addicts lose control over drug consumption despite suffering multiple adverse medicolegal consequences. To mimic the negative events associated with drug addiction in humans, we recently introduced a rat model of self-administration (SA) with response-contingent punishment on METH intake. These procedures allowed us to distinguish between two addiction-like phenotypes in rats, those that sustained METH taking despite negative consequences (shock-resistant, SR) and rats that significantly reduced their METH intake (shock-sensitive, SS). Here, we further developed our adverse consequence model and examined incubation of METH craving by measuring cue-induced drug seeking in SR and SS rats. Male Sprague-Dawley rats were trained to self-administer METH (0.1mg/kg/injection) or saline intravenously (i.v.) during twenty-two 9-h sessions that consisted of 3 separate 3-h sessions separated by 30min. Subsequently, rats were subjected to incremental footshocks during thirteen additional 9-h METH SA sessions performed in a fashion identical to the training phase. Cue-induced drug craving was then assessed at 2 and 21days after the footshock phase. All rats escalated their intake of METH, with both phenotypes showing similar drug taking patterns during SA training. In addition, rats that continued their METH intake despite negative consequences showed even greater cue-induced drug craving following withdrawal than the rats that reduced METH intake following negative consequences. Taken together, our adverse consequence-based model highlights the possibility of identifying rats by addiction-like phenotypes and subsequent vulnerability to relapse-like behaviors. The use of similar SA models should help in the development of better therapeutic approaches to treat different stages of METH addiction. Published by Elsevier B.V.
Kawamura, Hiromi; Tanaka, Sarasa; Uenami, Yuri; Tani, Mariko; Ishitani, Midori; Morii, Saeko; Sakaue, Motoyoshi; Ito, Mikiko
2018-01-01
Refeeding syndrome (RFS) is characterized by the metabolic and clinical changes that occur following aggressive nutritional supplementation in malnourished patients. Hypophosphatemia is the hallmark of RFS and is key to its prevention and treatment in clinical practice. However, the mechanism of hypophosphatemia during RFS is unclear because of the lack of an animal model. In this study, we developed a rat RFS model as a first step to clarifying the molecular mechanism. After establishing the parenteral route, rats were fasted for 5 days and refeeding was started using total parenteral nutrition. The animals were infused with a high calorie solution with or without insulin administration. Results showed that plasma phosphate levels did not decrease in rats infused with the high calorie solution alone;in contrast, a 20% reduction compared to baseline was observed in rats administered insulin. In addition, rats infused with the high calorie solution containing added phosphate did not present with hypophosphatemia. Thus, we developed a rat RFS model with hypophosphatemia by tube feeding and insulin administration, and demonstrated the importance of phosphate in preventing refeeding hypophosphatemia. J. Med. Invest. 65:50-55, February, 2018.
Qualls, H J; Holbrook, T C; Gilliam, L L; Njaa, B L; Panciera, R J; Pope, C N; Payton, M E
2013-01-01
The efficacy of orally administered therapeutics for the treatment of cantharidin intoxication has not been evaluated in controlled studies. To develop a model of acute cantharidin intoxication in laboratory rats and to evaluate in this model the relative efficacy of 3 gastrointestinal therapies used to treat equine cantharidin toxicosis. Sixty-four male Sprague-Dawley rats. A blinded, randomized, controlled study was performed on rats surgically implanted with telemetry transmitters for evaluating heart rate, locomotor activity, and body temperature. Orogastric administration of cantharidin was performed within 15 seconds before administration of mineral oil, activated charcoal, or smectite. Negative control groups received therapeutic agents alone. Urine was collected for cantharidin analysis. Rats were sacrificed 24 hours after intoxication, and tissues were collected for histopathologic evaluation. Data analysis included ANOVA procedures and contingency tables. Six of 8 cantharidin-intoxicated rats treated with mineral oil died; bradycardia and hypothermia developed in the animals of this group 0-8 hours after intoxication. Rats treated with mineral oil had higher urine cantharidin concentrations than rats receiving cantharidin alone or with smectite (P = .04). The most severe hypothermia (30.6°C ± 1.0) developed in rats administered mineral oil at 4-8 hours after intoxication, whereas those treated with charcoal (35.2°C ± 0.8) had mean body temperatures higher than all other treatment groups (P = .03). Survival times in the charcoal (P = .16) and smectite (P = .12) treatment groups were not statistically different from negative controls. Mineral oil is often used in the treatment of equine cantharidin toxicosis. Our findings suggest that mineral oil increases cantharidin absorption, worsening morbidity and fatality in rats. Copyright © 2013 by the American College of Veterinary Internal Medicine.
Sarabia-Estrada, Rachel; Ruiz-Valls, Alejandro; Shah, Sagar R; Ahmed, A Karim; Ordonez, Alvaro A; Rodriguez, Fausto J; Guerrero-Cazares, Hugo; Jimenez-Estrada, Ismael; Velarde, Esteban; Tyler, Betty; Li, Yuxin; Phillips, Neil A; Goodwin, C Rory; Petteys, Rory J; Jain, Sanjay K; Gallia, Gary L; Gokaslan, Ziya L; Quinones-Hinojosa, Alfredo; Sciubba, Daniel M
2017-08-01
OBJECTIVE Chordoma is a slow-growing, locally aggressive cancer that is minimally responsive to conventional chemotherapy and radiotherapy and has high local recurrence rates after resection. Currently, there are no rodent models of spinal chordoma. In the present study, the authors sought to develop and characterize an orthotopic model of human chordoma in an immunocompromised rat. METHODS Thirty-four immunocompromised rats were randomly allocated to 4 study groups; 22 of the 34 rats were engrafted in the lumbar spine with human chordoma. The groups were as follows: UCH1 tumor-engrafted (n = 11), JHC7 tumor-engrafted (n = 11), sham surgery (n = 6), and intact control (n = 6) rats. Neurological impairment of rats due to tumor growth was evaluated using open field and locomotion gait analysis; pain response was evaluated using mechanical or thermal paw stimulation. Cone beam CT (CBCT), MRI, and nanoScan PET/CT were performed to evaluate bony changes due to tumor growth. On Day 550, rats were killed and spines were processed for H & E-based histological examination and immunohistochemistry for brachyury, S100β, and cytokeratin. RESULTS The spine tumors displayed typical chordoma morphology, that is, physaliferous cells filled with vacuolated cytoplasm of mucoid matrix. Brachyury immunoreactivity was confirmed by immunostaining, in which samples from tumor-engrafted rats showed a strong nuclear signal. Sclerotic lesions in the vertebral body of rats in the UCH1 and JHC7 groups were observed on CBCT. Tumor growth was confirmed using contrast-enhanced MRI. In UCH1 rats, large tumors were observed growing from the vertebral body. JHC7 chordoma-engrafted rats showed smaller tumors confined to the bone periphery compared with UCH1 chordoma-engrafted rats. Locomotion analysis showed a disruption in the normal gait pattern, with an increase in the step length and duration of the gait in tumor-engrafted rats. The distance traveled and the speed of rats in the open field test was significantly reduced in the UCH1 and JHC7 tumor-engrafted rats compared with controls. Nociceptive response to a mechanical stimulus showed a significant (p < 0.001) increase in the paw withdrawal threshold (mechanical hypalgesia). In contrast, the paw withdrawal response to a thermal stimulus decreased significantly (p < 0.05) in tumor-engrafted rats. CONCLUSIONS The authors developed an orthotopic human chordoma model in rats. Rats were followed for 550 days using imaging techniques, including MRI, CBCT, and nanoScan PET/CT, to evaluate lesion progression and bony integrity. Nociceptive evaluations and locomotion analysis were performed during follow-up. This model reproduces cardinal signs, such as locomotor and sensory deficits, similar to those observed clinically in human patients. To the authors' knowledge, this is the first spine rodent model of human chordoma. Its use and further study will be essential for pathophysiology research and the development of new therapeutic strategies.
RAT PLACENTATION: AN EXPERIMENTAL MODEL FOR INVESTIGATING THE HEMOCHORIAL MATERNAL-FETAL INTERFACE
Soares, Michael J.; Chakraborty, Damayanti; Rumi, M.A. Karim; Konno, Toshihiro; Renaud, Stephen J.
2011-01-01
The rat possesses hemochorial placentation with deep intrauterine trophoblast cell invasion and trophoblast-directed uterine spiral artery remodeling; features shared with human placentation. Recognition of these similarities spurred the establishment of in vitro and in vivo research methods using the rat as an animal model to address mechanistic questions regarding development of the hemochorial placenta. The purpose of this review is to provide the requisite background to help move the rat to the forefront in placentation research. PMID:22284666
Postdependent state in rats as a model for medication development in alcoholism.
Meinhardt, Marcus W; Sommer, Wolfgang H
2015-01-01
Rational development of novel therapeutic strategies for alcoholism requires understanding of its underlying neurobiology and pathophysiology. Obtaining this knowledge largely relies on animal studies. Thus, choosing the appropriate animal model is one of the most critical steps in pre-clinical medication development. Among the range of animal models that have been used to investigate excessive alcohol consumption in rodents, the postdependent model stands out. It was specifically developed to test the role of negative affect as a key driving force in a perpetuating addiction cycle for alcoholism. Here, we will describe our approach to make rats dependent via chronic intermittent exposure to alcohol, discuss the validity of this model, and compare it with other commonly used animal models of alcoholism. We will summarize evidence that postdependent rats fulfill several criteria of a 'Diagnostic and Statistical Manual of Mental Disorders IV/V-like' diagnostic system. Importantly, these animals show long-lasting excessive consumption of and increased motivation for alcohol, and evidence for loss of control over alcohol intake. Our conclusion that postdependent rats are an excellent model for medication development for alcoholism is underscored by a summary of more than two dozen pharmacological tests aimed at reversing these abnormal alcohol responses. We will end with open questions on the use of this model. In the tradition of the Sanchis-Segura and Spanagel review, we provide comic strips that illustrate the postdependent procedure and relevant phenotypes in this review. © 2014 Society for the Study of Addiction.
Wu, Chuyan; Lin, Feng; Qiu, Shuwei; Jiang, Zhongli
2014-01-01
To develop a new polycystic ovary syndrome (PCOS) rat model suitable for exercise intervention. Thirty six rats were randomly divided into three experimental groups: PCOS rats with high-fat diet (PF, n = 24), PCOS rats with ordinary diet (PO, n = 6), and control rats with ordinary diet (CO, n = 6). Two kinds of PCOS rat model were made by adjustment diet structure and testosterone injection for 28 days. After a successful animal model, PF model rats were randomly assigned to three groups: exercise with a continuation of high-fat diet (PF-EF, n = 6), sedentary with a continuation of high-fat diet (PF-SF, n = 6), exercise with an ordinary diet (PF-EO, n = 6). Fasting blood glucose (FBG) and insulin (FINS), estrogen (E2), progesterone (P), and testosterone (T) in serum were determined by RIA, and ovarian morphology was evaluated by Image-Pro plus 6.0. Body weight, Lee index, FINS increased significantly in PF rat model. Serum levels of E2 and T were significantly higher in PF and PO than in CO. Ovary organ index and ovarian areas were significant lower in PF than in CO. After intervention for 2 weeks, the levels of 1 h postprandial blood glucose (PBG1), 2 h postprandial blood glucose (PBG2), FINS and the serum levels of T decreased significantly in PF-EF rats and PF-EO rats. The ratio of FBG/FINS was significant higher in PF-EO rats than in PF-SF rats. Ovarian morphology showed that the numbers of preantral follicles and atretic follicles decreased significantly, and the numbers of antral follicles and corpora lutea increased significantly in the rats of PF-EF and PF-EO. By combination of high-fat diet and testosterone injection, the obese PCOS rat model is conformable with the lifestyle habits of fatty foods and insufficient exercise, and has metabolic and reproductive characteristics of human PCOS. This model can be applied to study exercise intervention.
Xiao, Fan; Cui, Hua; Zhong, Xiao
2018-05-01
Present investigation evaluates the effect of daidzin in dry eye rat model through the suppression of inflammation and oxidative stress in the cornea. Briefly, electron spine resonance was used for the estimation of radical scavenging activity of daidzin and COX Fluorescent Activity Assay Kit was used for the estimation of PGS activity. Dry eye rat model was developed by removing the lacrimal gland and effect of daidzin was evaluated in dry eye rat model by estimating the fluorescein score, tear volume and expressions of heme oxigenase (HO-1), TNF α, Interlukin 6 (IL-6), matrix metallopeptidase 9 (MMP-9) and PGS-2. Result of the present study suggested that daidzin possess tyrosyl radical scavenging activity and thereby decreases the oxidative stress. Activity of PGS significantly increases in dry eye which was inhibited by daidzin treatment due to competitive inhibition of PGS. It also recovers the tear volume in dry eye rat model in which lacrimal gland was removed. Thus corneal erosion was improved by daidzin in dry eye rat model. Thus present study concludes that treatment with daidzin protects the cornea in dry eye rat model by suppression inflammation and oxidative stress.
Qian, Jingyi; Thomas, Anthony P; Schroeder, Analyne M; Rakshit, Kuntol; Colwell, Christopher S; Matveyenko, Aleksey V
2017-08-01
Metabolic state and circadian clock function exhibit a complex bidirectional relationship. Circadian disruption increases propensity for metabolic dysfunction, whereas common metabolic disorders such as obesity and type 2 diabetes (T2DM) are associated with impaired circadian rhythms. Specifically, alterations in glucose availability and glucose metabolism have been shown to modulate clock gene expression and function in vitro; however, to date, it is unknown whether development of diabetes imparts deleterious effects on the suprachiasmatic nucleus (SCN) circadian clock and SCN-driven outputs in vivo. To address this question, we undertook studies in aged diabetic rats transgenic for human islet amyloid polypeptide, an established nonobese model of T2DM (HIP rat), which develops metabolic defects closely recapitulating those present in patients with T2DM. HIP rats were also cross-bred with a clock gene reporter rat model (Per1:luciferase transgenic rat) to permit assessment of the SCN and the peripheral molecular clock function ex vivo. Utilizing these animal models, we examined effects of diabetes on 1 ) behavioral circadian rhythms, 2 ) photic entrainment of circadian activity, 3 ) SCN and peripheral tissue molecular clock function, and 4 ) melatonin secretion. We report that circadian activity, light-induced entrainment, molecular clockwork, as well as melatonin secretion are preserved in the HIP rat model of T2DM. These results suggest that despite the well-characterized ability of glucose to modulate circadian clock gene expression acutely in vitro, SCN clock function and key behavioral and physiological outputs appear to be preserved under chronic diabetic conditions characteristic of nonobese T2DM. Copyright © 2017 the American Physiological Society.
Visceral hypersensitive rats share common dysbiosis features with irritable bowel syndrome patients.
Zhou, Xiao-Yan; Li, Ming; Li, Xia; Long, Xin; Zuo, Xiu-Li; Hou, Xiao-Hua; Cong, Ying-Zi; Li, Yan-Qing
2016-06-14
To evaluate gut microbial dysbiosis in two visceral hypersensitive models in comparison with irritable bowel syndrome (IBS) patients and to explore the extent to which these models capture the dysbiosis of IBS patients. Visceral hypersensitivity was developed using the maternal separation (MS) rat model and post-inflammatory rat model. The visceral sensitivity of the model groups and control group was evaluated using the abdominal withdraw reflex score and electromyography in response to graded colorectal distention. The 16S ribosomal RNA gene from fecal samples was pyrosequenced and analyzed. The correlation between dysbiosis in the microbiota and visceral hypersensitivity was calculated. Positive findings were compared to sequencing data from a published human IBS cohort. Dysbiosis triggered by neonatal maternal separation was lasting but not static. Both MS and post-inflammatory rat fecal microbiota deviated from that of the control rats to an extent that was larger than the co-housing effect. Two short chain fatty acid producing genera, Fusobacterium and Clostridium XI, were shared by the human IBS cohort and by the maternal separation rats and post-inflammatory rats, respectively, to different extents. Fusobacterium was significantly increased in the MS group, and its abundance positively correlated with the degree of visceral hypersensitivity. Porphyromonadaceae was a protective biomarker for both the rat control group and healthy human controls. The dysbiosis MS rat model and the post-inflammatory rat model captured some of the dysbiosis features of IBS patients. Fusobacterium, Clostridium XI and Porphyromonadaceae were identified as targets for future mechanistic research.
Corley, Richard A.
2012-01-01
Computational fluid dynamics (CFD) models are useful for predicting site-specific dosimetry of airborne materials in the respiratory tract and elucidating the importance of species differences in anatomy, physiology, and breathing patterns. We improved the imaging and model development methods to the point where CFD models for the rat, monkey, and human now encompass airways from the nose or mouth to the lung. A total of 1272, 2172, and 135 pulmonary airways representing 17±7, 19±9, or 9±2 airway generations were included in the rat, monkey and human models, respectively. A CFD/physiologically based pharmacokinetic model previously developed for acrolein was adapted for these anatomically correct extended airway models. Model parameters were obtained from the literature or measured directly. Airflow and acrolein uptake patterns were determined under steady-state inhalation conditions to provide direct comparisons with prior data and nasal-only simulations. Results confirmed that regional uptake was sensitive to airway geometry, airflow rates, acrolein concentrations, air:tissue partition coefficients, tissue thickness, and the maximum rate of metabolism. Nasal extraction efficiencies were predicted to be greatest in the rat, followed by the monkey, and then the human. For both nasal and oral breathing modes in humans, higher uptake rates were predicted for lower tracheobronchial tissues than either the rat or monkey. These extended airway models provide a unique foundation for comparing material transport and site-specific tissue uptake across a significantly greater range of conducting airways in the rat, monkey, and human than prior CFD models. PMID:22584687
Effects of Vitamin K2 on the Development of Osteopenia in Rats as the Models of Osteoporosis
Takeda, Tsuyoshi; Sato, Yoshihiro
2006-01-01
Vitamin K2 is widely used for the treatment of osteoporosis in Japan. To understand the effects of vitamin K2 on bone mass and bone metabolism, we reviewed its effects on the development of osteopenia in rats, which characterizes models of osteoporosis. Vitamin K2 was found to attenuate the increase in bone resorption and/or maintain bone formation, reduce bone loss, protect against the loss of trabecular bone mass and its connectivity, and prevent the decrease in strength of the long bone in ovariectomized rats. However, combined treatment of bisphosphonates and vitamin K2 had an additive effect in preventing the deterioration of the trabecular bone architecture in ovariectomized rats, while the combined treatment of raloxifene and vitamin K2 improved the bone strength of the femoral neck. The use of vitamin K2 alone suppressed the increase in trabecular bone turnover and endocortical bone resorption, which attenuated the development of cancellous and cortical osteopenia in orchidectomized rats. In addition, vitamin K2 inhibited the decrease in bone formation in prednisolone-treated rats, thereby preventing cancellous and cortical osteopenia. In sciatic neurectomized rats, vitamin K2 suppressed endocortical bone resorption and stimulated bone formation, delaying the reduction of the trabecular thickness and retarding the development of cortical osteopenia. Vitamin K2 also prevented the acceleration of bone resorption and the reduction in bone formation in tail-suspended rats, which counteracted cancellous bone loss. Concomitant use of vitamin K2 with a bisphosphonate ameliorated the suppression of bone formation and more effectively prevented cancellous bone loss in tail-suspended rats. Vitamin K2 stimulated renal calcium reabsorption, retarded the increase in serum parathyroid hormone levels, and attenuated cortical bone loss primarily by suppressing bone resorption in calcium-deficient rats while maintaining the strength of the long bone in rats with magnesium deficiency. These findings suggest that vitamin K2 may not only stimulate bone formation, but may also suppress bone resorption. Thus, vitamin K2 could regulate bone metabolism in rats, which represented the various models of osteoporosis. However, the effects of vitamin K2 on bone mass and bone metabolism seem to be modest. PMID:16642543
Carrasquer, C. Alex; Batey, Kaylind; Qamar, Shahid; Cunningham, Albert R.; Cunningham, Suzanne L.
2016-01-01
We previously demonstrated that fragment based cat-SAR carcinogenesis models consisting solely of mutagenic or non-mutagenic carcinogens varied greatly in terms of their predictive accuracy. This led us to investigate how well the rat cancer cat-SAR model predicted mutagens and non-mutagens in their learning set. Four rat cancer cat-SAR models were developed: Complete Rat, Transgender Rat, Male Rat, and Female Rat, with leave-one-out (LOO) validation concordance values of 69%, 74%, 67%, and 73%, respectively. The mutagenic carcinogens produced concordance values in the range of 69–76% as compared to only 47–53% for non-mutagenic carcinogens. As a surrogate for mutagenicity comparisons between single site and multiple site carcinogen SAR models was analyzed. The LOO concordance values for models consisting of 1-site, 2-site, and 4+-site carcinogens were 66%, 71%, and 79%, respectively. As expected, the proportion of mutagens to non-mutagens also increased, rising from 54% for 1-site to 80% for 4+-site carcinogens. This study demonstrates that mutagenic chemicals, in both SAR learning sets and test sets, are influential in assessing model accuracy. This suggests that SAR models for carcinogens may require a two-step process in which mutagenicity is first determined before carcinogenicity can be accurately predicted. PMID:24697549
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timchalk, Chuck; Kousba, Ahmed A.; Poet, Torka S.
2007-08-01
Juvenile rats are more susceptible than adults to the acute toxicity of organophosphorus insecticides like chlorpyrifos (CPF). Age- and dose-dependent differences in metabolism may be responsible. Of importance is CYP450 activation and detoxification of CPF to chlorpyrifos-oxon (CPF-oxon) and trichloropyridinol (TCP), as well as B-esterase (cholinesterase; ChE) and A-esterase (PON-1) detoxification of CPF-oxon to TCP. In the current study, a modified physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model incorporating age-dependent changes in CYP450, PON-1, and tissue ChE levels for rats was developed. In this model, age was used as a dependent function to estimate body weight which was then used to allometricallymore » scale both metabolism and tissue ChE levels. Model simulations suggest that preweanling rats are particularly sensitive to CPF toxicity, with levels of CPF-oxon in blood and brain disproportionately increasing, relative to the response in adult rats. This age-dependent non-linear increase in CPF-oxon concentration may potentially result from the depletion of non-target B-esterases, and a lower PON-1 metabolic capacity in younger animals. These results indicate that the PBPK/PD model behaves consistently with the general understanding of CPF toxicity, pharmacokinetics and tissue ChE inhibition in neonatal and adult rats. Hence, this model represents an important starting point for developing a computational model to assess the neurotoxic potential of environmentally relevant organophosphate exposures in infants and children.« less
Calcium Balance in Mature Rats Exposed to a Space Flight Model
NASA Technical Reports Server (NTRS)
Wolinsky, Ira
1996-01-01
Negative calcium balances are seen in humans during spaceflight and bed rest, an analog of space flight. Due to the infrequency and costliness of space flight and the difficulties, cost, and restraints in using invasive procedures in bed rest studies, several ground based animal models of space flight have been employed. The most useful and well developed of these models is hind limb unloading in the rat. In this model the hind limbs are non-weight bearing (unloaded) but still mobile; there is a cephalad fluid shift similar to that seen in astronauts in flight; the animals are able to feed, groom and locomote using their front limbs; the procedure is reversible; and, importantly, the model has been validated by comparison to space flight. Several laboratories have studied calcium balance using rats in hind limb unweighting. Roer and Dillaman used young male rats to study calcium balance in this model for 25 days. They found no differences in dietary calcium intake, percent calcium absorption, urinary and fecal excretion, hence indicating no differences in calcium balance between control and unloaded rats. In another study, employing 120 day old females, rats' hind limbs were unloaded for 28 days. While negative calcium balances were observed during a 25 day recovery period no balance measurements were possible during unweighting since the researchers did not employ appropriate metabolic cages. In a recent study from this laboratory, using 200 g rats in the space flight model for two weeks, we found depressed intestinal calcium absorption and increased fecal calcium excretion (indicating less positive calcium balances) and lower circulating 1,25-dihydroxyvitamin D. The above studies indicate that there remains a dearth of information on calcium balance during the hind limb unloading rat space flight model, especially in mature rats, whose use is a better model for planned manned space flight than juvenile or growing animals. With the aid of a newly designed metabolic cage developed in our laboratory it is now possible to accurately measure urinary and fecal calcium excretions in this space flight model. The purpose of this study, then, was to extend and enlarge our previous findings viz: to measure calcium balances in mature rats exposed to a space flight model.
Novel rat model for neurocysticercosis using Taenia solium.
Verastegui, Manuela R; Mejia, Alan; Clark, Taryn; Gavidia, Cesar M; Mamani, Javier; Ccopa, Fredy; Angulo, Noelia; Chile, Nancy; Carmen, Rogger; Medina, Roxana; García, Hector H; Rodriguez, Silvia; Ortega, Ynes; Gilman, Robert H
2015-08-01
Neurocysticercosis is caused by Taenia solium infecting the central nervous system and is the leading cause of acquired epilepsy and convulsive conditions worldwide. Research into the pathophysiology of the disease and appropriate treatment is hindered by lack of cost-effective and physiologically similar animal models. We generated a novel rat neurocysticercosis model using intracranial infection with activated T. solium oncospheres. Holtzman rats were infected in two separate groups: the first group was inoculated extraparenchymally and the second intraparenchymally, with different doses of activated oncospheres. The groups were evaluated at three different ages. Histologic examination of the tissue surrounding T. solium cysticerci was performed. Results indicate that generally infected rats developed cysticerci in the brain tissue after 4 months, and the cysticerci were observed in the parenchymal, ventricle, or submeningeal brain tissue. The route of infection did not have a statistically significant effect on the proportion of rats that developed cysticerci, and there was no dependence on infection dose. However, rat age was crucial to the success of the infection. Epilepsy was observed in 9% of rats with neurocysticercosis. In histologic examination, a layer of collagen tissue, inflammatory infiltrate cells, perivascular infiltrate, angiogenesis, spongy change, and mass effect were observed in the tissue surrounding the cysts. This study presents a suitable animal model for the study of human neurocysticercosis. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Study on 41Ca-AMS for diagnosis and assessment of cancer bone metastasis in rats
NASA Astrophysics Data System (ADS)
Shen, Hongtao; Pang, Fangfang; Jiang, Shan; He, Ming; Dong, Kejun; Dou, Liang; Pang, Yijun; Yang, Xianlin; Ruan, Xiangdong; Liu, Manjun; Xia, Chunbo
2015-10-01
The annual incidence of new cancer patients in China is about 2 million, 30-40% of which will end up with bone metastasis. Profound study on the preclinical model and early diagnosis of cancer bone metastasis in rats are very significant for the drug development, better understanding and treatment of bone metastases. In order to monitor the process of bone metabolism and early detection of bone metastasis of cancer cells, a technique of 41Ca isotope tracer combined with AMS has been developed and applied in the study on the bone metastasis of cancer cells by rat model. In this work, 3-month-old female Sprague-Dawley (SD) rats were randomly divided into different groups, and tumor cells injected respectively into the tail vein, femoral artery, femoral cavity and the thigh muscle to establish the rat models for bone metastases. The most appropriate model, i.e., the thigh muscle group, was finally adopted in our real metastases experiment. Each rat in this group was intramuscularly (i.m.) injected with 250 μl CaCl2 solution (containing 1.4 mg Ca and 5nCi 41Ca). About 40 days later, the rat mammary gland carcinoma cells (Walker 256) were injected into these rats following the established protocol. After bone metastasis, medicine interventions were performed. The sequential urine and blood samples were collected and analyzed for 41Ca (by AMS) and N-terminal telopeptide (Ntx), respectively. Bone Mineral Density (BMD) values in the femur and the tibia were measured by CT scan. The results of 41Ca/Ca in longitudinal urinary samples can sensitively reveal the skeletal perturbations caused by bone metastasis of rats, suggests that 41Ca might be similarly developed for human use and improve clinical management through the assessment of the curative effect and non-invasive detection of the earliest stages of cancer growth in bone.
Cognitive impairment and spontaneous epilepsy in rats with malformations of cortical development.
Ye-wei, Xiao; Rong, Wang; Xun-tai, Ma; Shan, Zhang; Qian, Chen; Shi-hua, Huang; Fu-qun, Mao; Xiao-ming, Xiong
2015-12-01
To examine the cognition, spontaneous epilepsy, and electroencephalography (EEG) characteristics of rats with malformations of cortical development (MCD) and their use as an animal model for investigating the pathogenesis of intractable epilepsy and screening novel antiepileptic drugs. An epileptic rat model of MCD was established with the F1 generation of pregnant rats after X-irradiation with 175 cGy (Group L), 195 cGy (Group M), or 215 cGy (Group H). Long-term video-EEG monitoring was used to record the seizures in the rats with MCD. Cognition was assessed with the Morris water maze. The EEGs were recorded and analyzed in the frontal and parietal lobes and hippocampi of adult rats. Finally, the brain tissues were processed for Nissl staining. The model groups exhibited markedly prolonged escape latencies and distinct decrements in the percent distance traveled in the target quadrant and platform-crossing frequency. These findings were dose-dependent. Frequent interictal epileptiform discharges were observed in the frontal and parietal lobes and hippocampi of adult rats, and their incidences were markedly higher in the model groups compared with that in the normal controls, with Group M having the highest incidence. Spontaneous seizures were observed in the model groups (mean incidence, 46.7%). The daily mean frequency of seizures and the incidence of spontaneous seizures were highest in Group M. Nissl staining revealed a dose-dependent pattern of hippocampal abnormalities, cortical and subcortical nodular heterotopia, and callosal agenesis in the model groups. The 195 cGy dose was most appropriate for establishing an epileptic model of MCD with X-irradiation. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Li, Jing; Tian, Yanxin; Guo, Shimeng; Gu, Haifeng; Yuan, Qianting; Xie, Xin
2018-01-01
Benign prostatic hyperplasia (BPH) is an age-related disease, affecting a majority of elderly men worldwide. Medical management of BPH is an alternative to surgical treatment of this disease. Currently, α1-adrenergic receptor (α1-AR) antagonists are among the first line drugs to treat BPH by reducing the tension of urinary track and thus the obstructive symptoms in voiding. In drug development, old male dogs with spontaneous BPH are considered the golden standard of the animal models. However, old dogs (>6 years) are expensive and not all old dogs develop BPH. So it is necessary to develop more accessible animal models for drug efficacy evaluation. Here we describe the development of testosterone-induced BPH models in both rats and young adult dogs and their applications in the in vivo evaluation of α1-AR antagonist. The BPH rats and dogs induced by chronic testosterone treatment have significantly increased micturition frequency and reduced mean voided volume, very similar to the clinical symptoms of BPH patients. Silodosin, an α1-AR antagonist, significantly reduces the urinary frequency and increases the voided volume in BPH model animals in a dose-dependent manner. The results demonstrate that testosterone-induced BPH rat and dog models might provide a more efficient way to evaluate micturition behavior in anti-BPH drug studies. PMID:29351556
Ferrer, Miguel D.; Ketteler, Markus; Tur, Fernando; Tur, Eva; Isern, Bernat; Salcedo, Carolina; Joubert, Pieter H.; Behets, Geert J.; Neven, Ellen; D’Haese, Patrick C.
2018-01-01
End-stage renal disease is strongly associated with progressive cardiovascular calcification (CVC) and there is currently no therapy targeted to treat CVC. SNF472 is an experimental formulation under development for treatment of soft tissue calcification. We have investigated the pharmacokinetics of SNF472 administration in rats and its inhibitory effects on CVC. SNF472 was studied in three rat models: (1) prevention of vitamin D3-induced CVC with an intravenous SNF472 bolus of 1 mg/kg SNF472, (2) inhibition of progression of vitamin D3-induced CVC with a subcutaneous SNF472 bolus of 10 or 60 mg/kg SNF472, starting after calcification induction, (3) CVC in adenine-induced uremic rats treated with 50 mg/kg SNF472 via i.v. 4h -infusion. Uremic rats presented lower plasma levels of SNF472 than control animals after i.v. infusion. CVC in non-uremic rats was inhibited by 60–70% after treatment with SNF472 and progression of cardiac calcification completely blocked. Development of CVC in uremic rats was inhibited by up to 80% following i.v. infusion of SNF472. SNF472 inhibits the development and progression of CVC in uremic and non-uremic rats in the same range of SNF472 plasma levels but using in each case the required dose to obtain those levels. These results collectively support the development of SNF472 as a novel therapeutic option for treatment of CVC in humans. PMID:29742152
Chen, Guotao; Yang, Baibing; Chen, Jianhuai; Zhu, Leilei; Jiang, Hesong; Yu, Wen; Zang, Fengchao; Chen, Yun; Dai, Yutian
2018-02-01
Non-organic erectile dysfunction (noED) at functional imaging has been related to abnormal brain activity and requires animal models for further research on the associated molecular mechanisms. To develop a noED animal model based on chronic mild stress and investigate brain activity changes. We used 6 weeks of chronic mild stress to induce depression. The sucrose consumption test was used to assess the hedonic state. The apomorphine test and sexual behavior test were used to select male rats with ED. Rats with depression and ED were considered to have noED. Blood oxygen level-dependent-based resting-state functional magnetic resonance imaging (fMRI) studies were conducted on these rats, and the amplitude of low-frequency fluctuations and functional connectivity were analyzed to determine brain activity changes. The sexual behavior test and resting-state fMRI were used for outcome measures. The induction of depression was confirmed by the sucrose consumption test. A low intromission ratio and increased mount and intromission latencies were observed in male rats with depression. No erection was observed in male rats with depression during the apomorphine test. Male rats with depression and ED were considered to have noED. The possible central pathologic mechanism shown by fMRI involved the amygdaloid body, dorsal thalamus, hypothalamus, caudate-putamen, cingulate gyrus, insular cortex, visual cortex, sensory cortex, motor cortex, and cerebellum. Similar findings have been found in humans. The present study provided a novel noED rat model for further research on the central mechanism of noED. The present study developed a novel noED rat model and analyzed brain activity changes based at fMRI. The observed brain activity alterations might not extend to humans. The present study developed a novel noED rat model with brain activity alterations related to sexual arousal and erection, which will be helpful for further research involving the central mechanism of noED. Chen G, Yang B, Chen J, et al. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress. J Sex Med 2018;15:136-147. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Damasceno, Débora Cristina; Sinzato, Yuri Karen; Ribeiro, Viviane Maria; Rudge, Marilza Vieira Cunha; Calderon, Iracema Mattos Paranhos
2015-01-01
The potential benefits and risks of physical exercise on fetal development during pregnancy remain unclear. The aim was to analyze maternal oxidative stress status and the placental morphometry to relate to intrauterine growth restriction (IUGR) from diabetic female rats submitted to swimming program after embryonic implantation. Pregnant Wistar rats were distributed into 4 groups (11 animals/group): control—nondiabetic sedentary rats, control exercised—nondiabetic exercised rats, diabetic—diabetic sedentary rats, and diabetic exercised—diabetic exercised rats. A swimming program was used as an exercise model. At the end of pregnancy, the maternal oxidative stress status, placental morphology, and fetal weight were analyzed. The swimming program was not efficient to reduce the hyperglycemia-induced oxidative stress. This fact impaired placental development, resulting in altered blood flow and energy reserves, which contributed to a deficient exchange of nutrients and oxygen for the fetal development, leading to IUGR. PMID:25361551
Gregory, Elaine K; Vercammen, Janet M; Flynn, Megan E; Kibbe, Melina R
2016-12-01
Although the aortic interposition bypass model has been widely used to evaluate biomaterials for bypass grafting, there is no comprehensive description of the procedure or of the distribution of intimal hyperplasia that results. The objectives of this study were to (1) review and summarize approaches of aortic interposition grafting in animal models, (2) determine the pertinent anatomy for this procedure, (3) validate this model in the rat and guinea pig, and (4) compare the distribution of intimal hyperplasia that develops in each species. A literature search was performed in PubMed from 1980 to the present to analyze the use of anesthesia, anticoagulation, antiplatelet agents, graft material, suture, and anastomotic techniques. Using 10-week-old male Sprague-Dawley rats and Hartley guinea pigs, we established pertinent aortic anatomy, developed comparable models, and assessed complications for each model. At 30 days, the graft and associated aorta were explanted, intimal formation was assessed morphometrically, and cellularity was assessed via nuclear counting. We reviewed 30 articles and summarized the pertinent procedural findings. Upon establishing both animal models, key anatomic differences between the species that affect this model were noted. Guinea pigs have a much larger cecum, increased retroperitoneal fat, and lack the iliolumbar vessels compared with the rat. Surgical outcomes for the rat model included a 53% technical success rate and a 32% technical error rate. Surgical outcomes for the guinea pig model included a 69% technical success rate and a 31% technical error rate. These two species demonstrated unique distribution of intimal hyperplasia at 30 days. Intimal hyperplasia in the rat model was greatest at two areas, the proximal graft (5400 μm 2 ; P < .001) and distal graft (2800 μm 2 ; P < .04), whereas the guinea pig model developed similar intimal hyperplasia throughout the graft (4500-5100 μm 2 ; P < .01). In this report, we summarize the literature on the aortic interposition graft model, present a detailed description of the anatomy and aortic interposition graft procedure in the rat and guinea pig, and describe a unique distribution of intimal formation that results in both species. This information will be helpful when designing studies to evaluate novel graft materials in the future. Published by Elsevier Inc.
Tsuji, Takahiro; Ikeda, Hitoshi; Tsuchikawa, Takahiro; Kikuchi, Kazunori; Baba, Tomohisa; Ishizu, Akihiro; Yoshiki, Takashi
2005-07-01
Transgenic rats expressing the pX gene of human T lymphocyte virus type-I (HTLV-I) under control of the rat lymphocyte-specific protein tyrosine kinase type-I promoter (lck-pX rats) developed benign epithelial thymomas. When the thymuses of newborn lck-pX rats were transplanted into the subcapsular space of the kidney in other thymectomized lck-pX rats, similar tumors developed in the transplanted thymuses. Following the tumor growth, dissemination in the abdominal cavity and distant metastasis occurred. The tumors were histopathologically similar to the original thymomas, but prominent nuclear atypia and high mitotic activity were present. The Ki-67 index was twice as high as that in the originals. The tumors were transplantable into the subcutis of lck-pX rats, although transplantation of the originals never succeeded. All evidence indicated that malignant transformation of thymoma was induced by the heterotopic transplantation. Expression of the pX transgene in the transformed tumors were significantly reduced. Among host genes, the expression of p16ink4a/ARF, which was significantly upregulated in the originals, was never detected in the transformed tumors. Genomic Southern blots and PCR suggest that homozygous deletion of the p16ink4a/ARF gene may play important roles in malignant transformation in this model. Our model described here is a useful unique model for in vivo malignant transformation.
Visceral hypersensitive rats share common dysbiosis features with irritable bowel syndrome patients
Zhou, Xiao-Yan; Li, Ming; Li, Xia; Long, Xin; Zuo, Xiu-Li; Hou, Xiao-Hua; Cong, Ying-Zi; Li, Yan-Qing
2016-01-01
AIM: To evaluate gut microbial dysbiosis in two visceral hypersensitive models in comparison with irritable bowel syndrome (IBS) patients and to explore the extent to which these models capture the dysbiosis of IBS patients. METHODS: Visceral hypersensitivity was developed using the maternal separation (MS) rat model and post-inflammatory rat model. The visceral sensitivity of the model groups and control group was evaluated using the abdominal withdraw reflex score and electromyography in response to graded colorectal distention. The 16S ribosomal RNA gene from fecal samples was pyrosequenced and analyzed. The correlation between dysbiosis in the microbiota and visceral hypersensitivity was calculated. Positive findings were compared to sequencing data from a published human IBS cohort. RESULTS: Dysbiosis triggered by neonatal maternal separation was lasting but not static. Both MS and post-inflammatory rat fecal microbiota deviated from that of the control rats to an extent that was larger than the co-housing effect. Two short chain fatty acid producing genera, Fusobacterium and Clostridium XI, were shared by the human IBS cohort and by the maternal separation rats and post-inflammatory rats, respectively, to different extents. Fusobacterium was significantly increased in the MS group, and its abundance positively correlated with the degree of visceral hypersensitivity. Porphyromonadaceae was a protective biomarker for both the rat control group and healthy human controls. CONCLUSION: The dysbiosis MS rat model and the post-inflammatory rat model captured some of the dysbiosis features of IBS patients. Fusobacterium, Clostridium XI and Porphyromonadaceae were identified as targets for future mechanistic research. PMID:27298564
Gravitational Biology: The Rat Model
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session JP3, the discussion focuses on the following topics: Morphology of brain, pituitary and thyroid in the rats exposed to altered gravity; Biochemical Properties of B Adrenoceptors After Spaceflight (LMS-STS78) or Hindlimb Suspension in Rats; Influence of Hypergravity on the Development of Monoaminergic Systems in the Rat Spinal Cord; A Vestibular Evoked Potentials (VsEPs) Study of the Function of the Otolith Organs in Different Head Orientations with respect to Earth Gravity Vector in the Rat; Quantitative Observations on the Structure of Selected Proprioceptive Components in Adult Rats that Underwent About Half of their Fetal Development in Space; Effects of a Nine-Day Shuttle Mission on the Development of the Neonatal Rat Nervous System, A Behavioral Study; Muscle Atrophy Associated to Microgravity in Rat, Basic Data For Countermeasures; Simulated Weightlessness by Unloading in the Rat, Results of a Time Course Study of Biochemical Events Occurring During Unloading and Lack of Effect of a rhBNP-2 Treatment on Bone Formation and Bone Mineral Content in Unloading Rats; and Cytological Mechanism of the Osteogenesis Under Microgravity Conditions.
A novel model of invasive fungal rhinosinusitis in rats.
Zhang, Fang; An, Yunfang; Li, Zeqing; Zhao, Changqing
2013-01-01
Invasive fungal rhinosinusitis (IFRS) is a life-threatening inflammatory disease that affects immunocompromised patients, but animal models of the disease are scarce. This study aimed to develop an IFRS model in neutropenic rats. The model was established in three consecutive steps: unilateral nasal obstruction with Merocel sponges, followed by administration of cyclophosphamide (CPA), and, finally, nasal inoculation with Aspergillus fumigatus. Fifty healthy Wistar rats were randomly divided into five groups, with group I as the controls, group II undergoing unilateral nasal obstruction alone, group III undergoing nasal obstruction with fungal inoculation, group IV undergoing nasal obstruction with administration of CPA, and group V undergoing nasal obstruction with administration of CPA and fungal inoculation. Hematology, histology, and mycology investigations were performed. The changes in the rat absolute neutrophil counts (ANCs) were statistically different across the groups. The administration of CPA decreased the ANCs, whereas nasal obstruction with fungal inoculation increased the ANCs, and nasal obstruction did not change them. Histological examination of the rats in group V revealed the hyphal invasion of sinus mucosa and bone, thrombosis, and tissue infarction. No pathology indicative of IFRS was observed in the remaining groups. Positive rates of fungal culture in tissue homogenates from the maxillary sinus (62.5%) and lung (25%) were found in group V, whereas groups I, II, III, and IV showed no fungal culture in the homogenates. A rat IFRS model was successfully developed through nasal obstruction, CPA-induced neutropenia, and fungal inoculation. The disease model closely mimics the pathophysiology of anthropic IFRS.
Brand, Sarel Jacobus; Harvey, Brian Herbert
2017-08-01
Co-morbid depression with post-traumatic stress disorder (PTSD) is often treatment resistant. In developing a preclinical model of treatment-resistant depression (TRD), we combined animal models of depression and PTSD to produce an animal with more severe as well as treatment-resistant depressive-like behaviours. Male Flinders sensitive line (FSL) rats, a genetic animal model of depression, were exposed to a stress re-stress model of PTSD [time-dependent sensitisation (TDS)] and compared with stress-naive controls. Seven days after TDS stress, depressive-like and coping behaviours as well as hippocampal and cortical noradrenaline (NA) and 5-hydroxyindoleacetic acid (5HIAA) levels were analysed. Response to sub-chronic imipramine treatment (IMI; 10 mg/kg s.c.×7 days) was subsequently studied. FSL rats demonstrated bio-behavioural characteristics of depression. Exposure to TDS stress in FSL rats correlated negatively with weight gain, while demonstrating reduced swimming behaviour and increased immobility versus unstressed FSL rats. IMI significantly reversed depressive-like (immobility) behaviour and enhanced active coping behaviour (swimming and climbing) in FSL rats. The latter was significantly attenuated in FSL rats exposed to TDS versus unstressed FSL rats. IMI reversed reduced 5HIAA levels in unstressed FSL rats, whereas exposure to TDS negated this effect. Lowered NA levels in FSL rats were sustained after TDS with IMI significantly reversing this in the hippocampus. Combining a gene-X-environment model of depression with a PTSD paradigm produces exaggerated depressive-like symptoms that display an attenuated response to antidepressant treatment. This work confirms combining FSL rats with TDS exposure as a putative animal model of TRD.
Satoh, T; Izumi, H; Iwabuchi, N; Odamaki, T; Namba, K; Abe, F; Xiao, J Z
2016-02-01
Necrotising enterocolitis (NEC) is associated with inflammatory responses and barrier dysfunction in the gut. In this study, we investigated the effect of Bifidobacterium breve M-16V on factors related to NEC development using an experimental rat model. Caesarean-sectioned rats were given formula milk with or without B. breve M-16V by oral gavage thrice daily, and experimental NEC was induced by exposing the rats to hypoxic conditions. Naturally delivered rats that were reared by their mother were used as healthy controls. The pathological score of NEC and the expression of molecules related to inflammatory responses and the barrier function were assessed in the ileum. B. breve M-16V reduced the pathological scores of NEC and resulted in some improvement in survivability. B. breve M-16V suppressed the increased expression of molecules related to inflammation and barrier function that resulted from NEC induction. B. breve M-16V normalised Toll-like receptor (TRL)4 expression and enhanced TLR2 expression. Our data suggest that B. breve M-16V prevents NEC development by modulating TLR expressions and suppressing inflammatory responses in a rat model.
Fmr1 and Nlgn3 knockout rats: novel tools for investigating autism spectrum disorders.
Hamilton, Shannon M; Green, Jennie R; Veeraragavan, Surabi; Yuva, Lisa; McCoy, Aaron; Wu, Yumei; Warren, Joe; Little, Lara; Ji, Diana; Cui, Xiaoxia; Weinstein, Edward; Paylor, Richard
2014-04-01
Animal models are critical for gaining insights into autism spectrum disorder (ASD). Despite their apparent advantages to mice for neural studies, rats have not been widely used for disorders of the human CNS, such as ASD, for the lack of convenient genome manipulation tools. Here we describe two of the first transgenic rat models for ASD, developed using zinc-finger nuclease (ZFN) methodologies, and their initial behavioral assessment using a rapid juvenile test battery. A syndromic and nonsyndromic rat model for ASD were created as two separate knockout rat lines with heritable disruptions in the genes encoding Fragile X mental retardation protein (FMRP) and Neuroligin3 (NLGN3). FMRP, a protein with numerous proposed functions including regulation of mRNA and synaptic protein synthesis, and NLGN3, a member of the neuroligin synaptic cell-adhesion protein family, have been implicated in human ASD. Juvenile subjects from both knockout rat lines exhibited abnormalities in ASD-relevant phenotypes including juvenile play, perseverative behaviors, and sensorimotor gating. These data provide important first evidence regarding the utility of rats as genetic models for investigating ASD-relevant genes.
Musther, Helen; Harwood, Matthew D; Yang, Jiansong; Turner, David B; Rostami-Hodjegan, Amin; Jamei, Masoud
2017-09-01
The use of in vitro-in vivo extrapolation (IVIVE) techniques, mechanistically incorporated within physiologically based pharmacokinetic (PBPK) models, can harness in vitro drug data and enhance understanding of in vivo pharmacokinetics. This study's objective was to develop a user-friendly rat (250 g, male Sprague-Dawley) IVIVE-linked PBPK model. A 13-compartment PBPK model including mechanistic absorption models was developed, with required system data (anatomical, physiological, and relevant IVIVE scaling factors) collated from literature and analyzed. Overall, 178 system parameter values for the model are provided. This study also highlights gaps in available system data required for strain-specific rat PBPK model development. The model's functionality and performance were assessed using previous literature-sourced in vitro properties for diazepam, metoprolol, and midazolam. The results of simulations were compared against observed pharmacokinetic rat data. Predicted and observed concentration profiles in 10 tissues for diazepam after a single intravenous (i.v.) dose making use of either observed i.v. clearance (CL iv ) or in vitro hepatocyte intrinsic clearance (CL int ) for simulations generally led to good predictions in various tissue compartments. Overall, all i.v. plasma concentration profiles were successfully predicted. However, there were challenges in predicting oral plasma concentration profiles for metoprolol and midazolam, and the potential reasons and according solutions are discussed. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Shin, Keon Sung; Zhao, Ting Ting; Park, Keun Hong; Park, Hyun Jin; Hwang, Bang Yeon; Lee, Chong Kil; Lee, Myung Koo
2015-04-21
Gypenosides (GPS) and ethanol extract of Gynostemma pentaphyllum (GP-EX) show anxiolytic effects on affective disorders in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of Parkinson's disease (PD). Long-term administration of L-3,4-dihydroxyphenylalanine (L-DOPA) leads to the development of severe motor side effects such as L-DOPA-induced-dyskinesia (LID) in PD. The present study investigated the effects of GPS and GP-EX on LID in a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD. Daily administration of L-DOPA (25 mg/kg) in the 6-OHDA-lesioned rat model of PD for 22 days induced expression of LID, which was determined by the body and locomotive AIMs scores and contralateral rotational behaviors. However, co-treatments of GPS (25 and 50 mg/kg) or GP-EX (50 mg/kg) with L-DOPA significantly attenuated the development of LID without compromising the anti-parkinsonian effects of L-DOPA. In addition, the increases in ∆FosB expression and ERK1/2 phosphorylation in 6-OHDA-lesioned rats induced by L-DOPA administration were significantly reduced by co-treatment with GPS (25 and 50 mg/kg) or GP-EX (50 mg/kg). These results suggest that GPS (25 and 50 mg/kg) and GP-EX (50 mg/kg) effectively attenuate the development of LID by modulating the biomarker activities of ∆FosB expression and ERK1/2 phosphorylation in the 6-OHDA-lesioned rat model of PD. GPS and GP-EX will be useful adjuvant therapeutics for LID in PD.
Sakamoto, M; Wakabayashi, K; Kakita, A; Hitoshi Takahashi; Adachi, T; Nakano, A
1998-02-16
The neurotoxicity of methylmercury (MeHg) treatment during the postnatal developing phase in rats was studied. Rats on postnatal day 1 were orally administered 5 mg/kg/day methylmercury chloride (MMC) for more than 30 consecutive days. Body weight loss began 26 days after MMC was administered, and severe paralysis of the hind-limbs and unsteadiness appeared subsequently. Histopathologically, the widespread neuronal degeneration was observed in the cerebral neocortex, neostriatum, red nucleus, brainstem, cerebellum and spinal dorsal root ganglia on day 32. The widespread distribution of the lesions was quite similar to that in fetal cases of MeHg intoxication in Minamata, Japan. These findings suggest that MMC treatment during the postnatal development phase in rats produce a good model of fetal-type Minamata disease. Copyright 1998 Elsevier Science B.V.
Physiologically Based Pharmacokinetic Model for Terbinafine in Rats and Humans
Hosseini-Yeganeh, Mahboubeh; McLachlan, Andrew J.
2002-01-01
The aim of this study was to develop a physiologically based pharmacokinetic (PB-PK) model capable of describing and predicting terbinafine concentrations in plasma and tissues in rats and humans. A PB-PK model consisting of 12 tissue and 2 blood compartments was developed using concentration-time data for tissues from rats (n = 33) after intravenous bolus administration of terbinafine (6 mg/kg of body weight). It was assumed that all tissues except skin and testis tissues were well-stirred compartments with perfusion rate limitations. The uptake of terbinafine into skin and testis tissues was described by a PB-PK model which incorporates a membrane permeability rate limitation. The concentration-time data for terbinafine in human plasma and tissues were predicted by use of a scaled-up PB-PK model, which took oral absorption into consideration. The predictions obtained from the global PB-PK model for the concentration-time profile of terbinafine in human plasma and tissues were in close agreement with the observed concentration data for rats. The scaled-up PB-PK model provided an excellent prediction of published terbinafine concentration-time data obtained after the administration of single and multiple oral doses in humans. The estimated volume of distribution at steady state (Vss) obtained from the PB-PK model agreed with the reported value of 11 liters/kg. The apparent volume of distribution of terbinafine in skin and adipose tissues accounted for 41 and 52%, respectively, of the Vss for humans, indicating that uptake into and redistribution from these tissues dominate the pharmacokinetic profile of terbinafine. The PB-PK model developed in this study was capable of accurately predicting the plasma and tissue terbinafine concentrations in both rats and humans and provides insight into the physiological factors that determine terbinafine disposition. PMID:12069977
Kuijk, Ewart W.; Rasmussen, Shauna; Blokzijl, Francis; Huch, Meritxell; Gehart, Helmuth; Toonen, Pim; Begthel, Harry; Clevers, Hans; Geurts, Aron M.; Cuppen, Edwin
2016-01-01
The rat is an important model for liver regeneration. However, there is no in vitro culture system that can capture the massive proliferation that can be observed after partial hepatectomy in rats. We here describe the generation of rat liver stem cell lines. Rat liver stem cells, which grow as cystic organoids, were characterized by high expression of the stem cell marker Lgr5, by the expression of liver progenitor and duct markers, and by low expression of hepatocyte markers, oval cell markers, and stellate cell markers. Prolonged cultures of rat liver organoids depended on high levels of WNT-signalling and the inhibition of BMP-signaling. Upon transplantation of clonal lines to a Fah−/− Il2rg−/− rat model of liver failure, the rat liver stem cells engrafted into the host liver where they differentiated into areas with FAH and Albumin positive hepatocytes. Rat liver stem cell lines hold potential as consistent reliable cell sources for pharmacological, toxicological or metabolic studies. In addition, rat liver stem cell lines may contribute to the development of regenerative medicine in liver disease. To our knowledge, the here described liver stem cell lines represent the first organoid culture system in the rat. PMID:26915950
The Characterization of Obese Polycystic Ovary Syndrome Rat Model Suitable for Exercise Intervention
Qiu, Shuwei; Jiang, Zhongli
2014-01-01
Objective To develop a new polycystic ovary syndrome (PCOS) rat model suitable for exercise intervention. Method Thirty six rats were randomly divided into three experimental groups: PCOS rats with high-fat diet (PF, n = 24), PCOS rats with ordinary diet (PO, n = 6), and control rats with ordinary diet (CO, n = 6). Two kinds of PCOS rat model were made by adjustment diet structure and testosterone injection for 28 days. After a successful animal model, PF model rats were randomly assigned to three groups: exercise with a continuation of high-fat diet (PF-EF, n = 6), sedentary with a continuation of high-fat diet (PF-SF, n = 6), exercise with an ordinary diet (PF-EO, n = 6). Fasting blood glucose (FBG) and insulin (FINS), estrogen (E2), progesterone (P), and testosterone (T) in serum were determined by RIA, and ovarian morphology was evaluated by Image-Pro plus 6.0. Results Body weight, Lee index, FINS increased significantly in PF rat model. Serum levels of E2 and T were significantly higher in PF and PO than in CO. Ovary organ index and ovarian areas were significant lower in PF than in CO. After intervention for 2 weeks, the levels of 1 h postprandial blood glucose (PBG1), 2 h postprandial blood glucose (PBG2), FINS and the serum levels of T decreased significantly in PF-EF rats and PF-EO rats. The ratio of FBG/FINS was significant higher in PF-EO rats than in PF-SF rats. Ovarian morphology showed that the numbers of preantral follicles and atretic follicles decreased significantly, and the numbers of antral follicles and corpora lutea increased significantly in the rats of PF-EF and PF-EO. Conclusion By combination of high-fat diet and testosterone injection, the obese PCOS rat model is conformable with the lifestyle habits of fatty foods and insufficient exercise, and has metabolic and reproductive characteristics of human PCOS. This model can be applied to study exercise intervention. PMID:24905232
Development of Mouse Lung Deposition Models
2015-07-01
information on deposition of ultrafine particles in the URT of mice either by measurements or theoretical modeling. Comparison of the nasal structure of... ultrafine particles in rats to be extended to mice. Based on measurements in the nasal casts of rats, Cheng et al. [12] obtained the following...expression for losses of ultrafine particles in the nasal passages of rats by Brownian diffusion during inhalation and exhalation. γβα− − −=η QD
Quantitative Assessment of Cancer Risk from Exposure to Diesel Engine Emissions
Quantitative estimates of lung cancer risk from exposure to diesel engine emissions were developed using data from three chronic bioassays with Fischer 344 rats. uman target organ dose was estimated with the aid of a comprehensive dosimetry model. This model accounted for rat-hum...
INFORMATIONAL STRESS AS A DEPRESSION INDUCING FACTOR (EXPERIMENTAL STUDY).
Matitaishvili, T; Domianidze, T; Burdjanadze, G; Nadareishvili, D; Khananashvili, M
2017-01-01
Chronic psychogenic stress represents the major initiating agent of psychoneural diseases including depression. We used informational stress model for the purpose of modelling chronic psychogenic stress and depression. The aim of the research was to study behavior of dominant and submissive rats at different stages of informational stress and during depression state. In order to study anxiety and depressive behavior of rats we used "forced swim", "elevated cross maze" and "open-field" tests. The obtained results showed that chronic stressing procedure performed on rats by using the mentioned "informational" stress model led to the development of depression both in dominant and submissive rats. Stressing procedure caused sharp increase of serotonin concentration in hypothalamus of dominant and submissive rats. Under behavioral depression background, sharp increase of serotonin concentration in hypothalamus has been revealed which is caused by the peculiarities of stress model (by uncontrollable stressor. Specifically, by inevitable electric painful irritation).
Fukayama, Osamu; Taniguchi, Noriyuki; Suzuki, Takafumi; Mabuchi, Kunihiko
2008-01-01
An online brain-machine interface (BMI) in the form of a small vehicle, the 'RatCar,' has been developed. A rat had neural electrodes implanted in its primary motor cortex and basal ganglia regions to continuously record neural signals. Then, a linear state space model represents a correlation between the recorded neural signals and locomotion states (i.e., moving velocity and azimuthal variances) of the rat. The model parameters were set so as to minimize estimation errors, and the locomotion states were estimated from neural firing rates using a Kalman filter algorithm. The results showed a small oscillation to achieve smooth control of the vehicle in spite of fluctuating firing rates with noises applied to the model. Major variation of the model variables converged in a first 30 seconds of the experiments and lasted for the entire one hour session.
Fukayama, Osamu; Taniguchi, Noriyuki; Suzuki, Takafumi; Mabuchi, Kunihiko
2006-01-01
We have developed a brain-machine interface (BMI) in the form of a small vehicle, which we call the RatCar. In this system, we implanted wire electrodes in the motor cortices of rat's brain to continuously record neural signals. We applied a linear model to estimate the locomotion state (e.g., speed and directions) of a rat using a weighted summation model for the neural firing rates. With this information, we then determined the approximate movement of a rat. Although the estimation is still imprecise, results suggest that our model is able to control the system to some degree. In this paper, we give an overview of our system and describe the methods used, which include continuous neural recording, spike detection and a discrimination algorithm, and a locomotion estimation model minimizes the square error of the locomotion speed and changes in direction.
Hcn1 Is a Tremorgenic Genetic Component in a Rat Model of Essential Tremor
Ohno, Yukihiro; Shimizu, Saki; Tatara, Ayaka; Imaoku, Takuji; Ishii, Takahiro; Sasa, Masashi; Serikawa, Tadao; Kuramoto, Takashi
2015-01-01
Genetic factors are thought to play a major role in the etiology of essential tremor (ET); however, few genetic changes that induce ET have been identified to date. In the present study, to find genes responsible for the development of ET, we employed a rat model system consisting of a tremulous mutant strain, TRM/Kyo (TRM), and its substrain TRMR/Kyo (TRMR). The TRM rat is homozygous for the tremor (tm) mutation and shows spontaneous tremors resembling human ET. The TRMR rat also carries a homozygous tm mutation but shows no tremor, leading us to hypothesize that TRM rats carry one or more genes implicated in the development of ET in addition to the tm mutation. We used a positional cloning approach and found a missense mutation (c. 1061 C>T, p. A354V) in the hyperpolarization-activated cyclic nucleotide-gated 1 channel (Hcn1) gene. The A354V HCN1 failed to conduct hyperpolarization-activated currents in vitro, implicating it as a loss-of-function mutation. Blocking HCN1 channels with ZD7288 in vivo evoked kinetic tremors in nontremulous TRMR rats. We also found neuronal activation of the inferior olive (IO) in both ZD7288-treated TRMR and non-treated TRM rats and a reduced incidence of tremor in the IO-lesioned TRM rats, suggesting a critical role of the IO in tremorgenesis. A rat strain carrying the A354V mutation alone on a genetic background identical to that of the TRM rats showed no tremor. Together, these data indicate that body tremors emerge when the two mutant loci, tm and Hcn1A354V, are combined in a rat model of ET. In this model, HCN1 channels play an important role in the tremorgenesis of ET. We propose that oligogenic, most probably digenic, inheritance is responsible for the genetic heterogeneity of ET. PMID:25970616
Ohta, Takeshi; Masuyama, Taku; Yokoi, Norihide; Kakehashi, Akihiro; Shinohara, Masami
2013-01-01
The Spontaneously Diabetic Torii (SDT) rat is an inbred strain of Sprague-Dawley rat and recently is established as a nonobese model of type 2 diabetes (T2D). Male SDT rats show high plasma glucose levels (over 700 mg/dL) by 20 weeks. Male SDT rats show pancreatic islet histopathology, including hemorrhage in pancreatic islets and inflammatory cell infiltration with fibroblasts. Prior to the onset of diabetes, glucose intolerance with hypoinsulinemia is also observed. As a result of chronic severe hyperglycemia, the SDT rats develop profound complications. In eyes, retinopathy, cataract, and neovascular glaucoma are observed. Proliferative retinopathy, especially, resulting from retinal neovascular vessels is a unique characteristic of this model. In kidney, mesangial proliferation and nodular lesion are observed. Both peripheral neuropathy such as decreased nerve conduction velocity and thermal hypoalgesia and autonomic neuropathy such as diabetic diarrhea and voiding dysfunction have been reported. Osteoporosis is another complication characterized in SDT rat. Decreased bone density and low-turnover bone lesions are observed. Taking advantage of these features, SDT rat has been used for evaluating antidiabetic drugs and drugs/gene therapy for diabetic complications. In conclusion, the SDT rat is potentially a useful T2D model for studies on pathogenesis and treatment of diabetic complications in humans. PMID:23691526
Animal models of alcoholism: neurobiology of high alcohol-drinking behavior in rodents.
McBride, W J; Li, T K
1998-01-01
This review discusses efforts to develop rodent models for the study of neurobiological mechanisms underlying chronic alcohol drinking, alcoholism, and abnormal alcohol-seeking behavior. Selective breeding has produced stable lines of rats that reliably exhibit high and (for comparison purposes) low voluntary alcohol consumption. In addition, animal models of chronic ethanol self-administration have been developed in rodents, who do not have a genetic predisposition for high alcohol-seeking behavior, to explore environmental influences in ethanol drinking and the effects of physical dependence on alcohol self-administration. The selectively bred high-preference animals reliably self-administer ethanol by free-choice drinking and operantly respond for oral ethanol in amounts that produce pharmacologically meaningful blood alcohol concentrations (50 to 200 mg% and higher). In addition, the alcohol-preferring rats will self-administer ethanol by intragastric infusion. With chronic free-choice drinking, the high alcohol-preferring rats develop tolerance to the high-dose effects of ethanol and show signs of physical dependence after the withdrawal of alcohol. Compared with nonpreferring animals, the alcohol-preferring rats are less sensitive to the sedative-hypnotic effects of ethanol and develop tolerance more quickly to high-dose ethanol. Nonselected common stock rats can be trained to chronically self-administer ethanol following its initial presentation in a palatable sucrose or saccharin solution, and the gradual replacement of the sucrose or saccharin with ethanol (the sucrose/saccharin-fade technique). Moreover, rats that are trained in this manner and then made dependent by ethanol-vapor inhalation or liquid diet increase their ethanol self-administration during the withdrawal period. Both the selectively bred rats and common-stock rats demonstrate "relapse" and an alcohol deprivation effect following 2 or more weeks of abstinence. Systemic administration of agents that (1) increase synaptic levels of serotonin (5-HT) or dopamine (DA); (2) activate 5-HT1A, 5-HT2, D2, D3, or GABA(A) receptors; or (3) block opioid and 5-HT3 receptors decrease ethanol intake in most animal models. Neurochemical, neuroanatomical, and neuropharmacological studies indicate innate differences exist between the high alcohol-consuming and low alcohol-consuming rodents in various CNS limbic structures. In addition, reduced mesolimbic DA and 5-HT function have been observed during alcohol withdrawal in common stock rats. Depending on the animal model under study, abnormalities in the mesolimbic dopamine pathway, and/or the serotonin, opioid, and GABA systems that regulate this pathway may underlie vulnerability to the abnormal alcohol-seeking behavior in the genetic animal models.
SHR rats have been widely used to investigate the etiology and mechanisms of hypertension. Recent evidence suggests SHR rats have an increased sensitivity to cholinesterase inhibitors. In an effort to develop animal models of susceptibility for use in risk assessment, this ex...
PHENOTYPIC COMPARISON OF ALLERGIC AIRWAY RESPONSES TO HOUSE DUST MITE IN THREE RAT STRAINS
Abstract
Brown Norway (BN) rats develop a robust response to antigens in the lung characterized by a large increase in allergen-specific immune function and pulmonary eosinophilia. The objective of this study was to investigate alternative models by determining if other rat s...
The Suckling Rat as a Model for Immunonutrition Studies in Early Life
Pérez-Cano, Francisco J.; Franch, Àngels; Castellote, Cristina; Castell, Margarida
2012-01-01
Diet plays a crucial role in maintaining optimal immune function. Research demonstrates the immunomodulatory properties and mechanisms of particular nutrients; however, these aspects are studied less in early life, when diet may exert an important role in the immune development of the neonate. Besides the limited data from epidemiological and human interventional trials in early life, animal models hold the key to increase the current knowledge about this interaction in this particular period. This paper reports the potential of the suckling rat as a model for immunonutrition studies in early life. In particular, it describes the main changes in the systemic and mucosal immune system development during rat suckling and allows some of these elements to be established as target biomarkers for studying the influence of particular nutrients. Different approaches to evaluate these immune effects, including the manipulation of the maternal diet during gestation and/or lactation or feeding the nutrient directly to the pups, are also described in detail. In summary, this paper provides investigators with useful tools for better designing experimental approaches focused on nutrition in early life for programming and immune development by using the suckling rat as a model. PMID:22899949
Ma, Jianshe; Cai, Jinzhang; Lin, Guanyang; Chen, Huilin; Wang, Xianqin; Wang, Xianchuan; Hu, Lufeng
2014-05-15
Corynoxeine(CX), isolated from the extract of Uncaria rhynchophylla, is a useful and prospective compound in the prevention and treatment for vascular diseases. A simple and selective liquid chromatography mass spectrometry (LC-MS) method was developed to determine the concentration of CX in rat plasma. The chromatographic separation was achieved on a Zorbax SB-C18 (2.1 mm × 150 mm, 5 μm) column with acetonitrile-0.1% formic acid in water as mobile phase. Selective ion monitoring (SIM) mode was used for quantification using target ions m/z 383 for CX and m/z 237 for the carbamazepine (IS). After the LC-MS method was validated, it was applied to a back-propagation artificial neural network (BP-ANN) pharmacokinetic model study of CX in rats. The results showed that after intravenous administration of CX, it was mainly distributed in blood and eliminated quickly, t1/2 was less than 1h. The predicted concentrations generated by BP-ANN model had a high correlation coefficient (R>0.99) with experimental values. The developed BP-ANN pharmacokinetic model can be used to predict the concentration of CX in rats. Copyright © 2014 Elsevier B.V. All rights reserved.
Investigation of rat exploratory behavior via evolving artificial neural networks.
Costa, Ariadne de Andrade; Tinós, Renato
2016-09-01
Neuroevolution comprises the use of evolutionary computation to define the architecture and/or to train artificial neural networks (ANNs). This strategy has been employed to investigate the behavior of rats in the elevated plus-maze, which is a widely used tool for studying anxiety in mice and rats. Here we propose a neuroevolutionary model, in which both the weights and the architecture of artificial neural networks (our virtual rats) are evolved by a genetic algorithm. This model is an improvement of a previous model that involves the evolution of just the weights of the ANN by the genetic algorithm. In order to compare both models, we analyzed traditional measures of anxiety behavior, like the time spent and the number of entries in both open and closed arms of the maze. When compared to real rat data, our findings suggest that the results from the model introduced here are statistically better than those from other models in the literature. In this way, the neuroevolution of architecture is clearly important for the development of the virtual rats. Moreover, this technique allowed the comprehension of the importance of different sensory units and different number of hidden neurons (performing as memory) in the ANNs (virtual rats). Copyright © 2016 Elsevier B.V. All rights reserved.
Predicting Rat and Human Pregnane X Receptor Activators Using Bayesian Classification Models.
AbdulHameed, Mohamed Diwan M; Ippolito, Danielle L; Wallqvist, Anders
2016-10-17
The pregnane X receptor (PXR) is a ligand-activated transcription factor that acts as a master regulator of metabolizing enzymes and transporters. To avoid adverse drug-drug interactions and diseases such as steatosis and cancers associated with PXR activation, identifying drugs and chemicals that activate PXR is of crucial importance. In this work, we developed ligand-based predictive computational models for both rat and human PXR activation, which allowed us to identify potentially harmful chemicals and evaluate species-specific effects of a given compound. We utilized a large publicly available data set of nearly 2000 compounds screened in cell-based reporter gene assays to develop Bayesian quantitative structure-activity relationship models using physicochemical properties and structural descriptors. Our analysis showed that PXR activators tend to be hydrophobic and significantly different from nonactivators in terms of their physicochemical properties such as molecular weight, logP, number of rings, and solubility. Our Bayesian models, evaluated by using 5-fold cross-validation, displayed a sensitivity of 75% (76%), specificity of 76% (75%), and accuracy of 89% (89%) for human (rat) PXR activation. We identified structural features shared by rat and human PXR activators as well as those unique to each species. We compared rat in vitro PXR activation data to in vivo data by using DrugMatrix, a large toxicogenomics database with gene expression data obtained from rats after exposure to diverse chemicals. Although in vivo gene expression data pointed to cross-talk between nuclear receptor activators that is captured only by in vivo assays, overall we found broad agreement between in vitro and in vivo PXR activation. Thus, the models developed here serve primarily as efficient initial high-throughput in silico screens of in vitro activity.
Development and testing of a mouse simulated space flight model
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1987-01-01
The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.
Di Pietro, Mariana; Scotti, Leopoldina; Irusta, Griselda; Tesone, Marta; Parborell, Fernanda; Abramovich, Dalhia
2016-09-15
Alterations in ovarian angiogenesis are common features in Polycystic Ovary Syndrome (PCOS) patients; the most studied of these alterations is the increase in vascular endothelial growth factor (VEGF) production by ovarian cells. Platelet-derived growth factor B (PDGFB) and D (PDGFD) are decreased in follicular fluid of PCOS patients and in the ovaries of a rat model of PCOS. In the present study, we aimed to analyze the effects of local administration of PDGFB on ovarian angiogenesis, follicular development and ovulation in a DHEA-induced PCOS rat model. Ovarian PDGFB administration to PCOS rats partially restored follicular development, decreased the percentage of cysts, increased the percentage of corpora lutea, and decreased the production of anti-Müllerian hormone. In addition, PDGFB administration improved ovarian angiogenesis by reversing the increase in periendothelial cell area and restoring VEGF levels. Our results shed light into the mechanisms that lead to altered ovarian function in PCOS and provide new data for potential therapeutic strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ramsay, Douglas S; Woods, Stephen C; Kaiyala, Karl J
2014-01-01
Initial administration of 60% nitrous oxide (N2O) to rats at an ambient temperature of 21°C decreases core temperature (Tc), primarily via increased heat loss (HL). Over repeated N2O administrations, rats first develop tolerance to this hypothermia and subsequently exhibit hyperthermia (a sign-reversal) due primarily to progressive increases in heat production (HP). When rats initially receive 60% N2O in a thermal gradient, they become hypothermic while selecting cooler ambient temperatures that facilitate HL. This study investigated whether rats repeatedly administered 60% N2O in a thermal gradient would use the gradient to behaviorally facilitate, or oppose, the development of chronic tolerance and a hyperthermic sign-reversal. Male Long-Evans rats (N = 16) received twelve 3-h administrations of 60% N2O in a gas-tight, live-in thermal gradient. Hypothermia (Sessions 1–3), complete chronic tolerance (Sessions 4–6), and a subsequent transient hyperthermic sign-reversal (Sessions 7–12) sequentially developed. Despite the progressive recovery and eventual hyperthermic sign-reversal of Tc, rats consistently selected cooler ambient temperatures during all N2O administrations. A final 60% N2O administration in a total calorimeter indicated that the hyperthermic sign-reversal resulted primarily from increased HP. Thus, rats did not facilitate chronic tolerance development by moving to warmer locations in the gradient, and instead selected cooler ambient temperatures while simultaneously increasing autonomic HP. The inefficient concurrent activation of opposing effectors and the development of a sign-reversal are incompatible with homeostatic models of drug-adaptation and may be better interpreted using a model of drug-induced allostasis. PMID:25938127
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaoxia, E-mail: Xiaoxia.Yang@fda.hhs.gov; Doerge, Daniel R.; Fisher, Jeffrey W.
Bisphenol A (BPA) has received considerable attention throughout the last decade due to its widespread use in consumer products. For the first time a physiologically based pharmacokinetic (PBPK) model was developed in neonatal and adult rats to quantitatively evaluate age-dependent pharmacokinetics of BPA and its phase II metabolites. The PBPK model was calibrated in adult rats using studies on BPA metabolism and excretion in the liver and gastrointestinal tract, and pharmacokinetic data with BPA in adult rats. For immature rats the hepatic and gastrointestinal metabolism of BPA was inferred from studies on the maturation of phase II enzymes coupled withmore » serum time course data in pups. The calibrated model predicted the measured serum concentrations of BPA and BPA conjugates after administration of 100 μg/kg of d6-BPA in adult rats (oral gavage and intravenous administration) and postnatal days 3, 10, and 21 pups (oral gavage). The observed age-dependent BPA serum concentrations were partially attributed to the immature metabolic capacity of pups. A comparison of the dosimetry of BPA across immature rats and monkeys suggests that dose adjustments would be necessary to extrapolate toxicity studies from neonatal rats to infant humans. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in young and adult rats. • BPA metabolism within enterocytes is required for fitting of oral BPA kinetic data. • BPA dosimetry in young rats is different than adult rats and young monkeys.« less
Nonlinear identification of the total baroreflex arc: chronic hypertension model.
Moslehpour, Mohsen; Kawada, Toru; Sunagawa, Kenji; Sugimachi, Masaru; Mukkamala, Ramakrishna
2016-05-01
The total baroreflex arc is the open-loop system relating carotid sinus pressure (CSP) to arterial pressure (AP). Its linear dynamic functioning has been shown to be preserved in spontaneously hypertensive rats (SHR). However, the system is known to exhibit nonlinear dynamic behaviors. The aim of this study was to establish nonlinear dynamic models of the total arc (and its subsystems) in hypertensive rats and to compare these models with previously published models for normotensive rats. Hypertensive rats were studied under anesthesia. The vagal and aortic depressor nerves were sectioned. The carotid sinus regions were isolated and attached to a servo-controlled piston pump. AP and sympathetic nerve activity were measured while CSP was controlled via the pump using Gaussian white noise stimulation. Second-order, nonlinear dynamics models were developed by application of nonparametric system identification to a portion of the measurements. The models of the total arc predicted AP 21-43% better (P < 0.005) than conventional linear dynamic models in response to a new portion of the CSP measurement. The linear and nonlinear terms of these validated models were compared with the corresponding terms of an analogous model for normotensive rats. The nonlinear gains for the hypertensive rats were significantly larger than those for the normotensive rats [-0.38 ± 0.04 (unitless) vs. -0.22 ± 0.03, P < 0.01], whereas the linear gains were similar. Hence, nonlinear dynamic functioning of the sympathetically mediated total arc may enhance baroreflex buffering of AP increases more in SHR than normotensive rats. Copyright © 2016 the American Physiological Society.
Namekawa, Junichi; Takagi, Yoshiichi; Wakabayashi, Kaoru; Nakamura, Yuki; Watanabe, Ayaka; Nagakubo, Dai; Shirai, Mitsuyuki; Asai, Fumitoshi
2017-06-10
Obesity and type 2 diabetes mellitus (T2DM) are occurring at epidemic-like rates, and these epidemics appear to have emerged largely from changes in daily diet. In the present study, we compared effects of high-fat diet (HFD) and fructose-rich diet (FRD) in WBN/Kob-Lepr fa (WBKDF) rats that spontaneously develop obesity, dyslipidemia and T2DM. After a 4-week feeding of each diet, WBKDF-HFD and WBKDF-FRD rats exhibited aggravated obesity and dyslipidemia compared with WBKDF rats fed standard diet (STD). In contrast, hyperglycemia developed in WBKDF-STD rats was significantly inhibited in WBKDF-FRD rats, but not in WBKDF-HFD rats. The present study demonstrated that the 4-week feeding of HFD and FRD caused diet-induced obesity with a distinct phenotype in the glucose metabolism in WBKDF rats.
NAMEKAWA, Junichi; TAKAGI, Yoshiichi; WAKABAYASHI, Kaoru; NAKAMURA, Yuki; WATANABE, Ayaka; NAGAKUBO, Dai; SHIRAI, Mitsuyuki; ASAI, Fumitoshi
2017-01-01
Obesity and type 2 diabetes mellitus (T2DM) are occurring at epidemic-like rates, and these epidemics appear to have emerged largely from changes in daily diet. In the present study, we compared effects of high-fat diet (HFD) and fructose-rich diet (FRD) in WBN/Kob-Leprfa (WBKDF) rats that spontaneously develop obesity, dyslipidemia and T2DM. After a 4-week feeding of each diet, WBKDF-HFD and WBKDF-FRD rats exhibited aggravated obesity and dyslipidemia compared with WBKDF rats fed standard diet (STD). In contrast, hyperglycemia developed in WBKDF-STD rats was significantly inhibited in WBKDF-FRD rats, but not in WBKDF-HFD rats. The present study demonstrated that the 4-week feeding of HFD and FRD caused diet-induced obesity with a distinct phenotype in the glucose metabolism in WBKDF rats. PMID:28442647
Kanemaru, Kazuya; Nishi, Kyoko; Diksic, Mirko
2009-01-01
The neurotransmitter, serotonin, is involved in several brain functions, including both normal, physiological functions, and pathophysiological functions. Alterations in any of the normal parameters of serotonergic neurotransmission can produce several different psychiatric disorders, including major depression. In many instances, brain neurochemical variables are not able to be studied properly in humans, thus making the use of good animal models extremely valuable. One of these animal models is the Flinders Sensitive Line (FSL) of rats, which has face, predictive and constructive validities in relation to human depression. The objective of this study was to quantify the effect of the tryptophan hydroxylase (TPH) activation inhibitor, AGN-2979, on the FSL rats (rats with depression-like behaviour), and compare it to the effect on the Flinders Resistant Line (FRL) of rats used as the control rats. The effect was evaluated by measuring changes in regional serotonin synthesis in the vehicle treated rats (FSL-VEH and FRL-VEH) relative to those measured in the AGN-2979 treated rats (FSL-AGN and FRL-AGN). Regional serotonin synthesis was measured autoradiographically in more than thirty brain regions. The measurements were performed using α-[14C]methyl-L-tryptophan as the tracer. The results indicate that AGN-2979 did not produce a significant reduction of TPH activity in the AGN-2979 group relative to the vehicle group (a reduction would have been observed if there had been an activation of TPH by the experimental set up) in the FSL rats. On the other hand, there was a highly significant reduction of synthesis in the FRL rats treated by AGN-2979, relative to the vehicle group. Together, the results demonstrate that in the FSL rats, AGN-2979 does not affect serotonin synthesis. This suggests that there was no activation of TPH in the FSL rats during the experimental procedure, but such activation did occur in the FRL rats. Because of this finding, it could be hypothesised that TPH in the FSL rats cannot be easily activated. This may contribute to the development of depressive-like symptoms in the FSL rats (“depressed” rats), as they cannot easily modulate their need for elevated amounts of this neurotransmitter, and possibly other neurotransmitters. Further, because these rats represent a very good model of human depression, one can hypothesize that humans who do not have readily activated TPH may be more prone to develop depression. PMID:19463878
Shuvy, Mony; Abedat, Suzan; Beeri, Ronen; Danenberg, Haim D.; Planer, David; Ben-Dov, Iddo Z.; Meir, Karen; Sosna, Jacob; Lotan, Chaim
2008-01-01
Aims Renal failure is associated with aortic valve calcification (AVC). Our aim was to develop an animal model for exploring the pathophysiology and reversibility of AVC, utilizing rats with diet-induced kidney disease. Methods and results Sprague–Dawley rats (n = 23) were fed a phosphate-enriched, uraemia-inducing diet for 7 weeks followed by a normal diet for 2 weeks (‘diet group’). These rats were compared with normal controls (n = 10) and with uraemic controls fed with phosphate-depleted diet (‘low-phosphate group’, n = 10). Clinical investigations included serum creatinine, phosphate and parathyroid hormone (PTH) levels, echocardiography, and multislice computed tomography. Pathological examinations of the valves included histological characterization, Von Kossa staining, and antigen and gene expression analyses. Eight diet group rats were further assessed for reversibility of valve calcification following normalization of their kidney function. At 4 weeks, all diet group rats developed renal failure and hyperparathyroidism. At week 9, renal failure resolved with improvement in the hyperparathyroid state. Echocardiography demonstrated valve calcifications only in diet group rats. Tomographic calcium scores were significantly higher in the diet group compared with controls. Von Kossa stain in diet group valves revealed calcium deposits, positive staining for osteopontin, and CD68. Gene expression analyses revealed overexpression of osteoblast genes and nuclear factor κB activation. Valve calcification resolved after diet cessation in parallel with normalization of PTH levels. Resolution was associated with down-regulation of inflammation and osteoblastic features. Low-phosphate group rats developed kidney dysfunction similar to that of the diet group but with normal levels of PTH. Calcium scores and histology showed only minimal valve calcification. Conclusion We developed an animal model for AVC. The process is related to disturbed mineral metabolism. It is associated with inflammation and osteoblastic features. Furthermore, the process is reversible upon normalization of the mineral homeostasis. Thus, our model constitutes a convenient platform for studying AVC and potential remedies. PMID:18390899
Shuvy, Mony; Abedat, Suzan; Beeri, Ronen; Danenberg, Haim D; Planer, David; Ben-Dov, Iddo Z; Meir, Karen; Sosna, Jacob; Lotan, Chaim
2008-08-01
Renal failure is associated with aortic valve calcification (AVC). Our aim was to develop an animal model for exploring the pathophysiology and reversibility of AVC, utilizing rats with diet-induced kidney disease. Sprague-Dawley rats (n = 23) were fed a phosphate-enriched, uraemia-inducing diet for 7 weeks followed by a normal diet for 2 weeks ('diet group'). These rats were compared with normal controls (n = 10) and with uraemic controls fed with phosphate-depleted diet ('low-phosphate group', n = 10). Clinical investigations included serum creatinine, phosphate and parathyroid hormone (PTH) levels, echocardiography, and multislice computed tomography. Pathological examinations of the valves included histological characterization, Von Kossa staining, and antigen and gene expression analyses. Eight diet group rats were further assessed for reversibility of valve calcification following normalization of their kidney function. At 4 weeks, all diet group rats developed renal failure and hyperparathyroidism. At week 9, renal failure resolved with improvement in the hyperparathyroid state. Echocardiography demonstrated valve calcifications only in diet group rats. Tomographic calcium scores were significantly higher in the diet group compared with controls. Von Kossa stain in diet group valves revealed calcium deposits, positive staining for osteopontin, and CD68. Gene expression analyses revealed overexpression of osteoblast genes and nuclear factor kappaB activation. Valve calcification resolved after diet cessation in parallel with normalization of PTH levels. Resolution was associated with down-regulation of inflammation and osteoblastic features. Low-phosphate group rats developed kidney dysfunction similar to that of the diet group but with normal levels of PTH. Calcium scores and histology showed only minimal valve calcification. We developed an animal model for AVC. The process is related to disturbed mineral metabolism. It is associated with inflammation and osteoblastic features. Furthermore, the process is reversible upon normalization of the mineral homeostasis. Thus, our model constitutes a convenient platform for studying AVC and potential remedies.
Giridharan, Nappan Veettil
2012-01-01
Purpose Obesity is a major public health problem worldwide, and of late, epidemiological studies indicate a preponderance of cataracts under obesity conditions. Although cataract is a multifactorial disorder and various biochemical mechanisms have been proposed, the influence of obesity on cataractogenesis has yet to be investigated. In such a scenario, a suitable animal model that develops cataract following the onset of obesity will be a welcome tool for biomedical research. Therefore, we investigated the molecular and biochemical basis for predisposition to cataract in the obese mutant rat models established in our institute because 15%–20% of these rats develop cataracts spontaneously as they reach 12–15 months of age. Methods We analyzed the major biochemical pathways in the normal lenses of different age groups of our obese mutant rat strains, Wistar/Obese (WNIN/Ob) and WNIN/GR-Ob, the former with euglycemia and the latter with an additional impaired glucose tolerance trait. In addition, sorbitol levels were estimated in the cataractous lenses of the obese rats. Results Except for the polyol pathway, all the principal pathways of the lens remained unaltered. Therefore, sorbitol levels were found to be high in the normal eye lenses of obese rats (WNIN/Ob and WNIN/GR-Ob) compared to their lean controls from three months of age onwards. Between WNIN/Ob and WNIN/GR-Ob, the levels of sorbitol were higher in the latter, suggesting a synergistic effect of impaired glucose tolerance along with obesity in the activation of the sorbitol pathway. Either way, an elevated sorbitol pathway seemed to be the predisposing factor responsible for cataract formation in these mutant rats. Conclusions Activation of the sorbitol pathway indeed enhances the risk of cataract development in conditions such as metabolic syndrome. These rat models thus may be valuable tools for investigating obesity-associated cataract and for developing intervention strategies, based on these findings. PMID:22393276
Reddy, Paduru Yadagiri; Giridharan, Nappan Veettil; Reddy, Geereddy Bhanuprakash
2012-01-01
Obesity is a major public health problem worldwide, and of late, epidemiological studies indicate a preponderance of cataracts under obesity conditions. Although cataract is a multifactorial disorder and various biochemical mechanisms have been proposed, the influence of obesity on cataractogenesis has yet to be investigated. In such a scenario, a suitable animal model that develops cataract following the onset of obesity will be a welcome tool for biomedical research. Therefore, we investigated the molecular and biochemical basis for predisposition to cataract in the obese mutant rat models established in our institute because 15%-20% of these rats develop cataracts spontaneously as they reach 12-15 months of age. We analyzed the major biochemical pathways in the normal lenses of different age groups of our obese mutant rat strains, Wistar/Obese (WNIN/Ob) and WNIN/GR-Ob, the former with euglycemia and the latter with an additional impaired glucose tolerance trait. In addition, sorbitol levels were estimated in the cataractous lenses of the obese rats. Except for the polyol pathway, all the principal pathways of the lens remained unaltered. Therefore, sorbitol levels were found to be high in the normal eye lenses of obese rats (WNIN/Ob and WNIN/GR-Ob) compared to their lean controls from three months of age onwards. Between WNIN/Ob and WNIN/GR-Ob, the levels of sorbitol were higher in the latter, suggesting a synergistic effect of impaired glucose tolerance along with obesity in the activation of the sorbitol pathway. Either way, an elevated sorbitol pathway seemed to be the predisposing factor responsible for cataract formation in these mutant rats. Activation of the sorbitol pathway indeed enhances the risk of cataract development in conditions such as metabolic syndrome. These rat models thus may be valuable tools for investigating obesity-associated cataract and for developing intervention strategies, based on these findings.
Fu, Sai-Chuen; Chan, Kai-Ming; Chan, Lai-Shan; Fong, Daniel Tik-Pui; Lui, Po-Yee Pauline
2009-05-15
Chronic tendinopathy is characterized with longstanding activity-related pain with degenerative tendon injuries. An objective tool to measure painful responses in animal models is essential for the development of effective treatment for tendinopathy. Gait analysis has been developed to monitor the inflammatory pain in small animals. We reported the use of motion analysis to monitor gait changes in a rat model of degenerative tendon injury. Intratendinous injection of collagenase into the left patellar tendon of Sprague Dawley rat was used to induce degenerative tendon injury, while an equal volume of saline was injected in the control groups. Motion analyses with a high speed video camera were performed on all rats at pre-injury, 2, 4, 8, 12 or 16 weeks post injection. In the end-point study, the rats were sacrificed to obtain tendon samples for histological examination after motion analyses. In the follow-up study, repeated motion analyses were performed on another group of collagenase-treated and saline-treated rats. The results showed that rats with injured patellar tendon exhibited altered walking gait as compared to the controls. The change in double stance duration in the collagenase-treated rats was reversible by administration of buprenorphrine (p=0.029), it suggested that the detected gait changes were associated with pain. Comparisons of end-point and follow-up studies revealed the confounding effects of training, which led to higher gait velocities and probably a different adaptive response to tendon pain in the trained rats. The results showed that motion analysis could be used to measure activity-related chronic tendon pain.
Pneumonic plague pathogenesis and immunity in Brown Norway rats.
Anderson, Deborah M; Ciletti, Nancy A; Lee-Lewis, Hanni; Elli, Derek; Segal, Joshua; DeBord, Kristin L; Overheim, Katie A; Tretiakova, Maria; Brubaker, Robert R; Schneewind, Olaf
2009-03-01
The Brown Norway rat was recently described as a bubonic plague model that closely mimics human disease. We therefore evaluated the Brown Norway rat as an alternative small animal model for pneumonic plague and characterized both the efficacy and potency of vaccine candidates. When infected by intranasal instillation, these rats rapidly developed fatal pneumonic plague within 2 to 4 days of infection. Plague disease was characterized by severe alveolar edema and vascular hemorrhage in the lung in addition to fulminant necrotizing pneumonia caused by massive bacterial replication and inflammation. Twenty-four hours before death, animals developed systemic disease with an apparent delayed inflammatory response. We evaluated the ability of the protective antigen, LcrV, and a mutant derivative, V10, to protect these rats from pneumonic plague. Both were highly effective vaccines because complete protection was observed at challenge doses of 7500 LD(50). Antibody analyses suggested stronger potency of V10 immune sera compared with LcrV in the passive transfer of immunity to bubonic plague, with multiple neutralizing epitopes in LcrV. Taken together, these data demonstrate the effectiveness of inhibiting type III secretion in the prevention of pneumonic plague in rats and reveal critical contributions from both the cellular and humoral immune systems. Thus, the Brown Norway rat is an appealing alternative small animal model for the study of pneumonic plague pathogenesis and immunity.
Jung, Kyung Hee; Song, Sun U; Yi, Tacghee; Jeon, Myung-Shin; Hong, Sang-Won; Zheng, Hong-Mei; Lee, Hee-Seung; Choi, Myung-Joo; Lee, Don-Haeng; Hong, Soon-Sun
2011-03-01
Acute pancreatitis (AP) has a high mortality rate; repetitive AP induces chronic AP and pancreatic adenocarcinoma. Mesenchymal stem cells (MSCs) have immunoregulatory effects and reduce inflammation. We developed a protocol to isolate human bone marrow-derived clonal MSCs (hcMSCs) from bone marrow aspirate and investigated the effects of these cells in rat models of mild and severe AP. Mild AP was induced in Sprague-Dawley rats by 3 intraperitoneal injections of cerulein (100 μg/kg), given at 2-hour intervals; severe AP was induced by intraparenchymal injection of 3% sodium taurocholate solution. hcMSCs were labeled with CM-1,1'-dioctadecyl-3,3,3'-tetramethylindo-carbocyanine perchloride and administered to rats through the tail vein. hcMSCs underwent self-renewal and had multipotent differentiation capacities and immunoregulatory functions. Greater numbers of infused hcMSCs were detected in pancreas of rats with mild and severe AP than of control rats. Infused hcMSCs reduced acinar-cell degeneration, pancreatic edema, and inflammatory cell infiltration in each model of pancreatitis. The hcMSCs reduced expression of inflammation mediators and cytokines in rats with mild and severe AP. hcMSCs suppressed the mixed lymphocyte reaction and increased expression of Foxp3(+) (a marker of regulatory T cells) in cultured rat lymph node cells. Rats with mild or severe AP that were given infusions of hcMSCs had reduced numbers of CD3(+) T cells and increased expression of Foxp3(+) in pancreas tissues. hcMSCs reduced inflammation and damage to pancreatic tissue in a rat model of AP; they reduced levels of cytokines and induced numbers of Foxp3(+) regulatory T cells. hcMSCs might be developed as a cell therapy for pancreatitis. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Manipulations in Maternal Environment Reverse Periodontitis in Genetically Predisposed Rats
Sluyter, Frans; Breivik, Torbjørn; Cools, Alexander
2002-01-01
The predisposition to develop periodontitis is partly genetically determined in humans as well as in animals. Here we demonstrate, however, that early manipulations in the maternal environment of an animal (rat) model of periodontitis can fully reverse the genetic predisposition to develop periodontitis at adult age. PMID:12093700
From engineering to editing the rat genome.
Meek, Stephen; Mashimo, Tomoji; Burdon, Tom
2017-08-01
Since its domestication over 100 years ago, the laboratory rat has been the preferred experimental animal in many areas of biomedical research (Lindsey and Baker The laboratory rat. Academic, New York, pp 1-52, 2006). Its physiology, size, genetics, reproductive cycle, cognitive and behavioural characteristics have made it a particularly useful animal model for studying many human disorders and diseases. Indeed, through selective breeding programmes numerous strains have been derived that are now the mainstay of research on hypertension, obesity and neurobiology (Okamoto and Aoki Jpn Circ J 27:282-293, 1963; Zucker and Zucker J Hered 52(6):275-278, 1961). Despite this wealth of genetic and phenotypic diversity, the ability to manipulate and interrogate the genetic basis of existing phenotypes in rat strains and the methodology to generate new rat models has lagged significantly behind the advances made with its close cousin, the laboratory mouse. However, recent technical developments in stem cell biology and genetic engineering have again brought the rat to the forefront of biomedical studies and enabled researchers to exploit the increasingly accessible wealth of genome sequence information. In this review, we will describe how a breakthrough in understanding the molecular basis of self-renewal of the pluripotent founder cells of the mammalian embryo, embryonic stem (ES) cells, enabled the derivation of rat ES cells and their application in transgenesis. We will also describe the remarkable progress that has been made in the development of gene editing enzymes that enable the generation of transgenic rats directly through targeted genetic modifications in the genomes of zygotes. The simplicity, efficiency and cost-effectiveness of the CRISPR/Cas gene editing system, in particular, mean that the ability to engineer the rat genome is no longer a limiting factor. The selection of suitable targets and gene modifications will now become a priority: a challenge where ES culture and gene editing technologies can play complementary roles in generating accurate bespoke rat models for studying biological processes and modelling human disease.
A transgenic rat with ubiquitous expression of firefly luciferase gene
NASA Astrophysics Data System (ADS)
Hakamata, Yoji; Murakami, Takashi; Kobayashi, Eiji
2006-02-01
In vivo imaging strategies provide cellular and molecular events in real time that helps us to understand biological processes in living animals. The development of molecular tags such as green fluorescent proteins and luciferase from the firefly Photinus pyralis has lead to a revolution in the visualization of complex biochemical processes. We developed a novel inbred transgenic rat strain containing firefly luciferase based on the transgenic (Tg) technique in rats. This Tg rat expressed the luciferase gene ubiquitously under control of the ROSA26 promoter. Cellular immune responsiveness against the luciferase protein was evaluated using conventional skin grafting and resulted in the long-term acceptance of Tg rat skin on wild-type rats. Strikingly, organ transplant with heart and small bowel demonstrated organ viability and graft survival, suggesting that cells from luciferase-Tg are transplantable to track their fate. Taking advantage of the less immunogenic luciferase, we also tested the role of hepatocyte-infusion in a liver injury model, and bone marrow-derived cells in a skin defect model. Employed in conjunction with modern advances in optical imaging, this luciferase-Tg rat system provides an innovative animal tool and a new means of facilitating biomedical research such as in the case of regeneration medicine.
Age-dependent salt hypertension in Dahl rats: fifty years of research.
Zicha, J; Dobešová, Z; Vokurková, M; Rauchová, H; Hojná, S; Kadlecová, M; Behuliak, M; Vaněčková, I; Kuneš, J
2012-01-01
Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension - salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of renin-angiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the salt-sensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake. On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals.
Hurwitz, Zachary M; Ignotz, Ronald A; Rowin, Craig; Freniere, Brian B; Lalikos, Janice F; Dunn, Raymond M
2015-09-01
Seroma formation is a well-recognized complication associated with many operative procedures. Despite its ubiquity, a lack of definitive scientific understanding of the etiology, natural history, and biochemistry of seromas remains. We endeavored to create and examine seromas in a rat model in the setting of commonly used biologic implants and to examine the role of quilting sutures/mechanical fixation in mitigating seroma development. Female Sprague-Dawley rats were assigned to either Quilting or Nonquilting groups then subdivided into one of 3 porcine dermal implant groups (Permacol Surgical Implant, Strattice Reconstructive Tissue Matrix, or XCM Biologic Tissue Matrix) or control group. A 5-cm midline back incision was made, the skin reflected and the latissimus dorsi muscle resected bilaterally. Implants were sutured into the surgical bed using a running suture. The skin of nonquilted rats was closed with a running subcuticular suture. Quilted rats underwent placement of absorbable quilting sutures spaced 2 cm apart between the skin and underlying implant or muscle before skin closure. Postoperatively, rats were monitored for seroma formation with fluid aspirated as needed. At 28 or 90 days, rats were euthanized. Seroma and implants were examined grossly and under light microscopy. Of nonquilted rats, 42/54 (78%) developed seromas compared with 19/46 (41%) of quilted rats (P < 0.05), defined by bursa cavity present at necropsy. When a biologic implant was present, 28/35 (80%) of nonquilted rats developed seromas compared with 12/33 (36%) of quilted rats (P < 0.05). In the control group, 14/19 (74%) of nonquilted rats developed seromas compared with 7/13 (54%) of quilted rats. This difference was not statistically significant. Bursa presence was confirmed histologically in all cases, with no difference in bursa character seen between groups. This study confirms a reliable rat model of seroma formation, with most of the rats exhibiting at least subclinical seromas. There was no difference in seroma formation rate in the presence of biologic implants, and no differences in bursa character between implants. Mechanical fixation with quilting sutures decreased seroma rate significantly in all subgroups. All rats with seromas at necropsy had histological evidence of a bursa with no difference in appearance between groups.
NASA Astrophysics Data System (ADS)
Hirata, Akimasa; Masuda, Hiroshi; Kanai, Yuya; Asai, Ryuichi; Fujiwara, Osamu; Arima, Takuji; Kawai, Hiroki; Watanabe, Soichi; Lagroye, Isabelle; Veyret, Bernard
2011-12-01
The dominant effect of human exposures to microwaves is caused by temperature elevation ('thermal effect'). In the safety guidelines/standards, the specific absorption rate averaged over a specific volume is used as a metric for human protection from localized exposure. Further investigation on the use of this metric is required, especially in terms of thermophysiology. The World Health Organization (2006 RF research agenda) has given high priority to research into the extent and consequences of microwave-induced temperature elevation in children. In this study, an electromagnetic-thermal computational code was developed to model electromagnetic power absorption and resulting temperature elevation leading to changes in active blood flow in response to localized 1.457 GHz exposure in rat heads. Both juvenile (4 week old) and young adult (8 week old) rats were considered. The computational code was validated against measurements for 4 and 8 week old rats. Our computational results suggest that the blood flow rate depends on both brain and core temperature elevations. No significant difference was observed between thermophysiological responses in 4 and 8 week old rats under these exposure conditions. The computational model developed herein is thus applicable to set exposure conditions for rats in laboratory investigations, as well as in planning treatment protocols in the thermal therapy.
Pharmacokinetic evaluation of avicularin using a model-based development approach.
Buqui, Gabriela Amaral; Gouvea, Dayana Rubio; Sy, Sherwin K B; Voelkner, Alexander; Singh, Ravi S P; da Silva, Denise Brentan; Kimura, Elza; Derendorf, Hartmut; Lopes, Norberto Peporine; Diniz, Andrea
2015-03-01
The aim of this study was to use the pharmacokinetic information of avicularin in rats to project a dose for humans using allometric scaling. A highly sensitive and specific bioanalytical assay to determine avicularin concentrations in the plasma was developed and validated for UPLC-MS/MS. The plasma protein binding of avicularin in rat plasma determined by the ultrafiltration method was 64%. The pharmacokinetics of avicularin in nine rats was studied following an intravenous bolus administration of 1 mg/kg and was found to be best described by a two-compartment model using a nonlinear mixed effects modeling approach. The pharmacokinetic parameters were allometrically scaled by body weight and centered to the median rat weight of 0.23 kg, with the power coefficient fixed at 0.75 for clearance and 1 for volume parameters. Avicularin was rapidly eliminated from the systemic circulation within 1 h post-dose, and the avicularin pharmacokinetic was linear up to 5 mg/kg based on exposure comparison to literature data for a 5-mg/kg single dose in rats. Using allometric scaling and Monte Carlo simulation approaches, the rat doses of 1 and 5 mg/kg correspond to the human equivalent doses of 30 and 150 mg, respectively, to achieve comparable plasma avicularin concentrations in humans. Georg Thieme Verlag KG Stuttgart · New York.
Development of a sleeve gastrectomy weight loss model in obese Zucker rats.
Lopez, Peter P; Nicholson, Susannah E; Burkhardt, Gabriel E; Johnson, Robert A; Johnson, Fruzsina K
2009-12-01
Obesity promotes the development of diabetes and cardiovascular disease. The most effective weight loss treatment is bariatric surgery, but results greatly vary depending on the procedure. Sleeve gastrectomy (SG) has recently emerged as a reduced risk weight loss procedure for super obese patients. However, the mechanism of weight loss from SG and its effects on obesity-induced complications are yet to be determined. Our goal was to develop an experimental model of SG in genetically obese rats. Male obese Zucker rats (400-500 g, leptin-insensitive) were anesthetized with isoflurane. After a midline laparotomy, the stomach was clamped, the greater curvature was excised, and a triple suture line was used to close the gastric remnant. Sham rats underwent laparotomy only. Metabolic parameters were followed for 14 d after surgery. Caloric intake and body weight decreased in SG rats over 14 d by 98 +/- 10 kcal/d and 74 +/- 14 g, respectively. Blood total cholesterol levels were lower in rats that lost weight. Furthermore, blood glucose levels were lower in rats that lost weight. Active ghrelin levels were unchanged in SG rats 14 d after surgery. These results show that SG promotes weight loss in obese Zucker rats. Furthermore, SG-induced weight loss is accompanied by improved plasma cholesterol and glucose profile. However, SG does not promote a prolonged decrease in ghrelin levels. These results suggest that SG is an effective weight loss procedure in leptin insensitivity to improve the lipid profile and decrease insulin resistance and these effects might be independent of changes in ghrelin levels.
Influence of manual therapy on functional mobility after joint injury in a rat model.
Ruhlen, Rachel L; Snider, Eric J; Sargentini, Neil J; Worthington, Bart D; Singh, Vineet K; Pazdernik, Vanessa K; Johnson, Jane C; Degenhardt, Brian F
2013-10-01
Animal models can be used to investigate manual therapy mechanisms, but testing manipulation in animal models is problematic because animals cannot directly report their pain. To develop a rat model of inflammatory joint injury to test the efficacy of manual therapy in reducing nociception and restoring function. The authors induced acute inflammatory joint injury in rats by injecting carrageenan into the ankle and then measured voluntary running wheel activity in treated and untreated rats. Treatments included manual therapy applied to the ankle and knee of the injured limb and several analgesic medications (eg, morphine, ketorolac, prednisone). Intra-articular injection of carrageenan to the ankle produced significant swelling (diameter of the ankle increased by 64% after injection; P=.004) and a robust reduction in voluntary running wheel activity (running distance reduced by 91% compared with controls; P<.001). Injured rats gradually returned to running levels equal to controls over 10 days. Neither manual therapy nor analgesic medications increased running wheel activity relative to untreated rats. Voluntary running wheel activity appears to be an appropriate functional measure to evaluate the impact of an acute inflammatory joint injury. However, efforts to treat the injury did not restore running relative to untreated rats.
Recently, a short-term rat dosing model has been developed to examine the effects of environmental mixtures on thyroid homeostasis (TH). Prototypic chemicals such as dioxins, polychlorinated biphenyls and polybrominated diphenyl ethers have been tested and shown to adversely impa...
The Ovariectomized Rat as a Model for Studying Alveolar Bone Loss in Postmenopausal Women
Johnston, Bryan D.; Ward, Wendy E.
2015-01-01
In postmenopausal women, reduced bone mineral density at the hip and spine is associated with an increased risk of tooth loss, possibly due to a loss of alveolar bone. In turn, having fewer natural teeth may lead to compromised food choices resulting in a poor diet that can contribute to chronic disease risk. The tight link between alveolar bone preservation, tooth retention, better nutritional status, and reduced risk of developing a chronic disease begins with the mitigation of postmenopausal bone loss. The ovariectomized rat, a widely used preclinical model for studying postmenopausal bone loss that mimics deterioration of bone tissue in the hip and spine, can also be used to study mineral and structural changes in alveolar bone to develop drug and/or dietary strategies aimed at tooth retention. This review discusses key findings from studies investigating mandible health and alveolar bone in the ovariectomized rat model. Considerations to maximize the benefits of this model are also included. These include the measurement techniques used, the age at ovariectomy, the duration that a rat is studied after ovariectomy and habitual diet consumed. PMID:26060817
Persistent estrus rat models of polycystic ovary disease: an update.
Singh, Krishna B
2005-10-01
To critically review published articles on polycystic ovary (PCO) disease in rat models, with a focus on delineating its pathophysiology. Review of the English-language literature published from 1966 to March 2005 was performed through PubMed search. Keywords or phrases used were persistent estrus, chronic anovulation, polycystic ovary, polycystic ovary disease, and polycystic ovary syndrome. Articles were also located via bibliographies of published literature. University Health Sciences Center. Articles on persistent estrus and PCO in rats were selected and reviewed regarding the methods for induction of PCO disease. Changes in the reproductive cycle, ovarian morphology, hormonal parameters, and factors associated with the development of PCO disease in rat models were analyzed. Principal methods for inducing PCO in the rat include exposure to constant light, anterior hypothalamic and amygdaloidal lesions, and the use of androgens, estrogens, antiprogestin, and mifepristone. The validated rat PCO models provide useful information on morphologic and hormonal disturbances in the pathogenesis of chronic anovulation in this condition. These studies have aimed to replicate the morphologic and hormonal characteristics observed in the human PCO syndrome. The implications of these studies to human condition are discussed.
Madsen, Andreas Nygaard; Hansen, Gitte; Paulsen, Sarah Juel; Lykkegaard, Kirsten; Tang-Christensen, Mads; Hansen, Harald S; Levin, Barry E; Larsen, Philip Just; Knudsen, Lotte Bjerre; Fosgerau, Keld; Vrang, Niels
2010-09-01
The availability of useful animal models reflecting the human obesity syndrome is crucial in the search for novel compounds for the pharmacological treatment of obesity. In the current study, we have performed an extensive characterization of the obesity syndrome in a polygenetic animal model, namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization including blood biochemistry and glucose homeostasis was examined at 2, 3, 6, and 9 months of age. Furthermore, in 6-month-old HE-fed DIO rats, the anti-obesity effects of liraglutide and sibutramine were examined in a 28-day study. Only HE-fed DIO rats developed visceral obesity, hyperleptinemia, hyperinsulinemia, and dyslipidemia, and showed a worsening of glucose tolerance over time. In line with the hyperlipidemic profile, a severe hepatic fat infiltration was observed in DIO rats at 6 months of age. The effects of liraglutide and sibutramine were tested in 6-month-old DIO rats. Both compounds effectively reduced food intake and body weight in DIO rats. Liraglutide furthermore improved glucose tolerance when compared with sibutramine. Our data highlights the usefulness of a polygenetic animal model for screening of compounds affecting food intake, body weight, and glucose homeostasis. Furthermore, the results underscore the effectiveness of GLP-1 mimetics both as anti-diabetes and anti-obesity agents.
Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Fung, Kwok-Pui; Lam, Francis Fu-Yuen; Ng, Ethel Sau-Kuen; Lau, Kit-Man; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi
2017-08-05
Delayed foot wound healing is a major complication attributed to hyperglycemia in type 2 diabetes mellitus (DM) patients, and these wounds may develop into foot ulcers. There are at least two types of DM wound models used in rodents to study delayed wound healing. However, clinically relevant animal models are not common. Most models use type 1 DM rodents or wounds created on the back rather than on the foot. An open full-thickness excision wound on the footpad of type 2 DM rats is more clinically relevant, but such a model has not yet been characterized systematically. The objective of this study was to investigate and characterize how DM affected a full-thickness excision open foot wound in n5-streptozotocin (n5-STZ)-induced type 2 DM rats. We hypothesized that elevated inflammation, reduced blood circulation, and cell proliferation due to hyperglycemia could delay the wound healing of DM rats. The wounds of DM rats were compared with those of non-DM rats (Ctrl) at Days 1 and 8 post wounding. The wound healing process of the DM rats was significantly delayed compared with that of the Ctrl rats. The DM rats also had higher C-reactive protein (CRP) and lower blood circulation and proliferating cell nuclear antigen (PCNA) in DM wounds. This confirmed that elevated inflammation and reduced blood flow and cell proliferation delayed foot wound healing in the n5-STZ rats. Hence, this open foot wound animal model provides a good approach to study the process of delayed wound healing.
Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Fung, Kwok-Pui; Lam, Francis Fu-Yuen; Ng, Ethel Sau-Kuen; Lau, Kit-Man; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi
2017-01-01
Delayed foot wound healing is a major complication attributed to hyperglycemia in type 2 diabetes mellitus (DM) patients, and these wounds may develop into foot ulcers. There are at least two types of DM wound models used in rodents to study delayed wound healing. However, clinically relevant animal models are not common. Most models use type 1 DM rodents or wounds created on the back rather than on the foot. An open full-thickness excision wound on the footpad of type 2 DM rats is more clinically relevant, but such a model has not yet been characterized systematically. The objective of this study was to investigate and characterize how DM affected a full-thickness excision open foot wound in n5-streptozotocin (n5-STZ)-induced type 2 DM rats. We hypothesized that elevated inflammation, reduced blood circulation, and cell proliferation due to hyperglycemia could delay the wound healing of DM rats. The wounds of DM rats were compared with those of non-DM rats (Ctrl) at Days 1 and 8 post wounding. The wound healing process of the DM rats was significantly delayed compared with that of the Ctrl rats. The DM rats also had higher C-reactive protein (CRP) and lower blood circulation and proliferating cell nuclear antigen (PCNA) in DM wounds. This confirmed that elevated inflammation and reduced blood flow and cell proliferation delayed foot wound healing in the n5-STZ rats. Hence, this open foot wound animal model provides a good approach to study the process of delayed wound healing. PMID:28413186
Gillard, Laura; Billiauws, Lore; Stan-Iuga, Bogdan; Ribeiro-Parenti, Lara; Jarry, Anne-Charlotte; Cavin, Jean-Baptiste; Cluzeaud, Françoise; Mayeur, Camille; Thomas, Muriel; Freund, Jean-Noël; Lacorte, Jean-Marc; Le Gall, Maude; Bado, André; Joly, Francisca; Le Beyec, Johanne
2016-01-01
Short bowel syndrome (SBS) patients developing hyperphagia have a better outcome. Gastrointestinal endocrine adaptations help to improve intestinal functions and food behaviour. We investigated neuroendocrine adaptations in SBS patients and rat models with jejuno-ileal (IR-JI) or jejuno-colonic (IR-JC) anastomosis with and without parenteral nutrition. Circulating levels of ghrelin, PYY, GLP-1, and GLP-2 were determined in SBS rat models and patients. Levels of mRNA for proglucagon, PYY and for hypothalamic neuropeptides were quantified by qRT-PCR in SBS rat models. Histology and immunostaining for Ki67, GLP-1 and PYY were performed in SBS rats. IR-JC rats, but not IR-JI, exhibited significantly higher crypt depths and number of Ki67-positive cells than sham. Fasting and/or postprandial plasma ghrelin and PYY concentrations were higher, or tend to be higher, in IR-JC rats and SBS-JC patients than in controls. Proglucagon and Pyy mRNA levels were significantly enhanced in IR-JC rats. Levels of mRNA coding hypothalamic orexigenic NPY and AgRP peptides were significantly higher in IR-JC than in sham rats. We demonstrate an increase of plasma ghrelin concentrations, major changes in hypothalamic neuropeptides levels and greater induction of PYY in SBS-JC rats and patients suggesting that jejuno-colonic continuity creates a peculiar environment promoting further gut-brain adaptations. PMID:27323884
Gillard, Laura; Billiauws, Lore; Stan-Iuga, Bogdan; Ribeiro-Parenti, Lara; Jarry, Anne-Charlotte; Cavin, Jean-Baptiste; Cluzeaud, Françoise; Mayeur, Camille; Thomas, Muriel; Freund, Jean-Noël; Lacorte, Jean-Marc; Le Gall, Maude; Bado, André; Joly, Francisca; Le Beyec, Johanne
2016-06-21
Short bowel syndrome (SBS) patients developing hyperphagia have a better outcome. Gastrointestinal endocrine adaptations help to improve intestinal functions and food behaviour. We investigated neuroendocrine adaptations in SBS patients and rat models with jejuno-ileal (IR-JI) or jejuno-colonic (IR-JC) anastomosis with and without parenteral nutrition. Circulating levels of ghrelin, PYY, GLP-1, and GLP-2 were determined in SBS rat models and patients. Levels of mRNA for proglucagon, PYY and for hypothalamic neuropeptides were quantified by qRT-PCR in SBS rat models. Histology and immunostaining for Ki67, GLP-1 and PYY were performed in SBS rats. IR-JC rats, but not IR-JI, exhibited significantly higher crypt depths and number of Ki67-positive cells than sham. Fasting and/or postprandial plasma ghrelin and PYY concentrations were higher, or tend to be higher, in IR-JC rats and SBS-JC patients than in controls. Proglucagon and Pyy mRNA levels were significantly enhanced in IR-JC rats. Levels of mRNA coding hypothalamic orexigenic NPY and AgRP peptides were significantly higher in IR-JC than in sham rats. We demonstrate an increase of plasma ghrelin concentrations, major changes in hypothalamic neuropeptides levels and greater induction of PYY in SBS-JC rats and patients suggesting that jejuno-colonic continuity creates a peculiar environment promoting further gut-brain adaptations.
Tsyrlin, Vitaly A.; Galagudza, Michael M.; Kuzmenko, Nataly V.; Pliss, Michael G.; Rubanova, Nataly S.; Shcherbin, Yury I.
2013-01-01
Introduction The present study tested the hypothesis that long-term effects of baroreceptor activation might contribute to the prevention of persistent arterial blood pressure (BP) increase in the rat model of renovascular hypertension (HTN). Methods Repetitive arterial baroreflex (BR) testing was performed in normo- and hypertensive rats. The relationship between initial arterial BR sensitivity and severity of subsequently induced two-kidney one-clip (2K1C) renovascular HTN was studied in Wistar rats. Additionally, the time course of changes in systolic BP (SBP) and cardiac beat-to-beat (RR) interval was studied for 8 weeks after the induction of 2K1C renovascular HTN in the rats with and without sinoaortic denervation (SAD). In a separate experimental series, cervical sympathetic nerve activity (cSNA) was assessed in controls, 2K1C rats, WKY rats, and SHR. Results The inverse correlation between arterial BR sensitivity and BP was observed in the hypertensive rats during repetitive arterial BR testing. The animals with greater initial arterial BR sensitivity developed lower BP values after renal artery clipping than those with lower initial arterial BR sensitivity. BP elevation during the first 8 weeks of renal artery clipping in 2K1C rats was associated with decreased sensitivity of arterial BR. Although SAD itself resulted only in greater BP variability but not in persistent BP rise, the subsequent renal artery clipping invariably resulted in the development of sustained HTN. The time to onset of HTN was found to be shorter in the rats with SAD than in those with intact baroreceptors. cSNA was significantly greater in the 2K1C rats than in controls. Conclusions Arterial BR appears to be an important mechanism of long-term regulation of BP, and is believed to be involved in the prevention of BP rise in the rat model of renovascular HTN. PMID:23762254
Takatsu, Miwa; Nakashima, Chieko; Takahashi, Keiji; Murase, Tamayo; Hattori, Takuya; Ito, Hiromi; Murohara, Toyoaki; Nagata, Kohzo
2013-11-01
Calorie restriction (CR) can modulate the features of obesity-related metabolic and cardiovascular diseases. We have recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of metabolic syndrome. DS/obese rats develop hypertension and manifest left ventricular remodeling and diastolic dysfunction, as well as increased cardiac oxidative stress and inflammation. We have now investigated the effects of CR on cardiac pathophysiology in DS/obese rats. DS/obese rats were fed either normal laboratory chow ad libitum or a calorie-restricted diet (65% of the average food intake for ad libitum) from 9 to 13 weeks. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+) or DS/lean) littermates served as controls. CR reduced body weight in both DS/obese and DS/lean rats, as well as attenuated the development of hypertension in DS/obese rats without affecting blood pressure in DS/lean rats. CR also reduced body fat content, ameliorated left ventricular hypertrophy, fibrosis, and diastolic dysfunction, and attenuated cardiac oxidative stress and inflammation in DS/obese rats. In addition, it increased serum adiponectin concentration, as well as downregulated the expression of angiotensin-converting enzyme and angiotensin II type 1A receptor genes in the heart of DS/obese rats. Our results thus show that CR attenuated obesity and hypertension, as well as left ventricular remodeling and diastolic dysfunction in DS/obese rats, with these latter effects being associated with reduced cardiac oxidative stress and inflammation.
Characterization of a new rat model for chronic inflammatory demyelinating polyneuropathies.
Brun, Susana; Beaino, Wissam; Kremer, Laurent; Taleb, Omar; Mensah-Nyagan, Ayikoe Guy; Lam, Chanh D; Greer, Judith M; de Seze, Jérôme; Trifilieff, Elisabeth
2015-01-15
Our objective was to develop a chronic model of EAN which could be used as a tool to test treatment strategies for CIDP. Lewis rats injected with S-palmitoylated P0(180-199) peptide developed a chronic, sometimes relapsing-remitting type of disease. Our model fulfills electrophysiological criteria of demyelination with axonal degeneration, confirmed by immunohistopathology. The late phase of the chronic disease was characterized by accumulation of IL-17(+) cells and macrophages in sciatic nerves and by high serum IL-17 levels. In conclusion, we have developed a reliable and reproducible animal model resembling CIDP that can now be used for translational drug studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Role of fiber dissolution in biological activity in rats.
Eastes, W; Hadley, J G
1994-12-01
This report deals with the role of dissolution in removing long fibers from the lung and with a mathematical model that predicts chronic effects in rats following inhalation or intraperitoneal (i.p.) injection of fibers. Results of intratracheal instillation studies and inhalation studies in rats demonstrate clearly that long vitreous fibers dissolve in vivo at about the same rate measured in vitro in fluid designed to stimulate the extracellular lung fluid. For the glass, rock, and slag wool fibers tested, dissolution removed most of the fibers longer than 20 microns inhaled into the rats' lungs within 6 months after both short-term (5 days) and long-term (1 to 2 years) exposures. A mathematical model was developed that is based on fiber dissolution and allows one to predict the development of chronic lung diseases in rats. The model predicted the incidence of fibrosis and lung tumors in a series of recent inhalation studies and tumors following ip injection to within about the error of the experiments. The model suggests that all fibers, regardless of their dissolution rate in lung fluid, can produce tumors after ip injection because the dose can be unlimited by this route. After inhalation, in contrast, dissolution of many types of long vitreous fibers occurs rapidly, and disease does not ensue for these fibers.
Cao, Li; Liu, Xuehui; Cao, Hongyi; Lv, Qingguo; Tong, Nanwei
2012-01-01
Metabolically obese but normal-weight (MONW) individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW) rat model. Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS) diet for 20 weeks. The HS diet induced increased visceral adipose tissue without increased body weight, reduced glucose disposal rates, and increased hepatic glucose output during the hyperinsulinemic-euglycemic clamp, increased plasma glucose during the intraperitoneal glucose tolerance test, and increased plasma free fatty acids. Hepatic lipidosis and hepatocyte mitochondria swelling were found in HS rats through light microscopy and transmission electron microscopy; similar impairments were not observed in muscle. RT-PCR showed that mRNA expression of uncoupling protein 3 and peroxisome proliferator-activated receptor-gamma coactivator 1α increased in muscle of HS rats, while expression of mitochondrial transcription factor A, glucose transporter type 4, and insulin receptor substrate-1 did not change significantly. AONW rats developed metabolic disorders seen in MONW individuals. Steatosis, mitochondrial morphologic changes, and insulin resistance were more serious in liver than in muscle. Genes involved in fatty acid metabolism and mitochondrial function changed in less impaired muscle.
Analysis of energy expenditure in diet-induced obese rats
Assaad, Houssein; Yao, Kang; Tekwe, Carmen D.; Feng, Shuo; Bazer, Fuller W.; Zhou, Lan; Carroll, Raymond J.; Meininger, Cynthia J.; Wu, Guoyao
2014-01-01
Development of obesity in animals is affected by energy intake, dietary composition, and metabolism. Useful models for studying this metabolic problem are Sprague-Dawley rats fed low-fat (LF) or high-fat (HF) diets beginning at 28 days of age. Through experimental design, their dietary intakes of energy, protein, vitamins, and minerals per kg body weight (BW) do not differ in order to eliminate confounding factors in data interpretation. The 24-h energy expenditure of rats is measured using indirect calorimetry. A regression model is constructed to accurately predict BW gain based on diet, initial BW gain, and the principal component scores of respiratory quotient and heat production. Time-course data on metabolism (including energy expenditure) are analyzed using a mixed effect model that fits both fixed and random effects. Cluster analysis is employed to classify rats as normal-weight or obese. HF-fed rats are heavier than LF-fed rats, but rates of their heat production per kg non-fat mass do not differ. We conclude that metabolic conversion of dietary lipids into body fat primarily contributes to obesity in HF-fed rats. PMID:24896330
Clemensson, Erik Karl Håkan; Clemensson, Laura Emily; Riess, Olaf; Nguyen, Huu Phuc
2017-01-01
The BACHD rat is a recently developed transgenic animal model of Huntington disease, a progressive neurodegenerative disorder characterized by extensive loss of striatal neurons. Cognitive impairments are common among patients, and characterization of similar deficits in animal models of the disease is therefore of interest. The present study assessed the BACHD rats' performance in the delayed alternation and the delayed non-matching to position test, two Skinner box-based tests of short-term memory function. The transgenic rats showed impaired performance in both tests, indicating general problems with handling basic aspects of the tests, while short-term memory appeared to be intact. Similar phenotypes have been found in rats with fronto-striatal lesions, suggesting that Huntington disease-related neuropathology might be present in the BACHD rats. Further analyses indicated that the performance deficit in the delayed alternation test might be due to impaired inhibitory control, which has also been implicated in Huntington disease patients. The study ultimately suggests that the BACHD rats might suffer from neuropathology and cognitive impairments reminiscent of those of Huntington disease patients.
Ichii, Osamu; Nakamura, Teppei; Irie, Takao; Kouguchi, Hirokazu; Sotozaki, Kozue; Horino, Taro; Sunden, Yuji; Elewa, Yaser Hosny Ali; Kon, Yasuhiro
2018-03-01
Cotton rat ( Sigmodon hispidus) is a useful experimental rodent for the study of human infectious diseases. We previously clarified that cotton rats, particularly females, developed chronic kidney disease characterized by cystic lesions, inflammation, and fibrosis. The present study investigated female-associated factors for chronic kidney disease development in cotton rats. Notably, female cotton rats developed separation of the pelvic symphysis and hypertrophy in the vaginal parts of the cervix with age, which strongly associated with pyometra. The development of pyometra closely associated with the deterioration of renal dysfunction or immunological abnormalities was indicated by blood urea nitrogen and serum creatinine or spleen weight and serum albumin/globulin ratio, respectively. These parameters for renal dysfunction and immunological abnormalities were statistically correlated. These phenotypes found in the female reproductive organs were completely inhibited by ovariectomy. Further, the female cotton rats with pyometra tended to show more severe chronic kidney disease phenotypes and immunological abnormalities than those without pyometra; these changes were inhibited in ovariectomized cotton rats. With regard to renal histopathology, cystic lesions, inflammation, and fibrosis were ameliorated by ovariectomy. Notably, the immunostaining intensity of estrogen receptor α and estrogen receptor β were weak in the healthy kidneys, but both estrogen receptors were strongly induced in the renal tubules showing cystic changes. In conclusion, the close correlations among female reproductive organ-associated abnormalities, immunological abnormalities, and renal dysfunction characterize the chronic kidney disease features of female cotton rats. Thus, the cotton rat is a unique rodent model to elucidate the pathological crosstalk between chronic kidney disease and sex-related factors. Impact statement The increasing number of elderly individuals in the overall population has led to a concomitant age-related increase in chronic kidney disease. Moreover, the global prevalence of patients with chronic kidney disease is gradually increasing, which poses a serious public health problem. The limited number of spontaneous chronic kidney disease animal models, which resemble chronic kidney disease pathogenesis in elderly individuals, is a major limitation in the development of experimental and curative medicines for chronic kidney disease. This pathological study clarified that sex-related factors, including hormones, and abnormalities of the female reproductive system, such as pyometra, are closely associated with chronic kidney disease development by using cotton rats ( Sigmodon hispidus). Further, ovariectomy inhibited the phenotypes of the female reproductive system, immunological abnormalities, and chronic kidney disease. Thus, this laboratory rodent serves as a novel and useful spontaneous chronic kidney disease model to elucidate the candidate disease factors and the pathogenesis of chronic kidney disease both in human and experimental medicine.
1989-07-21
formulation of physiologically-based pharmacokinetic models. Adult male Sprague-Dawley rats and male beagle dogs will be administered equal doses...experiments in the 0 dog . Physiologically-based pharmacokinetic models will be developed and validated for oral and inhalation exposures to halocarbons...of conducting experiments in dogs . The original physiolo ic model for the rat will be scaled up to predict halocarbon pharmacokinetics in the dog . The
Renal Tumor Necrosis Factor α Contributes to Hypertension in Dahl Salt-Sensitive Rats
Huang, Baorui; Cheng, Yuan; Usa, Kristie; Liu, Yong; Baker, Maria Angeles; Mattson, David L.; He, Yongcheng; Wang, Niansong; Liang, Mingyu
2016-01-01
Tumor necrosis factor α (TNFα) is a major proinflammatory cytokine and its level is elevated in hypertensive states. Inflammation occurs in the kidneys during the development of hypertension. We hypothesized that TNFα specifically in the kidney contributes to the development of hypertension and renal injury in Dahl salt-sensitive (SS) rats, a widely used model of human salt-sensitive hypertension and renal injury. SS rats were chronically instrumented for renal interstitial infusion and blood pressure measurement in conscious, freely moving state. Gene expression was measured using real-time PCR and renal injury assessed with histological analysis. The abundance of TNFα in the renal medulla of SS rats, but not the salt-insensitive congenic SS.13BN26 rats, was significantly increased when rats had been fed a high-salt diet for 7 days (n = 6 or 9, p < 0.01). The abundance of TNFα receptors in the renal medulla was significantly higher in SS rats than SS.13BN26 rats. Renal interstitial administration of Etanercept, an inhibitor of TNFα, significantly attenuated the development of hypertension in SS rats on a high-salt diet (n = 7–8, p < 0.05). Glomerulosclerosis and interstitial fibrosis were also significantly ameliorated. These findings indicate intrarenal TNFα contributes to the development of hypertension and renal injury in SS rats. PMID:26916681
The Effect of Parathion on Red Blood Cell Acetylcholinesterase in the Wistar Rat.
Bunya, Naofumi; Sawamoto, Keigo; Benoit, Hanif; Bird, Steven B
2016-01-01
Organophosphorus (OP) pesticide poisoning is a significant problem worldwide. Research into new antidotes for these acetylcholinesterase inhibitors, and even optimal doses for current therapies, is hindered by a lack of standardized animal models. In this study, we sought to characterize the effects of the OP pesticide parathion on acetylcholinesterase in a Wistar rat model that included comprehensive medical care. Methods. Male Wistar rats were intubated and mechanically ventilated and then poisoned with between 20 mg/kg and 60 mg/kg of intravenous parathion. Upon developing signs of poisoning, the rats were treated with standard critical care, including atropine, pralidoxime chloride, and midazolam, for up to 48 hours. Acetylcholinesterase activity was determined serially for up to 8 days after poisoning. Results. At all doses of parathion, maximal depression of acetylcholinesterase occurred at 3 hours after poisoning. Acetylcholinesterase recovered to nearly 50% of baseline activity by day 4 in the 20 mg/kg cohort and by day 5 in the 40 and 60 mg/kg cohorts. At day 8, most rats' acetylcholinesterase had recovered to roughly 70% of baseline. These data should be useful in developing rodent models of acute OP pesticide poisoning.
The Effect of Parathion on Red Blood Cell Acetylcholinesterase in the Wistar Rat
Bunya, Naofumi; Sawamoto, Keigo; Benoit, Hanif
2016-01-01
Organophosphorus (OP) pesticide poisoning is a significant problem worldwide. Research into new antidotes for these acetylcholinesterase inhibitors, and even optimal doses for current therapies, is hindered by a lack of standardized animal models. In this study, we sought to characterize the effects of the OP pesticide parathion on acetylcholinesterase in a Wistar rat model that included comprehensive medical care. Methods. Male Wistar rats were intubated and mechanically ventilated and then poisoned with between 20 mg/kg and 60 mg/kg of intravenous parathion. Upon developing signs of poisoning, the rats were treated with standard critical care, including atropine, pralidoxime chloride, and midazolam, for up to 48 hours. Acetylcholinesterase activity was determined serially for up to 8 days after poisoning. Results. At all doses of parathion, maximal depression of acetylcholinesterase occurred at 3 hours after poisoning. Acetylcholinesterase recovered to nearly 50% of baseline activity by day 4 in the 20 mg/kg cohort and by day 5 in the 40 and 60 mg/kg cohorts. At day 8, most rats' acetylcholinesterase had recovered to roughly 70% of baseline. These data should be useful in developing rodent models of acute OP pesticide poisoning. PMID:27418928
Increased asbestosis, lung cancer, and mesothelioma rates are evident after exposures to Libby amphibole (LA). To support dosimetry model development and compare potency, a subchronic nose-only inhalation study (6 hr/d, 5 d/wk, 13 wk) was conducted in male F344 rats. Rats were ex...
Increased asbestosis, lung cancer, and mesothelioma rates are evident after exposures to Libby amphibole (LA). To support dosimetry model development and compare potency, a subchronic nose-only inhalation study (6 hr/d, 5 d/wk, 13 wk) was conducted in male F344 rats. Rats were ex...
Increased asbestosis, lung cancer, and mesothelioma rates are evident after exposures to Libby amphibole (LA). To support dosimetry model development and compare potency, a subchronic nose-only inhalation exposure study (6 hr/d, 5 d/wk, 13 wk) was conducted in male F344 rats. Rat...
A novel animal model of dysphagia following stroke.
Sugiyama, Naoto; Nishiyama, Eiji; Nishikawa, Yukitoshi; Sasamura, Takashi; Nakade, Shinji; Okawa, Katsumasa; Nagasawa, Tadashi; Yuki, Akane
2014-02-01
Patients who have an ischemic stroke are at high risk of swallowing disorders. Aspiration due to swallowing disorders, specifically delayed trigger of the pharyngeal stage of swallowing, predisposes such patients to pneumonia. In the present study, we evaluated swallowing reflex in a rat model of transient middle cerebral artery occlusion (tMCAO), which is one of the most common experimental animal models of cerebral ischemia, in order to develop a novel animal model of dysphagia following ischemic stroke. A swallowing reflex was elicited by a 10-s infusion of distilled water (DW) to the pharyngolaryngeal region in the tMCAO rat model. Swallowing reflex was estimated using the electromyographic activity of the mylohyoid muscle from 1 to 3 weeks after surgery. Two weeks after tMCAO, the number of swallows significantly decreased and the onset latency of the first swallow was prolonged compared with that of the sham group. The number of swallows in rats significantly increased by infusions of 10 mM citric acid and 0.6 μM capsaicin to the pharyngolaryngeal region compared with the number from infusion of DW. It has been reported that sensory stimulation of the pharyngolaryngeal region with citric acid, capsaicin, and L-menthol ameliorates hypofunction of pharyngeal-stage swallowing in dysphagia patients. Therefore, the tMCAO rat model may show some of the symptoms of pharyngeal-stage swallowing disorders, similar to those in patients with ischemic stroke. This rat tMCAO model has the potential to become a novel animal model of dysphagia following stroke that is useful for development of therapeutic methods and drugs.
behavioral measures of learning and memory in adult offspring of rats treated with thyroid hormone synthesis inhibitor, propylthiouracil.Electrophysiological measures of 'memory' in form of plasticity model known as long term potentiation (LTP)Molecular changes induced by LTPThis dataset is associated with the following publication:Gilbert , M., K. Sanchez-Huerta, and C. Wood. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Make Rats. ENDOCRINOLOGY. Endocrine Society, 157(2): 774-87, (2016).
Development of a rat model for studying blast-induced traumatic brain injury.
Cheng, Jingmin; Gu, Jianwen; Ma, Yuan; Yang, Tao; Kuang, Yongqin; Li, Bingcang; Kang, Jianyi
2010-07-15
Blast-induced traumatic brain injury (TBI) has been the predominant cause of neurotrauma in current military conflicts, and it is also emerging as a potential threat in civilian terrorism. The etiology of TBI, however, is poorly understood. Further study on the mechanisms and treatment of blast injury is urgently needed. We developed a unique rat model to simulate blast effects that commonly occur on the battlefield. An electric detonator with the equivalent of 400 mg TNT was developed as the explosive source. The detonator's peak overpressure and impulse of explosion shock determined the explosion intensity in a distance-dependent manner. Ninety-six male adult Sprague-Dawley rats were randomly divided into four groups: 5-cm, 7.5-cm, 10-cm, and control groups. The rat was fixed in a specially designed cabin with an adjustable aperture showing the frontal, parietal, and occipital parts of the head exposed to explosion; the eyes, ears, mouth, and nose were protected by the cabin. After each explosion, we assessed the physiologic, neuropathologic, and neurobehavioral consequences of blast injury. Changes of brain tissue water content and neuron-specific enolase (NSE) expression were detected. The results in the 7.5-cm group show that 87% rats developed apnea, limb seizure, poor appetite, and limpness. Diffuse subarachnoid hemorrhage and edema could be seen within the brain parenchyma, which showed a loss of integrity. Capillary damage and enlarged intercellular and vascular space in the cortex, along with a tattered nerve fiber were observed. These findings demonstrate that we have provided a reliable and reproducible blast-induced TBI model in rats. Copyright 2010 Elsevier B.V. All rights reserved.
Rodent models of diabetic nephropathy: their utility and limitations
Kitada, Munehiro; Ogura, Yoshio; Koya, Daisuke
2016-01-01
Diabetic nephropathy is the most common cause of end-stage renal disease. Therefore, novel therapies for the suppression of diabetic nephropathy must be developed. Rodent models are useful for elucidating the pathogenesis of diseases and testing novel therapies, and many type 1 and type 2 diabetic rodent models have been established for the study of diabetes and diabetic complications. Streptozotocin (STZ)-induced diabetic animals are widely used as a model of type 1 diabetes. Akita diabetic mice that have an Ins2+/C96Y mutation and OVE26 mice that overexpress calmodulin in pancreatic β-cells serve as a genetic model of type 1 diabetes. In addition, db/db mice, KK-Ay mice, Zucker diabetic fatty rats, Wistar fatty rats, Otsuka Long-Evans Tokushima Fatty rats and Goto-Kakizaki rats serve as rodent models of type 2 diabetes. An animal model of diabetic nephropathy should exhibit progressive albuminuria and a decrease in renal function, as well as the characteristic histological changes in the glomeruli and the tubulointerstitial lesions that are observed in cases of human diabetic nephropathy. A rodent model that strongly exhibits all these features of human diabetic nephropathy has not yet been developed. However, the currently available rodent models of diabetes can be useful in the study of diabetic nephropathy by increasing our understanding of the features of each diabetic rodent model. Furthermore, the genetic background and strain of each mouse model result in differences in susceptibility to diabetic nephropathy with albuminuria and the development of glomerular and tubulointerstitial lesions. Therefore, the validation of an animal model reproducing human diabetic nephropathy will significantly facilitate our understanding of the underlying genetic mechanisms that contribute to the development of diabetic nephropathy. In this review, we focus on rodent models of diabetes and discuss the utility and limitations of these models for the study of diabetic nephropathy. PMID:27881924
Yao, Bing; Zhou, Wen-Liang; Han, Da-Yu; Ouyang, Bin; Chen, Xu; Chen, Sheng-Fu; Deng, Chun-Hua; Sun, Xiang-Zhou
2016-01-01
Experimental models have allowed inquiry into the pathophysiology of varicocele (VC) beyond that possible with human patients. A randomized controlled study in rats was designed to clarify the influence of the degree of left renal vein constriction on the development of adolescent VC. Fifty adolescent male Sprague-Dawley rats (Rattus norvegicus) were randomly assigned to five groups of 10: the experimental groups (I-IV) underwent partial ligation of left renal veins with 0.5-, 0.6-, 0.7-, and 0.8-mm diameter needles, respectively. The control group (V) underwent a sham operation. The diameter of the left spermatic vein (LSV) was measured at baseline and 30 days postoperatively. In addition, the lesion of the left kidney was examined with the naked eye and assessed by Masson's trichrome staining. VC was successfully induced in 2 (20%), 4 (40%), 7 (70%), and 10 (100%) rats in groups I-IV, respectively. The other rats failed to develop VCs primarily due to left renal atrophy. No VC was observed in group V. The postsurgical LSV diameters in VC rats in groups III and IV were 1.54 ± 0.16 and 1.49 ± 0.13 mm, respectively (P > 0.05), and their increments were 1.36 ± 0.10 and 1.31 ± 0.10 mm, respectively (P > 0.05). These results suggest that suitable constriction of the left renal vein is critical for adolescent VC development. In addition, the 0.8-mm diameter needle may be more suitable for inducing left renal vein constriction in adolescent rat models.
Developing an Animal Model of Human Amnesia: The Role of the Hippocampus
ERIC Educational Resources Information Center
Kesner, Raymond P.; Goodrich-Hunsaker, Naomi J.
2010-01-01
This review summarizes a series of experiments aimed at answering the question whether the hippocampus in rats can serve as an animal model of amnesia. It is recognized that a comparison of the functions of the rat hippocampus with human hippocampus is difficult, because of differences in methodology, differences in complexity of life experiences,…
Clugston, Robin D; Zhang, Wei; Greer, John J
2010-01-01
Congenital diaphragmatic hernia (CDH) is a frequently occurring cause of neonatal respiratory distress and is associated with high mortality and long-term morbidity. Evidence from animal models suggests that CDH has its origins in the malformation of the pleuroperitoneal fold (PPF), a key structure in embryonic diaphragm formation. The aims of this study were to characterize the embryogenesis of the PPF in rats and humans, and to determine the potential mechanism that leads to abnormal PPF development in the nitrofen model of CDH. Analysis of rat embryos, and archived human embryo sections, allowed the timeframe of PPF formation to be determined for both species, thus delineating a critical period of diaphragm development in relation to CDH. Experiments on nitrofen-exposed NIH 3T3 cells in vitro led us to hypothesize that nitrofen might cause diaphragmatic hernia in vivo by two possible mechanisms: through decreased cell proliferation or by inducing apoptosis. Data from nitrofen-exposed rat embryos indicates that the primary mechanism of nitrofen teratogenesis in the PPF is through decreased cell proliferation. This study provides novel insight into the embryogenesis of the PPF in rats and humans, and it indicates that impaired cell proliferation might contribute to abnormal diaphragm development in the nitrofen model of CDH. Copyright 2009 Wiley-Liss, Inc.
Mathematical model of glucose-insulin homeostasis in healthy rats.
Lombarte, Mercedes; Lupo, Maela; Campetelli, German; Basualdo, Marta; Rigalli, Alfredo
2013-10-01
According to the World Health Organization there are over 220 million people in the world with diabetes and 3.4 million people died in 2004 as a consequence of this pathology. Development of an artificial pancreas would allow to restore control of blood glucose by coupling an infusion pump to a continuous glucose sensor in the blood. The design of such a device requires the development and application of mathematical models which represent the gluco-regulatory system. Models developed by other research groups describe very well the gluco-regulatory system but have a large number of mathematical equations and require complex methodologies for the estimation of its parameters. In this work we propose a mathematical model to study the homeostasis of glucose and insulin in healthy rats. The proposed model consists of three differential equations and 8 parameters that describe the variation of: blood glucose concentration, blood insulin concentration and amount of glucose in the intestine. All parameters were obtained by setting functions to the values of glucose and insulin in blood obtained after oral glucose administration. In vivo and in silico validations were performed. Additionally, a qualitative analysis has been done to verify the aforementioned model. We have shown that this model has a single, biologically consistent equilibrium point. This model is a first step in the development of a mathematical model for the type I diabetic rat. Copyright © 2013 Elsevier Inc. All rights reserved.
Dietary Salt Exacerbates Isoproterenol-induced Cardiomyopathy in Rats
Spontaneously Hypertensive Heart Failure rats (SHHFs) take far longer to develop compensated heart failure and congestive decompensation than common surgical models of heart failure. Isoproterenol (ISO) infusion can accelerate cardiomyopathy in young SHHFs, while dietary salt loa...
Comparison of pharyngocutaneous fistula closure with and without bacterial cellulose in a rat model.
Demir, Berat; Sarı, Murat; Binnetoglu, Adem; Yumusakhuylu, Ali Cemal; Filinte, Deniz; Tekin, İshak Özel; Bağlam, Tekin; Batman, Abdullah Çağlar
2018-04-01
The present study aimed to compare the effects of bacterial cellulose used for closure of pharyngocutaneous fistulae, a complication of total laryngectomy, with those of primary sutures in a rat model. Thirty female Sprague-Dawley underwent experimental pharyngoesophagotomy and were grouped depending on the material used for pharyngocutaneous fistula closure: group I, which received primary sutures alone, group II, which received bacterial cellulose alone; and group III, which received both. After 7 days, the rats were sacrificed. Pharyngocutaneous fistula development was assessed, the gross wound was inspected, and histological examination was conducted. Pharyngocutaneous fistulae developed in 12 rats (41%) in all: 6 from group I (21%), 4 from group II (14%) and 2 from group III (7%). Fibroblast density and inflammatory cell infiltration were significantly greater in group III than group I. We concluded that bacterial cellulose may be useful for pharyngocutaneous fistula closure. Copyright © 2017 Elsevier B.V. All rights reserved.
Oxidative stress and NO generation in the rat pancreatitis induced by pancreatic duct ligation.
Buchwalow, Igor; Schnekenburger, Jürgen; Atiakshin, Dmitri; Samoilova, Vera; Wolf, Eduard; Boecker, Werner; Tiemann, Katharina
2017-04-01
The interaction between nitric oxide (NO) and superoxides is critical in the development of an acute pancreatitis. Previously, we reported that the expression of superoxides and of the NO-generating enzyme (NO synthase, NOS) was up-regulated in the human pancreatitis, especially within the exocrine compartment indicating an exceptional susceptibility of the exocrine parenchyma to oxidative stress. The aim of the present study was to compare the regulation of NO signalling pathways in the human pancreatitis and in an animal model of an acute pancreatitis induced by pancreatic duct ligation (PDL) in rats. In the PDL-induced rat pancreatitis, we revealed a similar pattern of oxidative stress and NOS up-regulation in acinar and in ductal compartments, like in the human pancreatitis. This demonstrates that the PDL-induced rat pancreatitis is a proper model for further studies of acute pancreatitis development in humans. Copyright © 2017 Elsevier GmbH. All rights reserved.
Bio-functional pickles that reduce blood pressure of rats.
Oda, Kohei; Imanishi, Takanori; Yamane, Yoshito; Ueno, Yoshie; Mori, Yoshiharu
2014-01-01
Addition of γ-aminobutyric acid (GABA) and angiotensin converting enzyme (ACE)-inhibitory peptides to the pickles was studied in order to develop a new type of pickles that reduce blood pressure. Based on the outcome of these studies, a new type of fermentation bed composed of rice bran and white miso has been successfully developed. The advantage of such pickles is that they not only contain both GABA and ACE-inhibitory peptides, but also that their taste and flavor are excellent, with colors close to the original ones. The new type of pickles could temporarily reduce blood pressure in two types of rats, spontaneously hypertensive rats and NaCl-sensitive model rats. Thus, the newly developed pickles appear to be beneficial for pickle business.
Physiologically based Pharmacokinetic Modeling of 1,4-Dioxane in Rats, Mice, and Humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeney, Lisa M.; Thrall, Karla D.; Poet, Torka S.
2008-01-01
ABSTRACT 1,4-Dioxane (CAS No. 123-91-1) is used primarily as a solvent or as a solvent stabilizer. It can cause lung, liver and kidney damage at sufficiently high exposure levels. Two physiologically-based pharmacokinetic (PBPK) models of 1,4-dioxane and its major metabolite, hydroxyethoxyacetic acid (HEAA), were published in 1990. These models have uncertainties and deficiencies that could be addressed and the model strengthened for use in a contemporary cancer risk assessment for 1,4-dioxane. Studies were performed to fill data gaps and reduce uncertainties pertaining to the pharmacokinetics of 1,4-dioxane and HEAA in rats, mice, and humans. Three types of studies were performed:partitionmore » coefficient measurements, blood time course in mice, and in vitro pharmacokinetics using rat, mouse, and human hepatocytes. Updated PBPK models were developed based on these new data and previously available data. The optimized rate of metabolism for the mouse was significantly higher than the value previously estimated. The optimized rat kinetic parameters were similar to those in the 1990 models. Only two human studies were identified. Model predictions were consistent with one study, but did not fit the second as well. In addition, a rat nasal exposure was completed. The results confirmed water directly contacts rat nasal tissues during drinking water under bioassays. Consistent with previous PBPK models, nasal tissues were not specifically included in the model. Use of these models will reduce the uncertainty in future 1,4-dioxane risk assessments.« less
Model of excitation-contraction coupling of rat neonatal ventricular myocytes.
Korhonen, Topi; Hänninen, Sandra L; Tavi, Pasi
2009-02-01
The neonatal rat ventricular myocyte culture is one of the most popular experimental cardiac cell models. To our knowledge, the excitation-contraction coupling (ECC) of these cells, i.e., the process linking the electrical activity to the cytosolic Ca2+ transient and contraction, has not been previously analyzed, nor has it been presented as a complete system in detail. Neonatal cardiomyocytes are in the postnatal developmental stage, and therefore, the features of their ECC differ vastly from those of adult ventricular myocytes. We present the first complete analysis of ECC in these cells by characterizing experimentally the action potential and calcium signaling and developing the first mathematical model of ECC in neonatal cardiomyocytes that we know of. We show that in comparison to adult cardiomyocytes, neonatal cardiomyocytes have long action potentials, heterogeneous cytosolic Ca2+ signals, weaker sarcoplasmic reticulum Ca2+ handling, and stronger sarcolemmal Ca2+ handling, with a significant contribution by the Na+/Ca2+ exchanger. The developed model reproduces faithfully the ECC of rat neonatal cardiomyocytes with a novel description of spatial cytosolic [Ca2+] signals. Simulations also demonstrate how an increase in the cell size (hypertrophy) affects the ECC in neonatal cardiomyocytes. This model of ECC in developing cardiomyocytes provides a platform for developing future models of cardiomyocytes at different developmental stages.
The effect of food hardness on the development of dental caries in alloxan-induced diabetic rats.
Nakahara, Yutaka; Sano, Tomoya; Kodama, Yasushi; Ozaki, Kiyokazu; Matsuura, Tetsuro
2013-01-01
We have previously shown that dental caries may be produced in diabetic rodent models fed with noncariogenic standard diets; however, many studies usually add large amounts of sugar to the diet to induce dental caries. Moreover, the physical properties of cariogenic diets have been reported as an important factor in the formation of caries. The aim of this study was to clarify the effect of the hardness of non-cariogenic diets on the development of dental caries in diabetic rodents. Seven-week-old female F344 rats were divided into 4 groups: intact rats fed with a standard pelletized or powdered diet and alloxan-induced diabetic rats fed with a standard pelletized or powdered diet. All of the rats were sacrificed at 52 weeks of age for morphological examinations on their dental tissue. Dental caries had developed and extended to all the molars in the diabetic rats that were fed with both the pelletized and powdered diets. Moreover, the lesion was significantly enhanced in the powdered diet group compared to that in the pelletized diet group. In conclusion, food hardness is an important factor influencing the development of dental caries in diabetic rats.
The Effect of Food Hardness on the Development of Dental Caries in Alloxan-Induced Diabetic Rats
Nakahara, Yutaka; Sano, Tomoya; Kodama, Yasushi; Ozaki, Kiyokazu; Matsuura, Tetsuro
2013-01-01
We have previously shown that dental caries may be produced in diabetic rodent models fed with noncariogenic standard diets; however, many studies usually add large amounts of sugar to the diet to induce dental caries. Moreover, the physical properties of cariogenic diets have been reported as an important factor in the formation of caries. The aim of this study was to clarify the effect of the hardness of non-cariogenic diets on the development of dental caries in diabetic rodents. Seven-week-old female F344 rats were divided into 4 groups: intact rats fed with a standard pelletized or powdered diet and alloxan-induced diabetic rats fed with a standard pelletized or powdered diet. All of the rats were sacrificed at 52 weeks of age for morphological examinations on their dental tissue. Dental caries had developed and extended to all the molars in the diabetic rats that were fed with both the pelletized and powdered diets. Moreover, the lesion was significantly enhanced in the powdered diet group compared to that in the pelletized diet group. In conclusion, food hardness is an important factor influencing the development of dental caries in diabetic rats. PMID:23762876
The role of intestinal endotoxemia in a rat model of aluminum neurotoxicity
Wang, Feng; Guo, Rui-Xia; Li, Wen-Xing; Yu, Bao-Feng; Han, Bai; Liu, Li-Xin; Han, De-Wu
2017-01-01
The present study aimed to investigate the effects of intestinal endotoxemia (IETM) in a rat model of aluminum neurotoxicity established by D-galactose and aluminum trichloride (AlCl3). Adult Wistar rats were administered D-galactose and AlCl3 to create the aluminum neurotoxicity model. The learning and memory abilities of the rats were subsequently observed using a Morris water maze test and the serum levels of lipopolysaccharide (LPS), tumor necrosis factor (TNF)-α, interleukin (IL)-1, diamine oxidase (DAO), glutamine (Gln) and glutaminase were measured. The expression of S-100β in the serum was detected using an enzyme-linked immunosorbent assay. The expression levels of the amyloid β-protein (Aβ) precursor (APP), presenilin 1 (PS1), β-site APP-cleaving enzyme (BACE), zona occludens protein (ZO)-1 and Aβ 1–40 in the brain of rats were detected via reverse-transcription polymerase chain reaction, western blotting and immunohistochemistry. The levels of LPS, TNF-α, IL-1, DAO, Gln and S-100β in serum and the mRNA and protein expression levels of APP, PS1, BACE and Aβ1-40 in the brain were markedly increased in the model rats compared with controls. The level of glutaminase in the serum and the expression of ZO-1 in the brain were decreased in the model rats compared with controls. IETM was present in the rat model of aluminum neurotoxicity established by D-galactose and AlCl3 and may be important in the development of this neurotoxicity. PMID:28627692
Levit, Alexander; Regis, Aaron M; Garabon, Jessica R; Oh, Seung-Hun; Desai, Sagar J; Rajakumar, Nagalingam; Hachinski, Vladimir; Agca, Yuksel; Agca, Cansu; Whitehead, Shawn N; Allman, Brian L
2017-08-30
Alzheimer disease (AD) and stroke coexist and interact; yet how they interact is not sufficiently understood. Both AD and basal ganglia stroke can impair behavioural flexibility, which can be reliably modeled in rats using an established operant based set-shifting test. Transgenic Fischer 344-APP21 rats (TgF344) overexpress pathogenic human amyloid precursor protein (hAPP) but do not spontaneously develop overt pathology, hence TgF344 rats can be used to model the effect of vascular injury in the prodromal stages of Alzheimer disease. We demonstrate that the injection of endothelin-1 (ET1) into the dorsal striatum of TgF344 rats (Tg-ET1) produced an exacerbation of behavioural inflexibility with a behavioural phenotype that was distinct from saline-injected wildtype & TgF344 rats as well as ET1-injected wildtype rats (Wt-ET1). In addition to profiling the types of errors made, interpolative modeling using logistic exposure-response regression provided an informative analysis of the timing and efficiency of behavioural flexibility. During set-shifting, Tg-ET1 committed fewer perseverative errors than Wt-ET1. However, Tg-ET1 committed significantly more regressive errors and had a less efficient strategy change than all other groups. Thus, behavioural flexibility was more vulnerable to striatal ischemic injury in TgF344 rats. Copyright © 2017 Elsevier B.V. All rights reserved.
Bañuelos, Cristina; Gilbert, Ryan J.; Montgomery, Karienn S.; Fincher, Annette S.; Wang, Haiying; Frye, Gerald D.; Setlow, Barry; Bizon, Jennifer L.
2012-01-01
Ethanol exposure during perinatal development can cause cognitive abnormalities including difficulties in learning, attention, and memory, as well as heightened impulsivity. The purpose of this study was to assess performance in spatial learning and impulsive choice tasks in rats subjected to an intragastric intubation model of binge ethanol exposure during human third trimester-equivalent brain development. Male and female Sprague–Dawley rat pups were intubated with ethanol (5.25 g/kg/day) on postnatal days 4–9. At adolescence (between postnatal days 35–38), these rats and sham intubated within-litter controls were trained in both spatial and cued versions of the Morris water maze. A subset of the male rats was subsequently tested on a delay-discounting task to assess impulsive choice. Ethanol-exposed rats were spatially impaired relative to controls, but performed comparably to controls on the cued version of the water maze. Ethanol-exposed rats also showed greater preference for large delayed rewards on the delay discounting task, but no evidence for altered reward sensitivity or perseverative behavior. These data demonstrate that early postnatal intermittent binge-like ethanol exposure has prolonged, detrimental, but selective effects on cognition, suggesting that even relatively brief ethanol exposure late in human pregnancy can be deleterious for cognitive function. PMID:22129556
Prolonged Febrile Seizures in the Immature Rat Model Enhance Hippocampal Excitability Long Term
Dube, Celine; Chen, Kang; Eghbal-Ahmadi, Mariam; Brunson, Kristen; Soltesz, Ivan; Baram, Tallie Z.
2011-01-01
Febrile seizures (FSs) constitute the most prevalent seizure type during childhood. Whether prolonged FSs alter limbic excitability, leading to spontaneous seizures (temporal lobe epilepsy) during adulthood, has been controversial. Recent data indicate that, in the immature rat model, prolonged FSs induce transient structural changes of some hippocampal pyramidal neurons and long-term functional changes of hippocampal circuitry. However, whether these neuroanatomical and electrophysiological changes promote hippocampal excitability and lead to epilepsy has remained unknown. By using in vivo and in vitro approaches, we determined that prolonged hyperthermia-induced seizures in immature rats caused long-term enhanced susceptibility to limbic convulsants that lasted to adulthood. Thus, extensive hippocampal electroencephalographic and behavioral monitoring failed to demonstrate spontaneous seizures in adult rats that had experienced hyperthermic seizures during infancy. However, 100% of animals developed hippocampal seizures after systemic administration of a low dose of kainate, and most progressed to status epilepticus. Conversely, a minority of normothermic and hyperthermic controls had (brief) seizures, none developing status epilepticus. In vitro, spontaneous epileptiform discharges were not observed in hippocampal-entorhinal cortex slices derived from either control or experimental groups. However, Schaeffer collateral stimulation induced prolonged, self-sustaining, status epilepticus-like discharges exclusively in slices from experimental rats. These data indicate that hyperthermic seizures in the immature rat model of FSs do not cause spontaneous limbic seizures during adulthood. However, they reduce thresholds to chemical convulsants in vivo and electrical stimulation in vitro, indicating persistent enhancement of limbic excitability that may facilitate the development of epilepsy. PMID:10716253
Dunleavy, Mark; Schindler, Clara K; Shinoda, Sachiko; Crilly, Shane; Henshall, David C
2014-01-01
Status epilepticus in the adult brain invariably causes an increase in hippocampal neurogenesis and the appearance of ectopic cells and this has been implicated as a causal factor in epileptogenesis. The effect of status epilepticus on neurogenesis in the developing brain is less well characterized and models of early-life seizures typically do not reproduce the hippocampal damage common to human mesial temporal sclerosis. We recently reported that evoking status epilepticus by intra-amygdala microinjection of kainic acid in post-natal (P) day 10 rats caused substantial acute neuronal death within the ipsilateral hippocampus and rats later developed unilateral hippocampal sclerosis and spontaneous recurrent seizures. Here, we examined the expression of a selection of genes associated with neurogenesis and assessed neurogenic function in this model. Protein levels of several markers of neurogenesis including polysialic acid neural cell adhesion molecule, neuroD and doublecortin were reduced in the hippocampus three days after status epilepticus in P10 rats. In contrast, protein levels of neurogenesis markers were similar to control in rats at P55. Pulse-chase experiments using thymidine analogues suggested there was a reduction in new neurons at 72 h after status epilepticus in P10 rats, whereas numbers of new neurons labelled in epileptic rats at P55 with hippocampal sclerosis were similar to controls. The present study suggests that status epilepticus in the immature brain suppresses neurogenesis but the neurogenic potential is retained in animals that later develop hippocampal sclerosis. PMID:25755841
Somayajulu-Niţu, Mallika; Sandhu, Jagdeep K; Cohen, Jerome; Sikorska, Marianna; Sridhar, T S; Matei, Anca; Borowy-Borowski, Henryk; Pandey, Siyaram
2009-07-27
Parkinson's disease, for which currently there is no cure, develops as a result of progressive loss of dopamine neurons in the brain; thus, identification of any potential therapeutic intervention for disease management is of a great importance. Here we report that prophylactic application of water-soluble formulation of coenzyme Q10 could effectively offset the effects of environmental neurotoxin paraquat, believed to be a contributing factor in the development of familial PD. In this study we utilized a model of paraquat-induced dopaminergic neurodegeneration in adult rats that received three weekly intra-peritoneal injections of the herbicide paraquat. Histological and biochemical analyses of rat brains revealed increased levels of oxidative stress markers and a loss of approximately 65% of dopamine neurons in the substantia nigra region. The paraquat-exposed rats also displayed impaired balancing skills on a slowly rotating drum (rotorod) evidenced by their reduced spontaneity in gait performance. In contrast, paraquat exposed rats receiving a water-soluble formulation of coenzyme Q10 in their drinking water prior to and during the paraquat treatment neither developed neurodegeneration nor reduced rotorod performance and were indistinguishable from the control paraquat-untreated rats. Our data confirmed that paraquat-induced neurotoxicity represents a convenient rat model of parkinsonian neurodegeneration suitable for mechanistic and neuroprotective studies. This is the first preclinical evaluation of a water-soluble coenzyme Q10 formulation showing the evidence of prophylactic neuroprotection at clinically relevant doses.
Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet.
Auberval, Nathalie; Dal, Stéphanie; Bietiger, William; Pinget, Michel; Jeandidier, Nathalie; Maillard-Pedracini, Elisa; Schini-Kerth, Valérie; Sigrist, Séverine
2014-01-01
Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared to rats fed a normal diet (ND) for 2 months. Metabolic control was determined by measuring body weight, blood glucose, triglycerides, lipid peroxidation and protein carbonylation in plasma. Insulinemia was evaluated through the measure of C-peptide. Histological analysis was performed on the pancreas, liver and blood vessels. After 2 months, the HFD induced an increase in body weight, insulin and triglycerides. Liver steatosis was also observed in the HFD group, which was associated with an increase in glycogen storage. In the pancreas, the HFD induced islet hyperplasia. Tissue oxidative stress was also increased in the liver, pancreas and blood vessels, but plasma oxidative stress remained unchanged. This paper reports the development of a fast and easy model of rat metabolic syndrome associated with tissue oxidative stress. This model may be a good tool for the biological validation of drugs or antioxidants to limit or prevent the complications of metabolic syndrome.
Di Luccia, Blanda; Crescenzo, Raffaella; Mazzoli, Arianna; Cigliano, Luisa; Venditti, Paola; Walser, Jean-Claude; Widmer, Alex; Baccigalupi, Loredana; Ricca, Ezio; Iossa, Susanna
2015-01-01
A fructose-rich diet can induce metabolic syndrome, a combination of health disorders that increases the risk of diabetes and cardiovascular diseases. Diet is also known to alter the microbial composition of the gut, although it is not clear whether such alteration contributes to the development of metabolic syndrome. The aim of this work was to assess the possible link between the gut microbiota and the development of diet-induced metabolic syndrome in a rat model of obesity. Rats were fed either a standard or high-fructose diet. Groups of fructose-fed rats were treated with either antibiotics or faecal samples from control rats by oral gavage. Body composition, plasma metabolic parameters and markers of tissue oxidative stress were measured in all groups. A 16S DNA-sequencing approach was used to evaluate the bacterial composition of the gut of animals under different diets. The fructose-rich diet induced markers of metabolic syndrome, inflammation and oxidative stress, that were all significantly reduced when the animals were treated with antibiotic or faecal samples. The number of members of two bacterial genera, Coprococcus and Ruminococcus, was increased by the fructose-rich diet and reduced by both antibiotic and faecal treatments, pointing to a correlation between their abundance and the development of the metabolic syndrome. Our data indicate that in rats fed a fructose-rich diet the development of metabolic syndrome is directly correlated with variations of the gut content of specific bacterial taxa.
Mazzoli, Arianna; Cigliano, Luisa; Venditti, Paola; Walser, Jean-Claude; Widmer, Alex; Baccigalupi, Loredana; Ricca, Ezio; Iossa, Susanna
2015-01-01
A fructose-rich diet can induce metabolic syndrome, a combination of health disorders that increases the risk of diabetes and cardiovascular diseases. Diet is also known to alter the microbial composition of the gut, although it is not clear whether such alteration contributes to the development of metabolic syndrome. The aim of this work was to assess the possible link between the gut microbiota and the development of diet-induced metabolic syndrome in a rat model of obesity. Rats were fed either a standard or high-fructose diet. Groups of fructose-fed rats were treated with either antibiotics or faecal samples from control rats by oral gavage. Body composition, plasma metabolic parameters and markers of tissue oxidative stress were measured in all groups. A 16S DNA-sequencing approach was used to evaluate the bacterial composition of the gut of animals under different diets. The fructose-rich diet induced markers of metabolic syndrome, inflammation and oxidative stress, that were all significantly reduced when the animals were treated with antibiotic or faecal samples. The number of members of two bacterial genera, Coprococcus and Ruminococcus, was increased by the fructose-rich diet and reduced by both antibiotic and faecal treatments, pointing to a correlation between their abundance and the development of the metabolic syndrome. Our data indicate that in rats fed a fructose-rich diet the development of metabolic syndrome is directly correlated with variations of the gut content of specific bacterial taxa. PMID:26244577
Selimkhanov, Jangir; Thompson, W Clayton; Patterson, Terrell A; Hadcock, John R; Scott, Dennis O; Maurer, Tristan S; Musante, Cynthia J
2016-01-01
The purpose of this work is to develop a mathematical model of energy balance and body weight regulation that can predict species-specific response to common pre-clinical interventions. To this end, we evaluate the ability of a previously published mathematical model of mouse metabolism to describe changes in body weight and body composition in rats in response to two short-term interventions. First, we adapt the model to describe body weight and composition changes in Sprague-Dawley rats by fitting to data previously collected from a 26-day caloric restriction study. The calibrated model is subsequently used to describe changes in rat body weight and composition in a 23-day cannabinoid receptor 1 antagonist (CB1Ra) study. While the model describes body weight data well, it fails to replicate body composition changes with CB1Ra treatment. Evaluation of a key model assumption about deposition of fat and fat-free masses shows a limitation of the model in short-term studies due to the constraint placed on the relative change in body composition components. We demonstrate that the model can be modified to overcome this limitation, and propose additional measurements to further test the proposed model predictions. These findings illustrate how mathematical models can be used to support drug discovery and development by identifying key knowledge gaps and aiding in the design of additional experiments to further our understanding of disease-relevant and species-specific physiology.
Selimkhanov, Jangir; Patterson, Terrell A.; Scott, Dennis O.; Maurer, Tristan S.; Musante, Cynthia J.
2016-01-01
The purpose of this work is to develop a mathematical model of energy balance and body weight regulation that can predict species-specific response to common pre-clinical interventions. To this end, we evaluate the ability of a previously published mathematical model of mouse metabolism to describe changes in body weight and body composition in rats in response to two short-term interventions. First, we adapt the model to describe body weight and composition changes in Sprague-Dawley rats by fitting to data previously collected from a 26-day caloric restriction study. The calibrated model is subsequently used to describe changes in rat body weight and composition in a 23-day cannabinoid receptor 1 antagonist (CB1Ra) study. While the model describes body weight data well, it fails to replicate body composition changes with CB1Ra treatment. Evaluation of a key model assumption about deposition of fat and fat-free masses shows a limitation of the model in short-term studies due to the constraint placed on the relative change in body composition components. We demonstrate that the model can be modified to overcome this limitation, and propose additional measurements to further test the proposed model predictions. These findings illustrate how mathematical models can be used to support drug discovery and development by identifying key knowledge gaps and aiding in the design of additional experiments to further our understanding of disease-relevant and species-specific physiology. PMID:27227543
Long-term ingestion of cassava (tapioca) does not produce diabetes or pancreatitis in the rat model.
Mathangi, D C; Deepa, R; Mohan, V; Govindarajan, M; Namasivayam, A
2000-06-01
Cassava (tapioca, manihot) is consumed as a staple food in some developing countries. The intake of cassava has been linked to several diseases including fibrocalculous pancreatic diabetes (tropical calcific pancreatitis). There are few long-term studies on the effect of cassava ingestion on the pancreas in animal models. This article reports on the long-term (up to 1 yr) effects of cassava in the rat model. We found that cassava did not produce diabetes in the rat even after a year of cassava feeding. There were transient changes in serum insulin and lipase levels, but the significance of these findings are not clear. There was no histopathological evidence of either acute or chronic pancreatitis, but there were changes of toxic hepatitis in the liver. In conclusion, chronic cassava ingestion up to a year does not lead to either diabetes or chronic pancreatitis in the rat model.
Efficacy of moclobemide in a rat model of neurotoxicant-induced edema.
Girard, Philippe; Verniers, Danielle; Pansart, Yannick; Gillardin, Jean-Marie
2007-05-01
The potent antidepressant effect of moclobemide, a selective and reversible type A monoamine oxidase (MAO) inhibitor, is clinically established. In view of the ongoing debate on the neuroprotective properties of MAO inhibitors, the present study was undertaken to further define the protective effect of moclobemide in a rat model of neurotoxicant-induced edema. In this model, daily oral triethyltin (TET) administration for 5 consecutive days strongly perturbed the rat behaviour and induced a cerebral edema at the 5th day. Oral coadministration of moclobemide (2 x 100 mg.kg-1.day-1) with TET blocked the development of brain edema and the increase in the cerebral chloride content induced by TET. Moreover, moclobemide reduced the increase in the cerebral sodium content and attenuated the neurological deficit. In conclusion, moclobemide possesses potent protective properties in this rat model of cerebral edema, suggesting potential clinical utility as a neuroprotectant.
Shayakhmetova, Ganna M; Bondarenko, Larysa B; Kovalenko, Valentina M; Kharchenko, Olga I; Bohun, Larisa I; Omelchenko, Yuliya O
2015-01-01
Despite of the wide spectrum of alcoholism experimental models, the majority of them are very specialized on the short list of investigated parameters and could not provide reproduction of complex metabolic changes in the rats. The aim of the present study was to estimate whether rats selected by high alcohol preference, allowed free access to 15% alcohol for 150 days, develop simultaneous multilevel disturbances of cell macromolecules structure, metabolism and oxidative/nitrosative stress. Wistar albino male rats were divided into groups: I - rats selected by preferences to alcohol were used for chronic alcoholism modeling by replacing water with 15% ethanol (150 days), II - control. Contents of amino acids in serum, liver mRNA CYP2E1 and CYP3A2 expression, DNA fragmentation and lipid peroxidation levels, the reduced glutathione content, superoxide dismutase, catalase, iNOS and cNOS activities were evaluated. In serum of ethanol-treated rats contents of aspartic acid, serine, glycine, alanine and valine were decreased whereas contents of histidine, methionine and phenylalanine were increased. Liver CYP2E1, CYP3A2 mRNA expression, DNA fragmentation levels significantly elevated. Level of cNOS in ethanol-treated rat's hepatocytes was within the normal limits, whereas iNOS activity was raised 1.6 times. Liver pro- and anti-oxidant system alterations were shown. Rats' chronic 15% alcohol consumption (150 days) led solely to complex metabolomic changes at different levels, which simultaneously characterized cell macromolecules structure, metabolism, and oxidative/nitrosative stress. Rodent model of chronic alcoholism in the proposed modification could be an adequate and reasonably priced tool for further preclinical development and testing of pharmacotherapeutic agents.
A physiologically based model of chromium kinetics in the rat.
O'Flaherty, E J
1996-05-01
A physiologically based model of chromium kinetics in rats has been developed. The general structure of the model is similar to that of a model of lead kinetics in rats. Like lead chromium exchanges between plasma and the bone surfaces in contact with plasma, and also like lead, although with much lower efficiency, it can become incorporated into actively mineralizing bone. Both processes are included in the model. Parallel absorption and disposition schemes for chromium(VI) and chromium(III) are linked in the model by reduction processes occurring throughout the body, including the lung and gastrointestinal tract. Examination of a number of data sets from studies in which chromium salts were administered to rats intravenously, orally, or by intratracheal instillation established that intravenous administration, on the one hand, and oral or pulmonary administration, on the other hand, result in different disposition patterns. The model was calibrated based on published oral and intratracheal kinetic studies in rats given soluble chromium(III) and chromium(VI) salts. In the most complete of these studies, chromium concentrations were monitored in individual tissues for 42 days following intratracheal administration of a soluble chromium(VI) salt. Inclusion in the model of a urinary excretion delay was necessary in order to fit excretion data from two other intratracheal studies. Model predictions of blood chromium concentrations are compared with the results of a published kinetic study in which rats were administered a soluble chromium(VI) salt by inhalation.
Clark, Callie A M; Sacrey, Lori-Ann R; Whishaw, Ian Q
2009-09-15
External cues, including familiar music, can release Parkinson's disease patients from catalepsy but the neural basis of the effect is not well understood. In the present study, posturography, the study of posture and its allied reflexes, was used to develop an animal model that could be used to investigate the underlying neural mechanisms of this sound-induced behavioral activation. In the rat, akinetic catalepsy induced by a dopamine D2 receptor antagonist (haloperidol 5mg/kg) can model human catalepsy. Using this model, two experiments examined whether novel versus familiar sound stimuli could interrupt haloperidol-induced catalepsy in the rat. Rats were placed on a variably inclined grid and novel or familiar auditory cues (single key jingle or multiple key jingles) were presented. The dependent variable was movement by the rats to regain equilibrium as assessed with a movement notation score. The sound cues enhanced movements used to regain postural stability and familiar sound stimuli were more effective than unfamiliar sound stimuli. The results are discussed in relation to the idea that nonlemniscal and lemniscal auditory pathways differentially contribute to behavioral activation versus tonotopic processing of sound.
Reduced incidence of stress ulcer in germ-free Sprague Dawley rats.
Paré, W P; Burken, M I; Allen, E D; Kluczynski, J M
1993-01-01
Recent findings with respect to the role of spiral gram-negative bacteria in peptic ulcer disease have stimulated interest in discerning the role of these agents in stress ulcer disease. We tested the hypothesis that a standard restraint-cold ulcerogenic procedure would fail to produce ulcers in axenic rats. Axenic, as well as normal Sprague Dawley rats, were exposed to a cold-restraint procedure. The germ-free condition was maintained throughout the study in the axenic rats. Axenic rats had significantly fewer ulcers as compared to normal rats exposed to the standard cold-restraint procedure, as well as handling control rats. The data represent the first report suggesting a microbiologic component in the development of stress ulcer using the rat model.
Arias-Loza, Paula-Anahi; Jung, Pius; Abeßer, Marco; Umbenhauer, Sandra; Williams, Tatjana; Frantz, Stefan; Schuh, Kai; Pelzer, Theo
2016-05-01
Chronic thromboembolic pulmonary hypertension (CTEPH) is an entity of PH that not only limits patients quality of life but also causes significant morbidity and mortality. The treatment of choice is pulmonary endarterectomy. However numerous patients do not qualify for pulmonary endarterectomy or present with residual vasculopathy post pulmonary endarterectomy and require specific vasodilator treatment. Currently, there is no available specific small animal model of CTEPH that could serve as tool to identify targetable molecular pathways and to test new treatment options. Thus, we generated and standardized a rat model that not only resembles functional and histological features of CTEPH but also emulates thrombi fibrosis. The pulmonary embolism protocol consisted of 3 sequential tail vein injections of fibrinogen/collagen-covered polystyrene microspheres combined with thrombin and administered to 10-week-old male Wistar rats. After the third embolism, rats developed characteristic features of CTEPH including elevated right ventricular systolic pressure, right ventricular cardiomyocyte hypertrophy, pulmonary artery remodeling, increased serum brain natriuretic peptide levels, thrombi fibrosis, and formation of pulmonary cellular-fibrotic lesions. The current animal model seems suitable for detailed study of CTEPH pathophysiology and permits preclinical testing of new pharmacological therapies against CTEPH. © 2016 American Heart Association, Inc.
Experimental Diabetes Mellitus in Different Animal Models
Al-awar, Amin; Veszelka, Médea; Szűcs, Gergő; Attieh, Zouhair; Murlasits, Zsolt; Török, Szilvia; Pósa, Anikó; Varga, Csaba
2016-01-01
Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. PMID:27595114
Cao, Li; Liu, Xuehui; Cao, Hongyi; Lv, Qingguo; Tong, Nanwei
2012-01-01
Introduction. Metabolically obese but normal-weight (MONW) individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW) rat model. Methods and Results. Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS) diet for 20 weeks. The HS diet induced increased visceral adipose tissue without increased body weight, reduced glucose disposal rates, and increased hepatic glucose output during the hyperinsulinemic-euglycemic clamp, increased plasma glucose during the intraperitoneal glucose tolerance test, and increased plasma free fatty acids. Hepatic lipidosis and hepatocyte mitochondria swelling were found in HS rats through light microscopy and transmission electron microscopy; similar impairments were not observed in muscle. RT-PCR showed that mRNA expression of uncoupling protein 3 and peroxisome proliferator-activated receptor-gamma coactivator 1α increased in muscle of HS rats, while expression of mitochondrial transcription factor A, glucose transporter type 4, and insulin receptor substrate-1 did not change significantly. Conclusion. AONW rats developed metabolic disorders seen in MONW individuals. Steatosis, mitochondrial morphologic changes, and insulin resistance were more serious in liver than in muscle. Genes involved in fatty acid metabolism and mitochondrial function changed in less impaired muscle. PMID:23320128
Youcef, Gina; Olivier, Arnaud; L'Huillier, Clément P J; Labat, Carlos; Fay, Renaud; Tabcheh, Lina; Toupance, Simon; Rodriguez-Guéant, Rosa-Maria; Bergerot, Damien; Jaisser, Frédéric; Lacolley, Patrick; Zannad, Faiez; Laurent Vallar; Pizard, Anne
2014-01-01
Individuals with metabolic syndrome (MetS) are prone to develop heart failure (HF). However, the deleterious effects of MetS on the continuum of events leading to cardiac remodeling and subsequently to HF are not fully understood. This study characterized simultaneously MetS and cardiac, vascular and renal phenotypes in aging Spontaneously Hypertensive Heart Failure lean (SHHF(+/?) regrouping (+/+) and (+/cp) rats) and obese (SHHF(cp/cp), "cp" defective mutant allele of the leptin receptor gene) rats. We aimed to refine the milestones and their onset during the progression from MetS to HF in this experimental model. We found that SHHF(cp/cp )but not SHHF(+/?) rats developed dyslipidemia, as early as 1.5 months of age. This early alteration in the lipidic profile was detectable concomitantly to impaired renal function (polyuria, proteinuria but no glycosuria) and reduced carotid distensibility as compared to SHHF(+/?) rats. By 3 months of age SHHFcp/cp animals developed severe obesity associated with dislipidemia and hypertension defining the onset of MetS. From 6 months of age, SHHF(+/?) rats developed concentric left ventricular hypertrophy (LVH) while SHHF(cp/cp) rats developed eccentric LVH apparent from progressive dilation of the LV dimensions. By 14 months of age only SHHF(cp/cp) rats showed significantly higher central systolic blood pressure and a reduced ejection fraction resulting in systolic dysfunction as compared to SHHF(+/?). In summary, the metabolic and hemodynamic mechanisms participating in the faster decline of cardiac functions in SHHF(cp/cp) rats are established long before their physiological consequences are detectable. Our results suggest that the molecular mechanisms triggered within the first three months after birth of SHHF(cp/cp) rats should be targeted preferentially by therapeutic interventions in order to mitigate the later HF development.
Youcef, Gina; Olivier, Arnaud; L'Huillier, Clément P. J.; Labat, Carlos; Fay, Renaud; Tabcheh, Lina; Toupance, Simon; Rodriguez-Guéant, Rosa-Maria; Bergerot, Damien; Jaisser, Frédéric; Lacolley, Patrick; Zannad, Faiez; Laurent Vallar; Pizard, Anne
2014-01-01
Individuals with metabolic syndrome (MetS) are prone to develop heart failure (HF). However, the deleterious effects of MetS on the continuum of events leading to cardiac remodeling and subsequently to HF are not fully understood. This study characterized simultaneously MetS and cardiac, vascular and renal phenotypes in aging Spontaneously Hypertensive Heart Failure lean (SHHF+/? regrouping +/+ and +/cp rats) and obese (SHHFcp/cp, “cp” defective mutant allele of the leptin receptor gene) rats. We aimed to refine the milestones and their onset during the progression from MetS to HF in this experimental model. We found that SHHFcp/cp but not SHHF+/? rats developed dyslipidemia, as early as 1.5 months of age. This early alteration in the lipidic profile was detectable concomitantly to impaired renal function (polyuria, proteinuria but no glycosuria) and reduced carotid distensibility as compared to SHHF+/? rats. By 3 months of age SHHFcp/cp animals developed severe obesity associated with dislipidemia and hypertension defining the onset of MetS. From 6 months of age, SHHF+/? rats developed concentric left ventricular hypertrophy (LVH) while SHHFcp/cp rats developed eccentric LVH apparent from progressive dilation of the LV dimensions. By 14 months of age only SHHFcp/cp rats showed significantly higher central systolic blood pressure and a reduced ejection fraction resulting in systolic dysfunction as compared to SHHF+/?. In summary, the metabolic and hemodynamic mechanisms participating in the faster decline of cardiac functions in SHHFcp/cp rats are established long before their physiological consequences are detectable. Our results suggest that the molecular mechanisms triggered within the first three months after birth of SHHFcp/cp rats should be targeted preferentially by therapeutic interventions in order to mitigate the later HF development. PMID:24831821
Terawaki, Kiyoshi; Sawada, Yumi; Kashiwase, Yohei; Hashimoto, Hirofumi; Yoshimura, Mitsuhiro; Suzuki, Masami; Miyano, Kanako; Sudo, Yuka; Shiraishi, Seiji; Higami, Yoshikazu; Yanagihara, Kazuyoshi; Kase, Yoshio; Ueta, Yoichi; Uezono, Yasuhito
2014-02-15
Cancer cachexia (CC), a syndrome characterized by anorexia and body weight loss due to low fat-free mass levels, including reduced musculature, markedly worsens patient quality of life. Although stomach cancer patients have the highest incidence of cachexia, few experimental models for the study of stomach CC have been established. Herein, we developed stomach CC animal models using nude rats subcutaneously implanted with two novel cell lines, i.e., MKN45c185, established from the human stomach cancer cell line MKN-45, and 85As2, derived from peritoneal dissemination of orthotopically implanted MKN45c185 cells in mice. Both CC models showed marked weight loss, anorexia, reduced musculature and muscle strength, increased inflammatory markers, and low plasma albumin levels; however, CC developed earlier and was more severe in rats implanted with 85As2 than in those implanted with MKN45cl85. Moreover, human leukemia inhibitory factor (LIF), a known cachectic factor, and hypothalamic orexigenic peptide mRNA levels increased in the models, whereas hypothalamic anorexigenic peptide mRNA levels decreased. Surgical removal of the tumor not only abolished cachexia symptoms but also reduced plasma LIF levels to below detectable limits. Importantly, oral administration of rikkunshito, a traditional Japanese medicine, substantially ameliorated CC-related anorexia and body composition changes. In summary, our novel peritoneal dissemination-derived 85As2 rat model developed severe cachexia, possibly caused by LIF from cancer cells, that was ameliorated by rikkunshito. This model should provide a useful tool for further study into the mechanisms and treatment of stomach CC.
Lardeux, Sylvie; Kim, James J.; Nicola, Saleem M.
2013-01-01
Binge eating disorders are characterized by discrete episodes of rapid and excessive food consumption. In rats, giving intermittent access to sweet fat food mimics this aspect of binge eating. These models typically employ solid food; however, the total amount consumed depends on motivation, palatability and satiety, which are difficult to dissociate with solid food. In contrast, lick microstructure analysis can be used to dissociate these parameters when the ingestant is a liquid. Therefore, we developed a binge model using a liquid emulsion composed of corn oil, heavy cream and sugar. We show that rats given intermittent access to this high-fat emulsion develop binge-like behavior comparable to that previously observed with solid high-fat food. One feature of this behavior was a gradual escalation in consumption across 2.5 weeks of intermittent access, which was not apparent in rats given lower-fat liquid on the same access schedule. Lick microstructure analysis suggests that this escalation was due at least in part to increases in both motivation to consume and palatability-driven consumption. PMID:23499930
Preliminary Characterization of a Leptin Receptor Knockout Rat Created by CRISPR/Cas9 System.
Bao, Dan; Ma, Yuanwu; Zhang, Xu; Guan, Feifei; Chen, Wei; Gao, Kai; Qin, Chuan; Zhang, Lianfeng
2015-11-05
Leptin receptor, which is encoded by the diabetes (db) gene and is highly expressed in the choroid plexus, regulatesenergy homeostasis, the balance between food intake and energy expenditure, fertility and bone mass. Here, using CRISPR/Cas9 technology, we created the leptin receptor knockout rat. Homozygous leptin receptor null rats are characterized by obesity, hyperphagia, hyperglycemia, glucose intolerance, hyperinsulinemia and dyslipidemia. Due to long-term poor glycemic control, the leptin receptor knockout rats also develop some diabetic complications such as pancreatic, hepatic and renal lesions. In addition, the leptin receptor knockout rats show a significant decrease in bone volume and bone mineral density of the femur compared with their wild-type littermates. Our model has rescued some deficiency of the existing rodent models, such as the transient hyperglycemia of db/db mice in the C57BL/6J genetic background and the delayed onset of glucose intolerance in the Zucker rats, and it is proven to be a useful animal model for biomedical and pharmacological research on obesity and diabetes.
Ratner, Cecilia; Ettrup, Anders; Bueter, Marco; Haahr, Mette E.; Compan, Valérie; le Roux, Carel W.; Levin, Barry; Hansen, Henrik H.; Knudsen, Gitte M.
2013-01-01
Food intake and body weight are regulated by a complex system of neural and hormonal signals, of which the anorexigenic neurotransmitter serotonin (5-hydroxytryptamine or 5-HT) is central. In this study, rat models of obesity and weight loss intervention were compared with regard to several 5-HT markers. Using receptor autoradiography, brain regional-densities of the serotonin transporter (SERT) and the 5-HT2A and 5-HT4 receptors were measured in (i) selectively bred polygenic diet-induced obese (pgDIO) rats, (ii) outbred DIO rats, and (iii) Roux-en-Y gastric bypass (RYGB)-operated rats. pgDIO rats had higher 5-HT4 and 5-HT2A receptor binding and lower SERT binding when compared to polygenic diet-resistant (pgDR) rats. The most pronounced difference between pgDIO and pgDR rats was observed in the nucleus accumbens shell (NAcS), a brain region regulating reward aspects of feeding. No differences were found in the 5-HT markers between DIO rats, chow-fed control rats, and DIO rats experiencing a weight loss. The 5-HT markers were also similar in RYGB and sham-operated rats except for a downregulation of 5-HT2A receptors in the NAcS. The higher receptor and lower SERT binding in pgDIO as compared to pgDR rats corresponds to what is reported in overweight humans and suggests that the dysfunctions of the 5-HT system associated with overeating or propensity to become overweight are polygenically determined. Our results support that the obesity-prone rat model has high translational value and suggests that susceptibility to develop obesity is associated with changed 5-HT tone in the brain that may also regulate hedonic aspects of feeding. PMID:22450706
Translational Modeling in Schizophrenia: Predicting Human Dopamine D2 Receptor Occupancy.
Johnson, Martin; Kozielska, Magdalena; Pilla Reddy, Venkatesh; Vermeulen, An; Barton, Hugh A; Grimwood, Sarah; de Greef, Rik; Groothuis, Geny M M; Danhof, Meindert; Proost, Johannes H
2016-04-01
To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs. A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information. To predict the passive transport across the human blood-brain barrier, apparent permeability values were scaled based on rat and human brain endothelial surface area. Active efflux clearance in brain was scaled from rat to human using both human brain endothelial surface area and MDR1 expression. Binding constants at the D2 receptor were scaled based on the differences between in vitro and in vivo systems of the same species. The predictive power of this physiology-based approach was determined by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at clinically relevant doses. Predicted human D2RO was in good agreement with clinically observed D2RO for five antipsychotics. Models using in vitro information predicted human D2RO well for most of the compounds evaluated in this analysis. However, human D2RO was under-predicted for haloperidol. The rat hybrid PBPKPD model structure, integrated with in vitro information and human pharmacokinetic and physiological information, constitutes a scientific basis to predict the time course of D2RO in man.
Developmental rodent models of fear and anxiety: from neurobiology to pharmacology
Ganella, Despina E; Kim, Jee Hyun
2014-01-01
Anxiety disorders pose one of the biggest threats to mental health in the world, and they predominantly emerge early in life. However, research of anxiety disorders and fear-related memories during development has been largely neglected, and existing treatments have been developed based on adult models of anxiety. The present review describes animal models of anxiety disorders across development and what is currently known of their pharmacology. To summarize, the underlying mechanisms of intrinsic ‘unlearned’ fear are poorly understood, especially beyond the period of infancy. Models using ‘learned’ fear reveal that through development, rats exhibit a stress hyporesponsive period before postnatal day 10, where they paradoxically form odour-shock preferences, and then switch to more adult-like conditioned fear responses. Juvenile rats appear to forget these aversive associations more easily, as is observed with the phenomenon of infantile amnesia. Juvenile rats also undergo more robust extinction, until adolescence where they display increased resistance to extinction. Maturation of brain structures, such as the amygdala, prefrontal cortex and hippocampus, along with the different temporal recruitment and involvement of various neurotransmitter systems (including NMDA, GABA, corticosterone and opioids) are responsible for these developmental changes. Taken together, the studies described in this review highlight that there is a period early in development where rats appear to be more robust in overcoming adverse early life experience. We need to understand the fundamental pharmacological processes underlying anxiety early in life in order to take advantage of this period for the treatment of anxiety disorders. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24527726
Thomas, Reuben; Thomas, Russell S.; Auerbach, Scott S.; Portier, Christopher J.
2013-01-01
Background Several groups have employed genomic data from subchronic chemical toxicity studies in rodents (90 days) to derive gene-centric predictors of chronic toxicity and carcinogenicity. Genes are annotated to belong to biological processes or molecular pathways that are mechanistically well understood and are described in public databases. Objectives To develop a molecular pathway-based prediction model of long term hepatocarcinogenicity using 90-day gene expression data and to evaluate the performance of this model with respect to both intra-species, dose-dependent and cross-species predictions. Methods Genome-wide hepatic mRNA expression was retrospectively measured in B6C3F1 mice following subchronic exposure to twenty-six (26) chemicals (10 were positive, 2 equivocal and 14 negative for liver tumors) previously studied by the US National Toxicology Program. Using these data, a pathway-based predictor model for long-term liver cancer risk was derived using random forests. The prediction model was independently validated on test sets associated with liver cancer risk obtained from mice, rats and humans. Results Using 5-fold cross validation, the developed prediction model had reasonable predictive performance with the area under receiver-operator curve (AUC) equal to 0.66. The developed prediction model was then used to extrapolate the results to data associated with rat and human liver cancer. The extrapolated model worked well for both extrapolated species (AUC value of 0.74 for rats and 0.91 for humans). The prediction models implied a balanced interplay between all pathway responses leading to carcinogenicity predictions. Conclusions Pathway-based prediction models estimated from sub-chronic data hold promise for predicting long-term carcinogenicity and also for its ability to extrapolate results across multiple species. PMID:23737943
Thomas, Reuben; Thomas, Russell S; Auerbach, Scott S; Portier, Christopher J
2013-01-01
Several groups have employed genomic data from subchronic chemical toxicity studies in rodents (90 days) to derive gene-centric predictors of chronic toxicity and carcinogenicity. Genes are annotated to belong to biological processes or molecular pathways that are mechanistically well understood and are described in public databases. To develop a molecular pathway-based prediction model of long term hepatocarcinogenicity using 90-day gene expression data and to evaluate the performance of this model with respect to both intra-species, dose-dependent and cross-species predictions. Genome-wide hepatic mRNA expression was retrospectively measured in B6C3F1 mice following subchronic exposure to twenty-six (26) chemicals (10 were positive, 2 equivocal and 14 negative for liver tumors) previously studied by the US National Toxicology Program. Using these data, a pathway-based predictor model for long-term liver cancer risk was derived using random forests. The prediction model was independently validated on test sets associated with liver cancer risk obtained from mice, rats and humans. Using 5-fold cross validation, the developed prediction model had reasonable predictive performance with the area under receiver-operator curve (AUC) equal to 0.66. The developed prediction model was then used to extrapolate the results to data associated with rat and human liver cancer. The extrapolated model worked well for both extrapolated species (AUC value of 0.74 for rats and 0.91 for humans). The prediction models implied a balanced interplay between all pathway responses leading to carcinogenicity predictions. Pathway-based prediction models estimated from sub-chronic data hold promise for predicting long-term carcinogenicity and also for its ability to extrapolate results across multiple species.
Hormone-induced rat model of polycystic ovary syndrome: A systematic review.
Noroozzadeh, Mahsa; Behboudi-Gandevani, Samira; Zadeh-Vakili, Azita; Ramezani Tehrani, Fahimeh
2017-12-15
Despite polycystic ovary syndrome (PCOS) being one of the most common endocrine disorders affecting reproductive-aged women, the etiopathogenesis and mechanisms of this syndrome remain unclear. Considering the ethical limitations in human studies, animal models that reflect many features of PCOS are crucial resources to investigate this syndrome. We aimed to introduce the most suitable rat model of PCOS that closely mimics the endocrine, ovarian and metabolic disturbances of human PCOS phenotype, while maintaining normal reproductive system morphology in adulthood, in order to further more detailed investigations about PCOS. We searched Pubmed, Science direct, and Web of science between 1990 and 2016, for relevant English manuscripts, using keywords including the "Polycystic Ovary Syndrome AND Rat Model" to generate a subset of citations relevant to our research. Included were those articles that compared at least both ovarian histology or estrous cycle and reproductive hormonal profiles in hormone-induced rat model of PCOS and controls. Differences in the findings between hormone-induced PCOS rats appear to be a result of the degree of transplacental transfer of the steroid administered into the fetus, dose and type of hormone, route of administration and timing and duration of exposure. We conclude that prenatal hormone-induced rat model with a lower dose and shorter time of exposure during the critical period of fetal development that exhibits endocrine, ovarian and metabolic disturbances similar to PCOS in women, while maintaining normal reproductive system morphology in adulthood is more suitable than postnatal hormone-induced rat model to facilitate studies regarding PCOS. Copyright © 2017 Elsevier Inc. All rights reserved.
Developmental rodent models of fear and anxiety: from neurobiology to pharmacology.
Ganella, Despina E; Kim, Jee Hyun
2014-10-01
Anxiety disorders pose one of the biggest threats to mental health in the world, and they predominantly emerge early in life. However, research of anxiety disorders and fear-related memories during development has been largely neglected, and existing treatments have been developed based on adult models of anxiety. The present review describes animal models of anxiety disorders across development and what is currently known of their pharmacology. To summarize, the underlying mechanisms of intrinsic 'unlearned' fear are poorly understood, especially beyond the period of infancy. Models using 'learned' fear reveal that through development, rats exhibit a stress hyporesponsive period before postnatal day 10, where they paradoxically form odour-shock preferences, and then switch to more adult-like conditioned fear responses. Juvenile rats appear to forget these aversive associations more easily, as is observed with the phenomenon of infantile amnesia. Juvenile rats also undergo more robust extinction, until adolescence where they display increased resistance to extinction. Maturation of brain structures, such as the amygdala, prefrontal cortex and hippocampus, along with the different temporal recruitment and involvement of various neurotransmitter systems (including NMDA, GABA, corticosterone and opioids) are responsible for these developmental changes. Taken together, the studies described in this review highlight that there is a period early in development where rats appear to be more robust in overcoming adverse early life experience. We need to understand the fundamental pharmacological processes underlying anxiety early in life in order to take advantage of this period for the treatment of anxiety disorders. © 2014 The British Pharmacological Society.
Skeletal responses to spaceflight
NASA Technical Reports Server (NTRS)
Morey-Holton, Emily R.; Arnaud, Sara B.
1991-01-01
The effect of gravity on the skeletal development and on the bone composition and its regulation in vertebrates is discussed. Results are presented from spaceflight and ground studies in both man and rat on the effect of microgravity on the bone-mineral metabolism (in both species) and on bone maturation and growth (in rats). Special attention is given to a ground-based flight-simulation rat model developed at NASA's Ames Research Center for studies of bone structure at the molecular, organ, and whole-body levels and to comparisons of estimated results with spaceflight data.
Hanak, Anne-Sophie; Malissin, Isabelle; Poupon, Joël; Risède, Patricia; Chevillard, Lucie; Mégarbane, Bruno
2017-03-01
Lithium overdose may result in encephalopathy and electroencephalographic abnormalities. Three poisoning patterns have been identified based on the ingested dose, previous treatment duration and renal function. Whether the severity of lithium-induced encephalopathy depends on the poisoning pattern has not been established. We designed a rat study to investigate lithium-induced encephalopathy and correlate its severity to plasma, erythrocyte, cerebrospinal fluid and brain lithium concentrations previously determined in rat models mimicking human poisoning patterns. Lithium-induced encephalopathy was assessed and scored using continuous electroencephalography. We demonstrated that lithium overdose was consistently responsible for encephalopathy, the severity of which depended on the poisoning pattern. Acutely poisoned rats developed rapid-onset encephalopathy which reached a maximal grade of 2/5 at 6 h and disappeared at 24 h post-injection. Acute-on-chronically poisoned rats developed persistent and slightly fluctuating encephalopathy which reached a maximal grade of 3/5. Chronically poisoned rats developed rapid-onset but gradually increasing life-threatening encephalopathy which reached a maximal grade of 4/5. None of the acutely, 20% of the acute-on-chronically and 57% of the chronically lithium-poisoned rats developed seizures. The relationships between encephalopathy severity and lithium concentrations fitted a sigmoidal E max model based on cerebrospinal fluid concentrations in acute poisoning and brain concentrations in acute-on-chronic poisoning. In chronic poisoning, worsening of encephalopathy paralleled the increase in plasma lithium concentrations. The severity of lithium-induced encephalopathy is dependent on the poisoning pattern, which was previously shown to determine lithium accumulation in the brain. Our data support the proposition that electroencephalography is a sensitive tool for scoring lithium-related neurotoxicity. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Shukla, Mahendra; Ibrahim, Moustafa M A; Jain, Moon; Jaiswal, Swati; Sharma, Abhisheak; Hanif, Kashif; Lal, Jawahar
2017-11-15
Though numerous reports have demonstrated multiple mechanisms by which furosemide can exert its anti-hypertensive response. However, lack of studies describing PK-PD relationship for furosemide featuring its anti-hypertensive property has limited its usage as a blood pressure (BP) lowering agent. Serum concentrations and mean arterial BP were monitored following 40 and 80mgkg -1 multiple oral dose of furosemide in spontaneously hypertensive rats (SHR) and DOCA-salt induced hypertensive (DOCA-salt) rats. A simultaneous population PK-PD relationship using E max model with effect compartment was developed to compare the anti-hypertensive efficacy of furosemide in these rat models. A two-compartment PK model with Weibull-type absorption and first-order elimination best described the serum concentration-time profile of furosemide. In the present study, post dose serum concentrations of furosemide were found to be lower than the EC 50 . The EC 50 predicted in DOCA-salt rats was found to be lower (4.5-fold), whereas the tolerance development was higher than that in SHR model. The PK-PD parameter estimates, particularly lower values of EC 50 , K e and Q in DOCA-salt rats as compared to SHR, pinpointed the higher BP lowering efficacy of furosemide in volume overload induced hypertensive conditions. Insignificantly altered serum creatinine and electrolyte levels indicated a favorable side effect profile of furosemide. In conclusion, the final PK-PD model described the data well and provides detailed insights into the use of furosemide as an anti-hypertensive agent. Copyright © 2017. Published by Elsevier B.V.
Toxicokinetic Model Development for the Insensitive Munitions Component 3-Nitro-1,2,4-Triazol-5-One.
Sweeney, Lisa M; Phillips, Elizabeth A; Goodwin, Michelle R; Bannon, Desmond I
2015-01-01
3-Nitro-1,2,4-triazol-5-one (NTO) is a component of insensitive munitions that are potential replacements for conventional explosives. Toxicokinetic data can aid in the interpretation of toxicity studies and interspecies extrapolation, but only limited data on the toxicokinetics and metabolism of NTO are available. To supplement these limited data, further in vivo studies of NTO in rats were conducted and blood concentrations were measured, tissue distribution of NTO was estimated using an in silico method, and physiologically based pharmacokinetic models of the disposition of NTO in rats and macaques were developed and extrapolated to humans. The model predictions can be used to extrapolate from designated points of departure identified from rat toxicology studies to provide a scientific basis for estimates of acceptable human exposure levels for NTO. © The Author(s) 2015.
Hartl, Brad A; Ma, Htet S W; Hansen, Katherine S; Perks, Julian; Kent, Michael S; Fragoso, Ruben C; Marcu, Laura
2017-07-01
To provide a comprehensive understanding of how the selection of radiation dose affects the temporal and spatial progression of radiation-induced necrosis in the rat model. Necrosis was induced with a single fraction of radiation exposure, at doses ranging between 20 and 60 Gy, to the right hemisphere of 8-week-old Fischer rats from a linear accelerator. The development and progression of necrosis in the rats was monitored and quantified every other week with T1- and T2-weighted gadolinium contrast-enhanced MRI studies. The time to onset of necrosis was found to be dose-dependent, but after the initial onset, the necrosis progression rate and total volume generated was constant across different doses ranging between 30 and 60 Gy. Radiation doses less than 30 Gy did not develop necrosis within 33 weeks after treatment, indicating a dose threshold existing between 20 and 30 Gy. The highest dose used in this study led to the shortest time to onset of radiation-induced necrosis, while producing comparable disease progression dynamics after the onset. Therefore, for the radiation-induced necrosis rat model using a linear accelerator, the most optimum results were generated from a dose of 60 Gy.
Sinusoidal Endothelial Dysfunction Precedes Inflammation and Fibrosis in a Model of NAFLD
Pasarín, Marcos; La Mura, Vincenzo; Gracia-Sancho, Jorge; García-Calderó, Héctor; Rodríguez-Vilarrupla, Aina; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G.
2012-01-01
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Most morbidity associated with the metabolic syndrome is related to vascular complications, in which endothelial dysfunction is a major pathogenic factor. However, whether NAFLD is associated with endothelial dysfunction within the hepatic vasculature is unknown. The aims of this study were to explore, in a model of diet-induced overweight that expresses most features of the metabolic syndrome, whether early NAFLD is associated with liver endothelial dysfunction. Wistar Kyoto rats were fed a cafeteria diet (CafD; 65% of fat, mostly saturated) or a control diet (CD) for 1 month. CafD rats developed features of the metabolic syndrome (overweight, arterial hypertension, hypertryglyceridemia, hyperglucemia and insulin resistance) and liver steatosis without inflammation or fibrosis. CafD rats had a significantly higher in vivo hepatic vascular resistance than CD. In liver perfusion livers from CafD rats had an increased portal perfusion pressure and decreased endothelium-dependent vasodilation. This was associated with a decreased Akt-dependent eNOS phosphorylation and NOS activity. In summary, we demonstrate in a rat model of the metabolic syndrome that shows features of NAFLD, that liver endothelial dysfunction occurs before the development of fibrosis or inflammation. PMID:22509248
Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System
Badhan, Raj K. Singh; Chenel, Marylore; Penny, Jeffrey I.
2014-01-01
Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways. PMID:24647103
Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R
2010-04-01
Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.
Ivy, D Dunbar; McMurtry, Ivan F; Colvin, Kelley; Imamura, Masatoshi; Oka, Masahiko; Lee, Dong-Seok; Gebb, Sarah; Jones, Peter Lloyd
2005-06-07
Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ET(B) receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ET(B) receptor-deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT(+/+)) and ET(B) receptor-deficient (MCT(sl/sl)) rats at 6 weeks of age were assessed. MCT(sl/sl) rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCT(sl/sl) rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCT(sl/sl) rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ET(B) receptors was decreased in MCT(sl/sl) rat lungs, ET(A) receptor expression increased. Deficiency of the ET(B) receptor markedly accelerates the progression of PAH in rats treated with MCT and enhances the appearance of cellular and molecular markers associated with the pathobiology of PAH. Collectively, these results suggest an overall antiproliferative effect of the ET(B) receptor in pulmonary vascular homeostasis.
Ivy, D. Dunbar; McMurtry, Ivan F.; Colvin, Kelley; Imamura, Masatoshi; Oka, Masahiko; Lee, Dong-Seok; Gebb, Sarah; Jones, Peter Lloyd
2007-01-01
Background Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ETB receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ETB receptor–deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. Methods and Results The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT+/+) and ETB receptor–deficient (MCTsl/sl) rats at 6 weeks of age were assessed. MCTsl/sl rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCTsl/sl rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCTsl/sl rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ETB receptors was decreased in MCTsl/sl rat lungs, ETA receptor expression increased. Conclusions Deficiency of the ETB receptor markedly accelerates the progression of PAH in rats treated with MCT and enhances the appearance of cellular and molecular markers associated with the pathobiology of PAH. Collectively, these results suggest an overall antiproliferative effect of the ETB receptor in pulmonary vascular homeostasis. PMID:15927975
Spinal Anesthesia in Infant Rats: Development of a Model and Assessment of Neurological Outcomes
Yahalom, Barak; Athiraman, Umeshkumar; Soriano, Sulpicio G.; Zurakowski, David; Carpino, Elizabeth; Corfas, Gabriel; Berde, Charles B.
2012-01-01
Background Previous studies in infant rats and case-control studies of human infants undergoing surgery have raised concerns about potential neurodevelopmental toxicities of general anesthesia. Spinal anesthesia is an alternative to general anesthesia for some infant surgeries. To test for potential toxicity, we developed a spinal anesthesia model in infant rats. Methods Rats of postnatal ages 7, 14, and 21 days were assigned to: no treatment; 1% isoflurane for either 1 h or 6 h, or lumbar spinal injection of saline or bupivacaine, at doses of 3.75 mg/kg (low dose) or 7.5 mg/kg (high dose). Subgroups of animals underwent neurobehavioral testing and blood gas analysis. Brain and lumbar spinal cord sections were examined for apoptosis using cleaved caspase-3 immunostaining. Lumbar spinal cord was examined histologically. Rats exposed to spinal or general anesthesia as infants underwent Rotarod testing of motor performance as adults. Data were analyzed using analysis of variance (ANOVA) using general linear models, Friedman Tests, and Mann–Whitney U tests, as appropriate. Results Bupivacaine 3.75 mg/kg was effective for spinal anesthesia in all age groups, and produced sensory and motor function recovered in 40 to 60 min. Blood gases were similar among groups. Brain and spinal cord apoptosis increased in rats receiving 6 h of 1% isoflurane, but not among the other treatments. All groups showed intact motor performance at adulthood. Conclusions Spinal anesthesia is technically feasible in infant rats, and appears benign in terms of neuroapoptotic and neuromotor sequelae. PMID:21555934
Development of PBPK Models for Gasoline in Adult and ...
Concern for potential developmental effects of exposure to gasoline-ethanol blends has grown along with their increased use in the US fuel supply. Physiologically-based pharmacokinetic (PBPK) models for these complex mixtures were developed to address dosimetric issues related to selection of exposure concentrations for in vivo toxicity studies. Sub-models for individual hydrocarbon (HC) constituents were first developed and calibrated with published literature or QSAR-derived data where available. Successfully calibrated sub-models for individual HCs were combined, assuming competitive metabolic inhibition in the liver, and a priori simulations of mixture interactions were performed. Blood HC concentration data were collected from exposed adult non-pregnant (NP) rats (9K ppm total HC vapor, 6h/day) to evaluate performance of the NP mixture model. This model was then converted to a pregnant (PG) rat mixture model using gestational growth equations that enabled a priori estimation of life-stage specific kinetic differences. To address the impact of changing relevant physiological parameters from NP to PG, the PG mixture model was first calibrated against the NP data. The PG mixture model was then evaluated against data from PG rats that were subsequently exposed (9K ppm/6.33h gestation days (GD) 9-20). Overall, the mixture models adequately simulated concentrations of HCs in blood from single (NP) or repeated (PG) exposures (within ~2-3 fold of measured values of
Miyamoto, Tadayoshi; Manabe, Kou; Ueda, Shinya; Nakahara, Hidehiro
2018-05-01
What is the central question of this study? The lack of useful small-animal models for studying exercise hyperpnoea makes it difficult to investigate the underlying mechanisms of exercise-induced ventilatory abnormalities in various disease states. What is the main finding and its importance? We developed an anaesthetized-rat model for studying exercise hyperpnoea, using a respiratory equilibrium diagram for quantitative characterization of the respiratory chemoreflex feedback system. This experimental model will provide an opportunity to clarify the major determinant mechanisms of exercise hyperpnoea, and will be useful for understanding the mechanisms responsible for abnormal ventilatory responses to exercise in disease models. Exercise-induced ventilatory abnormalities in various disease states seem to arise from pathological changes of respiratory regulation. Although experimental studies in small animals are essential to investigate the pathophysiological basis of various disease models, the lack of an integrated framework for quantitatively characterizing respiratory regulation during exercise prevents us from resolving these problems. The purpose of this study was to develop an anaesthetized-rat model for studying exercise hyperpnoea for quantitative characterization of the respiratory chemoreflex feedback system. In 24 anaesthetized rats, we induced muscle contraction by stimulating bilateral distal sciatic nerves at low and high voltage to mimic exercise. We recorded breath-by-breath respiratory gas analysis data and cardiorespiratory responses while running two protocols to characterize the controller and plant of the respiratory chemoreflex. The controller was characterized by determining the linear relationship between end-tidal CO 2 pressure (P ETC O2) and minute ventilation (V̇E), and the plant by the hyperbolic relationship between V̇E and P ETC O2. During exercise, the controller curve shifted upward without change in controller gain, accompanying increased oxygen uptake. The hyperbolic plant curve shifted rightward and downward depending on exercise intensity as predicted by increased metabolism. Exercise intensity-dependent changes in operating points (V̇E and P ETC O2) were estimated by integrating the controller and plant curves in a respiratory equilibrium diagram. In conclusion, we developed an anaesthetized-rat model for studying exercise hyperpnoea, using systems analysis for quantitative characterization of the respiratory system. This novel experimental model will be useful for understanding the mechanisms responsible for abnormal ventilatory responses to exercise in disease models. © 2018 Morinomiya University of Medical Sciences. Experimental Physiology © 2018 The Physiological Society.
Mullen, Yoko
2017-04-01
In 1974, the discovery of a mouse and a rat that spontaneously developed hyperglycemia led to the development of 2 autoimmune diabetes models: nonobese diabetic (NOD) mouse and Bio-Breeding rat. These models have contributed to our understanding of autoimmune diabetes, provided tools to dissect autoimmune islet damage, and facilitated development of early detection, prevention, and treatment of type 1 diabetes. The genetic characterization, monoclonal antibodies, and congenic strains have made NOD mice especially useful.Although the establishment of the inbred NOD mouse strain was documented by Makino et al (Jikken Dobutsu. 1980;29:1-13), this review will focus on the not-as-well-known history leading to the discovery of a glycosuric female mouse by Yoshihiro Tochino. This discovery was spearheaded by years of effort by Japanese scientists from different disciplines and dedicated animal care personnel and by the support of the Shionogi Pharmaceutical Company, Osaka, Japan. The history is based on the early literature, mostly written in Japanese, and personal communications especially with Dr Tochino, who was involved in diabetes animal model development and who contributed to the release of NOD mice to the international scientific community. This article also reviews the scientific contributions made by the Bio-Breeding rat to autoimmune diabetes.
[Influence of bear bile on rat hepatocarcinoma induced by diethylnitrosamine].
Zhou, Jian-Yin; Yin, Zhen-Yu; Wang, Sheng-Yu; Yan, Jiang-Hua; Zhao, Yi-Lin; Wu, Duan; Liu, Zheng-Jin; Zhang, Sheng; Wang, Xiao-Min
2012-11-01
To investigate the influence of bear bile on rat hepatocarcinoma induced by diethylnitrosamine (DEN), a total of 40 rats were randomly divided into 4 groups: normal control group, model group, and two bear bile treatment groups. The rat liver cancer model was induced by breeding with water containing 100 mg x L(-1) DEN for 14 weeks. The rats of the bear bile groups received bear bile powder (200 or 400 mg x kg(-1)) orally 5 times per week for 18 weeks. The general condition and the body weight of rats were examined every day. After 18 weeks the activities of serum alanine transaminase (ALT), aspartate transaminase (AST) and total bilirubin (TBIL) were detected. Meanwhile, the pathological changes of liver tissues were observed after H&E staining. The expression of proliferative cell nuclear antigen (PCNA) and a-smooth muscle actin (alpha-SMA) in liver tissue were detected by immunohistochemical method. After 4 weeks the body weights of rats in normal group were significantly more than that in other groups (P < 0.05); and that in the two bile groups was significantly more than that in the model group. Compared with normal group, the level of serum glutamic-pyruvic transaminase and total bilirubin increased significantly in other groups; compared with model group, these two indexes decreased significantly in two bile groups. Hepatocellular carcinoma occurred in all rats except for normal group; there were classic cirrhosis and cancer in model group while there were mild cirrhosis and high differentiation in two bile groups. There were almost no expressions of PCNA and alpha-SMA in normal group while there were high expressions in model group; the two bile groups had some expressions but were inferior to the model group, and alpha-SMA reduced markedly. It indicated that bear bile restrained the development of liver cancer during DEN inducing rat hepatocarcinoma, which may be related to its depressing hepatic stellate cell activation and relieving hepatic lesion and cirrhosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Subeihi, Ala' A.A., E-mail: ala.alsubeihi@wur.nl; BEN-HAYYAN-Aqaba International Laboratories, Aqaba Special Economic Zone Authority; Spenkelink, Bert
2012-05-01
This study defines a physiologically based kinetic (PBK) model for methyleugenol (ME) in human based on in vitro and in silico derived parameters. With the model obtained, bioactivation and detoxification of methyleugenol (ME) at different doses levels could be investigated. The outcomes of the current model were compared with those of a previously developed PBK model for methyleugenol (ME) in male rat. The results obtained reveal that formation of 1′-hydroxymethyleugenol glucuronide (1′HMEG), a major metabolic pathway in male rat liver, appears to represent a minor metabolic pathway in human liver whereas in human liver a significantly higher formation of 1′-oxomethyleugenolmore » (1′OME) compared with male rat liver is observed. Furthermore, formation of 1′-sulfooxymethyleugenol (1′HMES), which readily undergoes desulfonation to a reactive carbonium ion (CA) that can form DNA or protein adducts (DA), is predicted to be the same in the liver of both human and male rat at oral doses of 0.0034 and 300 mg/kg bw. Altogether despite a significant difference in especially the metabolic pathways of the proximate carcinogenic metabolite 1′-hydroxymethyleugenol (1′HME) between human and male rat, the influence of species differences on the ultimate overall bioactivation of methyleugenol (ME) to 1′-sulfooxymethyleugenol (1′HMES) appears to be negligible. Moreover, the PBK model predicted the formation of 1′-sulfooxymethyleugenol (1′HMES) in the liver of human and rat to be linear from doses as high as the benchmark dose (BMD{sub 10}) down to as low as the virtual safe dose (VSD). This study shows that kinetic data do not provide a reason to argue against linear extrapolation from the rat tumor data to the human situation. -- Highlights: ► A PBK model is made for bioactivation and detoxification of methyleugenol in human. ► Comparison to the PBK model in male rat revealed species differences. ► PBK results support linear extrapolation from high to low dose and from rat to human.« less
Kawano, Takashi; Eguchi, Satoru; Iwata, Hideki; Tamura, Takahiko; Kumagai, Naoko; Yokoyama, Masataka
2015-07-01
Sustained neuroinflammation may contribute to the pathogenesis of postoperative cognitive dysfunction (POCD). Here, the authors evaluated the preventive effect of preoperative environmental enrichment (PEE) on the development of neuroinflammation and concomitant POCD in a rat abdominal surgery model. Young and aged rats were assigned to one of four groups using a 2 × 2 experimental design: PEE versus sedentary condition for 14 days, by abdominal surgery versus anesthesia alone (n = 8 in each group). After a 7-day postsurgical recovery period, cognitive function was assessed using a novel object recognition test, followed by measurement of hippocampal levels of proinflammatory cytokines. Under identical conditions, microglia were isolated from the hippocampus for assessment of cytokine response to lipopolysaccharide. In the sedentary group, aged, but not young, rats receiving surgery showed memory deficits (novel object preference during testing phase of 54.6 ± 7.8% vs. 76.9 ± 11.3% in nonsurgery group, P < 0.05) and increased hippocampal levels of cytokines compared with nonsurgical rats. PEE had no effects on novel object preference in nonsurgery animals (78.6 ± 10.7%), whereas it attenuated surgery-induced impairment of novel object preference (70.9 ± 15.0%, P < 0.05 vs. sedentary/surgery group) as well as increase of cytokine levels in hippocampus. Furthermore, upon ex vivo stimulation with lipopolysaccharide, cytokines release from hippocampal microglia isolated from aged rats before intervention was significantly higher in comparison with young rats. PEE resulted in reduction of these age-related microglial phenotypic changes. PEE could prevent the development of neuroinflammation and related POCD in aged rats by reversion of a proinflammatory phenotype of hippocampal microglia.
Chemical renal denervation in the rat.
Consigny, Paul M; Davalian, Dariush; Donn, Rosy; Hu, Jie; Rieser, Matthew; Stolarik, Deanne
2014-02-01
The recent success of renal denervation in lowering blood pressure in drug-resistant hypertensive patients has stimulated interest in developing novel approaches to renal denervation including local drug/chemical delivery. The purpose of this study was to develop a rat model in which depletion of renal norepinephrine (NE) could be used to determine the efficacy of renal denervation after the delivery of a chemical to the periadventitial space of the renal artery. Renal denervation was performed on a single renal artery of 90 rats (n = 6 rats/group). The first study determined the time course of renal denervation after surgical stripping of a renal artery plus the topical application of phenol in alcohol. The second study determined the efficacy of periadventitial delivery of hypertonic saline, guanethidine, and salicylic acid. The final study determined the dose-response relationship for paclitaxel. In all studies, renal NE content was determined by liquid chromatography-mass spectrometry. Renal NE was depleted 3 and 7 days after surgical denervation. Renal NE was also depleted by periadventitial delivery of all agents tested (hypertonic saline, salicylic acid, guanethidine, and paclitaxel). A dose response was observed after the application of 150 μL of 10(-5) M through 10(-2) M paclitaxel. We developed a rat model in which depletion of renal NE was used to determine the efficacy of renal denervation after perivascular renal artery drug/chemical delivery. We validated this model by demonstrating the efficacy of the neurotoxic agents hypertonic saline, salicylic acid, and guanethidine and increasing doses of paclitaxel.
Borghoff, Susan J; Ring, Caroline; Banton, Marcy I; Leavens, Teresa L
2017-05-01
In cancer bioassays, inhalation, but not drinking water exposure to ethyl tertiary-butyl ether (ETBE), caused liver tumors in male rats, while tertiary-butyl alcohol (TBA), an ETBE metabolite, caused kidney tumors in male rats following exposure via drinking water. To understand the contribution of ETBE and TBA kinetics under varying exposure scenarios to these tumor responses, a physiologically based pharmacokinetic model was developed based on a previously published model for methyl tertiary-butyl ether, a structurally similar chemical, and verified against the literature and study report data. The model included ETBE and TBA binding to the male rat-specific protein α2u-globulin, which plays a role in the ETBE and TBA kidney response observed in male rats. Metabolism of ETBE and TBA was described as a single, saturable pathway in the liver. The model predicted similar kidney AUC 0-∞ for TBA for various exposure scenarios from ETBE and TBA cancer bioassays, supporting a male-rat-specific mode of action for TBA-induced kidney tumors. The model also predicted nonlinear kinetics at ETBE inhalation exposure concentrations above ~2000 ppm, based on blood AUC 0-∞ for ETBE and TBA. The shift from linear to nonlinear kinetics at exposure concentrations below the concentration associated with liver tumors in rats (5000 ppm) suggests the mode of action for liver tumors operates under nonlinear kinetics following chronic exposure and is not relevant for assessing human risk. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd.
Sakai, Kohei; Kimura, Osamu; Furukawa, Taizo; Fumino, Shigehisa; Higuchi, Koji; Wakao, Junko; Kimura, Koseki; Aoi, Shigeyoshi; Masumoto, Kouji; Tajiri, Tatsuro
2014-12-01
Fetal medical treatment to improve lung hypoplasia in congenital diaphragmatic hernia (CDH) has yet to be established. The neuropeptide bombesin (BBS) might play an important role in lung development. The present study aims to determine whether prenatally administered BBS could be useful to promote fetal lung development in a rat model of nitrofen-induced CDH. Pregnant rats were administered with nitrofen (100mg) on gestation day 9.5 (E9.5). BBS (50mg/kg/day) was then daily infused intraperitoneally from E14, and fetal lungs were harvested on E21. The expression of PCNA was assessed by both immunohistochemical staining and RT-PCR to determine the amount of cell proliferation. Lung maturity was assessed as the expression of TTF-1, a marker of alveolar epithelial cell type II. The lung-body-weight ratio was significantly increased in CDH/BBS(+) compared with CDH/BBS(-) (p<0.05). The number of cells stained positive for PCNA and TTF-1 was significantly decreased in CDH/BBS(+) compared with CDH/BBS(-) (p<0.01). The TTF-1 mRNA expression levels were significantly decreased in CDH/BBS(+) compared with CDH/BBS(-) (p<0.05). Prenatally administered BBS promotes lung development in a rat model of nitrofen-induced CDH. Neuropeptide BBS could help to rescue lung hypoplasia in fetal CDH. Copyright © 2014 Elsevier Inc. All rights reserved.
Myers, Catherine E.; Smith, Ian M.; Servatius, Richard J.; Beck, Kevin D.
2014-01-01
Avoidance behaviors, in which a learned response causes omission of an upcoming punisher, are a core feature of many psychiatric disorders. While reinforcement learning (RL) models have been widely used to study the development of appetitive behaviors, less attention has been paid to avoidance. Here, we present a RL model of lever-press avoidance learning in Sprague-Dawley (SD) rats and in the inbred Wistar Kyoto (WKY) rat, which has been proposed as a model of anxiety vulnerability. We focus on “warm-up,” transiently decreased avoidance responding at the start of a testing session, which is shown by SD but not WKY rats. We first show that a RL model can correctly simulate key aspects of acquisition, extinction, and warm-up in SD rats; we then show that WKY behavior can be simulated by altering three model parameters, which respectively govern the tendency to explore new behaviors vs. exploit previously reinforced ones, the tendency to repeat previous behaviors regardless of reinforcement, and the learning rate for predicting future outcomes. This suggests that several, dissociable mechanisms may contribute independently to strain differences in behavior. The model predicts that, if the “standard” inter-session interval is shortened from 48 to 24 h, SD rats (but not WKY) will continue to show warm-up; we confirm this prediction in an empirical study with SD and WKY rats. The model further predicts that SD rats will continue to show warm-up with inter-session intervals as short as a few minutes, while WKY rats will not show warm-up, even with inter-session intervals as long as a month. Together, the modeling and empirical data indicate that strain differences in warm-up are qualitative rather than just the result of differential sensitivity to task variables. Understanding the mechanisms that govern expression of warm-up behavior in avoidance may lead to better understanding of pathological avoidance, and potential pathways to modify these processes. PMID:25183956
Vascularized anal autotransplantation model in rats: preliminary report.
Araki, J; Mihara, M; Narushima, M; Iida, T; Sato, T; Koshima, I
2011-11-01
Ostomy has served as an effective surgery for various anorectal disfunctions. However, it must also be noted that those patients suffered greatly from stresses caused by their stoma. Many alternative therapies have been developed, but none have solved this critical issue. Meanwhile, due to the improvements in operative methods and immunosuppressive therapy, allotranplantation has gained great popularity in recent years. Therefore, we began development of an anal transplantation model. The operation was performed in six adult Wistar rats that were divided into two groups. Group 1 underwent vascular anastomoses, while group 2 did not Group 1 grafts survived, fully recovering anal function. However, many of the group 2 grafts did not survive; those that did survive showed major defects in their anus, never recovering anal function. We succeeded in establishing the rat anal transplantation model utilizing super-microsurgery. While research in anal transplantation was behind compared to that in other fields, we hope that this model will bring significant possibilities for the future. Copyright © 2011 Elsevier Inc. All rights reserved.
Lloyd, Eric E; Durgan, David J; Martini, Sharyl R; Bryan, Robert M
2015-10-01
We tested the hypothesis that apneas during the sleep cycle exacerbate hypertension and accelerate changes that occur with cerebral small vessel disease. Obstructive sleep apnea was modeled by intermittent inflations of a chronically implanted tracheal balloon to occlude the airway during the sleep cycle (termed OSA) in spontaneously hypertensive stroke-prone (SHRSP) rats, a model of cerebral small vessel disease. SHRSP rats and their parent strain, Wistar Kyoto (WKY) rats, were exposed to OSA for 2 weeks (from 9 to 11 or from 18 to 20 weeks). At 9 weeks, hypertension was developing in the SHRSP rats and was firmly established by 18 weeks. OSA exposure increased systolic blood pressure in SHRSP rats by ≈30 mm Hg in both age groups compared with shams that were surgically prepared but not exposed to OSA (P<0.05). OSA exposure also increased systolic blood pressure in WKY rats by 20 and 37 mm Hg at 11 and 20 weeks, respectively (P<0.05). OSA exposure in SHRSP rats compromised blood-brain barrier integrity in white matter at both 11 and 20 weeks of age when compared with SHRSP sham rats (P<0.05). Microglia were activated in SHRSP rats exposed to OSA but not in sham rats at 11 weeks (P<0.05). At 20 weeks, microglia were activated in sham SHRSP rats (P<0.05) compared with WKY sham rats and were not further activated by OSA. Neither was blood-brain barrier integrity altered nor microglia activated in any of the WKY groups. We conclude that OSA accelerates the onset of the cerebral pathologies associated with cerebral small vessel disease in SHRSP, but not WKY, rats. © 2015 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paini, Alicia, E-mail: alicia.paini@rdls.nestle.co; Nestle Research Center, PO Box 44, Lausanne; Punt, Ans
2010-05-15
Estragole has been shown to be hepatocarcinogenic in rodent species at high-dose levels. Translation of these results into the likelihood of formation of DNA adducts, mutation, and ultimately cancer upon more realistic low-dose exposures remains a challenge. Recently we have developed physiologically based biokinetic (PBBK) models for rat and human predicting bioactivation of estragole. These PBBK models, however, predict only kinetic characteristics. The present study describes the extension of the PBBK model to a so-called physiologically based biodynamic (PBBD) model predicting in vivo DNA adduct formation of estragole in rat liver. This PBBD model was developed using in vitro datamore » on DNA adduct formation in rat primary hepatocytes exposed to 1'-hydroxyestragole. The model was extended by linking the area under the curve for 1'-hydroxyestragole formation predicted by the PBBK model to the area under the curve for 1'-hydroxyestragole in the in vitro experiments. The outcome of the PBBD model revealed a linear increase in DNA adduct formation with increasing estragole doses up to 100 mg/kg bw. Although DNA adduct formation of genotoxic carcinogens is generally seen as a biomarker of exposure rather than a biomarker of response, the PBBD model now developed is one step closer to the ultimate toxic effect of estragole than the PBBK model described previously. Comparison of the PBBD model outcome to available data showed that the model adequately predicts the dose-dependent level of DNA adduct formation. The PBBD model predicts DNA adduct formation at low levels of exposure up to a dose level showing to cause cancer in rodent bioassays, providing a proof of principle for modeling a toxicodynamic in vivo endpoint on the basis of solely in vitro experimental data.« less
Surgical anatomy of the liver, hepatic vasculature and bile ducts in the rat.
Martins, Paulo Ney Aguiar; Neuhaus, Peter
2007-04-01
The rat is the most used experimental model in surgical research. Virtually all procedures in clinical liver surgery can be performed in the rat. However, the use of the rat model in liver surgery is limited by its small size and limited knowledge of the liver anatomy. As in humans, the rat liver vasculature and biliary system have many anatomical variations. The development of surgical techniques, and the study of liver function and diseases require detailed knowledge of the regional anatomy. The objective of this study was to describe and illustrate systematically the surgical anatomy of the rat liver to facilitate the planning and performance of studies in this animal. Knowledge of the diameter and length of liver vessels is also important for the selection of catheters and perivascular devices. Twelve Wistar rat livers were dissected using a surgical microscope. Hepatic and extrahepatic anatomical structures were measured under magnification with a millimeter scale. In this study, we describe the rat liver topographical anatomy, compare it with the human liver and review the literature. Increased knowledge of the rat liver anatomy and microsurgical skills permit individualized dissection, parenchymal section, embolization and ligature of vascular and biliary branches.
Lactobacillus johnsonii N6.2 Mitigates the Development of Type 1 Diabetes in BB-DP Rats
Li, Nan; Williams, Emily; Lai, Kin-Kwan; Abdelgeliel, Asmaa Sayed; Gonzalez, Claudio F.; Wasserfall, Clive H.; Larkin, Joseph; Schatz, Desmond; Atkinson, Mark A.; Triplett, Eric W.; Neu, Josef; Lorca, Graciela L.
2010-01-01
Background The intestinal epithelium is a barrier that composes one of the most immunologically active surfaces of the body due to constant exposure to microorganisms as well as an infinite diversity of food antigens. Disruption of intestinal barrier function and aberrant mucosal immune activation have been implicated in a variety of diseases within and outside of the gastrointestinal tract. With this model in mind, recent studies have shown a link between diet, composition of intestinal microbiota, and type 1 diabetes pathogenesis. In the BioBreeding rat model of type 1 diabetes, comparison of the intestinal microbial composition of diabetes prone and diabetes resistant animals found Lactobacillus species were negatively correlated with type 1 diabetes development. Two species, Lactobacillus johnsonii and L. reuteri, were isolated from diabetes resistant rats. In this study diabetes prone rats were administered pure cultures of L. johnsonii or L. reuteri isolated from diabetes resistant rats to determine the effect on type 1 diabetes development. Methodology/Principal Findings Results Rats administered L. johnsonii, but not L. reuteri, post-weaning developed type 1 diabetes at a protracted rate. Analysis of the intestinal ileum showed administration of L. johnsonii induced changes in the native microbiota, host mucosal proteins, and host oxidative stress response. A decreased oxidative intestinal environment was evidenced by decreased expression of several oxidative response proteins in the intestinal mucosa (Gpx1, GR, Cat). In L. johnsonii fed animals low levels of the pro-inflammatory cytokine IFNγ were correlated with low levels of iNOS and high levels of Cox2. The administration of L. johnsonii also resulted in higher levels of the tight junction protein claudin. Conclusions It was determined that the administration of L. johnsonii isolated from BioBreeding diabetes resistant rats delays or inhibits the onset of type 1 diabetes in BioBreeding diabetes prone rats. Taken collectively, these data suggest that the gut and the gut microbiota are potential agents of influence in type 1 diabetes development. These data also support therapeutic efforts that seek to modify gut microbiota as a means to modulate development of this disorder. PMID:20463897
Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats.
Valladares, Ricardo; Sankar, Dhyana; Li, Nan; Williams, Emily; Lai, Kin-Kwan; Abdelgeliel, Asmaa Sayed; Gonzalez, Claudio F; Wasserfall, Clive H; Larkin, Joseph; Schatz, Desmond; Atkinson, Mark A; Triplett, Eric W; Neu, Josef; Lorca, Graciela L
2010-05-06
The intestinal epithelium is a barrier that composes one of the most immunologically active surfaces of the body due to constant exposure to microorganisms as well as an infinite diversity of food antigens. Disruption of intestinal barrier function and aberrant mucosal immune activation have been implicated in a variety of diseases within and outside of the gastrointestinal tract. With this model in mind, recent studies have shown a link between diet, composition of intestinal microbiota, and type 1 diabetes pathogenesis. In the BioBreeding rat model of type 1 diabetes, comparison of the intestinal microbial composition of diabetes prone and diabetes resistant animals found Lactobacillus species were negatively correlated with type 1 diabetes development. Two species, Lactobacillus johnsonii and L. reuteri, were isolated from diabetes resistant rats. In this study diabetes prone rats were administered pure cultures of L. johnsonii or L. reuteri isolated from diabetes resistant rats to determine the effect on type 1 diabetes development. Findings Results Rats administered L. johnsonii, but not L. reuteri, post-weaning developed type 1 diabetes at a protracted rate. Analysis of the intestinal ileum showed administration of L. johnsonii induced changes in the native microbiota, host mucosal proteins, and host oxidative stress response. A decreased oxidative intestinal environment was evidenced by decreased expression of several oxidative response proteins in the intestinal mucosa (Gpx1, GR, Cat). In L. johnsonii fed animals low levels of the pro-inflammatory cytokine IFNgamma were correlated with low levels of iNOS and high levels of Cox2. The administration of L. johnsonii also resulted in higher levels of the tight junction protein claudin. It was determined that the administration of L. johnsonii isolated from BioBreeding diabetes resistant rats delays or inhibits the onset of type 1 diabetes in BioBreeding diabetes prone rats. Taken collectively, these data suggest that the gut and the gut microbiota are potential agents of influence in type 1 diabetes development. These data also support therapeutic efforts that seek to modify gut microbiota as a means to modulate development of this disorder.
Biochemical, metabolic, and behavioral characteristics of immature chronic hyperphenylalanemic rats
Dienel, Gerald A.; Cruz, Nancy F.
2015-01-01
Phenylketonuria and hyperphenylalanemia are inborn errors in metabolism of phenylalanine arising from defects in steps to convert phenylalanine to tyrosine. Phe accumulation causes severe mental retardation that can be prevented by timely identification of affected individuals and their placement on a Phe-restricted diet. In spite of many studies in patients and animal models, the basis for acquisition of mental retardation during the critical period of brain development is not adequately understood. All animal models for human disease have advantages and limitations, and characteristics common to different models are most likely to correspond to the disorder. This study established similar levels of Phe exposure in developing rats between 3 and 16 days of age using three models to produce chronic hyperphenylalanemia, and identified changes in brain amino acid levels common to all models that persist for ~16h of each day. In a representative model, local rates of glucose utilization (CMRglc) were determined at 25–27 days of age, and only selective changes that appeared to depend on Phe exposure were observed. CMRglc was reduced in frontal cortex and thalamus and increased in hippocampus and globus pallidus. Behavioral testing to evaluate neuromuscular competence revealed poor performance in chronically-hyperphenylalanemic rats that persisted for at least three weeks after cessation of Phe injections and did not occur with mild or acute hyperphenylalanemia. Thus, the abnormal amino acid environment, including hyperglycinemia, in developing rat brain is associated with selective regional changes in glucose utilization and behavioral abnormalities that are not readily reversed after they are acquired. PMID:26224289
Somayajulu-Niţu, Mallika; Sandhu, Jagdeep K; Cohen, Jerome; Sikorska, Marianna; Sridhar, TS; Matei, Anca; Borowy-Borowski, Henryk; Pandey, Siyaram
2009-01-01
Background Parkinson's disease, for which currently there is no cure, develops as a result of progressive loss of dopamine neurons in the brain; thus, identification of any potential therapeutic intervention for disease management is of a great importance. Results Here we report that prophylactic application of water-soluble formulation of coenzyme Q10 could effectively offset the effects of environmental neurotoxin paraquat, believed to be a contributing factor in the development of familial PD. In this study we utilized a model of paraquat-induced dopaminergic neurodegeneration in adult rats that received three weekly intra-peritoneal injections of the herbicide paraquat. Histological and biochemical analyses of rat brains revealed increased levels of oxidative stress markers and a loss of approximately 65% of dopamine neurons in the substantia nigra region. The paraquat-exposed rats also displayed impaired balancing skills on a slowly rotating drum (rotorod) evidenced by their reduced spontaneity in gait performance. In contrast, paraquat exposed rats receiving a water-soluble formulation of coenzyme Q10 in their drinking water prior to and during the paraquat treatment neither developed neurodegeneration nor reduced rotorod performance and were indistinguishable from the control paraquat-untreated rats. Conclusion Our data confirmed that paraquat-induced neurotoxicity represents a convenient rat model of Parkinsonian neurodegeneration suitable for mechanistic and neuroprotective studies. This is the first preclinical evaluation of a water-soluble coenzyme Q10 formulation showing the evidence of prophylactic neuroprotection at clinically relevant doses. PMID:19635141
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corley, Richard A.; Kabilan, Senthil; Kuprat, Andrew P.
Coupling computational fluid dynamics (CFD) with physiologically based pharmacokinetic (PBPK) models is useful for predicting site-specific dosimetry of airborne materials in the respiratory tract and elucidating the importance of species differences in anatomy, physiology, and breathing patterns. Historically, these models were limited to discrete regions of the respiratory system. CFD/PBPK models have now been developed for the rat, monkey, and human that encompass airways from the nose or mouth to the lung. A PBPK model previously developed to describe acrolein uptake in nasal tissues was adapted to the extended airway models as an example application. Model parameters for each anatomicmore » region were obtained from the literature, measured directly, or estimated from published data. Airflow and site-specific acrolein uptake patterns were determined under steadystate inhalation conditions to provide direct comparisons with prior data and nasalonly simulations. Results confirmed that regional uptake was dependent upon airflow rates and acrolein concentrations with nasal extraction efficiencies predicted to be greatest in the rat, followed by the monkey, then the human. For human oral-breathing simulations, acrolein uptake rates in oropharyngeal and laryngeal tissues were comparable to nasal tissues following nasal breathing under the same exposure conditions. For both breathing modes, higher uptake rates were predicted for lower tracheo-bronchial tissues of humans than either the rat or monkey. These extended airway models provide a unique foundation for comparing dosimetry across a significantly more extensive range of conducting airways in the rat, monkey, and human than prior CFD models.« less
Hillebrand, J J G; Heinsbroek, A C M; Kas, M J H; Adan, R A H
2006-02-01
Biochemical, genetic and imaging studies support the involvement of the serotonin (5-HT) system in anorexia nervosa. Activity-based anorexia (ABA) is considered an animal model of anorexia nervosa, and combines scheduled feeding with voluntary running wheel activity (RWA). We investigated the effect of d-fenfluramine (d-FEN) treatment on development and propagation of ABA. d-FEN is an appetite suppressant and acts on 5-HT(2C) receptors that are located on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus. Since stimulation activation of the melanocortin system stimulates ABA, we hypothesized that d-FEN treatment enhances the development and propagation of ABA. Rats were exposed to the ABA model and chronically infused with d-FEN. Unexpectedly, d-FEN-treated ABA rats did not reduce food intake or increase wheel running as compared with vehicle-treated ABA rats. Furthermore d-FEN treatment did not affect body weight loss, hypothalamus-pituitary-adrenal axis activation, or starvation-induced hypothermia in ABA rats. POMC mRNA levels in d-FEN-treated rats were not different from vehicle-treated rats after one week of exposure to the ABA paradigm. However, d-FEN-treated ABA rats showed hypodypsia and increased plasma osmolality and arginine-vasopressin expression levels in the hypothalamus. We conclude that d-FEN treatment does not enhance ABA under the experimental conditions of this study, but strongly reduces water intake in ABA rats.
NASA Astrophysics Data System (ADS)
Lin, Jian; Lu, Fake; Zheng, Wei; Xu, Shuoyu; Tai, Dean; Yu, Hanry; Huang, Zhiwei
2011-11-01
We report the implementation of a unique integrated coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and two-photon excitation fluorescence (TPEF) microscopy imaging technique developed for label-free monitoring of the progression of liver steatosis and fibrosis generated in a bile duct ligation (BDL) rat model. Among the 21 adult rats used in this study, 18 rats were performed with BDL surgery and sacrificed each week from weeks 1 to 6 (n = 3 per week), respectively; whereas 3 rats as control were sacrificed at week 0. Colocalized imaging of the aggregated hepatic fats, collagen fibrils, and hepatocyte morphologies in liver tissue is realized by using the integrated CARS, SHG, and TPEF technique. The results show that there are significant accumulations of hepatic lipid droplets and collagen fibrils associated with severe hepatocyte necrosis in BDL rat liver as compared to a normal liver tissue. The volume of normal hepatocytes keeps decreasing and the fiber collagen content in BDL rat liver follows a growing trend until week 6; whereas the hepatic fat content reaches a maximum in week 4 and then appears to stop growing in week 6, indicating that liver steatosis and fibrosis induced in a BDL rat liver model may develop at different rates. This work demonstrates that the integrated CARS and multiphoton microscopy imaging technique has the potential to provide an effective means for early diagnosis and detection of liver steatosis and fibrosis without labeling.
Lin, Jian; Lu, Fake; Zheng, Wei; Xu, Shuoyu; Tai, Dean; Yu, Hanry; Huang, Zhiwei
2011-11-01
We report the implementation of a unique integrated coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and two-photon excitation fluorescence (TPEF) microscopy imaging technique developed for label-free monitoring of the progression of liver steatosis and fibrosis generated in a bile duct ligation (BDL) rat model. Among the 21 adult rats used in this study, 18 rats were performed with BDL surgery and sacrificed each week from weeks 1 to 6 (n = 3 per week), respectively; whereas 3 rats as control were sacrificed at week 0. Colocalized imaging of the aggregated hepatic fats, collagen fibrils, and hepatocyte morphologies in liver tissue is realized by using the integrated CARS, SHG, and TPEF technique. The results show that there are significant accumulations of hepatic lipid droplets and collagen fibrils associated with severe hepatocyte necrosis in BDL rat liver as compared to a normal liver tissue. The volume of normal hepatocytes keeps decreasing and the fiber collagen content in BDL rat liver follows a growing trend until week 6; whereas the hepatic fat content reaches a maximum in week 4 and then appears to stop growing in week 6, indicating that liver steatosis and fibrosis induced in a BDL rat liver model may develop at different rates. This work demonstrates that the integrated CARS and multiphoton microscopy imaging technique has the potential to provide an effective means for early diagnosis and detection of liver steatosis and fibrosis without labeling.
Additive effect of mesenchymal stem cells and defibrotide in an arterial rat thrombosis model.
Dilli, Dilek; Kılıç, Emine; Yumuşak, Nihat; Beken, Serdar; Uçkan Çetinkaya, Duygu; Karabulut, Ramazan; Zenciroğlu, Ayşegu L
2017-06-01
In this study, we aimed to investigate the additive effect of mesenchymal stem cells (MSC) and defibrotide (DFT) in a rat model of femoral arterial thrombosis. Thirty Sprague Dawley rats were included. An arterial thrombosis model by ferric chloride (FeCl3) was developed in the left femoral artery. The rats were equally assigned to 5 groups: Group 1-Sham-operated (without arterial injury); Group 2-Phosphate buffered saline (PBS) injected; Group 3-MSC; Group 4-DFT; Group 5-MSC + DFT. All had two intraperitoneal injections of 0.5 ml: the 1st injection was 4 h after the procedure and the 2nd one 48 h after the 1st injection. The rats were sacrificed 7 days after the 2nd injection. Although the use of human bone marrow-derived (hBM) hBM-MSC or DFT alone enabled partial resolution of the thrombus, combining them resulted in near-complete resolution. Neovascularization was two-fold better in hBM-MSC + DFT treated rats (11.6 ± 2.4 channels) compared with the hBM-MSC (3.8 ± 2.7 channels) and DFT groups (5.5 ± 1.8 channels) (P < 0.0001 and P= 0.002, respectively). The combined use of hBM-MSC and DFT in a rat model of arterial thrombosis showed additive effect resulting in near-complete resolution of the thrombus.
Role of Complement in a Rat Model of Paclitaxel-Induced Peripheral Neuropathy.
Xu, Jijun; Zhang, Lingjun; Xie, Mian; Li, Yan; Huang, Ping; Saunders, Thomas L; Fox, David A; Rosenquist, Richard; Lin, Feng
2018-06-15
Chemotherapy-induced peripheral neuropathy (CIPN) is a painful and debilitating side effect of cancer chemotherapy with an unclear pathogenesis. Consequently, the available therapies for this neuropathic pain syndrome are inadequate, leading to a significantly reduced quality of life in many patients. Complement, a key component of the innate immune system, has been associated with neuroinflammation, a potentially important trigger of some types of neuropathic pain. However, the role of complement in CIPN remains unclear. To address this issue, we developed a C3 knockout (KO) rat model and induced CIPN in these KO rats and wild-type littermates via the i.p. administration of paclitaxel, a chemotherapeutic agent associated with CIPN. We then compared the severity of mechanical allodynia, complement activation, and intradermal nerve fiber loss between the groups. We found that 1) i.p. paclitaxel administration activated complement in wild-type rats, 2) paclitaxel-induced mechanical allodynia was significantly reduced in C3 KO rats, and 3) the paclitaxel-induced loss of intradermal nerve fibers was markedly attenuated in C3 KO rats. In in vitro studies, we found that paclitaxel-treated rat neuronal cells activated complement, leading to cellular injury. Our findings demonstrate a previously unknown but pivotal role of complement in CIPN and suggest that complement may be a new target for the development of novel therapeutics to manage this painful disease. Copyright © 2018 by The American Association of Immunologists, Inc.
Rationale: Individuals suffering from cardiovascular disease (CVD) develop iron dysregulation which may influence pulmonary toxicity and injury upon exposure to asbestos. We hypothesized spontaneously hypertensive (SH) and spontaneously hypertensive heart failure (SHHF) rats woul...
Evaluating Intra-Articular Drug Delivery for the Treatment of Osteoarthritis in a Rat Model
Allen, Kyle D.; Adams, Samuel B.
2010-01-01
Osteoarthritis (OA) is a degenerative joint disease that can result in joint pain, loss of joint function, and deleterious effects on activity levels and lifestyle habits. Current therapies for OA are largely aimed at symptomatic relief and may have limited effects on the underlying cascade of joint degradation. Local drug delivery strategies may provide for the development of more successful OA treatment outcomes that have potential to reduce local joint inflammation, reduce joint destruction, offer pain relief, and restore patient activity levels and joint function. As increasing interest turns toward intra-articular drug delivery routes, parallel interest has emerged in evaluating drug biodistribution, safety, and efficacy in preclinical models. Rodent models provide major advantages for the development of drug delivery strategies, chiefly because of lower cost, successful replication of human OA-like characteristics, rapid disease development, and small joint volumes that enable use of lower total drug amounts during protocol development. These models, however, also offer the potential to investigate the therapeutic effects of local drug therapy on animal behavior, including pain sensitivity thresholds and locomotion characteristics. Herein, we describe a translational paradigm for the evaluation of an intra-articular drug delivery strategy in a rat OA model. This model, a rat interleukin-1β overexpression model, offers the ability to evaluate anti-interleukin-1 therapeutics for drug biodistribution, activity, and safety as well as the therapeutic relief of disease symptoms. Once the action against interleukin-1 is confirmed in vivo, the newly developed anti-inflammatory drug can be evaluated for evidence of disease-modifying effects in more complex preclinical models. PMID:19943805
de Carvalho, Cristiane Ribeiro; Pandolfo, Pablo; Pamplona, Fabrício Alano; Takahashi, Reinaldo Naoto
2010-03-17
The present study investigated the consequences of environmental enrichment on the impact of novelty and motivational properties of ethanol in spontaneously hypertensive rats (SHR), a validated model of attention deficit hyperactivity disorder (ADHD). This rat strain displays increased sensitivity to distinct classes of abused drugs, which makes it an interesting model for the study of the association between ADHD and drug abuse. Female SHR reared from weaning to adulthood in standard (SE) or enriched (EE) environment were tested on novelty-induced locomotion, saccharin consumption, ethanol consumption (forced and free-choice schedules) and ethanol-induced conditioned place preference (CPP). SHR reared in an EE showed reduced novelty-induced locomotion, consumed less saccharin and ethanol in a forced schedule and showed less ethanol preference in a free-choice schedule compared to SE rats. Moreover, EE rats did not develop CPP, whereas SE rats developed preference for ethanol (1.2g/kg). These results show that exposure to stimuli mimicking positive life experiences (environmental enrichment) induces persistent changes in the reward/motivational system of female SHR, suggesting an important role of the familiar environment during early stages of the neurodevelopment on the co-morbidity of ADHD and drug abuse. Copyright 2009 Elsevier B.V. All rights reserved.
Zamin, Idilio; Mattos, Angelo Alves de; Mattos, Angelo Zambam de; Migon, Eduardo; Soares, Ernesto; Perry, Marcos Luiz Santos
2009-01-01
There are still many unknown aspects about nonalcoholic steatohepatitis, especially regarding its pathophysiology and pharmacological treatment. Thus, experimental models are important for a better understanding of this disease and the evaluation of the effects of drugs. To develop a model of experimental nonalcoholic steatohepatitis from use of methionine and choline deficient diet. Fifty Wistar male rats were studied. A methionine and choline deficient diet has been processed in a craft. A group of 40 animals received the deficient diet for 90 days, and a group of 10 rats (control group) received the standardized ration in the same period. After, the animals were killed by decapitation, and laparotomy was performed. Hepatectomy was performed and the liver was studied by macroscopy and microscopy. The level of significance considered was of 0,05. The rats that received the deficient diet showed significant loss of weight with findings from malnutrition and all of them had at least some degree of macrovesicular steatosis. The diagnosis of nonalcoholic steatohepatitis was performed in 27 (70%) of the 39 rats that received this deficient diet (1 rat died during the study). None of the 10 rats that received the standardized diet had histological abnormalities. The diet restricted in methionine and choline induced steatosis and steatohepatitis in an animal model with low cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flunker, L.K., E-mail: lflunker@dental.ufl.edu
Exposure to DEET (N,N-diethyl-meta-toluamide) may have influenced the pattern of symptoms observed in soldiers with GWI (Gulf War Illness; Haley and Kurt, 1997). We examined how the addition of DEET (400 mg/kg; 50% topical) to an exposure protocol of permethrin (2.6 mg/kg; topical), chlorpyrifos (CP; 120 mg/kg), and pyridostigmine bromide (PB;13 mg/kg) altered the emergence and pattern of pain signs in an animal model of GWI pain (). Rats underwent behavioral testing before, during and after a 4 week exposure: 1) hindlimb pressure withdrawal threshold; 2) ambulation (movement distance and rate); and 3) resting duration. Additional studies were conducted tomore » assess the influence of acute DEET (10–100 μM) on muscle and vascular nociceptor K{sub v}7, K{sub DR}, Na{sub v}1.8 and Na{sub v}1.9. We report that a 50% concentration of DEET enhanced the development and persistence of pain-signs. Rats exposed to all 4 compounds exhibited ambulation deficits that appeared 5–12 weeks post-exposure and persisted through weeks 21–24. Rats exposed to only three agents (CP or PB excluded), did not fully develop ambulation deficits. When PB was excluded, rats also developed rest duration pain signs, in addition to ambulation deficits. There was no evidence that physiological doses of DEET acutely modified nociceptor K{sub v}7, K{sub DR}, Na{sub v}1.8 or Na{sub v}1.9 activities. Nevertheless, DEET augmented protocols decreased the conductance of K{sub v}7 expressed in vascular nociceptors harvested from chronically exposed rats. We concluded that DEET enhanced the development and persistence of pain behaviors, but the anticholinesterases CP and PB played a determinant role. - Highlights: • DEET accelerated and prolonged pain-like behaviors in a rat model of Gulf War Illness. • The development of pain behaviors were dependent upon chlorpyrifos and pyridostigmine. • Conductance of vascular nociceptor Kv7 was diminished 12 weeks following exposures. • DEET did not have any acute influence on nociceptor Kv7, Nav1.8, Nav1.9 or KDR.« less
Facial paralysis induced by ear inoculation of herpes simplex virus in rat.
Fujiwara, Takashi; Matsuda, Seiji; Tanaka, Junya; Hato, Naohito
2017-02-01
Bell's palsy is caused by the reactivation of herpes simplex virus type 1 (HSV-1). Using Balb/c mice inoculated with the KOS strain of HSV-1, we previously developed an animal disease model that simulated mild Bell's palsy. The current study developed an animal disease model of more severe facial palsy than that seen in the mouse model. Three-week-old female Wister rats weighing 60-80g were inoculated on the auricle with HSV-1 and acyclovir was administered intraperitoneally to deactivate the infected HSV-1. Instead of HSV-1, phosphate-buffered saline was used for inoculation as a negative control. Quantitative polymerase chain reaction (PCR), behavior testing (blink reflex), electroneuronography, histopathology of the peripheral nerve, and immunohistochemistry of the facial nerve nucleus were evaluated. Facial palsy occurred 3-5 days after virus inoculation, and the severity of the facial palsy progressed for up to 7 days. Quantitative PCR showed an increase in HSV-1 DNA copies in the facial nerve from 24 to 72h, suggesting that HSV-1 infection occurred in the nerve. Electroneuronography values were 33.0±15.3% and 110.0±18.0% in HSV-1-inoculated and control rats, respectively. The histopathology of the peripheral nerve showed demyelination and loss of the facial nerve, and the facial nerve nucleus showed degeneration. Facial palsy developed in Wister rats following inoculation of the KOS strain of HSV-1 onto the auricles. The behavioral, histopathological, and electroneuronography data suggested that the severity of facial palsy was greater in our rats than in animals in the previous mouse disease model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Capellini, Verena Kise; Baldo, Caroline Floreoto; Celotto, Andréa Carla; Batalhão, Marcelo Eduardo; Cárnio, Evelin Capellari; Rodrigues, Alfredo José; Evora, Paulo Roberto Barbosa
2010-08-01
To verify if an experimental model of alloxan-diabetic rats promotes oxidative stress, reduces nitric oxide bioavailability and causes vascular dysfunction, and to evaluate the effect of N-acetylcysteine (NAC) on these parameters. Alloxan-diabetic rats were treated or not with NAC for four weeks. Plasmatic levels of malondialdehyde (MDA) and nitrite/nitrate (NOx), the endothelial and inducible nitric oxide synthase (eNOS and iNOS) immunostaining and the vascular reactivity of aorta were compared among diabetic (D), treated diabetic (TD) and control (C) rats. MDA levels increased in D and TD. NOx levels did not differ among groups. Endothelial eNOS immunostaining reduced and adventitial iNOS increased in D and TD. The responsiveness of rings to acetylcholine, sodium nitroprusside, and phenylephrine did not differ among groups. NAC had no effect on the evaluated parameters and this experimental model did not promote vascular dysfunction despite the development of oxidative stress.
Behavioral and hormonal responses to stress in binge-like eating prone female rats.
Calvez, Juliane; Timofeeva, Elena
2016-04-01
Binge eating episodes are frequently stimulated by stress. We developed a model of binge eating proneness based on individual sensitivity of young female Sprague Dawley rats to significantly increase sucrose consumption in response to stress. The rats were subjected to unpredictable intermittent 1-h access to 10% sucrose. After the stabilization of sucrose intake, rats were assessed for consistency of higher (for binge-like eating prone, BEP) or lower (for binge-like eating resistant, BER) sucrose intake in response to unpredictable episodes of foot-shock stress. The objectives of this study included demonstrating face validity of the BEP model and determining if some of the features of this model were pre-existing before exposure to intermittent access to sucrose and repeated stress. The BEP rats consumed a larger (20%>BER) amount of sucrose in a discrete (1-h) period of time compared to the BER phenotype in non-stressful conditions and significantly increased sucrose intake (50%>BER) under stress. Conversely, stress did not affect sucrose intake in BER rats. BEP rats showed higher sucrose intake compared to BER rats at the beginning of darkness as well as during the light period when they were sated and not physically hungry. Analyses of the sucrose licking microstructure revealed that BEP rats had a high motivational drive to consume sucrose in non-stressful condition and an increased hedonic value of sucrose when they were exposed to stressful conditions. BEP rats consumed sucrose much more rapidly under stressful conditions compared to BER rats. Finally, BEP rats demonstrated compulsive-like intake of sucrose (assessed in the light-dark box) and a blunted stress-induced increase in plasma corticosterone levels. Body weight and chow intake were not different between the phenotypes. Before exposure to intermittent access to sucrose and repeated stress, the BEP rats showed no clear evidence for compulsive sucrose intake. However, from the first 1-h access to sucrose, the BEP rats exhibited sucrose overeating; and from the first exposure to stress before intermittent access to sucrose, the BEP rats showed a blunted increase in corticosterone plasma levels. Innate sucrose hyperconsumption and altered reactivity of the hypothalamo-pituitary adrenal (HPA) axis to stress may be involved in the development of binge-like eating. Increased perceived hedonic value of palatable food and an increased motivation to consume this food despite aversive conditions as well as deregulated reactivity of the HPA axis may contribute to stress-induced bingeing on sucrose in BEP rats. Copyright © 2016 Elsevier Inc. All rights reserved.
A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics.
Marmarou, A; Foda, M A; van den Brink, W; Campbell, J; Kita, H; Demetriadou, K
1994-02-01
This report describes the development of an experimental head injury model capable of producing diffuse brain injury in the rodent. A total of 161 anesthetized adult rats were injured utilizing a simple weight-drop device consisting of a segmented brass weight free-falling through a Plexiglas guide tube. Skull fracture was prevented by cementing a small stainless-steel disc on the calvaria. Two groups of rats were tested: Group 1, consisting of 54 rats, to establish fracture threshold; and Group 2, consisting of 107 animals, to determine the primary cause of death at severe injury levels. Data from Group 1 animals showed that a 450-gm weight falling from a 2-m height (0.9 kg-m) resulted in a mortality rate of 44% with a low incidence (12.5%) of skull fracture. Impact was followed by apnea, convulsions, and moderate hypertension. The surviving rats developed decortication flexion deformity of the forelimbs, with behavioral depression and loss of muscle tone. Data from Group 2 animals suggested that the cause of death was due to central respiratory depression; the mortality rate decreased markedly in animals mechanically ventilated during the impact. Analysis of mathematical models showed that this mass-height combination resulted in a brain acceleration of 900 G and a brain compression gradient of 0.28 mm. It is concluded that this simple model is capable of producing a graded brain injury in the rodent without a massive hypertensive surge or excessive brain-stem damage.
Souza, Joyce G R; Garcia, Juberlan S; Gomes, Ana Paula N; Machado-Silva, José Roberto; Maldonado, Arnaldo
2017-12-01
Echinostoma paraensei (Digenea: Echinostomatidae) lives in the duodenum and bile duct of rodents and is reported as a useful model for studies on the biology of flatworms. Here, we compared the growth and development of pre and post ovigerous worms collected 3, 7, 14 and 21 days post infection from experimentally infected hamster (permissive host) and Wistar rat (less permissive hosts). Linear measurements and ratios were examined by light (morphology and morphometry) and confocal laser scanning microscopy. At day 3, either worm from hamsters or rats were small with poorly developed gonads. At seven day, worms increased in size and morphometric differences between hosts are statistically significant after this time. In addition, adult worms (14 and 21 days of age) harvested from hamster showed developed gonads and vitelline glands laterally distributed on the body, whereas worms from rat showed atrophied reproductive system characterized by underdeveloped vitelline glands and stunted ovary. The worm rate recovery in rat decreased from 29.3% (day 7) to 20.6% (day 14) and 8% (day 21), whilst it remained around 37% in hamster. In conclusion, this is the first appointment demonstrating that low permissiveness influences the reproductive system of echinostome since the immature stages of development. The phenotypic analysis evidenced that hamster provides a more favorable microenvironment for gonads development than rat, confirming golden hamster as a permissive host, whereas Wistar rat is less permissive host. Copyright © 2017 Elsevier Inc. All rights reserved.
Yadav, Mukesh K.; Chae, Sung-Won; Go, Yoon Young; Im, Gi Jung; Song, Jae-Jun
2017-01-01
Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are known to cause biofilm-related infections. MRSA and PA have been frequently isolated from chronically infected wounds, cystic fibrosis, chronic suppurative otitis media (CSOM), and from indwelling medical devices, and these bacteria co-exist; however, their interaction with each-other or with the host is not well known. In this study, we investigated MRSA and PA multi-species biofilm communities in vitro and their interaction with the host during in vivo colonization using an OM rat-model. In-vitro biofilm formation and in-vivo colonization were studied using CV-microtiter plate assay and OM rat-model respectively. The biofilms were viewed under scanning electron microscope and bacteria were enumerated using cfu counts. The differential gene expressions of rat mucosa colonized with single or multi-species of MRSA or PA were studied using RNA-sequencing of total transcriptome. In multi-species in-vitro biofilms PA partially inhibited SA growth. However, no significant inhibition of MRSA was detected during in-vivo colonization of multi-species in rat bullae. A total of 1,797 genes were significantly (p < 0.05) differentially expressed in MRSA or PA or MRSA + PA colonized rat middle ear mucosa with respect to the control. The poly-microbial colonization of MRSA and PA induced the differential expression of a significant number of genes that are involved in immune response, inflammation, signaling, development, and defense; these were not expressed with single species colonization by either MRSA or PA. Genes involved in defense, immune response, inflammatory response, and developmental process were exclusively up-regulated, and genes that are involved in nervous system signaling, development and transmission, regulation of cell growth and development, anatomical and system development, and cell differentiation were down-regulated after multi-species inoculation. These results indicate that poly-microbial colonization induces a host response that is different from that induced by single species infection. PMID:28459043
Spontaneous Trigeminal Allodynia in Rats: A Model of Primary Headache
Oshinsky, Michael L.; Sanghvi, Menka M.; Maxwell, Christina R.; Gonzalez, Dorian; Spangenberg, Rebecca J.; Cooper, Marnie; Silberstein, Stephen D.
2014-01-01
Animal models are essential for studying the pathophysiology of headache disorders and as a screening tool for new therapies. Most animal models modify a normal animal in an attempt to mimic migraine symptoms. They require manipulation to activate the trigeminal nerve or dural nociceptors. At best, they are models of secondary headache. No existing model can address the fundamental question: How is a primary headache spontaneously initiated? In the process of obtaining baseline periorbital von Frey thresholds in a wild-type Sprague-Dawley rat, we discovered a rat with spontaneous episodic trigeminal allodynia (manifested by episodically changing periorbital pain threshold). Subsequent mating showed that the trait is inherited. Animals with spontaneous trigeminal allodynia allow us to study the pathophysiology of primary recurrent headache disorders. To validate this as a model for migraine, we tested the effects of clinically proven acute and preventive migraine treatments on spontaneous changes in rat periorbital sensitivity. Sumatriptan, ketorolac, and dihydroergotamine temporarily reversed the low periorbital pain thresholds. Thirty days of chronic valproic acid treatment prevented spontaneous changes in trigeminal allodynia. After discontinuation, the rats returned to their baseline of spontaneous episodic threshold changes. We also tested the effects of known chemical human migraine triggers. On days when the rats did not have allodynia and showed normal periorbital von Frey thresholds, glycerol trinitrate and calcitonin gene related peptide induced significant decreases in the periorbital pain threshold. This model can be used as a predictive model for drug development and for studies of putative biomarkers for headache diagnosis and treatment. PMID:22963523
Development of a Single-Step Subtraction Method for Eukaryotic 18S and 28S Ribonucleic Acids
2011-01-01
ng of total RNA (92.5% rat thymus RNA/7.41% E . coli RNA). The reactions were performed according to the manufacture’s instruction. For the low target...capture conditions. The input RNA used was either 500 ng or 1000 ng of rat thymus RNA or total RNA (92.5% rat thymus RNA/7.41% E . coli RNA). 2.7. Real...concentrations. Rat thymus RNA (mammalian components) with E . coli RNA (bacterial target) was used as a model system to test the capture efficiency and monitor
Magnetic Capture of a Molecular Biomarker from Synovial Fluid in a Rat Model of Knee Osteoarthritis
Yarmola, Elena G.; Shah, Yash; Arnold, David P.; Dobson, Jon; Allen, Kyle D.
2015-01-01
Biomarker development for osteoarthritis (OA) often begins in rodent models, but can be limited by an inability to aspirate synovial fluid from a rodent stifle (similar to the human knee). To address this limitation, we have developed a magnetic nanoparticle-based technology to collect biomarkers from a rodent stifle, termed magnetic capture. Using a common OA biomarker - the c-terminus telopeptide of type II collagen (CTXII) - magnetic capture was optimized in vitro using bovine synovial fluid and then tested in a rat model of knee OA. Anti-CTXII antibodies were conjugated to the surface of superparamagnetic iron oxide-containing polymeric particles. Using these anti-CTXII particles, magnetic capture was able to estimate the level of CTXII in 25 µL aliquots of bovine synovial fluid; and under controlled conditions, this estimate was unaffected by synovial fluid viscosity. Following in vitro testing, anti-CTXII particles were tested in a rat monoiodoacetate model of knee OA. CTXII could be magnetically captured from a rodent stifle without the need to aspirate fluid and showed 10 fold changes in CTXII levels from OA-affected joints relative to contralateral control joints. Combined, these data demonstrate the ability and sensitivity of magnetic capture for post-mortem analysis of OA biomarkers in the rat. PMID:26136062
Magnetic Capture of a Molecular Biomarker from Synovial Fluid in a Rat Model of Knee Osteoarthritis.
Yarmola, Elena G; Shah, Yash; Arnold, David P; Dobson, Jon; Allen, Kyle D
2016-04-01
Biomarker development for osteoarthritis (OA) often begins in rodent models, but can be limited by an inability to aspirate synovial fluid from a rodent stifle (similar to the human knee). To address this limitation, we have developed a magnetic nanoparticle-based technology to collect biomarkers from a rodent stifle, termed magnetic capture. Using a common OA biomarker--the c-terminus telopeptide of type II collagen (CTXII)--magnetic capture was optimized in vitro using bovine synovial fluid and then tested in a rat model of knee OA. Anti-CTXII antibodies were conjugated to the surface of superparamagnetic iron oxide-containing polymeric particles. Using these anti-CTXII particles, magnetic capture was able to estimate the level of CTXII in 25 μL aliquots of bovine synovial fluid; and under controlled conditions, this estimate was unaffected by synovial fluid viscosity. Following in vitro testing, anti-CTXII particles were tested in a rat monoiodoacetate model of knee OA. CTXII could be magnetically captured from a rodent stifle without the need to aspirate fluid and showed tenfold changes in CTXII levels from OA-affected joints relative to contralateral control joints. Combined, these data demonstrate the ability and sensitivity of magnetic capture for post-mortem analysis of OA biomarkers in the rat.
Dahlmann, Julia; Awad, George; Dolny, Carsten; Weinert, Sönke; Richter, Karin; Fischer, Klaus-Dieter; Munsch, Thomas; Leßmann, Volkmar; Volleth, Marianne; Zenker, Martin; Chen, Yaoyao; Merkl, Claudia; Schnieke, Angelika; Baraki, Hassina; Kutschka, Ingo; Kensah, George
2018-01-01
The possibility to generate cardiomyocytes from pluripotent stem cells in vitro has enormous significance for basic research, disease modeling, drug development and heart repair. The concept of heart muscle reconstruction has been studied and optimized in the rat model using rat primary cardiovascular cells or xenogeneic pluripotent stem cell derived-cardiomyocytes for years. However, the lack of rat pluripotent stem cells (rPSCs) and their cardiovascular derivatives prevented the establishment of an authentic clinically relevant syngeneic or allogeneic rat heart regeneration model. In this study, we comparatively explored the potential of recently available rat embryonic stem cells (rESCs) and induced pluripotent stem cells (riPSCs) as a source for cardiomyocytes (CMs). We developed feeder cell-free culture conditions facilitating the expansion of undifferentiated rPSCs and initiated cardiac differentiation by embryoid body (EB)-formation in agarose microwell arrays, which substituted the robust but labor-intensive hanging drop (HD) method. Ascorbic acid was identified as an efficient enhancer of cardiac differentiation in both rPSC types by significantly increasing the number of beating EBs (3.6 ± 1.6-fold for rESCs and 17.6 ± 3.2-fold for riPSCs). These optimizations resulted in a differentiation efficiency of up to 20% cTnTpos rPSC-derived CMs. CMs showed spontaneous contractions, expressed cardiac markers and had typical morphological features. Electrophysiology of riPSC-CMs revealed different cardiac subtypes and physiological responses to cardio-active drugs. In conclusion, we describe rPSCs as a robust source of CMs, which is a prerequisite for detailed preclinical studies of myocardial reconstruction in a physiologically and immunologically relevant small animal model.
Effects of microgravity on epidermal development in the rat
NASA Technical Reports Server (NTRS)
Hoath, Steven B.
1995-01-01
The overall goal of this project was to investigate the effects of prolonged weightlessness on the development of the skin in the fetal and newborn rat. Specifically, we used the NASA microgravitational rat model to test the following hypotheses: (1) Exposure of the pregnant rat to microscopy during late gestation will diminish the transport of calcium across the placenta from the mother to the fetus leading to decreases in total epidermal and dermal calcium content; (2) Microgravity will lead to slowing of body growth and diminish the rate of formation of the outermost layer of the epidermis and the stratum corneum; and (3) Microgravity will lead to formation of a stratum corneum with decreased DC electrical resistance and increased permeability to tritiated water.
Further refinement of the Escherichia coli brain abscess model in rat.
Nazzaro, J M; Pagel, M A; Neuwelt, E A
1992-09-01
The rat brain abscess model provides a substrate for the modeling of delivery of therapeutic agents to intracerebral mass lesions. We now report refinement of the Escherichia coli brain abscess model in rat. A K1 surface antigen-negative E. coli isolated from human blood culture was stereotaxically inoculated into deep brain sites. Histopathologic analyses and quantitative cultures demonstrated the consistent production of lesions. No animal in this consecutive series developed meningitis, ventriculitis or sepsis. By contrast, prior experience with E. coli abscess production resulted in 25% failure rate of abscess production or death from sepsis. This improvement in the model may be attributable to specific characteristics of the bacteria used, modification of the inoculation method or the intracerebral placement technique. The present work suggests a reliable and consistent brain abscess model, which may be further used to study brain suppuration.
Haney, Nora M; Nguyen, Hoang M T; Honda, Matthew; Abdel-Mageed, Asim B; Hellstrom, Wayne J G
2018-04-01
It is common for men to develop erectile dysfunction after radical prostatectomy. The anatomy of the rat allows the cavernous nerve (CN) to be identified, dissected, and injured in a controlled fashion. Therefore, bilateral CN injury (BCNI) in the rat model is routinely used to study post-prostatectomy erectile dysfunction. To compare and contrast the available literature on pharmacologic intervention after BCNI in the rat. A literature search was performed on PubMed for cavernous nerve and injury and erectile dysfunction and rat. Only articles with BCNI and pharmacologic intervention that could be grouped into categories of immune modulation, growth factor therapy, receptor kinase inhibition, phosphodiesterase type 5 inhibition, and anti-inflammatory and antifibrotic interventions were included. To assess outcomes of pharmaceutical intervention on erectile function recovery after BCNI in the rat model. The ratio of maximum intracavernous pressure to mean arterial pressure was the main outcome measure chosen for this analysis. All interventions improved erectile function recovery after BCNI based on the ratio of maximum intracavernous pressure to mean arterial pressure results. Additional end-point analysis examined the corpus cavernosa and/or the major pelvic ganglion and CN. There was extreme heterogeneity within the literature, making accurate comparisons between crush injury and therapeutic interventions difficult. BCNI in the rat is the accepted animal model used to study nerve-sparing post-prostatectomy erectile dysfunction. However, an important limitation is extreme variability. Efforts should be made to decrease this variability and increase the translational utility toward clinical trials in humans. Haney NM, Nguyen HMT, Honda M, et al. Bilateral Cavernous Nerve Crush Injury in the Rat Model: A Comparative Review of Pharmacologic Interventions. Sex Med Rev 2018;6:234-241. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Modeling and Measurement of Correlation between Blood and Interstitial Glucose Changes
Shi, Ting; Li, Dachao; Li, Guoqing; Zhang, Yiming; Xu, Kexin; Lu, Luo
2016-01-01
One of the most effective methods for continuous blood glucose monitoring is to continuously measure glucose in the interstitial fluid (ISF). However, multiple physiological factors can modulate glucose concentrations and affect the lag phase between blood and ISF glucose changes. This study aims to develop a compensatory tool for measuring the delay in ISF glucose variations in reference to blood glucose changes. A theoretical model was developed based on biophysics and physiology of glucose transport in the microcirculation system. Blood and interstitial fluid glucose changes were measured in mice and rats by fluorescent and isotope methods, respectively. Computer simulation mimicked curves were fitted with data resulting from fluorescent measurements of mice and isotope measurements of rats, indicating that there were lag times for ISF glucose changes. It also showed that there was a required diffusion distance for glucose to travel from center of capillaries to interstitial space in both mouse and rat models. We conclude that it is feasible with the developed model to continuously monitor dynamic changes of blood glucose concentration through measuring glucose changes in ISF with high accuracy, which requires correct parameters for determining and compensating for the delay time of glucose changes in ISF. PMID:27239479
Sulthiame but not levetiracetam exerts neurotoxic effect in the developing rat brain.
Manthey, Daniela; Asimiadou, Stella; Stefovska, Vanya; Kaindl, Angela M; Fassbender, Jessica; Ikonomidou, Chrysanthy; Bittigau, Petra
2005-06-01
Antiepileptic drugs (AEDs) used to treat seizures in pregnant women, infants, and young children can cause cognitive impairment. One mechanism implicated in the development of neurocognitive deficits is a pathologic enhancement of physiologically occurring apoptotic neuronal death in the developing brain. We investigated whether the newer antiepileptic drug levetiracetam (LEV) and the older antiepileptic drug sulthiame (SUL) have neurotoxic properties in the developing rat brain. SUL significantly enhanced neuronal death in the brains of rat pups ages 0 to 7 days at doses of 100 mg/kg and above, whereas LEV did not show this neurotoxic effect. Dosages of both drugs used in the context of this study comply with an effective anticonvulsant dose range applied in rodent seizure models. Thus, LEV is an AED which lacks neurotoxicity in the developing rat brain and should be considered in the treatment of epilepsy in pregnant women, infants, and toddlers once general safety issues have been properly addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrill, Joshua A.; Hukkanen, Renee R.; Lawson, Marie
2013-10-15
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expressionmore » of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular development are observed in AHR-KO mouse, but not rat. • Renal pathology is observed in AHR-KO rat, but not mouse.« less
Ray, S C; Patel, B; Irsik, D L; Sun, J; Ocasio, H; Crislip, G R; Jin, C H; Chen, J K; Baban, B; Polichnowski, A J; O'Connor, P M
2018-04-12
Sodium bicarbonate (NaHCO 3 ) slows the decline in kidney function in patients with chronic kidney disease (CKD), yet the mechanisms mediating this effect remain unclear. The Dahl salt-sensitive (SS) rat develops hypertension and progressive renal injury when fed a high salt diet; however, the effect of alkali loading on kidney injury has never been investigated in this model. We hypothesized that 'NaHCO 3 protects from the development of renal injury in Dahl salt-sensitive rats via luminal alkalization which limits the formation of tubular casts, which are a prominent pathological feature in this model. To examine this hypothesis, we determined blood pressure and renal injury responses in Dahl SS rats drinking vehicle (0.1M NaCl) or NaHCO 3 (0.1M) solutions as well as in Dahl SS rats lacking the voltage gated proton channel (Hv1). We found that oral NaHCO 3 reduced tubular NH 4 + production, tubular cast formation and interstitial fibrosis in rats fed a high salt diet for 2 weeks. This effect was independent of changes in blood pressure, glomerular injury or proteinuria and did not associate with changes in renal inflammatory status. We found that null mutation of Hv1 also limited cast formation in Dahl SS rats independent of proteinuria or glomerular injury. As Hv1 is localized to the luminal membrane of TAL, our data, suggest that alkalization of the luminal fluid within this segment limits cast formation in this model. Reduced cast formation, secondary to luminal alkalization within TAL segments may mediate some of the protective effects of alkali loading observed in CKD patients. ©2018 The Author(s).
Wong, Kayleigh; Trudel, Guy; Laneuville, Odette
2018-01-01
Objectives A knee joint contracture, a loss in passive range of motion (ROM), can be caused by prolonged immobility. In a rat knee immobilization flexion contracture model, the posterior capsule was shown to contribute to an irreversible limitation in ROM, and collagen pathways were identified as differentially expressed over the development of a contracture. Collagenases purified from Clostridium histolyticum are currently prescribed to treat Dupuytren’s and Peyronie’s contractures due to their ability to degrade collagen. The potential application of collagenases to target collagen in the posterior capsule was tested in this model. Materials and methods Rats had one hind leg immobilized, developing a knee flexion contracture. After 4 weeks, the immobilization device was removed, and the rats received one 50 µL intra-articular injection of 0.6 mg/mL purified collagenase. Control rats were injected with only the buffer. After 2 weeks of spontaneous remobilization following the injections, ROM was measured with a rat knee arthrometer, and histological sections were immunostained with antibodies against rat collagen types I and III. Results/conclusion Compared with buffer-injected control knees, collagenase-treated knees showed increased ROM in extension by 8.0°±3.8° (p-value <0.05). Immunohistochemical analysis revealed an increase in collagen type III staining (p<0.01) in the posterior capsule of collagenase-treated knees indicating an effect on the extracellular matrix due to the collagenase. Collagen I staining was unchanged (p>0.05). The current study provides experimental evidence for the pharmacological treatment of knee flexion contractures with intra-articular collagenase injection, improving the knee ROM. PMID:29317799
Baranwal, Aparna; Mirbolooki, M Reza; Mukherjee, Jogeshwar
2015-01-01
Metabolic activity of brown adipose tissue (BAT) is activated by β3-adrenoceptor agonists and norepinephrine transporter (NET) blockers and is measurable using [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography/computed tomography (PET/CT) in rats. Using the streptozotocin (STZ)-treated rat model of type 1 diabetes mellitus (T1DM), we investigated BAT activity in this rat model under fasting and nonfasting conditions using [(18)F]FDG PET/CT. Drugs that enhance BAT activity may have a potential for therapeutic development in lowering blood sugar in insulin-resistant diabetes. Rats were rendered diabetic by administration of STZ and confirmed by glucose measures. [(18)F]FDG was injected in the rats (fasted or nonfasted) pretreated with either saline or β3-adrenoceptor agonist CL316,243 or the NET blocker atomoxetine for PET/CT scans. [(18)F]FDG metabolic activity was computed as standard uptake values (SUVs) in interscapular brown adipose tissue (IBAT) and compared across the different drug treatment conditions. Blood glucose levels > 500 mg/dL were established for the STZ-treated diabetic rats. Under fasting conditions, average uptake of [(18)F]FDG in the IBAT of STZ-treated diabetic rats was approximately 70% lower compared to that of normal rats. Both CL316,243 and atomoxetine activated IBAT in normal rats had an SUV > 5, whereas activation in STZ-treated rats was significantly lower. The agonist CL316,243 activated IBAT up to threefold compared to saline in the fasted STZ-treated rat. In the nonfasted rat, the IBAT activation was up by twofold by CL316243. Atomoxetine had a greater effect on lowering blood sugar levels compared to CL316,243 in the nonfasted rats. A significant reduction in metabolic activity was observed in the STZ-treated diabetic rodent model. Increased IBAT activity in the STZ-treated diabetic rat under nonfasted conditions using the β3-adrenoceptor agonist CL316,243 suggests a potential role of BAT in modulating blood sugar levels. Further studies are needed to evaluate the therapeutic role of β3-adrenoceptor agonists in insulin-resistant T1DM.
Dental and oropharyngeal lesions in rats with chronic acid reflux esophagitis.
Shimazu, Rintaro; Yamamoto, Mihoko; Minesaki, Akimichi; Kuratomi, Yuichiro
2018-06-01
In this study, we evaluated pathological changes in the tooth and pharynx of GERD rats to elucidate the association between gastric acid reflux and oral and pharyngeal diseases. An experimental rat model of chronic acid reflux esophagitis was surgically created. The oral cavities were observed histologically every 2 weeks until 20 weeks after surgery. At 10 weeks after surgery, molar crown heights in GERD rats were shorter than that in control rats, and inflammatory cell infiltration by gastric acid reflux was found in the periodontal mucosa of GERD rats. Furthermore, dental erosion progressed in GERD rats at 20 weeks after surgery, and enamel erosion and dentin exposure were observed. During the same period, inflammatory cell infiltration was observed in the mucosa of the posterior part of the tongue. These findings suggest that gastric acid reflux may be one of the exacerbating factors of dental erosion, periodontitis and glossitis. We investigated oral changes in an experimental rat model of GERD and observed development of dental erosion, periodontitis and glossitis. Our findings suggested chronic gastric acid reflux may be involved in the pathogenesis of oral disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Ji, Mu-Huo; Jia, Min; Zhang, Ming-Qiang; Liu, Wen-Xue; Xie, Zhong-Cong; Wang, Zhong-Yun; Yang, Jian-Jun
2014-10-03
Post-traumatic stress disorder (PTSD) is a psychiatric disease that has substantial health implications, including high rates of health morbidity and mortality, as well as increased health-related costs. Although many pharmacological agents have proven the effects on the development of PTSD, current pharmacotherapies typically only produce partial improvement of PTSD symptoms. Dexmedetomidine is a selective, short-acting α2-adrenoceptor agonist, which has anxiolytic, sedative, and analgesic effects. We therefore hypothesized that dexmedetomidine possesses the ability to prevent the development of PTSD and alleviate its symptoms. By using the rat model of PTSD induced by five electric foot shocks followed by three weekly exposures to situational reminders, we showed that the stressed rats displayed pronounced anxiety-like behaviors and cognitive impairments compared to the controls. Notably, repeated administration of 20μg/kg dexmedetomidine showed impaired fear conditioning memory, decreased anxiety-like behaviors, and improved spatial cognitive impairments compared to the vehicle-treated stressed rats. These data suggest that dexmedetomidine may exert preventive and protective effects against anxiety-like behaviors and cognitive impairments in the rats with PTSD after repeated administration. Copyright © 2014 Elsevier Inc. All rights reserved.
A preparation for studying electrical stimulation of the retina in vivo in rat
NASA Astrophysics Data System (ADS)
Baig-Silva, M. S.; Hathcock, C. D.; Hetling, J. R.
2005-03-01
A remaining challenge to the development of electronic prostheses for vision is improving the effectiveness of retinal stimulation. Electrode design and stimulus parameters need to be optimized such that the neural output from the retina conveys information to the mind's eye that aids the patient in interpreting his or her environment. This optimization will require a detailed understanding of the response of the retina to electrical stimulation. The identity and response characteristics of the cellular targets of stimulation need to be defined and evaluated. Described here is an in vivo preparation for studying electrical stimulation of the retina in rat at the cellular level. The use of rat makes available a number of well-described models of retinal disease that motivate prosthesis development. Artificial stimulation can be investigated by adapting techniques traditionally employed to study the response of the retina to photic stimuli, such as recording at the cornea, single-cell recording, and pharmacological dissection of the response. Pilot studies include amplitude-intensity response data for subretinal and transretinal stimulation paradigms recorded in wild-type rats and a transgenic rat model of autosomal dominant retinitis pigmentosa. The ability to record single-unit ganglion cell activity in vivo is also demonstrated.
Lipska, B K; Khaing, Z Z; Weickert, C S; Weinberger, D R
2001-07-01
Brain-derived neurotrophic factor (BDNF) plays an important role in development, synapse remodelling and responses to stress and injury. Its abnormal expression has been implicated in schizophrenia, a neuropsychiatric disorder in which abnormal neural development of the hippocampus and prefrontal cortex has been postulated. To clarify the effects of antipsychotic drugs used in the therapy of schizophrenia on BDNF mRNA, we studied its expression in rats treated with clozapine and haloperidol and in rats with neonatal lesions of the ventral hippocampus, used as an animal model of schizophrenia. Both antipsychotic drugs reduced BDNF expression in the hippocampus of control rats, but did not significantly lower its expression in the prefrontal cortex. The neonatal hippocampal lesion itself suppressed BDNF mRNA expression in the dentate gyrus and tended to reduce its expression in the prefrontal cortex. These results indicate that, unlike antidepressants, antipsychotics down-regulate BDNF mRNA, and suggest that their therapeutic properties are not mediated by stimulation of this neurotrophin. To the extent that the lesioned rat models some pathophysiological aspects of schizophrenia, our data suggest that a neurodevelopmental insult might suppress expression of the neurotrophin in certain brain regions.
Goswami, Sonal; Samuel, Sherin; Sierra, Olga R; Cascardi, Michele; Paré, Denis
2012-01-01
Despite recent progress, the causes and pathophysiology of post-traumatic stress disorder (PTSD) remain poorly understood, partly because of ethical limitations inherent to human studies. One approach to circumvent this obstacle is to study PTSD in a valid animal model of the human syndrome. In one such model, extreme and long-lasting behavioral manifestations of anxiety develop in a subset of Lewis rats after exposure to an intense predatory threat that mimics the type of life-and-death situation known to precipitate PTSD in humans. This study aimed to assess whether the hippocampus-associated deficits observed in the human syndrome are reproduced in this rodent model. Prior to predatory threat, different groups of rats were each tested on one of three object recognition memory tasks that varied in the types of contextual clues (i.e., that require the hippocampus or not) the rats could use to identify novel items. After task completion, the rats were subjected to predatory threat and, one week later, tested on the elevated plus maze (EPM). Based on their exploratory behavior in the plus maze, rats were then classified as resilient or PTSD-like and their performance on the pre-threat object recognition tasks compared. The performance of PTSD-like rats was inferior to that of resilient rats but only when subjects relied on an allocentric frame of reference to identify novel items, a process thought to be critically dependent on the hippocampus. Therefore, these results suggest that even prior to trauma PTSD-like rats show a deficit in hippocampal-dependent functions, as reported in twin studies of human PTSD.
Morphine hyposensitivity in streptozotocin-diabetic rats: Reversal by dietary l-arginine treatment.
Lotfipour, Shahrdad; Smith, Maree T
2018-01-01
Painful diabetic neuropathy (PDN) is a long-term complication of diabetes. Defining symptoms include mechanical allodynia (pain due to light pressure or touch) and morphine hyposensitivity. In our previous work using the streptozotocin (STZ)-diabetic rat model of PDN, morphine hyposensitivity developed in a temporal manner with efficacy abolished at 3 months post-STZ and maintained for 6 months post-STZ. As this time course mimicked that for the temporal development of hyposensitivity to the pain-relieving effects of the furoxan nitric oxide (NO) donor, PRG150 (3-methylfuroxan-4-carbaldehyde) in STZ-diabetic rats, we hypothesized that progressive depletion of endogenous NO bioactivity may underpin the temporal loss of morphine sensitivity in STZ-diabetic rats. Furthermore, we hypothesized that replenishment of NO bioactivity may restore morphine sensitivity in these animals. Diabetes was induced in male Dark Agouti rats by intravenous injection of STZ (85 mg/kg). Diabetes was confirmed on day 7 if blood glucose concentrations were ≥15 mmol/L. Mechanical allodynia was fully developed in the bilateral hindpaws by 3 weeks of STZ-diabetes in rats and this was maintained for the study duration. Morphine hyposensitivity developed in a temporal manner with efficacy abolished by 3 months post-STZ. Administration of dietary l-arginine (NO precursor) at 1 g/d to STZ-diabetic rats according to a 15-week prevention protocol initiated at 9 weeks post-STZ prevented abolition of morphine efficacy. When given as an 8-week intervention protocol in rats where morphine efficacy was abolished, dietary l-arginine at 1 g/d progressively rescued morphine efficacy and potency. Our findings implicate NO depletion in the development of morphine hyposensitivity in STZ-diabetic rats. © 2017 John Wiley & Sons Australia, Ltd.
Characterisation of Cdkl5 transcript isoforms in rat.
Hector, Ralph D; Dando, Owen; Ritakari, Tuula E; Kind, Peter C; Bailey, Mark E S; Cobb, Stuart R
2017-03-01
CDKL5 deficiency is a severe neurological disorder caused by mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5). The predominant human CDKL5 brain isoform is a 9.7kb transcript comprised of 18 exons with a large 6.6kb 3'-untranslated region (UTR). Mammalian models of CDKL5 disorder are currently limited to mouse, and little is known about Cdkl5 in other organisms used to model neurodevelopmental disorders, such as rat. In this study we characterise, both bioinformatically and experimentally, the rat Cdkl5 gene structure and its associated transcript isoforms. New exonic regions, splice sites and UTRs are described, confirming the presence of four distinct transcript isoforms. The predominant isoform in the brain, which we name rCdkl5_1, is orthologous to the human hCDKL5_1 and mouse mCdkl5_1 isoforms and is the most highly expressed isoform across all brain regions tested. This updated gene model of Cdkl5 in rat provides a framework for studies into its protein products and provides a reference for the development of molecular therapies for testing in rat models of CDKL5 disorder. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Xiaoou; Xie, Lili; He, Bing; Huang, Wei
2018-01-01
Objective To study the role of a disintegrin and metalloproteinase10 (ADAM10) in shedding neural cadherin (N-cadherin) and develop an approach to interfere the process of ventricular remodeling in adriamycin-induced cardiomyopathy (ACM) rats. Methods In a rat model of ACM, the effects of intraperitoneal injection of the lentiviral RNAi vector of ADAM10 on the morphology of cardiomyocytes and contractile function were observed by HE staining and color Doppler echocardiography. The expressions of N-cadherin and C-terminal fragment 1 (CTF1) were detected by Western blotting and immunohistochemistry. Results In the in vivo experiment, a large amount of fluorescence was seen in the isolated primary cardiomyocytes, which indicated that the transfection in the rat model was successful. In the treatment group, the morphology of cardiomyocytes and function of the heart were evidently improved, N-cadherin protein expression was remarkably up-regulated and CTF1 protein was obviously down-regulated compared with the model group. Conclusion Knock-down of ADAM10 increases N-cadherin expression and decreases CTF1 expression, thus improves cardiac function in the rat model of ACM.
Role of mast cells in bronchial contraction in nonallergic obstructive lung pathology.
Kuzubova, Nataliya A; Lebedeva, Elena S; Titova, Olga N; Fedin, Anatoliy N; Dvorakovskaya, Ivetta V
2017-01-01
The role of mast cells in contractile bronchial smooth muscle activity has been evaluated in a model of chronic obstructive pulmonary disease induced in rats that were intermittently exposed to nitrogen dioxide (NO 2 ) for 60 days. Starting from the 31st day, one group of rats inhaled sodium cromoglycate before exposure to NO 2 to stabilize mast cell membranes. The second group (control) was not treated. Isometric smooth muscle contraction was analysed in isolated bronchial samples in response to nerve and smooth muscle stimulation. Histological analysis revealed large numbers of mast cells in lung tissue of COPD model rats. The inhibition of mast cell degranulation by sodium cromoglycate prevented the development of nerve-stimulated bronchial smooth muscle hyperactivity in COPD model rats. Histamine or adenosine-induced hyperactivity on nerve stimulation was also inhibited by sodium cromoglycate in bronchial smooth muscle in both control and COPD model rats. This suggests that the mechanism of contractile activity enhancement of bronchial wall smooth muscle cells may be mediated through the activation of resident mast cells transmembrane adenosine receptors resulting in their partial degranulation, with the released histamine acting upon histamine H1-receptors which trigger reflex pathways via intramural ganglion neurons.
Role of mast cells in bronchial contraction in nonallergic obstructive lung pathology
Kuzubova, Nataliya A.; Lebedeva, Elena S.; Titova, Olga N.; Fedin, Anatoliy N.; Dvorakovskaya, Ivetta V.
2017-01-01
Abstract The role of mast cells in contractile bronchial smooth muscle activity has been evaluated in a model of chronic obstructive pulmonary disease induced in rats that were intermittently exposed to nitrogen dioxide (NO2) for 60 days. Starting from the 31st day, one group of rats inhaled sodium cromoglycate before exposure to NO2 to stabilize mast cell membranes. The second group (control) was not treated. Isometric smooth muscle contraction was analysed in isolated bronchial samples in response to nerve and smooth muscle stimulation. Histological analysis revealed large numbers of mast cells in lung tissue of COPD model rats. The inhibition of mast cell degranulation by sodium cromoglycate prevented the development of nerve-stimulated bronchial smooth muscle hyperactivity in COPD model rats. Histamine or adenosine-induced hyperactivity on nerve stimulation was also inhibited by sodium cromoglycate in bronchial smooth muscle in both control and COPD model rats. This suggests that the mechanism of contractile activity enhancement of bronchial wall smooth muscle cells may be mediated through the activation of resident mast cells transmembrane adenosine receptors resulting in their partial degranulation, with the released histamine acting upon histamine H1-receptors which trigger reflex pathways via intramural ganglion neurons. PMID:28867718
Wikramanayake, Tongyu Cao; Villasante, Alexandra C; Mauro, Lucia M; Nouri, Keyvan; Schachner, Lawrence A; Perez, Carmen I; Jimenez, Joaquin J
2013-05-01
Chemotherapy-induced alopecia (CIA) is one of the most distressing side effects of antineoplastic chemotherapy for which there is no effective interventional approach. A low-level laser (LLL) device, the HairMax LaserComb®, has been cleared by the FDA to treat androgenetic alopecia. Its effects may be extended to other settings; we have demonstrated that LaserComb treatment induced hair regrowth in a mouse model for alopecia areata. In the current study, we tested whether LLL treatment could promote hair regrowth in a rat model for CIA. Chemotherapy agents cyclophosphamide, etoposide, or a combination of cyclophosphamide and doxorubicin were administered in young rats to induce alopecia, with or without LLL treatment. As expected, 7-10 days later, all the rats developed full body alopecia. However, rats receiving laser treatment regrew hair 5 days earlier than rats receiving chemotherapy alone or sham laser treatment (with the laser turned off). The accelerated hair regrowth in laser-treated rats was confirmed by histology. In addition, LLL treatment did not provide local protection to subcutaneously injected Shay chloroleukemic cells. Taken together, our results demonstrated that LLL treatment significantly accelerated hair regrowth after CIA without compromising the efficacy of chemotherapy in our rat model. Our results suggest that LLL should be explored for the treatment of CIA in clinical trials because LLL devices for home use (such as the HairMax LaserComb®) provide a user-friendly and noninvasive approach that could be translated to increased patient compliance and improved efficacy.
Lesaint, Florian; Sigaud, Olivier; Flagel, Shelly B; Robinson, Terry E; Khamassi, Mehdi
2014-02-01
Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the form of Pavlovian conditioned responses (CRs) and associated dopamine activity, have questioned the classical hypothesis that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned stimulus (US), some rats (sign-trackers) come to approach and engage the conditioned stimulus (CS) itself - a lever - more and more avidly, whereas other rats (goal-trackers) learn to approach the location of food delivery upon CS presentation. Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We suggest that further investigation of factored representations in computational neuroscience studies may be useful.
Lesaint, Florian; Sigaud, Olivier; Flagel, Shelly B.; Robinson, Terry E.; Khamassi, Mehdi
2014-01-01
Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the form of Pavlovian conditioned responses (CRs) and associated dopamine activity, have questioned the classical hypothesis that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned stimulus (US), some rats (sign-trackers) come to approach and engage the conditioned stimulus (CS) itself – a lever – more and more avidly, whereas other rats (goal-trackers) learn to approach the location of food delivery upon CS presentation. Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We suggest that further investigation of factored representations in computational neuroscience studies may be useful. PMID:24550719
Animal models for clinical and gestational diabetes: maternal and fetal outcomes.
Kiss, Ana Ci; Lima, Paula Ho; Sinzato, Yuri K; Takaku, Mariana; Takeno, Marisa A; Rudge, Marilza Vc; Damasceno, Débora C
2009-10-19
Diabetes in pregnant women is associated with an increased risk of maternal and neonatal morbidity and remains a significant medical challenge. Diabetes during pregnancy may be divided into clinical diabetes and gestational diabetes. Experimental models are developed with the purpose of enhancing understanding of the pathophysiological mechanisms of diseases that affect humans. With regard to diabetes in pregnancy, experimental findings from models will lead to the development of treatment strategies to maintain a normal metabolic intrauterine milieu, improving perinatal development by preventing fetal growth restriction or macrosomia. Based on animal models of diabetes during pregnancy previously reported in the medical literature, the present study aimed to compare the impact of streptozotocin-induced severe (glycemia >300 mg/dl) and mild diabetes (glycemia between 120 and 300 mg/dl) on glycemia and maternal reproductive and fetal outcomes of Wistar rats to evaluate whether the animal model reproduces the maternal and perinatal results of clinical and gestational diabetes in humans. On day 5 of life, 96 female Wistar rats were assigned to three experimental groups: control (n = 16), severe (n = 50) and mild diabetes (n = 30). At day 90 of life, rats were mated. On day 21 of pregnancy, rats were killed and their uterine horns were exposed to count implantation and fetus numbers to determine pre- and post-implantation loss rates. The fetuses were classified according to their birth weight. Severe and mild diabetic dams showed different glycemic responses during pregnancy, impairing fetal glycemia and weight, confirming that maternal glycemia is directly associated with fetal development. Newborns from severe diabetic mothers presented growth restriction, but mild diabetic mothers were not associated with an increased rate of macrosomic fetuses. Experimental models of severe diabetes during pregnancy reproduced maternal and fetal outcomes of pregnant women presenting uncontrolled clinical diabetes. On the other hand, the mild diabetes model caused mild hyperglycemia during pregnancy, although it was not enough to reproduce the increased rate of macrosomic fetuses seen in women with gestational diabetes.
Asquith, Mark; Stauffer, Patrick; Davin, Sean; Mitchell, Claire; Lin, Phoebe; Rosenbaum, James T.
2017-01-01
Objective The HLA-B27/β2 microglobulin (β2m) transgenic rat is a leading model of B27-associated spondyloarthopathy and disease is dependent on the presence of intestinal bacteria. We have shown previously that adult HLA-B27/β2m rats have an altered intestinal microbiota. In this study we sought to better define age-dependent changes to both mucosal immune function and dysbiosis in this model. Methods Intestinal contents were collected from wild type and HLA-B27/β2m+ rats post-weaning (3 and 6 weeks), at disease onset (10 wks) and after the establishment of disease (16 wks). Microbial community structure was determined by 16s sequencing and qRT-PCR. Mucosal and systemic Th1, Th17 and Treg responses were analyzed by flow cytometry, as was the frequency of IgA-coated intestinal bacteria. Intestinal expression of inflammatory cytokines and antimicrobial peptides (AMPs) was determined by qRT-PCR. Results An inflammatory cytokine signature and elevated AMP expression during the post-weaning period preceded the development of clinical bowel inflammation and dysbiosis in HLA-B27/β2m+ rats. An early and sustained expansion of the Th17 pool was specifically observed in cecal and colonic mucosa of HLA-B27/β2m rats. Strongly elevated Akkermansia mucinphilia colonization and IgA coating of intestinal bacteria was significantly associated with HLA-B27 expression and arthritis development. Conclusions and Perspectives HLA-B27/β2m expression in this rat model renders the host hyper-responsive to microbial antigens from infancy. Early activation of innate immunity and expansion of a mucosal Th17 signature are soon followed by dysbiosis in HLA-B27/β2m+ve animals. Perturbed mucosal immunity and dysbiosis strongly merit further study in both pre-diseased and diseased SpA patient populations. PMID:26992013
WNIN/GR-Ob - an insulin-resistant obese rat model from inbred WNIN strain.
Harishankar, N; Vajreswari, A; Giridharan, N V
2011-09-01
WNIN/GR-Ob is a mutant obese rat strain with impaired glucose tolerance (IGT) developed at the National Institute of Nutrition (NIN), Hyderabad, India, from the existing 80 year old Wistar rat (WNIN) stock colony. The data presented here pertain to its obese nature along with IGT trait as evidenced by physical, physiological and biochemical parameters. The study also explains its existence, in three phenotypes: homozygous lean (+/+), heterozygous carrier (+/-) and homozygous obese (-/-). Thirty animals (15 males and 15 females) from each phenotype (+/+, +/-, -/-) and 24 lean and obese (6 males and 6 females) rats were taken for growth and food intake studies respectively. Twelve adult rats from each phenotype were taken for body composition measurement by total body electrical conductivity (TOBEC); 12 rats of both genders from each phenotype at different ages were taken for clinical chemistry parameters. Physiological indices of insulin resistance were calculated according to the homeostasis model assessment for insulin resistance (HOMA-IR) and also by studying U¹⁴C 2-deoxy glucose uptake (2DG). WNINGR-Ob mutants had high growth, hyperphagia, polydipsia, polyurea, glycosuria, and significantly lower lean body mass, higher fat mass as compared with carrier and lean rats. These mutants, at 50 days of age displayed abnormal response to glucose load (IGT), hyperinsulinaemia, hypertriglyceridaemia, hypercholesterolaemia and hyperleptinaemia. Basal and insulin-stimulated glucose uptakes by diaphragm were significantly decreased in obese rats as compared with lean rats. Obese rats of the designated WNIN/GR-Ob strain showed obesity with IGT, as adjudged by physical, physiological and biochemical indices. These indices varied among the three phenotypes, being lowest in lean, highest in obese and intermediate in carrier phenotypes thereby suggesting that obesity is inherited as autosomal incomplete dominant trait in this strain. This mutant obese rat model is easy to propagate, and can easily be transformed to frank diabetes model by dietary manipulation and thus can be used for screening anti-diabetic drugs.
Kodera, Sachiko; Gomez-Tames, Jose; Hirata, Akimasa; Masuda, Hiroshi; Arima, Takuji; Watanabe, Soichi
2017-01-01
The rapid development of wireless technology has led to widespread concerns regarding adverse human health effects caused by exposure to electromagnetic fields. Temperature elevation in biological bodies is an important factor that can adversely affect health. A thermophysiological model is desired to quantify microwave (MW) induced temperature elevations. In this study, parameters related to thermophysiological responses for MW exposures were estimated using an electromagnetic-thermodynamics simulation technique. To the authors’ knowledge, this is the first study in which parameters related to regional cerebral blood flow in a rat model were extracted at a high degree of accuracy through experimental measurements for localized MW exposure at frequencies exceeding 6 GHz. The findings indicate that the improved modeling parameters yield computed results that match well with the measured quantities during and after exposure in rats. It is expected that the computational model will be helpful in estimating the temperature elevation in the rat brain at multiple observation points (that are difficult to measure simultaneously) and in explaining the physiological changes in the local cortex region. PMID:28358345
Shah, Ami B; Nivar, Isaac; Speelman, Diana L
2018-01-01
Elevated testosterone (T) is routinely reported as a marker of hyperandrogenemia in rodent models for polycystic ovary syndrome (PCOS). In women with PCOS, elevated serum androstenedione (A4) is associated with more severe phenotypes, including a positive correlation with serum T, DHEAS, free androgen index (FAI), LH, and LH/FSH ratio. Furthermore, A4, along with calculated free T and FAI, was identified as one of the best predictors of PCOS in adult women of all ages (18 to > 50 y). The objective of this study was to investigate serum A4 levels in early adolescent and young adult prenatally androgenized (PNA) female rats, a model for PCOS. Pregnant rats were injected with 5 mg T daily during gestational days 16-19 (PNA rats, experimental group) or an equal volume of vehicle (control group). Female offspring of both groups had tail vein blood drawn for serum analysis at 8 and 16 weeks of age. ELISAs were used to quantify serum A4 and T levels. Serum A4 and T were elevated in 16-week-old PNA rats compared to controls. There was no significant difference in either hormone at 8 weeks of age. The PNA rats demonstrated elevated serum A4 and T in young adulthood, as has been observed in women with PCOS, further validating this as a model for PCOS and underscoring the importance of serum A4 elevation as a parameter inherent to PCOS and a rodent model for the disorder. Significant A4 elevation develops between early adolescence and early adulthood in this PNA rat model.
Rao Barkur, Rajashekar; Bairy, Laxminarayana K
2015-01-01
Widespread use of heavy metal lead (Pb) for various commercial purposes has resulted in the environmental contamination caused by this metal. The studies have shown a definite relationship between low level lead exposure during early brain development and deficit in children's cognitive functions. This study investigated the passive avoidance learning and spatial learning in male rat pups exposed to lead through their mothers during specific periods of early brain development. Experimental male rats were divided into 5 groups: i) the normal control group (NC) (N = 12) consisted of rat offspring born to mothers who were given normal drinking water throughout gestation and lactation, ii) the pre-gestation lead exposed group (PG) (N = 12) consisted of rat offspring, mothers of these rats had been exposed to 0.2% lead acetate in the drinking water for 1 month before conception, iii) the gestation lead exposed group (G) (N = 12) contained rat offspring born to mothers who had been exposed to 0.2% lead acetate in the drinking water throughout gestation, iv) the lactation lead exposed group (L) (N = 12) had rat offspring, mothers of these rats exposed to 0.2% lead acetate in the drinking water throughout lactation and v) the gestation and lactation lead exposed group (GL) (N = 12) contained rat offspring, mothers of these rats were exposed to 0.2% lead acetate throughout gestation and lactation. The study found deficit in passive avoidance learning in the G, L and GL groups of rats. Impairment in spatial learning was found in the PG, G, L and GL groups of rats. Interestingly, the study found that gestation period only and lactation period only lead exposure was sufficient to cause deficit in learning and memory in rats. The extent of memory impairment in the L group of rats was comparable with the GL group of rats. So it can be said that postnatal period of brain development is more sensitive to neurotoxicity compared to prenatal exposure. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
The incidence of allergies and asthma has increased significantly in the past few decades. The objectives of this study were to establish an allergy model in weanling rats to more closely reflect the developing immune system of children, and to determine whether systemic administ...
A physiologically-based pharmacokinetic (PBPK) model is being developed to estimate the dosimetry of toluene in rats inhaling the VOC under various experimental conditions. The effects of physical activity are currently being estimated utilizing a three-step process. First, we d...
Hidaka, Saburo; Okamoto, Yoshizo; Uchiyama, Satoshi; Nakatsuma, Akira; Hashimoto, Ken; Ohnishi, S. Tsuyoshi; Yamaguchi, Masayoshi
2006-01-01
Royal jelly (RJ) has been used worldwide for many years as medical products, health foods and cosmetics. Since RJ contains testosterone and has steroid hormone-type activities, we hypothesized that it may have beneficial effects on osteoporosis. We used both an ovariectomized rat model and a tissue culture model. Rats were divided into eight groups as follows: sham-operated (Sham), ovariectomized (OVX), OVX given 0.5% (w/w) raw RJ, OVX given 2.0% (w/w) RJ, OVX given 0.5% (w/w) protease-treated RJ (pRJ), OVX given 2.0% (w/w) pRJ, OVX given 17β-estradiol and OVX given its vehicle, respectively. The Ovariectomy decreased tibial bone mineral density (BMD) by 24%. Administration of 17β-estradiol to OVX rats recovered the tibial BMD decrease by 100%. Administration of 2.0% (w/w) RJ and 0.5–2.0% (w/w) pRJ to OVX rats recovered it by 85% or more. These results indicate that both RJ and pRJ are almost as effective as 17β-estradiol in preventing the development of bone loss induced by ovariectomy in rats. In tissue culture models, both RJ and pRJ increased calcium contents in femoral-diaphyseal and femoral-metaphyseal tissue cultures obtained from normal male rats. However, in a mouse marrow culture model, they neither inhibited the parathyroid hormone (PTH)-induced calcium loss nor affected the formation of osteoclast-like cells induced by PTH in mouse marrow culture system. Therefore, our results suggest that both RJ and pRJ may prevent osteoporosis by enhancing intestinal calcium absorption, but not by directly antagonizing the action of PTH. PMID:16951718
2016-10-01
elevated hippocampal neuronal [Ca2+]i following DFP exposures We have demonstrated that Status Epilepticus leads to development of sustained neuronal Ca2...Pharmacological blockade of the calcium plateau provides neuroprotection following organophosphate paraoxon induced status epilepticus in rats...2010) Development of a prolonged calcium plateau in hippocampal neurons in rats surviving status epilepticus induced by the organophosphate
Swimming intervention mitigates HFD-induced obesity of rats through PGC-1α-irisin pathway.
Yang, X-Q; Yuan, H; Li, J; Fan, J-J; Jia, S-H; Kou, X-J; Chen, N
2016-05-01
Irisin, a newly discovered myokine, can drive the browning of white adipocytes to control body weight or mitigate obesity progression through regulating energy metabolism. However, the underlying mechanisms or specific signal pathways of exercise-induced irisin on the management of obesity are still unclear. Totally 30 rats were subjected to high fat diet (HFD) feeding for 8 weeks to establish the rat model with obesity successfully. HFD-induced obese model rats were provided with 8 weeks swimming intervention at moderate intensity for exploring the treatment of obesity through exercise intervention. In addition, another 15 rats were subjected to HFD feeding coupled with total 16 weeks swimming intervention at a moderate intensity from the beginning of the experiment, which was used for exploring the prevention of obesity through exercise intervention. Blood and gastrocnemius samples were harvested from obese rats after swimming intervention to explore its specific signal pathways through ELISA analysis and Western blotting. HFD feeding of rats for 8 weeks could lead to the obesity due to the disorders of lipid metabolism. Totally 8 weeks swimming intervention at moderate intensity for rats with obesity could obviously alleviate the progression of obesity and 16 weeks swimming intervention from the beginning of the experiment could significantly inhibit the development of obesity. Meanwhile, swimming intervention could result in an increased phosphorylation of AMPK and up-regulation of irisin and PGC-1α as the biomarkers of energy metabolism. Exercise intervention can activate PGC-1α-dependent irisin to induce the browning of white adipocytes, thus inhibiting or alleviating the occurrence and development of obesity.
Marrero-Rosado, Brenda; Rossetti, Franco; Rice, Matthew W; Moffett, Mark C; Lee, Robyn; Stone, Michael F; Lumley, Lucille A
2018-03-27
Elderly individuals compose a large percentage of the world population; however, few studies have addressed the efficacy of current medical countermeasures (MCM) against the effects of chemical warfare nerve agent exposure in aged populations. We evaluated the efficacy of the anticonvulsant diazepam in an old adult rat model of soman (GD) poisoning and compared the toxic effects to those observed in young adult rats when anticonvulsant treatment is delayed. After determining their respective median lethal dose (LD50) of GD, we exposed young adult and old adult rats to an equitoxic 1.2 LD50 dose of GD followed by treatment with atropine sulfate and the oxime HI-6 at one minute after exposure, and diazepam at 30 minutes after seizure onset. Old adult rats that presented with status epilepticus were more susceptible to developing spontaneous recurrent seizures (SRS). Neuropathological analysis revealed that in rats of both age groups that developed SRS, there was a significant reduction in the density of mature neurons in the piriform cortex, thalamus, and amygdala, with more pronounced neuronal loss in the thalamus of old adult rats compared to young adult rats. Furthermore, old adult rats displayed a reduced density of cells expressing glutamic acid decarboxylase 67, a marker of GABAergic interneurons, in the basolateral amygdala and piriform cortex, and a reduction of astrocyte activation in the piriform cortex. Our observations demonstrate the reduced effectiveness of current MCM in an old adult animal model of GD exposure and strongly suggest the need for countermeasures that are more tailored to the vulnerabilities of an aging population.
Li, Hongyan; Xin, Xiaoyun
2013-06-01
Recent epidemiological literatures reported that NO(2) is a potential risk factor of ischemic stroke in polluted area. Meanwhile, our previous in vivo study found that NO(2) could delay the recovery of nerve function after stroke, implying a possible risk of vascular dementia (VaD) with NO(2) inhalation, which is often a common cognitive complication resulting from stroke. However, the effect and detailed mechanisms have not been fully elucidated. In the present study, synaptic mechanisms, the foundation of neuronal function and viability, were investigated in both model rats of ischemic stroke and healthy rats after NO(2) exposure. Transmission electron microscope (TEM) observation showed that 5 mg m(-3) NO(2) exposure not only exacerbated the ultrastructural impairment of synapses in stroke model rats, but also induced neuronal damage in healthy rats. Meantime, we found that the expression of synaptophysin (SYP) and postsynaptic density protein 95 (PSD-95), two structural markers of synapses in ischemic stroke model were inhibited by NO(2) inhalation; and so it was with the key proteins mediating long-term potentiation (LTP), the major form of synaptic plasticity. On the contrary, NO(2) inhalation induced the expression of nearly all these proteins in healthy rats in a concentration-dependent manner. Our results implied that NO(2) exposure could increase the risk of VaD through inducing excitotoxicity in healthy rats but weakening synaptic plasticity directly in stroke model rats. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mashimo, Tomoji
2014-01-01
The laboratory rat has been widely used as an animal model in biomedical science for more than 150 years. Applying zinc-finger nucleases or transcription activator-like effector nucleases to rat embryos via microinjection is an efficient genome editing tool for generating targeted knockout rats. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonucleases have been used as an effective tool for precise and multiplex genome editing in mice and rats. In this review, the advantages and disadvantages of these site-specific nuclease technologies for genetic analysis and manipulation in rats are discussed. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devadas, Balekudru; Selness, Shaun R.; Xing, Li
2012-02-28
A novel series of highly potent and selective p38 MAP kinase inhibitors was developed originating from a substituted N-aryl-6-pyrimidinone scaffold. SAR studies coupled with in vivo evaluations in rat arthritis model culminated in the identification of 10 with excellent oral efficacy. Compound 10 exhibited a significantly enhanced dissolution rate compared to 1, translating to a high oral bioavailability (>90%) in rat. In animal studies 10 inhibited LPS-stimulated production of tumor necrosis factor-{alpha} in a dose-dependent manner and demonstrated robust efficacy comparable to dexamethasone in a rat streptococcal cell wall-induced arthritis model.
Dynamic body weight and body composition changes in response to subordination stress.
Tamashiro, Kellie L K; Hegeman, Maria A; Nguyen, Mary M N; Melhorn, Susan J; Ma, Li Yun; Woods, Stephen C; Sakai, Randall R
2007-07-24
Social stress is prevalent in many facets of modern society. Epidemiological data suggest that stress is linked to the development of overweight, obesity and metabolic disease. Although there are strong associations between the incidence of obesity with stress and elevated levels of hormones such as cortisol, there are limited animal models to allow investigation of the etiology of increased adiposity resulting from exposure to stress. Perhaps more importantly, an animal model that mirrors the consequences of stress in humans will provide a vehicle to develop rational clinical therapy to treat or prevent adverse outcomes from exposure to chronic social stress. In the visible burrow system (VBS) model of chronic social stress mixed gender colonies are housed for 2 week periods during which male rats of the colony quickly develop a dominance hierarchy. We found that social stress has significant effects on body weight and body composition such that subordinate rats progressively develop characteristics of obesity that occurs, in part, through neuroendocrine alterations and changes in food intake amount. Although subordinate rats are hyperphagic following social stress they do not increase their intake of sucrose solution as control and dominants do suggesting that they are anhedonic. Consumption of a high fat diet does not appear to affect development of a social hierarchy and appears to enhance the effect that chronic stress has on body composition. The visible burrow system (VBS) model of social stress may be a potential laboratory model for studying stress-associated metabolic disease, including the metabolic syndrome.
Sinus hypoplasia in the cystic fibrosis rat resolves in the absence of chronic infection.
Grayson, Jessica; Tipirneni, Kiranya E; Skinner, Daniel F; Fort, Matthew; Cho, Do-Yeon; Zhang, Shaoyan; Prince, Andrew C; Lim, Dong-Jin; Mackey, Calvin; Woodworth, Bradford A
2017-09-01
Sinus hypoplasia is a hallmark characteristic in cystic fibrosis (CF). Chronic rhinosinusitis (CRS) is nearly universal from a young age, impaired sinus development could be secondary to loss of the cystic fibrosis transmembrane conductance regulator (CFTR) or consequences of chronic infection during maturation. The objective of this study was to assess sinus development relative to overall growth in a novel CF animal model. Sinus development was evaluated in CFTR -/- and CFTR +/+ rats at 3 stages of development: newborn; 3 weeks; and 16 weeks. Microcomputed tomography (microCT) scanning, cultures, and histology were performed. Three-dimensional sinus and skull volumes were quantified. At birth, sinus volumes were decreased in CFTR -/- rats compared with wild-type rats (mean ± SEM: 11.3 ± 0.85 mm 3 vs 14.5 ± 0.73 mm 3 ; p < 0.05), despite similar weights (8.4 ± 0.46 gm vs 8.3 ± 0.51 gm; p = 0.86). CF rat weights declined by 16 weeks (378.4 ± 10.6 gm vs 447.4 ± 15.9 gm; p < 0.05), sinus volume increased similar to wild-type rats (201.1 ± 3.77 gm vs 203.4 ± 7.13 gm; p = 0.8). The ratio of sinus volume to body weight indicates hypoplasia present at birth (1.37 ± 0.12 vs 1.78 ± 0.11; p < 0.05) and showed an increase compared with CFTR +/+ animals by 16 weeks (0.53 ± 0.02 vs 0.46 ± 0.02; p < 0.05). Rats did not develop histologic evidence of chronic infection. CF rat sinuses are smaller at birth, but develop volumes similar to wild-type rats with maturation. This suggests that loss of CFTR may confer sinus hypoplasia at birth, but normal development ensues without chronic sinus infection. © 2017 ARS-AAOA, LLC.
Dietrich, Arne; Bouzidi, Maria; Hartwig, Thomas; Schütz, Alexander; Jonas, Sven
2012-06-01
Rapamycin, an immunosuppressive in transplant surgery, has an additional antiproliferative effect. The aim of this study was to investigate the potential protective effects of rapamycin on postoperative adhesion development. Ten rats per group underwent midline incision laparotomy and adhesion induction including bowel sutures. Therapy groups received daily intraperitoneal rapamycin injections (1.5 mg/kg body weight) for 3 weeks postoperatively. Controls were rats without any postoperative treatment, rats receiving the rapamycin solvent or a hyaluronic acid-carboxymethylcellulose membrane (Seprafilm(™)). Postoperative rapamycin application led to enhanced adhesion development and there was a higher rate of wound infections. In addition, Seprafilm(™) did not reduce adhesions, in subgroups there were even more. Rapamycin is not recommendable for perioperative immunosuppression, it enhances adhesion development and leads to a higher rate of wound infections. Surprisingly, the established Seprafilm(™) membrane led to more adhesions in our experimental setting.
Íbias, Javier; Miguéns, Miguel; Pellón, Ricardo
2016-09-01
The spontaneously hypertensive rat (SHR) has been proposed as an animal model for attention deficit hyperactivity disorder (ADHD), and typically develops excessive patterns of response under most behavioural protocols. Schedule-induced polydipsia (SIP) is the excessive water consumption that occurs as a schedule effect when food is intermittently delivered and animals are partially food- but not water-deprived. SIP has been used as a model of excessive behaviour, and considerable evidence has involved the dopaminergic system in its development and maintenance. The aim of this study was to evaluate the effects of the most common psychostimulants used in ADHD treatment on SIP, comparing their effects in SHRs with rats from control populations. SHR, Wistar Kyoto (WKY) and Wistar rats were submitted to a multiple fixed time (FT) food schedule with two components: 30 s and 90 s. The acute effects of different dopaminergic compounds were evaluated after 40 sessions of SIP acquisition. All animals showed higher adjunctive drinking under FT 30 s than FT 90 s, and SHRs displayed higher asymptotic SIP levels in FT 90 s compared to WKY and Wistar rats. SHRs were less sensitive to dopaminergic agents than control rats in terms of affecting rates of adjunctive drinking. These differences point to an altered dopaminergic system in the SHR and provide new insights into the neurobiological basis of ADHD pharmacological treatments. © The Author(s) 2016.
Pong, Alice C.; Jugé, Lauriane; Bilston, Lynne E.; Cheng, Shaokoon
2017-01-01
Introduction Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Methods Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Results Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. Conclusions This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly. These results are in contrast with our previous findings in juvenile hydrocephalic rats which had significantly less brain compression (as the brain circumference was able to stretch with the cranium due to the open skull sutures) and had a significant increase in caudate putamen stiffness. These results suggest that change in brain mechanical properties in hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus. PMID:28837671
Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon
2017-01-01
Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly. These results are in contrast with our previous findings in juvenile hydrocephalic rats which had significantly less brain compression (as the brain circumference was able to stretch with the cranium due to the open skull sutures) and had a significant increase in caudate putamen stiffness. These results suggest that change in brain mechanical properties in hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus.
Development of Ultra Long Duration Local Anesthetic Agents in a Rat Model
1994-02-24
this formulation is not toxic to the spinal cord. Initial trials with lecithin-coated bupivacaine microcrystals indic,-.. that this preparation also has...an ultra long duration local anesthetic effect, producing a 43 hour block in the rat tail. Clinical trials of this preparation in a human model are...l f _ _ _ Memorandum for LTC Dean E. Calcagni, M.D. Director, Combat Casualty Research Program USAMRDC Subject: Annual Report for Clinical
Reutter, Bryan W.; Huesman, Ronald H.; Brennan, Kathleen M.; ...
2011-01-01
The goal of this project is to develop radionuclide molecular imaging technologies using a clinical pinhole SPECT/CT scanner to quantify changes in cardiac metabolism using the spontaneously hypertensive rat (SHR) as a model of hypertensive-related pathophysiology. This paper quantitatively compares fatty acid metabolism in hearts of SHR and Wistar-Kyoto normal rats as a function of age and thereby tracks physiological changes associated with the onset and progression of heart failure in the SHR model. The fatty acid analog, 123 I-labeled BMIPP, was used in longitudinal metabolic pinhole SPECT imaging studies performed every seven months for 21 months. The uniqueness ofmore » this project is the development of techniques for estimating the blood input function from projection data acquired by a slowly rotating camera that is imaging fast circulation and the quantification of the kinetics of 123 I-BMIPP by fitting compartmental models to the blood and tissue time-activity curves.« less
The use of rats and mice as animal models in ex vivo bone growth and development studies
Abubakar, A. A.; Noordin, M. M.; Azmi, T. I.; Kaka, U.
2016-01-01
In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine. Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2. PMID:27965220
Hamadache, Mabrouk; Benkortbi, Othmane; Hanini, Salah; Amrane, Abdeltif; Khaouane, Latifa; Si Moussa, Cherif
2016-02-13
Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides. Copyright © 2015 Elsevier B.V. All rights reserved.
Nemes, Ashley D; Ayasoufi, Katayoun; Ying, Zhong; Zhou, Qi-Gang; Suh, Hoonkyo; Najm, Imad M
2017-12-18
We previously showed increased growth associated protein 43 (GAP-43) expression in brain samples resected from patients with cortical dysplasia (CD), which was correlated with duration of epilepsy. Here, we used a rat model of CD to examine the regulation of GAP-43 in the brain and serum over the course of epileptogenesis. Baseline GAP-43 expression was higher in CD animals compared to control non-CD rats. An acute seizure increased GAP-43 expression in both CD and control rats. However, GAP-43 expression decreased by day 15 post-seizure in control rats, which did not develop spontaneous seizures. In contrast, GAP-43 remained up-regulated in CD rats, and over 50% developed chronic epilepsy with increased GAP-43 levels in their serum. GAP-43 protein was primarily located in excitatory neurons, suggesting its functional significance in epileptogenesis. Inhibition of GAP-43 expression by shRNA significantly reduced seizure duration and severity in CD rats after acute seizures with subsequent reduction in interictal spiking. Serum GAP-43 levels were significantly higher in CD rats that developed spontaneous seizures. Together, these results suggest GAP-43 as a key factor promoting epileptogenesis, a possible therapeutic target for treatment of progressive epilepsy and a potential biomarker for epilepsy progression in CD.
Barrett, Catherine E; Hennessey, Thomas M; Gordon, Katelyn M; Ryan, Steve J; McNair, Morgan L; Ressler, Kerry J; Rainnie, Donald G
2017-01-01
The amygdala controls socioemotional behavior and has consistently been implicated in the etiology of autism spectrum disorder (ASD). Precocious amygdala development is commonly reported in ASD youth with the degree of overgrowth positively correlated to the severity of ASD symptoms. Prenatal exposure to VPA leads to an ASD phenotype in both humans and rats and has become a commonly used tool to model the complexity of ASD symptoms in the laboratory. Here, we examined abnormalities in gene expression in the amygdala and socioemotional behavior across development in the valproic acid (VPA) rat model of ASD. Rat dams received oral gavage of VPA (500 mg/kg) or saline daily between E11 and 13. Socioemotional behavior was tracked across development in both sexes. RNA sequencing and proteomics were performed on amygdala samples from male rats across development. Effects of VPA on time spent in social proximity and anxiety-like behavior were sex dependent, with social abnormalities presenting in males and heightened anxiety in females. Across time VPA stunted developmental and immune, but enhanced cellular death and disorder, pathways in the amygdala relative to saline controls. At postnatal day 10, gene pathways involved in nervous system and cellular development displayed predicted activations in prenatally exposed VPA amygdala samples. By juvenile age, however, transcriptomic and proteomic pathways displayed reductions in cellular growth and neural development. Alterations in immune pathways, calcium signaling, Rho GTPases, and protein kinase A signaling were also observed. As behavioral, developmental, and genomic alterations are similar to those reported in ASD, these results lend support to prenatal exposure to VPA as a useful tool for understanding how developmental insults to molecular pathways in the amygdala give rise to ASD-related syndromes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corley, R.A., E-mail: rick.corley@pnl.gov; Saghir, S.A.; Bartels, M.J.
2011-02-01
A previously developed PBPK model for ethylene glycol and glycolic acid was extended to include glyoxylic acid, oxalic acid, and the precipitation of calcium oxalate that is associated with kidney toxicity in rats and humans. The development and evaluation of the PBPK model was based upon previously published pharmacokinetic studies coupled with measured blood and tissue partition coefficients and rates of in vitro metabolism of glyoxylic acid to oxalic acid, glycine and other metabolites using primary hepatocytes isolated from male Wistar rats and humans. Precipitation of oxalic acid with calcium in the kidneys was assumed to occur only at concentrationsmore » exceeding the thermodynamic solubility product for calcium oxalate. This solubility product can be affected by local concentrations of calcium and other ions that are expressed in the model using an ion activity product estimated from toxicity studies such that calcium oxalate precipitation would be minimal at dietary exposures below the NOAEL for kidney toxicity in the sensitive male Wistar rat. The resulting integrated PBPK predicts that bolus oral or dietary exposures to ethylene glycol would result in typically 1.4-1.6-fold higher peak oxalate levels and 1.6-2-fold higher AUC's for calcium oxalate in kidneys of humans as compared with comparably exposed male Wistar rats over a dose range of 1-1000 mg/kg. The converse (male Wistar rats predicted to have greater oxalate levels in the kidneys than humans) was found for inhalation exposures although no accumulation of calcium oxalate is predicted to occur until exposures are well in excess of the theoretical saturated vapor concentration of 200 mg/m{sup 3}. While the current model is capable of such cross-species, dose, and route-of-exposure comparisons, it also highlights several areas of potential research that will improve confidence in such predictions, especially at low doses relevant for most human exposures.« less
Henry, Frank S.
2015-01-01
The structure of the gas exchange region of the human lung (the pulmonary acinus) undergoes profound change in the first few years of life. In this paper, we investigate numerically how the change in alveolar shape with time affects the rate of nanoparticle deposition deep in the lung during postnatal development. As human infant data is unavailable, we use a rat model of lung development. The process of postnatal lung development in the rat is remarkably similar to that of the human, and the structure of the rat acinus is indistinguishable from that of the human acinus. The current numerical predictions support our group's recent in vivo findings, which were also obtained by using growing rat lung models, that nanoparticle deposition in infants is strongly affected by the change in the structure of the pulmonary acinus. In humans, this major structural change occurs over the first 2 yr of life. Our current predictions would suggest that human infants at the age of ∼2 yr might be most at risk to the harmful effects of air pollution. Our results also suggest that dose estimates for inhalation therapies using nanoparticles, based on fully developed adult lungs with simple body weight scaling, are likely to overestimate deposition by up to 55% for newborns and underestimate deposition by up to 17% for 2-yr-old infants. PMID:26494453
Yang, Jing; Xi, Kehu; Gui, Yan; Wang, Youhu; Zhang, Fuhong; Ma, Chunxia; Hong, Hao; Liu, Xiangyi; Meng, Nannan; Zhang, Xiaobing
2015-12-01
To investigate 18β-sodium glycyrrhetinic acid impact on nasal mucosa epithelial cilia in rat models of allergic rhinitis (AR). AR models were established by ovalbumin-induction. Wister rats were randomly divided into groups as normal group, model group, budesonide (0.2 mg/kg) group and sodium glycyrrhetinic acid (20 mg/kg and 40 mg/kg) group after the success of AR models. At 2 weeks and 4 weeks after treatment, the behavioral changes of rats were observed and recorded, and nasal septum mucosae were collected after 2 week and 4 week intervention, and the morphological changes of nasal mucosae were observed by electron microscope. Model group developed typical AR symptoms, the total score in all animals was > 5. With budesonide and sodium glycyrrhetinic acid treatment, the AR symptoms were relieved, and the total scores were reduced significantly (P < 0.01). Compared with the model group: after 2 weeks' intervention, thick mucous secretions on the top of columnar epithelium cilia in rat nasal mucosa was significantly reduced, and cilia adhesion, lodging, shedding were relieved in budesonide group and sodium glycyrrhetinic acid group, the relieve in budesonide group was slightly better than that in sodium glycyrrhetinic acid group; after 4 week intervention, Cilia adhesion, lodging, shedding were completely vanished, and the cilia were ranged in regular direction in budesonide group and sodium glycyrrhetinic acid group. Cilia in sodium glycyrrhetinic acid (20 mg/kg) group was more orderly, smooth than that in budesonide group and sodium glycyrrhetinic acid group (40 mg/kg), and the condition of cilia in sodium glycyrrhetinic acid group (20 mg/kg) was similar to the normal group. 18β-sodium glycyrrhetinic acid is effective to restrain the pathological changes of nasal mucosa cilia in rat models of AR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com; Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001; Gupta, Shikha
Robust global models capable of discriminating positive and non-positive carcinogens; and predicting carcinogenic potency of chemicals in rodents were developed. The dataset of 834 structurally diverse chemicals extracted from Carcinogenic Potency Database (CPDB) was used which contained 466 positive and 368 non-positive carcinogens. Twelve non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals and nonlinearity in the data were evaluated using Tanimoto similarity index and Brock–Dechert–Scheinkman statistics. Probabilistic neural network (PNN) and generalized regression neural network (GRNN) models were constructed for classification and function optimization problems using the carcinogenicity end point in rat. Validation of the models wasmore » performed using the internal and external procedures employing a wide series of statistical checks. PNN constructed using five descriptors rendered classification accuracy of 92.09% in complete rat data. The PNN model rendered classification accuracies of 91.77%, 80.70% and 92.08% in mouse, hamster and pesticide data, respectively. The GRNN constructed with nine descriptors yielded correlation coefficient of 0.896 between the measured and predicted carcinogenic potency with mean squared error (MSE) of 0.44 in complete rat data. The rat carcinogenicity model (GRNN) applied to the mouse and hamster data yielded correlation coefficient and MSE of 0.758, 0.71 and 0.760, 0.46, respectively. The results suggest for wide applicability of the inter-species models in predicting carcinogenic potency of chemicals. Both the PNN and GRNN (inter-species) models constructed here can be useful tools in predicting the carcinogenicity of new chemicals for regulatory purposes. - Graphical abstract: Figure (a) shows classification accuracies (positive and non-positive carcinogens) in rat, mouse, hamster, and pesticide data yielded by optimal PNN model. Figure (b) shows generalization and predictive abilities of the interspecies GRNN model to predict the carcinogenic potency of diverse chemicals. - Highlights: • Global robust models constructed for carcinogenicity prediction of diverse chemicals. • Tanimoto/BDS test revealed structural diversity of chemicals and nonlinearity in data. • PNN/GRNN successfully predicted carcinogenicity/carcinogenic potency of chemicals. • Developed interspecies PNN/GRNN models for carcinogenicity prediction. • Proposed models can be used as tool to predict carcinogenicity of new chemicals.« less
Studies on the pathogenicity of anaerobes, especially Prevotella bivia, in a rat pyometra model.
Mikamo, H; Kawazoe, K; Izumi, K; Watanabe, K; Ueno, K; Tamaya, T
1998-01-01
OBJECTIVE: Prevotella bivia is one of the anaerobic bacteria that resides in the flora of the female genital tract. We studied the pathogenicity of P. bivia in a rat pyometra model. METHODS: The experimental animal (rat) model of pyometra was developed to investigate the pathogenicity of P. bivia in a rat pyometra model. RESULTS: In the groups inoculated with aerobes alone, the infection rate was 10% (1/10) in the Staphylococcus aureus- or Staphylococcus agalactiae-inoculated group and 20% (2/10) in the Escherichia coli-inoculated group. Infection was not established in the groups inoculated with anaerobes alone. High infection rates were observed in all the mixed-infection groups. In the S. agalactiae- and Bacteroides fragilis-, S. agalactiae- and P. bivia-, F. coli- and B. fragilis-, and E. coli- and P. bivia-inoculated groups, an infection rate of 100% (10/10) was demonstrated. The efficacy of antibiotics such as flomoxef (FMOX) could be determined using a rat pyometra model. In relation to the alteration of vaginal microbial flora during the menstrual cycle, estrogen increased the growth of P. bivia. CONCLUSION: Mixture of aerobic bacteria and P. bivia increased the pathogenicity of P. bivia. Estrogen would be useful for raising up the inflammatory change of the uterus in experimental models of genital tract infection due to P. bivia. PMID:9702587
Contraction of Abdominal Wall Muscles Influences Incisional Hernia Occurrence and Size
Lien, Samuel C.; Hu, Yaxi; Wollstein, Adi; Franz, Michael G.; Patel, Shaun P.; Kuzon, William M.; Urbanchek, Melanie G.
2015-01-01
Background Incisional hernias are a complication in 10% of all open abdominal operations and can result in significant morbidity. The purpose of this study is to determine if inhibiting abdominal muscle contraction influences incisional hernia formation during laparotomy healing. We hypothesize that reducing abdominal musculature deformation reduces incisional hernia occurrence and size. Study Design Using an established rat model for incisional hernia, a laparotomy through the linea alba was closed with one mid-incision, fast-absorbing suture. Three groups were compared: a SHAM group (SHAM; n = 6) received no laparotomies while the Saline Hernia (SH; n = 6) and Botox Hernia (BH; n = 6) groups were treated once with equal volume saline or Botulinum Toxin (Botox®, Allergan) before the incomplete laparotomy closure. On post-operative day 14, the abdominal wall was examined for herniation and adhesions and contractile forces were measured for abdominal wall muscles. Results No hernias developed in SHAM rats. Rostral hernias developed in all SH and BH rats. Caudal hernias developed in all SH rats, but in only 50% of the BH rats. Rostral hernias in the BH group were 35% shorter and 43% narrower compared to those in the SH group (p < 0.05). The BH group had weaker abdominal muscles compared to the SHAM and SH groups (p < 0.05). Conclusions In our rat model, partial paralysis of abdominal muscles reduces the number and size of incisional hernias. These results confirm abdominal wall muscle contractions play a significant role in the pathophysiology of incisional hernia formation. PMID:25817097
Cooper, B Y; Flunker, L D; Johnson, R D; Nutter, T J
2018-08-01
Many veterans of Operation Desert Storm (ODS) struggle with the chronic pain of Gulf War Illness (GWI). Exposure to insecticides and pyridostigmine bromide (PB) have been implicated in the etiology of this multisymptom disease. We examined the influence of 3 (DEET (N,N-diethyl-meta-toluamide), permethrin, chlorpyrifos) or 4 GW agents (DEET, permethrin, chlorpyrifos, pyridostigmine bromide (PB)) on the post-exposure ambulatory and resting behaviors of rats. In three independent studies, rats that were exposed to all 4 agents consistently developed both immediate and delayed ambulatory deficits that persisted at least 16 weeks after exposures had ceased. Rats exposed to a 3 agent protocol (PB excluded) did not develop any ambulatory deficits. Cellular and molecular studies on nociceptors harvested from 16WP (weeks post-exposure) rats indicated that vascular nociceptor Na v 1.9 mediated currents were chronically potentiated following the 4 agent protocol but not following the 3 agent protocol. Muscarinic linkages to muscle nociceptor TRPA1 were also potentiated in the 4 agent but not the 3 agent, PB excluded, protocol. Although K v 7 activity changes diverged from the behavioral data, a K v 7 opener, retigabine, transiently reversed ambulation deficits. We concluded that PB played a critical role in the development of pain-like signs in a GWI rat model and that shifts in Na v 1.9 and TRPA1 activity were critical to the expression of these pain behaviors. Copyright © 2018 Elsevier Inc. All rights reserved.
Social behavior impairment in offspring exposed to maternal seizures in utero.
Novaes, Gisane Faria; Amado, Debora; Scorza, Fulvio Alexandre; Cysneiros, Roberta Monterazzo
2012-06-01
Human and animal models have demonstrated that maternal seizures in utero could be deleterious to the development of the offspring. This study focused on the social behavior of offspring exposed to seizures in utero. A pilocarpine model of temporal lobe epilepsy was induced in female Wistar rats that were mated after the first spontaneous seizure. Early after birth, pups from an epileptic mother were reared by a control mother. To evaluate the influence of the adoption process, two other groups were added: rat pups from control mothers cross-fostered with other control mothers, and rat pups reared by their birth mother. Animals exposed to seizures in utero showed impaired social behavior with no signs of anxiety-like behavior. This study demonstrated that epileptic seizures during pregnancy could be harmful to brain development and may increase the risk of developing neurodevelopmental disorders. The mechanisms underlying the abnormalities of social behavior are not well understood, and further studies in this field are warranted.
Lynch, J J; Jarvis, M F; Kowaluk, E A
1999-01-08
The present study was conducted to characterize the development of tactile allodynia in the streptozotocin-induced rat model of diabetes, and to evaluate the antinociceptive effects of systemically administered morphine and the adenosine kinase inhibitor, 5'-deoxy-5-iodotubercidin (5'd-5IT) in this model. Rats were injected with 75 mg/kg streptozotocin (i.p.), and blood glucose levels were determined 3-4 weeks later. Diabetic (blood glucose levels > or = 250 mg/dl) and vehicle-injected rats were examined weekly for the development of tactile allodynia by measuring the threshold for hind paw withdrawal using von Frey hairs. Withdrawal thresholds were reduced to 6.8+/-0.6 g (mean+/-S.E.M.) in approximately one-third of streptozotocin-treated rats 7 weeks after streptozotocin treatment as compared to control thresholds (13.2+/-0.1 g), and this allodynia persisted for at least an additional 7 weeks. In additional experiments, morphine sulfate (5-21 micromol/kg, i.p.) produced dose-dependent antinociceptive effects on tactile allodynia for up to 2 h post-dosing. The adenosine kinase inhibitor, 5'd-5IT (2.5 and 5 micromol/kg, i.p.) also dose-dependently attenuated tactile allodynia. Pretreatment with the opioid receptor antagonist, naloxone (27 micromol/kg, i.p.) or the non-selective adenosine receptor antagonist, theophylline (111 micromol/kg, i.p.) significantly diminished the anti-allodynic effects of morphine and 5'd-5IT, respectively. The present study demonstrates that the potent and selective adenosine kinase inhibitor, 5'd-5IT, is equally effective as morphine in blocking tactile allodynia in this model.
Development and testing of a mouse simulated space flight model
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.
1985-01-01
The development and testing of a mouse model for simulating some aspects of weightlessness that occur during space flight, and the carrying out of immunological flight experiments on animals was discussed. The mouse model is an antiorthostatic, hypokinetic, hypodynamic suspension model similar to the one used with rats. It is shown that this murine model yield similar results to the rat model of antiorthostatic suspension for simulating some aspects of weightlessness. It is also shown that mice suspended in this model have decreased interferon-alpha/beta production as compared to control, nonsuspended mice or to orthostatically suspended mice. It is suggested that the conditions occuring during space flight could possibly affect interferon production. The regulatory role of interferon in nonviral diseases is demonstrated including several bacterial and protozoan infections indicating the great significance of interferon in resistance to many types of infectious diseases.
Yang, Tao; Liu, Shan; Wang, Chang-Hong; Tao, Yan-Yan; Zhou, Hua; Liu, Cheng-Hai
2015-10-10
Fuzheng Huayu recipe (FZHY) is a herbal product for the treatment of liver fibrosis approved by the Chinese State Food and Drug Administration (SFDA), but its pharmacokinetics and tissue distribution had not been investigated. In this study, the liver fibrotic model was induced with intraperitoneal injection of dimethylnitrosamine (DMN), and FZHY was given orally to the model and normal rats. The plasma pharmacokinetics and tissue distribution profiles of four major bioactive components from FZHY were analyzed in the normal and fibrotic rat groups using an ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. Results revealed that the bioavailabilities of danshensu (DSS), salvianolic acid B (SAB) and rosmarinic acid (ROS) in liver fibrotic rats increased 1.49, 3.31 and 2.37-fold, respectively, compared to normal rats. There was no obvious difference in the pharmacokinetics of amygdalin (AMY) between the normal and fibrotic rats. The tissue distribution of DSS, SAB, and AMY trended to be mostly in the kidney and lung. The distribution of DSS, SAB, and AMY in liver tissue of the model rats was significantly decreased compared to the normal rats. Significant differences in the pharmacokinetics and tissue distribution profiles of DSS, ROS, SAB and AMY were observed in rats with hepatic fibrosis after oral administration of FZHY. These results provide a meaningful basis for developing a clinical dosage regimen in the treatment of hepatic fibrosis by FZHY. Copyright © 2015 Elsevier B.V. All rights reserved.
A pectin-honey hydrogel prevents postoperative intraperitoneal adhesions in a rat model.
Giusto, Gessica; Vercelli, Cristina; Iussich, Selina; Audisio, Andrea; Morello, Emanuela; Odore, Rosangela; Gandini, Marco
2017-02-17
Adhesions are a common postoperative surgical complication. Liquid honey has been used intraperitoneally to reduce the incidence of these adhesions. However, solid barriers are considered more effective than liquids in decreasing postoperative intra-abdominal adhesion formation; therefore, a new pectin-honey hydrogel (PHH) was produced and its effectiveness was evaluated in a rat cecal abrasion model. Standardized cecal/peritoneal abrasion was performed through laparotomy in 48 adult Sprague-Dawley rats to induce peritoneal adhesion formation. Rats were randomly assigned to a control (C) and treatment (T) group. In group T, PHHs were placed between the injured peritoneum and cecum. Animals were euthanized on day 15 after surgery. Adhesions were evaluated macroscopically and adhesion scores were recorded and compared between the two groups. Inflammation, fibrosis, and neovascularization were histologically graded and compared between the groups. In group C, 17 of 24 (70.8%) animals developed adhesions between the cecum and peritoneum, while in group T only 5 of 24 (20.8%) did (p = 0.0012). In group C, one rat had an adhesion score of 3, sixteen had scores of 2, and seven rats had scores of 0. In group T, four rats had adhesion scores of 2, one rat had an adhesion score of 1 and nineteen have score 0 (p = 0.0003). Significantly lower grades of inflammation, fibrosis, and neovascularization were seen in group T (p = 0.006, p = 0.001, p = 0.002, respectively). PHH is a novel absorbable barrier that is effective in preventing intra-abdominal adhesions in a cecal abrasion model in rats.
Pollard, Morris; Suckow, Mark A
2006-12-01
Lobund-Wistar (LW) rats, which have high testosterone levels, are predisposed to develop hormone-refractory prostate cancer (HRPC) spontaneously and by methylnitrosourea (MNU) induction, and the development of HRPC progresses through 2 stages. This paper reviews several studies in which LW rats were placed on soy-containing diets and were evaluated for development of either spontaneous or MNU-induced prostate cancer. The premalignant, testosterone-dependent stage is inhibited by testosterone deprivation. In the absence of testosterone deprivation, tumorigenesis progresses spontaneously to the testosterone-independent refractory stage. In LW rats: moderate caloric restriction prevented development of spontaneous prostate cancer; dietary 4-hydroxyphenylretinamide prevented MNU-induced prostate cancer; and dietary supplementation with soy protein isolate with high isoflavones prevented spontaneous and induced tumors and led to moderate reduction of serum testosterone. In rats 12 mo of age and younger, changing from the control diet to the soy+isoflavone diet significantly prevented progression of spontaneous tumors to the refractory stage of disease. Tumors that developed spontaneously and after MNU induction showed similar developmental stages and morphology, but MNU-induced tumors had shorter latency periods before development. The accumulated data indicate that soy-based diets are effective in the prevention of prostate cancer.
Amitai, Nurith; Powell, Susan B; Young, Jared W
2017-11-22
Schizophrenia is a debilitating neurodevelopmental disorder affecting 1% of the global population with heterogeneous symptoms including positive, negative, and cognitive. While treatment for positive symptoms exists, none have been developed to treat negative symptoms. Animal models of schizophrenia are required to test targeted treatments and since patients exhibit reduced effort (breakpoints) for reward in a progressive ratio (PR) task, we examined the PR breakpoints of rats treated with the NMDA receptor antagonist phencyclidine or those reared in isolation - two common manipulations used to induce schizophrenia-relevant behaviors in rodents. In two cohorts, the PR breakpoint for a palatable food reward was examined in Long Evans rats after: 1) a repeated phencyclidine regimen; 2) A subchronic phencyclidine regimen followed by drug washout; and 3) post-weaning social isolation. Rats treated with repeated phencyclidine and those following washout from phencyclidine exhibited higher PR breakpoints than vehicle-treated rats. The breakpoint of isolation reared rats did not differ from those socially reared, despite abnormalities of these rats in other schizophrenia-relevant behaviors. Despite their common use for modeling other schizophrenia-relevant behaviors neither phencyclidine treatment nor isolation rearing recreated the motivational deficits observed in patients with schizophrenia, as measured by PR breakpoint. Other manipulations, and negative symptom-relevant behaviors, require investigation prior to testing putative therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.
Therapeutic Effects of TianDiJingWan on the Aβ 25–35-Induced Alzheimer's Disease Model Rats
Li, Zhijie; Tong, Qing; Xu, Huifang; Hu, Li; Zhao, Rong; Zhou, Fang; Pan, Wei; Zhou, Li
2015-01-01
The main purpose of this study was to demonstrate the therapeutic effects and mechanism of TDJW, a modern Chinese medicine prescription developed based on the basic traditional Chinese medicine theory of “tonifying the kidney essence,” on the Aβ 25–35-induced AD rats. The AD model was established by the intracerebroventricular administrations of Aβ 25–35 into the hippocampus CA1 tissue of SD male rats. 72 rats were randomly divided into six groups: sham operation, AD model, donepezil, high TDJW group, medium TDJW group, and low TDJW group. After oral administration of TDJW, the results of Morris water maze and step-down test showed that the learning and memory abilities of AD rats were significantly improved. And biochemical measurement demonstrated that Ach and Glu in hippocampus tissues of AD rats were increased as well. Moreover, the Aβ deposits and p-Tau aggregations in hippocampus CA1 tissues of AD rats were attenuated as observed in the micrographs of immunohistochemistry study, and the results of ELISA indicated that the expressions of TNF-α, IL-1β, and IL-6 in hippocampus tissues were significantly decreased. In conclusion, the present study demonstrated that TDJW could be used as a promising therapeutic agent for the clinical applications of AD treatment in patients. PMID:25815030
Reed, Abbey L; Anderson, Jeffrey C; Bylund, David B; Petty, Frederick; El Refaey, Hesham; Happe, H Kevin
2009-08-01
The pharmacological treatment of depression in children and adolescents is different from that of adults due to the lack of efficacy of certain antidepressants in the pediatric age group. Our current understanding of why these differences occur is very limited. To develop more effective treatments, a juvenile animal model of depression was tested to validate it as a possible model to specifically study pediatric depression. Procedures for use with juvenile rats at postnatal day (PND) 21 and 28 were adapted from the adult learned helplessness model in which, 24 h after exposure to inescapable stress, animals are unable to remove themselves from an easily escapable stressor. Rats were treated for 7 days with either the selective serotonin reuptake inhibitor escitalopram at 10 mg/kg or the tricyclic antidepressant desipramine at 3, 10, or 15 mg/kg to determine if treatment could decrease escape latency times. Escitalopram treatment was effective at decreasing escape latency times in all ages tested. Desipramine treatment did not decrease escape latency times for PND 21 rats, but did decrease times for PND 28 and adult animals. The learned helplessness model with PND 21 rats predicts the efficacy of escitalopram and the lack of efficacy of desipramine seen in the treatment of pediatric depression. These findings suggest that the use of PND 21 rats in a modified learned helplessness procedure may be a valuable model of human pediatric depression that can predict pediatric antidepressant efficacy and be used to study antidepressant mechanisms involved in pediatric depression.
Shang, Tao; Liu, Zhao; Liu, Chang-jian
2014-05-01
We investigated the hypothesis that an antioxidant, Vitamin C, could attenuate abdominal aortic aneurysm (AAA) development in a rat model. An AAA model induced by intraluminal infusion was created in 36 male Sprague Dawley rats, which were randomly distributed into three groups: Sham (saline infused, placebo treated), Control (elastase infused, placebo treated), and Vitamin C (elastase infused, vitamin C treated). Vitamin C and placebo were intraperitoneally injected, initiating 1 wk before the infusion and continuing throughout the study. The aortic dilatation ratio was measured, and aortic tissues were further examined using biochemical and histologic techniques. Vitamin C attenuated the development of AAA, decreasing maximal aortic diameter by 25.8% (P < 0.05) and preserving elastin lamellae (P < 0.05). Vitamin C also decreased 8-hydroxyguanine (a marker of oxidative damage to DNA) and 8-isoprostane content (a marker of oxidative stress) in aortic tissues (P < 0.05, respectively). The proteins of matrix metalloproteinase (MMP)-2, MMP-9, and interleukin 6 were markedly downregulated (P < 0.05, respectively), accompanied with notably reduced messenger RNA expression of tumor necrosis factor-α, MMP-2/9, and interleukin 1β (P < 0.05, respectively). However, messenger RNA of tissue inhibitors of metalloproteinase-1 and tissue inhibitors of metalloproteinase-2 were both significantly upregulated in Vitamin C group. Vitamin C treatment had no significant effect on systolic blood pressure (P > 0.05). Vitamin C attenuated AAA development in an elastase-induced rat model via crucial protective effect, which was mediated by an increased level of antioxidant in cooperation with preserving elastin lamellae, inhibiting matrix-degrading proteinases and suppressing inflammatory responses. Copyright © 2014. Published by Elsevier Inc.
Falke, Johannes; Hulsbergen-van de Kaa, Christina A; Maj, Roberto; Oosterwijk, Egbert; Witjes, J Alfred
2018-05-16
TMX-101 and TMX-202 are formulations of toll-like receptor 7 (TLR-7) agonists, under investigation for the treatment of urothelial carcinoma. Our goal was to evaluate the efficacy of intravesical instillations of TMX-101 or TMX-202 in an orthotopic bladder cancer rat model. Four groups of 14 rats received an instillation with isogenic AY-27 tumor cells on day 0, starting tumor development. On day 2 and 5, the rats were treated with an intravesical instillation of TMX-101 0.1%, TMX-202 0.38%, vehicle solution or NaCl. On day 12 the rats were sacrificed and the bladders were evaluated histopathologically. No signs of toxicity were seen. The number of tumor-positive rats was 11 of 14 (79%) in the vehicle control group and in the NaCl control group, versus 9 of 14 (64%) in the TMX-101-treated group, and 8 of 14 (57%) in the TMX-20-treated group. The difference between tumor-bearing rats in the treated and control groups was not significant (p = 0.12). Bladder weight was significantly lower for TMX-202-treated rats compared to vehicle (p = 0.005). TMX-101 and TMX-202 are TLR-7 agonists with antitumor activity. Treatment with TMX-101 and TMX-202 resulted in less tumor-bearing rats compared to vehicle or saline control groups, although not statistically significant. In this aggressive bladder cancer model, a lower number of tumor-positive rats after treatment with TLR-7 agonists indicates activity for the treatment of non-muscle invasive bladder cancer.
Gangisetty, Omkaram; Wynne, Olivia; Jabbar, Shaima; Nasello, Cara; Sarkar, Dipak K.
2015-01-01
Recent evidence indicated that alcohol exposure during the fetal period increases the susceptibility to tumor development in mammary and prostate tissues. Whether fetal alcohol exposure increases the susceptibility to prolactin-producing tumor (prolactinoma) development in the pituitary was studied by employing the animal model of estradiol-induced prolactinomas in Fischer 344 female rats. We employed an animal model of fetal alcohol exposure that simulates binge alcohol drinking during the first two trimesters of human pregnancy and involves feeding pregnant rats with a liquid diet containing 6.7% alcohol during gestational day 7 to day 21. Control rats were pair-fed with isocaloric liquid diet or fed ad libitum with rat chow diet. Adult alcohol exposed and control female offspring rats were used in this study on the day of estrus or after estrogen treatment. Results show that fetal alcohol-exposed rats had increased levels of pituitary weight, pituitary prolactin (PRL) protein and mRNA, and plasma PRL. However, these rats show decreased pituitary levels of dopamine D2 receptor (D2R) mRNA and protein and increased pituitary levels of D2R promoter methylation. Also, they show elevated pituitary mRNA levels of DNA methylating genes (DNMT1, DNMT3b, MeCP2) and histone modifying genes (HDAC2, HDAC4, G9a). When fetal alcohol exposed rats were treated neonatally with a DNA methylation inhibitor 5-Aza deoxycytidine and/or a HDAC inhibitor trichostatin-A their pituitary D2R mRNA, pituitary weights and plasma PRL levels were normalized. These data suggest that fetal alcohol exposure programs the pituitary to increase the susceptibility to the development of prolactinomas possibly by enhancing the methylation of the D2R gene promoter and repressing the synthesis and control of D2R on PRL-producing cells. PMID:26509893
Dai, Heling; Xu, Li; Tang, Yu; Liu, Zhi; Sun, Tiansheng
2015-08-01
It has been well recognised that a deficit of numbers and function of CD4(+)CD25(+)Foxp3(+) cells (Treg) is attributed to the development of autoimmune diseases and inflammatory diseases; additionally, IL-17-producing cells (Th17) have a pro-inflammatory role. The balance between Th17 and Treg may be essential for maintaining immune homeostasis and has long been thought as one of the important factors in the development/prevention of autoimmune diseases and inflammatory diseases. In our previous research, we explored that cytokines (IL-17) and the balance of Treg/Th17 had a significant relevance with tissue (lung) inflammation and injury in acute-phase after multiple-trauma. To more verify whether an imbalance of Treg/Th17 is characteristic of rats suffering from multiple trauma. Using IL-17 monoclonal antibody (IL-17mAb)-treated multiple-trauma rat, we tested the pathogenic role of IL-17 in the development of multiple-trauma. Rat models were treated respectively with IL-17mAb or rat IgG 2A isotype control or phosphate-buffered solution after model was established. Normal rats only received anaesthesia and cannulation were taken as sham. Rats in each group were killed respectively at the end of 1h, 4h, 8h after injection. Collected serum and lung samples for assessment dynamically of MPO, IL-17, IL-6, and TGF-β-mRNA, and cytokine (IL-17, IL-6, TGF-β) and lung tissue for pulmonary histological analysis. Neutralisation of IL-17 with anti-IL-17 can decrease serum IL-17 level and the IL-17-mRNA transcript level in lung, and ameliorate tissue inflammatory, defer disease course. Our data suggest that IL-17 is crucially involved in the pathogenesis of multiple-trauma in rat, IL-17 inhibition might ameliorate the lung inflammation in acute-phase after multiple-trauma. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluating the Anti-Seizure Efficacy of Novel Adenosine Treatment Regimens in a Soman Rat Model
2015-06-01
activity following DPCPX treatment. However, 9 of the 12 rats proceeded to develop seizures and entered status epilepticus (Figure 4). This reaction was...onset. However, stopping status epilepticus once it develops is much more difficult than preventing its onset. The mechanism for terminating seizure...sarin. J Pharmacol Exp Ther 304(3): 1307- 1313. Compton, J. R. (2004). Adenosine Receptor Agonist Pd 81,723 Protects Against Seizure/ Status
Hamann, Christine; Goettsch, Claudia; Mettelsiefen, Jan; Henkenjohann, Veit; Rauner, Martina; Hempel, Ute; Bernhardt, Ricardo; Fratzl-Zelman, Nadja; Roschger, Paul; Rammelt, Stefan; Günther, Klaus-Peter; Hofbauer, Lorenz C
2011-12-01
Patients with diabetes mellitus have an impaired bone metabolism; however, the underlying mechanisms are poorly understood. Here, we analyzed the impact of type 2 diabetes mellitus on bone physiology and regeneration using Zucker diabetic fatty (ZDF) rats, an established rat model of insulin-resistant type 2 diabetes mellitus. ZDF rats develop diabetes with vascular complications when fed a Western diet. In 21-wk-old diabetic rats, bone mineral density (BMD) was 22.5% (total) and 54.6% (trabecular) lower at the distal femur and 17.2% (total) and 20.4% (trabecular) lower at the lumbar spine, respectively, compared with nondiabetic animals. BMD distribution measured by backscattered electron imaging postmortem was not different between diabetic and nondiabetic rats, but evaluation of histomorphometric indexes revealed lower mineralized bone volume/tissue volume, trabecular thickness, and trabecular number. Osteoblast differentiation of diabetic rats was impaired based on lower alkaline phosphatase activity (-20%) and mineralized matrix formation (-55%). In addition, the expression of the osteoblast-specific genes bone morphogenetic protein-2, RUNX2, osteocalcin, and osteopontin was reduced by 40-80%. Osteoclast biology was not affected based on tartrate-resistant acidic phosphatase staining, pit formation assay, and gene profiling. To validate the implications of these molecular and cellular findings in a clinically relevant model, a subcritical bone defect of 3 mm was created at the left femur after stabilization with a four-hole plate, and bone regeneration was monitored by X-ray and microcomputed tomography analyses over 12 wk. While nondiabetic rats filled the defects by 57%, diabetic rats showed delayed bone regeneration with only 21% defect filling. In conclusion, we identified suppressed osteoblastogenesis as a cause and mechanism for low bone mass and impaired bone regeneration in a rat model of type 2 diabetes mellitus.
Tao, Yan-yan; Wang, Qing-lan; Yuan, Ji-li; Shen, Li; Liu, Cheng-hai
2011-02-01
To observe the effects of vitamin E (Vit E) on mercuric chloride (HgCl2)-induced renal interstitial fibrosis (RIF) in rats and discuss its antioxidative mechanism. A total of 32 Sprague-Dawley rats were randomly assigned to three groups: normal group, model group and Vit E group. RIF was induced by oral administration of HgCl(2) at a dose of 8 mg/kg body weight once a day for 9 weeks. Rats in Vit E group were administered with Vit E capsule at 100 mg/kg body weight, and rats in normal and model groups were treated with normal saline. At the end of the 9th week, rats were sacrificed and renal hydroxyproline (Hyp)'s trichrome and periodic acid-silver methenamine (PASM) staining. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and contents of glutathione (GSH) and malondialdehyde (MDA) in kidney tissue were tested with commercial kits. The expressions of nuclear factor-κB (NF-κB), inhibitor-κB (IκB), phospho-IκB (p-IκB) and tumor necrosis factor-α (TNF-α) were determined by Western blot. The expression of α-smooth muscle actin (α-SMA) was assayed by Western blot and immunofluorescent staining. Renal Hyp content, HE, Masson's trichrome and PASM staining results and α-SMA expression confirmed development of HgCl2-induced RIF in rats. Oxidative stress markers GSH, GSH-Px and MDA confirmed oxidative stress in RIF rats. Compared with model rats, rats in Vit E group had lower kidney Hyp content (P<0.01). GSH and MDA contents decreased significantly in Vit E group compared with model group (P<0.01). The expressions of NF-κB and IκB had no significant difference among all groups (P>0.05). In Vit E group, the expressions of p-IκB and TNF-α decreased significantly compared with model group (P<0.01). The expression of α-SMA in Vit E group was also decreased significantly compared with model group (P<0.01). Vit E has a protective effect on experimental RIF induced by HgCl(2) in rats and it is related to inhibition of lipid peroxidation, which involves blocking of NF-κB signaling pathway and the activation of cells producing extracellular matrix.
ERIC Educational Resources Information Center
Jiao, Li; Xiujuan, Shi; Juan, Wang; Song, Jia; Lei, Xu; Guotong, Xu; Lixia, Lu
2015-01-01
For second year medical students, we redesigned an original laboratory experiment and developed a combined research-teaching clinical biochemistry experiment. Using an established diabetic rat model to detect blood glucose and triglycerides, the students participate in the entire experimental process, which is not normally experienced during a…
USDA-ARS?s Scientific Manuscript database
Metabolic syndrome is often accompanied by development of hepatic steatosis and less frequently by nonalcoholic fatty liver disease (NAFLD) leading to nonalcoholic steatohepatitis (NASH). Replacement of corn oil with medium chain triacylglycerols (MCT) in the diets of alcohol-fed rats has been show...
Hydrogen-rich water attenuates experimental periodontitis in a rat model.
Kasuyama, Kenta; Tomofuji, Takaaki; Ekuni, Daisuke; Tamaki, Naofumi; Azuma, Tetsuji; Irie, Koichiro; Endo, Yasumasa; Morita, Manabu
2011-12-01
Reactive oxygen species (ROS) contribute to the development of periodontitis. As molecular hydrogen can act as a scavenger of ROS, we examined the effects of treatment with hydrogen-rich water on a rat model of periodontitis. A ligature was placed around the maxillary molars for 4 weeks to induce periodontitis, and the animals were given drinking water with or without hydrogen-rich water. The rats with periodontitis which were treated with pure water showed a time-dependent increase in serum ROS level. Compared with the rats without periodontitis, the periodontitis-induced rats which were given pure water also showed polymorphonuclear leucocyte infiltration and alveolar bone loss at 4 weeks. Hydrogen-rich water intake inhibited an increase in serum ROS level and lowered expression of 8-hydroxydeoxyguanosine and nitrotyrosine in the periodontal tissue at 4 weeks. Such conditions prevented polymorphonuclear leucocyte infiltration and osteoclast differentiation following periodontitis progression. Furthermore, inflammatory signalling pathways, such as mitogen-activated protein kinases, were less activated in periodontal lesions from hydrogen-rich water-treated rats as compared with pure water-treated rats. Consuming hydrogen-rich water might be beneficial in suppressing periodontitis progression by decreasing gingival oxidative stress. © 2011 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Fukayama, Osamu; Taniguchi, Noriyuki; Suzuki, Takafumi; Mabuchi, Kunihiko
We are developing a brain-machine interface (BMI) called “RatCar," a small vehicle controlled by the neural signals of a rat's brain. An unconfined adult rat with a set of bundled neural electrodes in the brain rides on the vehicle. Each bundle consists of four tungsten wires isolated with parylene polymer. These bundles were implanted in the primary motor and premotor cortices in both hemispheres of the brain. In this paper, methods and results for estimating locomotion speed and directional changes are described. Neural signals were recorded as the rat moved in a straight line and as it changed direction in a curve. Spike-like waveforms were then detected and classified into several clusters to calculate a firing rate for each neuron. The actual locomotion velocity and directional changes of the rat were recorded concurrently. Finally, the locomotion states were correlated with the neural firing rates using a simple linear model. As a result, the abstract estimation of the locomotion velocity and directional changes were achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G.; Deisinger, P. J.; Poet, Torka S.
2005-05-01
The metabolic series (family) approach for risk assessment uses a dosimetry-based analysis to develop toxicity information for a group of metabolically linked compounds using pharmacokinetic (PK) data for each compound and toxicity data for the parent compound. An initial physiologically-based pharmacokinetic (PBPK) model was developed to support the implementation of the metabolic series approach for n-butyl acetate and its subsequent metabolites, n-butanol, and n-butyric acid (the butyl series) (Barton et al. 2000). In conjunction with pilot pharmacokinetic studies, the model was used to design the definitive intravenous (i.v.) PK studies. Rats were implanted with dual indwelling cannulae and administered testmore » compounds by i.v. bolus dose, i.v. infusion, or by inhalation in a recirculating closed chamber. Hepatic, vascular and extravascular metabolic constants for metabolism were estimated by fitting the model to the blood time course data from these experiments. The respiratory bioavailability of n-butyl acetate and n-butanol was estimated from closed chamber inhalation studies and measured ventilation rates. The resulting butyl series PBPK model successfully reproduces the blood time course of these compounds following i.v. administration, and inhalation exposure to n-butyl acetate and n-butanol. A fully scaled human version of the model successfully reproduces arterial blood n-butanol kinetics following inhalation exposure to n-butanol. These validated i.v (rat) and inhalation route models (rat, butyl acetate, n-butanol; human, butanol only) can be used to support species and dose-route extrapolations required for risk assessment of butyl series family of compounds. Further, this work demonstrates the usefulness of i.v. kinetic data for parameterization of systemic metabolism and the value of collaboration between experimentalists and kineticists in the development of PBPK models. The product of this effort, validated rat and human PBPK models for the butyl series compounds, illustrates the effectiveness of broad multi-institutional public/private collaborations in the pursuit of developing state of the art tools for risk assessment.« less
Metformin reduces the Walker-256 tumor development in obese-MSG rats via AMPK and FOXO3a.
de Queiroz, Eveline A I F; Akamine, Eliana H; de Carvalho, Maria Helena C; Sampaio, Sandra C; Fortes, Zuleica B
2015-01-15
Studies have associated obesity with a wide variety of cancers. Metformin, an anti-diabetic drug, has recently received attention as a potentially useful therapeutic agent for treating cancer. Therefore, the objective of this study was to analyze the mechanisms involved in the increase in tumor development and the reduction of it by metformin in obesity using an experimental breast tumor model. Newborn male Wistar rats were subcutaneously injected with 400mg/kg monosodium glutamate (MSG) (obese) or saline (control) at 2, 3, 4, 5 and 6 days of age. After 16 weeks, 1 × 10(7) Walker-256 tumor cells were subcutaneously injected in the right flank of the rats and concomitantly the treatment with metformin 300 mg/kg/15 days, via gavage, started. The rats were divided into 4 groups: control tumor (CT), control tumor metformin (CTM), obese-MSG tumor (OT) and obese-MSG tumor metformin (OTM). On the 18th week the tumor development and metformin effect were analyzed. Tumor development was higher in OT rats compared with CT rats. Activation of insulin-IR-ERK1/2 pathway and an anti-apoptotic effect might be the mechanisms involved in the higher development of tumor in obesity. The effect of metformin reducing the tumor development in obese rats might involve increased mRNA expression of pRb and p27, increased activity of AMPK and FOXO3a and decreased expression of p-ERK1/2 (Thr202/Tyr204) in Walker-256 tumor. Our data allow us to suggest that metformin, reducing the stimulatory effect of obesity on tumor development, has a potential role in the management of cancers. Copyright © 2014 Elsevier Inc. All rights reserved.
Demonstration of the Rat Ischemic Skin Wound Model
Sherwood, Jacob; Wu, Mack; Gould, Lisa J.
2015-01-01
The propensity for chronic wounds in humans increases with ageing, disease conditions such as diabetes and impaired cardiovascular function, and unrelieved pressure due to immobility. Animal models have been developed that attempt to mimic these conditions for the purpose of furthering our understanding of the complexity of chronic wounds. The model described herein is a rat ischemic skin flap model that permits a prolonged reduction of blood flow resulting in wounds that become ischemic and resemble a chronic wound phenotype (reduced vascularization, increased inflammation and delayed wound closure). It consists of a bipedicled dorsal flap with 2 ischemic wounds placed centrally and 2 non-ischemic wounds lateral to the flap as controls. A novel addition to this ischemic skin flap model is the placement of a silicone sheet beneath the flap that functions as a barrier and a splint to prevent revascularization and reduce contraction as the wounds heal. Despite the debate of using rats for wound healing studies due to their quite distinct anatomic and physiologic differences compared to humans (i.e., the presence of a panniculus carnosus muscle, short life-span, increased number of hair follicles, and their ability to heal infected wounds) the modifications employed in this model make it a valuable alternative to previously developed ischemic skin flap models. PMID:25866964
Demonstration of the rat ischemic skin wound model.
Trujillo, Andrea N; Kesl, Shannon L; Sherwood, Jacob; Wu, Mack; Gould, Lisa J
2015-04-01
The propensity for chronic wounds in humans increases with ageing, disease conditions such as diabetes and impaired cardiovascular function, and unrelieved pressure due to immobility. Animal models have been developed that attempt to mimic these conditions for the purpose of furthering our understanding of the complexity of chronic wounds. The model described herein is a rat ischemic skin flap model that permits a prolonged reduction of blood flow resulting in wounds that become ischemic and resemble a chronic wound phenotype (reduced vascularization, increased inflammation and delayed wound closure). It consists of a bipedicled dorsal flap with 2 ischemic wounds placed centrally and 2 non-ischemic wounds lateral to the flap as controls. A novel addition to this ischemic skin flap model is the placement of a silicone sheet beneath the flap that functions as a barrier and a splint to prevent revascularization and reduce contraction as the wounds heal. Despite the debate of using rats for wound healing studies due to their quite distinct anatomic and physiologic differences compared to humans (i.e., the presence of a panniculus carnosus muscle, short life-span, increased number of hair follicles, and their ability to heal infected wounds) the modifications employed in this model make it a valuable alternative to previously developed ischemic skin flap models.
2014-09-25
therapy. Pre - viously, losartan has been successfully used to reduce fibrosis and improve both muscle regeneration and function in several models of...efficacy of losartan has not yet been tested in a VML injury model. VML injury involves a substantial loss of muscle tissue that does not regenerate by...fibrosis development after VML injury in the rat tibialis anterior (TA) muscle. METHODS Experimental Design Male Lewis rats with VML were provided access
A rat model system to study complex disease risks, fitness, aging, and longevity.
Koch, Lauren Gerard; Britton, Steven L; Wisløff, Ulrik
2012-02-01
The association between low exercise capacity and all-cause morbidity and mortality is statistically strong yet mechanistically unresolved. By connecting clinical observation with a theoretical base, we developed a working hypothesis that variation in capacity for oxygen metabolism is the central mechanistic determinant between disease and health (aerobic hypothesis). As an unbiased test, we show that two-way artificial selective breeding of rats for low and high intrinsic endurance exercise capacity also produces rats that differ for numerous disease risks, including the metabolic syndrome, cardiovascular complications, premature aging, and reduced longevity. This contrasting animal model system may prove to be translationally superior relative to more widely used simplistic models for understanding geriatric biology and medicine. Copyright © 2012 Elsevier Inc. All rights reserved.
Three-Week Isolation Does Not Lead to Depressive-Like Disorders in Rats.
Gorlova, A V; Pavlov, D A; Zubkov, E A; Morozova, A Yu; Inozemtsev, A N; Chekhonin, V P
2018-06-19
We studied the effects of social isolation for 1, 2 or 3 weeks on behavioral reactions of male rats. As social isolation is a common model for inducing depressive-like state in rodents, classical tests for depressive-like behavioral features were conducted: Porsolt forced swimming test and tests for anhedonia and social interest. None of the experimental groups showed statistically significant disorders in comparison with the control group kept under standard conditions. Thus, social isolation for up to 3 weeks did not cause behavioral abnormalities in male rats. Single housing can be used in other models of induction of depressive-like states, but the use of this paradigm as an independent model for the development of depressive-like behavior requires longer period of social isolation.
Air puff-induced 22-kHz calls in F344 rats.
Inagaki, Hideaki; Sato, Jun
2016-03-01
Air puff-induced ultrasonic vocalizations in adult rats, termed "22-kHz calls," have been applied as a useful animal model to develop psychoneurological and psychopharmacological studies focusing on human aversive affective disorders. To date, all previous studies on air puff-induced 22-kHz calls have used outbred rats. Furthermore, newly developed gene targeting technologies, which are essential for further advancement of biomedical experiments using air puff-induced 22-kHz calls, have enabled the production of genetically modified rats using inbred rat strains. Therefore, we considered it necessary to assess air puff-induced 22-kHz calls in inbred rats. In this study, we assessed differences in air puff-induced 22-kHz calls between inbred F344 rats and outbred Wistar rats. Male F344 rats displayed similar total (summed) duration of air puff-induced 22 kHz vocalizations to that of male Wistar rats, however, Wistar rats emitted fewer calls of longer duration, while F344 rats emitted higher number of vocalizations of shorter duration. Additionally, female F344 rats emitted fewer air puff-induced 22-kHz calls than did males, thus confirming the existence of a sex difference that was previously reported for outbred Wistar rats. The results of this study could confirm the reliability of air puff stimulus for induction of a similar amount of emissions of 22-kHz calls in different rat strains, enabling the use of air puff-induced 22-kHz calls in inbred F344 rats and derived genetically modified animals in future studies concerning human aversive affective disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
Adiposity profile in the dwarf rat: an unusually lean model of profound growth hormone deficiency.
Davies, Jeffrey S; Gevers, Evelien F; Stevenson, Amy E; Coschigano, Karen T; El-Kasti, Muna M; Bull, Melanie J; Elford, Carole; Evans, Bronwen A J; Kopchick, John J; Wells, Timothy
2007-05-01
This study describes the previously uncharacterized ontogeny and regulation of truncal adipose reserves in the profoundly GH-deficient dwarf (dw/dw) rat. We show that, despite normal proportionate food intake, dw/dw rats develop abdominal leanness and hypoleptinemia (circulating leptin halved in dw/dw males, P < 0.05) during puberty. This contrasts with the hyperleptinemia seen in moderately GH-deficient Tgr rats (circulating leptin doubled at 6 wk of age, P < 0.05) and in GH receptor-binding protein (GHR/BP)-null mice (circulating leptin doubled; P < 0.05). This lean/hypoleptinemic phenotype was not completely normalized by GH treatment, but dw/dw rats developed abdominal obesity in response to neonatal MSG treatment or maintenance on a high-fat diet. Unlike Tgr rats, dw/dw rats did not become obese with age; plasma leptin levels and fat pad weights became similar to those in wild-type rats. In contrast with truncal leanness, tibial marrow adiposity was normal in male and doubled in female dwarves (P < 0.01), this increase being attributable to increased adipocyte number (P < 0.01). Neonatal MSG treatment and high-fat feeding elevated marrow adiposity in dw/dw rats by inducing adipocyte enlargement (P < 0.05). These results demonstrate that, despite lipolytic influence of GH, severe GH deficiency in dw/dw rats is accompanied by a paradoxical leanness. This lean/hypoleptinemic phenotype is not solely attributable to reduced GH signaling and does not appear to result from a reduction in nutrient intake or the ability of dw/dw adipocytes to accumulate lipid. Disruption of preadipocyte differentiation or adipocyte proliferation in the dw/dw rat may lead to the development of this unusually lean/hypoleptinemic phenotype.
Expression patterns and role of PTEN in rat peripheral nerve development and injury.
Chen, Hui; Xiang, Jianping; Wu, Junxia; He, Bo; Lin, Tao; Zhu, Qingtang; Liu, Xiaolin; Zheng, Canbin
2018-05-29
Studies have suggested that phosphatase and tensin homolog (PTEN) plays an important role in neuroprotection and neuronal regeneration. To better understand the potential role of PTEN with respect to peripheral nerve development and injury, we investigated the expression pattern of PTEN at different stages of rat peripheral nerve development and injury and subsequently assessed the effect of pharmacological inhibition of PTEN using bpV(pic) on axonal regeneration in a rat sciatic nerve crush injury model. During the early stages of development, PTEN exhibits low expression in neuronal cell bodies and axons. From embryonic day (E) 18.5 and postnatal day (P)5 to adult, PTEN protein becomes more detectable, with high expression in the dorsal root ganglia (DRG) and axons. PTEN expression is inhibited in peripheral nerves, preceding myelination during neuronal development and remyelination after acute nerve injury. Low PTEN expression after nerve injury promotes Akt/mammalian target of rapamycin (mTOR) signaling pathway activity. In vivo pharmacological inhibition of PTEN using bpV(pic) promoted axonal regrowth, increased the number of myelinated nerve fibers, improved locomotive recovery and enhanced the amplitude response and nerve conduction velocity following stimulation in a rat sciatic nerve crush injury model. Thus, we suggest that PTEN may play potential roles in peripheral nerve development and regeneration and that inhibition of PTEN expression is beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Copyright © 2018 Elsevier B.V. All rights reserved.
Corvino, Silvana B; Damasceno, Débora C; Sinzato, Yuri K; Netto, Aline O; Macedo, Nathália C D; Zambrano, Elena; Volpato, Gustavo T
2017-01-01
The aim of this study was to compare two models of swimming applied to pregnant rats born small for pregnancy age (SPA). Diabetes was chemically induced in adult female rats to develop an inadequate intrauterine environment, leading to birth of a SPA offspring. In adulthood, the female SPA rats were mated and submitted to different swimming programs. The exercise program 1 (Ex1) consisted of swimming for 15 minutes, followed by 15 minutes of rest and another 15 minutes of swimming, 3 days a week before and during pregnancy. Another program (Ex2) was applied during 60 minutes uninterrupted a day, 6 days/week during pregnancy. The pregnant rats presented no interference on body weight and glycemia. The rats submitted to Ex2 model showed decreased insulin and blood glucose levels by oral glucose tolerance test, and reduction in area under curve values. The offspring from dams submitted to both exercise protocols presented an increased rate of newborns SPA. However, the offspring from Ex2 dams showed percentage twice higher of newborns SPA than Ex1 offspring. Our data suggests that continuous exercise of 60 min/day ameliorated the enhanced peripheral insulin sensitivity in growth-restricted females. However, this protocol employed at pregnancy leads to intrauterine growth restriction.
Characterization of the Prediabetic State in a Novel Rat Model of Type 2 Diabetes, the ZFDM Rat.
Gheni, Ghupurjan; Yokoi, Norihide; Beppu, Masayuki; Yamaguchi, Takuro; Hidaka, Shihomi; Kawabata, Ayako; Hoshino, Yoshikazu; Hoshino, Masayuki; Seino, Susumu
2015-01-01
We recently established a novel animal model of obese type 2 diabetes (T2D), the Zucker fatty diabetes mellitus (ZFDM) rat strain harboring the fatty mutation (fa) in the leptin receptor gene. Here we performed a phenotypic characterization of the strain, focusing mainly on the prediabetic state. At 6-8 weeks of age, fa/fa male rats exhibited mild glucose intolerance and severe insulin resistance. Although basal insulin secretion was remarkably high in the isolated pancreatic islets, the responses to both glucose stimulation and the incretin GLP-1 were retained. At 10-12 weeks of age, fa/fa male rats exhibited marked glucose intolerance as well as severe insulin resistance similar to that at the earlier age. In the pancreatic islets, the insulin secretory response to glucose stimulation was maintained but the response to the incretin was diminished. In nondiabetic Zucker fatty (ZF) rats, the insulin secretory responses to both glucose stimulation and the incretin in the pancreatic islets were similar to those of ZFDM rats. As islet architecture was destroyed with age in ZFDM rats, a combination of severe insulin resistance, diminished insulin secretory response to incretin, and intrinsic fragility of the islets may cause the development of T2D in this strain.
Developing tTA Transgenic Rats for Inducible and Reversible Gene Expression
Zhou, Hongxia; Huang, Cao; Yang, Min; Landel, Carlisle P; Xia, Pedro Yuxing; Liu, Yong-Jian; Xia, Xu Gang
2009-01-01
To develop transgenic lines for conditional expression of desired genes in rats, we generated several lines of the transgenic rats carrying the tetracycline-controlled transactivator (tTA) gene. Using a vigorous, ubiquitous promoter to drive the tTA transgene, we obtained widespread expression of tTA in various tissues. Expression of tTA was sufficient to strongly activate its reporter gene, but was below the toxicity threshold. We examined the dynamics of Doxycycline (Dox)-regulated gene expression in transgenic rats. In the two transmittable lines, tTA-mediated activation of the reporter gene was fully subject to regulation by Dox. Dox dose-dependently suppressed tTA-activated gene expression. The washout time for the effects of Dox was dose-dependent. We tested a complex regime of Dox administration to determine the optimal effectiveness and washout duration. Dox was administered at a high dose (500 μg/ml in drinking water) for two days to reach the effective concentration, and then was given at a low dose (20 μg/ml) to maintain effectiveness. This regimen of Dox administration can achieve a quick switch between ON and OFF statuses of tTA-activated gene expression. In addition, administration of Dox to pregnant rats fully suppressed postnatal tTA-activated gene expression in their offspring. Sufficient levels of Dox are present in mother's milk to produce maximal efficacy in nursing neonates. Administration of Dox to pregnant or nursing rats can provide a continual suppression of tTA-dependent gene expression during embryonic and postnatal development. The tTA transgenic rat allows for inducible and reversible gene expression in the rat; this important tool will be valuable in the development of genetic rat models of human diseases. PMID:19214245
Rutten, Kris; Gould, Stacey A; Bryden, Luke; Doods, Henri; Christoph, Thomas; Pekcec, Anton
2018-09-17
Burrowing is a rodent behavior validated as a robust and reproducible outcome measure to infer the global effect of pain in several inflammatory pain models. However, less is known about the effect of analgesics on burrowing in neuropathic pain models and no studies have determined burrowing performance in models of diabetes-associated neuropathic pain. To compare the sensitivity of the burrowing assay in different neuropathic pain models: mononeuropathic pain and diabetic polyneuropathy. Burrowing performance was determined by the amount of substrate left in a hollow tube by rats with chronic constriction injury (CCI). In addition, burrowing performance, locomotion and pain development was assessed in the Zucker diabetic fatty (ZDF) rat model, resembling type-2 diabetes. Efficacy of clinically-active reference drugs (opioids, gabapentin and/or pregabalin) were investigated in these models. Burrowing behavior was additionally assessed in a second model, induced by streptozotocin (STZ) treatment, resembling type-1 diabetes. In the CCI model, moderate but consistent burrowing deficits were observed that persisted over a period of ≥20 days. Systemic administration of morphine, pregabalin and gabapentin reversed this deficit. In contrast, none of the reference drugs improved marked burrowing deficits detected in ZDF rats, and pregabalin did not reverse severe burrowing deficits observed in STZ rats. Burrowing performance cannot necessarily be used as pain-related readout across pain models and largely depends on the model used, at least in models of neuropathy. Specifically, analgesic drug effects might be masked by general diabetes-associated alteration of the animals' well-being, resulting in false negative outcomes. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Bergert, F Bryan; Nosofsky, Robert M
2007-01-01
The authors develop and test generalized versions of take-the-best (TTB) and rational (RAT) models of multiattribute paired-comparison inference. The generalized models make allowances for subjective attribute weighting, probabilistic orders of attribute inspection, and noisy decision making. A key new test involves a response-time (RT) approach. TTB predicts that RT is determined solely by the expected time required to locate the 1st discriminating attribute, whereas RAT predicts that RT is determined by the difference in summed evidence between the 2 alternatives. Critical test pairs are used that partially decouple these 2 factors. Under conditions in which ideal observer TTB and RAT strategies yield equivalent decisions, both the RT results and the estimated attribute weights suggest that the vast majority of subjects adopted the generalized TTB strategy. The RT approach is also validated in an experimental condition in which use of a RAT strategy is essentially forced upon subjects. (c) 2007 APA, all rights reserved.
Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan
2015-01-01
Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats.
Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan
2015-01-01
Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats. PMID:25789862
NASA Technical Reports Server (NTRS)
Musacchia, X. J.; Steffen, J. M.
1984-01-01
Cardiovascular responses and fluid/electrolyte shifts seen during spaceflight have been attributed to cephalad redistribution of vascular fluid. The antiorthostatic (AO) rat (suspended, head-down tilt of 15-20 deg) is used to model these responses. This study documents that elevated blood pressures in AO rats are sustained for periods of up to seven days, compared with presuspension values. Increased blood pressures in AO rats suggests a specific response to AO positioning, potentially relatable to a cephalad fluid shift. To assess a role for hormonal regulation of sodium excretion, serum aldosterone levels were measured. Circulating aldosterone concentrations were seen to increase approximately 100 percent during seven days of AO suspension, concurrently with a pronounced natriuresis. These results suggest that aldosterone may not be involved in the long term regulation of increased Na(+) excretion in AO animals. These studies continue to show the usefulness of models for the development of animal protocols for space flight.
A Chronic Autoimmune Dry Eye Rat Model with Increase in Effector Memory T Cells in Eyeball Tissue.
Hou, Aihua; Bose, Tanima; Chandy, K George; Tong, Louis
2017-06-07
Dry eye disease is a very common condition that causes morbidity and healthcare burden and decreases the quality of life. There is a need for a suitable dry eye animal model to test novel therapeutics to treat autoimmune dry eye conditions. This protocol describes a chronic autoimmune dry eye rat model. Lewis rats were immunized with an emulsion containing lacrimal gland extract, ovalbumin, and complete Freund's adjuvant. A second immunization with the same antigens in incomplete Freund's adjuvant was administered two weeks later. These immunizations were administered subcutaneously at the base of the tail. To boost the immune response at the ocular surface and lacrimal glands, lacrimal gland extract and ovalbumin were injected into the forniceal subconjunctiva and lacrimal glands 6 weeks after the first immunization. The rats developed dry eye features, including reduced tear production, decreased tear stability, and increased corneal damage. Immune profiling by flow cytometry showed a preponderance of CD3 + effector memory T cells in the eyeball.
A Chronic Autoimmune Dry Eye Rat Model with Increase in Effector Memory T Cells in Eyeball Tissue
Hou, Aihua; Bose, Tanima; Chandy, K. George; Tong, Louis
2017-01-01
Dry eye disease is a very common condition that causes morbidity and healthcare burden and decreases the quality of life. There is a need for a suitable dry eye animal model to test novel therapeutics to treat autoimmune dry eye conditions. This protocol describes a chronic autoimmune dry eye rat model. Lewis rats were immunized with an emulsion containing lacrimal gland extract, ovalbumin, and complete Freund's adjuvant. A second immunization with the same antigens in incomplete Freund's adjuvant was administered two weeks later. These immunizations were administered subcutaneously at the base of the tail. To boost the immune response at the ocular surface and lacrimal glands, lacrimal gland extract and ovalbumin were injected into the forniceal subconjunctiva and lacrimal glands 6 weeks after the first immunization. The rats developed dry eye features, including reduced tear production, decreased tear stability, and increased corneal damage. Immune profiling by flow cytometry showed a preponderance of CD3+ effector memory T cells in the eyeball. PMID:28654074
Christiansen, S L; Højgaard, K; Wiborg, O; Bouzinova, E V
2016-09-01
Disturbances of circadian rhythms have been suggested to be a causal factor in the development of major depressive disorder. However, the mechanisms underlying the association between circadian rhythm abnormalities and mood disorders are still unknown. In the current study the association between diurnal pattern of key phase markers (melatonin, corticosterone, and core body temperature) and anhedonic-like behavior was investigated using the highly validated rat chronic mild stress (CMS) model of depression. Phase marker measurements were done after 3.5 weeks of CMS in 48 control rats and 48 anhedonic-like rats at 6 time points within 24h. The results showed that anhedonic-like behavior associates with changes in all three phase markers: an increased dark phase melatonin secretion, an additional peak in corticosterone level in the beginning of the light phase, and hypothermia in the dark phase. The result adds to the validity of the CMS model in general and in particular to be adequate as a model for studying the chronobiology of depressive disorder. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Fujimura, Naoki; Obara, Hideaki; Suda, Koichi; Takeuchi, Hiroya; Matsuda, Sachiko; Kurosawa, Tomoko; Katono, Yasuhiro; Murata, Mitsuru; Kishi, Kazuo; Kitagawa, Yuko
2015-04-01
The development of an effective rat model of incisional surgical site infection (SSI) has so far proven difficult. In this study, we created a novel incisional SSI model and validated it in terms of both macroscopic and microscopic aspects including its response to treatment using antimicrobial wound-dressing, Aquacel Ag(®). Wounds were created on the dorsum of rats. 3-0 Vicryl(®) threads inoculated with Escherichia coli were inserted in the wound beds in the infection group (n = 6). The wounds were closed for two days to induce infection and then opened and covered with polypropylene sheets during the study. Aquacel Ag was placed under the polypropylene sheet in the infected wounds of the Aquacel Ag group rats (n = 6). The wounds in the control group (n = 6) contained sterile Vicryl thread that had not been inoculated with E. coli. The macroscopic appearance, wound area, bacterial counts, and histology of each group were evaluated. The infection group demonstrated significantly lower wound healing (p < 0.001), greater bacterial counts (median [interquartile range] ratings, 2.15 × 10(7) [0.51 × 10(7)-53.40 × 10(7)] vs 2.07 × 10(4) [0.60 × 10(4)-4.45 × 10(4)] CFU/g, respectively; p < 0.01), and severer histological inflammation (p < 0.001) than the control group. The Aquacel Ag group was only able to show significantly better wound healing than the infection group (p < 0.001). The new incisional SSI model exhibited all clinical manifestations of incisional SSI. It could be utilized to assess the effectiveness of newly developed treatments for incisional SSI. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Russell, James C; Proctor, Spencer D
2006-01-01
Cardiovascular disease, the leading cause of death in much of the modern world, is the common symptomatic end stage of a number of distinct diseases and, therefore, is multifactorial and polygenetic in character. The two major underlying causes are disorders of lipid metabolism and metabolic syndrome. The ability to develop preventative and ameliorative treatments will depend on animal models that mimic human disease processes. The focus of this review is to identify suitable animal models and insights into cardiovascular disease achieved to date using such models. The ideal animal model of cardiovascular disease will mimic the human subject metabolically and pathophysiologically, will be large enough to permit physiological and metabolic studies, and will develop end-stage disease comparable to those in humans. Given the complex multifactorial nature of cardiovascular disease, no one species will be suitable for all studies. Potential larger animal models are problematic due to cost, ethical considerations, or poor pathophysiological comparability to humans. Rabbits require high-cholesterol diets to develop cardiovascular disease, and there are no rabbit models of metabolic syndrome. Spontaneous mutations in rats provide several complementary models of obesity, hyperlipidemia, insulin resistance, and type 2 diabetes, one of which spontaneously develops cardiovascular disease and ischemic lesions. The mouse, like normal rats, is characteristically resistant to cardiovascular disease, although genetically altered strains respond to cholesterol feeding with atherosclerosis, but not with end-stage ischemic lesions. The most useful and valid species/strains for the study of cardiovascular disease appear to be small rodents, rats, and mice. This fragmented field would benefit from a consensus on well-characterized appropriate models for the study of different aspects of cardiovascular disease and a renewed emphasis on the biology of underlying diseases.
Development of an Experimental Model of Diabetes Co-Existing with Metabolic Syndrome in Rats.
Suman, Rajesh Kumar; Ray Mohanty, Ipseeta; Borde, Manjusha K; Maheshwari, Ujwala; Deshmukh, Y A
2016-01-01
Background. The incidence of metabolic syndrome co-existing with diabetes mellitus is on the rise globally. Objective. The present study was designed to develop a unique animal model that will mimic the pathological features seen in individuals with diabetes and metabolic syndrome, suitable for pharmacological screening of drugs. Materials and Methods. A combination of High-Fat Diet (HFD) and low dose of streptozotocin (STZ) at 30, 35, and 40 mg/kg was used to induce metabolic syndrome in the setting of diabetes mellitus in Wistar rats. Results. The 40 mg/kg STZ produced sustained hyperglycemia and the dose was thus selected for the study to induce diabetes mellitus. Various components of metabolic syndrome such as dyslipidemia {(increased triglyceride, total cholesterol, LDL cholesterol, and decreased HDL cholesterol)}, diabetes mellitus (blood glucose, HbA1c, serum insulin, and C-peptide), and hypertension {systolic blood pressure} were mimicked in the developed model of metabolic syndrome co-existing with diabetes mellitus. In addition to significant cardiac injury, atherogenic index, inflammation (hs-CRP), decline in hepatic and renal function were observed in the HF-DC group when compared to NC group rats. The histopathological assessment confirmed presence of edema, necrosis, and inflammation in heart, pancreas, liver, and kidney of HF-DC group as compared to NC. Conclusion. The present study has developed a unique rodent model of metabolic syndrome, with diabetes as an essential component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhoumeng; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602; Fisher, Jeffrey W.
Atrazine (ATR) is a widely used chlorotriazine herbicide, a ubiquitous environmental contaminant, and a potential developmental toxicant. To quantitatively evaluate placental/lactational transfer and fetal/neonatal tissue dosimetry of ATR and its major metabolites, physiologically based pharmacokinetic models were developed for rat dams, fetuses and neonates. These models were calibrated using pharmacokinetic data from rat dams repeatedly exposed (oral gavage; 5 mg/kg) to ATR followed by model evaluation against other available rat data. Model simulations corresponded well to the majority of available experimental data and suggest that: (1) the fetus is exposed to both ATR and its major metabolite didealkylatrazine (DACT) atmore » levels similar to maternal plasma levels, (2) the neonate is exposed mostly to DACT at levels two-thirds lower than maternal plasma or fetal levels, while lactational exposure to ATR is minimal, and (3) gestational carryover of DACT greatly affects its neonatal dosimetry up until mid-lactation. To test the model's cross-species extrapolation capability, a pharmacokinetic study was conducted with pregnant C57BL/6 mice exposed (oral gavage; 5 mg/kg) to ATR from gestational day 12 to 18. By using mouse-specific parameters, the model predictions fitted well with the measured data, including placental ATR/DACT levels. However, fetal concentrations of DACT were overestimated by the model (10-fold). This overestimation suggests that only around 10% of the DACT that reaches the fetus is tissue-bound. These rodent models could be used in fetal/neonatal tissue dosimetry predictions to help design/interpret early life toxicity/pharmacokinetic studies with ATR and as a foundation for scaling to humans. - Highlights: • We developed PBPK models for atrazine in rat dams, fetuses, and neonates. • We conducted pharmacokinetic (PK) study with atrazine in pregnant mice. • Model predictions were in good agreement with experimental rat and mouse PK data. • The fetus is exposed to atrazine/its main metabolite at levels similar to the dam. • The nursing neonate is exposed primarily to atrazine's main metabolite DACT.« less
van Tilborg, Erik; Achterberg, E J Marijke; van Kammen, Caren M; van der Toorn, Annette; Groenendaal, Floris; Dijkhuizen, Rick M; Heijnen, Cobi J; Vanderschuren, Louk J M J; Benders, Manon N J L; Nijboer, Cora H A
2018-01-01
Diffuse white matter injury (WMI) is a serious problem in extremely preterm infants, and is associated with adverse neurodevelopmental outcome, including cognitive impairments and an increased risk of autism-spectrum disorders. Important risk factors include fetal or perinatal inflammatory insults and fluctuating cerebral oxygenation. However, the exact mechanisms underlying diffuse WMI are not fully understood and no treatment options are currently available. The use of clinically relevant animal models is crucial to advance knowledge on the pathophysiology of diffuse WMI, allowing the definition of novel therapeutic targets. In the present study, we developed a multiple-hit animal model of diffuse WMI by combining fetal inflammation and postnatal hypoxia in rats. We characterized the effects on white matter development and functional outcome by immunohistochemistry, MRI and behavioral paradigms. Combined fetal inflammation and postnatal hypoxia resulted in delayed cortical myelination, microglia activation and astrogliosis at P18, together with long-term changes in oligodendrocyte maturation as observed in 10 week old animals. Furthermore, rats with WMI showed impaired motor performance, increased anxiety and signs of autism-like behavior, i.e. reduced social play behavior and increased repetitive grooming. In conclusion, the combination of fetal inflammation and postnatal hypoxia in rats induces a pattern of brain injury and functional impairments that closely resembles the clinical situation of diffuse WMI. This animal model provides the opportunity to elucidate pathophysiological mechanisms underlying WMI, and can be used to develop novel treatment options for diffuse WMI in preterm infants. © 2017 The Authors GLIA Published by Wiley Periodicals, Inc.
van Tilborg, Erik; Achterberg, E. J. Marijke; van Kammen, Caren M.; van der Toorn, Annette; Groenendaal, Floris; Dijkhuizen, Rick M.; Heijnen, Cobi J.; Vanderschuren, Louk J. M. J.; Benders, Manon N. J. L.
2017-01-01
Abstract Diffuse white matter injury (WMI) is a serious problem in extremely preterm infants, and is associated with adverse neurodevelopmental outcome, including cognitive impairments and an increased risk of autism‐spectrum disorders. Important risk factors include fetal or perinatal inflammatory insults and fluctuating cerebral oxygenation. However, the exact mechanisms underlying diffuse WMI are not fully understood and no treatment options are currently available. The use of clinically relevant animal models is crucial to advance knowledge on the pathophysiology of diffuse WMI, allowing the definition of novel therapeutic targets. In the present study, we developed a multiple‐hit animal model of diffuse WMI by combining fetal inflammation and postnatal hypoxia in rats. We characterized the effects on white matter development and functional outcome by immunohistochemistry, MRI and behavioral paradigms. Combined fetal inflammation and postnatal hypoxia resulted in delayed cortical myelination, microglia activation and astrogliosis at P18, together with long‐term changes in oligodendrocyte maturation as observed in 10 week old animals. Furthermore, rats with WMI showed impaired motor performance, increased anxiety and signs of autism‐like behavior, i.e. reduced social play behavior and increased repetitive grooming. In conclusion, the combination of fetal inflammation and postnatal hypoxia in rats induces a pattern of brain injury and functional impairments that closely resembles the clinical situation of diffuse WMI. This animal model provides the opportunity to elucidate pathophysiological mechanisms underlying WMI, and can be used to develop novel treatment options for diffuse WMI in preterm infants. PMID:28925578
Klyueva, L A
2017-01-01
To reveal regularities of changes in cellular composition of lymphoid nodules in the tracheal wall in male Wistar rats resistant and not resistant to emotional stress in a model of hemorrhagic stroke. Lymphoid formations of the tracheal wall (an area near the bifurcation of the organ) were investigated in 98 male Wistar rats using histological methods. Significant changes in the cellular composition of lymphoid nodules were found. The pattern of changes depends on the stress resistance of rats and the period of the experiment. The active cell destruction in lymphoid nodules was noted both in stress resistant and stress susceptible animals. The changes in the structure of lymphoid nodules found in the experimental hemorrhagic stroke suggest a decrease in the local immune resistance, which is most pronounced in rats not resistant to stress, that may contribute to the development of severe inflammatory complications of stroke such as pneumonia.
Rasoulian, Bahram; Hajializadeh, Zahra; Esmaeili-Mahani, Saeed; Rashidipour, Marzieh; Fatemi, Iman; Kaeidi, Ayat
2018-05-12
Diabetes mellitus is associated with the development of neuronal tissue damage in different central and peripheral nervous system regions. A common complication of diabetes is painful diabetic peripheral neuropathy. We have explored the antihyperalgesic and neuroprotective properties of Rosmarinus officinalis L. extract (RE) in a rat model of streptozotocin (STZ)-induced diabetes. The nociceptive threshold and motor coordination of these diabetic rats was assessed using the tail-flick and rotarod treadmill tests, respectively. Activated caspase-3 and the Bax:Bcl-2 ratio, both biochemical indicators of apoptosis, were assessed in the dorsal half of the lumbar spinal cord tissue by western blotting. Treatment of the diabetic rats with RE improved hyperglycemia, hyperalgesia and motor deficit, suppressed caspase-3 activation and reduced the Bax:Bcl-2 ratio, suggesting that the RE has antihyperalgesic and neuroprotective effects in this rat model of STZ-induced diabetes. Cellular mechanisms underlying the observed effects may, at least partially, be related to the inhibition of neuronal apoptosis.
Li, K-W; Kim, D-S; Zaucke, F; Luo, Z D
2014-04-01
Injury to the trigeminal nerve often results in the development of chronic pain states including tactile allodynia, or hypersensitivity to light touch, in orofacial area, but its underlying mechanisms are poorly understood. Peripheral nerve injury has been shown to cause up-regulation of thrombospondin-4 (TSP4) in dorsal spinal cord that correlates with neuropathic pain development. In this study, we examined whether injury-induced TSP4 is critical in mediating orofacial pain development in a rat model of chronic constriction injury to the infraorbital nerve. Orofacial sensitivity to mechanical stimulation was examined in a unilateral infraorbital nerve ligation rat model. The levels of TSP4 in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 spinal cord (Vc/C2) from injured rats were examined at time points correlating with the initiation and peak orofacial hypersensitivity. TSP4 antisense and mismatch oligodeoxynucleotides were intrathecally injected into injured rats to see if antisense oligodeoxynucleotide treatment could reverse injury-induced TSP4 up-regulation and orofacial behavioural hypersensitivity. Our data indicated that trigeminal nerve injury induced TSP4 up-regulation in Vc/C2 at a time point correlated with orofacial tactile allodynia. In addition, intrathecal treatment with TSP4 antisense, but not mismatch, oligodeoxynucleotides blocked both injury-induced TSP4 up-regulation in Vc/C2 and behavioural hypersensitivity. Our data support that infraorbital nerve injury leads to TSP4 up-regulation in trigeminal spinal complex that contributes to orofacial neuropathic pain states. Blocking this pathway may provide an alternative approach in management of orofacial neuropathic pain states. © 2013 European Pain Federation - EFIC®
Liu, Zhong; Hatayama, Naoyuki; Xie, Lin; Kato, Ken; Zhu, Ping; Ochiya, Takahiro; Nagahara, Yukitoshi; Hu, Xiang; Li, Xiao-Kang
2012-01-01
The development of an animal model bearing definite antigens is important to facilitate the evaluation and modulation of specific allo-antigen responses after transplantation. In the present study, heterotopic cardiac transplantation was performed from F344/EGFPTg and F344/HLA-B27Tg rats to F344 rats. The F344 recipients accepted the F344/EGFPTg transplants, whereas they rejected the cardiac tissue from the F344/HLA-B27Tg rats by 39.4 ± 6.5 days, due to high production of anti-HLA-B27 IgM- and IgG-specific antibodies. In addition, immunization of F344 rats with skin grafts from F344/HLA-B27Tg rats resulted in robust production of anti- HLA-B27 IgM and IgG antibodies and accelerated the rejection of a secondary cardiac allograft (7.4 ± 1.9 days). Of interest, the F344 recipients rejected cardiac grafts from double transgenic F344/HLA-B27&EGFPTg rats within 9.0 ± 3.2 days, and this was associated with a significant increase in the infiltration of lymphocytes by day 7, suggesting a role for cellular immune rejection. Eicosapentenoic acid (EPA), one of the ω-3 polyunsaturated fatty acids in fish oil, could attenuate the production of anti-HLA IgG antibodies and B-cell proliferation, significantly prolonging double transgenic F344HLA-B27&EGFPTg to F344 rat cardiac allograft survival (36.1 ± 13.6 days). Moreover, the mRNA expression in the grafts was assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), revealing an increase in the expression of the HO-1, IL-10, TGF-β, IDO, and Foxp3 genes in the EPA-treated group. Hence, our data indicate that HLA-B27 and/or GFP transgenic proteins are useful for establishing a unique animal transplantation model to clarify the mechanism underlying the allogeneic cellular and humoral immune response, in which the transplant antigens are specifically presented. Furthermore, we also demonstrated that EPA was effective in the treatment of rat cardiac allograft rejection and may allow the development of novel immunomodulatory strategies for organ transplantation.
Rat brain sagittal organotypic slice cultures as an ex vivo dopamine cell loss system.
McCaughey-Chapman, Amy; Connor, Bronwen
2017-02-01
Organotypic brain slice cultures are a useful tool to study neurological function as they provide a more complex, 3-dimensional system than standard 2-dimensional in vitro cell cultures. Building on a previously developed mouse brain slice culture protocol, we have developed a rat sagittal brain slice culture system as an ex vivo model of dopamine cell loss. We show that rat brain organotypic slice cultures remain viable for up to 6 weeks in culture. Using Fluoro-Gold axonal tracing, we demonstrate that the slice 3-dimensional cytoarchitecture is maintained over a 4 week culturing period, with particular focus on the nigrostriatal pathway. Treatment of the cultures with 6-hydroxydopamine and desipramine induces a progressive loss of Fluoro-Gold-positive nigral cells with a sustained loss of tyrosine hydroxylase-positive nigral cells. This recapitulates the pattern of dopaminergic degeneration observed in the rat partial 6-hydroxydopamine lesion model and, most importantly, the progressive pathology of Parkinson's disease. Our slice culture platform provides an advance over other systems, as we demonstrate for the first time 3-dimensional cytoarchitecture maintenance of rat nigrostriatal sagittal slices for up to 6 weeks. Our ex vivo organotypic slice culture system provides a long term cellular platform to model Parkinson's disease, allowing for the elucidation of mechanisms involved in dopaminergic neuron degeneration and the capability to study cellular integration and plasticity ex vivo. Copyright © 2017 Elsevier B.V. All rights reserved.
Scholz, M; Engel, C; Apt, D; Sankar, S L; Goldstein, E; Loeffler, M
2009-12-01
This study aims to compare pharmacokinetics and pharmacodynamics of pegfilgrastim, a pharmaceutical recombinant human granulocyte colony-stimulating factor (rhG-CSF), with that of a newly developed reagent, Maxy-G34. This comparison was performed using rat experiments and biomathematical modelling of granulopoiesis. Healthy rats and those with cyclophosphamide-induced neutropenia were treated with either pegfilgrastim or Maxy-G34 under various schedules. Time courses of absolute neutrophil count (ANC) and G-CSF serum level were measured and we constructed a combined pharmacokinetic/pharmacodynamic model of both drugs. Neutropenic episodes were assessed by experimental data and model simulations. Both Pegfilgrastim and Maxy-G34 showed strong dose-dependent efficacy in reducing neutropenic episodes. However, time courses of ANC and G-CSF serum levels were markedly different. The biomathematical model showed good agreement with these data. We estimated that differences between the two drugs could be explained by lower bioavailability and reduced elimination of Maxy-G34. Based on the data and model interpolations, we estimated that Maxy-G34 is superior in reducing neutropenic episodes. Also, we predicted that G-CSF administration 48 h after cyclophosphamide would be superior to its administration after 2 or 24 h, for both derivatives. Maxy-G34 is a highly potent drug for stimulation of neutrophil production in rats. By our modelling approach, we quantified differences between Maxy-G34 and pegfilgrastim, related to pharmacokinetic parameters. Model simulations can be used to estimate optimal dosing and timing options in the present preclinical rat model.
Effects of parecoxib on the prevention of postoperative peritoneal adhesions in rats.
Arung, Willy; Jehaes, François; Cheramy, Jean-Paul; Defraigne, Jean-Olivier; Meurisse, Michel; Honoré, Pierre; Drion, Pierre; Detry, Olivier
2013-12-01
No systemic preventive therapy has been successful in inhibiting the development of postoperative peritoneal adhesions (PPAs). The aim of this study was to evaluate the potential effects of 5 day administration of parecoxib, on PPA prevention and on suture or wound healing in rats. In a model of PPAs induced by peritoneal electrical burn, 30 rats were randomized into 3 groups according to parecoxib administration route (control; intraperitoneal (IP); intramuscular (IM)). Plasma and peritoneal levels of PAI-1 and tPA were measured at T0, after 90 min of surgery (T90), and on postoperative day 10 (D10). In a cecum resection model, 20 rats were randomized into two groups (control and IP parecoxib), and abdominal wound healing and suture leakage were assessed at D10. In both models, PPAs were evaluated quantitatively and qualitatively on D10. Administration of parecoxib significantly decreased the quantity (p < .05) and the severity (p < .01) of PPAs in both models. In addition, parecoxib administration did not cause healing defects or infectious complications in the two models. In the peritoneal burn model, IP or IM parecoxib administration inhibited the increase of postoperative plasma and peritoneum PAI-1 levels, an increase that was observed in the control group (p < .01). No anastomosis leakage could be demonstrated in both groups in the cecum resection model. This study showed that, in these rat models, parecoxib might reduce PPA formation. Confirmation of the safety of parecoxib on intestinal anastomoses is required and should be investigated in further animal models.
Developing Gene Silencing for the Study and Treatment of Dystonia
2016-10-01
eliminate the symptoms? Are the motor deficits in DYT1 dystonia reversible? We propose to use a novel rat model of DYT1 dystonia and infuse antisense...suppressing expression of mutant torsinA in striatum or cerebellum using AAV1 reverses the motor phenotype in aged DYT1 rats . 4. IMPACT What was...different areas of the brain, and w e w ill measure if they are able to reverse known abnormalities that occur in the brain of DYT1 rats , including abnormal
Limited inflammatory response in rats after acute exposure to a silicon carbide nanoaerosol
NASA Astrophysics Data System (ADS)
Laloy, J.; Lozano, O.; Alpan, L.; Masereel, B.; Toussaint, O.; Dogné, J. M.; Lucas, S.
2015-08-01
Inhalation represents the major route of human exposure to manufactured nanomaterials (NMs). Assessments are needed about the potential risks of NMs from inhalation on different tissues and organs, especially the respiratory tract. The aim of this limited study is to determine the potential acute pulmonary toxicity in rats exposed to a dry nanoaerosol of silicon carbide (SiC) nanoparticles (NPs) in a whole-body exposure (WBE) model. The SiC nanoaerosol is composed of a bimodal size distribution of 92.8 and 480 nm. The exposure concentration was 4.91 mg/L, close to the highest recommended concentration of 5 mg/L by the Organisation for Economic Co-operation and Development. Rats were exposed for 6 h to a stable and reproducible SiC nanoaerosol under real-time measurement conditions. A control group was exposed to the filtered air used to create the nanoaerosol. Animals were sacrificed immediately, 24 or 72 h after exposure. The bronchoalveolar lavage fluid from rat lungs was recovered. Macrophages filled with SiC NPs were observed in the rat lungs. The greatest load of SiC and macrophages filled with SiC were observed on the rat lungs sacrificed 24 h after acute exposure. A limited acute inflammatory response was found up to 24 h after exposure characterized by a lactate dehydrogenase and total protein increase or presence of inflammatory cells in pulmonary lavage. For this study a WBE model has been developed, it allows the simultaneous exposure of six rats to a nanoaerosol and six rats to clean-filtered air. The nanoaerosol was generated using a rotating brush system (RBG-1000) and analyzed with an electrical low pressure impactor in real time.
Bahde, Ralf; Kapoor, Sorabh; Bhargava, Kuldeep K; Palestro, Christopher J; Gupta, Sanjeev
2014-01-01
Identification by molecular imaging of key processes in handling of transition state metals, such as copper (Cu), will be of considerable clinical value. For instance, the ability to diagnose Wilson’s disease with molecular imaging by identifying copper excretion in an ATP7B-dependent manner will be very significant. To develop highly effective diagnostic approaches, we hypothesized that targeting of radiocopper via the asialoglycoprotein receptor will be appropriate for positron emission tomography, and examined this approach in a rat model of Wilson’s disease. After complexing 64Cu to asialofetuin we studied handling of this complex compared with 64Cu in healthy LEA rats and diseased homozygous LEC rats lacking ATP7B and exhibiting hepatic copper toxicosis. We analyzed radiotracer clearance from blood, organ uptake, and biliary excretion, including sixty minute dynamic positron emission tomography recordings. In LEA rats, 64Cu-asialofetuin was better cleared from blood followed by liver uptake and greater biliary excretion than 64Cu. In LEC rats, 64Cu-asialofetuin activity cleared even more rapidly from blood followed by greater uptake in liver, but neither 64Cu-asialofetuin nor 64Cu appeared in bile. Image analysis demonstrated rapid visualization of liver after 64Cu-asialofetuin administration followed by decreased liver activity in LEA rats while liver activity progressively increased in LEC rats. Image analysis resolved this difference in hepatic activity within one hour. We concluded that 64Cu-asialofetuin complex was successfully targeted to the liver and radiocopper was then excreted into bile in an ATP7B-dependent manner. Therefore, hepatic targeting of radiocopper will be appropriate for improving molecular diagnosis and for developing drug/cell/gene therapies in Wilson’s disease. PMID:25250203
Mordes, John P.; Leif, Jean H.; Woda, Bruce A.; Flanagan, Joan F.; Greiner, Dale L.; Kislauskis, Edward H.; Tirabassi, Rebecca S.
2005-01-01
We describe a new rat model of autoimmune diabetes that arose in a major histocompatibility complex (MHC) congenic LEW rat. Spontaneous diabetes in LEW.1WR1 rats (RT1u/u/a) occurs with a cumulative frequency of ∼2% at a median age of 59 days. The disease is characterized by hyperglycemia, glycosuria, ketonuria and polyuria. Both sexes are affected, and islets of acutely diabetic rats are devoid of beta cells whereas alpha and delta cell populations are spared. The peripheral lymphoid phenotype is normal, including the fraction of ART2+ regulatory T cells (Tregs). We tested the hypothesis that the expression of diabetes would be increased by immunological perturbation of innate or adaptive immunity. Treatment of young rats with depleting anti-ART2.1 mAb increased the frequency of diabetes to 50%. Treatment with the toll-like receptor 3 (TLR3) ligand polyinosinic:polycytidylic acid increased the frequency of diabetes to 100%. All diabetic rats exhibited end-stage islets. The LEW.1WR1 rat is also susceptible to collagen-induced arthritis but is free of spontaneous thyroiditis. The LEW.1WR1 rat provides a new model for studying autoimmune diabetes and arthritis in an animal with a genetic predisposition to both disorders that can be amplified by environmental perturbation. PMID:16123363
Fairchild, C R; Ivy, S P; Rushmore, T; Lee, G; Koo, P; Goldsmith, M E; Myers, C E; Farber, E; Cowan, K H
1987-11-01
We have previously reported the isolation of a human breast cancer cell line resistant to doxorubicin (adriamycin; AdrR MCF-7 cells) that has also developed the phenotype of multidrug resistance (MDR). MDR in this cell line is associated with increased expression of mdr (P glycoprotein) gene sequences. The development of MDR in AdrR MCF-7 cells is also associated with changes in the expression of several phase I and phase II drug-detoxifying enzymes. These changes are remarkably similar to those associated with development of xenobiotic resistance in rat hyperplastic liver nodules, a well-studied model system of chemical carcinogenesis. Using an mdr-encoded cDNA sequence isolated from AdrR MCF-7 cells, we have examined the expression of mdr sequences in rat livers under a variety of experimental conditions. The expression of mdr increased 3-fold in regenerating liver. It was also elevated (3- to 12-fold) in several different samples of rat hyperplastic nodules and in four of five hepatomas that developed in this system. This suggests that overexpression of mdr, a gene previously associated with resistance to antineoplastic agents, may also be involved in the development of resistance to xenobiotics in rat hyperplastic nodules. In addition, although the acute administration of 2-acetylaminofluorene induced an 8-fold increase in hepatic mdr-encoded RNA, performance of a partial hepatectomy either before or after administration of 2-acetylaminofluorene resulted in a greater than 80-fold increase in mdr gene expression over that in normal untreated livers. This represents an important in vivo model system in which to study the acute regulation of this drug resistance gene.
c-Fos downregulation positively regulates EphA5 expression in a congenital hypothyroidism rat model.
Song, Honghua; Zheng, Yuqin; Cai, Fuying; Ma, Yanyan; Yang, Jingyue; Wu, Youjia
2018-04-01
The EphA5 receptor is well established as an axon guidance molecule during neural system development and plays an important role in dendritic spine formation and synaptogenesis. Our previous study has showed that EphA5 is decreased in the developing brain of congenital hypothyroidism (CH) and the EphA5 promoter methylation modification participates in its decrease. c-Fos, a well-kown transcription factor, has been considered in association with brain development. Bioinformatics analysis showed that the EphA5 promoter region contained five putative c-fos binding sites. The chromatin immunoprecipitation (ChIP) assays were used to assess the direct binding of c-fos to the EphA5 promoter. Furthermore, dual-luciferase assays showed that these three c-fos protein binding sites were positive regulatory elements for EphA5 expression in PC12 cells. Moreover, We verified c-fos positively regulation for EphA5 expression in CH model. Q-PCR and Western blot showed that c-fos overexpression could upregulate EphA5 expression in hippocampal neurons of rats with CH. Our results suggest that c-fos positively regulates EphA5 expression in CH rat model.
Ueda, Yoshitomo; Misumi, Sachiyo; Suzuki, Mina; Ogawa, Shino; Nishigaki, Ruriko; Ishida, Akimasa; Jung, Cha-Gyun; Hida, Hideki
2018-01-01
We previously established neonatal white matter injury (WMI) model rat that is made by right common carotid artery dissection at postnatal day 3, followed by 6% hypoxia for 60 min. This model has fewer oligodendrocyte progenitor cells and reduced myelin basic protein (MBP) positive areas in the sensorimotor cortex, but shows no apparent neuronal loss. However, how motor deficits are induced in this model is unclear. To elucidate the relationship between myelination disturbance and concomitant motor deficits, we first performed motor function tests (gait analysis, grip test, horizontal ladder test) and then analyzed myelination patterns in the sensorimotor cortex using transmission electron microscopy (TEM) and Contactin associated protein 1 (Caspr) staining in the neonatal WMI rats in adulthood. Behavioral tests revealed imbalanced motor coordination in this model. Motor deficit scores were higher in the neonatal WMI model, while hindlimb ladder stepping scores and forelimb grasping force were comparable to controls. Prolonged forelimb swing times and decreased hindlimb paw angles on the injured side were revealed by gait analysis. TEM revealed no change in myelinated axon number and the area g-ratio in the layer II/III of the cortex. Electromyographical durations and latencies in the gluteus maximus in response to electrical stimulation of the brain area were unchanged in the model. Caspr staining revealed fewer positive dots in layers II/III of the WMI cortex, indicating fewer and/or longer myelin sheath. These data suggest that disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex relates to imbalanced motor coordination in the neonatal WMI model rat.
Population Pharmacokinetic-Pharmacodynamic Modeling of 5-Fluorouracil for Toxicities in Rats.
Kobuchi, Shinji; Ito, Yukako; Sakaeda, Toshiyuki
2017-08-01
Myelosuppression is a dose-limiting toxicity of 5-fluorouracil (5-FU). Predicting the inter- and intra-patient variability in pharmacokinetics and toxicities of 5-FU may contribute to the individualized medicine. This study aimed to establish a population pharmacokinetic-pharmacodynamic model that could evaluate the inter- and intra-individual variability in the plasma 5-FU concentration, 5-FU-induced body weight loss and myelosuppression in rats. Plasma 5-FU concentrations, body weight loss, and blood cell counts in rats following the intravenous administration of various doses of 5-FU for 4 days were used to develop the population pharmacokinetic-pharmacodynamic model. The population pharmacokinetic model consisting of a two-compartment model with Michaelis-Menten elimination kinetics successfully characterized the individual and population predictions of the plasma concentration of 5-FU and provided credible parameter estimates. The estimates of inter-individual variability in maximal rate of saturable metabolism and residual variability were 8.1 and 22.0%, respectively. The population pharmacokinetic-pharmacodynamic model adequately described the individual complete time-course of alterations in body weight loss, erythrocyte, leukocyte, and lymphocyte counts in rats treated with various doses of 5-FU. The inter-individual variability of the drug effects in the pharmacodynamic model for body weight loss was 82.6%, which was relatively high. The results of the present study suggest that not only individual fluctuations in the 5-FU concentration but also the cell sensitivity would affect the onset and degree of 5-FU-induced toxicity. This population pharmacokinetic-pharmacodynamic model could evaluate the inter- and intra-individual variability in drug-induced toxicity and guide the assessments of novel anticancer agents in drug development.
Agarwal, Rahul; Chen, Zhe; Kloosterman, Fabian; Wilson, Matthew A; Sarma, Sridevi V
2016-07-01
Pyramidal neurons recorded from the rat hippocampus and entorhinal cortex, such as place and grid cells, have diverse receptive fields, which are either unimodal or multimodal. Spiking activity from these cells encodes information about the spatial position of a freely foraging rat. At fine timescales, a neuron's spike activity also depends significantly on its own spike history. However, due to limitations of current parametric modeling approaches, it remains a challenge to estimate complex, multimodal neuronal receptive fields while incorporating spike history dependence. Furthermore, efforts to decode the rat's trajectory in one- or two-dimensional space from hippocampal ensemble spiking activity have mainly focused on spike history-independent neuronal encoding models. In this letter, we address these two important issues by extending a recently introduced nonparametric neural encoding framework that allows modeling both complex spatial receptive fields and spike history dependencies. Using this extended nonparametric approach, we develop novel algorithms for decoding a rat's trajectory based on recordings of hippocampal place cells and entorhinal grid cells. Results show that both encoding and decoding models derived from our new method performed significantly better than state-of-the-art encoding and decoding models on 6 minutes of test data. In addition, our model's performance remains invariant to the apparent modality of the neuron's receptive field.
A 3-D mathematical model to identify organ-specific risks in rats during thermal stress.
Rakesh, Vineet; Stallings, Jonathan D; Helwig, Bryan G; Leon, Lisa R; Jackson, David A; Reifman, Jaques
2013-12-01
Early prediction of the adverse outcomes associated with heat stress is critical for effective management and mitigation of injury, which may sometimes lead to extreme undesirable clinical conditions, such as multiorgan dysfunction syndrome and death. Here, we developed a computational model to predict the spatiotemporal temperature distribution in a rat exposed to heat stress in an attempt to understand the correlation between heat load and differential organ dysfunction. The model includes a three-dimensional representation of the rat anatomy obtained from medical imaging and incorporates the key mechanisms of heat transfer during thermoregulation. We formulated a novel approach to estimate blood temperature by accounting for blood mixing from the different organs and to estimate the effects of the circadian rhythm in body temperature by considering day-night variations in metabolic heat generation and blood perfusion. We validated the model using in vivo core temperature measurements in control and heat-stressed rats and other published experimental data. The model predictions were within 1 SD of the measured data. The liver demonstrated the greatest susceptibility to heat stress, with the maximum temperature reaching 2°C higher than the measured core temperature and 95% of its volume exceeding the targeted experimental core temperature. Other organs also attained temperatures greater than the core temperature, illustrating the need to monitor multiple organs during heat stress. The model facilitates the identification of organ-specific risks during heat stress and has the potential to aid in the development of improved clinical strategies for thermal-injury prevention and management.
Duc, P A; Yudoh, K; Masuko, K; Kato, T; Nishioka, K; Nakamura, H
2008-01-01
Pannus is invasive granulation tissue found on the articular cartilage having rheumatoid arthritis (RA). However, pannus-like tissue has also been found in osteoarthritis (OA). Our previous study showed that pannus-like tissue in OA (OA pannus) was frequently found in human OA samples. The purpose of the study is to investigate the development and the characteristics of OA pannus in a rat OA model. Ligaments of the knee joint were transected in Wister rats to induce OA. The knee joints were removed at weeks 1, 2, 4 and 6, and subjected to histological study. Samples were stained with hematoxylin and eosin (HE), Safranin-O and immuno-stained for vimentin, CD34, type II collagen and MMP-3. The whole knee joint of OA rats was implanted in SCID mice and kept for a further 3 weeks. Then the histological findings were evaluated in HE sections. OA pannus appeared at week 2 and extend over the articular surface. OA pannus cells were positive for vimentin and/or CD34. At week 6, a part of articular surface was restored with matrix. OA pannus cells expressed MMP-3 as well as type II collagen. Histological study of rat OA knees implanted in SCID mice showed that OA pannus cells filled the joint space and invaded articular cartilage. The presence of OA pannus was found in a rat OA model and its features were similar to those in human OA. OA pannus had both catabolic and reparative features, and the latter feature were speculated to be dominant in the later phase of the disease under a certain environmental condition.
Renal Carcinogenesis After Uninephrectomy1
Sui, Yi; Zhao, Hai-Lu; Lee, Heung Man; Guan, Jing; He, Lan; Lai, Fernand MM; Tong, Peter CY; Chan, Juliana CN
2009-01-01
Nephrectomized rats have widely been used to study chronic renal failure. Interestingly, renal cell carcinoma occurred in the remnant kidney after uninephrectomy (UNX). In this study, we probed insulin-like growth factor (IGF)-1 signaling pathway in UNX-induced renal cancer. Adult male Sprague-Dawley rats were randomized into two groups: UNX rats (n = 22) and sham-operated rats (n = 12). Rats were killed at 3, 7, and 10 months. After 7 months after nephrectomy, the UNX rats developed renal cell carcinoma with increased expression of proliferating cell nuclear antigen, and 68.2% (15/22) of the animals exhibited invasive carcinoma. Western blot demonstrated significant down-regulation of IGF binding protein 3 contrasting with the up-regulation of protein kinase Cζ and Akt/protein kinase B in the renal cancer tissues. These findings indicate a unique rat model of UNX-induced renal cancer associated with enhanced IGF-1 signaling pathway. PMID:19956387
Ben-Shimol, E; Gass, N; Vollmayr, B; Sartorius, A; Goelman, G
2015-12-03
Defining the markers corresponding to a high risk of developing depression in humans would have major clinical significance; however, few studies have been conducted since they are not only complex but also require homogeneous groups. This study compared congenital learned helpless (cLH) rats, selectively bred for high stress sensitivity and learned helplessness (LH) behavior, to congenital non-learned helpless (cNLH) rats that were bred for resistance to uncontrollable stress. Naïve cLH rats show some depression-like behavior but full LH behavior need additional stress, making this model ideal for studying vulnerability to depression. Resting-state functional connectivity obtained from seed correlation analysis was calculated for multiple regions that were selected by anatomy AND by a data-driven approach, independently. Significance was determined by t-statistic AND by permutation analysis, independently. A significant reduction in functional connectivity was observed by both analyses in the cLH rats in the sensory, motor, cingulate, infralimbic, accumbens and the raphe nucleus. These reductions corresponded primarily to reduced inter-hemispheric connectivity. The main reduction however was in the sensory system. It is argued that reduced connectivity and inter-hemispheric connectivity of the sensory system reflects an internal convergence state which may precede other depressive symptomatology and therefore could be used as markers for vulnerability to the development of depression. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Holditch, Sara J; Schreiber, Claire A; Nini, Ryan; Tonne, Jason M; Peng, Kah-Whye; Geurts, Aron; Jacob, Howard J; Burnett, John C; Cataliotti, Alessandro; Ikeda, Yasuhiro
2015-07-01
Altered myocardial structure and function, secondary to chronically elevated blood pressure, are leading causes of heart failure and death. B-type natriuretic peptide (BNP), a guanylyl cyclase A agonist, is a cardiac hormone integral to cardiovascular regulation. Studies have demonstrated a causal relationship between reduced production or impaired BNP release and the development of human hypertension. However, the consequences of BNP insufficiency on blood pressure and hypertension-associated complications remain poorly understood. Therefore, the goal of this study was to create and characterize a novel model of BNP deficiency to investigate the effects of BNP absence on cardiac and renal structure, function, and survival. Genetic BNP deletion was generated in Dahl salt-sensitive rats. Compared with age-matched controls, BNP knockout rats demonstrated adult-onset hypertension. Increased left ventricular mass with hypertrophy and substantially augmented hypertrophy signaling pathway genes, developed in young adult knockout rats, which preceded hypertension. Prolonged hypertension led to increased cardiac stiffness, cardiac fibrosis, and thrombi formation. Significant elongation of the QT interval was detected at 9 months in knockout rats. Progressive nephropathy was also noted with proteinuria, fibrosis, and glomerular alterations in BNP knockout rats. End-organ damage contributed to a significant decline in overall survival. Systemic BNP overexpression reversed the phenotype of genetic BNP deletion. Our results demonstrate the critical role of BNP defect in the development of systemic hypertension and associated end-organ damage in adulthood. © 2015 American Heart Association, Inc.
Kirsch, Richard; Clarkson, Vivian; Shephard, Enid G; Marais, David A; Jaffer, Mohamed A; Woodburne, Vivienne E; Kirsch, Ralph E; Hall, Pauline de la M
2003-11-01
The methionine choline-deficient (MCD) diet leads to steatohepatitis in rodents. The aim of the present study was to investigate species, strain and sex differences in this nutritional model of non-alcoholic steatohepatitis (NASH). Male and female Wistar, Long-Evans and Sprague-Dawley rats, and C57/BL6 mice (n = 6 per group) were fed a MCD diet for 4 weeks. Control groups received an identical diet supplemented with choline bitartrate (0.2% w/w) and methionine (0.3% w/w). Liver pathology (steatosis and inflammation) and ultrastructure, liver lipid profile (total lipids, triglycerides, lipid peroxidation products), liver : body mass ratios and serum alanine aminotransferase (ALT) levels were compared between these groups. The MCD diet-fed male rats developed greater steatosis (P < 0.001), had higher liver lipid content (P < 0.05) and had higher serum ALT levels (P < 0.005) than did female rats. Wistar rats (both sexes) had higher liver lipid levels (P < 0.05), serum ALT levels (P < 0.05), and liver mass : body mass ratios (P < 0.025) than did Long-Evans and Sprague-Dawley rats. In female groups, Wistar rats showed greater fatty change than did the other two strains (P < 0.05). All rats fed the MCD diet developed hepatic steatosis, but necrosis and inflammation were minor features and fibrosis was absent. Compared with Wistar rats, male C57/BL6 mice showed a marked increase in inflammatory foci (P < 0.001), end products of lipid peroxidation (free thiobarbituric acid reactive substances) (P < 0.005), and mitochondrial injury, while showing less steatosis (P < 0.005), lower hepatic triglyceride levels, (P < 0.005) and lower early lipid peroxidation products (conjugated dienes and lipid hydroperoxides; P < 0.005 and P < 0.01, respectively). The Wistar strain and the male sex are associated with the greatest degree of steatosis in rats subjected to the MCD diet. Of the groups studied, male C57/BL6 mice develop the most inflammation and necrosis, lipid peroxidation, and ultrastructural injury, and best approximate the histological features of NASH.
Adams, P C; Rickert, D E
1996-11-01
We tested the hypothesis that the small intestine is capable of the first-pass, reductive metabolism of xenobiotics. A simplified version of the isolated vascularly perfused rat small intestine was developed to test this hypothesis with 1,3-dinitrobenzene (1,3-DNB) as a model xenobiotic. Both 3-nitroaniline (3-NA) and 3-nitroacetanilide (3-NAA) were formed and absorbed following intralumenal doses of 1,3-DNB (1.8 or 4.2 mumol) to isolated vascularly perfused rat small intestine. Dose, fasting, or antibiotic pretreatment had no effect on the absorption and metabolism of 1,3-DNB in this model system. The failure of antibiotic pretreatment to alter the metabolism of 1,3-DNA indicated that 1,3-DNB metabolism was mammalian rather than microfloral in origin. All data from experiments initiated with lumenal 1,3-DNB were fit to a pharmacokinetic model (model A). ANOVA analysis revealed that dose, fasting, or antibiotic pretreatment had no statistically significant effect on the model-dependent parameters. 3-NA (1.5 mumol) was administered to the lumen of isolated vascularly perfused rat small intestine to evaluate model A predictions for the absorption and metabolism of this metabolite. All data from experiments initiated with 3-NA were fit to a pharmacokinetic model (model B). Comparison of corresponding model-dependent pharmacokinetic parameters (i.e. those parameters which describe the same processes in models A and B) revealed quantitative differences. Evidence for significant quantitative differences in the pharmacokinetics or metabolism of formed versus preformed 3-NA in rat small intestine may require better definition of the rate constants used to describe tissue and lumenal processes or identification and incorporation of the remaining unidentified metabolites into the models.
Liu, Lei; Liu, Huishu; Huang, Qian; Brennecke, Shaun; Hu, Bihui
2013-04-01
Eclampsia is a serious complication of pregnancy and remains a leading cause of maternal mortality worldwide. Magnesium sulfate is commonly used in the prophylaxis and treatment of eclampsia. However, uncertainty remain regarding its anticonvulsant mechanism(s) of action. This study examined the effects of intravenous magnesium sulfate on the characteristics of eclamptic seizures in a rat preeclampsia/eclampsia model. All rats were implanted with stainless nickel-cadmium alloy bipolar electrodes one week before fertilization. Next, an experimental rat preeclampsia (PE) model was induced on gestational day 14 by anaesthetising rats and infusing over 1 hour into their tail veins lipopolysaccharide (LPS) (1.0μg/kg body weight) (with control rats receiving normal saline). The rats were then divided into three groups: a normal pregnancy (NP) group (n=6) which received a continuous infusion of saline; a control PE model group (n=7) (which had previously received the LPS treatment) which also received a continuous infusion of saline; and a treated PE model group (n=8) (which had previously received the LPS treatment) which received a continuous infusion of magnesium sulfate (60mg/kg/day). The continuous infusions in all three groups were delivered by implanted osmotic minipumps . Measurements were made of blood pressure, albuminuria, serum ALT, AST, and creatinine, BUN and serum magnesium concentrations. On gestational day 18, all experimental rats received a standardized electrical stimulus. Seizure activity was assessed using electroencephalogram (EEG) recordings. Terminations of pregnancy were performed on gestational day 21. Resorptions and pup birth weights were recorded. The pregnant LPS treated rats developed many features of human PE (e.g. hypertension, proteinuria, liver and kidney dysfunctions). The mean concentration of Mg(2+) in the magnesium sulfate therapy group (0.86±0.24mmol/L) was significantly higher (p<0.05) than in both the control PE model group (0.61±0.12mmol/L) and the NP group (0.62±0.09mmol/L). The magnesium sulfate therapy group had a significantly (p<0.05) increased latency period (21.7±8.9min) to evoke a full motor seizure compared to both the NP group (4.8±2.2min)and the control PE model group (3.3±1.4min), there being no significant difference (p>0.05) between the latency periods of the NP group and the control PE model group. Overall, the magnesium sulfate therapy regimen completely prevented seizure activity in 3/8 (37.5%) of the treated PE model rats compared to 6/6 (100%) of the NP rats and 7/7 (100%) of the control PE rats. The treated PE model group also had significantly (p<0.05) reduced seizure duration (26±4s) compared to both the NP (40±7s) and the control PE model (45±9s) groups. As well, there was a significantly (p<0.05) shorter EEG seizure amplitude change in the treated PE model group (58±6μv). In this rat preeclamsia/eclampsia model, the anticonvulsant characteristics of magnesium sulfate have been shown to include significantly increasing seizure latency period, reducing seizure duration and decreasing seizure EEG amplitude. Copyright © 2013. Published by Elsevier B.V.
Edaravone injection ameliorates cognitive deficits in rat model of Alzheimer's disease.
Yang, Rui; Wang, Qingjun; Li, Fang; Li, Jian; Liu, Xuewen
2015-11-01
Oxidative stress plays important role in the pathogenesis of Alzheimer's disease (AD). Edaravone is a potent free radical scavenger that exerts antioxidant effects. Therefore, in this study we aimed to investigate neuroprotective effects of edaravone for AD. Wistar rats were randomly divided into three groups (n = 15): control group, model group, and treatment group, which were injected with phosphate buffered saline, Aβ1-40, and Aβ1-40 together with 5 mg/kg edaravone, respectively, into the right hippocampal dentate gyrus. Spatial learning and memory of the rats were examined by Morris water maze test. 4-Hydroxynonenal (4-HNE) level in rat hippocampus was analyzed by immunohistochemistry. Acetylcholinesterase (AChE) and choline acetylase (ChAT) activities were assayed by commercial kits. We found that edaravone ameliorated spatial learning and memory deficits in the rats. 4-HNE level in the hippocampus as well as AChE and ChAT activities in the hippocampus was significantly lower in treatment group than in model group. In conclusion, edaravone may be developed as a novel agent for the treatment of AD for improving cholinergic system and protecting neurons from oxidative toxicity.
Ibias, Javier; Pellón, Ricardo
2014-09-01
Rats belonging to three different strains (15 Wistar, 8 Spontaneously Hypertensive - SHR- and 8 Wistar Kyoto - WKY-) were used to evaluate the possible relationship between different levels of impulsivity and development of schedule-induced polydipsia (SIP). We first measured the rats' levels of impulsivity by means of delay-discounting and indifference-point procedures. Secondly, development of SIP was studied under a series of fixed time 15, 30, 60 and 120s food schedules, which were counterbalanced by means of a Latin-square design. Finally, we re-assessed the rats' levels of impulsivity by replicating the delay-discounting test. The findings showed that, starting from equivalent levels of impulsivity, development of SIP differed among the groups of rats. In comparison with the rest of the animals, the SHRs were observed to attain elevated drinking rates under SIP. On the other hand, the Wistar rats which had initial high impulsivity levels similar to those of the SHRs, displayed the lowest rates of induced drinking. Moreover, low levels of impulsivity in Wistar rats prior to SIP acquisition were reflected into high drinking rates. Relation of SIP and impulsivity is questioned by present results, which gives ground to the understanding of the behavioural mechanisms involved in adjunctive behaviour and its usefulness as an animal model of excessive behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Huakai; Li, Yongjian; Shi, Minmin; Li, Hongwei; Yan, Jiqi
2016-01-01
Background Spleen enlargement is often detected in patients with liver cirrhosis, but the precise pathogenetic mechanisms behind the phenomenon have not been clearly elucidated. We investigated the pathogenetic mechanisms of splenomegaly in both portal hypertensive patients and rats, and tried to identify the possible therapy for this disease. Methods Spleen samples were collected from portal hypertensive patients after splenectomy. Rat models of portal hypertension were induced by common bile duct ligation and partial portal vein ligation. Spleen samples from patients and rats were used to study the characteristics of splenomegaly by histological, immunohistochemical, and western blot analyses. Rapamycin or vehicle was administered to rats to determine the contribution of mTOR signaling pathway in the development of splenomegaly. Results We found that not only spleen congestion, but also increasing angiogenesis, fibrogenesis, inflammation and proliferation of splenic lymphoid tissue contributed to the development of splenomegaly in portal hypertensive patients and rats. Intriguingly, splenomegaly developed time-dependently in portal hypertensive rat that accompanied with progressive activation of mTOR signaling pathway. mTOR blockade by rapamycin profoundly ameliorated splenomegaly by limiting lymphocytes proliferation, angiogenesis, fibrogenesis and inflammation as well as decreasing portal pressure. Conclusions This study provides compelling evidence indicating that mTOR signaling activation pathway plays a key role in the pathogenesis of splenomegaly in both portal hypertensive patients and rats. Therapeutic intervention targeting mTOR could be a promising strategy for patients with portal hypertension and splenomegaly. PMID:26734934
Chen, Yunyang; Wang, Weijie; Wang, Huakai; Li, Yongjian; Shi, Minmin; Li, Hongwei; Yan, Jiqi
2016-01-01
Spleen enlargement is often detected in patients with liver cirrhosis, but the precise pathogenetic mechanisms behind the phenomenon have not been clearly elucidated. We investigated the pathogenetic mechanisms of splenomegaly in both portal hypertensive patients and rats, and tried to identify the possible therapy for this disease. Spleen samples were collected from portal hypertensive patients after splenectomy. Rat models of portal hypertension were induced by common bile duct ligation and partial portal vein ligation. Spleen samples from patients and rats were used to study the characteristics of splenomegaly by histological, immunohistochemical, and western blot analyses. Rapamycin or vehicle was administered to rats to determine the contribution of mTOR signaling pathway in the development of splenomegaly. We found that not only spleen congestion, but also increasing angiogenesis, fibrogenesis, inflammation and proliferation of splenic lymphoid tissue contributed to the development of splenomegaly in portal hypertensive patients and rats. Intriguingly, splenomegaly developed time-dependently in portal hypertensive rat that accompanied with progressive activation of mTOR signaling pathway. mTOR blockade by rapamycin profoundly ameliorated splenomegaly by limiting lymphocytes proliferation, angiogenesis, fibrogenesis and inflammation as well as decreasing portal pressure. This study provides compelling evidence indicating that mTOR signaling activation pathway plays a key role in the pathogenesis of splenomegaly in both portal hypertensive patients and rats. Therapeutic intervention targeting mTOR could be a promising strategy for patients with portal hypertension and splenomegaly.
Development of PBPK Models for Gasoline in Adult and Pregnant Rats and their Fetuses
Concern for potential developmental effects of exposure to gasoline-ethanol blends has grown along with their increased use in the US fuel supply. Physiologically-based pharmacokinetic (PBPK) models for these complex mixtures were developed to address dosimetric issues related to...
Genistein and resveratrol, alone and in combination, suppress prostate cancer in SV-40 tag rats.
Harper, Curt E; Cook, Leah M; Patel, Brijesh B; Wang, Jun; Eltoum, Isam A; Arabshahi, Ali; Shirai, Tomoyuki; Lamartiniere, Coral A
2009-11-01
Chemoprevention utilizing dietary agents is an effective means to slow the development of prostate cancer. We evaluated the potential additive and synergistic effects of genistein and resveratrol for suppressing prostate cancer in the Simian Virus-40 T-antigen (SV-40 Tag) targeted probasin promoter rat model, a transgenic model of spontaneously developing prostate cancer. Rats were fed genistein or resveratrol (250 mg/kg AIN-76A diet) alone and in combination, and a low-dose combination (83 mg genistein + 83 mg resveratrol/kg diet). Histopathology and mechanisms of action studies were conducted at 30 and 12 weeks of age, respectively. Genistein, resveratrol, and the high-dose combination treatments suppressed prostate cancer. The low-dose combination did not elicit protection against prostate cancer and was most likely below the effective dose for causing significant histopathological changes. Total genistein and resveratrol concentrations in the blood reached 2,160 and 211 nM, respectively in rats exposed to the single treatments. Polyphenol treatments decreased cell proliferation and insulin-like growth factor-1 (IGF-1) protein expression in the prostate. In addition, genistein as a single agent induced apoptosis and decreased steroid receptor coactivator-3 (SRC-3) in the ventral prostate (VP). Genistein and resveratrol, alone and in combination, suppress prostate cancer development in the SV-40 Tag model. Regulation of SRC-3 and growth factor signaling proteins are consistent with these nutritional polyphenols reducing cell proliferation and increasing apoptosis in the prostate.
SO2 inhalation contributes to the development and progression of ischemic stroke in the brain.
Sang, Nan; Yun, Yang; Li, Hongyan; Hou, Li; Han, Ming; Li, Guangke
2010-04-01
Epidemiological literatures show an association between air pollution and ischemic stroke, and effective pollutants may include SO(2), NO(x), O(3), CO, and particulates. However, existing experimental studies lack evidence as to the presence of effects for SO(2), which has been the focus in developing countries with increasing use of coal as the main resource. In the present study, we treated Wistar rats with SO(2) at various concentrations and determined endothelin-1 (ET-1), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and intercellular adhesion molecule 1 (ICAM-1) messenger RNA (mRNA) and protein expression in the cortex. The results show that SO(2) elevated the levels of ET-1, iNOS, COX-2, and ICAM-1 mRNA and protein in a concentration-dependent manner. Then, we set up rat model of ischemic stroke using middle cerebral artery occlusion (MCAO) and further treated the model rats with filtered air and lower concentration SO(2) for the same period. As expected, elevated expression of ET-1, iNOS, COX-2, and ICAM-1 occurred in the cortex of MCAO model rats exposed to filtered air, followed by increased activation of caspase-3 and cerebral infarct volume. Interestingly, SO(2) inhalation after MCAO significantly amplified above effects. It implies that SO(2) inhalation caused brain injuries similar to that of cerebral ischemia, and its exposure in atmospheric environment contributed to the development and progression of ischemic stroke.
Light Modulates Ocular Complications in an Albino Rat Model of Type 1 Diabetes Mellitus.
Andrawus, Elias; Veildbaum, Gizi; Zemel, Esther; Leibu, Rina; Perlman, Ido; Shehadeh, Naim
2017-07-01
The purpose of the study was to assess potential interactions of light exposure and hyperglycemia upon ocular complications in diabetic rats. Streptozotocin-induced (STZ-induced) diabetic rats ( N = 39) and non-diabetic rats ( N = 9) were distributed into eight groups according to the irradiance and color of the light phase during the 12/12-hour light/dark regime. Follow-up lasted 90 days and included assessment of cataract development and electroretinogram (ERG) recordings. Stress to the retina was also assessed by glial fibrillary acidic protein immunocytochemistry. Cataract development was fast in diabetic rats that were exposed to unattenuated white light or to bright colored lights during the light phase. Diabetic rats that were kept under attenuated brown or yellow light during the light phase exhibited slower rate of cataract development. Electroretinogram responses indicated very severe retinal damage in diabetic rats kept under bright colored lights in the blue-yellow range or bright white light during the light phase. Electroretinogram damage was milder in rats kept under bright red light or attenuated yellow or brown light during the light phase. Glial fibrillary acidic protein expression in retinal Müller cells was consistent with ERG assessment of retinal damage. Attenuating white light and filtering out short wavelengths have a protective effect on the eyes of diabetic rats as evident by slower rate of cataract formation and a smaller degree of retinal damage. Our findings suggest that special glasses attenuating light exposure and filtering out short wavelengths (400-530 nm) may be beneficial for diabetic patients.
Increased asbestosis, lung cancer, and mesothelioma rates are evident in humans after exposures to Libby amphibole (LA). To support dosimetry model development and compare potency, a subchronic nose-only inhalation study (6 hr/d, 5 d/wk, 13 wk) was conducted in male F344 rats. Ra...
USDA-ARS?s Scientific Manuscript database
We conducted a study to examine how the development of obesity and the associated insulin resistance affect bone structural and material properties, and bone formation and resorption markers in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. This was a 36-week study of sedentary, hyperphag...
Impact of Predatory Threat on Fear Extinction in Lewis Rats
ERIC Educational Resources Information Center
Goswami, Sonal; Cascardi, Michele; Rodriguez-Sierra, Olga E.; Duvarci, Sevil; Pare, Denis
2010-01-01
Humans with post-traumatic stress disorder (PTSD) are deficient at extinguishing conditioned fear responses. A study of identical twins concluded that this extinction deficit does not predate trauma but develops as a result of trauma. The present study tested whether the Lewis rat model of PTSD reproduces these features of the human syndrome.…
Paulsen, Sarah J; Jelsing, Jacob; Madsen, Andreas N; Hansen, Gitte; Lykkegaard, Kirsten; Larsen, Leif K; Larsen, Philip J; Levin, Barry E; Vrang, Niels
2010-02-01
The selectively bred diet-induced obese (DIO) and diet-resistant (DR) rats represent a polygenetic animal model mimicking most clinical variables characterizing the human metabolic syndrome. When fed a high-energy (HE) diet DIO rats develop visceral obesity, dyslipidemia, hyperinsulinemia, and insulin resistance but never frank diabetes. To improve our understanding of the underlying cause for the deteriorating glucose and insulin parameters, we have investigated possible adaptive responses in DIO and DR rats at the level of the insulin-producing beta-cells. At the time of weaning, DR rats were found to have a higher body weight and beta-cell mass compared to DIO rats, and elevated insulin and glucose responses to an oral glucose load. However, at 2.5 months of age, and for the remaining study period, the effect of genotype became evident: the chow-fed DIO rats steadily increased their body weight and beta-cell mass, as well as insulin and glucose levels compared to the DR rats. HE feeding affected both DIO and DR rats leading to an increased body weight and an increased beta-cell mass. Interestingly, although the beta-cell mass in DR rats and chow-fed DIO rats appeared to constantly increase with age, the beta-cell mass in the HE-fed DIO rats did not continue to do so. This might constitute part of an explanation for their reduced glucose tolerance. Collectively, the data support the use of HE-fed DIO rats as a model of human obesity and insulin resistance, and accentuate its relevance for studies examining the benefit of pharmaceutical compounds targeting this disease complex.
Macconi, Daniela; Bonomelli, Maria; Benigni, Ariela; Plati, Tiziana; Sangalli, Fabio; Longaretti, Lorena; Conti, Sara; Kawachi, Hiroshi; Hill, Prue; Remuzzi, Giuseppe; Remuzzi, Andrea
2006-01-01
Changes in podocyte number or density have been suggested to play an important role in renal disease progression. Here, we investigated the temporal relationship between glomerular podocyte number and development of proteinuria and glomerulosclerosis in the male Munich Wistar Fromter (MWF) rat. We also assessed whether changes in podocyte number affect podocyte function and focused specifically on the slit diaphragm-associated protein nephrin. Age-matched Wistar rats were used as controls. Estimation of podocyte number per glomerulus was determined by digital morphometry of WT1-positive cells. MWF rats developed moderate hypertension, massive proteinuria, and glomerulosclerosis with age. Glomerular hypertrophy was already observed at 10 weeks of age and progressively increased thereafter. By contrast, mean podocyte number per glomerulus was lower than normal in young animals and further decreased with time. As a consequence, the capillary tuft volume per podocyte was more than threefold increased in older rats. Electron microscopy showed important changes in podocyte structure of MWF rats, with expansion of podocyte bodies surrounding glomerular filtration membrane. Glomerular nephrin expression was markedly altered in MWF rats and inversely correlated with both podocyte loss and proteinuria. Our findings suggest that reduction in podocyte number is an important determinant of podocyte dysfunction and progressive impairment of the glomerular permselectivity that lead to the development of massive proteinuria and ultimately to renal scarring. PMID:16400008
Sugawara, Atsushi; Sugimura, Satoshi; Hoshino, Yumi; Sato, Eimei
2009-08-01
Cloning that uses somatic cell nuclear transfer (SCNT) technology with gene targeting could be a potential alternative approach to obtain valuable rat models. In the present study, we determined the developmental competence of rat SCNT embryos constructed using murine and porcine oocytes at metaphase II (MII). Further, we assessed the effects of certain factors, such as: (i) the donor cell type (fetal fibroblasts or cumulus cells); and (ii) premature chromosome condensation (PCC) with normal spindle formation, on the developmental competence of rat interspecies SCNT (iSCNT) embryos. iSCNT embryos that had been constructed using porcine oocytes developed to the blastocyst stage, while those embryos made using murine MII oocytes did not. Rat iSCNT embryos constructed with green fluorescent protein (GFP)-expressing fetal fibroblasts injected into porcine oocytes showed considerable PCC with a normal bipolar spindle formation. The total cell number of iSCNT blastocyst derived from GFP-expressing fetal fibroblasts was higher than the number derived from cumulus cells. In addition, these embryos expressed GFP at the blastocyst stage. This paper is the first report to show that rat SCNT embryos constructed using porcine MII oocytes have the potential to develop to the blastocyst stage in vitro. Thus the iSCNT technique, when performed using porcine MII oocytes, could provide a new bioassay system for the evaluatation of the developmental competence of rat somatic cells.
Khokhar, Jibran Y; Todd, Travis P
2018-04-01
Alcohol use disorder commonly occurs in patients with schizophrenia and contributes greatly to its morbidity. Unfortunately, the neural and behavioral underpinnings of alcohol drinking in these patients are not well understood. In order to begin to understand the cognitive and reward-related changes that may contribute to alcohol drinking, this study was designed to address: 1) latent inhibition; 2) conditioning; and 3) extinction of autoshaping in a neurodevelopmental rat model with relevance to co-occurring schizophrenia and alcohol use disorders, the neonatal ventral hippocampal lesioned (NVHL) rat. NVHL lesions (or sham surgeries) were performed on post-natal day 7 (PND7) and animals were given brief exposure to alcohol during adolescent (PND 28-42). Latent inhibition of autoshaping, conditioning and extinction were assessed between PND 72-90. On PND90 animals were given alcohol again and allowed to establish stable drinking. Latent inhibition of autoshaping was found to be prolonged in the NVHL rats; the NVHL rats pre-exposed to the lever stimulus were slower to acquire autoshaping than sham pre-exposed rats. NVHL rats that were not pre-exposed to the lever stimulus did not differ during conditioning, but were slower to extinguish conditioned responding compared to sham controls. Finally, the NVHL rats from both groups drank significantly more alcohol than sham rats, and the extent of latent inhibition predicted future alcohol intake in the pre-exposed animals. These findings suggest that the latent inhibition of autoshaping procedure can be used to model cognitive- and reward-related dysfunctions in schizophrenia, and these dysfunctions may contribute to the development of co-occurring alcohol use. Copyright © 2017 Elsevier B.V. All rights reserved.
A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene
2011-01-01
Background Hypohidrotic ectodermal dysplasia (HED) is a congenital disorder characterized by sparse hair, oligodontia, and inability to sweat. It is caused by mutations in any of three Eda pathway genes: ectodysplasin (Eda), Eda receptor (Edar), and Edar-associated death domain (Edaradd), which encode ligand, receptor, and intracellular adaptor molecule, respectively. The Eda signaling pathway activates NF-κB, which is central to ectodermal differentiation. Although the causative genes and the molecular pathway affecting HED have been identified, no curative treatment for HED has been established. Previously, we found a rat spontaneous mutation that caused defects in hair follicles and named it sparse-and-wavy (swh). Here, we have established the swh rat as the first rat model of HED and successfully identified the swh mutation. Results The swh/swh rat showed sparse hair, abnormal morphology of teeth, and absence of sweat glands. The ectoderm-derived glands, meibomian, preputial, and tongue glands, were absent. We mapped the swh mutation to the most telomeric part of rat Chr 7 and found a Pro153Ser missense mutation in the Edaradd gene. This mutation was located in the death domain of EDARADD, which is crucial for signal transduction and resulted in failure to activate NF-κB. Conclusions These findings suggest that swh is a loss-of-function mutation in the rat Edaradd and indicate that the swh/swh rat would be an excellent animal model of HED that could be used to investigate the pathological basis of the disease and the development of new therapies. PMID:22013926
Dyr, Wanda; Taracha, Ewa
2012-01-01
The development of tolerance to alcohol with chronic consumption is an important criterion for an animal model of alcoholism and may be an important component of the genetic predisposition to alcoholism. The aim of this study was to determine whether the selectively bred Warsaw High Preferring (WHP) line of alcohol-preferring rats would develop behavioral and metabolic tolerance during the free-choice drinking of ethanol. Chronic tolerance to ethanol-induced sedation was tested. The loss of righting reflex (LRR) paradigm was used to record sleep duration in WHP rats. Ethanol (EtOH)-naive WHP rats received a single intraperitoneal (i.p.) injection of 5.0 g ethanol/kg body weight (b.w.), and sleep duration was measured. Subsequently, rats had access to a 10% ethanol solution under a free-choice condition with water and food for 12 weeks. After 12 weeks of the free-choice intake of ethanol, the rats received another single i.p. injection of 5.0 g ethanol/kg b.w., and sleep duration was reassessed. The blood alcohol content (BAC) for each rat was determined after an i.p. injection of 5 g/kg of ethanol in naive rats and again after chronic alcohol drinking at the time of recovery of the righting reflex (RR). The results showed that the mean ethanol intake was 9.14 g/kg/24 h, and both sleep duration and BAC were decreased after chronic ethanol intake. In conclusion, WHP rats exposed to alcohol by free-choice drinking across 12 weeks exhibited increased alcohol elimination rates. Studies have demonstrated that WHP rats after chronic free-choice drinking (12 weeks) of alcohol develop metabolic tolerance. Behavioral tolerance to ethanol was demonstrated by reduced sleep duration, but this decrease in sleep duration was not significant.
Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats.
Seoane-Collazo, Patricia; Martínez de Morentin, Pablo B; Fernø, Johan; Diéguez, Carlos; Nogueiras, Rubén; López, Miguel
2014-05-01
Nicotine, the main addictive component of tobacco, promotes body weight reduction in humans and rodents. Recent evidence has suggested that nicotine acts in the central nervous system to modulate energy balance. Specifically, nicotine modulates hypothalamic AMP-activated protein kinase to decrease feeding and to increase brown adipose tissue thermogenesis through the sympathetic nervous system, leading to weight loss. Of note, most of this evidence has been obtained in animal models fed with normal diet or low-fat diet (LFD). However, its effectiveness in obese models remains elusive. Because obesity causes resistance towards many factors involved in energy homeostasis, the aim of this study has been to compare the effect of nicotine in a diet-induced obese (DIO) model, namely rats fed a high-fat diet, with rats fed a LFD. Our data show that chronic peripheral nicotine treatment reduced body weight by decreasing food intake and increasing brown adipose tissue thermogenesis in both LFD and DIO rats. This overall negative energy balance was associated to decreased activation of hypothalamic AMP-activated protein kinase in both models. Furthermore, nicotine improved serum lipid profile, decreased insulin serum levels, as well as reduced steatosis, inflammation, and endoplasmic reticulum stress in the liver of DIO rats but not in LFD rats. Overall, this evidence suggests that nicotine diminishes body weight and improves metabolic disorders linked to DIO and might offer a clear-cut strategy to develop new therapeutic approaches against obesity and its metabolic complications.
Pharmacokinetic study of arctigenin in rat plasma and organ tissue by RP-HPLC method.
He, Fan; Dou, De-Qiang; Hou, Qiang; Sun, Yu; Kang, Ting-Guo
2013-01-01
A high-performance liquid chromatography (HPLC) technique was developed for the determination of arctigenin in plasma and various organs of rats after the oral administration of 30, 50 and 70 mgkg(-1) of arctigenin to the Sprague-Dawley rats. Results showed that the validated HPLC method was simple, fast, reproducible and suitable to the determination of arctigenin in rat plasma and organ tissue and one-compartmental model with zero-order absorption process can well describe the changes of arctigenin concentration in the plasma. The concentration of compound was highest in the spleen, less in the liver and the least in the lung.
Kalinich, John F.; Emond, Christy A.; Dalton, Thomas K.; Mog, Steven R.; Coleman, Gary D.; Kordell, Jessica E.; Miller, Alexandra C.; McClain, David E.
2005-01-01
Continuing concern regarding the potential health and environmental effects of depleted uranium and lead has resulted in many countries adding tungsten alloy (WA)-based munitions to their battlefield arsenals as replacements for these metals. Because the alloys used in many munitions are relatively recent additions to the list of militarily relevant metals, very little is known about the health effects of these metals after internalization as embedded shrapnel. Previous work in this laboratory developed a rodent model system that mimicked shrapnel loads seen in wounded personnel from the 1991 Persian Gulf War. In the present study, we used that system and male F344 rats, implanted intramuscularly with pellets (1 mm × 2 mm cylinders) of weapons-grade WA, to simulate shrapnel wounds. Rats were implanted with 4 (low dose) or 20 pellets (high dose) of WA. Tantalum (20 pellets) and nickel (20 pellets) served as negative and positive controls, respectively. The high-dose WA-implanted rats (n = 46) developed extremely aggressive tumors surrounding the pellets within 4–5 months after implantation. The low-dose WA-implanted rats (n = 46) and nickel-implanted rats (n = 36) also developed tumors surrounding the pellets but at a slower rate. Rats implanted with tantalum (n = 46), an inert control metal, did not develop tumors. Tumor yield was 100% in both the low- and high-dose WA groups. The tumors, characterized as high-grade pleomorphic rhabdomyosarcomas by histopathology and immunohistochemical examination, rapidly metastasized to the lung and necessitated euthanasia of the animal. Significant hematologic changes, indicative of polycythemia, were also observed in the high-dose WA-implanted rats. These changes were apparent as early as 1 month postimplantation in the high-dose WA rats, well before any overt signs of tumor development. These results point out the need for further studies investigating the health effects of tungsten and tungsten-based alloys. PMID:15929896
Liu, Xiaoyu; Ma, Cuiqing; Wang, Xiaoyu; Wang, Wenjing; Li, Zhu; Wang, Xiansheng; Wang, Pengyu; Sun, Wuzhuang; Xue, Baojian
2017-01-01
Chronic obstructive pulmonary disease (COPD) is a progressive pulmonary disease caused by harmful gases or particles. Recent studies have shown that 2% hydrogen or hydrogen water is effective in the treatment and prevention of a variety of diseases. This study investigated the beneficial effects and the possible mechanisms of different hydrogen concentrations on COPD. A rat COPD model was established through smoke exposure methods, and inhalation of different concentrations of hydrogen was used as the intervention. The daily condition of rats and the weight changes were observed; lung function and right ventricular hypertrophy index were assessed. Also, white blood cells were assessed in bronchoalveolar lavage fluid. Pathologic changes in the lung tissue were analyzed using light microscopy and electron microscopy; cardiovascular structure and pulmonary arterial pressure changes in rats were observed using ultrasonography. Tumor necrosis factor alpha, interleukin (IL)-6, IL-17, IL-23, matrix metalloproteinase-12, tissue inhibitor of metalloproteinase-1, caspase-3, caspase-8 protein, and mRNA levels in the lung tissue were determined using immunohistochemistry, Western blot, and real-time polymerase chain reaction. The results showed that hydrogen inhalation significantly reduced the number of inflammatory cells in the bronchoalveolar lavage fluid, and the mRNA and protein expression levels of tumor necrosis factor alpha, IL-6, IL-17, IL-23, matrix metalloproteinase-12, caspase-3, and caspase-8, but increased the tissue inhibitor of metalloproteinase-1 expression. Furthermore, hydrogen inhalation ameliorated lung pathology, lung function, and cardiovascular function and reduced the right ventricular hypertrophy index. Inhalation of 22% and 41.6% hydrogen showed better outcome than inhalation of 2% hydrogen. These results suggest that hydrogen inhalation slows the development of COPD-like lung disease in a cigarette smoke-induced rat model. Higher concentrations of hydrogen may represent a more effective way for the rat model.
Liu, Xiaoyu; Ma, Cuiqing; Wang, Xiaoyu; Wang, Wenjing; Li, Zhu; Wang, Xiansheng; Wang, Pengyu; Sun, Wuzhuang; Xue, Baojian
2017-01-01
Background Chronic obstructive pulmonary disease (COPD) is a progressive pulmonary disease caused by harmful gases or particles. Recent studies have shown that 2% hydrogen or hydrogen water is effective in the treatment and prevention of a variety of diseases. This study investigated the beneficial effects and the possible mechanisms of different hydrogen concentrations on COPD. Methods A rat COPD model was established through smoke exposure methods, and inhalation of different concentrations of hydrogen was used as the intervention. The daily condition of rats and the weight changes were observed; lung function and right ventricular hypertrophy index were assessed. Also, white blood cells were assessed in bronchoalveolar lavage fluid. Pathologic changes in the lung tissue were analyzed using light microscopy and electron microscopy; cardiovascular structure and pulmonary arterial pressure changes in rats were observed using ultrasonography. Tumor necrosis factor alpha, interleukin (IL)-6, IL-17, IL-23, matrix metalloproteinase-12, tissue inhibitor of metalloproteinase-1, caspase-3, caspase-8 protein, and mRNA levels in the lung tissue were determined using immunohistochemistry, Western blot, and real-time polymerase chain reaction. Results The results showed that hydrogen inhalation significantly reduced the number of inflammatory cells in the bronchoalveolar lavage fluid, and the mRNA and protein expression levels of tumor necrosis factor alpha, IL-6, IL-17, IL-23, matrix metalloproteinase-12, caspase-3, and caspase-8, but increased the tissue inhibitor of metalloproteinase-1 expression. Furthermore, hydrogen inhalation ameliorated lung pathology, lung function, and cardiovascular function and reduced the right ventricular hypertrophy index. Inhalation of 22% and 41.6% hydrogen showed better outcome than inhalation of 2% hydrogen. Conclusion These results suggest that hydrogen inhalation slows the development of COPD-like lung disease in a cigarette smoke-induced rat model. Higher concentrations of hydrogen may represent a more effective way for the rat model. PMID:28496315
Brien, S E; Smallegange, C; Gofton, W T; Heaton, J P W; Adams, M A
2002-04-01
As part of the multifactorial nature of erectile dysfunction, anxiety associated with sexual performance (SPA) remains a major contributing factor to its progression. In fact, the heightened sympathetic activity associated with sexual performance anxiety may be a key early component of this disruption of normal erectile responses. We are not aware that any animal models have been developed to assess this phenomenon. Using apomorphine (APO, 80 microg/kg s.c.)-induced erections in rats we characterised the effects of behavioural or pharmacological hyperadrenergic stimulation (that is, anxiety) on erections and hemodynamics. We developed an experimental SPA paradigm by exposing male rats to the stress of being observed by a larger, older male rat placed in close proximity to test rats during APO testing. In a separate group, adrenergic stress was simulated using a sympathomimetic, methoxamine (MXA) given prior to APO testing. In a third group, the changes in circulatory parameters (mean arterial pressure, heart rate) were determined following instrumentation with radiotelemetric transducers for each scenario. APO-induced erections were significantly lower in both the behavioural (1.25+/-0.8) and pharmacological (0.33+/-0.5) stressor paradigms compared to controls (2.81+/-0.9). Further, erections in MXA-treated rats were significantly lower than in the observed scenario. Despite the differences in erections hemodynamic assessments showed no differences in MAP or HR changes between the different experimental conditions. Thus, both the behavioural and pharmacological paradigms of SPA decreased erections, but did not affect the circulation. This suggests that the level of hyperadrenergic input required to induce erectile dysfunction can be subtle, and target only erectogenic pathways.
Extinction, reacquisition, and rapid forgetting of eyeblink conditioning in developing rats
Freeman, John H.
2014-01-01
Eyeblink conditioning is a well-established model for studying the developmental neurobiology of associative learning and memory. However, age differences in extinction and subsequent reacquisition have yet to be studied using this model. The present study examined extinction and reacquisition of eyeblink conditioning in developing rats. In Experiment 1, post-natal day (P) 17 and 24 rats were trained to a criterion of 80% conditioned responses (CRs) using stimulation of the middle cerebellar peduncle (MCP) as a conditioned stimulus (CS). Stimulation CS-alone extinction training commenced 24 h later, followed by reacquisition training after the fourth extinction session. Contrary to expected results, rats trained starting on P17 showed significantly fewer CRs to stimulation CS-alone presentations relative to P24s, including fewer CRs as early as the first block of extinction session 1. Furthermore, the P17 group was slower to reacquire following extinction. Experiment 2 was run to determine the extent to which the low CR percentage observed in P17s early in extinction reflected rapid forgetting versus rapid extinction. Twenty-four hours after reaching criterion, subjects were trained in a session split into 50 stimulation CS-unconditioned stimulus paired trials followed immediately by 50 stimulation CS-alone trials. With this “immediate” extinction protocol, CR percentages during the first block of stimulation CS-alone presentations were equivalent to terminal acquisition levels at both ages but extinction was more rapid in the P17 group. These findings indicate that forgetting is observed in P17 relative to P24 rats 24 h following acquisition. The forgetting in P17 rats has important implications for the neurobiological mechanisms of memory in the developing cerebellum. PMID:25403458
Klein, H C; Krop-Van Gastel, W; Go, K G; Korf, J
1993-02-01
The development of irreversible brain damage during repetitive periods of hypoxia and normoxia was studied in anaesthetized rats with unilateral occlusion of the carotid artery (modified Levine model). Rats were exposed to 10 min hypoxia and normoxia until severe damage developed. As indices of damage, whole striatal tissue impedance (reflecting cellular water uptake), sodium/potassium contents (due to exchange with blood). Evans Blue staining (blood-brain barrier [BBB] integrity) and silver staining (increased in irreversibly damaged neurons) were used. A substantial decrease in blood pressure was observed during the hypoxic periods possibly producing severe ischaemia. Irreversibly increased impedance, massive changes in silver staining, accumulation of whole tissue Na and loss of K occurred only after a minimum of two periods of hypoxia, but there was no disruption of the BBB. Microscopic examination of tissue sections revealed that cell death was selective with reversible impedance changes, but became massive and non-specific after irreversible increase of the impedance. The development of brain infarcts could, however, not be predicted from measurements of physiological parameters in the blood. We suggest that the development of cerebral infarction during repetitive periods of hypoxia may serve as a model for the development of brain damage in a variety of clinical conditions. Furthermore, the present model allows the screening of potential therapeutic measuring of the prevention and treatment of both infarction and selective cell death.
Lin, Li; Zhu, Bao-Ping; Cai, Liang
2017-06-01
The present study was aimed to establish a model of chronic prostatitis in rat with the use of intraprostatic injection of Complete Freund's Adjuvant, and to examine the anti-inflammatory and analgesic effects of melittin on the newly-developed chronic prostatic pain model. Adult male Sprague-Dawley rats were injected with Complete Freund's Adjuvant (CFA) into the prostate. Twelve days after model rats of the treatment group were injected melittin into the prostate, while those of the control group received sterile saline injection. The nociceptive effects of CFA were evaluated by using a behavior approach (i.e. mechanical pain threshold measurement) on the day of CFA injection and 6, 12, and 18days after CFA injection. After the in-live study was done, the prostate was collected for histological examination of inflammatory cell infiltration. Levels of cyclooxygenase (COX)-2 in prostate and glial fibrillary acidic protein (GFAP) in spinal cord were determined using immunohistochemistry. Rats of the sham control group received intraprostatic injection of sterile saline and were studied using the same methods RESULTS: Intraprostatic CFA injection induced local allodynia that lasted over at least 2 weeks. The pain behavior of rat was associated with increases in inflammatory cell infiltration into the prostate. Levels of COX-2 in prostate and GFAP in spinal cord were also elevated. Treatment with melittin significantly raised pain threshold, decreased inflammatory infiltrates, and suppressed COX-2 and GFAP expression. Intraprostatic injection of CFA induced neurogenic prostatitis and prostatic pain. The established model will be useful to the study of CP/CPPS pathogenesis. Melittin demonstrated profound anti-inflammatory and analgesic effects on the chronic prostatic pain model, suggesting melittin may hold promise as a novel therapeutic for treatment of CP/CPPS. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Ring, Caroline; Banton, Marcy I.; Leavens, Teresa L.
2016-01-01
Abstract In cancer bioassays, inhalation, but not drinking water exposure to ethyl tertiary‐butyl ether (ETBE), caused liver tumors in male rats, while tertiary‐butyl alcohol (TBA), an ETBE metabolite, caused kidney tumors in male rats following exposure via drinking water. To understand the contribution of ETBE and TBA kinetics under varying exposure scenarios to these tumor responses, a physiologically based pharmacokinetic model was developed based on a previously published model for methyl tertiary‐butyl ether, a structurally similar chemical, and verified against the literature and study report data. The model included ETBE and TBA binding to the male rat‐specific protein α2u–globulin, which plays a role in the ETBE and TBA kidney response observed in male rats. Metabolism of ETBE and TBA was described as a single, saturable pathway in the liver. The model predicted similar kidney AUC0–∞ for TBA for various exposure scenarios from ETBE and TBA cancer bioassays, supporting a male‐rat‐specific mode of action for TBA‐induced kidney tumors. The model also predicted nonlinear kinetics at ETBE inhalation exposure concentrations above ~2000 ppm, based on blood AUC0–∞ for ETBE and TBA. The shift from linear to nonlinear kinetics at exposure concentrations below the concentration associated with liver tumors in rats (5000 ppm) suggests the mode of action for liver tumors operates under nonlinear kinetics following chronic exposure and is not relevant for assessing human risk. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd PMID:27885692
Jiang, Tianpeng; Wang, Lizhou; Li, Xing; Song, Jie; Wu, Xiaoping; Zhou, Shi
2015-04-01
Long‑term and advanced cirrhosis is usually irreversible and often coincides with variceal hemorrhage or development of hepatocellular carcinoma; therefore, liver cirrhosis is a major cause of morbidity and mortality globally. The aim of the present study was to investigate the specific mechanism behind the formation of fibrosis or cirrhosis using rat models of hepatic fibrosis. The cirrhosis model was established by intraperitoneally administering dimethylnitrosamine to the rats. Hematoxylin and eosin staining was performed on the hepatic tissues of the rats to observe the fibrosis or cirrhosis, and western blot analysis was employed to detect α‑smooth muscle actin and desmin protein expression. Flow cytometric analysis was used to examine early and late apoptosis, and the protein and mRNA expression of endoplasmic reticulum (ER) stress-associated unfolded protein response (UPR) pathway proteins and apoptotic proteins [C/EBP homologous protein (CHOP) and caspase‑12] was detected by western blotting and the reverse-transcription polymerase chain reaction, respectively. The results indicated that the cirrhosis model was established successfully and that fibrosis was significantly increased in the cirrhosis model group compared with that in the normal control group. Flow cytometric analysis showed that early and late apoptosis in the cirrhosis model was significantly higher compared with that in the control group. The expression of the UPR pathway protein inositol-requiring enzyme (IRE) 1, as well as the expression of CHOP, was increased significantly in the cirrhotic rat tissues compared with that in the control group tissues (P<0.05). In conclusion, apoptosis was clearly observed in the hepatic tissue of cirrhotic rats, and the apoptosis was caused by activation of the ER stress-mediated IRE1 and CHOP.
Induction of colitis in young rats by dextran sulfate sodium.
Vicario, María; Crespí, Mar; Franch, Angels; Amat, Concepció; Pelegrí, Carme; Moretó, Miquel
2005-01-01
Models using dextran sulfate sodium (DSS) to induce experimental colitis in rodents have been performed mostly in adult animals. For this reason, we aimed to develop a model of colitis in young rats. DSS was administered to 30-day-old rats at concentrations ranging from 0.5 to 5% in drinking water. Young rats were remarkably sensitive to DSS since clinical symptoms rapidly rose with 5% DSS and most animals died after the fifth day. With 1 and 2% DSS, the severity of mucosal lesions was also high on day 7, the animals showing leukocytosis and anemia. At 0.5% DSS, leukocytosis and mild colonic lesions were induced. This concentration of DSS significantly increased myeloperoxidase activity and goblet cell number in the colon, indicating mucosal inflammation. Since food consumption was not reduced by 0.5% DSS, we suggest that this protocol can be used to study the effects of dietary supplements on intestinal inflammatory processes.
Induction of Colitis in Young Rats by Dextran Sulfate Sodium.
Vicario, María; Crespí, Mar; Franch, Àngels; Amat, Concepció; Pelegrí, Carme; Moretó, Miquel
2005-01-01
Models using dextran sulfate sodium (DSS) to induce experimental colitis in rodents have been performed mostly in adult animals. For this reason, we aimed to develop a model of colitis in young rats. DSS was administered to 30-day-old rats at concentrations ranging from 0.5 to 5% in drinking water. Young rats were remarkably sensitive to DSS since clinical symptoms rapidly rose with 5% DSS and most animals died after the fifth day. With 1 and 2% DSS, the severity of mucosal lesions was also high on day 7, the animals showing leukocytosis and anemia. At 0.5% DSS, leukocytosis and mild colonic lesions were induced. This concentration of DSS significantly increased myeloperoxidase activity and goblet cell number in the colon, indicating mucosal inflammation. Since food consumption was not reduced by 0.5% DSS, we suggest that this protocol can be used to study the effects of dietary supplements on intestinal inflammatory processes.
Prasad, K
2000-06-01
Secoisolariciresinol diglucoside (SDG) isolated from flaxseed has antioxidant activity and has been shown to prevent hypercholesterolemic atherosclerosis. An investigation was made of the effects of SDG on the development of diabetes in diabetic prone BioBreeding rats (BBdp rats), a model of human type I diabetes [insulin dependent diabetes mellitus (IDDM)] to determine if this type of diabetes is due to oxidative stress and if SDG can prevent the incidence of diabetes. The rats were divided into three groups: Group I, BioBreeding normal rats (BBn rats) (n = 10); group II, BBdp untreated (n = 11); and group III, BBdp treated with SDG 22 mg/kg body wt, orally) (n = 14). Oxidative stress was determined by measuring lipid peroxidation product malondialdehyde (MDA) an index of level of reactive oxygen species in blood and pancreas; and pancreatic chemiluminescence (Pancreatic-CL), a measure of antioxidant reserve. Incidence of diabetes was 72.7% in untreated and 21.4% in SDG-treated group as determined by glycosuria and hyperglycemia. SDG prevented the development of diabetes by approximately 71%. Development of diabetes was associated with an increase in serum and pancreatic MDA and a decrease in antioxidant reserve. Prevention in development of diabetes by SDG was associated with a decrease in serum and pancreatic-MDA and an increase in antioxidant reserve. These results suggest that IDDM is mediated through oxidative stress and that SDG prevents the development of diabetes.
Ardi, Ziv; Albrecht, Anne; Richter-Levin, Alon; Saha, Rinki; Richter-Levin, Gal
2016-04-01
Diagnosis of psychiatric disorders in humans is based on comparing individuals to the normal population. However, many animal models analyze averaged group effects, thus compromising their translational power. This discrepancy is particularly relevant in posttraumatic stress disorder (PTSD), where only a minority develop the disorder following a traumatic experience. In our PTSD rat model, we utilize a novel behavioral profiling approach that allows the classification of affected and unaffected individuals in a trauma-exposed population. Rats were exposed to underwater trauma (UWT) and four weeks later their individual performances in the open field and elevated plus maze were compared to those of the control group, allowing the identification of affected and resilient UWT-exposed rats. Behavioral profiling revealed that only a subset of the UWT-exposed rats developed long-lasting behavioral symptoms. The proportion of affected rats was further enhanced by pre-exposure to juvenile stress, a well-described risk factor of PTSD. For a biochemical proof of concept we analyzed the expression levels of the GABAA receptor subunits α1 and α2 in the ventral, dorsal hippocampus and basolateral amygdala. Increased expression, mainly of α1, was observed in ventral but not dorsal hippocampus of exposed animals, which would traditionally be interpreted as being associated with the exposure-resultant psychopathology. However, behavioral profiling revealed that this increased expression was confined to exposed-unaffected individuals, suggesting a resilience-associated expression regulation. The results provide evidence for the importance of employing behavioral profiling in animal models of PTSD, in order to better understand the neural basis of stress vulnerability and resilience. Copyright © 2016 Elsevier Inc. All rights reserved.
Selectively bred rat model system for low and high response to exercise training
Pollott, Geoffrey E.; Britton, Steven L.
2013-01-01
We initiated a large-scale bidirectional selection experiment in a genetically heterogeneous rat population (N/NIH stock, n = 152) to develop lines of low response trainers (LRT) and high response trainers (HRT) as a contrasting animal model system. Maximal treadmill running distance [meters (m)] was tested before (DIST1) and after (DIST2) standardized aerobic treadmill training over an 8 wk period (3 exercise sessions per week). Response to training was calculated as the change in exercise capacity (ΔDIST = DIST2 − DIST1). A within-family selection and rotational breeding paradigm between 10 families was practiced for both selected lines. For the founder population, exercise training produced a 140 ± 15 m gain in exercise capacity with interindividual variation ranging from −339 to +627 m. After 15 generations of selection (n = 3,114 rats), HRT rats improved 223 ± 20 m as a result of exercise training while exercise capacity declined −65 ± 15 m in LRT rats given the same absolute training environment. The narrow-sense heritability (h2) for ΔDIST was 0.10 ± 0.02. The LRT and HRT lines did not differ significantly for body weight or intrinsic (i.e., DIST1) exercise capacity. Using pedigree records the inbreeding coefficient increased at a rate of 1.7% per generation for HRT and 1.6% per generation for LRT, ∼30% slower than expected from random mating. Animal models developed from heterogeneous stock and enriched via selection, as presented here, often generate extreme values for traits of interest and may prove more useful than current models for uncovering genetic underpinnings. PMID:23715262
Automatic Training of Rat Cyborgs for Navigation.
Yu, Yipeng; Wu, Zhaohui; Xu, Kedi; Gong, Yongyue; Zheng, Nenggan; Zheng, Xiaoxiang; Pan, Gang
2016-01-01
A rat cyborg system refers to a biological rat implanted with microelectrodes in its brain, via which the outer electrical stimuli can be delivered into the brain in vivo to control its behaviors. Rat cyborgs have various applications in emergency, such as search and rescue in disasters. Prior to a rat cyborg becoming controllable, a lot of effort is required to train it to adapt to the electrical stimuli. In this paper, we build a vision-based automatic training system for rat cyborgs to replace the time-consuming manual training procedure. A hierarchical framework is proposed to facilitate the colearning between rats and machines. In the framework, the behavioral states of a rat cyborg are visually sensed by a camera, a parameterized state machine is employed to model the training action transitions triggered by rat's behavioral states, and an adaptive adjustment policy is developed to adaptively adjust the stimulation intensity. The experimental results of three rat cyborgs prove the effectiveness of our system. To the best of our knowledge, this study is the first to tackle automatic training of animal cyborgs.
Automatic Training of Rat Cyborgs for Navigation
Yu, Yipeng; Wu, Zhaohui; Xu, Kedi; Gong, Yongyue; Zheng, Nenggan; Zheng, Xiaoxiang; Pan, Gang
2016-01-01
A rat cyborg system refers to a biological rat implanted with microelectrodes in its brain, via which the outer electrical stimuli can be delivered into the brain in vivo to control its behaviors. Rat cyborgs have various applications in emergency, such as search and rescue in disasters. Prior to a rat cyborg becoming controllable, a lot of effort is required to train it to adapt to the electrical stimuli. In this paper, we build a vision-based automatic training system for rat cyborgs to replace the time-consuming manual training procedure. A hierarchical framework is proposed to facilitate the colearning between rats and machines. In the framework, the behavioral states of a rat cyborg are visually sensed by a camera, a parameterized state machine is employed to model the training action transitions triggered by rat's behavioral states, and an adaptive adjustment policy is developed to adaptively adjust the stimulation intensity. The experimental results of three rat cyborgs prove the effectiveness of our system. To the best of our knowledge, this study is the first to tackle automatic training of animal cyborgs. PMID:27436999
Inflammation and Atrophy Precede Prostate Neoplasia in PhIP Induced Rat Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowsky, A D; Dingley, K; Ubick, E
2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) has been implicated as a major mutagenic heterocyclic amine in the human diet and is carcinogenic in the rat prostate. In order to validate PhIP induced rat prostate neoplasia as a model of human prostate cancer progression, we sought to study the earliest histologic and morphologic changes in the prostate and to follow the progressive changes over time. We fed 67 male Fischer F344 5 week old rats with PhIP (400 PPM) or control diets for 20 weeks, and then sacrificed animals for histomorphologic examination at age 25 weeks, 45 weeks, and 65 weeks. Animals treated with PhIPmore » showed significantly more inflammation (P=.002 (25wk), >.001(45wk), .016(65wk)) and atrophy (P=.003(25wk), >.001(45wk), .006 (65wk)) in their prostate glands relative to controls. Prostatic intraepithelial neoplasia (PIN) occurred only in PhIP treated rats. PIN lesions arose in areas of glandular atrophy, most often in the ventral prostate. Atypical cells in areas of atrophy show loss of glutathione S-transferase pi immunostaining preceding development of PIN. None of the animals in this study developed invasive carcinomas differing from previous reports. Overall, these findings suggest that the pathogenesis of prostatic neoplasia in the PhIP treated rat prostate proceeds from inflammation to post-inflammatory proliferative atrophy to PIN.« less
Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo
2014-12-02
Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Angiogenesis and proliferation of bile duct enhances ischemic tolerance in rats with cirrhosis
Zhang, Zhiqiang; Li, Zhennan; Zou, Chen; Zhang, Jingjing; Zhu, Yi; Miao, Yi
2015-01-01
Background/aims: Primary biliary cirrhosis (PBC), an autoimmune disease of the liver, is marked by slow progressive destruction of bile ducts. These patients with PBC often undergo orthotopic liver transplantation (OLT). Ischemic bile duct lesion (IBDL) is a major source of morbidity and even mortality after OLT. Cirrhosis of the liver has a higher tolerance to ischemia than a normal liver, but the mechanism remains unknown. Angiogenesis and proliferation of bile duct often responses in bile duct ischemia, which may enhance ischemic tolerance in patients with cirrhosis. Methodology: To test the hypothesis, a rat model with cirrhosis was established. Biochemical indexes of ischemic severity were measured including total bilirubin (TBIL) and direct bilirubin (DBIL). Immunohistochemical assay was performed for Ki67 (a biomarker for the proliferation of bile duct) and CD34 (a biomarker of angiogenesis). Results: The levels were lower for TBIL and DBIL in the bile duct from rat model with cirrhosis than that from a normal rat after ischemic surgery (P < 0.05). The levels were higher for Ki67 and CD34 from a rat model with cirrhosis than that from a normal rat after ischemic surgery (P < 0.05). Conclusions: The results suggest that a liver with cirrhosis has a better ischemic tolerance than a normal liver. Angiogenesis and proliferation of bile duct enhances ischemic tolerance in rats with cirrhosis. More research on the pathogenesis of IBDLs is needed for developing more specific preventive or therapeutic strategies. PMID:26550120
Epicatechin as a Therapeutic Strategy to Mitigate the Development of Cardiac Remodeling and Fibrosis
2017-09-01
Currently, no drugs target HFpEF and the development of animal models can assist in therapy evaluation. We developed a female rat model of aging...allocated into an aging group, aging + ovariectomy and aging + ovariectomy + 10% fructose in drinking water. At 22 months of age, animals were...epicatechin (Epi) will ameliorate adverse tissue remodeling and cardiac fibrosis in female animal models developing diastolic dysfunction as seen in women
Alternative models developed for estimating acute systemic toxicity are generally evaluated using in vivo LD50 values. However, in vivo acute systemic toxicity studies can produce variable results, even when conducted according to accepted test guidelines. This variability can ma...
Alternative models developed for estimating acute systemic toxicity are generally evaluated using in vivo LD50 values. However, in vivo acute systemic toxicity studies can produce variable results, even when conducted according to accepted test guidelines. This variability can ma...
Animal models for clinical and gestational diabetes: maternal and fetal outcomes
Kiss, Ana CI; Lima, Paula HO; Sinzato, Yuri K; Takaku, Mariana; Takeno, Marisa A; Rudge, Marilza VC; Damasceno, Débora C
2009-01-01
Background Diabetes in pregnant women is associated with an increased risk of maternal and neonatal morbidity and remains a significant medical challenge. Diabetes during pregnancy may be divided into clinical diabetes and gestational diabetes. Experimental models are developed with the purpose of enhancing understanding of the pathophysiological mechanisms of diseases that affect humans. With regard to diabetes in pregnancy, experimental findings from models will lead to the development of treatment strategies to maintain a normal metabolic intrauterine milieu, improving perinatal development by preventing fetal growth restriction or macrosomia. Based on animal models of diabetes during pregnancy previously reported in the medical literature, the present study aimed to compare the impact of streptozotocin-induced severe (glycemia >300 mg/dl) and mild diabetes (glycemia between 120 and 300 mg/dl) on glycemia and maternal reproductive and fetal outcomes of Wistar rats to evaluate whether the animal model reproduces the maternal and perinatal results of clinical and gestational diabetes in humans. Methods On day 5 of life, 96 female Wistar rats were assigned to three experimental groups: control (n = 16), severe (n = 50) and mild diabetes (n = 30). At day 90 of life, rats were mated. On day 21 of pregnancy, rats were killed and their uterine horns were exposed to count implantation and fetus numbers to determine pre- and post-implantation loss rates. The fetuses were classified according to their birth weight. Results Severe and mild diabetic dams showed different glycemic responses during pregnancy, impairing fetal glycemia and weight, confirming that maternal glycemia is directly associated with fetal development. Newborns from severe diabetic mothers presented growth restriction, but mild diabetic mothers were not associated with an increased rate of macrosomic fetuses. Conclusion Experimental models of severe diabetes during pregnancy reproduced maternal and fetal outcomes of pregnant women presenting uncontrolled clinical diabetes. On the other hand, the mild diabetes model caused mild hyperglycemia during pregnancy, although it was not enough to reproduce the increased rate of macrosomic fetuses seen in women with gestational diabetes. PMID:19840387
Bouchene, Salim; Marchand, Sandrine; Couet, William; Friberg, Lena E; Gobin, Patrice; Lamarche, Isabelle; Grégoire, Nicolas; Björkman, Sven; Karlsson, Mats O
2018-04-17
Colistin is a polymyxin antibiotic used to treat patients infected with multidrug-resistant Gram negative bacteria (MDR-GNB). The objective of this work was to develop a whole-body physiologically based pharmacokinetic (WB-PBPK) model to predict tissue distribution of colistin in rat. The distribution of a drug in a tissue is commonly characterized by its tissue-to-plasma partition coefficient, K p . Colistin and its prodrug, colistin methanesulfonate (CMS) K p priors were measured experimentally from rat tissue homogenates or predicted in silico. The PK parameters of both compounds were estimated fitting in vivo their plasma concentration-time profiles from six rats receiving an i.v. bolus of CMS. The variability in the data was quantified by applying a non-linear mixed effect (NLME) modelling approach. A WB-PBPK model was developed assuming a well-stirred and perfusion-limited distribution in tissue compartments. Prior information on tissue distribution of colistin and CMS was investigated following three scenarios: K p were estimated using in silico K p priors (I) or K p were estimated using experimental K p priors (II) or K p were fixed to the experimental values (III). The WB-PBPK model best described colistun and CMS plasma concentration-time profiles in scenario II. Colistin predicted concentrations in kidneys in scenario II were higher than in other tissues, which was consistent with its large experimental K p prior. This might be explained by a high affinity of colistin for renal parenchyma and active reabsorption into the proximal tubular cells. In contrast, renal accumulation of colistin was not predicted in scenario I. Colistin and CMS clearance estimates were in agreement with published values. The developed model suggests using experimental priors over in silico K p priors for kidneys to provide a better prediction of colistin renal distribution. Such models might serve in drug development for interspecies scaling and investigating the impact of disease state on colistin disposition. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Expression of nitric oxide synthase during the development of RCS rat retinas.
Sharma, R K; Warfvinge, K; Ehinger, B
2001-01-01
Nitric oxide (NO) has been reported to be both neurodestructive and neuroprotective in the central nervous system and could possibly play an important role in neurodegenerative disorders. On the assumption that NO synthesis may influence degenerative processes in the retina, we have examined the development and distribution of nitric-oxide-synthase(NOS)-immunoreactive cells in developing Royal College of Surgeons (RCS) rat retinas, which is an animal model for retinal degeneration. An antibody against constitutive neuronal NOS was used for immunocytochemistry on RCS rat retinas from postnatal (PN) days 3, 7, 10, 14, 35, 70 and 281 and compared with that in the normal rats of PN days 3, 7, 10, 14, 54 and adults. Immunoreactive cells were not seen in PN 3 retinas but were distinctly seen in the PN 7 retina along with a plexus in the inner plexiform layer. In both groups (normal and RCS rats) a distinct sublayering of the plexus in the inner plexiform layer could be seen at PN 10, which became more distinct at PN 14. The immunoreactive cells were detected also in the oldest retina examined, which was PN 281 in the case of RCS rats. In both groups, certain amacrine cells, certain bipolar cells and certain horizontal cells were found to be immunoreactive. In conclusion, the developmental timetable of the NOS immunoreactivity was identical in the normal and the RCS rat retinas. The NOS-immunoreactive cells persisted in the RCS retinas even when the retina had degenerated extensively. Abnormalities with the inducible isoforms of NOS cannot be ruled out from this study. We conclude that the chronological and qualitative development of the constitutive neuronal NOS immunoreactivity is normal in RCS rat retinas. Copyright 2001 S. Karger AG, Basel
Kaplan, Kara; Echert, Ashley E; Massat, Ben; Puissant, Madeleine M; Palygin, Oleg; Geurts, Aron M; Hodges, Matthew R
2016-05-01
Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DA(Tph2-/-)) rats. DA(Tph2-/-) rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DA(Tph2-/-) rats. Body temperature was also maintained in adult DA(Tph2-/-) rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DA(Tph2-/-) rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. Copyright © 2016 the American Physiological Society.
Kaplan, Kara; Echert, Ashley E.; Massat, Ben; Puissant, Madeleine M.; Palygin, Oleg; Geurts, Aron M.
2016-01-01
Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DATph2−/−) rats. DATph2−/− rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DATph2−/− rats. Body temperature was also maintained in adult DATph2−/− rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DATph2−/− rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. PMID:26869713
Wang, Xianjin; Zhong, Shan; Xu, Tianyuan; Xia, Leilei; Zhang, Xiaohua; Zhu, Zhaowei; Zhang, Minguang; Shen, Zhoujun
2015-02-01
A variety of murine models of experimental prostatitis that mimic the phenotype of human chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) have been developed. However, there is still a lack of explicit diagnosis criteria about those animal model. Our study is to establish histopathological classification criteria, which will be conducive to evaluate the animal models. We firstly established a rat model of experimental autoimmune prostatitis that is considered a valid model for CP/CPPS. For modelling, male Sprague-Dawley rats were immunized with autologous prostate tissue homogenate supernatant emulsified with complete Freund's adjuvant by subcutaneous injection into abdominal flank and simultaneously immunized with pertussis-diphtheria-tetanus vaccine by intraperitoneal injection. Three immunizations were administered semimonthly. At the 45th day, animals were killed, and prostate tissues were examined for morphology. Histologically, the prostate tissues were characterized by lymphoproliferation, atrophy of acini, and chronic inflammatory cells infiltration in the stromal connective tissue around the acini or ducts. Finally, we built histopathological classification criteria incorporating inflammation locations (mesenchyme, glands, periglandular tissues), ranges (focal, multifocal, diffuse), and grades (grade I-IV). To verify the effectiveness and practicability of the histopathological classification criteria, we conducted the treatment study with one of the alpha blockers, tamsulosin. The histopathological classification criteria of rat model of CP/CPPS will serve for further research of the pathogenesis and treatment strategies of the disease.
Zhang, Lin; Chen, Wei; Dai, Yuee
2016-01-01
Intrauterine growth retardation (IUGR) is a disorder that can result in permanent changes in the physiology and metabolism of the newborn, which increased the risk of disease in adulthood. Evidence supports IUGR as a risk factor for the development of diabetes mellitus, which could reflect changes in pancreas developmental pathways. We sought to characterize the IUGR-induced alterations of the complex pathways of pancreas development in a rat model of IUGR. We analyzed the pancreases of Sprague Dawley rats after inducing IUGR by feeding a maternal low calorie diet from gestational day 1 until term. IUGR altered the pancreatic structure, islet areas, and islet quantities and resulted in abnormal morphological changes during pancreatic development, as determined by HE staining and light microscopy. We identified multiple differentially expressed genes in the pancreas by RT-PCR. The genes of the insulin/FoxO1/Pdx1/MafA signaling pathway were first expressed at embryonic day 14 (E14). The expressions of insulin and MafA increased as the fetus grew while the expressions of FoxO1 and Pdx1 decreased. Compared with the control rats, the expressions of FoxO1, Pdx1, and MafA were lower in the IUGR rats, whereas insulin levels showed no change. Microarray profiling, in combination with quantitative real-time PCR, uncovered a subset of microRNAs that changed in their degree of expression throughout pancreatic development. In conclusion, our data support the hypothesis that IUGR influences the development of the rat pancreas. We also identified new pathways that appear to be programmed by IUGR. PMID:27190278
Strier, Adam; Kravarusic, Dragan; Coran, Arnold G; Srugo, Isaac; Bitterman, Nir; Dorfman, Tatiana; Pollak, Yulia; Matter, Ibrahim; Sukhotnik, Igor
2017-02-01
Recent evidence suggests that elevated intra-abdominal pressure (IAP) may adversely affect the intestinal barrier function. Toll-like receptor 4 (TLR-4) is responsible for the recognition of bacterial endotoxin or lipopolysaccharide and for initiation of the Gram-negative septic shock syndrome. The objective of the current study was to determine the effects of elevated IAP on intestinal bacterial translocation (BT) and TLR-4 signaling in intestinal mucosa in a rat model. Male Sprague-Dawley rats were randomly assigned to one of two experimental groups: sham animals (Sham) and IAP animals who were subjected to a 15 mmHg pressure pneumoperitoneum for 30 minutes. Rats were sacrificed 24 hours later. BT to mesenteric lymph nodes, liver, portal vein blood, and peripheral blood was determined at sacrifice. TLR4-related gene and protein expression (TLR-4; myeloid differentiation factor 88 [Myd88] and TNF-α receptor-associated factor 6 [TRAF6]) expression were determined using real-time PCR, western blotting, and immunohistochemistry. Thirty percent of sham rats developed BT in the mesenteric lymph nodes (level I) and 20% of control rats developed BT in the liver and portal vein (level II). abdominal compartment syndrome (ACS) rats demonstrated an 80% BT in the lymph nodes (Level I) and 40% BT in the liver and portal vein (Level II). Elevated BT was accompanied by a significant increase in TLR-4 immunostaining in jejunum (51%) and ileum (35.9%), and in a number of TRAF6-positive cells in jejunum (2.1%) and ileum (24.01%) compared to control animals. ACS rats demonstrated a significant increase in TLR4 and MYD88 protein levels compared to control animals. Twenty-four hours after the induction of elevated IAP in a rat model, increased BT rates were associated with increased TLR4 signaling in intestinal mucosa.
Application of an in vitro OAT assay in drug design and optimization of renal clearance.
Soars, Matthew G; Barton, Patrick; Elkin, Lisa L; Mosure, Kathleen W; Sproston, Joanne L; Riley, Robert J
2014-07-01
1. Optimization of renal clearance is a complex balance between passive and active processes mediated by renal transporters. This work aimed to characterize the interaction of a series of compounds with rat and human organic anion transporters (OATs) and develop quantitative structure-activity relationships (QSARs) to optimize renal clearance. 2. In vitro inhibition assays were established for human OAT1 and rat Oat3 and rat in vivo renal clearance was obtained. Statistically significant quantitative relationships were explored between the compounds' physical properties, their affinity for OAT1 and oat3 and the inter-relationship with unbound renal clearance (URC) in rat. 3. Many of the compounds were actively secreted and in vitro analysis demonstrated that these were ligands for rat and human OAT transporters (IC50 values ranging from <1 to >100 µM). Application of resultant QSAR models reduced renal clearance in the rat from 24 to <0.1 ml/min/kg. Data analysis indicated that the properties associated with increasing affinity at OATs are the same as those associated with reducing URC but orthogonal in nature. 4. This study has demonstrated that OAT inhibition data and QSAR models can be successfully used to optimize rat renal clearance in vivo and provide confidence of translation to humans.
Amir, G; Goldfarb, A W; Nyska, M; Redlich, M; Nyska, A; Nitzan, D W
2011-01-01
Female rats develop haemolytic anaemia and disseminated thrombosis and infarction in multiple organs, including bone, when exposed to 2-butoxyethanol (BE). There is growing evidence that vascular occlusion of the subchondral bone may play a part in some cases of osteoarthritis. The subchondral bone is the main weight bearer as well as the source of the blood supply to the mandibular articular cartilage. Vascular occlusion is thought to be linked to sclerosis of the subchondral bone associated with disintegration of the articular cartilage. The aim of this study was to find out whether this model of haemolysis and disseminated thrombosis supports the vascular hypothesis of osteoarthritis. Six female rats were given BE orally for 4 consecutive days and the two control rats were given tap water alone. The rats were killed 26 days after the final dose. The mandibular condyles showed histological and radiological features consistent with osteoarthritis in three of the four experimental rats and in neither of the control rats. These results may support the need to explore the vascular mechanism of osteoarthritis further. Copyright © 2009 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Campbell, John N; Gandhi, Anandh; Singh, Baljinderjit; Churn, Severn B
2014-01-01
Epilepsy is a significant but potentially preventable complication of traumatic brain injury (TBI). Previous research in animal models of acquired epilepsy has implicated the calcium-sensitive phosphatase, calcineurin. In addition, our lab recently found that calcineurin activity in the rat hippocampus increases acutely after lateral TBI. Here we use a calcineurin inhibitor test whether an acute increase in calcineurin activity is necessary for the development of late post-traumatic seizures. Adult rats were administered the calcineurin inhibitor Tacrolimus (5mg/kg; i.p.) 1 hour after lateral fluid percussion TBI and then monitored by video-electrocorticography (video-ECoG) for spontaneous seizure activity 5 weeks or 33 weeks later. At 5 weeks post-TBI, we observed epileptiform activity on the video-ECoG of brain injured rats but no seizures. By 33 weeks post-TBI though, nearly all injured rats exhibited spontaneous seizures, including convulsive seizures which were infrequent but lasted minutes (18% of injured rats), and non-convulsive seizures which were frequent but lasted tens of seconds (94% of injured rats). We also identified non-convulsive seizures in a smaller subset of control and sham TBI rats (56%), reminiscent of idiopathic seizures described in other rats strains. Non-convulsive seizures in the brain injured rats, however, were four-times more frequent and two-times longer lasting than in their uninjured littermates. Interestingly, rats administered Tacrolimus acutely after TBI showed significantly fewer non-convulsive seizures than untreated rats, but a similar degree of cortical atrophy. The data thus indicate that administration of Tacrolimus acutely after TBI suppressed non-convulsive seizures months later.
Campbell, John N.; Gandhi, Anandh; Singh, Baljinderjit; Churn, Severn B.
2014-01-01
Epilepsy is a significant but potentially preventable complication of traumatic brain injury (TBI). Previous research in animal models of acquired epilepsy has implicated the calcium-sensitive phosphatase, calcineurin. In addition, our lab recently found that calcineurin activity in the rat hippocampus increases acutely after lateral TBI. Here we use a calcineurin inhibitor test whether an acute increase in calcineurin activity is necessary for the development of late post-traumatic seizures. Adult rats were administered the calcineurin inhibitor Tacrolimus (5mg/kg; i.p.) 1 hour after lateral fluid percussion TBI and then monitored by video-electrocorticography (video-ECoG) for spontaneous seizure activity 5 weeks or 33 weeks later. At 5 weeks post-TBI, we observed epileptiform activity on the video-ECoG of brain injured rats but no seizures. By 33 weeks post-TBI though, nearly all injured rats exhibited spontaneous seizures, including convulsive seizures which were infrequent but lasted minutes (18% of injured rats), and non-convulsive seizures which were frequent but lasted tens of seconds (94% of injured rats). We also identified non-convulsive seizures in a smaller subset of control and sham TBI rats (56%), reminiscent of idiopathic seizures described in other rats strains. Non-convulsive seizures in the brain injured rats, however, were four-times more frequent and two-times longer lasting than in their uninjured littermates. Interestingly, rats administered Tacrolimus acutely after TBI showed significantly fewer non-convulsive seizures than untreated rats, but a similar degree of cortical atrophy. The data thus indicate that administration of Tacrolimus acutely after TBI suppressed non-convulsive seizures months later. PMID:25580467
Wang, Bing; Chen, Li-Hua
2016-01-01
In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA) into the bilateral striatum (CPu). PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE) precursor droxidopa (L-DOPS) or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA) or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain. PMID:27747105
Trouillas, J.; Girod, C.; Claustrat, B.; Curé, M.; Dubois, M. P.
1982-01-01
Twenty-three spontaneous pituitary tumors in 58 rats of Wistar/Furth/Ico strain were studied. The incidence is 38% in rats older than 10 months; it rises with age, with a maximum at 28-32 months (68.7%) and is higher in females (71.4%) than in males (35%) over 17 months. Light-microscopic and immunocytochemical studies revealed 20 prolactinomas in 19 rats (19/58, 32.7%) and 3 spongiocytic nonimmunostaining adenomas (3/58, 5.2%). The prolactinoma is often hemorrhagic. The cells, often arranged in sheets and agranular, are mostly positive with anti-rat prolactin (rPRL) serum. They have few polymorph granules and a well-developed rough endoplasmic reticulum. In the spongiocytic adenoma, the cells are arranged in cords. Their cytoplasm is slightly vacuolated. In prolactinoma-bearing rats, the mean plasma PRL value was 213 +/- 72.5 microgram/1 (SEM) (N = 15 +/- 1.8 microgram/1 [SEM]). A linear correlation was found between the logarithm of the tumoral pituitary weight or of the tumor size and the logarithm of the prolactinemia. Because of the analogies between these rat prolactinomas and 57 human prolactinomas, the Wistar/Furth/Ico rat strain is considered as a good animal model. Images Figure 14 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 12 Figure 13 PMID:7124908
Peker, Kemal; Inal, Abdullah; Sayar, Ilyas; Sahin, Murat; Gullu, Huriye; Inal, Duriye Gul; Isik, Arda
2013-01-01
Background: Intraperitoneal adhesion formation is a serious postsurgical issue. Adhesions develop after damage to the peritoneum by surgery, irradiation, infection or trauma. Objectives: Using a rat model, we compared the effectiveness of systemic and intraperitoneally administered common immunosuppressive drugs for prevention of postoperative intraperitoneal adhesions. Materials and Methods: Peritoneal adhesions were induced in 98 female Wistar-Albino rats by cecal abrasion and peritoneal excision. Rats were randomly separated into seven groups, each containing fourteen rats, and the standard experimental model was applied to all of rats. 14 days later, rats were euthanized, intraperitoneal adhesions were scored and tissues were examined histologically using hematoxylin/eosin and Masson’s trichrome staining. Results: Throughout the investigation, no animal died during or after surgery. In all of experimental groups, decrease in fibrosis was statistically significant. Decrease in fibrosis was most prominently in intraperitoneal tacrolimus group (P = 0.000), and decrease was least in intraperitoneal cyclosporine group (P = 0.022). Vascular proliferation was significantly decreased in all experimental groups (P < 0.05) except for systemic tacrolimus group (P = 0.139). Most prominent reduction in vascular proliferation was in intraperitoneal tacrolimus group (P = 0.000). Conclusions: Administration of immunosuppressive drugs is effective for prevention of intraperitoneal adhesions. PMID:24693396
The influence of gender and the estrous cycle on learned helplessness in the rat.
Jenkins, J A; Williams, P; Kramer, G L; Davis, L L; Petty, F
2001-11-01
Although the etiology of clinical depression is unknown, women are more likely to suffer from major depressive disorder than men. In addition, in some women, there is a clear association between depression and specific phases of the menstrual cycle. Surprisingly little research has examined gender differences and the influences of the estrous cycle in this and other animal behavioral models of clinical depression. Learned helplessness is a valid animal model of stress-induced behavioral depression in which prior exposure to inescapable stress produces deficits in escape testing. Learned helplessness was studied in rats using an inescapable tail shock stress followed by a shuttle box test to determine escape latencies. Animals with mean escape latencies of >or=20 s after shuttle-box testing are defined as learned helpless. Males and normal cycling female rats in the estrus and diestrus II phases were studied. Female rats in the diestrus II phase had significantly higher escape latencies and exhibited a more helpless behavior than female rats in the estrus phase. Male rat escape latencies were intermediate between the two female phases. These results suggest a role for gonadal hormones in the development of stress-induced behavioral depression or 'learned helplessness.'
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Mesbah; Danysz, Wojciech; Schmidt, Werner Juergen
2009-10-15
Systemic inhibition of complex I by rotenone in rats represents a model of Parkinson's disease (PD). The aim of this study was to elucidate whether neramexane (NMDA, nicotinic {alpha}9/{alpha}10 and 5-HT{sub 3} receptor antagonist), idazoxan ({alpha}{sub 2}-adrenoceptor antagonist) or 2-methyl-6-(phenyl-ethyl)-pyrimidine (MPEP, metabotropic glutamate receptor 5 antagonist) prevents rotenone-induced parkinsonian-like behaviours and neurochemical changes in rats. Rotenone (2.5 mg/kg i.p. daily) was administered over 60 days together with saline, neramexane (5 mg/kg i.p., b.i.d.), idazoxan (2.5 mg/kg i.p., b.i.d.) or MPEP (2.5 mg/kg i.p., b.i.d.). The same doses of neramexane, idazoxan and MPEP were administered to rats treated with vehicle insteadmore » of rotenone. Treatment-related effects on parkinsonian-like behaviours, such as hypokinesia/rigidity and locomotor activity, were evaluated. Moreover, concentrations of dopamine, serotonin and their metabolites were measured in rats from each experimental group. Over the 60-day treatment period, the rotenone + saline treated animals developed hypokinesia, expressed as an increase in the bar and grid descent latencies in the catalepsy test, and a decrease in locomotor activity. Neramexane and idazoxan partially prevented the development of catalepsy in rotenone-treated rats. Co-administration of MPEP with rotenone resulted only in a decrease in descent latency in the grid test on day 60. Chronic rotenone treatment reduced concentrations of dopamine and serotonin in the anterior striatum, which was blocked by co-treatment with neramexane or idazoxan but not with MPEP. Only neramexane treatment blocked the rotenone-induced decrease in dopamine levels in the substantia nigra pars compacta. In conclusion, neramexane and idazoxan counteracted to some extent the development of parkinsonian symptoms and neurochemical alterations in the rotenone model of Parkinson's disease.« less
Xiao, Bin; Xu, Chang; Liu, Min; Ji, Yi; Yang Li-xun; Li, Tai-ming; Jiang, Jun; He, Tao-zhen
2016-03-01
To investigate the effects of Tetrandrine (TET) prenatal intervention on the differentiation of alveolar epithelial cells type I (AEC I) in rat model of Nitrofen-induced congenital diaphragmatic hernia (CDH). Timed-pregnant Sprague-Dawley rats were divided into three groups, namely control, CDH and TET group on day 9.5 of gestation. The rats in TET group and CDH group were given 125 mg of Nitrofen by gavage one time, while the rats in control group were given the same dose of seed fat. After that, the rats in TET group was given 30 mg/kg of TET by gavage once a day for three days from day 18.5 of gestation, while the rats in CDH and control group were given the same dose of normal saline. On day 21.5 of gestation, all fetuses were delivered by cesarean, the lungs of fetuses were histologically evaluated by microscope and electron microscope. The expressions of type I cell-specific protein (RT140) and thyroid transcription factor 1 (TTF1) in alveolar fluid content were analyzed by RT-PCR and immunohistochemistry staining. To detect the number of AEC I and AEC II of each group by transmission electron microscopy and calculate the percentage of AEC I and AEC II (I/II%). The microscope and electron microscope study found the lungs of fetuses in CDH group showed marked hypoplasia, in contrast to the improvement of hypoplasia in TET fetuses. The pulmonary alveolar area had significant difference statistically (P < 0.01) in each group, which present as control > TET > CDH. I/II% had significant difference statistically (P < 0.01) in each group, which present as control > TET > CDH. The expression level of TTF1 was up-regulated in both CDH and TET groups, and it was higher in CDH group (P < 0.01). The expression level of RT140 were down-regulated in CDH and TET groups, which was lower in CDH group (P < 0.01). The development of AEC I was interfered in CDH rat model, TET prenatal treatment could improve the lung development of CDH.
Xu, Ran; Zeng, Guang; Wang, Shuyong; Tao, Hong; Ren, Le; Zhang, Zhe; Zhang, Qingna; Zhao, Jinxiu; Gao, Jing; Li, Daxu
2016-10-01
Emerging evidence has indicated the bad effect of periodontal inflammation on diabetes control. However, the exact regulatory mechanisms within the association between periodontitis and diabetic development remain unclear. This study aims to investigate the function of microRNAs in regulating periodontitis-induced inflammation in an obese rat model. Experimental periodontitis was introduced into OLETF and LETO rat. Intraperitoneal glucose tolerance test was performed to detect diabetic development. Serum cytokines levels and microRNAs expression were detected by ELISA and RT-PCR analysis respectively. And, macrophages were isolated for gain- and loss-of-function studies, to investigate the regulatory mechanism of miR-147 in periodontitis-induced inflammation. Periodontitis induced proinflammatory response with classical activated macrophages in both rats, but distinctively aggravated the impaired glucose tolerance of OLETF rat with spontaneous type 2 diabetes. Analysis for serum microRNAs expression showed the distinctive and synergistic upregulation of miR-147 with periodontitis-induced effects in rats, while further experiments demonstrated the positive regulatory mechanism of miR-147 on classical activated macrophages with overexpressed proinflammatory markers, showing M1 phenotype. This study provided new evidence for the positive effect of periodontal inflammation on diabetic development, while the regulatory mechanism of miR-147 on classical macrophage activation, was verified, and presumed to contribute to the impaired glucose tolerance aggravated by periodontitis in obese rats. Besides, this study indicated the application of miR-147 for therapeutic approach in the treatment of diabetes with periodontitis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
The infant rat as a model of bacterial meningitis.
Moxon, E R; Glode, M P; Sutton, A; Robbins, J B
1977-08-01
The pathogenesis of bacterial meningitis was studied in infant rats. Intranasal intoculation of greater than 10(3) Haemophilus influenzae type b resulted in an incidence of bacteremia that was directly related to the size of hte challenge inoculum. The temporal and quantitative relationship of bacteremia to meningitis indicated that bacteria spread to the meninges by the hematogenous route and that the magnitude of bacteremia was a primary determinant in the development of meningitis. In a sparate series of experiments, infant rats that were fed Escherichia coli strain C94 (O7:K1:H-) became colonized and developed bacteremia and meningitis, but invasive disease was rare when rats were fed E. Coli strain Easter (O75:K100:H5). A comparison of intranasal vs. oral challenge indicated that the nasopharynx was the most effective route for inducing H. influenzae bacteremia, whereas the gastrointestinal route was the more effective challenge route for the E. coli K1 serotype.
Development of an airway mucus defect in the cystic fibrosis rat
Birket, Susan E.; Davis, Joy M.; Fernandez, Courtney M.; Tuggle, Katherine L.; Oden, Ashley M.; Chu, Kengyeh K.; Tearney, Guillermo J.; Fanucchi, Michelle V.; Sorscher, Eric J.
2018-01-01
The mechanisms underlying the development and natural progression of the airway mucus defect in cystic fibrosis (CF) remain largely unclear. New animal models of CF, coupled with imaging using micro-optical coherence tomography, can lead to insights regarding these questions. The Cftr–/– (KO) rat allows for longitudinal examination of the development and progression of airway mucus abnormalities. The KO rat exhibits decreased periciliary depth, hyperacidic pH, and increased mucus solid content percentage; however, the transport rates and viscoelastic properties of the mucus are unaffected until the KO rat ages. Airway submucosal gland hypertrophy develops in the KO rat by 6 months of age. Only then does it induce increased mucus viscosity, collapse of the periciliary layer, and delayed mucociliary transport; stimulation of gland secretion potentiates this evolution. These findings could be reversed by bicarbonate repletion but not pH correction without counterion donation. These studies demonstrate that abnormal surface epithelium in CF does not cause delayed mucus transport in the absence of functional gland secretions. Furthermore, abnormal bicarbonate transport represents a specific target for restoring mucus clearance, independent of effects on periciliary collapse. Thus, mature airway secretions are required to manifest the CF defect primed by airway dehydration and bicarbonate deficiency. PMID:29321377
USDA-ARS?s Scientific Manuscript database
The risk of obesity in adulthood is subject to programming beginning at conception. In animal models, exposure to maternal obesity and high fat diets influences the risk of obesity in the offspring. Among other long-term changes, offspring from obese rats develop hyperinsulinemia, hepatic steatosi...
Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight.
Morey-Holton, E R; Globus, R K
1998-05-01
A model that uses hindlimb unloading of rats was developed to study the consequences of skeletal unloading and reloading as occurs during and following space flight. Studies using the model were initiated two decades ago and further developed at National Aeronautics and Space Administration (NASA)-Ames Research Center. The model mimics some aspects of exposure to microgravity by removing weightbearing loads from the hindquarters and producing a cephalic fluid shift. Unlike space flight, the forelimbs remain loaded in the model, providing a useful internal control to distinguish between the local and systemic effects of hindlimb unloading. Rats that are hindlimb unloaded by tail traction gain weight at the same rate as pairfed controls, and glucocorticoid levels are not different from controls, suggesting that systemic stress is minimal. Unloaded bones display reductions in cancellous osteoblast number, cancellous mineral apposition rate, trabecular bone volume, cortical periosteal mineralization rate, total bone mass, calcium content, and maturation of bone mineral relative to controls. Subsequent studies reveal that these changes also occur in rats exposed to space flight. In hindlimb unloaded rats, bone formation rates and masses of unloaded bones decline relative to controls, while loaded bones do not change despite a transient reduction in serum 1,25-dihydroxyvitamin D (1,25D) concentrations. Studies using the model to evaluate potential countermeasures show that 1,25D, growth hormone, dietary calcium, alendronate, and muscle stimulation modify, but do not completely correct, the suppression of bone growth caused by unloading, whereas continuous infusion of transforming growth factor-beta2 or insulin-like growth factor-1 appears to protect against some of the bone changes caused by unloading. These results emphasize the importance of local as opposed to systemic factors in the skeletal response to unloading, and reveal the pivotal role that osteoblasts play in the response to gravitational loading. The hindlimb unloading model provides a unique opportunity to evaluate in detail the physiological and cellular mechanisms of the skeletal response to weightbearing loads, and has proven to be an effective model for space flight.
Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight
NASA Technical Reports Server (NTRS)
Morey-Holton, E. R.; Globus, R. K.
1998-01-01
A model that uses hindlimb unloading of rats was developed to study the consequences of skeletal unloading and reloading as occurs during and following space flight. Studies using the model were initiated two decades ago and further developed at National Aeronautics and Space Administration (NASA)-Ames Research Center. The model mimics some aspects of exposure to microgravity by removing weightbearing loads from the hindquarters and producing a cephalic fluid shift. Unlike space flight, the forelimbs remain loaded in the model, providing a useful internal control to distinguish between the local and systemic effects of hindlimb unloading. Rats that are hindlimb unloaded by tail traction gain weight at the same rate as pairfed controls, and glucocorticoid levels are not different from controls, suggesting that systemic stress is minimal. Unloaded bones display reductions in cancellous osteoblast number, cancellous mineral apposition rate, trabecular bone volume, cortical periosteal mineralization rate, total bone mass, calcium content, and maturation of bone mineral relative to controls. Subsequent studies reveal that these changes also occur in rats exposed to space flight. In hindlimb unloaded rats, bone formation rates and masses of unloaded bones decline relative to controls, while loaded bones do not change despite a transient reduction in serum 1,25-dihydroxyvitamin D (1,25D) concentrations. Studies using the model to evaluate potential countermeasures show that 1,25D, growth hormone, dietary calcium, alendronate, and muscle stimulation modify, but do not completely correct, the suppression of bone growth caused by unloading, whereas continuous infusion of transforming growth factor-beta2 or insulin-like growth factor-1 appears to protect against some of the bone changes caused by unloading. These results emphasize the importance of local as opposed to systemic factors in the skeletal response to unloading, and reveal the pivotal role that osteoblasts play in the response to gravitational loading. The hindlimb unloading model provides a unique opportunity to evaluate in detail the physiological and cellular mechanisms of the skeletal response to weightbearing loads, and has proven to be an effective model for space flight.
Unal, Ethem; Atalay, Suleyman; Tolan, Huseyin Kerem; Yuksekdag, Sema; Yucel, Metin; Acar, Aylin; Basak, Fatih; Gunes, Pembegul; Bas, Gurhan
2015-01-01
In the present study, we described an easily reproducable experimental pancreatits model induced by biliopancreatic duct injection of ethyl alcohol. Seventy Wistar albino rats were divided equally into seven groups randomly: the control group (group 1), acute pancreatitis groups; induced by 20% ethanol (group 2), 48% ethanol (group 3), 80% ethanol (group 4), chronic pancreatitis groups; induced by 20% ethanol (group 5), 48% ethanol (group 6) and by 80% ethanol (group 7). Acute pancreatitis groups were sacrified on postoperative day 3, while the control group and chronic pancreatitis groups were killed on postoperative day 7. Histopathologic evaluation was done, and P < 0.05 was accepted as statistically significant. All rats in group 3 developed acute pancreatitis (100%). Inflammatory infiltration of neutrophils and mononuclear cells, interstitial edema, and focal necrotic areas were seen in the pancreatic tissues. Similarly, all rats in group 6 developed chronic pancreatitis (100%). Interstitial fibrosis, lymphotic infiltration, ductal dilatation, acinar cell atrophy, periductal hyperplasia were seen in the pancreatic tissues. Mortality was seen only in group 7. The biliopancreatic ductal injection of 48% ethanol induced acute and chronic pancreatitis has 100% success rate. PMID:25785001
Glutathione-Enhancing Agents Protect against Steatohepatitis in a Dietary Model
Im, Hee-Jeong; Chen, Theresa S.; de Villiers, Willem J. S.; McClain, Craig J.
2010-01-01
Nonalcoholic fatty liver (NAFL) and steatohepatitis (NASH) may accompany obesity, diabetes, parenteral nutrition, jejeuno-ileal bypass, and chronic inflammatory bowel disease. Currently there is no FDA approved and effective therapy available. We investigated the potential efficacy of those agents that stimulate glutathione (GSH) biosynthesis on the development of experimental steatohepatitis. Rats fed (ad libitum) amino acid based methionine-choline deficient (MCD) diet were further gavaged with (1) vehicle (MCD), (2) S-adenosylmethionine (SAMe), or (3) 2(RS)-n-propylthiazolidine-4(R)-carboxylic acid (PTCA). Results: MCD diet significantly reduced hematocrit, and this abnormality improved in the treated groups (p < 0.01). Serum transaminases were considerably elevated (AST: 5.8-fold; ALT: 3.22-fold) in MCD rats. However, administration of GSH-enhancing agents significantly suppressed these abnormal enzyme activities. MCD rats developed severe liver pathology manifested by fatty degeneration, inflammation, and necrosis, which significantly improved with therapy. Blood levels of GSH were significantly depleted in MCD rats but normalized in the treated groups. Finally, RT-PCR measurements showed a significant upregulation of genes involved in tissue remodeling and fibrosis (matrix metalloproteinases, collagen-α1), suppressor of cytokines signaling1, and the inflammatory cytokines (IL-1β, IL-6, TNF-α, and TGF-β) in the livers of rats fed MCD. GSH-enhancing therapies significantly attenuated the expression of deleterious proinflammatory and fibrogenic genes in this dietary model. This is the first report that oral administration of SAMe and PTCA provide protection against liver injury in this model and suggests therapeutic applications of these compounds in NASH patients. PMID:16498637
NASA Astrophysics Data System (ADS)
Kanevskiy, Matvey V.; Galitskaya, Anna A.; Mironova, Irina K.; Velikov, Vladimir A.; Konnova, Svetlana A.; Pleshakova, Ekaterina V.; Semyachkina-Glushkovskaya, Oksana V.
2017-03-01
We obtained impedance dispersion curves of stomach and liver tissues of rats in dynamics, while affecting with tumorigenic inductors: sodium nitrite (0.2%) and m-toluidine (25 mg per 1 kg body weight) in chronic experiment (over 10 months) in male outbred white rats aged 3 and 14 months at the beginning of the experiment. A substantial decrease in the impedance values for all test frequencies (50 Hz to 1 MHz) was shown.
Wu, Xiaowu; Corona, Benjamin T.; Chen, Xiaoyu
2012-01-01
Abstract Soft tissue injuries involving volumetric muscle loss (VML) are defined as the traumatic or surgical loss of skeletal muscle with resultant functional impairment and represent a challenging clinical problem for both military and civilian medicine. In response, a variety of tissue engineering and regenerative medicine treatments are under preclinical development. A wide variety of animal models are being used, all with critical limitations. The objective of this study was to develop a model of VML that was reproducible and technically uncomplicated to provide a standardized platform for the development of tissue engineering and regenerative medicine solutions to VML repair. A rat model of VML involving excision of ∼20% of the muscle's mass from the superficial portion of the middle third of the tibialis anterior (TA) muscle was developed and was functionally characterized. The contralateral TA muscle served as the uninjured control. Additionally, uninjured age-matched control rats were also tested to determine the effect of VML on the contralateral limb. TA muscles were assessed at 2 and 4 months postinjury. VML muscles weighed 22.7% and 19.5% less than contralateral muscles at 2 and 4 months postinjury, respectively. These differences were accompanied by a reduction in peak isometric tetanic force (Po) of 28.4% and 32.5% at 2 and 4 months. Importantly, Po corrected for differences in body weight and muscle wet weights were similar between contralateral and age-matched control muscles, indicating that VML did not have a significant impact on the contralateral limb. Lastly, repair of the injury with a biological scaffold resulted in rapid vascularization and integration with the wound. The technical simplicity, reliability, and clinical relevance of the VML model developed in this study make it ideal as a standard model for the development of tissue engineering solutions for VML. PMID:23515319
Xu, Zhi-ling; Wang, Qiang; Liu, Tian-lin; Guo, Li-ying; Jing, Feng-qiu; Liu, Hui
2006-04-01
To investigate the changes of bone sialoprotein (BSP) in developing dental tissues of rats exposed to fluoride. Twenty rats were randomly divided into two groups, one was with distilled water (control group), the other was with distilled water treated by fluoride (experimental group). When the fluorosis model was established, the changes of the expression of BSP were investigated and compared between the two groups. HE staining was used to observe the morphology of the cell, and immunohistochemisty assay was used to determine the expression of BSP in rat incisor. Student's t test was used for statistical analysis. The ameloblasts had normal morphology and arranged orderly. Immunoreactivitis of BSP was present in matured ameloblasts, dentinoblasts, cementoblasts, and the matrix in the control group. But in the experimental group the ameloblasts arranged in multiple layers, the enamel matrix was confused and the expression of BSP was significantly lower than that of the control group. Statistical analysis showed significant differences between the two groups (P<0.01). Fluoride can inhibit the expression of BSP in developing dental tissues of rats, and then inhibit differentiation of the tooth epithelial cells and secretion of matrix. This is a probable intracellular mechanism of dental fluorosis.
Kankesan, Janarthanan; Vanama, Ramesh; Renlund, Richard; Thiessen, Jake J; Ling, Victor; Rao, Prema M; Rajalakshmi, Srinivasan; Sarma, Dittakavi S R
2003-08-01
We report a serendipitous finding of urinary calculi in rats fed a semi-synthetic basal diet. This observation was made during ongoing studies to evaluate the inhibitory effect of PSC 833, a potent inhibitor of P-glycoprotein, on development of tumors in rodent tumor model systems. A large number of specific-pathogen-free (SPF) female Sprague-Dawley and SPF male Fischer 344 rats being fed the diet were euthanized when it became evident clinically that they were uremic. At necropsy, the renal pelvis, ureters, and urinary bladder contained numerous calculi. The presence of urinary calculi was determined to be related to the source of a Food Chemical Codex grade of choline bitartrate. Rats being fed the same basal diet containing the United States Pharmacopia grade of choline bitartrate failed to develop urinary calculi. Interestingly, rats treated with the P-glycoprotein inhibitor were at significantly reduced risk of developing urinary calculi. This finding highlights how something seemingly innocuous as a minor dietary constituent can have a profound impact and, thereby, affect experimental outcome.
Toxicokinetic Model Development for the Insensitive Munitions Component 2,4-Dinitroanisole.
Sweeney, Lisa M; Goodwin, Michelle R; Hulgan, Angela D; Gut, Chester P; Bannon, Desmond I
2015-01-01
The Armed Forces are developing new explosives that are less susceptible to unintentional detonation (insensitive munitions [IMX]). 2,4-Dinitroanisole (DNAN) is a component of IMX. Toxicokinetic data for DNAN are required to support interpretation of toxicology studies and refinement of dose estimates for human risk assessment. Male Sprague-Dawley rats were dosed by gavage (5, 20, or 80 mg DNAN/kg), and blood and tissue samples were analyzed to determine the levels of DNAN and its metabolite 2,4-dinitrophenol (DNP). These data and data from the literature were used to develop preliminary physiologically based pharmacokinetic (PBPK) models. The model simulations indicated saturable metabolism of DNAN in rats at higher tested doses. The PBPK model was extrapolated to estimate the toxicokinetics of DNAN and DNP in humans, allowing the estimation of human-equivalent no-effect levels of DNAN exposure from no-observed adverse effect levels determined in laboratory animals, which may guide the selection of exposure limits for DNAN. © The Author(s) 2015.
McCabe, Kristin M; Zelt, Jason G; Kaufmann, Martin; Laverty, Kimberly; Ward, Emilie; Barron, Henry; Jones, Glenville; Adams, Michael A; Holden, Rachel M
2018-06-14
Patients with chronic kidney disease have a markedly increased risk for developing cardiovascular disease. Non-traditional risk factors, such as increased phosphate retention, and deficiencies in vitamins D and K metabolism, likely play key roles in the development of vascular calcification during CKD progression. Calcitriol (1,25-(OH)2-D3) is a key transcriptional regulator of Matrix Gla protein (MGP), a vitamin K dependent protein that inhibits vascular calcification. The objective of this study was to determine if calcitriol treatment could inhibit the development of vascular calcification and if this inhibition was dependent on vitamin K status in a rat model of CKD. Rats were treated with dietary adenine (0.25%) to induce CKD, with either 0, 20 or 80 ng/kg of calcitriol with low or high dietary vitamin K1 (0.2 or 100 mg/kg) for 7 weeks. Calcitriol at both low (20 ng/kg) and moderate (80 ng/kg) doses increased the severity of vascular calcification and, contrary to our hypothesis, this was unaffected by high dietary vitamin K1. Calcitriol had a dose-dependent effect on: (i) lowering serum PTH, (ii) increasing serum calcium and (iii) increasing serum FGF-23. Calcitriol treatment significantly increased aortic expression of the calcification genes Runx2 and Pit-1. This data also implicates impaired vitamin D catabolism in CKD, which may contribute to the development of calcitriol toxicity and increased vascular calcification. The present findings demonstrate that in an adenine-induced rat model of CKD, calcitriol treatment at doses as low as 20 ng/kg can increase the severity of vascular calcification regardless of vitamin K status. The American Society for Pharmacology and Experimental Therapeutics.
Tao, Xin; Zhang, Xiao; Ge, Shu-Qi; Zhang, Er-Hong; Zhang, Bin
2015-01-01
Aim: To investigate the expression of silent information regulator 1 (SIRT1) in rats with polycystic ovary syndrome (PCOS) and its alteration after exenatide treatment. Methods: PCOS rat model was established by dehydroepiandrosterone induction. The animals were randomly divided into exenatide treatment group (EX group, n = 10), metformin treatment group (MF group, n = 10), PCOS group (PCOS group, n = 9) and normal control group (NC group, n = 10). Histological changes of the ovarian tissues were examined by HE staining. SIRT1 expression in the ovarian tissue was detected by RT-PCR and immunohistochemistry. Results: Rats in the PCOS group lost their estrous cycle. Histological observation of the ovary showed saccular dilatation of the follicle, decreased number of corpora lutea, fewer layers of granulosa cells aligned loosely, and thickened layer of theca cells. The changes in reproductive hormones and the development of insulin resistance suggested the successful establishment of the animal models. Immunohistochemistry and Q-PCR detected the mRNA and protein expressions of SIRT1 in the ovary tissues of rats in the normal control group. The SIRT1 expression was significantly lower in PCOS group than in control group (P < 0.05); after drug intervention, the SIRT1 expression significantly increased in EX and MF groups (compared with the PCOS group), whereas no significant difference was noted between the EX group and MF group. Conclusions: The SIRT1 expression in the ovary tissue decreases in PCOS rats (compare with the normal rats) but can be up-regulated after Ex or MF treatment. These drugs may affect the process and development of PCOS by regulating the SIRT1 expression. Exenatide may be therapeutic for PCOS by up-regulating the SITR1 expression. PMID:26339397
Nishiyama, U; Kuwaki, T; Akahori, H; Kato, T; Ikeda, Y; Miyazaki, H
2005-02-01
Previous in vitro studies demonstrated that thrombopoietin (TPO) acts on platelets to activate a variety of intracellular signaling pathways and to enhance platelet sensitivity to multiple agonists. Little is known, however, about whether TPO exerts prothrombotic effects in vivo. The aim of this study was to examine the effects of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF), a pegylated N-terminal domain of human TPO, in a rat model of venous thrombosis. A microthrombus was photochemically induced on the vessel wall of a mesenteric venule, but the vessel was not occluded by it. A single intravenous injection of PEG-rHuMGDF (3 microg kg(-1)) after the thrombus generation into normal rats enhanced the thrombus size, resulting in transient thrombotic occlusion in the majority of rats. Stimulatory effects on thrombus growth were also observed following administration of glycosylated recombinant human full-length TPO (6 microg kg(-1)). In rats rendered thrombocytopenic by total body irradiation, however, PEG-rHuMGDF, even at 300 microg kg(-1), did not induce a significant increase in thrombus size or thrombotic occlusion. Platelets from thrombocytopenic rats had decreased surface levels of c-Mpl and decreased sensitivity to PEG-rHuMGDF in an in vitro aggregation response. Thus, decreased prothrombotic effects of PEG-rHuMGDF in thrombocytopenic rats might be the result not only of low platelet counts but also of decreased platelet reactivity to PEG-rHuMGDF. These results indicate that PEG-rHuMGDF has little effect on venous thrombus formation in thrombocytopenic states associated with high endogenous TPO levels.
Tao, Xin; Zhang, Xiao; Ge, Shu-Qi; Zhang, Er-Hong; Zhang, Bin
2015-01-01
To investigate the expression of silent information regulator 1 (SIRT1) in rats with polycystic ovary syndrome (PCOS) and its alteration after exenatide treatment. PCOS rat model was established by dehydroepiandrosterone induction. The animals were randomly divided into exenatide treatment group (EX group, n = 10), metformin treatment group (MF group, n = 10), PCOS group (PCOS group, n = 9) and normal control group (NC group, n = 10). Histological changes of the ovarian tissues were examined by HE staining. SIRT1 expression in the ovarian tissue was detected by RT-PCR and immunohistochemistry. Rats in the PCOS group lost their estrous cycle. Histological observation of the ovary showed saccular dilatation of the follicle, decreased number of corpora lutea, fewer layers of granulosa cells aligned loosely, and thickened layer of theca cells. The changes in reproductive hormones and the development of insulin resistance suggested the successful establishment of the animal models. Immunohistochemistry and Q-PCR detected the mRNA and protein expressions of SIRT1 in the ovary tissues of rats in the normal control group. The SIRT1 expression was significantly lower in PCOS group than in control group (P < 0.05); after drug intervention, the SIRT1 expression significantly increased in EX and MF groups (compared with the PCOS group), whereas no significant difference was noted between the EX group and MF group. The SIRT1 expression in the ovary tissue decreases in PCOS rats (compare with the normal rats) but can be up-regulated after Ex or MF treatment. These drugs may affect the process and development of PCOS by regulating the SIRT1 expression. Exenatide may be therapeutic for PCOS by up-regulating the SITR1 expression.
Chen, Jing; Chen, Yan-Hui; Lv, Hong-Yan; Chen, Li-Ting
2016-07-01
The aim of the present study was to investigate the effect of hyperbaric oxygen (HBO) on lipid peroxidation and visual development in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). The rat models of HIBD were established by delayed uterus dissection and were divided randomly into two groups (10 rats each): HIBD and HBO-treated HIBD (HIBD+HBO) group. Another 20 rats that underwent sham-surgery were also divided randomly into the HBO-treated and control groups. The rats that underwent HBO treatment received HBO (0.02 MPa, 1 h/day) 24 h after the surgery and this continued for 14 days. When rats were 4 weeks old, their flash visual evoked potentials (F-VEPs) were monitored and the ultrastructures of the hippocampus were observed under transmission electron microscope. The levels of superoxide dismutase (SOD) and malonyldialdehyde (MDA) in the brain tissue homogenate were detected by xanthine oxidase and the thiobarbituric acid colorimetric method. Compared with the control group, the ultrastructures of the pyramidal neurons in the hippocampal CA3 area were distorted, the latencies of F-VEPs were prolonged (P<0.01) and the SOD activities were lower while the MDA levels were higher (P<0.01) in the HIBD group. No significant differences in ultrastructure, the latency of F-VEPs or SOD/MDA levels were identified between the HBO-treated HIBD group and the normal control group (P>0.05). HBO enhances antioxidant capacity and reduces the ultrastructural damage induced by hypoxic-ischemia, which may improve synaptic reconstruction and alleviate immature brain damage to promote the habilitation of brain function.
Efficacy of Human Adipose Tissue-Derived Stem Cells on Neonatal Bilirubin Encephalopathy in Rats.
Amini, Naser; Vousooghi, Nasim; Hadjighassem, Mahmoudreza; Bakhtiyari, Mehrdad; Mousavi, Neda; Safakheil, Hosein; Jafari, Leila; Sarveazad, Arash; Yari, Abazar; Ramezani, Sara; Faghihi, Faezeh; Joghataei, Mohammad Taghi
2016-05-01
Kernicterus is a neurological syndrome associated with indirect bilirubin accumulation and damages to the basal ganglia, cerebellum and brain stem nuclei particularly the cochlear nucleus. To mimic haemolysis in a rat model such that it was similar to what is observed in a preterm human, we injected phenylhydrazine in 7-day-old rats to induce haemolysis and then infused sulfisoxazole into the same rats at day 9 to block bilirubin binding sites in the albumin. We have investigated the effectiveness of human adiposity-derived stem cells as a therapeutic paradigm for perinatal neuronal repair in a kernicterus animal model. The level of total bilirubin, indirect bilirubin, brain bilirubin and brain iron was significantly increased in the modelling group. There was a significant decreased in all severity levels of the auditory brainstem response test in the two modelling group. Akinesia, bradykinesia and slip were significantly declined in the experience group. Apoptosis in basal ganglia and cerebellum were significantly decreased in the stem cell-treated group in comparison to the vehicle group. All severity levels of the auditory brainstem response tests were significantly decreased in 2-month-old rats. Transplantation results in the substantial alleviation of walking impairment, apoptosis and auditory dysfunction. This study provides important information for the development of therapeutic strategies using human adiposity-derived stem cells in prenatal brain damage to reduce potential sensori motor deficit.
Byrd, James Brian; Shreevatsa, Ajai; Putlur, Pradeep; Foretia, Denis; McAlexander, Laurie; Sinha, Tuhin; Does, Mark D; Brown, Nancy J
2007-08-01
Serum dipeptidyl peptidase IV (DPPIV) activity is decreased in some individuals with ACE inhibitor-associated angioedema. ACE and DPPIV degrade substance P, an edema-forming peptide. The contribution of impaired degradation of substance P by DPPIV to the pathogenesis of ACE inhibitor-associated angioedema is unknown. We sought to determine whether DPPIV deficiency results in increased edema formation during ACE inhibition. We also sought to develop an animal model using magnetic resonance imaging to quantify ACE inhibitor-induced edema. The effect of genetic DPPIV deficiency on peritracheal edema was assessed in F344 rats after treatment with saline, captopril (2.5 mg/kg), or captopril plus the neurokinin receptor antagonist spantide (100 mug/kg) by using serial T2-weighted magnetic resonance imaging. Serum dipeptidyl peptidase activity was dramatically decreased in DPPIV-deficient rats (P < .001). The volume of peritracheal edema was significantly greater in captopril-treated DPPIV-deficient rats than in saline-treated DPPIV-deficient rats (P = .001), saline-treated rats of the normal substrain (P < .001), or captopril-treated rats of the normal substrain (P = .001). Cotreatment with spantide attenuated peritracheal edema in captopril-treated DPPIV-deficient rats (P = .005 vs captopril-treated DPPIV-deficient rats and P = .57 vs saline-treated DPPIV-deficient rats). DPPIV deficiency predisposes to peritracheal edema formation when ACE is inhibited through a neurokinin receptor-dependent mechanism. Magnetic resonance imaging is useful for modeling ACE inhibitor-associated angioedema in rats. Genetic or environmental factors that decrease DPPIV activity might increase the risk of ACE inhibitor-associated angioedema.
Teratani, Takumi; Kobayashi, Eiji
2013-01-01
Research in the life sciences has been greatly advanced by the ability to directly visualize cells, tissues, and organs. Preclinical studies often involve many small and large animal experiments and, frequently, cell and organ transplantations. The rat is an excellent animal model for the development of transplantation and surgical techniques because of its small size and ability to breed in small spaces. Ten years ago, we established color-imaging transgenic rats and methods for the direct visualization of their tissues. Since then, our transgenic rats have been used throughout the various fields that are concerned with cell transplantation therapy. In this minireview, we summarize results from some of the groups that have used our transgenic rats at the bench level and in cell transplantation research. PMID:26858864
Hu, Yuan; Tang, Jin-Shu; Hou, Shu-Xun; Shi, Xiu-Xiu; Qin, Jiang; Zhang, Tie-Song; Wang, Xiao-Jing
2017-11-01
Curcumin is a natural product with antimutagenic, antitumor, antioxidant and neuroprotective properties. However, to the best of our knowledge, curcumin has yet to be investigated for the treatment of lumbar intervertebral disc degeneration LIDD). The aim of the present study was to investigate whether curcumin can alleviate LIDD through regulating the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)‑2, transforming growth factor (TGF)‑β1/2, matrix metalloproteinase (MMP)‑9 and brain‑derived neurotrophic factor (BDNF) in a rat model of LIDD. The results of the present study suggest that pretreatment with curcumin can prevent the development of LIDD in rats. It was revealed that treatment with curcumin significantly reduced interleukin (IL)‑1β and IL‑6, iNOS, COX‑2 and MMP‑9 levels in rats with LIDD. In addition, treatment with curcumin reduced the mRNA expression levels of TGF‑β1 and TGF‑β2, whereas it increased the mRNA expression levels of BDNF in rats with LIDD. In conclusion, the present findings indicate that curcumin may exert protective effects on LIDD development, exerting its action through the regulation of iNOS, COX‑2, TGF‑β1/2, MMP‑9 and BDNF.
A physiologically based pharmacokinetic model for ethylene oxide in mouse, rat, and human.
Fennell, T R; Brown, C D
2001-06-15
Ethylene oxide (EO) is widely used as a gaseous sterilant and industrial intermediate and is a direct-acting mutagen and carcinogen. The objective of these studies was to develop physiologically based pharmacokinetic (PB-PK) models for EO to describe the exposure-tissue dose relationship in rodents and humans. We previously reported results describing in vitro and in vivo kinetics of EO metabolism in male and female F344 rats and B6C3F1 mice. These studies were extended by determining the kinetics of EO metabolism in human liver cytosol and microsomes. The results indicate enzymatically catalyzed GSH conjugation via cytosolic glutathione S-transferase (cGST) and hydrolysis via microsomal epoxide hydrolase (mEH) occur in both rodents and humans. The in vitro kinetic constants were scaled to account for cytosolic (cGST) and microsomal (mEH) protein content and incorporated into PB-PK descriptions for mouse, rat, and human. Flow-limited models adequately predicted blood and tissue EO levels, disposition, and elimination kinetics determined experimentally in rats and mice, with the exception of testis concentrations, which were overestimated. Incorporation of a diffusion-limited description for testis improved the ability of the model to describe testis concentrations. The model accounted for nonlinear increases in blood and tissue concentrations that occur in mice on exposure to EO concentrations greater than 200 ppm. Species differences are predicted in the metabolism and exposure-dose relationship, with a nonlinear relationship observed in the mouse as a result of GSH depletion. These models represent an essential step in developing a mechanistically based EO exposure-dose-response description for estimating human risk from exposure to EO. Copyright 2001 Academic Press.
The effects of PEP-1-FK506BP on dry eye disease in a rat model.
Kim, Dae Won; Lee, Sung Ho; Ku, Sae Kwang; Lee, Ji Eun; Cha, Hyun Ju; Youn, Jong Kyu; Kwon, Hyeok Yil; Park, Jong Hoon; Park, Eun Young; Cho, Sung-Woo; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young
2015-03-01
As FK506 binding proteins (FK506BPs) are known to play an important role in the regulation of a variety of biological processes related to cell survival, this study was designed to examined the protective effects of FK506 binding protein 12 (FK506BP) on low humidity air flow induced dry eye in a rat model using transduced PEP-1-FK506BP. After the topical application of PEP-1-FK506BP, tear volumes were markedly increased and significant prevention of cornea damage was observed compared with dry eye rats. Further, immunohistochemical analysis demonstrated that PEP-1-FK506BP markedly prevented damage to the cornea, the bulbar conjunctiva, and the palpebral conjunctiva epithelial lining compared with dry eye rats. In addition, caspase-3 and PARP expression levels were found to be decreased. These results demonstrated that topical application of PEP-1-FK506BP significantly ameliorates dry eye injury in an animal model. Thus, we suggest that PEP-1-FK506BP can be developed as a new ophthalmic drop to treat dry eye diseases.
Chen, Kaizhen; Seng, Kok-Yong
2012-09-01
A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model has been developed for low, medium and high levels of soman intoxication in the rat, marmoset, guinea pig and pig. The primary objective of this model was to describe the pharmacokinetics of soman after intravenous, intramuscular and subcutaneous administration in the rat, marmoset, guinea pig, and pig as well as its subsequent pharmacodynamic effects on blood acetylcholinesterase (AChE) levels, relating dosimetry to physiological response. The reactions modelled in each physiologically realistic compartment are: (1) partitioning of C(±)P(±) soman from the blood into the tissue; (2) inhibition of AChE and carboxylesterase (CaE) by soman; (3) elimination of soman by enzymatic hydrolysis; (4) de novo synthesis and degradation of AChE and CaE; and (5) aging of AChE-soman and CaE-soman complexes. The model was first calibrated for the rat, then extrapolated for validation in the marmoset, guinea pig and pig. Adequate fits to experimental data on the time course of soman pharmacokinetics and AChE inhibition were achieved in the mammalian models. In conclusion, the present model adequately predicts the dose-response relationship resulting from soman intoxication and can potentially be applied to predict soman pharmacokinetics and pharmacodynamics in other species, including human. Copyright © 2011 John Wiley & Sons, Ltd.
Park, Hyelim; Park, Hyewon; Mun, Dasom; Kim, Michael; Pak, Hui-Nam; Lee, Moon-Hyoung; Joung, Boyoung
2018-05-01
Left stellectomy has become an important therapeutic option for patients with potentially fatal arrhythmias. However, the antiarrhythmic mechanism of left stellectomy is not well known. The cholinergic anti-inflammatory pathway (CAIP) is a complex immune mechanism that regulates peripheral inflammatory responses. The purpose of this study was to evaluate the effect of left stellectomy on CAIP using rat experimental autoimmune myocarditis (EAM) models. EAM was produced by injecting 2 mg of porcine cardiac myosin into the footpads of rats. Left stellectomy was performed before EAM induction. We evaluated the effect of left stellectomy on arrhythmic events, survival, inflammation, and CAIP in rats without and with EAM. Left stellectomy prevented arrhythmia and improved survival in EAM rats. Left stellectomy decreased the levels of tumor necrosis factor α, interleukin 6, and high mobility group box 1 (P < .05 vs EAM) in serum and heart tissues from EAM rats. In heart rate variability analysis, high-frequency peaks of the power spectrum densities, reflecting parasympathetic cardiovagal tone, were significantly decreased in EAM rats, but increased after left stellectomy. The ratios of phosphorylated STAT3/STAT3 (signal transducer and activator of transcription 3) and phosphorylated JAK2/JAK2 (Janus kinase 2) decreased in cell lysates of the spleen, liver, and heart in EAM rats. However, the same ratios significantly increased after left stellectomy. Nuclear factor κB in cell lysates of the spleen, liver, and heart increased in EAM rats, but decreased after left stellectomy. In EAM models, left stellectomy increased survival of the rats while showing antiarrhythmic effects with reduced inflammation via activation of the JAK2-STAT3-mediated signaling cascade. Our findings suggest an exciting opportunity to develop new and novel therapeutics to attenuate cardiac inflammation. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Pautassi, Ricardo M; Nizhnikov, Michael E; Spear, Norman E
2009-06-01
The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects.
Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.
2009-01-01
The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects. PMID:19428502
A conflict rat model of cue-induced relapse to cocaine seeking.
Cooper, Ayelet; Barnea-Ygael, Noam; Levy, Dino; Shaham, Yavin; Zangen, Abraham
2007-09-01
Relapse to drug use in humans can be induced by exposure to drug-associated cues. The ability of drug cues to provoke 'relapse' has been studied in laboratory animals using a reinstatement model in which resumption of drug seeking is assessed after extinction of drug-reinforced responding. In this model, there are no adverse consequences of drug-seeking behavior. However, in humans, abstinence is often self-imposed, and relapse episodes likely involve making a choice between the desire for the drug and the negative consequences of pursuing it (a conflict situation). In this paper, we describe a conflict model of cue-induced relapse in rats that approximate the human condition. Rats were trained to lever press for cocaine; infusions were paired with a discrete light cue. An 'electric barrier' was then introduced by electrifying the floor area near the levers. Responding decreased over days with increasing shock intensities, until the rats did not approach the levers for 3 days. Subsequently, the effect of intermittent noncontingent light-cue presentations on resumption of lever responding (relapse) was assessed in extinction tests, with the electric barrier remaining activated; during testing, lever presses led to contingent light-cue presentations. Noncontingent cue exposure led to resumption of lever presses during the relapse tests in 14 of the 24 rats. Surprisingly, 24 h later, 11 of the 24 rats resumed lever responding in a subsequent post-noncontingent cue test under similar extinction conditions. Large individual differences in responding were observed during both tests. At its current stage of development, the conflict relapse model appears particularly suitable for studying individual differences in cue-induced relapse to cocaine seeking or factors that promote this relapse.
Episodic Dural Stimulation in Awake Rats: A Model for Recurrent Headache
Oshinsky, Michael L.; Gomonchareonsiri, Sumittra
2014-01-01
Objectives To model, in rats, the development of chronic trigeminal nociceptive hypersensitivity seen in patients with recurrent headache. Background Pathophysiology studies suggest that patients with recurrent migraine headache experience repeated bouts of dural nociceptor activation. In some patients, the severity and frequency of headache attacks increase over time. Patients with recurrent headache are hypersensitive to nitric oxide donors, such as glyceryl trinitrate (GTN). Current trigeminal pain models do not reflect the repeated episodic nature of dural nociceptor activation in patients with recurrent headache. Repeated nociceptor activation creates long-lasting changes in the periphery and brain due to activity-dependent neuronal plasticity. An animal model of repeated activation of dural nociceptors will facilitate the study of the physiological changes caused by repeated, episodic pain and the factors important for the transition of episodic to chronic migraine. Methods We induced dural inflammation by infusing an inflammatory soup (IS) through a cannula on the dura in awake behaving rats. This was repeated 3 times per week for up to 4 weeks. Periorbital pressure sensory testing was used to monitor the change in trigeminal sensitivity. Rats were challenged with GTN to test the hypothesis that many dural stimulations are required to model the hypersensitivity of migraine patients. Quantitative trigeminal sensory testing and microdialysis in the trigeminal nucleus caudalis (TNC) were used to measure GTN hypersensitivity. Results Multiple infusions of IS (>8), over weeks, induced a long-lasting decrease in periorbital pressure thresholds that lasted >3 weeks after the last infusion. In contrast, IS infusion in IS-naive rats and those that received 3 IS infusions produced only short-lasting decreases in periorbital pressure thresholds. Rats that received more than 8 IS infusions showed a marked increase in their neurochemical and behavioral responses to GTN. In these rats, GTN induced a decrease in periorbital von Frey thresholds that lasted >5 hours. In contrast, in rats that received only 3 IS infusions, GTN caused a threshold decrease for 1.5 hour. In vivo microdialysis in the TNC showed that GTN increased extracellular glutamate levels in rats with more than 8 IS infusions to 7.7 times the basal levels. In IS-naive rats and those that received only 3 IS infusions, the extracellular glutamate levels rose to only 1.7 and 1.9 times the basal level, respectively. Conclusions Repeated IS stimulation of the dura produces a chronic state of trigeminal hypersensitivity and potentiates the response to GTN. This hyperresponsiveness outlasts the last IS infusion and is the basis of our rat model of recurrent headache. This model can be used to study the changes in the brain and periphery induced by repeated trigeminovascular nociceptor activation and has the potential to elucidate the mechanisms for the transition of episodic to chronic headache. PMID:17635594
Development and characterization of an effective food allergy model in Brown Norway rats.
Abril-Gil, Mar; Garcia-Just, Alba; Pérez-Cano, Francisco J; Franch, Àngels; Castell, Margarida
2015-01-01
Food allergy (FA) is an adverse health effect produced by the exposure to a given food. Currently, there is no optimal animal model of FA for the screening of immunotherapies or for testing the allergenicity of new foods. The aim of the present study was to develop an effective and rapid model of FA in Brown Norway rats. In order to establish biomarkers of FA in rat, we compared the immune response and the anaphylactic shock obtained in this model with those achieved with only intraperitoneal immunization. Rats received an intraperitoneal injection of ovalbumin (OVA) with alum and toxin from Bordetella pertussis, and 14 days later, OVA by oral route daily for three weeks (FA group). A group of rats receiving only the i.p. injection (IP group) were also tested. Serum anti-OVA IgE, IgG1, IgG2a, IgG2b and IgA antibodies were quantified throughout the study. After an oral challenge, body temperature, intestinal permeability, motor activity, and mast cell protease II (RMCP-II) levels were determined. At the end of the study, anti-OVA intestinal IgA, spleen cytokine production, lymphocyte composition of Peyer's patches and mesenteric lymph nodes, and gene expression in the small intestine were quantified. Serum OVA-specific IgG1, IgG2a and IgG2b concentrations rose with the i.p. immunization but were highly augmented after the oral OVA administration. Anti-OVA IgE increased twofold during the first week of oral OVA gavage. The anaphylaxis in both IP and FA groups decreased body temperature and motor activity, whereas intestinal permeability increased. Interestingly, the FA group showed a much higher RMCP II serum protein and intestinal mRNA expression. These results show both an effective and relatively rapid model of FA assessed by means of specific antibody titres and the high production of RMCP-II and its intestinal gene expression.
Development and Characterization of an Effective Food Allergy Model in Brown Norway Rats
Abril-Gil, Mar; Garcia-Just, Alba; Pérez-Cano, Francisco J.; Franch, Àngels; Castell, Margarida
2015-01-01
Background Food allergy (FA) is an adverse health effect produced by the exposure to a given food. Currently, there is no optimal animal model of FA for the screening of immunotherapies or for testing the allergenicity of new foods. Objective The aim of the present study was to develop an effective and rapid model of FA in Brown Norway rats. In order to establish biomarkers of FA in rat, we compared the immune response and the anaphylactic shock obtained in this model with those achieved with only intraperitoneal immunization. Methods Rats received an intraperitoneal injection of ovalbumin (OVA) with alum and toxin from Bordetella pertussis, and 14 days later, OVA by oral route daily for three weeks (FA group). A group of rats receiving only the i.p. injection (IP group) were also tested. Serum anti-OVA IgE, IgG1, IgG2a, IgG2b and IgA antibodies were quantified throughout the study. After an oral challenge, body temperature, intestinal permeability, motor activity, and mast cell protease II (RMCP-II) levels were determined. At the end of the study, anti-OVA intestinal IgA, spleen cytokine production, lymphocyte composition of Peyer’s patches and mesenteric lymph nodes, and gene expression in the small intestine were quantified. Results Serum OVA-specific IgG1, IgG2a and IgG2b concentrations rose with the i.p. immunization but were highly augmented after the oral OVA administration. Anti-OVA IgE increased twofold during the first week of oral OVA gavage. The anaphylaxis in both IP and FA groups decreased body temperature and motor activity, whereas intestinal permeability increased. Interestingly, the FA group showed a much higher RMCP II serum protein and intestinal mRNA expression. Conclusions These results show both an effective and relatively rapid model of FA assessed by means of specific antibody titres and the high production of RMCP-II and its intestinal gene expression. PMID:25923134
Bortolin, R C; Vargas, A R; Gasparotto, J; Chaves, P R; Schnorr, C E; Martinello, Kd B; Silveira, A K; Rabelo, T K; Gelain, D P; Moreira, J C F
2018-03-01
Obesity is a metabolic disorder that predisposes patients to numerous diseases and has become a major global public-health concern. Animal models of diet-induced obesity (DIO) are frequently used to study obesity, but which DIO model most accurately reflects the pathology of human obesity remains unclear. In this study, we designed a diet based on the human Western diet (WD) and compared it with the cafeteria diet (CAF) and high-fat diet (HFD) in order to evaluate which diet most closely mirrors human obesity. Wistar rats were fed four different diets (WD, CAF, HFD and a low-fat diet) for 18 weeks. Metabolic parameters and gut microbiota changes were then characterized. Rats fed the four different diets exhibited completely different phenotypes, highlighting the importance of diet selection. This study also revealed that WD most effectively induced obesity and obesity-related disorders, and thus proved to be a robust model of human obesity. Moreover, WD-fed rats developed obesity and obesity-related comorbidities independent of major alterations in gut microbiota composition (dysbiosis), whereas CAF-fed rats developed the greatest dysbiosis independent of obesity. We also characterized gut microbiota after feeding on these four different diets and identified five genera that might be involved in the pathogenesis of obesity. These data suggest that diet, and not the obese state, was the major driving force behind gut microbiota changes. Moreover, the marked dysbiosis observed in CAF-fed rats might have resulted from the presence of several additives present in the CAF diet, or even a lack of essential vitamins and minerals. Based on our findings, we recommend the use of the prototypic WD (designed here) in DIO models. Conversely, CAF could be used to investigate the effects of excessive consumption of industrially produced and highly processed foods, which are characteristic of Western society.
Ferreira, Emilene D Fiuza; Romanini, Cássia V; Mori, Marco A; de Oliveira, Rúbia M Weffort; Milani, Humberto
2011-10-01
Permanent, stepwise occlusion of the vertebral arteries (VAs) and internal carotid arteries (ICAs) following the sequence VA→ICA→ICA, with an interstage interval (ISI, →) of 7 days, has been investigated as a four-vessel occlusion (4-VO)/ICA model of chronic cerebral hypoperfusion. This model has the advantage of not causing retinal damage. In young rats, however, 4-VO/ICA with an ISI of 7 days fails to cause behavioral sequelae. We hypothesized that such a long ISI would allow the brain to efficiently compensate for cerebral hypoperfusion, preventing the occurrence of cognitive impairment and neurodegeneration. The present study evaluated whether brain neurodegeneration and learning/memory deficits can be expressed by reducing the length of the ISI and whether aging influences the outcome. Young, male Wistar rats were subjected to 4-VO/ICA with different ISIs (5, 4, 3 or 2 days). An ISI of 4 days was used in middle-aged rats. Ninety days after 4-VO/ICA, the rats were tested for learning/memory impairment in a modified radial maze and then examined for neurodegeneration of the hippocampus and cerebral cortex. Regardless of the ISI, young rats were not cognitively impaired, although hippocampal damage was evident. Learning/memory deficits and hippocampal and cortical neurodegeneration occurred in middle-aged rats. The data indicate that 4-VO/ICA has no impact on the capacity of young rats to learn the radial maze task, despite 51% hippocampal cell death. Such resistance is lost in middle-aged animals, for which the most extensive neurodegeneration observed in both the hippocampus and cerebral cortex may be responsible. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Fadaei, Atefeh; Gorji, Hossein Miladi; Hosseini, Shahrokh Makvand
2015-01-15
Previous studies have indicated that voluntary exercise decreases the severity of the anxiogenic-like behaviors in both morphine-dependent and withdrawn rats. This study examined the effects of regular swimming exercise during the development of dependency and spontaneous morphine withdrawal on the anxiety-depression profile and voluntary morphine consumption in morphine dependent rats. The rats were chronically treated with bi-daily doses (10 mg/kg, at 12h intervals) of morphine over a period of 14 days. The exercising rats were allowed to swim (45 min/d, five days per a week, for 14 or 21 days) during the development of morphine dependence and withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice paradigm in animal models of craving. The results showed that withdrawal signs were decreased in swimmer morphine dependent rats than sedentary rats (P<0.05). Also, the swimmer morphine-dependent and withdrawn rats exhibited an increase in EPM open arm time and entries (P<0.05), higher levels of sucrose preference (P<0.001) than sedentary rats. Voluntary consumption of oral morphine was less in the swimmer morphine-withdrawn rats than the sedentary groups during four periods of the intake of drug (P<0.01). We conclude that regular swimming exercise reduces the severity of morphine dependence and voluntary morphine consumption with reducing anxiety and depression in morphine-dependent and withdrawn rats. Thus, swimming exercise may be a potential method to ameliorate some of the deleterious behavioral consequences of morphine dependence. Copyright © 2014 Elsevier B.V. All rights reserved.
Polichnowski, Aaron; Licea-Vargas, Hector; Picken, Maria; Long, Jianrui; Williamson, Geoffrey; Bidani, Anil
2012-01-01
The Nω-nitro-l-arginine methyl ester (l-NAME) model is widely employed to investigate the role of nitric oxide (NO) in renal injury. The present studies show that Sprague-Dawley rats from Harlan (H) and Charles River (CR) exhibit strikingly large differences in susceptibility to l-NAME nephropathy. After 4 wk of l-NAME (∼50 mg·kg−1·day−1 in drinking water), H rats (n = 13) exhibited the expected hypertension [average radiotelemetric systolic blood pressure (BP), 180 ± 3 mmHg], proteinuria (136 ± 17 mg/24 h), and glomerular injury (GI) (12 ± 2%). By contrast, CR rats developed less hypertension (142 ± 4), but surprisingly no proteinuria or GI, indicating a lack of glomerular hypertension. Additional studies showed that conscious H, but not CR, rats exhibit dose-dependent renal vasoconstriction after l-NAME. To further investigate these susceptibility differences, l-NAME was given 2 wk after 3/4 normotensive nephrectomy (NX) and comparably impaired renal autoregulation in CR-NX and H-NX rats. CR-NX rats, nevertheless, still failed to develop proteinuria and GI despite moderate hypertension (144 ± 2 mmHg, n = 29). By contrast, despite an 80–90% l-NAME dose reduction and lesser BP increases (169 ± 4 mmHg), H-NX rats (n = 20) developed greater GI (26 ± 3%) compared with intact H rats. Linear regression analysis showed significant (P < 0.01) differences in the slope of the relationship between BP and GI between H-NX (slope 0.56 ± 0.14; r = 0.69; P < 0.008) and CR-NX (slope 0.09 ± 0.06; r = 0.29; P = 0.12) rats. These data indicate that blunted BP responses to l-NAME in the CR rats are associated with BP-independent resistance to nephropathy, possibly mediated by a resistance to the renal (efferent arteriolar) vasoconstrictive effects of NO inhibition. PMID:21937607
Zhang, Z H; Chen, L Y; Wang, F; Wu, Y Q; Su, J Q; Huang, X H; Wang, Z C; Cheng, Y
2015-06-01
Hypoxia-inducible factor-1α (HIF-1α) has been identified as a transcription factor that is involved in diverse physiological and pathological processes in the ovary. In this study, we examined whether HIF-1α is expressed in a cell- and stage-specific manner during follicular growth and development in the mammalian ovaries. Using immunohistochemistry and Western blot analysis, HIF-1α expression was observed in granulosa cells specifically and was significantly increased during the follicular growth and development of postnatal rats. Furthermore, pregnant mare serum gonadotropin also induced HIF-1α expression in granulosa cells and ovaries during the follicular development of immature rats primed with gonadotropin. Moreover, we also examined proliferation cell nuclear antigen, a cell proliferation marker, during follicular growth and development and found that its expression pattern was similar to that of HIF-1α protein. Granulosa cell culture experiments revealed that proliferation cell nuclear antigen expression may be regulated by HIF-1α. These results indicated that HIF-1α plays an important role in the follicular growth and development of these 2 rat models. The HIF-1α-mediated signaling pathway may be an important mechanism regulating follicular growth and development in mammalian ovaries in vivo.
Johnson, Clorinda C.; Yu, Alika; Lee, Heeje; Fidel, Paul L.
2012-01-01
Denture stomatitis (DS) is a fungal infection characterized by inflammation of the oral mucosa in direct contact with the denture and affects up to 50% of denture wearers. Despite the prevalence, very little is known about the role of fungal or host factors that contribute to pathogenesis. Recently, we developed a novel intraoral denture system for rodent research. This denture system consists of custom-fitted fixed and removable parts to allow repeated sampling and longitudinal studies. The purpose of this study was to use this denture system to develop a clinically relevant animal model of DS. To establish DS, rats were inoculated with pelleted Candida albicans, which resulted in sustained colonization of the denture and palate for 8 weeks postinoculation. Biofilm formation on the denture was observed by week 4 and on the palate by week 6 postinoculation. Rats were monitored for clinical signs of disease by assigning a clinical score after macroscopic examination of the palate tissue according to Newton's method. By week 4 postinoculation, the majority of inoculated rats with dentures exhibited a clinical score of 1 (pinpoint erythema). By week 6 and week 8 postinoculation, increasing percentages of rats exhibited a clinical score of 2 (diffuse erythema/edema). Histological analysis of palate tissue demonstrated progressively increasing inflammatory cell recruitment throughout the time course of the infection. Palatal biofilm formation was commensurate with development of palatal erythema, which suggests a role for biofilm in the inflammatory response. PMID:22392931
Non-Lethal Endotoxin Injection: A Rat Model of Hypercoagulability.
Brooks, Marjory B; Turk, James R; Guerrero, Abraham; Narayanan, Padma K; Nolan, John P; Besteman, Elizabeth G; Wilson, Dennis W; Thomas, Roberta A; Fishman, Cindy E; Thompson, Karol L; Ellinger-Ziegelbauer, Heidrun; Pierson, Jennifer B; Paulman, April; Chiang, Alan Y; Schultze, Albert E
2017-01-01
Systemic inflammation co-activates coagulation, which unchecked culminates in a lethal syndrome of multi-organ microvascular thrombosis known as disseminated intravascular coagulation (DIC). We studied an endotoxin-induced inflammatory state in rats to identify biomarkers of hemostatic imbalance favoring hypercoagulability. Intraperitoneal injection of LPS at 15 mg/kg body weight resulted in peripheral leukopenia and widespread neutrophilic sequestration characteristic of an acute systemic inflammatory response. Early indicators of hemostatic pathway activation developed within 4 hours, including increased circulating concentrations of procoagulant extracellular vesicles (EVs), EVs expressing endothelial cell and platelet membrane markers, and high concentration of soluble intercellular adhesion molecule-1 (sICAM-1), plasminogen activator inhibitor-1 (PAI-1), and D-dimers. Inflammation persisted throughout the 48-hour observation period; however, increases were found in a subset of serum microRNA (miRNA) that coincided with gradual resolution of hemostatic protein abnormalities and reduction in EV counts. Dose-adjusted LPS treatment in rats provides a time-course model to develop biomarker profiles reflecting procoagulant imbalance and rebalance under inflammatory conditions.
NASA Astrophysics Data System (ADS)
Chen, Deying; Su, Xiaoling; Wang, Nan; Li, Yunong; Yin, Hua; Li, Liang; Li, Lanjuan
2017-01-01
We report a chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) method generally applicable for tracking metabolomic changes from samples collected in an animal model for studying disease development and treatment. A rat model of surgically induced osteoarthritis (OA) was used as an example to illustrate the workflow and technical performance. Experimental duplicate analyses of 234 plasma samples were carried out using dansylation labeling LC-MS targeting the amine/phenol submetabolome. These samples composed of 39 groups (6 rats per group) were collected at multiple time points with sham operation, OA control group, and OA rats with treatment, separately, using glucosamine/Celecoxib and three traditional Chinese medicines (Epimedii folium, Chuanxiong Rhizoma and Bushen-Huoxue). In total, 3893 metabolites could be detected and 2923 of them were consistently detected in more than 50% of the runs. This high-coverage submetabolome dataset could be used to track OA progression and treatment. Many differentiating metabolites were found and 11 metabolites including 2-aminoadipic acid, saccharopine and GABA were selected as potential biomarkers of OA progression and OA treatment. This study illustrates that CIL LC-MS is a very useful technique for monitoring incremental metabolomic changes with high coverage and accuracy for studying disease progression and treatment in animal models.
Chen, Deying; Su, Xiaoling; Wang, Nan; Li, Yunong; Yin, Hua; Li, Liang; Li, Lanjuan
2017-01-01
We report a chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) method generally applicable for tracking metabolomic changes from samples collected in an animal model for studying disease development and treatment. A rat model of surgically induced osteoarthritis (OA) was used as an example to illustrate the workflow and technical performance. Experimental duplicate analyses of 234 plasma samples were carried out using dansylation labeling LC-MS targeting the amine/phenol submetabolome. These samples composed of 39 groups (6 rats per group) were collected at multiple time points with sham operation, OA control group, and OA rats with treatment, separately, using glucosamine/Celecoxib and three traditional Chinese medicines (Epimedii folium, Chuanxiong Rhizoma and Bushen-Huoxue). In total, 3893 metabolites could be detected and 2923 of them were consistently detected in more than 50% of the runs. This high-coverage submetabolome dataset could be used to track OA progression and treatment. Many differentiating metabolites were found and 11 metabolites including 2-aminoadipic acid, saccharopine and GABA were selected as potential biomarkers of OA progression and OA treatment. This study illustrates that CIL LC-MS is a very useful technique for monitoring incremental metabolomic changes with high coverage and accuracy for studying disease progression and treatment in animal models. PMID:28091618
Avetisov, S E; Polunin, G S; Sheremet, N L; Makarov, I A; Fedorov, A A; Karpova, O E; Muranov, K O; Dizhevskaia, A K; Soustov, L V; Chelnokov, E V; Bitiurin, N M; Sapogova, N V; Nemov, V V; Bodyrev, A A; Ostrovskiĭ, M A
2008-01-01
There is a potential of therapeutic action on certain stages of caractogenesis, in particular on the aggregation of water-soluble proteins of cytoplasmic lens fiber cells, giving rise to insoluble protein complexes. The effect of a combined preparation (N-acetyl carnosine and D-patethine), acting by the chaperon-like mechanism, was studied in vivo on a prolonged rat model of UV-induced cataract. The use of the combined preparation consisting of a mixture of peptides of N-acetyl carnosine and D-patethine in a ratio of 1:1 as ocular instillations and intraperitoneal injections could slow down the development of UV-induced cataract in vivo. Pathomorphological studies suggest that the combined preparation has a protective effect on lens tissue when the rat model of UV-induced cataract is employed.
Dark Agouti rat model of chemotherapy-induced mucositis: establishment and current state of the art.
Vanhoecke, Barbara; Bateman, Emma; Mayo, Bronwen; Vanlancker, Eline; Stringer, Andrea; Thorpe, Daniel; Keefe, Dorothy
2015-06-01
Mucositis is a major oncological problem. The entire gastrointestinal and genitourinary tract and also other mucosal surfaces can be affected in recipients of radiotherapy, and/or chemotherapy. Major progress has been made in recent years in understanding the mechanisms of oral and small intestinal mucositis, which appears to be more prominent than colonic damage. This progress is largely due to the development of representative laboratory animal models of mucositis. This review focuses on the development and establishment of the Dark Agouti rat mammary adenocarcinoma model by the Mucositis Research Group of the University of Adelaide over the past 20 years to characterize the mechanisms underlying methotrexate-, 5-fluorouracil-, and irinotecan-induced mucositis. It also aims to summarize the results from studies using different animal model systems to identify new molecular and cellular markers of mucositis. © 2015 by the Society for Experimental Biology and Medicine.
Sinharay, Sanhita; Lee, Dianne; Shah, Swati; Muthusamy, Siva; Papadakis, Georgios Z; Zhang, Xiang; Maric, Dragan; Reid, William C; Hammoud, Dima A
2017-12-01
In vivo imaging biomarkers of various HIV neuropathologies, including dopaminergic dysfunction, are still lacking. Towards developing dopaminergic biomarkers of brain involvement in HIV, we assessed the pre and postsynaptic components of the dopaminergic system in the HIV-1 transgenic rat (Tg), a well-characterized model of treated HIV+ patients, using small-animal PET imaging. Fifteen to 18 month-old Tg and wild type (WT) rats were imaged with both [18F]-FP-CMT, a dopamine transporter (DAT) ligand (n=16), and [18F]-Fallypride, a D2/D3 dopamine receptor (D2/D3DR) ligand (n=16). Five to 8 month-old Tg and WT rats (n=18) were also imaged with [18F]-FP-CMT. A subset of animals was imaged longitudinally at 7 and 17 months of age. Multiplex immunohistochemistry staining for DAT, tyrosine hydroxylase, D2DR, D3DR , GFAP, Iba1 and NeuN was performed on a subgroup of the scanned animals. [18F]-FP-CMT and [18F]-Fallypride binding potential (BP ND ) values were significantly lower in 15-18 month-old Tg compared to age-matched WT rats (p<0.0001 and 0.001, respectively). [18F]-FP-CMT BP ND values in 5-8 month-old rats, however, were not significantly different. Longitudinal age-related decrease in [18F]-FP-CMT BP ND was exacerbated in the Tg rat. Immunohistochemistry showed decreased staining of dopaminergic markers in Tg rats. Rats with higher serum gp120 had lower mean BP ND values for both ligands. We found presynaptic and postsynaptic dopaminergic dysfunction/loss in older Tg compared to WT rats. We believe this to be related to neurotoxicity of viral proteins present in the Tg rats' serum and brain. Our findings confirm prior reports of neurobehavioral abnormalities suggestive of dopaminergic dysfunction in this model. They also suggest similarities between the Tg rat and HIV+ patients as far as dopaminergic dysfunction. The Tg rat, along with the above-described quantitative PET imaging biomarkers, can have a role in the evaluation of HIV neuroprotective therapies prior to human translation. Published by Elsevier Inc.
A Novel Rodent Model of Posterior Ischemic Optic Neuropathy
Wang, Yan; Brown, Dale P.; Duan, Yuanli; Kong, Wei; Watson, Brant D.; Goldberg, Jeffrey L.
2014-01-01
Objectives To develop a reliable, reproducible rat model of posterior ischemic optic neuropathy (PION) and study the cellular responses in the optic nerve and retina. Methods Posterior ischemic optic neuropathy was induced in adult rats by photochemically induced ischemia. Retinal and optic nerve vasculature was examined by fluorescein isothiocyanate–dextran extravasation. Tissue sectioning and immunohistochemistry were used to investigate the pathologic changes. Retinal ganglion cell survival at different times after PION induction, with or without neurotrophic application, was quantified by fluorogold retrograde labeling. Results Optic nerve injury was confirmed after PION induction, including local vascular leakage, optic nerve edema, and cavernous degeneration. Immunostaining data revealed microglial activation and focal loss of astrocytes, with adjacent astrocytic hypertrophy. Up to 23%, 50%, and 70% retinal ganglion cell loss was observed at 1 week, 2 weeks, and 3 weeks, respectively, after injury compared with a sham control group. Experimental treatment by brain-derived neurotrophic factor and ciliary neurotrophic factor remarkably prevented retinal ganglion cell loss in PION rats. At 3 weeks after injury, more than 40% of retinal ganglion cells were saved by the application of neurotrophic factors. Conclusions Rat PION created by photochemically induced ischemia is a reproducible and reliable animal model for mimicking the key features of human PION. Clinical Relevance The correspondence between the features of this rat PION model to those of human PION makes it an ideal model to study the pathophysiologic course of the disease, most of which remains to be elucidated. Furthermore, it provides an optimal model for testing therapeutic approaches for optic neuropathies. PMID:23544206
Biomechanical models for radial distance determination by the rat vibrissal system.
Birdwell, J Alexander; Solomon, Joseph H; Thajchayapong, Montakan; Taylor, Michael A; Cheely, Matthew; Towal, R Blythe; Conradt, Jorg; Hartmann, Mitra J Z
2007-10-01
Rats use active, rhythmic movements of their whiskers to acquire tactile information about three-dimensional object features. There are no receptors along the length of the whisker; therefore all tactile information must be mechanically transduced back to receptors at the whisker base. This raises the question: how might the rat determine the radial contact position of an object along the whisker? We developed two complementary biomechanical models that show that the rat could determine radial object distance by monitoring the rate of change of moment (or equivalently, the rate of change of curvature) at the whisker base. The first model is used to explore the effects of taper and inherent whisker curvature on whisker deformation and used to predict the shapes of real rat whiskers during deflections at different radial distances. Predicted shapes closely matched experimental measurements. The second model describes the relationship between radial object distance and the rate of change of moment at the base of a tapered, inherently curved whisker. Together, these models can account for recent recordings showing that some trigeminal ganglion (Vg) neurons encode closer radial distances with increased firing rates. The models also suggest that four and only four physical variables at the whisker base -- angular position, angular velocity, moment, and rate of change of moment -- are needed to describe the dynamic state of a whisker. We interpret these results in the context of our evolving hypothesis that neural responses in Vg can be represented using a state-encoding scheme that includes combinations of these four variables.
Szűcs, Edina; Büki, Alexandra; Kékesi, Gabriella; Horváth, Gyöngyi; Benyhe, Sándor
2016-04-21
Schizophrenia is a complex mental health disorder. Clinical reports suggest that many patients with schizophrenia are less sensitive to pain than other individuals. Animal models do not interpret schizophrenia completely, but they can model a number of symptoms of the disease, including decreased pain sensitivities and increased pain thresholds of various modalities. Opioid receptors and endogenous opioid peptides have a substantial role in analgesia. In this biochemical study we investigated changes in the signaling properties of the mu-opioid (MOP) receptor in different brain regions, which are involved in the pain transmission, i.e., thalamus, olfactory bulb, prefrontal cortex and hippocampus. Our goal was to compare the transmembrane signaling mediated by MOP receptors in control rats and in a recently developed rat model of schizophrenia. Regulatory G-protein activation via MOP receptors were measured in [(35)S]GTPγS binding assays in the presence of a highly selective MOP receptor peptide agonist, DAMGO. It was found that the MOP receptor mediated activation of G-proteins was substantially lower in membranes prepared from the 'schizophrenic' model rats than in control animals. The potency of DAMGO to activate MOP receptor was also decreased in all brain regions studied. Taken together in our rat model of schizophrenia, MOP receptor mediated G-proteins have a reduced stimulatory activity compared to membrane preparations taken from control animals. The observed distinct changes of opioid receptor functions in different areas of the brain do not explain the augmented nociceptive threshold described in these animals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Diane, Abdoulaye; Pierce, W David; Kelly, Sandra E; Sokolik, Sharon; Borthwick, Faye; Jacome-Sosa, Miriam; Mangat, Rabban; Pradillo, Jesus Miguel; Allan, Stuart McRae; Ruth, Megan R; Field, Catherine J; Hutcheson, Rebecca; Rocic, Petra; Russell, James C; Vine, Donna F; Proctor, Spencer D
2016-01-01
Obesity and its metabolic complications have emerged as the epidemic of the new millennia. The use of obese rodent models continues to be a productive component of efforts to understand the concomitant metabolic complications of this disease. In 1978, the JCR:LA-cp rat model was developed with an autosomal recessive corpulent ( cp ) trait resulting from a premature stop codon in the extracellular domain of the leptin receptor. Rats that are heterozygous for the cp trait are lean-prone, while those that are homozygous ( cp/cp ) spontaneously display the pathophysiology of obesity as well as a metabolic syndrome (MetS)-like phenotype. Over the years, there have been formidable scientific contributions that have originated from this rat model, much of which has been reviewed extensively up to 2008. The premise of these earlier studies focused on characterizing the pathophysiology of MetS-like phenotype that was spontaneously apparent in this model. The purpose of this review is to highlight areas of recent advancement made possible by this model including; emerging appreciation of the "thrifty gene" hypothesis in the context of obesity, the concept of how chronic inflammation may drive obesogenesis, the impact of acute forms of inflammation to the brain and periphery during chronic obesity, the role of dysfunctional insulin metabolism on lipid metabolism and vascular damage, and the mechanistic basis for altered vascular function as well as novel parallels between the human condition and the female JCR:LA-cp rat as a model for polycystic ovary disease (PCOS).
Vahabzadeh-Hagh, Andrew M.; Muller, Paul A.; Gersner, Roman; Zangen, Abraham; Rotenberg, Alexander
2015-01-01
Objective Transcranial magnetic stimulation (TMS) is a well-established clinical protocol with numerous potential therapeutic and diagnostic applications. Yet, much work remains in the elucidation of TMS mechanisms, optimization of protocols, and in development of novel therapeutic applications. As with many technologies, the key to these issues lies in the proper experimentation and translation of TMS methods to animal models, among which rat models have proven popular. A significant increase in the number of rat TMS publications has necessitated analysis of their relevance to human work. We therefore review the essential principles necessary for the approximation of human TMS protocols in rats as well as specific methods that addressed these issues in published studies. Materials and Methods We performed an English language literature search combined with our own experience and data. We address issues that we see as important in the translation of human TMS methods to rat models and provide a summary of key accomplishments in these areas. Results An extensive literature review illustrated the growth of rodent TMS studies in recent years. Current advances in the translation of single, paired-pulse, and repetitive stimulation paradigms to rodent models are presented. The importance of TMS in the generation of data for preclinical trials is also highlighted. Conclusions Rat TMS has several limitations when considering parallels between animal and human stimulation. However, it has proven to be a useful tool in the field of translational brain stimulation and will likely continue to aid in the design and implementation of stimulation protocols for therapeutic and diagnostic applications. PMID:22780329
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consigny, Paul M., E-mail: paul.consigny@av.abbott.com; Davalian, Dariush, E-mail: dariush.davalian@av.abbott.com; Donn, Rosy, E-mail: rosy.donn@av.abbott.com
Introduction: The recent success of renal denervation in lowering blood pressure in drug-resistant hypertensive patients has stimulated interest in developing novel approaches to renal denervation including local drug/chemical delivery. The purpose of this study was to develop a rat model in which depletion of renal norepinephrine (NE) could be used to determine the efficacy of renal denervation after the delivery of a chemical to the periadventitial space of the renal artery. Methods: Renal denervation was performed on a single renal artery of 90 rats (n = 6 rats/group). The first study determined the time course of renal denervation after surgical stripping ofmore » a renal artery plus the topical application of phenol in alcohol. The second study determined the efficacy of periadventitial delivery of hypertonic saline, guanethidine, and salicylic acid. The final study determined the dose–response relationship for paclitaxel. In all studies, renal NE content was determined by liquid chromatography–mass spectrometry. Results: Renal NE was depleted 3 and 7 days after surgical denervation. Renal NE was also depleted by periadventitial delivery of all agents tested (hypertonic saline, salicylic acid, guanethidine, and paclitaxel). A dose response was observed after the application of 150 μL of 10{sup −5} M through 10{sup −2} M paclitaxel. Conclusion: We developed a rat model in which depletion of renal NE was used to determine the efficacy of renal denervation after perivascular renal artery drug/chemical delivery. We validated this model by demonstrating the efficacy of the neurotoxic agents hypertonic saline, salicylic acid, and guanethidine and increasing doses of paclitaxel.« less
Irwin, David C.; Garat, Chrystelle V.; Crossno, Joseph T.; MacLean, Paul S.; Sullivan, Timothy M.; Erickson, Paul F.; Jackman, Matthew R.; Harral, Julie W.; Reusch, Jane E. B.
2014-01-01
Abstract Obesity is causally linked to a number of comorbidities, including cardiovascular disease, diabetes, renal dysfunction, and cancer. Obesity has also been linked to pulmonary disorders, including pulmonary arterial hypertension (PAH). It was long believed that obesity-related PAH was the result of hypoventilation and hypoxia due to the increased mechanical load of excess body fat. However, in recent years it has been proposed that the metabolic and inflammatory disturbances of obesity may also play a role in the development of PAH. To determine whether PAH develops in obese rats in the absence of hypoxia, we assessed pulmonary hemodynamics and pulmonary artery (PA) structure in the diet-resistant/diet-induced obesity (DR/DIO) and Zucker lean/fatty rat models. We found that high-fat feeding (DR/DIO) or overfeeding (Zucker) elicited PA remodeling, neomuscularization of distal arterioles, and elevated PA pressure, accompanied by right ventricular (RV) hypertrophy. PA thickening and distal neomuscularization were also observed in DIO rats on a low-fat diet. No evidence of hypoventilation or chronic hypoxia was detected in either model, nor was there a correlation between blood glucose or insulin levels and PAH. However, circulating inflammatory cytokine levels were increased with high-fat feeding or calorie overload, and hyperlipidemia and oxidant damage in the PA wall correlated with PAH in the DR/DIO model. We conclude that hyperlipidemia and peripheral inflammation correlate with the development of PAH in obese subjects. Obesity-related inflammation may predispose to PAH even in the absence of hypoxia. PMID:25610600
Novel non-contact retina camera for the rat and its application to dynamic retinal vessel analysis
Link, Dietmar; Strohmaier, Clemens; Seifert, Bernd U.; Riemer, Thomas; Reitsamer, Herbert A.; Haueisen, Jens; Vilser, Walthard
2011-01-01
We present a novel non-invasive and non-contact system for reflex-free retinal imaging and dynamic retinal vessel analysis in the rat. Theoretical analysis was performed prior to development of the new optical design, taking into account the optical properties of the rat eye and its specific illumination and imaging requirements. A novel optical model of the rat eye was developed for use with standard optical design software, facilitating both sequential and non-sequential modes. A retinal camera for the rat was constructed using standard optical and mechanical components. The addition of a customized illumination unit and existing standard software enabled dynamic vessel analysis. Seven-minute in-vivo vessel diameter recordings performed on 9 Brown-Norway rats showed stable readings. On average, the coefficient of variation was (1.1 ± 0.19) % for the arteries and (0.6 ± 0.08) % for the veins. The slope of the linear regression analysis was (0.56 ± 0.26) % for the arteries and (0.15 ± 0.27) % for the veins. In conclusion, the device can be used in basic studies of retinal vessel behavior. PMID:22076270
Guimarães, Francisco S.; Grace, Anthony A.
2015-01-01
Background: Adolescent exposure to cannabinoids in vulnerable individuals is proposed to be a risk factor for psychiatric conditions later in life, particularly schizophrenia. Evidence from studies in animals has indicated that a combination of repeated pubertal cannabinoid administration with either neonatal prefrontocortical lesion, isolation rearing, or chronic NMDA receptor antagonism administration induces enhanced schizophrenia-like behavioral disruptions. The effects of adolescent exposure to CB1 receptor agonists, however, have not been tested in a developmental disruption model of schizophrenia. Methods: This was tested in the methylazoxymethanol (MAM) model, in which repeated treatment with the synthetic cannabinoid agonist WIN 55,212-2 (WIN; 1.2mg/kg) was extended over 25 days throughout puberty (postnatal days 40–65) in control and MAM rats. The rats received 20 injections, which were delivered irregularly to mimic the human condition. Adult rats were tested for attentional set-shifting task and locomotor response to amphetamine, which was compared with in vivo recording from ventral tegmental area (VTA) dopamine (DA) neurons. Results: MAM-treated rats showed impairment in the attentional set-shifting task, augmented locomotor response to amphetamine administration, and an increased number of spontaneously active DA neurons in the VTA. Interestingly, pubertal WIN treatment in normal animals induced similar changes at adulthood as those observed in MAM-treated rats, supporting the notion that adolescence exposure to cannabinoids may represent a risk factor for developing schizophrenia-like signs at adulthood. However, contrary to expectations, pubertal WIN administration did not exacerbate the behavioral and electrophysiological changes in MAM-treated rats beyond that observed in WIN-treated saline rats (Sal). Indeed, WIN treatment actually attenuated the locomotor response to amphetamine in MAM rats without impacting DA neuron activity states. Conclusions: Taken together, the present results indicate that the impact of cannabinoids during puberty/adolescence on schizophrenia models is more complex than may be predicted. PMID:25522381
He, Xiao-Sheng; Xiang, Zhang; Zhou, Fei; Fu, Luo-An; Shuang, Wang
2004-05-01
The study investigated morphologically axonal calcium overloading and its relationship with axonal structural changes. Twelve SD rats were divided into an injury and a sham group. The rat model of traumatic axonal injury (TAI) by lateral head rotation was produced. The oxalate-pyroantimonate technique for calcium localization was used to process the rat's medulla oblongata tissues with thin sections observed electron-microscopically for axonal structure and calcium precipitates on it. The axonal damage in medulla oblongata appeared at 2 h post-injury, gradually became diffuse and severe, and continued to exist at 24 hours. At 2 hours, calcium precipitates were deposited on separated lamellae and axolemma, but were rarely distributed in the axoplasm. At 6 hours, calcium precipitates occurred on separated lamellae and axolemma in much higher density, but on axoplasm in extremely small amounts. Some axons, though lacking structural changes of the myelin sheath, sequestered plenty of calcium deposits on their swollen mitochondria. At 24 hours, damaged axons presented with much more severe lamellae separation and calcium deposits. Axonal calcium overloading developed in rat TAI model using lateral head rotation. This was significantly related to structural damage in the axons. These findings suggest the feasibility of using calcium antagonists in cope the management of human DAI in its very early stage.
Endurance exercise in a rat model of metabolic syndrome.
Cameron, Isabelle; Alam, Mohammad Ashraful; Wang, Jianxiong; Brown, Lindsay
2012-11-01
We have measured the responses to endurance exercise training on body composition and glucose regulation, as well as cardiovascular and liver structure and function in rats fed a high carbohydrate and high fat (HCHF) diet as a model of human metabolic syndrome. Male Wistar rats (9-10 weeks old) were randomly allocated into corn starch (CS) or HCHF diet groups for 16 weeks; half of each group were exercised on a treadmill for 20, 25, and then 30 min/day, 5 days/week, during the last 8 weeks of the protocol. Metabolic, cardiovascular, and liver parameters were monitored. The HCHF diet induced symptoms of metabolic syndrome, including obesity, dyslipidemia, impaired glucose tolerance, and increased systolic blood pressure associated with the development of cardiovascular remodeling and nonalcoholic steatohepatitis. Exercise in HCHF rats decreased body mass, abdominal fat pads and circumference, blood glucose concentrations, plasma lipid profiles, systolic blood pressure, left ventricular diastolic stiffness, collagen deposition and inflammatory cell infiltration in the left ventricle, improved aortic contractile and relaxation responses, and decreased liver mass and hepatic fat accumulation. This study demonstrates that endurance exercise is effective in this rat model of diet-induced metabolic syndrome in improving body composition and glucose regulation, as well as cardiovascular and liver structure and function.
Liu, Di; Liu, Yexin; Chen, Guochun; He, Liyu; Tang, Chengyuan; Wang, Chang; Yang, Danyi; Li, Huiqiong; Dong, Zheng; Liu, Hong
2017-01-01
IgA nephropathy (IgAN) has been considered to be the most frequent form of primary glomerulonephritis that occurs worldwide with a variety of factors involved in its occurrence and development. The impact of autophagy in IgAN, however, remains partially unclear. This study was designed to investigate the effects of rapamycin in an IgAN model. After establishing an IgAN rat model, SD rats were divided into 4 groups: control, control + rapamycin, IgAN, IgAN + rapamycin. Proteinuria and the pathological changes and the level of autophagy of kidney were texted. Identify the expression of phosphorylation and total mammalian target of rapamycin (mTOR) and s6k1 as well as cyclin D1 in the kidney of rats through Western blot and immunohistochemistry. With rapamycin treatment, we observed a significant reduction in the progression of proteinuria as well as alleviation of pathological lesions in IgAN rats. Besides, autophagy was inhibited, while the mTOR/S6k1 pathway was activated and expression of cyclin D1 was increased in IgAN. Rapamycin treatment increased autophagy and decreased the expression of cyclin D1. These results may suggest that mTOR-mediated autophagy inhibition may result in mesangial cell proliferation in IgAN. © 2017 S. Karger AG, Basel.
Fung, Man-Lung; Liong, Emily C.; Chang, Raymond Chuen Chung; Ching, Yick-Pang; Tipoe, George L.
2013-01-01
Our previous study demonstrated that administration of garlic-derived antioxidant S-allylmercaptocysteine (SAMC) ameliorated hepatic injury in a nonalcoholic fatty liver disease (NAFLD) rat model. Our present study aimed to investigate the mechanism of SAMC on NAFLD-induced hepatic apoptosis and autophagy. Adult female rats were fed with a high-fat diet for 8 weeks to develop NAFLD with or without intraperitoneal injection of 200 mg/kg SAMC for three times per week. During NAFLD development, increased apoptotic cells and caspase-3 activation were observed in the liver. Increased apoptosis was modulated through both intrinsic and extrinsic apoptotic pathways. NAFLD treatment also enhanced the expression of key autophagic markers in the liver with reduced activity of LKB1/AMPK and PI3K/Akt pathways. Increased expression of proapoptotic regulator p53 and decreased activity of antiautophagic regulator mTOR were also observed. Administration of SAMC reduced the number of apoptotic cells through downregulation of both intrinsic and extrinsic apoptotic mechanisms. SAMC also counteracted the effects of NAFLD on LKB1/AMPK and PI3K/Akt pathways. Treatment with SAMC further enhanced hepatic autophagy by regulating autophagic markers and mTOR activity. In conclusion, administration of SAMC during NAFLD development in rats protects the liver from chronic injury by reducing apoptosis and enhancing autophagy. PMID:23861709
Liu, Xu-hua; Chen, Yu; Wang, Tai-ling; Lu, Jun; Zhang, Li-jie; Song, Chen-zhao; Zhang, Jing; Duan, Zhong-ping
2007-10-01
To establish a practical and reproducible animal model of human acute-on-chronic liver failure for further study of the pathophysiological mechanism of acute-on-chronic liver failure and for drug screening and evaluation in its treatment. Immunological hepatic fibrosis was induced by human serum albumin in Wistar rats. In rats with early-stage cirrhosis (fibrosis stage IV), D-galactosamine and lipopolysaccharide were administered. Mortality and survival time were recorded in 20 rats. Ten rats were sacrificed at 4, 8, and 12 hours. Liver function tests and plasma cytokine levels were measured after D-galactosamine/lipopolysaccharide administration and liver pathology was studied. Cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Most of the rats treated with human albumin developed cirrhosis and fibrosis, and 90% of them died from acute liver failure after administration of D-galactosamine/lipopolysaccharide, with a mean survival time of (16.1+/-3.7) hours. Liver histopathology showed massive or submassive necrosis of the regenerated nodules, while fibrosis septa were intact. Liver function tests were compatible with massive necrosis of hepatocytes. Plasma level of TNFalpha increased significantly, parallel with the degree of the hepatocytes apoptosis. Plasma IL-10 levels increased similarly as seen in patients with acute-on-chronic liver failure. We established an animal model of acute-on-chronic liver failure by treating rats with human serum albumin and later with D-galactosamine and lipopolysaccharide. TNFalpha-mediated liver cell apoptoses plays a very important role in the pathogenesis of acute liver failure.