Køppe, Simo; Dammeyer, Jesper
2014-09-01
The evolution of developmental psychology has been characterized by the use of different quantitative and qualitative methods and procedures. But how does the use of methods and procedures change over time? This study explores the change and development of statistical methods used in articles published in Child Development from 1930 to 2010. The methods used in every article in the first issue of every volume were categorized into four categories. Until 1980 relatively simple statistical methods were used. During the last 30 years there has been an explosive use of more advanced statistical methods employed. The absence of statistical methods or use of simple methods had been eliminated.
Development of a Research Methods and Statistics Concept Inventory
ERIC Educational Resources Information Center
Veilleux, Jennifer C.; Chapman, Kate M.
2017-01-01
Research methods and statistics are core courses in the undergraduate psychology major. To assess learning outcomes, it would be useful to have a measure that assesses research methods and statistical literacy beyond course grades. In two studies, we developed and provided initial validation results for a research methods and statistical knowledge…
Meta-analysis and The Cochrane Collaboration: 20 years of the Cochrane Statistical Methods Group
2013-01-01
The Statistical Methods Group has played a pivotal role in The Cochrane Collaboration over the past 20 years. The Statistical Methods Group has determined the direction of statistical methods used within Cochrane reviews, developed guidance for these methods, provided training, and continued to discuss and consider new and controversial issues in meta-analysis. The contribution of Statistical Methods Group members to the meta-analysis literature has been extensive and has helped to shape the wider meta-analysis landscape. In this paper, marking the 20th anniversary of The Cochrane Collaboration, we reflect on the history of the Statistical Methods Group, beginning in 1993 with the identification of aspects of statistical synthesis for which consensus was lacking about the best approach. We highlight some landmark methodological developments that Statistical Methods Group members have contributed to in the field of meta-analysis. We discuss how the Group implements and disseminates statistical methods within The Cochrane Collaboration. Finally, we consider the importance of robust statistical methodology for Cochrane systematic reviews, note research gaps, and reflect on the challenges that the Statistical Methods Group faces in its future direction. PMID:24280020
Houts, Carrie R; Edwards, Michael C; Wirth, R J; Deal, Linda S
2016-11-01
There has been a notable increase in the advocacy of using small-sample designs as an initial quantitative assessment of item and scale performance during the scale development process. This is particularly true in the development of clinical outcome assessments (COAs), where Rasch analysis has been advanced as an appropriate statistical tool for evaluating the developing COAs using a small sample. We review the benefits such methods are purported to offer from both a practical and statistical standpoint and detail several problematic areas, including both practical and statistical theory concerns, with respect to the use of quantitative methods, including Rasch-consistent methods, with small samples. The feasibility of obtaining accurate information and the potential negative impacts of misusing large-sample statistical methods with small samples during COA development are discussed.
Development of a Predictive Corrosion Model Using Locality-Specific Corrosion Indices
2017-09-12
6 3.2.1 Statistical data analysis methods ...6 3.2.2 Algorithm development method ...components, and method ) were compiled into an executable program that uses mathematical models of materials degradation, and statistical calcula- tions
Development and application of a statistical quality assessment method for dense-graded mixes.
DOT National Transportation Integrated Search
2004-08-01
This report describes the development of the statistical quality assessment method and the procedure for mapping the measures obtained from the quality assessment method to a composite pay factor. The application to dense-graded mixes is demonstrated...
A Selective Overview of Variable Selection in High Dimensional Feature Space
Fan, Jianqing
2010-01-01
High dimensional statistical problems arise from diverse fields of scientific research and technological development. Variable selection plays a pivotal role in contemporary statistical learning and scientific discoveries. The traditional idea of best subset selection methods, which can be regarded as a specific form of penalized likelihood, is computationally too expensive for many modern statistical applications. Other forms of penalized likelihood methods have been successfully developed over the last decade to cope with high dimensionality. They have been widely applied for simultaneously selecting important variables and estimating their effects in high dimensional statistical inference. In this article, we present a brief account of the recent developments of theory, methods, and implementations for high dimensional variable selection. What limits of the dimensionality such methods can handle, what the role of penalty functions is, and what the statistical properties are rapidly drive the advances of the field. The properties of non-concave penalized likelihood and its roles in high dimensional statistical modeling are emphasized. We also review some recent advances in ultra-high dimensional variable selection, with emphasis on independence screening and two-scale methods. PMID:21572976
Guidelines 13 and 14—Prediction uncertainty
Hill, Mary C.; Tiedeman, Claire
2005-01-01
An advantage of using optimization for model development and calibration is that optimization provides methods for evaluating and quantifying prediction uncertainty. Both deterministic and statistical methods can be used. Guideline 13 discusses using regression and post-audits, which we classify as deterministic methods. Guideline 14 discusses inferential statistics and Monte Carlo methods, which we classify as statistical methods.
Statistical Methodologies to Integrate Experimental and Computational Research
NASA Technical Reports Server (NTRS)
Parker, P. A.; Johnson, R. T.; Montgomery, D. C.
2008-01-01
Development of advanced algorithms for simulating engine flow paths requires the integration of fundamental experiments with the validation of enhanced mathematical models. In this paper, we provide an overview of statistical methods to strategically and efficiently conduct experiments and computational model refinement. Moreover, the integration of experimental and computational research efforts is emphasized. With a statistical engineering perspective, scientific and engineering expertise is combined with statistical sciences to gain deeper insights into experimental phenomenon and code development performance; supporting the overall research objectives. The particular statistical methods discussed are design of experiments, response surface methodology, and uncertainty analysis and planning. Their application is illustrated with a coaxial free jet experiment and a turbulence model refinement investigation. Our goal is to provide an overview, focusing on concepts rather than practice, to demonstrate the benefits of using statistical methods in research and development, thereby encouraging their broader and more systematic application.
Recent statistical methods for orientation data
NASA Technical Reports Server (NTRS)
Batschelet, E.
1972-01-01
The application of statistical methods for determining the areas of animal orientation and navigation are discussed. The method employed is limited to the two-dimensional case. Various tests for determining the validity of the statistical analysis are presented. Mathematical models are included to support the theoretical considerations and tables of data are developed to show the value of information obtained by statistical analysis.
Pathway analysis with next-generation sequencing data.
Zhao, Jinying; Zhu, Yun; Boerwinkle, Eric; Xiong, Momiao
2015-04-01
Although pathway analysis methods have been developed and successfully applied to association studies of common variants, the statistical methods for pathway-based association analysis of rare variants have not been well developed. Many investigators observed highly inflated false-positive rates and low power in pathway-based tests of association of rare variants. The inflated false-positive rates and low true-positive rates of the current methods are mainly due to their lack of ability to account for gametic phase disequilibrium. To overcome these serious limitations, we develop a novel statistic that is based on the smoothed functional principal component analysis (SFPCA) for pathway association tests with next-generation sequencing data. The developed statistic has the ability to capture position-level variant information and account for gametic phase disequilibrium. By intensive simulations, we demonstrate that the SFPCA-based statistic for testing pathway association with either rare or common or both rare and common variants has the correct type 1 error rates. Also the power of the SFPCA-based statistic and 22 additional existing statistics are evaluated. We found that the SFPCA-based statistic has a much higher power than other existing statistics in all the scenarios considered. To further evaluate its performance, the SFPCA-based statistic is applied to pathway analysis of exome sequencing data in the early-onset myocardial infarction (EOMI) project. We identify three pathways significantly associated with EOMI after the Bonferroni correction. In addition, our preliminary results show that the SFPCA-based statistic has much smaller P-values to identify pathway association than other existing methods.
NASA Astrophysics Data System (ADS)
Ghannadpour, Seyyed Saeed; Hezarkhani, Ardeshir
2016-03-01
The U-statistic method is one of the most important structural methods to separate the anomaly from the background. It considers the location of samples and carries out the statistical analysis of the data without judging from a geochemical point of view and tries to separate subpopulations and determine anomalous areas. In the present study, to use U-statistic method in three-dimensional (3D) condition, U-statistic is applied on the grade of two ideal test examples, by considering sample Z values (elevation). So far, this is the first time that this method has been applied on a 3D condition. To evaluate the performance of 3D U-statistic method and in order to compare U-statistic with one non-structural method, the method of threshold assessment based on median and standard deviation (MSD method) is applied on the two example tests. Results show that the samples indicated by U-statistic method as anomalous are more regular and involve less dispersion than those indicated by the MSD method. So that, according to the location of anomalous samples, denser areas of them can be determined as promising zones. Moreover, results show that at a threshold of U = 0, the total error of misclassification for U-statistic method is much smaller than the total error of criteria of bar {x}+n× s. Finally, 3D model of two test examples for separating anomaly from background using 3D U-statistic method is provided. The source code for a software program, which was developed in the MATLAB programming language in order to perform the calculations of the 3D U-spatial statistic method, is additionally provided. This software is compatible with all the geochemical varieties and can be used in similar exploration projects.
NASA Astrophysics Data System (ADS)
Wang, Dong
2016-03-01
Gears are the most commonly used components in mechanical transmission systems. Their failures may cause transmission system breakdown and result in economic loss. Identification of different gear crack levels is important to prevent any unexpected gear failure because gear cracks lead to gear tooth breakage. Signal processing based methods mainly require expertize to explain gear fault signatures which is usually not easy to be achieved by ordinary users. In order to automatically identify different gear crack levels, intelligent gear crack identification methods should be developed. The previous case studies experimentally proved that K-nearest neighbors based methods exhibit high prediction accuracies for identification of 3 different gear crack levels under different motor speeds and loads. In this short communication, to further enhance prediction accuracies of existing K-nearest neighbors based methods and extend identification of 3 different gear crack levels to identification of 5 different gear crack levels, redundant statistical features are constructed by using Daubechies 44 (db44) binary wavelet packet transform at different wavelet decomposition levels, prior to the use of a K-nearest neighbors method. The dimensionality of redundant statistical features is 620, which provides richer gear fault signatures. Since many of these statistical features are redundant and highly correlated with each other, dimensionality reduction of redundant statistical features is conducted to obtain new significant statistical features. At last, the K-nearest neighbors method is used to identify 5 different gear crack levels under different motor speeds and loads. A case study including 3 experiments is investigated to demonstrate that the developed method provides higher prediction accuracies than the existing K-nearest neighbors based methods for recognizing different gear crack levels under different motor speeds and loads. Based on the new significant statistical features, some other popular statistical models including linear discriminant analysis, quadratic discriminant analysis, classification and regression tree and naive Bayes classifier, are compared with the developed method. The results show that the developed method has the highest prediction accuracies among these statistical models. Additionally, selection of the number of new significant features and parameter selection of K-nearest neighbors are thoroughly investigated.
Development of hi-resolution regional climate scenarios in Japan by statistical downscaling
NASA Astrophysics Data System (ADS)
Dairaku, K.
2016-12-01
Climate information and services for Impacts, Adaptation and Vulnerability (IAV) Assessments are of great concern. To meet with the needs of stakeholders such as local governments, a Japan national project, Social Implementation Program on Climate Change Adaptation Technology (SI-CAT), launched in December 2015. It develops reliable technologies for near-term climate change predictions. Multi-model ensemble regional climate scenarios with 1km horizontal grid-spacing over Japan are developed by using CMIP5 GCMs and a statistical downscaling method to support various municipal adaptation measures appropriate for possible regional climate changes. A statistical downscaling method, Bias Correction Spatial Disaggregation (BCSD), is employed to develop regional climate scenarios based on CMIP5 RCP8.5 five GCMs (MIROC5, MRI-CGCM3, GFDL-CM3, CSIRO-Mk3-6-0, HadGEM2-ES) for the periods of historical climate (1970-2005) and near future climate (2020-2055). Downscaled variables are monthly/daily precipitation and temperature. File format is NetCDF4 (conforming to CF1.6, HDF5 compression). Developed regional climate scenarios will be expanded to meet with needs of stakeholders and interface applications to access and download the data are under developing. Statistical downscaling method is not necessary to well represent locally forced nonlinear phenomena, extreme events such as heavy rain, heavy snow, etc. To complement the statistical method, dynamical downscaling approach is also combined and applied to some specific regions which have needs of stakeholders. The added values of statistical/dynamical downscaling methods compared with parent GCMs are investigated.
Advances in Statistical Methods for Substance Abuse Prevention Research
MacKinnon, David P.; Lockwood, Chondra M.
2010-01-01
The paper describes advances in statistical methods for prevention research with a particular focus on substance abuse prevention. Standard analysis methods are extended to the typical research designs and characteristics of the data collected in prevention research. Prevention research often includes longitudinal measurement, clustering of data in units such as schools or clinics, missing data, and categorical as well as continuous outcome variables. Statistical methods to handle these features of prevention data are outlined. Developments in mediation, moderation, and implementation analysis allow for the extraction of more detailed information from a prevention study. Advancements in the interpretation of prevention research results include more widespread calculation of effect size and statistical power, the use of confidence intervals as well as hypothesis testing, detailed causal analysis of research findings, and meta-analysis. The increased availability of statistical software has contributed greatly to the use of new methods in prevention research. It is likely that the Internet will continue to stimulate the development and application of new methods. PMID:12940467
HYPOTHESIS SETTING AND ORDER STATISTIC FOR ROBUST GENOMIC META-ANALYSIS.
Song, Chi; Tseng, George C
2014-01-01
Meta-analysis techniques have been widely developed and applied in genomic applications, especially for combining multiple transcriptomic studies. In this paper, we propose an order statistic of p-values ( r th ordered p-value, rOP) across combined studies as the test statistic. We illustrate different hypothesis settings that detect gene markers differentially expressed (DE) "in all studies", "in the majority of studies", or "in one or more studies", and specify rOP as a suitable method for detecting DE genes "in the majority of studies". We develop methods to estimate the parameter r in rOP for real applications. Statistical properties such as its asymptotic behavior and a one-sided testing correction for detecting markers of concordant expression changes are explored. Power calculation and simulation show better performance of rOP compared to classical Fisher's method, Stouffer's method, minimum p-value method and maximum p-value method under the focused hypothesis setting. Theoretically, rOP is found connected to the naïve vote counting method and can be viewed as a generalized form of vote counting with better statistical properties. The method is applied to three microarray meta-analysis examples including major depressive disorder, brain cancer and diabetes. The results demonstrate rOP as a more generalizable, robust and sensitive statistical framework to detect disease-related markers.
ERIC Educational Resources Information Center
Idris, Khairiani; Yang, Kai-Lin
2017-01-01
This article reports the results of a mixed-methods approach to develop and validate an instrument to measure Indonesian pre-service teachers' conceptions of statistics. First, a phenomenographic study involving a sample of 44 participants uncovered six categories of conceptions of statistics. Second, an instrument of conceptions of statistics was…
An adaptive state of charge estimation approach for lithium-ion series-connected battery system
NASA Astrophysics Data System (ADS)
Peng, Simin; Zhu, Xuelai; Xing, Yinjiao; Shi, Hongbing; Cai, Xu; Pecht, Michael
2018-07-01
Due to the incorrect or unknown noise statistics of a battery system and its cell-to-cell variations, state of charge (SOC) estimation of a lithium-ion series-connected battery system is usually inaccurate or even divergent using model-based methods, such as extended Kalman filter (EKF) and unscented Kalman filter (UKF). To resolve this problem, an adaptive unscented Kalman filter (AUKF) based on a noise statistics estimator and a model parameter regulator is developed to accurately estimate the SOC of a series-connected battery system. An equivalent circuit model is first built based on the model parameter regulator that illustrates the influence of cell-to-cell variation on the battery system. A noise statistics estimator is then used to attain adaptively the estimated noise statistics for the AUKF when its prior noise statistics are not accurate or exactly Gaussian. The accuracy and effectiveness of the SOC estimation method is validated by comparing the developed AUKF and UKF when model and measurement statistics noises are inaccurate, respectively. Compared with the UKF and EKF, the developed method shows the highest SOC estimation accuracy.
ERIC Educational Resources Information Center
Petocz, Peter; Sowey, Eric
2008-01-01
In this article, the authors focus on hypothesis testing--that peculiarly statistical way of deciding things. Statistical methods for testing hypotheses were developed in the 1920s and 1930s by some of the most famous statisticians, in particular Ronald Fisher, Jerzy Neyman and Egon Pearson, who laid the foundations of almost all modern methods of…
2015-03-26
to my reader, Lieutenant Colonel Robert Overstreet, for helping solidify my research, coaching me through the statistical analysis, and positive...61 Descriptive Statistics .............................................................................................................. 61...common-method bias requires careful assessment of potential sources of bias and implementing procedural and statistical control methods. Podsakoff
Morbey, Roger A; Elliot, Alex J; Charlett, Andre; Andrews, Nick; Verlander, Neville Q; Ibbotson, Sue; Smith, Gillian E
2015-06-01
Prior to the 2012 London Olympic and Paralympic Games, new statistical methods had to be developed for the enhanced syndromic surveillance during the Games. Different methods were developed depending on whether or not historical data were available. Practical solutions were needed to cope with the required daily reporting and data quality issues. During the Games, nearly 4800 signals were tested on average each day, generating statistical alarms that were assessed to provide information on areas of potential public health concern and reassurance that no major adverse incident had occurred. spjhi;21/2/159/FIG41460458213517577 F1 fig4-1460458213517577. © The Author(s) 2013.
School District Enrollment Projections: A Comparison of Three Methods.
ERIC Educational Resources Information Center
Pettibone, Timothy J.; Bushan, Latha
This study assesses three methods of forecasting school enrollments: the cohort-sruvival method (grade progression), the statistical forecasting procedure developed by the Statistical Analysis System (SAS) Institute, and a simple ratio computation. The three methods were used to forecast school enrollments for kindergarten through grade 12 in a…
Proceedings, Seminar on Probabilistic Methods in Geotechnical Engineering
NASA Astrophysics Data System (ADS)
Hynes-Griffin, M. E.; Buege, L. L.
1983-09-01
Contents: Applications of Probabilistic Methods in Geotechnical Engineering; Probabilistic Seismic and Geotechnical Evaluation at a Dam Site; Probabilistic Slope Stability Methodology; Probability of Liquefaction in a 3-D Soil Deposit; Probabilistic Design of Flood Levees; Probabilistic and Statistical Methods for Determining Rock Mass Deformability Beneath Foundations: An Overview; Simple Statistical Methodology for Evaluating Rock Mechanics Exploration Data; New Developments in Statistical Techniques for Analyzing Rock Slope Stability.
An instrument to assess the statistical intensity of medical research papers.
Nieminen, Pentti; Virtanen, Jorma I; Vähänikkilä, Hannu
2017-01-01
There is widespread evidence that statistical methods play an important role in original research articles, especially in medical research. The evaluation of statistical methods and reporting in journals suffers from a lack of standardized methods for assessing the use of statistics. The objective of this study was to develop and evaluate an instrument to assess the statistical intensity in research articles in a standardized way. A checklist-type measure scale was developed by selecting and refining items from previous reports about the statistical contents of medical journal articles and from published guidelines for statistical reporting. A total of 840 original medical research articles that were published between 2007-2015 in 16 journals were evaluated to test the scoring instrument. The total sum of all items was used to assess the intensity between sub-fields and journals. Inter-rater agreement was examined using a random sample of 40 articles. Four raters read and evaluated the selected articles using the developed instrument. The scale consisted of 66 items. The total summary score adequately discriminated between research articles according to their study design characteristics. The new instrument could also discriminate between journals according to their statistical intensity. The inter-observer agreement measured by the ICC was 0.88 between all four raters. Individual item analysis showed very high agreement between the rater pairs, the percentage agreement ranged from 91.7% to 95.2%. A reliable and applicable instrument for evaluating the statistical intensity in research papers was developed. It is a helpful tool for comparing the statistical intensity between sub-fields and journals. The novel instrument may be applied in manuscript peer review to identify papers in need of additional statistical review.
Towards sound epistemological foundations of statistical methods for high-dimensional biology.
Mehta, Tapan; Tanik, Murat; Allison, David B
2004-09-01
A sound epistemological foundation for biological inquiry comes, in part, from application of valid statistical procedures. This tenet is widely appreciated by scientists studying the new realm of high-dimensional biology, or 'omic' research, which involves multiplicity at unprecedented scales. Many papers aimed at the high-dimensional biology community describe the development or application of statistical techniques. The validity of many of these is questionable, and a shared understanding about the epistemological foundations of the statistical methods themselves seems to be lacking. Here we offer a framework in which the epistemological foundation of proposed statistical methods can be evaluated.
77 FR 53889 - Statement of Organization, Functions, and Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-04
..., methods, and statistical procedures for assessing and monitoring the health of communities and measuring... methods and the Community Guide, and coordinates division responses to requests for technical assistance...-federal partners in developing indicators, methods, and statistical procedures for measuring and reporting...
Baghi, Heibatollah; Kornides, Melanie L.
2014-01-01
Background Health care professionals require some understanding of statistics to successfully implement evidence based practice. Developing competency in statistical reasoning is necessary for students training in health care administration, research, and clinical care. Recently, the interest in healthcare professional's attitudes toward statistics has increased substantially due to evidence that these attitudes can hinder professionalism developing an understanding of statistical concepts. Methods In this study, we analyzed pre- and post-instruction attitudes towards and knowledge of statistics obtained from health science graduate students, including nurses and nurse practitioners, enrolled in an introductory graduate course in statistics (n = 165). Results and Conclusions Results show that the students already held generally positive attitudes toward statistics at the beginning of course. However, these attitudes—along with the students’ statistical proficiency—improved after 10 weeks of instruction. The results have implications for curriculum design and delivery methods as well as for health professionals’ effective use of statistics in critically evaluating and utilizing research in their practices. PMID:25419256
LaBudde, Robert A; Harnly, James M
2012-01-01
A qualitative botanical identification method (BIM) is an analytical procedure that returns a binary result (1 = Identified, 0 = Not Identified). A BIM may be used by a buyer, manufacturer, or regulator to determine whether a botanical material being tested is the same as the target (desired) material, or whether it contains excessive nontarget (undesirable) material. The report describes the development and validation of studies for a BIM based on the proportion of replicates identified, or probability of identification (POI), as the basic observed statistic. The statistical procedures proposed for data analysis follow closely those of the probability of detection, and harmonize the statistical concepts and parameters between quantitative and qualitative method validation. Use of POI statistics also harmonizes statistical concepts for botanical, microbiological, toxin, and other analyte identification methods that produce binary results. The POI statistical model provides a tool for graphical representation of response curves for qualitative methods, reporting of descriptive statistics, and application of performance requirements. Single collaborator and multicollaborative study examples are given.
Estimating the proportion of true null hypotheses when the statistics are discrete.
Dialsingh, Isaac; Austin, Stefanie R; Altman, Naomi S
2015-07-15
In high-dimensional testing problems π0, the proportion of null hypotheses that are true is an important parameter. For discrete test statistics, the P values come from a discrete distribution with finite support and the null distribution may depend on an ancillary statistic such as a table margin that varies among the test statistics. Methods for estimating π0 developed for continuous test statistics, which depend on a uniform or identical null distribution of P values, may not perform well when applied to discrete testing problems. This article introduces a number of π0 estimators, the regression and 'T' methods that perform well with discrete test statistics and also assesses how well methods developed for or adapted from continuous tests perform with discrete tests. We demonstrate the usefulness of these estimators in the analysis of high-throughput biological RNA-seq and single-nucleotide polymorphism data. implemented in R. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Hayat, Matthew J.; Powell, Amanda; Johnson, Tessa; Cadwell, Betsy L.
2017-01-01
Statistical literacy and knowledge is needed to read and understand the public health literature. The purpose of this study was to quantify basic and advanced statistical methods used in public health research. We randomly sampled 216 published articles from seven top tier general public health journals. Studies were reviewed by two readers and a standardized data collection form completed for each article. Data were analyzed with descriptive statistics and frequency distributions. Results were summarized for statistical methods used in the literature, including descriptive and inferential statistics, modeling, advanced statistical techniques, and statistical software used. Approximately 81.9% of articles reported an observational study design and 93.1% of articles were substantively focused. Descriptive statistics in table or graphical form were reported in more than 95% of the articles, and statistical inference reported in more than 76% of the studies reviewed. These results reveal the types of statistical methods currently used in the public health literature. Although this study did not obtain information on what should be taught, information on statistical methods being used is useful for curriculum development in graduate health sciences education, as well as making informed decisions about continuing education for public health professionals. PMID:28591190
Hayat, Matthew J; Powell, Amanda; Johnson, Tessa; Cadwell, Betsy L
2017-01-01
Statistical literacy and knowledge is needed to read and understand the public health literature. The purpose of this study was to quantify basic and advanced statistical methods used in public health research. We randomly sampled 216 published articles from seven top tier general public health journals. Studies were reviewed by two readers and a standardized data collection form completed for each article. Data were analyzed with descriptive statistics and frequency distributions. Results were summarized for statistical methods used in the literature, including descriptive and inferential statistics, modeling, advanced statistical techniques, and statistical software used. Approximately 81.9% of articles reported an observational study design and 93.1% of articles were substantively focused. Descriptive statistics in table or graphical form were reported in more than 95% of the articles, and statistical inference reported in more than 76% of the studies reviewed. These results reveal the types of statistical methods currently used in the public health literature. Although this study did not obtain information on what should be taught, information on statistical methods being used is useful for curriculum development in graduate health sciences education, as well as making informed decisions about continuing education for public health professionals.
ERIC Educational Resources Information Center
Jacob, Bridgette L.
2013-01-01
The difficulties introductory statistics students have with formal statistical inference are well known in the field of statistics education. "Informal" statistical inference has been studied as a means to introduce inferential reasoning well before and without the formalities of formal statistical inference. This mixed methods study…
Powerlaw: a Python package for analysis of heavy-tailed distributions.
Alstott, Jeff; Bullmore, Ed; Plenz, Dietmar
2014-01-01
Power laws are theoretically interesting probability distributions that are also frequently used to describe empirical data. In recent years, effective statistical methods for fitting power laws have been developed, but appropriate use of these techniques requires significant programming and statistical insight. In order to greatly decrease the barriers to using good statistical methods for fitting power law distributions, we developed the powerlaw Python package. This software package provides easy commands for basic fitting and statistical analysis of distributions. Notably, it also seeks to support a variety of user needs by being exhaustive in the options available to the user. The source code is publicly available and easily extensible.
ERIC Educational Resources Information Center
Hayashi, Atsuhiro
Both the Rule Space Method (RSM) and the Neural Network Model (NNM) are techniques of statistical pattern recognition and classification approaches developed for applications from different fields. RSM was developed in the domain of educational statistics. It started from the use of an incidence matrix Q that characterizes the underlying cognitive…
STATISTICAL ANALYSIS OF SNAP 10A THERMOELECTRIC CONVERTER ELEMENT PROCESS DEVELOPMENT VARIABLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitch, S.H.; Morris, J.W.
1962-12-15
Statistical analysis, primarily analysis of variance, was applied to evaluate several factors involved in the development of suitable fabrication and processing techniques for the production of lead telluride thermoelectric elements for the SNAP 10A energy conversion system. The analysis methods are described as to their application for determining the effects of various processing steps, estabIishing the value of individual operations, and evaluating the significance of test results. The elimination of unnecessary or detrimental processing steps was accomplished and the number of required tests was substantially reduced by application of these statistical methods to the SNAP 10A production development effort. (auth)
NASA Astrophysics Data System (ADS)
Steiner, Matthias
A statistically proven, series injection molding technique for ceramic components was developed for the construction of engines and gas turbines. The flow behavior of silicon injection-molding materials was characterized and improved. Hot-isostatic-pressing reaction bonded silicon nitride (HIPRBSN) was developed. A nondestructive component evaluation method was developed. An injection molding line for HIPRBSN engine components precombustion chamber, flame spreader, and valve guide was developed. This line allows the production of small series for engine tests.
Version 2.0 Visual Sample Plan (VSP): UXO Module Code Description and Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Richard O.; Wilson, John E.; O'Brien, Robert F.
2003-05-06
The Pacific Northwest National Laboratory (PNNL) is developing statistical methods for determining the amount of geophysical surveys conducted along transects (swaths) that are needed to achieve specified levels of confidence of finding target areas (TAs) of anomalous readings and possibly unexploded ordnance (UXO) at closed, transferring and transferred (CTT) Department of Defense (DoD) ranges and other sites. The statistical methods developed by PNNL have been coded into the UXO module of the Visual Sample Plan (VSP) software code that is being developed by PNNL with support from the DoD, the U.S. Department of Energy (DOE, and the U.S. Environmental Protectionmore » Agency (EPA). (The VSP software and VSP Users Guide (Hassig et al, 2002) may be downloaded from http://dqo.pnl.gov/vsp.) This report describes and documents the statistical methods developed and the calculations and verification testing that have been conducted to verify that VSPs implementation of these methods is correct and accurate.« less
The Shock and Vibration Bulletin. Part 2. Invited Papers, Structural Dynamics
1974-08-01
VIKING LANDER DYNAMICS 41 Mr. Joseph C. Pohlen, Martin Marietta Aerospace, Denver, Colorado Structural Dynamics PERFORMANCE OF STATISTICAL ENERGY ANALYSIS 47...aerospace structures. Analytical prediction of these environments is beyond the current scope of classical modal techniques. Statistical energy analysis methods...have been developed that circumvent the difficulties of high-frequency nodal analysis. These statistical energy analysis methods are evaluated
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Richard O.; O'Brien, Robert F.; Wilson, John E.
2003-09-01
It may not be feasible to completely survey large tracts of land suspected of containing minefields. It is desirable to develop a characterization protocol that will confidently identify minefields within these large land tracts if they exist. Naturally, surveying areas of greatest concern and most likely locations would be necessary but will not provide the needed confidence that an unknown minefield had not eluded detection. Once minefields are detected, methods are needed to bound the area that will require detailed mine detection surveys. The US Department of Defense Strategic Environmental Research and Development Program (SERDP) is sponsoring the development ofmore » statistical survey methods and tools for detecting potential UXO targets. These methods may be directly applicable to demining efforts. Statistical methods are employed to determine the optimal geophysical survey transect spacing to have confidence of detecting target areas of a critical size, shape, and anomaly density. Other methods under development determine the proportion of a land area that must be surveyed to confidently conclude that there are no UXO present. Adaptive sampling schemes are also being developed as an approach for bounding the target areas. These methods and tools will be presented and the status of relevant research in this area will be discussed.« less
Statistical methods in personality assessment research.
Schinka, J A; LaLone, L; Broeckel, J A
1997-06-01
Emerging models of personality structure and advances in the measurement of personality and psychopathology suggest that research in personality and personality assessment has entered a stage of advanced development, in this article we examine whether researchers in these areas have taken advantage of new and evolving statistical procedures. We conducted a review of articles published in the Journal of Personality, Assessment during the past 5 years. Of the 449 articles that included some form of data analysis, 12.7% used only descriptive statistics, most employed only univariate statistics, and fewer than 10% used multivariate methods of data analysis. We discuss the cost of using limited statistical methods, the possible reasons for the apparent reluctance to employ advanced statistical procedures, and potential solutions to this technical shortcoming.
[Statistical analysis of German radiologic periodicals: developmental trends in the last 10 years].
Golder, W
1999-09-01
To identify which statistical tests are applied in German radiological publications, to what extent their use has changed during the last decade, and which factors might be responsible for this development. The major articles published in "ROFO" and "DER RADIOLOGE" during 1988, 1993 and 1998 were reviewed for statistical content. The contributions were classified by principal focus and radiological subspecialty. The methods used were assigned to descriptive, basal and advanced statistics. Sample size, significance level and power were established. The use of experts' assistance was monitored. Finally, we calculated the so-called cumulative accessibility of the publications. 525 contributions were found to be eligible. In 1988, 87% used descriptive statistics only, 12.5% basal, and 0.5% advanced statistics. The corresponding figures in 1993 and 1998 are 62 and 49%, 32 and 41%, and 6 and 10%, respectively. Statistical techniques were most likely to be used in research on musculoskeletal imaging and articles dedicated to MRI. Six basic categories of statistical methods account for the complete statistical analysis appearing in 90% of the articles. ROC analysis is the single most common advanced technique. Authors make increasingly use of statistical experts' opinion and programs. During the last decade, the use of statistical methods in German radiological journals has fundamentally improved, both quantitatively and qualitatively. Presently, advanced techniques account for 20% of the pertinent statistical tests. This development seems to be promoted by the increasing availability of statistical analysis software.
Mapping Quantitative Traits in Unselected Families: Algorithms and Examples
Dupuis, Josée; Shi, Jianxin; Manning, Alisa K.; Benjamin, Emelia J.; Meigs, James B.; Cupples, L. Adrienne; Siegmund, David
2009-01-01
Linkage analysis has been widely used to identify from family data genetic variants influencing quantitative traits. Common approaches have both strengths and limitations. Likelihood ratio tests typically computed in variance component analysis can accommodate large families but are highly sensitive to departure from normality assumptions. Regression-based approaches are more robust but their use has primarily been restricted to nuclear families. In this paper, we develop methods for mapping quantitative traits in moderately large pedigrees. Our methods are based on the score statistic which in contrast to the likelihood ratio statistic, can use nonparametric estimators of variability to achieve robustness of the false positive rate against departures from the hypothesized phenotypic model. Because the score statistic is easier to calculate than the likelihood ratio statistic, our basic mapping methods utilize relatively simple computer code that performs statistical analysis on output from any program that computes estimates of identity-by-descent. This simplicity also permits development and evaluation of methods to deal with multivariate and ordinal phenotypes, and with gene-gene and gene-environment interaction. We demonstrate our methods on simulated data and on fasting insulin, a quantitative trait measured in the Framingham Heart Study. PMID:19278016
Collection development using interlibrary loan borrowing and acquisitions statistics.
Byrd, G D; Thomas, D A; Hughes, K E
1982-01-01
Libraries, especially those supporting the sciences, continually face the problem of selecting appropriate new books for their users. Traditional collection development techniques include the use of librarian or user subject specialists, user recommendations, and approval plans. These methods of selection, however, are most effective in large libraries and do not systemically correlate new book purchases with the actual demands of users served. This paper describes a statistical method for determining subject strengths and weaknesses in a library book collection in relation to user demand. Using interlibrary loan borrowing and book acquisition statistics gathered for one fiscal year from three health sciences libraries, the authors developed a way to graph the broad and narrow subject fields of strength and potential weakness in a book collection. This method has the advantages of simplicity, speed of implementation, and clarity. It can also be used over a period of time to verify the success or failure of a collection development program. Finally, the method has potential as a tool for use by two or more libraries seeking to improve cooperative collection development in a network or consortium. PMID:7059712
A scan statistic to extract causal gene clusters from case-control genome-wide rare CNV data.
Nishiyama, Takeshi; Takahashi, Kunihiko; Tango, Toshiro; Pinto, Dalila; Scherer, Stephen W; Takami, Satoshi; Kishino, Hirohisa
2011-05-26
Several statistical tests have been developed for analyzing genome-wide association data by incorporating gene pathway information in terms of gene sets. Using these methods, hundreds of gene sets are typically tested, and the tested gene sets often overlap. This overlapping greatly increases the probability of generating false positives, and the results obtained are difficult to interpret, particularly when many gene sets show statistical significance. We propose a flexible statistical framework to circumvent these problems. Inspired by spatial scan statistics for detecting clustering of disease occurrence in the field of epidemiology, we developed a scan statistic to extract disease-associated gene clusters from a whole gene pathway. Extracting one or a few significant gene clusters from a global pathway limits the overall false positive probability, which results in increased statistical power, and facilitates the interpretation of test results. In the present study, we applied our method to genome-wide association data for rare copy-number variations, which have been strongly implicated in common diseases. Application of our method to a simulated dataset demonstrated the high accuracy of this method in detecting disease-associated gene clusters in a whole gene pathway. The scan statistic approach proposed here shows a high level of accuracy in detecting gene clusters in a whole gene pathway. This study has provided a sound statistical framework for analyzing genome-wide rare CNV data by incorporating topological information on the gene pathway.
Lee, L.; Helsel, D.
2005-01-01
Trace contaminants in water, including metals and organics, often are measured at sufficiently low concentrations to be reported only as values below the instrument detection limit. Interpretation of these "less thans" is complicated when multiple detection limits occur. Statistical methods for multiply censored, or multiple-detection limit, datasets have been developed for medical and industrial statistics, and can be employed to estimate summary statistics or model the distributions of trace-level environmental data. We describe S-language-based software tools that perform robust linear regression on order statistics (ROS). The ROS method has been evaluated as one of the most reliable procedures for developing summary statistics of multiply censored data. It is applicable to any dataset that has 0 to 80% of its values censored. These tools are a part of a software library, or add-on package, for the R environment for statistical computing. This library can be used to generate ROS models and associated summary statistics, plot modeled distributions, and predict exceedance probabilities of water-quality standards. ?? 2005 Elsevier Ltd. All rights reserved.
Identifying natural flow regimes using fish communities
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Tsai, Wen-Ping; Wu, Tzu-Ching; Chen, Hung-kwai; Herricks, Edwin E.
2011-10-01
SummaryModern water resources management has adopted natural flow regimes as reasonable targets for river restoration and conservation. The characterization of a natural flow regime begins with the development of hydrologic statistics from flow records. However, little guidance exists for defining the period of record needed for regime determination. In Taiwan, the Taiwan Eco-hydrological Indicator System (TEIS), a group of hydrologic statistics selected for fisheries relevance, is being used to evaluate ecological flows. The TEIS consists of a group of hydrologic statistics selected to characterize the relationships between flow and the life history of indigenous species. Using the TEIS and biosurvey data for Taiwan, this paper identifies the length of hydrologic record sufficient for natural flow regime characterization. To define the ecological hydrology of fish communities, this study connected hydrologic statistics to fish communities by using methods to define antecedent conditions that influence existing community composition. A moving average method was applied to TEIS statistics to reflect the effects of antecedent flow condition and a point-biserial correlation method was used to relate fisheries collections with TEIS statistics. The resulting fish species-TEIS (FISH-TEIS) hydrologic statistics matrix takes full advantage of historical flows and fisheries data. The analysis indicates that, in the watersheds analyzed, averaging TEIS statistics for the present year and 3 years prior to the sampling date, termed MA(4), is sufficient to develop a natural flow regime. This result suggests that flow regimes based on hydrologic statistics for the period of record can be replaced by regimes developed for sampled fish communities.
Statistical innovations in diagnostic device evaluation.
Yu, Tinghui; Li, Qin; Gray, Gerry; Yue, Lilly Q
2016-01-01
Due to rapid technological development, innovations in diagnostic devices are proceeding at an extremely fast pace. Accordingly, the needs for adopting innovative statistical methods have emerged in the evaluation of diagnostic devices. Statisticians in the Center for Devices and Radiological Health at the Food and Drug Administration have provided leadership in implementing statistical innovations. The innovations discussed in this article include: the adoption of bootstrap and Jackknife methods, the implementation of appropriate multiple reader multiple case study design, the application of robustness analyses for missing data, and the development of study designs and data analyses for companion diagnostics.
Static Methods in the Design of Nonlinear Automatic Control Systems,
1984-06-27
227 Chapter VI. Ways of Decrease of the Number of Statistical Nodes During the Research of Nonlinear Systems...at present occupies the central place. This region of research was called the statistical dynamics of nonlinear H automatic control systems...receives further development in the numerous research of Soviet and C foreign scientists. Special role in the development of the statistical dynamics of
History of Science and Statistical Education: Examples from Fisherian and Pearsonian Schools
ERIC Educational Resources Information Center
Yu, Chong Ho
2004-01-01
Many students share a popular misconception that statistics is a subject-free methodology derived from invariant and timeless mathematical axioms. It is proposed that statistical education should include the aspect of history/philosophy of science. This article will discuss how statistical methods developed by Karl Pearson and R. A. Fisher are…
Statistical Model Selection for TID Hardness Assurance
NASA Technical Reports Server (NTRS)
Ladbury, R.; Gorelick, J. L.; McClure, S.
2010-01-01
Radiation Hardness Assurance (RHA) methodologies against Total Ionizing Dose (TID) degradation impose rigorous statistical treatments for data from a part's Radiation Lot Acceptance Test (RLAT) and/or its historical performance. However, no similar methods exist for using "similarity" data - that is, data for similar parts fabricated in the same process as the part under qualification. This is despite the greater difficulty and potential risk in interpreting of similarity data. In this work, we develop methods to disentangle part-to-part, lot-to-lot and part-type-to-part-type variation. The methods we develop apply not just for qualification decisions, but also for quality control and detection of process changes and other "out-of-family" behavior. We begin by discussing the data used in ·the study and the challenges of developing a statistic providing a meaningful measure of degradation across multiple part types, each with its own performance specifications. We then develop analysis techniques and apply them to the different data sets.
Statistical Methods and Tools for Uxo Characterization (SERDP Final Technical Report)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pulsipher, Brent A.; Gilbert, Richard O.; Wilson, John E.
2004-11-15
The Strategic Environmental Research and Development Program (SERDP) issued a statement of need for FY01 titled Statistical Sampling for Unexploded Ordnance (UXO) Site Characterization that solicited proposals to develop statistically valid sampling protocols for cost-effective, practical, and reliable investigation of sites contaminated with UXO; protocols that could be validated through subsequent field demonstrations. The SERDP goal was the development of a sampling strategy for which a fraction of the site is initially surveyed by geophysical detectors to confidently identify clean areas and subsections (target areas, TAs) that had elevated densities of anomalous geophysical detector readings that could indicate the presencemore » of UXO. More detailed surveys could then be conducted to search the identified TAs for UXO. SERDP funded three projects: those proposed by the Pacific Northwest National Laboratory (PNNL) (SERDP Project No. UXO 1199), Sandia National Laboratory (SNL), and Oak Ridge National Laboratory (ORNL). The projects were closely coordinated to minimize duplication of effort and facilitate use of shared algorithms where feasible. This final report for PNNL Project 1199 describes the methods developed by PNNL to address SERDP's statement-of-need for the development of statistically-based geophysical survey methods for sites where 100% surveys are unattainable or cost prohibitive.« less
Methods for detrending success metrics to account for inflationary and deflationary factors*
NASA Astrophysics Data System (ADS)
Petersen, A. M.; Penner, O.; Stanley, H. E.
2011-01-01
Time-dependent economic, technological, and social factors can artificially inflate or deflate quantitative measures for career success. Here we develop and test a statistical method for normalizing career success metrics across time dependent factors. In particular, this method addresses the long standing question: how do we compare the career achievements of professional athletes from different historical eras? Developing an objective approach will be of particular importance over the next decade as major league baseball (MLB) players from the "steroids era" become eligible for Hall of Fame induction. Some experts are calling for asterisks (*) to be placed next to the career statistics of athletes found guilty of using performance enhancing drugs (PED). Here we address this issue, as well as the general problem of comparing statistics from distinct eras, by detrending the seasonal statistics of professional baseball players. We detrend player statistics by normalizing achievements to seasonal averages, which accounts for changes in relative player ability resulting from a range of factors. Our methods are general, and can be extended to various arenas of competition where time-dependent factors play a key role. For five statistical categories, we compare the probability density function (pdf) of detrended career statistics to the pdf of raw career statistics calculated for all player careers in the 90-year period 1920-2009. We find that the functional form of these pdfs is stationary under detrending. This stationarity implies that the statistical regularity observed in the right-skewed distributions for longevity and success in professional sports arises from both the wide range of intrinsic talent among athletes and the underlying nature of competition. We fit the pdfs for career success by the Gamma distribution in order to calculate objective benchmarks based on extreme statistics which can be used for the identification of extraordinary careers.
Drury, J P; Grether, G F; Garland, T; Morlon, H
2018-05-01
Much ecological and evolutionary theory predicts that interspecific interactions often drive phenotypic diversification and that species phenotypes in turn influence species interactions. Several phylogenetic comparative methods have been developed to assess the importance of such processes in nature; however, the statistical properties of these methods have gone largely untested. Focusing mainly on scenarios of competition between closely-related species, we assess the performance of available comparative approaches for analyzing the interplay between interspecific interactions and species phenotypes. We find that many currently used statistical methods often fail to detect the impact of interspecific interactions on trait evolution, that sister-taxa analyses are particularly unreliable in general, and that recently developed process-based models have more satisfactory statistical properties. Methods for detecting predictors of species interactions are generally more reliable than methods for detecting character displacement. In weighing the strengths and weaknesses of different approaches, we hope to provide a clear guide for empiricists testing hypotheses about the reciprocal effect of interspecific interactions and species phenotypes and to inspire further development of process-based models.
Adaptive Design of Confirmatory Trials: Advances and Challenges
Lai, Tze Leung; Lavori, Philip W.; Tsang, Ka Wai
2015-01-01
The past decade witnessed major developments in innovative designs of confirmatory clinical trials, and adaptive designs represent the most active area of these developments. We give an overview of the developments and associated statistical methods in several classes of adaptive designs of confirmatory trials. We also discuss their statistical difficulties and implementation challenges, and show how these problems are connected to other branches of mainstream Statistics, which we then apply to resolve the difficulties and bypass the bottlenecks in the development of adaptive designs for the next decade. PMID:26079372
Development of Composite Materials with High Passive Damping Properties
2006-05-15
frequency response function analysis. Sound transmission through sandwich panels was studied using the statistical energy analysis (SEA). Modal density...2.2.3 Finite element models 14 2.2.4 Statistical energy analysis method 15 CHAPTER 3 ANALYSIS OF DAMPING IN SANDWICH MATERIALS. 24 3.1 Equation of...sheets and the core. 2.2.4 Statistical energy analysis method Finite element models are generally only efficient for problems at low and middle frequencies
Boulesteix, Anne-Laure; Wilson, Rory; Hapfelmeier, Alexander
2017-09-09
The goal of medical research is to develop interventions that are in some sense superior, with respect to patient outcome, to interventions currently in use. Similarly, the goal of research in methodological computational statistics is to develop data analysis tools that are themselves superior to the existing tools. The methodology of the evaluation of medical interventions continues to be discussed extensively in the literature and it is now well accepted that medicine should be at least partly "evidence-based". Although we statisticians are convinced of the importance of unbiased, well-thought-out study designs and evidence-based approaches in the context of clinical research, we tend to ignore these principles when designing our own studies for evaluating statistical methods in the context of our methodological research. In this paper, we draw an analogy between clinical trials and real-data-based benchmarking experiments in methodological statistical science, with datasets playing the role of patients and methods playing the role of medical interventions. Through this analogy, we suggest directions for improvement in the design and interpretation of studies which use real data to evaluate statistical methods, in particular with respect to dataset inclusion criteria and the reduction of various forms of bias. More generally, we discuss the concept of "evidence-based" statistical research, its limitations and its impact on the design and interpretation of real-data-based benchmark experiments. We suggest that benchmark studies-a method of assessment of statistical methods using real-world datasets-might benefit from adopting (some) concepts from evidence-based medicine towards the goal of more evidence-based statistical research.
Disability Statistics in the Developing World: A Reflection on the Meanings in Our Numbers
ERIC Educational Resources Information Center
Fujiura, Glenn T.; Park, Hye J.; Rutkowski-Kmitta, Violet
2005-01-01
Background: The imbalance between the sheer size of the developing world and what little is known about the lives and life circumstances of persons with disabilities living there should command our attention. Method: International development initiatives routinely give great priority to the collection of statistical indicators yet even the most…
Murray, Christopher J L
2007-03-10
Health statistics are at the centre of an increasing number of worldwide health controversies. Several factors are sharpening the tension between the supply and demand for high quality health information, and the health-related Millennium Development Goals (MDGs) provide a high-profile example. With thousands of indicators recommended but few measured well, the worldwide health community needs to focus its efforts on improving measurement of a small set of priority areas. Priority indicators should be selected on the basis of public-health significance and several dimensions of measurability. Health statistics can be divided into three types: crude, corrected, and predicted. Health statistics are necessary inputs to planning and strategic decision making, programme implementation, monitoring progress towards targets, and assessment of what works and what does not. Crude statistics that are biased have no role in any of these steps; corrected statistics are preferred. For strategic decision making, when corrected statistics are unavailable, predicted statistics can play an important part. For monitoring progress towards agreed targets and assessment of what works and what does not, however, predicted statistics should not be used. Perhaps the most effective method to decrease controversy over health statistics and to encourage better primary data collection and the development of better analytical methods is a strong commitment to provision of an explicit data audit trail. This initiative would make available the primary data, all post-data collection adjustments, models including covariates used for farcasting and forecasting, and necessary documentation to the public.
Model Robust Calibration: Method and Application to Electronically-Scanned Pressure Transducers
NASA Technical Reports Server (NTRS)
Walker, Eric L.; Starnes, B. Alden; Birch, Jeffery B.; Mays, James E.
2010-01-01
This article presents the application of a recently developed statistical regression method to the controlled instrument calibration problem. The statistical method of Model Robust Regression (MRR), developed by Mays, Birch, and Starnes, is shown to improve instrument calibration by reducing the reliance of the calibration on a predetermined parametric (e.g. polynomial, exponential, logarithmic) model. This is accomplished by allowing fits from the predetermined parametric model to be augmented by a certain portion of a fit to the residuals from the initial regression using a nonparametric (locally parametric) regression technique. The method is demonstrated for the absolute scale calibration of silicon-based pressure transducers.
Computational methods to extract meaning from text and advance theories of human cognition.
McNamara, Danielle S
2011-01-01
Over the past two decades, researchers have made great advances in the area of computational methods for extracting meaning from text. This research has to a large extent been spurred by the development of latent semantic analysis (LSA), a method for extracting and representing the meaning of words using statistical computations applied to large corpora of text. Since the advent of LSA, researchers have developed and tested alternative statistical methods designed to detect and analyze meaning in text corpora. This research exemplifies how statistical models of semantics play an important role in our understanding of cognition and contribute to the field of cognitive science. Importantly, these models afford large-scale representations of human knowledge and allow researchers to explore various questions regarding knowledge, discourse processing, text comprehension, and language. This topic includes the latest progress by the leading researchers in the endeavor to go beyond LSA. Copyright © 2010 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Teater, Barbra; Roy, Jessica; Carpenter, John; Forrester, Donald; Devaney, John; Scourfield, Jonathan
2017-01-01
Students in the United Kingdom (UK) are found to lack knowledge and skills in quantitative research methods. To address this gap, a quantitative research method and statistical analysis curriculum comprising 10 individual lessons was developed, piloted, and evaluated at two universities The evaluation found that BSW students' (N = 81)…
The contribution of statistical physics to evolutionary biology.
de Vladar, Harold P; Barton, Nicholas H
2011-08-01
Evolutionary biology shares many concepts with statistical physics: both deal with populations, whether of molecules or organisms, and both seek to simplify evolution in very many dimensions. Often, methodologies have undergone parallel and independent development, as with stochastic methods in population genetics. Here, we discuss aspects of population genetics that have embraced methods from physics: non-equilibrium statistical mechanics, travelling waves and Monte-Carlo methods, among others, have been used to study polygenic evolution, rates of adaptation and range expansions. These applications indicate that evolutionary biology can further benefit from interactions with other areas of statistical physics; for example, by following the distribution of paths taken by a population through time. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Henry, Gary T.; And Others
1992-01-01
A statistical technique is presented for developing performance standards based on benchmark groups. The benchmark groups are selected using a multivariate technique that relies on a squared Euclidean distance method. For each observation unit (a school district in the example), a unique comparison group is selected. (SLD)
Some Conceptual Deficiencies in "Developmental" Behavior Genetics.
ERIC Educational Resources Information Center
Gottlieb, Gilbert
1995-01-01
Criticizes the application of the statistical procedures of the population-genetic approach within evolutionary biology to the study of psychological development. Argues that the application of the statistical methods of population genetics--primarily the analysis of variance--to the causes of psychological development is bound to result in a…
Cluster mass inference via random field theory.
Zhang, Hui; Nichols, Thomas E; Johnson, Timothy D
2009-01-01
Cluster extent and voxel intensity are two widely used statistics in neuroimaging inference. Cluster extent is sensitive to spatially extended signals while voxel intensity is better for intense but focal signals. In order to leverage strength from both statistics, several nonparametric permutation methods have been proposed to combine the two methods. Simulation studies have shown that of the different cluster permutation methods, the cluster mass statistic is generally the best. However, to date, there is no parametric cluster mass inference available. In this paper, we propose a cluster mass inference method based on random field theory (RFT). We develop this method for Gaussian images, evaluate it on Gaussian and Gaussianized t-statistic images and investigate its statistical properties via simulation studies and real data. Simulation results show that the method is valid under the null hypothesis and demonstrate that it can be more powerful than the cluster extent inference method. Further, analyses with a single subject and a group fMRI dataset demonstrate better power than traditional cluster size inference, and good accuracy relative to a gold-standard permutation test.
Detection of Test Collusion via Kullback-Leibler Divergence
ERIC Educational Resources Information Center
Belov, Dmitry I.
2013-01-01
The development of statistical methods for detecting test collusion is a new research direction in the area of test security. Test collusion may be described as large-scale sharing of test materials, including answers to test items. Current methods of detecting test collusion are based on statistics also used in answer-copying detection.…
Zhao, Xing; Zhou, Xiao-Hua; Feng, Zijian; Guo, Pengfei; He, Hongyan; Zhang, Tao; Duan, Lei; Li, Xiaosong
2013-01-01
As a useful tool for geographical cluster detection of events, the spatial scan statistic is widely applied in many fields and plays an increasingly important role. The classic version of the spatial scan statistic for the binary outcome is developed by Kulldorff, based on the Bernoulli or the Poisson probability model. In this paper, we apply the Hypergeometric probability model to construct the likelihood function under the null hypothesis. Compared with existing methods, the likelihood function under the null hypothesis is an alternative and indirect method to identify the potential cluster, and the test statistic is the extreme value of the likelihood function. Similar with Kulldorff's methods, we adopt Monte Carlo test for the test of significance. Both methods are applied for detecting spatial clusters of Japanese encephalitis in Sichuan province, China, in 2009, and the detected clusters are identical. Through a simulation to independent benchmark data, it is indicated that the test statistic based on the Hypergeometric model outweighs Kulldorff's statistics for clusters of high population density or large size; otherwise Kulldorff's statistics are superior.
Multi-fidelity stochastic collocation method for computation of statistical moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xueyu, E-mail: xueyu-zhu@uiowa.edu; Linebarger, Erin M., E-mail: aerinline@sci.utah.edu; Xiu, Dongbin, E-mail: xiu.16@osu.edu
We present an efficient numerical algorithm to approximate the statistical moments of stochastic problems, in the presence of models with different fidelities. The method extends the multi-fidelity approximation method developed in . By combining the efficiency of low-fidelity models and the accuracy of high-fidelity models, our method exhibits fast convergence with a limited number of high-fidelity simulations. We establish an error bound of the method and present several numerical examples to demonstrate the efficiency and applicability of the multi-fidelity algorithm.
Scalable Integrated Region-Based Image Retrieval Using IRM and Statistical Clustering.
ERIC Educational Resources Information Center
Wang, James Z.; Du, Yanping
Statistical clustering is critical in designing scalable image retrieval systems. This paper presents a scalable algorithm for indexing and retrieving images based on region segmentation. The method uses statistical clustering on region features and IRM (Integrated Region Matching), a measure developed to evaluate overall similarity between images…
Cognitive Transfer Outcomes for a Simulation-Based Introductory Statistics Curriculum
ERIC Educational Resources Information Center
Backman, Matthew D.; Delmas, Robert C.; Garfield, Joan
2017-01-01
Cognitive transfer is the ability to apply learned skills and knowledge to new applications and contexts. This investigation evaluates cognitive transfer outcomes for a tertiary-level introductory statistics course using the CATALST curriculum, which exclusively used simulation-based methods to develop foundations of statistical inference. A…
Ma, Junshui; Wang, Shubing; Raubertas, Richard; Svetnik, Vladimir
2010-07-15
With the increasing popularity of using electroencephalography (EEG) to reveal the treatment effect in drug development clinical trials, the vast volume and complex nature of EEG data compose an intriguing, but challenging, topic. In this paper the statistical analysis methods recommended by the EEG community, along with methods frequently used in the published literature, are first reviewed. A straightforward adjustment of the existing methods to handle multichannel EEG data is then introduced. In addition, based on the spatial smoothness property of EEG data, a new category of statistical methods is proposed. The new methods use a linear combination of low-degree spherical harmonic (SPHARM) basis functions to represent a spatially smoothed version of the EEG data on the scalp, which is close to a sphere in shape. In total, seven statistical methods, including both the existing and the newly proposed methods, are applied to two clinical datasets to compare their power to detect a drug effect. Contrary to the EEG community's recommendation, our results suggest that (1) the nonparametric method does not outperform its parametric counterpart; and (2) including baseline data in the analysis does not always improve the statistical power. In addition, our results recommend that (3) simple paired statistical tests should be avoided due to their poor power; and (4) the proposed spatially smoothed methods perform better than their unsmoothed versions. Copyright 2010 Elsevier B.V. All rights reserved.
An overview of the mathematical and statistical analysis component of RICIS
NASA Technical Reports Server (NTRS)
Hallum, Cecil R.
1987-01-01
Mathematical and statistical analysis components of RICIS (Research Institute for Computing and Information Systems) can be used in the following problem areas: (1) quantification and measurement of software reliability; (2) assessment of changes in software reliability over time (reliability growth); (3) analysis of software-failure data; and (4) decision logic for whether to continue or stop testing software. Other areas of interest to NASA/JSC where mathematical and statistical analysis can be successfully employed include: math modeling of physical systems, simulation, statistical data reduction, evaluation methods, optimization, algorithm development, and mathematical methods in signal processing.
Effect Size as the Essential Statistic in Developing Methods for mTBI Diagnosis.
Gibson, Douglas Brandt
2015-01-01
The descriptive statistic known as "effect size" measures the distinguishability of two sets of data. Distingishability is at the core of diagnosis. This article is intended to point out the importance of effect size in the development of effective diagnostics for mild traumatic brain injury and to point out the applicability of the effect size statistic in comparing diagnostic efficiency across the main proposed TBI diagnostic methods: psychological, physiological, biochemical, and radiologic. Comparing diagnostic approaches is difficult because different researcher in different fields have different approaches to measuring efficacy. Converting diverse measures to effect sizes, as is done in meta-analysis, is a relatively easy way to make studies comparable.
Methods for estimating low-flow statistics for Massachusetts streams
Ries, Kernell G.; Friesz, Paul J.
2000-01-01
Methods and computer software are described in this report for determining flow duration, low-flow frequency statistics, and August median flows. These low-flow statistics can be estimated for unregulated streams in Massachusetts using different methods depending on whether the location of interest is at a streamgaging station, a low-flow partial-record station, or an ungaged site where no data are available. Low-flow statistics for streamgaging stations can be estimated using standard U.S. Geological Survey methods described in the report. The MOVE.1 mathematical method and a graphical correlation method can be used to estimate low-flow statistics for low-flow partial-record stations. The MOVE.1 method is recommended when the relation between measured flows at a partial-record station and daily mean flows at a nearby, hydrologically similar streamgaging station is linear, and the graphical method is recommended when the relation is curved. Equations are presented for computing the variance and equivalent years of record for estimates of low-flow statistics for low-flow partial-record stations when either a single or multiple index stations are used to determine the estimates. The drainage-area ratio method or regression equations can be used to estimate low-flow statistics for ungaged sites where no data are available. The drainage-area ratio method is generally as accurate as or more accurate than regression estimates when the drainage-area ratio for an ungaged site is between 0.3 and 1.5 times the drainage area of the index data-collection site. Regression equations were developed to estimate the natural, long-term 99-, 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, and 50-percent duration flows; the 7-day, 2-year and the 7-day, 10-year low flows; and the August median flow for ungaged sites in Massachusetts. Streamflow statistics and basin characteristics for 87 to 133 streamgaging stations and low-flow partial-record stations were used to develop the equations. The streamgaging stations had from 2 to 81 years of record, with a mean record length of 37 years. The low-flow partial-record stations had from 8 to 36 streamflow measurements, with a median of 14 measurements. All basin characteristics were determined from digital map data. The basin characteristics that were statistically significant in most of the final regression equations were drainage area, the area of stratified-drift deposits per unit of stream length plus 0.1, mean basin slope, and an indicator variable that was 0 in the eastern region and 1 in the western region of Massachusetts. The equations were developed by use of weighted-least-squares regression analyses, with weights assigned proportional to the years of record and inversely proportional to the variances of the streamflow statistics for the stations. Standard errors of prediction ranged from 70.7 to 17.5 percent for the equations to predict the 7-day, 10-year low flow and 50-percent duration flow, respectively. The equations are not applicable for use in the Southeast Coastal region of the State, or where basin characteristics for the selected ungaged site are outside the ranges of those for the stations used in the regression analyses. A World Wide Web application was developed that provides streamflow statistics for data collection stations from a data base and for ungaged sites by measuring the necessary basin characteristics for the site and solving the regression equations. Output provided by the Web application for ungaged sites includes a map of the drainage-basin boundary determined for the site, the measured basin characteristics, the estimated streamflow statistics, and 90-percent prediction intervals for the estimates. An equation is provided for combining regression and correlation estimates to obtain improved estimates of the streamflow statistics for low-flow partial-record stations. An equation is also provided for combining regression and drainage-area ratio estimates to obtain improved e
New U.S. Geological Survey Method for the Assessment of Reserve Growth
Klett, Timothy R.; Attanasi, E.D.; Charpentier, Ronald R.; Cook, Troy A.; Freeman, P.A.; Gautier, Donald L.; Le, Phuong A.; Ryder, Robert T.; Schenk, Christopher J.; Tennyson, Marilyn E.; Verma, Mahendra K.
2011-01-01
Reserve growth is defined as the estimated increases in quantities of crude oil, natural gas, and natural gas liquids that have the potential to be added to remaining reserves in discovered accumulations through extension, revision, improved recovery efficiency, and additions of new pools or reservoirs. A new U.S. Geological Survey method was developed to assess the reserve-growth potential of technically recoverable crude oil and natural gas to be added to reserves under proven technology currently in practice within the trend or play, or which reasonably can be extrapolated from geologically similar trends or plays. This method currently is in use to assess potential additions to reserves in discovered fields of the United States. The new approach involves (1) individual analysis of selected large accumulations that contribute most to reserve growth, and (2) conventional statistical modeling of reserve growth in remaining accumulations. This report will focus on the individual accumulation analysis. In the past, the U.S. Geological Survey estimated reserve growth by statistical methods using historical recoverable-quantity data. Those statistical methods were based on growth rates averaged by the number of years since accumulation discovery. Accumulations in mature petroleum provinces with volumetrically significant reserve growth, however, bias statistical models of the data; therefore, accumulations with significant reserve growth are best analyzed separately from those with less significant reserve growth. Large (greater than 500 million barrels) and older (with respect to year of discovery) oil accumulations increase in size at greater rates late in their development history in contrast to more recently discovered accumulations that achieve most growth early in their development history. Such differences greatly affect the statistical methods commonly used to forecast reserve growth. The individual accumulation-analysis method involves estimating the in-place petroleum quantity and its uncertainty, as well as the estimated (forecasted) recoverability and its respective uncertainty. These variables are assigned probabilistic distributions and are combined statistically to provide probabilistic estimates of ultimate recoverable quantities. Cumulative production and remaining reserves are then subtracted from the estimated ultimate recoverable quantities to provide potential reserve growth. In practice, results of the two methods are aggregated to various scales, the highest of which includes an entire country or the world total. The aggregated results are reported along with the statistically appropriate uncertainties.
STATISTICAL SAMPLING AND DATA ANALYSIS
Research is being conducted to develop approaches to improve soil and sediment sampling techniques, measurement design and geostatistics, and data analysis via chemometric, environmetric, and robust statistical methods. Improvements in sampling contaminated soil and other hetero...
ERIC Educational Resources Information Center
Pliske, Rebecca M.; Caldwell, Tracy L.; Calin-Jageman, Robert J.; Taylor-Ritzler, Tina
2015-01-01
We developed a two-semester series of intensive (six-contact hours per week) behavioral research methods courses with an integrated statistics curriculum. Our approach includes the use of team-based learning, authentic projects, and Excel and SPSS. We assessed the effectiveness of our approach by examining our students' content area scores on the…
A smoothed residual based goodness-of-fit statistic for nest-survival models
Rodney X. Sturdivant; Jay J. Rotella; Robin E. Russell
2008-01-01
Estimating nest success and identifying important factors related to nest-survival rates is an essential goal for many wildlife researchers interested in understanding avian population dynamics. Advances in statistical methods have led to a number of estimation methods and approaches to modeling this problem. Recently developed models allow researchers to include a...
NASA Astrophysics Data System (ADS)
Buchhave, Preben; Velte, Clara M.
2017-08-01
We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra and spatial structure functions in a way that completely bypasses the need for Taylor's hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method are access to the instantaneous velocity magnitude, in addition to the desired flow quantity, and a high temporal resolution in comparison to the relevant time scales of the flow. We map, without distortion and bias, notoriously difficult developing turbulent high intensity flows using three main aspects that distinguish these measurements from previous work in the field: (1) The measurements are conducted using laser Doppler anemometry and are therefore not contaminated by directional ambiguity (in contrast to, e.g., frequently employed hot-wire anemometers); (2) the measurement data are extracted using a correctly and transparently functioning processor and are analysed using methods derived from first principles to provide unbiased estimates of the velocity statistics; (3) the exact mapping proposed herein has been applied to the high turbulence intensity flows investigated to avoid the significant distortions caused by Taylor's hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed jet. The proposed mapping is successfully validated using corresponding directly measured spatial statistics in the fully developed jet, even in the difficult outer regions of the jet where the average convection velocity is negligible and turbulence intensities increase dramatically. The measurements in the developing region reveal interesting features of an incomplete Richardson-Kolmogorov cascade under development.
Application of pedagogy reflective in statistical methods course and practicum statistical methods
NASA Astrophysics Data System (ADS)
Julie, Hongki
2017-08-01
Subject Elementary Statistics, Statistical Methods and Statistical Methods Practicum aimed to equip students of Mathematics Education about descriptive statistics and inferential statistics. The students' understanding about descriptive and inferential statistics were important for students on Mathematics Education Department, especially for those who took the final task associated with quantitative research. In quantitative research, students were required to be able to present and describe the quantitative data in an appropriate manner, to make conclusions from their quantitative data, and to create relationships between independent and dependent variables were defined in their research. In fact, when students made their final project associated with quantitative research, it was not been rare still met the students making mistakes in the steps of making conclusions and error in choosing the hypothetical testing process. As a result, they got incorrect conclusions. This is a very fatal mistake for those who did the quantitative research. There were some things gained from the implementation of reflective pedagogy on teaching learning process in Statistical Methods and Statistical Methods Practicum courses, namely: 1. Twenty two students passed in this course and and one student did not pass in this course. 2. The value of the most accomplished student was A that was achieved by 18 students. 3. According all students, their critical stance could be developed by them, and they could build a caring for each other through a learning process in this course. 4. All students agreed that through a learning process that they undergo in the course, they can build a caring for each other.
BetaTPred: prediction of beta-TURNS in a protein using statistical algorithms.
Kaur, Harpreet; Raghava, G P S
2002-03-01
beta-turns play an important role from a structural and functional point of view. beta-turns are the most common type of non-repetitive structures in proteins and comprise on average, 25% of the residues. In the past numerous methods have been developed to predict beta-turns in a protein. Most of these prediction methods are based on statistical approaches. In order to utilize the full potential of these methods, there is a need to develop a web server. This paper describes a web server called BetaTPred, developed for predicting beta-TURNS in a protein from its amino acid sequence. BetaTPred allows the user to predict turns in a protein using existing statistical algorithms. It also allows to predict different types of beta-TURNS e.g. type I, I', II, II', VI, VIII and non-specific. This server assists the users in predicting the consensus beta-TURNS in a protein. The server is accessible from http://imtech.res.in/raghava/betatpred/
The Web as an educational tool for/in learning/teaching bioinformatics statistics.
Oliver, J; Pisano, M E; Alonso, T; Roca, P
2005-12-01
Statistics provides essential tool in Bioinformatics to interpret the results of a database search or for the management of enormous amounts of information provided from genomics, proteomics and metabolomics. The goal of this project was the development of a software tool that would be as simple as possible to demonstrate the use of the Bioinformatics statistics. Computer Simulation Methods (CSMs) developed using Microsoft Excel were chosen for their broad range of applications, immediate and easy formula calculation, immediate testing and easy graphics representation, and of general use and acceptance by the scientific community. The result of these endeavours is a set of utilities which can be accessed from the following URL: http://gmein.uib.es/bioinformatica/statistics. When tested on students with previous coursework with traditional statistical teaching methods, the general opinion/overall consensus was that Web-based instruction had numerous advantages, but traditional methods with manual calculations were also needed for their theory and practice. Once having mastered the basic statistical formulas, Excel spreadsheets and graphics were shown to be very useful for trying many parameters in a rapid fashion without having to perform tedious calculations. CSMs will be of great importance for the formation of the students and professionals in the field of bioinformatics, and for upcoming applications of self-learning and continuous formation.
An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Saether, E.; Glaessgen, E.H.; Yamakov, V.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
Bostanov, Vladimir; Kotchoubey, Boris
2006-12-01
This study was aimed at developing a method for extraction and assessment of event-related brain potentials (ERP) from single-trials. This method should be applicable in the assessment of single persons' ERPs and should be able to handle both single ERP components and whole waveforms. We adopted a recently developed ERP feature extraction method, the t-CWT, for the purposes of hypothesis testing in the statistical assessment of ERPs. The t-CWT is based on the continuous wavelet transform (CWT) and Student's t-statistics. The method was tested in two ERP paradigms, oddball and semantic priming, by assessing individual-participant data on a single-trial basis, and testing the significance of selected ERP components, P300 and N400, as well as of whole ERP waveforms. The t-CWT was also compared to other univariate and multivariate ERP assessment methods: peak picking, area computation, discrete wavelet transform (DWT) and principal component analysis (PCA). The t-CWT produced better results than all of the other assessment methods it was compared with. The t-CWT can be used as a reliable and powerful method for ERP-component detection and testing of statistical hypotheses concerning both single ERP components and whole waveforms extracted from either single persons' or group data. The t-CWT is the first such method based explicitly on the criteria of maximal statistical difference between two average ERPs in the time-frequency domain and is particularly suitable for ERP assessment of individual data (e.g. in clinical settings), but also for the investigation of small and/or novel ERP effects from group data.
Pantyley, Viktoriya
2014-01-01
In new conditions of socio-economic development in the Ukraine, the health of the population of children is considered as the most reliable indicator of socio-economic development of the country. The primary goal of the study was analysis of the effect of contemporary socio-economic transformations, their scope, and strength of effect on the demographic and social situation of children in various regions of the Ukraine. The methodological objectives of the study were as follows: development of a synthetic measure of the state of health of the population of children, based on the Hellwig's method, and selection of districts in the Ukraine according to the present health-demographic situation of children. The study was based on statistical data from the State Statistics Service of Ukraine, Centre of Medical Statistics in Kiev, Ukrainian Ministry of Defence, as well as Ministry of Education and Science, Youth and Sports of Ukraine. The following research methods were used: analysis of literature and Internet sources, selection and analysis of statistical materials, cartographic and statistical methods. Basic indices of the demographic and health situation of the population of children were analyzed, as well as factors of a socio-economic nature which affect this situation. A set of variables was developed for the synthetic evaluation of the state of health of the population of children. The typology of the Ukrainian districts was performed according to the state of health of the child population, based on the Hellwig's taxonomic method. Deterioration was observed of selected quality parameters, as well as a change in the strength and directions of effect of factors of organizational-institutional, socioeconomic, historical and cultural nature on the population of children potential.
Towards efficient multi-scale methods for monitoring sugarcane aphid infestations in sorghum
USDA-ARS?s Scientific Manuscript database
We discuss approaches and issues involved with developing optimal monitoring methods for sugarcane aphid infestations (SCA) in grain sorghum. We discuss development of sequential sampling methods that allow for estimation of the number of aphids per sample unit, and statistical decision making rela...
Narayanan, Roshni; Nugent, Rebecca; Nugent, Kenneth
2015-10-01
Accreditation Council for Graduate Medical Education guidelines require internal medicine residents to develop skills in the interpretation of medical literature and to understand the principles of research. A necessary component is the ability to understand the statistical methods used and their results, material that is not an in-depth focus of most medical school curricula and residency programs. Given the breadth and depth of the current medical literature and an increasing emphasis on complex, sophisticated statistical analyses, the statistical foundation and education necessary for residents are uncertain. We reviewed the statistical methods and terms used in 49 articles discussed at the journal club in the Department of Internal Medicine residency program at Texas Tech University between January 1, 2013 and June 30, 2013. We collected information on the study type and on the statistical methods used for summarizing and comparing samples, determining the relations between independent variables and dependent variables, and estimating models. We then identified the typical statistics education level at which each term or method is learned. A total of 14 articles came from the Journal of the American Medical Association Internal Medicine, 11 from the New England Journal of Medicine, 6 from the Annals of Internal Medicine, 5 from the Journal of the American Medical Association, and 13 from other journals. Twenty reported randomized controlled trials. Summary statistics included mean values (39 articles), category counts (38), and medians (28). Group comparisons were based on t tests (14 articles), χ2 tests (21), and nonparametric ranking tests (10). The relations between dependent and independent variables were analyzed with simple regression (6 articles), multivariate regression (11), and logistic regression (8). Nine studies reported odds ratios with 95% confidence intervals, and seven analyzed test performance using sensitivity and specificity calculations. These papers used 128 statistical terms and context-defined concepts, including some from data analysis (56), epidemiology-biostatistics (31), modeling (24), data collection (12), and meta-analysis (5). Ten different software programs were used in these articles. Based on usual undergraduate and graduate statistics curricula, 64.3% of the concepts and methods used in these papers required at least a master's degree-level statistics education. The interpretation of the current medical literature can require an extensive background in statistical methods at an education level exceeding the material and resources provided to most medical students and residents. Given the complexity and time pressure of medical education, these deficiencies will be hard to correct, but this project can serve as a basis for developing a curriculum in study design and statistical methods needed by physicians-in-training.
Monte Carlo based statistical power analysis for mediation models: methods and software.
Zhang, Zhiyong
2014-12-01
The existing literature on statistical power analysis for mediation models often assumes data normality and is based on a less powerful Sobel test instead of the more powerful bootstrap test. This study proposes to estimate statistical power to detect mediation effects on the basis of the bootstrap method through Monte Carlo simulation. Nonnormal data with excessive skewness and kurtosis are allowed in the proposed method. A free R package called bmem is developed to conduct the power analysis discussed in this study. Four examples, including a simple mediation model, a multiple-mediator model with a latent mediator, a multiple-group mediation model, and a longitudinal mediation model, are provided to illustrate the proposed method.
Using an Instructional LAN to Teach a Statistics Course.
ERIC Educational Resources Information Center
Barnes, J. Wesley; And Others
1988-01-01
Discusses a computer assisted learning system for engineering statistics based on personalized system of instruction methods. Describes the system's network, development, course structure, programing, and security. Lists the benefits of the system. (MVL)
Spatial scan statistics for detection of multiple clusters with arbitrary shapes.
Lin, Pei-Sheng; Kung, Yi-Hung; Clayton, Murray
2016-12-01
In applying scan statistics for public health research, it would be valuable to develop a detection method for multiple clusters that accommodates spatial correlation and covariate effects in an integrated model. In this article, we connect the concepts of the likelihood ratio (LR) scan statistic and the quasi-likelihood (QL) scan statistic to provide a series of detection procedures sufficiently flexible to apply to clusters of arbitrary shape. First, we use an independent scan model for detection of clusters and then a variogram tool to examine the existence of spatial correlation and regional variation based on residuals of the independent scan model. When the estimate of regional variation is significantly different from zero, a mixed QL estimating equation is developed to estimate coefficients of geographic clusters and covariates. We use the Benjamini-Hochberg procedure (1995) to find a threshold for p-values to address the multiple testing problem. A quasi-deviance criterion is used to regroup the estimated clusters to find geographic clusters with arbitrary shapes. We conduct simulations to compare the performance of the proposed method with other scan statistics. For illustration, the method is applied to enterovirus data from Taiwan. © 2016, The International Biometric Society.
Quality Space and Launch Requirements, Addendum to AS9100C
2015-05-08
45 8.9.1 Statistical Process Control (SPC) .......................................................................... 45...SMC Space and Missile Systems Center SME Subject Matter Expert SOW Statement of Work SPC Statistical Process Control SPO System Program Office SRP...occur without any individual data exceeding the control limits. Control limits are developed using standard statistical methods or other approved
Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 1
1988-10-01
Partial contents: The Quest for Omega = sq root(K/M) -- Notes on the development of vibration analysis; An overview of Statistical Energy analysis ; Its...and inplane vibration transmission in statistical energy analysis ; Vibroacoustic response using the finite element method and statistical energy analysis ; Helium
Linhart, S. Mike; Nania, Jon F.; Christiansen, Daniel E.; Hutchinson, Kasey J.; Sanders, Curtis L.; Archfield, Stacey A.
2013-01-01
A variety of individuals from water resource managers to recreational users need streamflow information for planning and decisionmaking at locations where there are no streamgages. To address this problem, two statistically based methods, the Flow Duration Curve Transfer method and the Flow Anywhere method, were developed for statewide application and the two physically based models, the Precipitation Runoff Modeling-System and the Soil and Water Assessment Tool, were only developed for application for the Cedar River Basin. Observed and estimated streamflows for the two methods and models were compared for goodness of fit at 13 streamgages modeled in the Cedar River Basin by using the Nash-Sutcliffe and the percent-bias efficiency values. Based on median and mean Nash-Sutcliffe values for the 13 streamgages the Precipitation Runoff Modeling-System and Soil and Water Assessment Tool models appear to have performed similarly and better than Flow Duration Curve Transfer and Flow Anywhere methods. Based on median and mean percent bias values, the Soil and Water Assessment Tool model appears to have generally overestimated daily mean streamflows, whereas the Precipitation Runoff Modeling-System model and statistical methods appear to have underestimated daily mean streamflows. The Flow Duration Curve Transfer method produced the lowest median and mean percent bias values and appears to perform better than the other models.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1995-01-01
Standard methods of structural dynamic analysis assume that the structural characteristics are deterministic. Recognizing that these characteristics are actually statistical in nature, researchers have recently developed a variety of methods that use this information to determine probabilities of a desired response characteristic, such as natural frequency, without using expensive Monte Carlo simulations. One of the problems in these methods is correctly identifying the statistical properties of primitive variables such as geometry, stiffness, and mass. This paper presents a method where the measured dynamic properties of substructures are used instead as the random variables. The residual flexibility method of component mode synthesis is combined with the probabilistic methods to determine the cumulative distribution function of the system eigenvalues. A simple cantilever beam test problem is presented that illustrates the theory.
Kyle J. Haynes; Andrew M. Liebhold; Ottar N. Bjørnstad; Andrew J. Allstadt; Randall S. Morin
2018-01-01
Evaluating the causes of spatial synchrony in population dynamics in nature is notoriously difficult due to a lack of data and appropriate statistical methods. Here, we use a recently developed method, a multivariate extension of the local indicators of spatial autocorrelation statistic, to map geographic variation in the synchrony of gypsy moth outbreaks. Regression...
How I Teach the Second Law of Thermodynamics
ERIC Educational Resources Information Center
Kincanon, Eric
2013-01-01
An alternative method of presenting the second law of thermodynamics in introductory courses is presented. The emphasis is on statistical approaches as developed by Atkins. This has the benefit of stressing the statistical nature of the law.
Use of statistical and neural net approaches in predicting toxicity of chemicals.
Basak, S C; Grunwald, G D; Gute, B D; Balasubramanian, K; Opitz, D
2000-01-01
Hierarchical quantitative structure-activity relationships (H-QSAR) have been developed as a new approach in constructing models for estimating physicochemical, biomedicinal, and toxicological properties of interest. This approach uses increasingly more complex molecular descriptors in a graduated approach to model building. In this study, statistical and neural network methods have been applied to the development of H-QSAR models for estimating the acute aquatic toxicity (LC50) of 69 benzene derivatives to Pimephales promelas (fathead minnow). Topostructural, topochemical, geometrical, and quantum chemical indices were used as the four levels of the hierarchical method. It is clear from both the statistical and neural network models that topostructural indices alone cannot adequately model this set of congeneric chemicals. Not surprisingly, topochemical indices greatly increase the predictive power of both statistical and neural network models. Quantum chemical indices also add significantly to the modeling of this set of acute aquatic toxicity data.
A high-fidelity weather time series generator using the Markov Chain process on a piecewise level
NASA Astrophysics Data System (ADS)
Hersvik, K.; Endrerud, O.-E. V.
2017-12-01
A method is developed for generating a set of unique weather time-series based on an existing weather series. The method allows statistically valid weather variations to take place within repeated simulations of offshore operations. The numerous generated time series need to share the same statistical qualities as the original time series. Statistical qualities here refer mainly to the distribution of weather windows available for work, including durations and frequencies of such weather windows, and seasonal characteristics. The method is based on the Markov chain process. The core new development lies in how the Markov Process is used, specifically by joining small pieces of random length time series together rather than joining individual weather states, each from a single time step, which is a common solution found in the literature. This new Markov model shows favorable characteristics with respect to the requirements set forth and all aspects of the validation performed.
Directions for new developments on statistical design and analysis of small population group trials.
Hilgers, Ralf-Dieter; Roes, Kit; Stallard, Nigel
2016-06-14
Most statistical design and analysis methods for clinical trials have been developed and evaluated where at least several hundreds of patients could be recruited. These methods may not be suitable to evaluate therapies if the sample size is unavoidably small, which is usually termed by small populations. The specific sample size cut off, where the standard methods fail, needs to be investigated. In this paper, the authors present their view on new developments for design and analysis of clinical trials in small population groups, where conventional statistical methods may be inappropriate, e.g., because of lack of power or poor adherence to asymptotic approximations due to sample size restrictions. Following the EMA/CHMP guideline on clinical trials in small populations, we consider directions for new developments in the area of statistical methodology for design and analysis of small population clinical trials. We relate the findings to the research activities of three projects, Asterix, IDeAl, and InSPiRe, which have received funding since 2013 within the FP7-HEALTH-2013-INNOVATION-1 framework of the EU. As not all aspects of the wide research area of small population clinical trials can be addressed, we focus on areas where we feel advances are needed and feasible. The general framework of the EMA/CHMP guideline on small population clinical trials stimulates a number of research areas. These serve as the basis for the three projects, Asterix, IDeAl, and InSPiRe, which use various approaches to develop new statistical methodology for design and analysis of small population clinical trials. Small population clinical trials refer to trials with a limited number of patients. Small populations may result form rare diseases or specific subtypes of more common diseases. New statistical methodology needs to be tailored to these specific situations. The main results from the three projects will constitute a useful toolbox for improved design and analysis of small population clinical trials. They address various challenges presented by the EMA/CHMP guideline as well as recent discussions about extrapolation. There is a need for involvement of the patients' perspective in the planning and conduct of small population clinical trials for a successful therapy evaluation.
Vibration Transmission through Rolling Element Bearings in Geared Rotor Systems
1990-11-01
147 4.8 Concluding Remarks ........................................................... 153 V STATISTICAL ENERGY ANALYSIS ............................................ 155...and dynamic finite element techniques are used to develop the discrete vibration models while statistical energy analysis method is used for the broad...bearing system studies, geared rotor system studies, and statistical energy analysis . Each chapter is self sufficient since it is written in a
Error, Power, and Blind Sentinels: The Statistics of Seagrass Monitoring
Schultz, Stewart T.; Kruschel, Claudia; Bakran-Petricioli, Tatjana; Petricioli, Donat
2015-01-01
We derive statistical properties of standard methods for monitoring of habitat cover worldwide, and criticize them in the context of mandated seagrass monitoring programs, as exemplified by Posidonia oceanica in the Mediterranean Sea. We report the novel result that cartographic methods with non-trivial classification errors are generally incapable of reliably detecting habitat cover losses less than about 30 to 50%, and the field labor required to increase their precision can be orders of magnitude higher than that required to estimate habitat loss directly in a field campaign. We derive a universal utility threshold of classification error in habitat maps that represents the minimum habitat map accuracy above which direct methods are superior. Widespread government reliance on blind-sentinel methods for monitoring seafloor can obscure the gradual and currently ongoing losses of benthic resources until the time has long passed for meaningful management intervention. We find two classes of methods with very high statistical power for detecting small habitat cover losses: 1) fixed-plot direct methods, which are over 100 times as efficient as direct random-plot methods in a variable habitat mosaic; and 2) remote methods with very low classification error such as geospatial underwater videography, which is an emerging, low-cost, non-destructive method for documenting small changes at millimeter visual resolution. General adoption of these methods and their further development will require a fundamental cultural change in conservation and management bodies towards the recognition and promotion of requirements of minimal statistical power and precision in the development of international goals for monitoring these valuable resources and the ecological services they provide. PMID:26367863
Statistical Methods for Passive Vehicle Classification in Urban Traffic Surveillance and Control
DOT National Transportation Integrated Search
1980-01-01
A statistical approach to passive vehicle classification using the phase-shift signature from electromagnetic presence-type vehicle detectors is developed with digitized samples of the analog phase-shift signature, the problem of classifying vehicle ...
Statistical evaluation of forecasts
NASA Astrophysics Data System (ADS)
Mader, Malenka; Mader, Wolfgang; Gluckman, Bruce J.; Timmer, Jens; Schelter, Björn
2014-08-01
Reliable forecasts of extreme but rare events, such as earthquakes, financial crashes, and epileptic seizures, would render interventions and precautions possible. Therefore, forecasting methods have been developed which intend to raise an alarm if an extreme event is about to occur. In order to statistically validate the performance of a prediction system, it must be compared to the performance of a random predictor, which raises alarms independent of the events. Such a random predictor can be obtained by bootstrapping or analytically. We propose an analytic statistical framework which, in contrast to conventional methods, allows for validating independently the sensitivity and specificity of a forecasting method. Moreover, our method accounts for the periods during which an event has to remain absent or occur after a respective forecast.
A novel data-driven learning method for radar target detection in nonstationary environments
Akcakaya, Murat; Nehorai, Arye; Sen, Satyabrata
2016-04-12
Most existing radar algorithms are developed under the assumption that the environment (clutter) is stationary. However, in practice, the characteristics of the clutter can vary enormously depending on the radar-operational scenarios. If unaccounted for, these nonstationary variabilities may drastically hinder the radar performance. Therefore, to overcome such shortcomings, we develop a data-driven method for target detection in nonstationary environments. In this method, the radar dynamically detects changes in the environment and adapts to these changes by learning the new statistical characteristics of the environment and by intelligibly updating its statistical detection algorithm. Specifically, we employ drift detection algorithms to detectmore » changes in the environment; incremental learning, particularly learning under concept drift algorithms, to learn the new statistical characteristics of the environment from the new radar data that become available in batches over a period of time. The newly learned environment characteristics are then integrated in the detection algorithm. Furthermore, we use Monte Carlo simulations to demonstrate that the developed method provides a significant improvement in the detection performance compared with detection techniques that are not aware of the environmental changes.« less
Networking—a statistical physics perspective
NASA Astrophysics Data System (ADS)
Yeung, Chi Ho; Saad, David
2013-03-01
Networking encompasses a variety of tasks related to the communication of information on networks; it has a substantial economic and societal impact on a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption requires new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with nonlinear large-scale systems. This review aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.
Statistical Estimation of Heterogeneities: A New Frontier in Well Testing
NASA Astrophysics Data System (ADS)
Neuman, S. P.; Guadagnini, A.; Illman, W. A.; Riva, M.; Vesselinov, V. V.
2001-12-01
Well-testing methods have traditionally relied on analytical solutions of groundwater flow equations in relatively simple domains, consisting of one or at most a few units having uniform hydraulic properties. Recently, attention has been shifting toward methods and solutions that would allow one to characterize subsurface heterogeneities in greater detail. On one hand, geostatistical inverse methods are being used to assess the spatial variability of parameters, such as permeability and porosity, on the basis of multiple cross-hole pressure interference tests. On the other hand, analytical solutions are being developed to describe the mean and variance (first and second statistical moments) of flow to a well in a randomly heterogeneous medium. Geostatistical inverse interpretation of cross-hole tests yields a smoothed but detailed "tomographic" image of how parameters actually vary in three-dimensional space, together with corresponding measures of estimation uncertainty. Moment solutions may soon allow one to interpret well tests in terms of statistical parameters such as the mean and variance of log permeability, its spatial autocorrelation and statistical anisotropy. The idea of geostatistical cross-hole tomography is illustrated through pneumatic injection tests conducted in unsaturated fractured tuff at the Apache Leap Research Site near Superior, Arizona. The idea of using moment equations to interpret well-tests statistically is illustrated through a recently developed three-dimensional solution for steady state flow to a well in a bounded, randomly heterogeneous, statistically anisotropic aquifer.
Developing points-based risk-scoring systems in the presence of competing risks.
Austin, Peter C; Lee, Douglas S; D'Agostino, Ralph B; Fine, Jason P
2016-09-30
Predicting the occurrence of an adverse event over time is an important issue in clinical medicine. Clinical prediction models and associated points-based risk-scoring systems are popular statistical methods for summarizing the relationship between a multivariable set of patient risk factors and the risk of the occurrence of an adverse event. Points-based risk-scoring systems are popular amongst physicians as they permit a rapid assessment of patient risk without the use of computers or other electronic devices. The use of such points-based risk-scoring systems facilitates evidence-based clinical decision making. There is a growing interest in cause-specific mortality and in non-fatal outcomes. However, when considering these types of outcomes, one must account for competing risks whose occurrence precludes the occurrence of the event of interest. We describe how points-based risk-scoring systems can be developed in the presence of competing events. We illustrate the application of these methods by developing risk-scoring systems for predicting cardiovascular mortality in patients hospitalized with acute myocardial infarction. Code in the R statistical programming language is provided for the implementation of the described methods. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
2010-02-28
implemented a fast method to enable the statistical characterization of electromagnetic interference and compatibility (EMI/EMC) phenomena on electrically...higher accuracy is needed, e.g., to compute higher moment statistics . To address this problem, we have developed adaptive stochastic collocation methods ...SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AF OFFICE OF SCIENTIFIC RESEARCH 875 N. RANDOLPH ST. ROOM 3112 ARLINGTON VA 22203 UA
Baghi, Heibatollah; Kornides, Melanie L
2013-01-01
Health care professionals require some understanding of statistics to successfully implement evidence based practice. Developing competency in statistical reasoning is necessary for students training in health care administration, research, and clinical care. Recently, the interest in healthcare professional's attitudes toward statistics has increased substantially due to evidence that these attitudes can hinder professionalism developing an understanding of statistical concepts. In this study, we analyzed pre- and post-instruction attitudes towards and knowledge of statistics obtained from health science graduate students, including nurses and nurse practitioners, enrolled in an introductory graduate course in statistics (n = 165). Results show that the students already held generally positive attitudes toward statistics at the beginning of course. However, these attitudes-along with the students' statistical proficiency-improved after 10 weeks of instruction. The results have implications for curriculum design and delivery methods as well as for health professionals' effective use of statistics in critically evaluating and utilizing research in their practices.
Exploring the Connection Between Sampling Problems in Bayesian Inference and Statistical Mechanics
NASA Technical Reports Server (NTRS)
Pohorille, Andrew
2006-01-01
The Bayesian and statistical mechanical communities often share the same objective in their work - estimating and integrating probability distribution functions (pdfs) describing stochastic systems, models or processes. Frequently, these pdfs are complex functions of random variables exhibiting multiple, well separated local minima. Conventional strategies for sampling such pdfs are inefficient, sometimes leading to an apparent non-ergodic behavior. Several recently developed techniques for handling this problem have been successfully applied in statistical mechanics. In the multicanonical and Wang-Landau Monte Carlo (MC) methods, the correct pdfs are recovered from uniform sampling of the parameter space by iteratively establishing proper weighting factors connecting these distributions. Trivial generalizations allow for sampling from any chosen pdf. The closely related transition matrix method relies on estimating transition probabilities between different states. All these methods proved to generate estimates of pdfs with high statistical accuracy. In another MC technique, parallel tempering, several random walks, each corresponding to a different value of a parameter (e.g. "temperature"), are generated and occasionally exchanged using the Metropolis criterion. This method can be considered as a statistically correct version of simulated annealing. An alternative approach is to represent the set of independent variables as a Hamiltonian system. Considerab!e progress has been made in understanding how to ensure that the system obeys the equipartition theorem or, equivalently, that coupling between the variables is correctly described. Then a host of techniques developed for dynamical systems can be used. Among them, probably the most powerful is the Adaptive Biasing Force method, in which thermodynamic integration and biased sampling are combined to yield very efficient estimates of pdfs. The third class of methods deals with transitions between states described by rate constants. These problems are isomorphic with chemical kinetics problems. Recently, several efficient techniques for this purpose have been developed based on the approach originally proposed by Gillespie. Although the utility of the techniques mentioned above for Bayesian problems has not been determined, further research along these lines is warranted
Learning process mapping heuristics under stochastic sampling overheads
NASA Technical Reports Server (NTRS)
Ieumwananonthachai, Arthur; Wah, Benjamin W.
1991-01-01
A statistical method was developed previously for improving process mapping heuristics. The method systematically explores the space of possible heuristics under a specified time constraint. Its goal is to get the best possible heuristics while trading between the solution quality of the process mapping heuristics and their execution time. The statistical selection method is extended to take into consideration the variations in the amount of time used to evaluate heuristics on a problem instance. The improvement in performance is presented using the more realistic assumption along with some methods that alleviate the additional complexity.
An adaptive approach to the dynamic allocation of buffer storage. M.S. Thesis
NASA Technical Reports Server (NTRS)
Crooke, S. C.
1970-01-01
Several strategies for the dynamic allocation of buffer storage are simulated and compared. The basic algorithms investigated, using actual statistics observed in the Univac 1108 EXEC 8 System, include the buddy method and the first-fit method. Modifications are made to the basic methods in an effort to improve and to measure allocation performance. A simulation model of an adaptive strategy is developed which permits interchanging the two different methods, the buddy and the first-fit methods with some modifications. Using an adaptive strategy, each method may be employed in the statistical environment in which its performance is superior to the other method.
Some connections between importance sampling and enhanced sampling methods in molecular dynamics.
Lie, H C; Quer, J
2017-11-21
In molecular dynamics, enhanced sampling methods enable the collection of better statistics of rare events from a reference or target distribution. We show that a large class of these methods is based on the idea of importance sampling from mathematical statistics. We illustrate this connection by comparing the Hartmann-Schütte method for rare event simulation (J. Stat. Mech. Theor. Exp. 2012, P11004) and the Valsson-Parrinello method of variationally enhanced sampling [Phys. Rev. Lett. 113, 090601 (2014)]. We use this connection in order to discuss how recent results from the Monte Carlo methods literature can guide the development of enhanced sampling methods.
Some connections between importance sampling and enhanced sampling methods in molecular dynamics
NASA Astrophysics Data System (ADS)
Lie, H. C.; Quer, J.
2017-11-01
In molecular dynamics, enhanced sampling methods enable the collection of better statistics of rare events from a reference or target distribution. We show that a large class of these methods is based on the idea of importance sampling from mathematical statistics. We illustrate this connection by comparing the Hartmann-Schütte method for rare event simulation (J. Stat. Mech. Theor. Exp. 2012, P11004) and the Valsson-Parrinello method of variationally enhanced sampling [Phys. Rev. Lett. 113, 090601 (2014)]. We use this connection in order to discuss how recent results from the Monte Carlo methods literature can guide the development of enhanced sampling methods.
Weir, Christopher J; Butcher, Isabella; Assi, Valentina; Lewis, Stephanie C; Murray, Gordon D; Langhorne, Peter; Brady, Marian C
2018-03-07
Rigorous, informative meta-analyses rely on availability of appropriate summary statistics or individual participant data. For continuous outcomes, especially those with naturally skewed distributions, summary information on the mean or variability often goes unreported. While full reporting of original trial data is the ideal, we sought to identify methods for handling unreported mean or variability summary statistics in meta-analysis. We undertook two systematic literature reviews to identify methodological approaches used to deal with missing mean or variability summary statistics. Five electronic databases were searched, in addition to the Cochrane Colloquium abstract books and the Cochrane Statistics Methods Group mailing list archive. We also conducted cited reference searching and emailed topic experts to identify recent methodological developments. Details recorded included the description of the method, the information required to implement the method, any underlying assumptions and whether the method could be readily applied in standard statistical software. We provided a summary description of the methods identified, illustrating selected methods in example meta-analysis scenarios. For missing standard deviations (SDs), following screening of 503 articles, fifteen methods were identified in addition to those reported in a previous review. These included Bayesian hierarchical modelling at the meta-analysis level; summary statistic level imputation based on observed SD values from other trials in the meta-analysis; a practical approximation based on the range; and algebraic estimation of the SD based on other summary statistics. Following screening of 1124 articles for methods estimating the mean, one approximate Bayesian computation approach and three papers based on alternative summary statistics were identified. Illustrative meta-analyses showed that when replacing a missing SD the approximation using the range minimised loss of precision and generally performed better than omitting trials. When estimating missing means, a formula using the median, lower quartile and upper quartile performed best in preserving the precision of the meta-analysis findings, although in some scenarios, omitting trials gave superior results. Methods based on summary statistics (minimum, maximum, lower quartile, upper quartile, median) reported in the literature facilitate more comprehensive inclusion of randomised controlled trials with missing mean or variability summary statistics within meta-analyses.
Lucijanic, Marko; Petrovecki, Mladen
2012-01-01
Analyzing events over time is often complicated by incomplete, or censored, observations. Special non-parametric statistical methods were developed to overcome difficulties in summarizing and comparing censored data. Life-table (actuarial) method and Kaplan-Meier method are described with an explanation of survival curves. For the didactic purpose authors prepared a workbook based on most widely used Kaplan-Meier method. It should help the reader understand how Kaplan-Meier method is conceptualized and how it can be used to obtain statistics and survival curves needed to completely describe a sample of patients. Log-rank test and hazard ratio are also discussed.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2014-01-01
This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akcakaya, Murat; Nehorai, Arye; Sen, Satyabrata
Most existing radar algorithms are developed under the assumption that the environment (clutter) is stationary. However, in practice, the characteristics of the clutter can vary enormously depending on the radar-operational scenarios. If unaccounted for, these nonstationary variabilities may drastically hinder the radar performance. Therefore, to overcome such shortcomings, we develop a data-driven method for target detection in nonstationary environments. In this method, the radar dynamically detects changes in the environment and adapts to these changes by learning the new statistical characteristics of the environment and by intelligibly updating its statistical detection algorithm. Specifically, we employ drift detection algorithms to detectmore » changes in the environment; incremental learning, particularly learning under concept drift algorithms, to learn the new statistical characteristics of the environment from the new radar data that become available in batches over a period of time. The newly learned environment characteristics are then integrated in the detection algorithm. Furthermore, we use Monte Carlo simulations to demonstrate that the developed method provides a significant improvement in the detection performance compared with detection techniques that are not aware of the environmental changes.« less
Statistical Methods Applied to Gamma-ray Spectroscopy Algorithms in Nuclear Security Missions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fagan, Deborah K.; Robinson, Sean M.; Runkle, Robert C.
2012-10-01
In a wide range of nuclear security missions, gamma-ray spectroscopy is a critical research and development priority. One particularly relevant challenge is the interdiction of special nuclear material for which gamma-ray spectroscopy supports the goals of detecting and identifying gamma-ray sources. This manuscript examines the existing set of spectroscopy methods, attempts to categorize them by the statistical methods on which they rely, and identifies methods that have yet to be considered. Our examination shows that current methods effectively estimate the effect of counting uncertainty but in many cases do not address larger sources of decision uncertainty—ones that are significantly moremore » complex. We thus explore the premise that significantly improving algorithm performance requires greater coupling between the problem physics that drives data acquisition and statistical methods that analyze such data. Untapped statistical methods, such as Bayes Modeling Averaging and hierarchical and empirical Bayes methods have the potential to reduce decision uncertainty by more rigorously and comprehensively incorporating all sources of uncertainty. We expect that application of such methods will demonstrate progress in meeting the needs of nuclear security missions by improving on the existing numerical infrastructure for which these analyses have not been conducted.« less
Constant pressure and temperature discrete-time Langevin molecular dynamics
NASA Astrophysics Data System (ADS)
Grønbech-Jensen, Niels; Farago, Oded
2014-11-01
We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidal-Codina, F., E-mail: fvidal@mit.edu; Nguyen, N.C., E-mail: cuongng@mit.edu; Giles, M.B., E-mail: mike.giles@maths.ox.ac.uk
We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basismore » approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method.« less
Parolini, Giuditta
2015-01-01
During the twentieth century statistical methods have transformed research in the experimental and social sciences. Qualitative evidence has largely been replaced by quantitative results and the tools of statistical inference have helped foster a new ideal of objectivity in scientific knowledge. The paper will investigate this transformation by considering the genesis of analysis of variance and experimental design, statistical methods nowadays taught in every elementary course of statistics for the experimental and social sciences. These methods were developed by the mathematician and geneticist R. A. Fisher during the 1920s, while he was working at Rothamsted Experimental Station, where agricultural research was in turn reshaped by Fisher's methods. Analysis of variance and experimental design required new practices and instruments in field and laboratory research, and imposed a redistribution of expertise among statisticians, experimental scientists and the farm staff. On the other hand the use of statistical methods in agricultural science called for a systematization of information management and made computing an activity integral to the experimental research done at Rothamsted, permanently integrating the statisticians' tools and expertise into the station research programme. Fisher's statistical methods did not remain confined within agricultural research and by the end of the 1950s they had come to stay in psychology, sociology, education, chemistry, medicine, engineering, economics, quality control, just to mention a few of the disciplines which adopted them.
Quality Space and Launch Requirements Addendum to AS9100C
2015-03-05
45 8.9.1 Statistical Process Control (SPC) .......................................................................... 45 8.9.1.1 Out of Control...Systems Center SME Subject Matter Expert SOW Statement of Work SPC Statistical Process Control SPO System Program Office SRP Standard Repair...individual data exceeding the control limits. Control limits are developed using standard statistical methods or other approved techniques and are based on
The Effect of Project Based Learning on the Statistical Literacy Levels of Student 8th Grade
ERIC Educational Resources Information Center
Koparan, Timur; Güven, Bülent
2014-01-01
This study examines the effect of project based learning on 8th grade students' statistical literacy levels. A performance test was developed for this aim. Quasi-experimental research model was used in this article. In this context, the statistics were taught with traditional method in the control group and it was taught using project based…
The Effect on the 8th Grade Students' Attitude towards Statistics of Project Based Learning
ERIC Educational Resources Information Center
Koparan, Timur; Güven, Bülent
2014-01-01
This study investigates the effect of the project based learning approach on 8th grade students' attitude towards statistics. With this aim, an attitude scale towards statistics was developed. Quasi-experimental research model was used in this study. Following this model in the control group the traditional method was applied to teach statistics…
Ganger, Michael T; Dietz, Geoffrey D; Ewing, Sarah J
2017-12-01
qPCR has established itself as the technique of choice for the quantification of gene expression. Procedures for conducting qPCR have received significant attention; however, more rigorous approaches to the statistical analysis of qPCR data are needed. Here we develop a mathematical model, termed the Common Base Method, for analysis of qPCR data based on threshold cycle values (C q ) and efficiencies of reactions (E). The Common Base Method keeps all calculations in the logscale as long as possible by working with log 10 (E) ∙ C q , which we call the efficiency-weighted C q value; subsequent statistical analyses are then applied in the logscale. We show how efficiency-weighted C q values may be analyzed using a simple paired or unpaired experimental design and develop blocking methods to help reduce unexplained variation. The Common Base Method has several advantages. It allows for the incorporation of well-specific efficiencies and multiple reference genes. The method does not necessitate the pairing of samples that must be performed using traditional analysis methods in order to calculate relative expression ratios. Our method is also simple enough to be implemented in any spreadsheet or statistical software without additional scripts or proprietary components.
Goyal, Ravi; De Gruttola, Victor
2018-01-30
Analysis of sexual history data intended to describe sexual networks presents many challenges arising from the fact that most surveys collect information on only a very small fraction of the population of interest. In addition, partners are rarely identified and responses are subject to reporting biases. Typically, each network statistic of interest, such as mean number of sexual partners for men or women, is estimated independently of other network statistics. There is, however, a complex relationship among networks statistics; and knowledge of these relationships can aid in addressing concerns mentioned earlier. We develop a novel method that constrains a posterior predictive distribution of a collection of network statistics in order to leverage the relationships among network statistics in making inference about network properties of interest. The method ensures that inference on network properties is compatible with an actual network. Through extensive simulation studies, we also demonstrate that use of this method can improve estimates in settings where there is uncertainty that arises both from sampling and from systematic reporting bias compared with currently available approaches to estimation. To illustrate the method, we apply it to estimate network statistics using data from the Chicago Health and Social Life Survey. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Weighted Statistical Binning: Enabling Statistically Consistent Genome-Scale Phylogenetic Analyses
Bayzid, Md Shamsuzzoha; Mirarab, Siavash; Boussau, Bastien; Warnow, Tandy
2015-01-01
Because biological processes can result in different loci having different evolutionary histories, species tree estimation requires multiple loci from across multiple genomes. While many processes can result in discord between gene trees and species trees, incomplete lineage sorting (ILS), modeled by the multi-species coalescent, is considered to be a dominant cause for gene tree heterogeneity. Coalescent-based methods have been developed to estimate species trees, many of which operate by combining estimated gene trees, and so are called "summary methods". Because summary methods are generally fast (and much faster than more complicated coalescent-based methods that co-estimate gene trees and species trees), they have become very popular techniques for estimating species trees from multiple loci. However, recent studies have established that summary methods can have reduced accuracy in the presence of gene tree estimation error, and also that many biological datasets have substantial gene tree estimation error, so that summary methods may not be highly accurate in biologically realistic conditions. Mirarab et al. (Science 2014) presented the "statistical binning" technique to improve gene tree estimation in multi-locus analyses, and showed that it improved the accuracy of MP-EST, one of the most popular coalescent-based summary methods. Statistical binning, which uses a simple heuristic to evaluate "combinability" and then uses the larger sets of genes to re-calculate gene trees, has good empirical performance, but using statistical binning within a phylogenomic pipeline does not have the desirable property of being statistically consistent. We show that weighting the re-calculated gene trees by the bin sizes makes statistical binning statistically consistent under the multispecies coalescent, and maintains the good empirical performance. Thus, "weighted statistical binning" enables highly accurate genome-scale species tree estimation, and is also statistically consistent under the multi-species coalescent model. New data used in this study are available at DOI: http://dx.doi.org/10.6084/m9.figshare.1411146, and the software is available at https://github.com/smirarab/binning. PMID:26086579
NASA Astrophysics Data System (ADS)
Eissa, Maya S.; Abou Al Alamein, Amal M.
2018-03-01
Different innovative spectrophotometric methods were introduced for the first time for simultaneous quantification of sacubitril/valsartan in their binary mixture and in their combined dosage form without prior separation through two manipulation approaches. These approaches were developed and based either on two wavelength selection in zero-order absorption spectra namely; dual wavelength method (DWL) at 226 nm and 275 nm for valsartan, induced dual wavelength method (IDW) at 226 nm and 254 nm for sacubitril and advanced absorbance subtraction (AAS) based on their iso-absorptive point at 246 nm (λiso) and 261 nm (sacubitril shows equal absorbance values at the two selected wavelengths) or on ratio spectra using their normalized spectra namely; ratio difference spectrophotometric method (RD) at 225 nm and 264 nm for both of them in their ratio spectra, first derivative of ratio spectra (DR1) at 232 nm for valsartan and 239 nm for sacubitril and mean centering of ratio spectra (MCR) at 260 nm for both of them. Both sacubitril and valsartan showed linearity upon application of these methods in the range of 2.5-25.0 μg/mL. The developed spectrophotmetric methods were successfully applied to the analysis of their combined tablet dosage form ENTRESTO™. The adopted spectrophotometric methods were also validated according to ICH guidelines. The results obtained from the proposed methods were statistically compared to a reported HPLC method using Student t-test, F-test and a comparative study was also developed with one-way ANOVA, showing no statistical difference in accordance to precision and accuracy.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Li, Fei; Zhang, Shengkai; Zhu, Tingting
2017-04-01
Synthetic Aperture Radar (SAR) is significantly important for polar remote sensing since it can provide continuous observations in all days and all weather. SAR can be used for extracting the surface roughness information characterized by the variance of dielectric properties and different polarization channels, which make it possible to observe different ice types and surface structure for deformation analysis. In November, 2016, Chinese National Antarctic Research Expedition (CHINARE) 33rd cruise has set sails in sea ice zone in Antarctic. Accurate leads spatial distribution in sea ice zone for routine planning of ship navigation is essential. In this study, the semantic relationship between leads and sea ice categories has been described by the Conditional Random Fields (CRF) model, and leads characteristics have been modeled by statistical distributions in SAR imagery. In the proposed algorithm, a mixture statistical distribution based CRF is developed by considering the contexture information and the statistical characteristics of sea ice for improving leads detection in Sentinel-1A dual polarization SAR imagery. The unary potential and pairwise potential in CRF model is constructed by integrating the posteriori probability estimated from statistical distributions. For mixture statistical distribution parameter estimation, Method of Logarithmic Cumulants (MoLC) is exploited for single statistical distribution parameters estimation. The iteration based Expectation Maximal (EM) algorithm is investigated to calculate the parameters in mixture statistical distribution based CRF model. In the posteriori probability inference, graph-cut energy minimization method is adopted in the initial leads detection. The post-processing procedures including aspect ratio constrain and spatial smoothing approaches are utilized to improve the visual result. The proposed method is validated on Sentinel-1A SAR C-band Extra Wide Swath (EW) Ground Range Detected (GRD) imagery with a pixel spacing of 40 meters near Prydz Bay area, East Antarctica. Main work is listed as follows: 1) A mixture statistical distribution based CRF algorithm has been developed for leads detection from Sentinel-1A dual polarization images. 2) The assessment of the proposed mixture statistical distribution based CRF method and single distribution based CRF algorithm has been presented. 3) The preferable parameters sets including statistical distributions, the aspect ratio threshold and spatial smoothing window size have been provided. In the future, the proposed algorithm will be developed for the operational Sentinel series data sets processing due to its less time consuming cost and high accuracy in leads detection.
Georges, Patrick
2017-01-01
This paper proposes a statistical analysis that captures similarities and differences between classical music composers with the eventual aim to understand why particular composers 'sound' different even if their 'lineages' (influences network) are similar or why they 'sound' alike if their 'lineages' are different. In order to do this we use statistical methods and measures of association or similarity (based on presence/absence of traits such as specific 'ecological' characteristics and personal musical influences) that have been developed in biosystematics, scientometrics, and bibliographic coupling. This paper also represents a first step towards a more ambitious goal of developing an evolutionary model of Western classical music.
Kumar, Vineet
2011-12-01
The grain size statistics, commonly derived from the grain map of a material sample, are important microstructure characteristics that greatly influence its properties. The grain map for nanomaterials is usually obtained manually by visual inspection of the transmission electron microscope (TEM) micrographs because automated methods do not perform satisfactorily. While the visual inspection method provides reliable results, it is a labor intensive process and is often prone to human errors. In this article, an automated grain mapping method is developed using TEM diffraction patterns. The presented method uses wide angle convergent beam diffraction in the TEM. The automated technique was applied on a platinum thin film sample to obtain the grain map and subsequently derive grain size statistics from it. The grain size statistics obtained with the automated method were found in good agreement with the visual inspection method.
GAPIT version 2: an enhanced integrated tool for genomic association and prediction
USDA-ARS?s Scientific Manuscript database
Most human diseases and agriculturally important traits are complex. Dissecting their genetic architecture requires continued development of innovative and powerful statistical methods. Corresponding advances in computing tools are critical to efficiently use these statistical innovations and to enh...
Moore, Jason H; Amos, Ryan; Kiralis, Jeff; Andrews, Peter C
2015-01-01
Simulation plays an essential role in the development of new computational and statistical methods for the genetic analysis of complex traits. Most simulations start with a statistical model using methods such as linear or logistic regression that specify the relationship between genotype and phenotype. This is appealing due to its simplicity and because these statistical methods are commonly used in genetic analysis. It is our working hypothesis that simulations need to move beyond simple statistical models to more realistically represent the biological complexity of genetic architecture. The goal of the present study was to develop a prototype genotype–phenotype simulation method and software that are capable of simulating complex genetic effects within the context of a hierarchical biology-based framework. Specifically, our goal is to simulate multilocus epistasis or gene–gene interaction where the genetic variants are organized within the framework of one or more genes, their regulatory regions and other regulatory loci. We introduce here the Heuristic Identification of Biological Architectures for simulating Complex Hierarchical Interactions (HIBACHI) method and prototype software for simulating data in this manner. This approach combines a biological hierarchy, a flexible mathematical framework, a liability threshold model for defining disease endpoints, and a heuristic search strategy for identifying high-order epistatic models of disease susceptibility. We provide several simulation examples using genetic models exhibiting independent main effects and three-way epistatic effects. PMID:25395175
NASA Astrophysics Data System (ADS)
Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.
2018-05-01
A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tukey, J.W.; Bloomfield, P.
In its most general terms, the work carried out under the contract consists of the development of new data analytic methods and the improvement of existing methods, their implementation on computer, especially minicomputers, and the development of non-statistical, systems-level software to support these activities. The work reported or completed is reviewed. (GHT)
A spatial scan statistic for survival data based on Weibull distribution.
Bhatt, Vijaya; Tiwari, Neeraj
2014-05-20
The spatial scan statistic has been developed as a geographical cluster detection analysis tool for different types of data sets such as Bernoulli, Poisson, ordinal, normal and exponential. We propose a scan statistic for survival data based on Weibull distribution. It may also be used for other survival distributions, such as exponential, gamma, and log normal. The proposed method is applied on the survival data of tuberculosis patients for the years 2004-2005 in Nainital district of Uttarakhand, India. Simulation studies reveal that the proposed method performs well for different survival distribution functions. Copyright © 2013 John Wiley & Sons, Ltd.
Dissecting the genetics of complex traits using summary association statistics.
Pasaniuc, Bogdan; Price, Alkes L
2017-02-01
During the past decade, genome-wide association studies (GWAS) have been used to successfully identify tens of thousands of genetic variants associated with complex traits and diseases. These studies have produced extensive repositories of genetic variation and trait measurements across large numbers of individuals, providing tremendous opportunities for further analyses. However, privacy concerns and other logistical considerations often limit access to individual-level genetic data, motivating the development of methods that analyse summary association statistics. Here, we review recent progress on statistical methods that leverage summary association data to gain insights into the genetic basis of complex traits and diseases.
Dissecting the genetics of complex traits using summary association statistics
Pasaniuc, Bogdan; Price, Alkes L.
2017-01-01
During the past decade, genome-wide association studies (GWAS) have successfully identified tens of thousands of genetic variants associated with complex traits and diseases. These studies have produced extensive repositories of genetic variation and trait measurements across large numbers of individuals, providing tremendous opportunities for further analyses. However, privacy concerns and other logistical considerations often limit access to individual-level genetic data, motivating the development of methods that analyze summary association statistics. Here we review recent progress on statistical methods that leverage summary association data to gain insights into the genetic basis of complex traits and diseases. PMID:27840428
Southard, Rodney E.
2013-01-01
The weather and precipitation patterns in Missouri vary considerably from year to year. In 2008, the statewide average rainfall was 57.34 inches and in 2012, the statewide average rainfall was 30.64 inches. This variability in precipitation and resulting streamflow in Missouri underlies the necessity for water managers and users to have reliable streamflow statistics and a means to compute select statistics at ungaged locations for a better understanding of water availability. Knowledge of surface-water availability is dependent on the streamflow data that have been collected and analyzed by the U.S. Geological Survey for more than 100 years at approximately 350 streamgages throughout Missouri. The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, computed streamflow statistics at streamgages through the 2010 water year, defined periods of drought and defined methods to estimate streamflow statistics at ungaged locations, and developed regional regression equations to compute selected streamflow statistics at ungaged locations. Streamflow statistics and flow durations were computed for 532 streamgages in Missouri and in neighboring States of Missouri. For streamgages with more than 10 years of record, Kendall’s tau was computed to evaluate for trends in streamflow data. If trends were detected, the variable length method was used to define the period of no trend. Water years were removed from the dataset from the beginning of the record for a streamgage until no trend was detected. Low-flow frequency statistics were then computed for the entire period of record and for the period of no trend if 10 or more years of record were available for each analysis. Three methods are presented for computing selected streamflow statistics at ungaged locations. The first method uses power curve equations developed for 28 selected streams in Missouri and neighboring States that have multiple streamgages on the same streams. Statistical estimates on one of these streams can be calculated at an ungaged location that has a drainage area that is between 40 percent of the drainage area of the farthest upstream streamgage and within 150 percent of the drainage area of the farthest downstream streamgage along the stream of interest. The second method may be used on any stream with a streamgage that has operated for 10 years or longer and for which anthropogenic effects have not changed the low-flow characteristics at the ungaged location since collection of the streamflow data. A ratio of drainage area of the stream at the ungaged location to the drainage area of the stream at the streamgage was computed to estimate the statistic at the ungaged location. The range of applicability is between 40- and 150-percent of the drainage area of the streamgage, and the ungaged location must be located on the same stream as the streamgage. The third method uses regional regression equations to estimate selected low-flow frequency statistics for unregulated streams in Missouri. This report presents regression equations to estimate frequency statistics for the 10-year recurrence interval and for the N-day durations of 1, 2, 3, 7, 10, 30, and 60 days. Basin and climatic characteristics were computed using geographic information system software and digital geospatial data. A total of 35 characteristics were computed for use in preliminary statewide and regional regression analyses based on existing digital geospatial data and previous studies. Spatial analyses for geographical bias in the predictive accuracy of the regional regression equations defined three low-flow regions with the State representing the three major physiographic provinces in Missouri. Region 1 includes the Central Lowlands, Region 2 includes the Ozark Plateaus, and Region 3 includes the Mississippi Alluvial Plain. A total of 207 streamgages were used in the regression analyses for the regional equations. Of the 207 U.S. Geological Survey streamgages, 77 were located in Region 1, 120 were located in Region 2, and 10 were located in Region 3. Streamgages located outside of Missouri were selected to extend the range of data used for the independent variables in the regression analyses. Streamgages included in the regression analyses had 10 or more years of record and were considered to be affected minimally by anthropogenic activities or trends. Regional regression analyses identified three characteristics as statistically significant for the development of regional equations. For Region 1, drainage area, longest flow path, and streamflow-variability index were statistically significant. The range in the standard error of estimate for Region 1 is 79.6 to 94.2 percent. For Region 2, drainage area and streamflow variability index were statistically significant, and the range in the standard error of estimate is 48.2 to 72.1 percent. For Region 3, drainage area and streamflow-variability index also were statistically significant with a range in the standard error of estimate of 48.1 to 96.2 percent. Limitations on the use of estimating low-flow frequency statistics at ungaged locations are dependent on the method used. The first method outlined for use in Missouri, power curve equations, were developed to estimate the selected statistics for ungaged locations on 28 selected streams with multiple streamgages located on the same stream. A second method uses a drainage-area ratio to compute statistics at an ungaged location using data from a single streamgage on the same stream with 10 or more years of record. Ungaged locations on these streams may use the ratio of the drainage area at an ungaged location to the drainage area at a streamgage location to scale the selected statistic value from the streamgage location to the ungaged location. This method can be used if the drainage area of the ungaged location is within 40 to 150 percent of the streamgage drainage area. The third method is the use of the regional regression equations. The limits for the use of these equations are based on the ranges of the characteristics used as independent variables and that streams must be affected minimally by anthropogenic activities.
A Statistical Approach for the Concurrent Coupling of Molecular Dynamics and Finite Element Methods
NASA Technical Reports Server (NTRS)
Saether, E.; Yamakov, V.; Glaessgen, E.
2007-01-01
Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, increasing the size of the MD domain quickly presents intractable computational demands. A robust approach to surmount this computational limitation has been to unite continuum modeling procedures such as the finite element method (FEM) with MD analyses thereby reducing the region of atomic scale refinement. The challenging problem is to seamlessly connect the two inherently different simulation techniques at their interface. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the typical boundary value problem used to define a coupled domain. The method uses statistical averaging of the atomistic MD domain to provide displacement interface boundary conditions to the surrounding continuum FEM region, which, in return, generates interface reaction forces applied as piecewise constant traction boundary conditions to the MD domain. The two systems are computationally disconnected and communicate only through a continuous update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM) as opposed to a direct coupling method where interface atoms and FEM nodes are individually related. The methodology is inherently applicable to three-dimensional domains, avoids discretization of the continuum model down to atomic scales, and permits arbitrary temperatures to be applied.
Fully Bayesian tests of neutrality using genealogical summary statistics.
Drummond, Alexei J; Suchard, Marc A
2008-10-31
Many data summary statistics have been developed to detect departures from neutral expectations of evolutionary models. However questions about the neutrality of the evolution of genetic loci within natural populations remain difficult to assess. One critical cause of this difficulty is that most methods for testing neutrality make simplifying assumptions simultaneously about the mutational model and the population size model. Consequentially, rejecting the null hypothesis of neutrality under these methods could result from violations of either or both assumptions, making interpretation troublesome. Here we harness posterior predictive simulation to exploit summary statistics of both the data and model parameters to test the goodness-of-fit of standard models of evolution. We apply the method to test the selective neutrality of molecular evolution in non-recombining gene genealogies and we demonstrate the utility of our method on four real data sets, identifying significant departures of neutrality in human influenza A virus, even after controlling for variation in population size. Importantly, by employing a full model-based Bayesian analysis, our method separates the effects of demography from the effects of selection. The method also allows multiple summary statistics to be used in concert, thus potentially increasing sensitivity. Furthermore, our method remains useful in situations where analytical expectations and variances of summary statistics are not available. This aspect has great potential for the analysis of temporally spaced data, an expanding area previously ignored for limited availability of theory and methods.
Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics
Chen, Wenan; Larrabee, Beth R.; Ovsyannikova, Inna G.; Kennedy, Richard B.; Haralambieva, Iana H.; Poland, Gregory A.; Schaid, Daniel J.
2015-01-01
Two recently developed fine-mapping methods, CAVIAR and PAINTOR, demonstrate better performance over other fine-mapping methods. They also have the advantage of using only the marginal test statistics and the correlation among SNPs. Both methods leverage the fact that the marginal test statistics asymptotically follow a multivariate normal distribution and are likelihood based. However, their relationship with Bayesian fine mapping, such as BIMBAM, is not clear. In this study, we first show that CAVIAR and BIMBAM are actually approximately equivalent to each other. This leads to a fine-mapping method using marginal test statistics in the Bayesian framework, which we call CAVIAR Bayes factor (CAVIARBF). Another advantage of the Bayesian framework is that it can answer both association and fine-mapping questions. We also used simulations to compare CAVIARBF with other methods under different numbers of causal variants. The results showed that both CAVIARBF and BIMBAM have better performance than PAINTOR and other methods. Compared to BIMBAM, CAVIARBF has the advantage of using only marginal test statistics and takes about one-quarter to one-fifth of the running time. We applied different methods on two independent cohorts of the same phenotype. Results showed that CAVIARBF, BIMBAM, and PAINTOR selected the same top 3 SNPs; however, CAVIARBF and BIMBAM had better consistency in selecting the top 10 ranked SNPs between the two cohorts. Software is available at https://bitbucket.org/Wenan/caviarbf. PMID:25948564
Rollins, Derrick K; Teh, Ailing
2010-12-17
Microarray data sets provide relative expression levels for thousands of genes for a small number, in comparison, of different experimental conditions called assays. Data mining techniques are used to extract specific information of genes as they relate to the assays. The multivariate statistical technique of principal component analysis (PCA) has proven useful in providing effective data mining methods. This article extends the PCA approach of Rollins et al. to the development of ranking genes of microarray data sets that express most differently between two biologically different grouping of assays. This method is evaluated on real and simulated data and compared to a current approach on the basis of false discovery rate (FDR) and statistical power (SP) which is the ability to correctly identify important genes. This work developed and evaluated two new test statistics based on PCA and compared them to a popular method that is not PCA based. Both test statistics were found to be effective as evaluated in three case studies: (i) exposing E. coli cells to two different ethanol levels; (ii) application of myostatin to two groups of mice; and (iii) a simulated data study derived from the properties of (ii). The proposed method (PM) effectively identified critical genes in these studies based on comparison with the current method (CM). The simulation study supports higher identification accuracy for PM over CM for both proposed test statistics when the gene variance is constant and for one of the test statistics when the gene variance is non-constant. PM compares quite favorably to CM in terms of lower FDR and much higher SP. Thus, PM can be quite effective in producing accurate signatures from large microarray data sets for differential expression between assays groups identified in a preliminary step of the PCA procedure and is, therefore, recommended for use in these applications.
STRengthening analytical thinking for observational studies: the STRATOS initiative.
Sauerbrei, Willi; Abrahamowicz, Michal; Altman, Douglas G; le Cessie, Saskia; Carpenter, James
2014-12-30
The validity and practical utility of observational medical research depends critically on good study design, excellent data quality, appropriate statistical methods and accurate interpretation of results. Statistical methodology has seen substantial development in recent times. Unfortunately, many of these methodological developments are ignored in practice. Consequently, design and analysis of observational studies often exhibit serious weaknesses. The lack of guidance on vital practical issues discourages many applied researchers from using more sophisticated and possibly more appropriate methods when analyzing observational studies. Furthermore, many analyses are conducted by researchers with a relatively weak statistical background and limited experience in using statistical methodology and software. Consequently, even 'standard' analyses reported in the medical literature are often flawed, casting doubt on their results and conclusions. An efficient way to help researchers to keep up with recent methodological developments is to develop guidance documents that are spread to the research community at large. These observations led to the initiation of the strengthening analytical thinking for observational studies (STRATOS) initiative, a large collaboration of experts in many different areas of biostatistical research. The objective of STRATOS is to provide accessible and accurate guidance in the design and analysis of observational studies. The guidance is intended for applied statisticians and other data analysts with varying levels of statistical education, experience and interests. In this article, we introduce the STRATOS initiative and its main aims, present the need for guidance documents and outline the planned approach and progress so far. We encourage other biostatisticians to become involved. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.
Draborg, Eva; Andersen, Christian Kronborg
2006-01-01
Health technology assessment (HTA) has been used as input in decision making worldwide for more than 25 years. However, no uniform definition of HTA or agreement on assessment methods exists, leaving open the question of what influences the choice of assessment methods in HTAs. The objective of this study is to analyze statistically a possible relationship between methods of assessment used in practical HTAs, type of assessed technology, type of assessors, and year of publication. A sample of 433 HTAs published by eleven leading institutions or agencies in nine countries was reviewed and analyzed by multiple logistic regression. The study shows that outsourcing of HTA reports to external partners is associated with a higher likelihood of using assessment methods, such as meta-analysis, surveys, economic evaluations, and randomized controlled trials; and with a lower likelihood of using assessment methods, such as literature reviews and "other methods". The year of publication was statistically related to the inclusion of economic evaluations and shows a decreasing likelihood during the year span. The type of assessed technology was related to economic evaluations with a decreasing likelihood, to surveys, and to "other methods" with a decreasing likelihood when pharmaceuticals were the assessed type of technology. During the period from 1989 to 2002, no major developments in assessment methods used in practical HTAs were shown statistically in a sample of 433 HTAs worldwide. Outsourcing to external assessors has a statistically significant influence on choice of assessment methods.
Defining the ecological hydrology of Taiwan Rivers using multivariate statistical methods
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Wu, Tzu-Ching; Tsai, Wen-Ping; Herricks, Edwin E.
2009-09-01
SummaryThe identification and verification of ecohydrologic flow indicators has found new support as the importance of ecological flow regimes is recognized in modern water resources management, particularly in river restoration and reservoir management. An ecohydrologic indicator system reflecting the unique characteristics of Taiwan's water resources and hydrology has been developed, the Taiwan ecohydrological indicator system (TEIS). A major challenge for the water resources community is using the TEIS to provide environmental flow rules that improve existing water resources management. This paper examines data from the extensive network of flow monitoring stations in Taiwan using TEIS statistics to define and refine environmental flow options in Taiwan. Multivariate statistical methods were used to examine TEIS statistics for 102 stations representing the geographic and land use diversity of Taiwan. The Pearson correlation coefficient showed high multicollinearity between the TEIS statistics. Watersheds were separated into upper and lower-watershed locations. An analysis of variance indicated significant differences between upstream, more natural, and downstream, more developed, locations in the same basin with hydrologic indicator redundancy in flow change and magnitude statistics. Issues of multicollinearity were examined using a Principal Component Analysis (PCA) with the first three components related to general flow and high/low flow statistics, frequency and time statistics, and quantity statistics. These principle components would explain about 85% of the total variation. A major conclusion is that managers must be aware of differences among basins, as well as differences within basins that will require careful selection of management procedures to achieve needed flow regimes.
Chung, Dongjun; Kim, Hang J; Zhao, Hongyu
2017-02-01
Genome-wide association studies (GWAS) have identified tens of thousands of genetic variants associated with hundreds of phenotypes and diseases, which have provided clinical and medical benefits to patients with novel biomarkers and therapeutic targets. However, identification of risk variants associated with complex diseases remains challenging as they are often affected by many genetic variants with small or moderate effects. There has been accumulating evidence suggesting that different complex traits share common risk basis, namely pleiotropy. Recently, several statistical methods have been developed to improve statistical power to identify risk variants for complex traits through a joint analysis of multiple GWAS datasets by leveraging pleiotropy. While these methods were shown to improve statistical power for association mapping compared to separate analyses, they are still limited in the number of phenotypes that can be integrated. In order to address this challenge, in this paper, we propose a novel statistical framework, graph-GPA, to integrate a large number of GWAS datasets for multiple phenotypes using a hidden Markov random field approach. Application of graph-GPA to a joint analysis of GWAS datasets for 12 phenotypes shows that graph-GPA improves statistical power to identify risk variants compared to statistical methods based on smaller number of GWAS datasets. In addition, graph-GPA also promotes better understanding of genetic mechanisms shared among phenotypes, which can potentially be useful for the development of improved diagnosis and therapeutics. The R implementation of graph-GPA is currently available at https://dongjunchung.github.io/GGPA/.
Adams, Dean C
2014-09-01
Phylogenetic signal is the tendency for closely related species to display similar trait values due to their common ancestry. Several methods have been developed for quantifying phylogenetic signal in univariate traits and for sets of traits treated simultaneously, and the statistical properties of these approaches have been extensively studied. However, methods for assessing phylogenetic signal in high-dimensional multivariate traits like shape are less well developed, and their statistical performance is not well characterized. In this article, I describe a generalization of the K statistic of Blomberg et al. that is useful for quantifying and evaluating phylogenetic signal in highly dimensional multivariate data. The method (K(mult)) is found from the equivalency between statistical methods based on covariance matrices and those based on distance matrices. Using computer simulations based on Brownian motion, I demonstrate that the expected value of K(mult) remains at 1.0 as trait variation among species is increased or decreased, and as the number of trait dimensions is increased. By contrast, estimates of phylogenetic signal found with a squared-change parsimony procedure for multivariate data change with increasing trait variation among species and with increasing numbers of trait dimensions, confounding biological interpretations. I also evaluate the statistical performance of hypothesis testing procedures based on K(mult) and find that the method displays appropriate Type I error and high statistical power for detecting phylogenetic signal in high-dimensional data. Statistical properties of K(mult) were consistent for simulations using bifurcating and random phylogenies, for simulations using different numbers of species, for simulations that varied the number of trait dimensions, and for different underlying models of trait covariance structure. Overall these findings demonstrate that K(mult) provides a useful means of evaluating phylogenetic signal in high-dimensional multivariate traits. Finally, I illustrate the utility of the new approach by evaluating the strength of phylogenetic signal for head shape in a lineage of Plethodon salamanders. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Methods for Assessment of Memory Reactivation.
Liu, Shizhao; Grosmark, Andres D; Chen, Zhe
2018-04-13
It has been suggested that reactivation of previously acquired experiences or stored information in declarative memories in the hippocampus and neocortex contributes to memory consolidation and learning. Understanding memory consolidation depends crucially on the development of robust statistical methods for assessing memory reactivation. To date, several statistical methods have seen established for assessing memory reactivation based on bursts of ensemble neural spike activity during offline states. Using population-decoding methods, we propose a new statistical metric, the weighted distance correlation, to assess hippocampal memory reactivation (i.e., spatial memory replay) during quiet wakefulness and slow-wave sleep. The new metric can be combined with an unsupervised population decoding analysis, which is invariant to latent state labeling and allows us to detect statistical dependency beyond linearity in memory traces. We validate the new metric using two rat hippocampal recordings in spatial navigation tasks. Our proposed analysis framework may have a broader impact on assessing memory reactivations in other brain regions under different behavioral tasks.
Sakunpak, Apirak; Suksaeree, Jirapornchai; Monton, Chaowalit; Pathompak, Pathamaporn; Kraisintu, Krisana
2014-01-01
Objective To develop and validate an image analysis method for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. Methods TLC-densitometric and TLC-image analysis methods were developed, validated, and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. The results obtained by these two different quantification methods were compared by paired t-test. Results Both assays provided good linearity, accuracy, reproducibility and selectivity for determination of γ-oryzanol. Conclusions The TLC-densitometric and TLC-image analysis methods provided a similar reproducibility, accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil. A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods. As both methods were found to be equal, they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil. PMID:25182282
On the Spike Train Variability Characterized by Variance-to-Mean Power Relationship.
Koyama, Shinsuke
2015-07-01
We propose a statistical method for modeling the non-Poisson variability of spike trains observed in a wide range of brain regions. Central to our approach is the assumption that the variance and the mean of interspike intervals are related by a power function characterized by two parameters: the scale factor and exponent. It is shown that this single assumption allows the variability of spike trains to have an arbitrary scale and various dependencies on the firing rate in the spike count statistics, as well as in the interval statistics, depending on the two parameters of the power function. We also propose a statistical model for spike trains that exhibits the variance-to-mean power relationship. Based on this, a maximum likelihood method is developed for inferring the parameters from rate-modulated spike trains. The proposed method is illustrated on simulated and experimental spike trains.
NASA Astrophysics Data System (ADS)
Cameron, Enrico; Pilla, Giorgio; Stella, Fabio A.
2018-06-01
The application of statistical classification methods is investigated—in comparison also to spatial interpolation methods—for predicting the acceptability of well-water quality in a situation where an effective quantitative model of the hydrogeological system under consideration cannot be developed. In the example area in northern Italy, in particular, the aquifer is locally affected by saline water and the concentration of chloride is the main indicator of both saltwater occurrence and groundwater quality. The goal is to predict if the chloride concentration in a water well will exceed the allowable concentration so that the water is unfit for the intended use. A statistical classification algorithm achieved the best predictive performances and the results of the study show that statistical classification methods provide further tools for dealing with groundwater quality problems concerning hydrogeological systems that are too difficult to describe analytically or to simulate effectively.
NASA Technical Reports Server (NTRS)
Crabill, Norman L.
1989-01-01
Two hundred hours of Lockheed L 1011 digital flight data recorder data taken in 1973 were used to develop methods and procedures for obtaining statistical data useful for updating airliner airworthiness design criteria. Five thousand hours of additional data taken in 1978 to 1982 are reported in volumes 2, 3, 4 and 5.
[Research & development on computer expert system for forensic bones estimation].
Zhao, Jun-ji; Zhang, Jan-zheng; Liu, Nin-guo
2005-08-01
To build an expert system for forensic bones estimation. By using the object oriented method, employing statistical data of forensic anthropology, combining the statistical data frame knowledge representation with productions and also using the fuzzy matching and DS evidence theory method. Software for forensic estimation of sex, age and height with opened knowledge base was designed. This system is reliable and effective, and it would be a good assistant of the forensic technician.
Quantitative studies of bird movement: a methodological review
Nichols, J.D.; Kaiser, A.
1999-01-01
The past several years have seen development of a number of statistical models and methods for drawing inferences about bird movement using data from marked individuals. It can be difficult to keep up with this rapid development of new methods, so our purpose here is to categorize and review methods for drawing inferences about avian movement. We also outline recommendations about future work dealing both with methods development and actual studies directed at hypotheses about bird movement of interest from conservation, management, or ecological perspectives.
A Third Moment Adjusted Test Statistic for Small Sample Factor Analysis.
Lin, Johnny; Bentler, Peter M
2012-01-01
Goodness of fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square; but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne's asymptotically distribution-free method and Satorra Bentler's mean scaling statistic were developed under the presumption of non-normality in the factors and errors. This paper finds new application to the case where factors and errors are normally distributed in the population but the skewness of the obtained test statistic is still high due to sampling error in the observed indicators. An extension of Satorra Bentler's statistic is proposed that not only scales the mean but also adjusts the degrees of freedom based on the skewness of the obtained test statistic in order to improve its robustness under small samples. A simple simulation study shows that this third moment adjusted statistic asymptotically performs on par with previously proposed methods, and at a very small sample size offers superior Type I error rates under a properly specified model. Data from Mardia, Kent and Bibby's study of students tested for their ability in five content areas that were either open or closed book were used to illustrate the real-world performance of this statistic.
NASA Astrophysics Data System (ADS)
Hartmann, Alexander K.; Weigt, Martin
2005-10-01
A concise, comprehensive introduction to the topic of statistical physics of combinatorial optimization, bringing together theoretical concepts and algorithms from computer science with analytical methods from physics. The result bridges the gap between statistical physics and combinatorial optimization, investigating problems taken from theoretical computing, such as the vertex-cover problem, with the concepts and methods of theoretical physics. The authors cover rapid developments and analytical methods that are both extremely complex and spread by word-of-mouth, providing all the necessary basics in required detail. Throughout, the algorithms are shown with examples and calculations, while the proofs are given in a way suitable for graduate students, post-docs, and researchers. Ideal for newcomers to this young, multidisciplinary field.
Linear regression models and k-means clustering for statistical analysis of fNIRS data.
Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro
2015-02-01
We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets.
Linear regression models and k-means clustering for statistical analysis of fNIRS data
Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro
2015-01-01
We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets. PMID:25780751
NASA Astrophysics Data System (ADS)
Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham
This work represents the application of the isosbestic points present in different absorption spectra. Three novel spectrophotometric methods were developed, the first method is the absorption subtraction method (AS) utilizing the isosbestic point in zero-order absorption spectra; the second method is the amplitude modulation method (AM) utilizing the isosbestic point in ratio spectra; and third method is the amplitude summation method (A-Sum) utilizing the isosbestic point in derivative spectra. The three methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The components at the isosbestic point were determined using the corresponding unified regression equation at this point with no need for a complementary method. The obtained results were statistically compared to each other and to that of the developed PLS model. The specificity of the developed methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed.
Forecasting runout of rock and debris avalanches
Iverson, Richard M.; Evans, S.G.; Mugnozza, G.S.; Strom, A.; Hermanns, R.L.
2006-01-01
Physically based mathematical models and statistically based empirical equations each may provide useful means of forecasting runout of rock and debris avalanches. This paper compares the foundations, strengths, and limitations of a physically based model and a statistically based forecasting method, both of which were developed to predict runout across three-dimensional topography. The chief advantage of the physically based model results from its ties to physical conservation laws and well-tested axioms of soil and rock mechanics, such as the Coulomb friction rule and effective-stress principle. The output of this model provides detailed information about the dynamics of avalanche runout, at the expense of high demands for accurate input data, numerical computation, and experimental testing. In comparison, the statistical method requires relatively modest computation and no input data except identification of prospective avalanche source areas and a range of postulated avalanche volumes. Like the physically based model, the statistical method yields maps of predicted runout, but it provides no information on runout dynamics. Although the two methods differ significantly in their structure and objectives, insights gained from one method can aid refinement of the other.
A criterion for establishing life limits. [for Space Shuttle Main Engine service
NASA Technical Reports Server (NTRS)
Skopp, G. H.; Porter, A. A.
1990-01-01
The development of a rigorous statistical method that would utilize hardware-demonstrated reliability to evaluate hardware capability and provide ground rules for safe flight margin is discussed. A statistical-based method using the Weibull/Weibayes cumulative distribution function is described. Its advantages and inadequacies are pointed out. Another, more advanced procedure, Single Flight Reliability (SFR), determines a life limit which ensures that the reliability of any single flight is never less than a stipulated value at a stipulated confidence level. Application of the SFR method is illustrated.
Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses
Park, Danny S.; Brown, Brielin; Eng, Celeste; Huntsman, Scott; Hu, Donglei; Torgerson, Dara G.; Burchard, Esteban G.; Zaitlen, Noah
2015-01-01
Motivation: Approaches to identifying new risk loci, training risk prediction models, imputing untyped variants and fine-mapping causal variants from summary statistics of genome-wide association studies are playing an increasingly important role in the human genetics community. Current summary statistics-based methods rely on global ‘best guess’ reference panels to model the genetic correlation structure of the dataset being studied. This approach, especially in admixed populations, has the potential to produce misleading results, ignores variation in local structure and is not feasible when appropriate reference panels are missing or small. Here, we develop a method, Adapt-Mix, that combines information across all available reference panels to produce estimates of local genetic correlation structure for summary statistics-based methods in arbitrary populations. Results: We applied Adapt-Mix to estimate the genetic correlation structure of both admixed and non-admixed individuals using simulated and real data. We evaluated our method by measuring the performance of two summary statistics-based methods: imputation and joint-testing. When using our method as opposed to the current standard of ‘best guess’ reference panels, we observed a 28% decrease in mean-squared error for imputation and a 73.7% decrease in mean-squared error for joint-testing. Availability and implementation: Our method is publicly available in a software package called ADAPT-Mix available at https://github.com/dpark27/adapt_mix. Contact: noah.zaitlen@ucsf.edu PMID:26072481
P values are only an index to evidence: 20th- vs. 21st-century statistical science.
Burnham, K P; Anderson, D R
2014-03-01
Early statistical methods focused on pre-data probability statements (i.e., data as random variables) such as P values; these are not really inferences nor are P values evidential. Statistical science clung to these principles throughout much of the 20th century as a wide variety of methods were developed for special cases. Looking back, it is clear that the underlying paradigm (i.e., testing and P values) was weak. As Kuhn (1970) suggests, new paradigms have taken the place of earlier ones: this is a goal of good science. New methods have been developed and older methods extended and these allow proper measures of strength of evidence and multimodel inference. It is time to move forward with sound theory and practice for the difficult practical problems that lie ahead. Given data the useful foundation shifts to post-data probability statements such as model probabilities (Akaike weights) or related quantities such as odds ratios and likelihood intervals. These new methods allow formal inference from multiple models in the a prior set. These quantities are properly evidential. The past century was aimed at finding the "best" model and making inferences from it. The goal in the 21st century is to base inference on all the models weighted by their model probabilities (model averaging). Estimates of precision can include model selection uncertainty leading to variances conditional on the model set. The 21st century will be about the quantification of information, proper measures of evidence, and multi-model inference. Nelder (1999:261) concludes, "The most important task before us in developing statistical science is to demolish the P-value culture, which has taken root to a frightening extent in many areas of both pure and applied science and technology".
Methods for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma
Esralew, Rachel A.; Smith, S. Jerrod
2010-01-01
Flow statistics can be used to provide decision makers with surface-water information needed for activities such as water-supply permitting, flow regulation, and other water rights issues. Flow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no flow data are available to compute the statistics. Methods are presented in this report for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma. Flow statistics included the (1) annual (period of record), (2) seasonal (summer-autumn and winter-spring), and (3) 12 monthly duration statistics, including the 20th, 50th, 80th, 90th, and 95th percentile flow exceedances, and the annual mean-flow (mean of daily flows for the period of record). Flow statistics were calculated from daily streamflow information collected from 235 streamflow-gaging stations throughout Oklahoma and areas in adjacent states. A drainage-area ratio method is the preferred method for estimating flow statistics at an ungaged location that is on a stream near a gage. The method generally is reliable only if the drainage-area ratio of the two sites is between 0.5 and 1.5. Regression equations that relate flow statistics to drainage-basin characteristics were developed for the purpose of estimating selected flow-duration and annual mean-flow statistics for ungaged streams that are not near gaging stations on the same stream. Regression equations were developed from flow statistics and drainage-basin characteristics for 113 unregulated gaging stations. Separate regression equations were developed by using U.S. Geological Survey streamflow-gaging stations in regions with similar drainage-basin characteristics. These equations can increase the accuracy of regression equations used for estimating flow-duration and annual mean-flow statistics at ungaged stream locations in Oklahoma. Streamflow-gaging stations were grouped by selected drainage-basin characteristics by using a k-means cluster analysis. Three regions were identified for Oklahoma on the basis of the clustering of gaging stations and a manual delineation of distinguishable hydrologic and geologic boundaries: Region 1 (western Oklahoma excluding the Oklahoma and Texas Panhandles), Region 2 (north- and south-central Oklahoma), and Region 3 (eastern and central Oklahoma). A total of 228 regression equations (225 flow-duration regressions and three annual mean-flow regressions) were developed using ordinary least-squares and left-censored (Tobit) multiple-regression techniques. These equations can be used to estimate 75 flow-duration statistics and annual mean-flow for ungaged streams in the three regions. Drainage-basin characteristics that were statistically significant independent variables in the regression analyses were (1) contributing drainage area; (2) station elevation; (3) mean drainage-basin elevation; (4) channel slope; (5) percentage of forested canopy; (6) mean drainage-basin hillslope; (7) soil permeability; and (8) mean annual, seasonal, and monthly precipitation. The accuracy of flow-duration regression equations generally decreased from high-flow exceedance (low-exceedance probability) to low-flow exceedance (high-exceedance probability) . This decrease may have happened because a greater uncertainty exists for low-flow estimates and low-flow is largely affected by localized geology that was not quantified by the drainage-basin characteristics selected. The standard errors of estimate of regression equations for Region 1 (western Oklahoma) were substantially larger than those standard errors for other regions, especially for low-flow exceedances. These errors may be a result of greater variability in low flow because of increased irrigation activities in this region. Regression equations may not be reliable for sites where the drainage-basin characteristics are outside the range of values of independent vari
Eissa, Maya S; Abou Al Alamein, Amal M
2018-03-15
Different innovative spectrophotometric methods were introduced for the first time for simultaneous quantification of sacubitril/valsartan in their binary mixture and in their combined dosage form without prior separation through two manipulation approaches. These approaches were developed and based either on two wavelength selection in zero-order absorption spectra namely; dual wavelength method (DWL) at 226nm and 275nm for valsartan, induced dual wavelength method (IDW) at 226nm and 254nm for sacubitril and advanced absorbance subtraction (AAS) based on their iso-absorptive point at 246nm (λ iso ) and 261nm (sacubitril shows equal absorbance values at the two selected wavelengths) or on ratio spectra using their normalized spectra namely; ratio difference spectrophotometric method (RD) at 225nm and 264nm for both of them in their ratio spectra, first derivative of ratio spectra (DR 1 ) at 232nm for valsartan and 239nm for sacubitril and mean centering of ratio spectra (MCR) at 260nm for both of them. Both sacubitril and valsartan showed linearity upon application of these methods in the range of 2.5-25.0μg/mL. The developed spectrophotmetric methods were successfully applied to the analysis of their combined tablet dosage form ENTRESTO™. The adopted spectrophotometric methods were also validated according to ICH guidelines. The results obtained from the proposed methods were statistically compared to a reported HPLC method using Student t-test, F-test and a comparative study was also developed with one-way ANOVA, showing no statistical difference in accordance to precision and accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparing Visual and Statistical Analysis of Multiple Baseline Design Graphs.
Wolfe, Katie; Dickenson, Tammiee S; Miller, Bridget; McGrath, Kathleen V
2018-04-01
A growing number of statistical analyses are being developed for single-case research. One important factor in evaluating these methods is the extent to which each corresponds to visual analysis. Few studies have compared statistical and visual analysis, and information about more recently developed statistics is scarce. Therefore, our purpose was to evaluate the agreement between visual analysis and four statistical analyses: improvement rate difference (IRD); Tau-U; Hedges, Pustejovsky, Shadish (HPS) effect size; and between-case standardized mean difference (BC-SMD). Results indicate that IRD and BC-SMD had the strongest overall agreement with visual analysis. Although Tau-U had strong agreement with visual analysis on raw values, it had poorer agreement when those values were dichotomized to represent the presence or absence of a functional relation. Overall, visual analysis appeared to be more conservative than statistical analysis, but further research is needed to evaluate the nature of these disagreements.
Abdul Kamal Nazer, Meeran Mohideen; Hameed, Abdul Rahman Shahul; Riyazuddin, Patel
2004-01-01
A simple and rapid potentiometric method for the estimation of ascorbic acid in pharmaceutical dosage forms has been developed. The method is based on treating ascorbic acid with iodine and titration of the iodide produced equivalent to ascorbic acid with silver nitrate using Copper Based Mercury Film Electrode (CBMFE) as an indicator electrode. Interference study was carried to check possible interference of usual excipients and other vitamins. The precision and accuracy of the method was assessed by the application of lack-of-fit test and other statistical methods. The results of the proposed method and British Pharmacopoeia method were compared using F and t-statistical tests of significance.
Emura, Takeshi; Konno, Yoshihiko; Michimae, Hirofumi
2015-07-01
Doubly truncated data consist of samples whose observed values fall between the right- and left- truncation limits. With such samples, the distribution function of interest is estimated using the nonparametric maximum likelihood estimator (NPMLE) that is obtained through a self-consistency algorithm. Owing to the complicated asymptotic distribution of the NPMLE, the bootstrap method has been suggested for statistical inference. This paper proposes a closed-form estimator for the asymptotic covariance function of the NPMLE, which is computationally attractive alternative to bootstrapping. Furthermore, we develop various statistical inference procedures, such as confidence interval, goodness-of-fit tests, and confidence bands to demonstrate the usefulness of the proposed covariance estimator. Simulations are performed to compare the proposed method with both the bootstrap and jackknife methods. The methods are illustrated using the childhood cancer dataset.
Statistical modeling of software reliability
NASA Technical Reports Server (NTRS)
Miller, Douglas R.
1992-01-01
This working paper discusses the statistical simulation part of a controlled software development experiment being conducted under the direction of the System Validation Methods Branch, Information Systems Division, NASA Langley Research Center. The experiment uses guidance and control software (GCS) aboard a fictitious planetary landing spacecraft: real-time control software operating on a transient mission. Software execution is simulated to study the statistical aspects of reliability and other failure characteristics of the software during development, testing, and random usage. Quantification of software reliability is a major goal. Various reliability concepts are discussed. Experiments are described for performing simulations and collecting appropriate simulated software performance and failure data. This data is then used to make statistical inferences about the quality of the software development and verification processes as well as inferences about the reliability of software versions and reliability growth under random testing and debugging.
STRengthening Analytical Thinking for Observational Studies: the STRATOS initiative
Sauerbrei, Willi; Abrahamowicz, Michal; Altman, Douglas G; le Cessie, Saskia; Carpenter, James
2014-01-01
The validity and practical utility of observational medical research depends critically on good study design, excellent data quality, appropriate statistical methods and accurate interpretation of results. Statistical methodology has seen substantial development in recent times. Unfortunately, many of these methodological developments are ignored in practice. Consequently, design and analysis of observational studies often exhibit serious weaknesses. The lack of guidance on vital practical issues discourages many applied researchers from using more sophisticated and possibly more appropriate methods when analyzing observational studies. Furthermore, many analyses are conducted by researchers with a relatively weak statistical background and limited experience in using statistical methodology and software. Consequently, even ‘standard’ analyses reported in the medical literature are often flawed, casting doubt on their results and conclusions. An efficient way to help researchers to keep up with recent methodological developments is to develop guidance documents that are spread to the research community at large. These observations led to the initiation of the strengthening analytical thinking for observational studies (STRATOS) initiative, a large collaboration of experts in many different areas of biostatistical research. The objective of STRATOS is to provide accessible and accurate guidance in the design and analysis of observational studies. The guidance is intended for applied statisticians and other data analysts with varying levels of statistical education, experience and interests. In this article, we introduce the STRATOS initiative and its main aims, present the need for guidance documents and outline the planned approach and progress so far. We encourage other biostatisticians to become involved. PMID:25074480
Sakunpak, Apirak; Suksaeree, Jirapornchai; Monton, Chaowalit; Pathompak, Pathamaporn; Kraisintu, Krisana
2014-02-01
To develop and validate an image analysis method for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. TLC-densitometric and TLC-image analysis methods were developed, validated, and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. The results obtained by these two different quantification methods were compared by paired t-test. Both assays provided good linearity, accuracy, reproducibility and selectivity for determination of γ-oryzanol. The TLC-densitometric and TLC-image analysis methods provided a similar reproducibility, accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil. A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods. As both methods were found to be equal, they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil.
Zhang, Kui; Wiener, Howard; Beasley, Mark; George, Varghese; Amos, Christopher I; Allison, David B
2006-08-01
Individual genome scans for quantitative trait loci (QTL) mapping often suffer from low statistical power and imprecise estimates of QTL location and effect. This lack of precision yields large confidence intervals for QTL location, which are problematic for subsequent fine mapping and positional cloning. In prioritizing areas for follow-up after an initial genome scan and in evaluating the credibility of apparent linkage signals, investigators typically examine the results of other genome scans of the same phenotype and informally update their beliefs about which linkage signals in their scan most merit confidence and follow-up via a subjective-intuitive integration approach. A method that acknowledges the wisdom of this general paradigm but formally borrows information from other scans to increase confidence in objectivity would be a benefit. We developed an empirical Bayes analytic method to integrate information from multiple genome scans. The linkage statistic obtained from a single genome scan study is updated by incorporating statistics from other genome scans as prior information. This technique does not require that all studies have an identical marker map or a common estimated QTL effect. The updated linkage statistic can then be used for the estimation of QTL location and effect. We evaluate the performance of our method by using extensive simulations based on actual marker spacing and allele frequencies from available data. Results indicate that the empirical Bayes method can account for between-study heterogeneity, estimate the QTL location and effect more precisely, and provide narrower confidence intervals than results from any single individual study. We also compared the empirical Bayes method with a method originally developed for meta-analysis (a closely related but distinct purpose). In the face of marked heterogeneity among studies, the empirical Bayes method outperforms the comparator.
2016-11-15
participants who were followed for the development of back pain for an average of 3.9 years. Methods. Descriptive statistics and longitudinal...health, military personnel, occupational health, outcome assessment, statistics, survey methodology . Level of Evidence: 3 Spine 2016;41:1754–1763ack...based on the National Health and Nutrition Examination Survey.21 Statistical Analysis Descriptive and univariate analyses compared character- istics
Modelling the Effects of Land-Use Changes on Climate: a Case Study on Yamula DAM
NASA Astrophysics Data System (ADS)
Köylü, Ü.; Geymen, A.
2016-10-01
Dams block flow of rivers and cause artificial water reservoirs which affect the climate and the land use characteristics of the river basin. In this research, the effect of the huge water body obtained by Yamula Dam in Kızılırmak Basin is analysed over surrounding spatial's land use and climate change. Mann Kendal non-parametrical statistical test, Theil&Sen Slope method, Inverse Distance Weighting (IDW), Soil Conservation Service-Curve Number (SCS-CN) methods are integrated for spatial and temporal analysis of the research area. For this research humidity, temperature, wind speed, precipitation observations which are collected in 16 weather stations nearby Kızılırmak Basin are analyzed. After that these statistical information is combined by GIS data over years. An application is developed for GIS analysis in Python Programming Language and integrated with ArcGIS software. Statistical analysis calculated in the R Project for Statistical Computing and integrated with developed application. According to the statistical analysis of extracted time series of meteorological parameters, statistical significant spatiotemporal trends are observed for climate change and land use characteristics. In this study, we indicated the effect of big dams in local climate on semi-arid Yamula Dam.
[The main directions of reforming the service of medical statistics in Ukraine].
Golubchykov, Mykhailo V; Orlova, Nataliia M; Bielikova, Inna V
2018-01-01
Introduction: Implementation of new methods of information support of managerial decision-making should ensure of the effective health system reform and create conditions for improving the quality of operational management, reasonable planning of medical care and increasing the efficiency of the use of system resources. Reforming of Medical Statistics Service of Ukraine should be considered only in the context of the reform of the entire health system. The aim: This work is an analysis of the current situation and justification of the main directions of reforming of Medical Statistics Service of Ukraine. Material and methods: In the work is used a range of methods: content analysis, bibliosemantic, systematic approach. The information base of the research became: WHO strategic and program documents, data of the Medical Statistics Center of the Ministry of Health of Ukraine. Review: The Medical Statistics Service of Ukraine has a completed and effective structure, headed by the State Institution "Medical Statistics Center of the Ministry of Health of Ukraine." This institution reports on behalf of the Ministry of Health of Ukraine to the State Statistical Service of Ukraine, the WHO European Office and other international organizations. An analysis of the current situation showed that to achieve this goal it is necessary: to improve the system of statistical indicators for an adequate assessment of the performance of health institutions, including in the economic aspect; creation of a developed medical and statistical base of administrative territories; change of existing technologies for the formation of information resources; strengthening the material-technical base of the structural units of Medical Statistics Service; improvement of the system of training and retraining of personnel for the service of medical statistics; development of international cooperation in the field of methodology and practice of medical statistics, implementation of internationally accepted methods for collecting, processing, analyzing and disseminating medical and statistical information; the creation of a medical and statistical service that adapted to the specifics of market relations in health care, flexible and sensitive to changes in international methodologies and standards. Conclusions: The data of medical statistics are the basis for taking managerial decisions by managers at all levels of health care. Reform of Medical Statistics Service of Ukraine should be considered only in the context of the reform of the entire health system. The main directions of the reform of the medical statistics service in Ukraine are: the introduction of information technologies, the improvement of the training of personnel for the service, the improvement of material and technical equipment, the maximum reuse of the data obtained, which provides for the unification of primary data and a system of indicators. The most difficult area is the formation of information funds and the introduction of modern information technologies.
[The main directions of reforming the service of medical statistics in Ukraine].
Golubchykov, Mykhailo V; Orlova, Nataliia M; Bielikova, Inna V
Introduction: Implementation of new methods of information support of managerial decision-making should ensure of the effective health system reform and create conditions for improving the quality of operational management, reasonable planning of medical care and increasing the efficiency of the use of system resources. Reforming of Medical Statistics Service of Ukraine should be considered only in the context of the reform of the entire health system. The aim: This work is an analysis of the current situation and justification of the main directions of reforming of Medical Statistics Service of Ukraine. Material and methods: In the work is used a range of methods: content analysis, bibliosemantic, systematic approach. The information base of the research became: WHO strategic and program documents, data of the Medical Statistics Center of the Ministry of Health of Ukraine. Review: The Medical Statistics Service of Ukraine has a completed and effective structure, headed by the State Institution "Medical Statistics Center of the Ministry of Health of Ukraine." This institution reports on behalf of the Ministry of Health of Ukraine to the State Statistical Service of Ukraine, the WHO European Office and other international organizations. An analysis of the current situation showed that to achieve this goal it is necessary: to improve the system of statistical indicators for an adequate assessment of the performance of health institutions, including in the economic aspect; creation of a developed medical and statistical base of administrative territories; change of existing technologies for the formation of information resources; strengthening the material-technical base of the structural units of Medical Statistics Service; improvement of the system of training and retraining of personnel for the service of medical statistics; development of international cooperation in the field of methodology and practice of medical statistics, implementation of internationally accepted methods for collecting, processing, analyzing and disseminating medical and statistical information; the creation of a medical and statistical service that adapted to the specifics of market relations in health care, flexible and sensitive to changes in international methodologies and standards. Conclusions: The data of medical statistics are the basis for taking managerial decisions by managers at all levels of health care. Reform of Medical Statistics Service of Ukraine should be considered only in the context of the reform of the entire health system. The main directions of the reform of the medical statistics service in Ukraine are: the introduction of information technologies, the improvement of the training of personnel for the service, the improvement of material and technical equipment, the maximum reuse of the data obtained, which provides for the unification of primary data and a system of indicators. The most difficult area is the formation of information funds and the introduction of modern information technologies.
Inferring Demographic History Using Two-Locus Statistics.
Ragsdale, Aaron P; Gutenkunst, Ryan N
2017-06-01
Population demographic history may be learned from contemporary genetic variation data. Methods based on aggregating the statistics of many single loci into an allele frequency spectrum (AFS) have proven powerful, but such methods ignore potentially informative patterns of linkage disequilibrium (LD) between neighboring loci. To leverage such patterns, we developed a composite-likelihood framework for inferring demographic history from aggregated statistics of pairs of loci. Using this framework, we show that two-locus statistics are more sensitive to demographic history than single-locus statistics such as the AFS. In particular, two-locus statistics escape the notorious confounding of depth and duration of a bottleneck, and they provide a means to estimate effective population size based on the recombination rather than mutation rate. We applied our approach to a Zambian population of Drosophila melanogaster Notably, using both single- and two-locus statistics, we inferred a substantially lower ancestral effective population size than previous works and did not infer a bottleneck history. Together, our results demonstrate the broad potential for two-locus statistics to enable powerful population genetic inference. Copyright © 2017 by the Genetics Society of America.
Constructing Sample Space with Combinatorial Reasoning: A Mixed Methods Study
ERIC Educational Resources Information Center
McGalliard, William A., III.
2012-01-01
Recent curricular developments suggest that students at all levels need to be statistically literate and able to efficiently and accurately make probabilistic decisions. Furthermore, statistical literacy is a requirement to being a well-informed citizen of society. Research also recognizes that the ability to reason probabilistically is supported…
Using Statistics for Database Management in an Academic Library.
ERIC Educational Resources Information Center
Hyland, Peter; Wright, Lynne
1996-01-01
Collecting statistical data about database usage by library patrons aids in the management of CD-ROM and database offerings, collection development, and evaluation of training programs. Two approaches to data collection are presented which should be used together: an automated or nonintrusive method which monitors search sessions while the…
Survival analysis, or what to do with upper limits in astronomical surveys
NASA Technical Reports Server (NTRS)
Isobe, Takashi; Feigelson, Eric D.
1986-01-01
A field of applied statistics called survival analysis has been developed over several decades to deal with censored data, which occur in astronomical surveys when objects are too faint to be detected. How these methods can assist in the statistical interpretation of astronomical data are reviewed.
Applications of statistical physics methods in economics: Current state and perspectives
NASA Astrophysics Data System (ADS)
Lux, Thomas
2016-12-01
This note discusses the development of applications of statistical physics to economics since the beginning of the `econophysics' movement about twenty years ago. I attempt to assess which of these applications appear particularly valuable and successful, and where important overlaps exist between research conducted by economist and `econophysicists'.
Jia, Erik; Chen, Tianlu
2018-01-01
Left-censored missing values commonly exist in targeted metabolomics datasets and can be considered as missing not at random (MNAR). Improper data processing procedures for missing values will cause adverse impacts on subsequent statistical analyses. However, few imputation methods have been developed and applied to the situation of MNAR in the field of metabolomics. Thus, a practical left-censored missing value imputation method is urgently needed. We developed an iterative Gibbs sampler based left-censored missing value imputation approach (GSimp). We compared GSimp with other three imputation methods on two real-world targeted metabolomics datasets and one simulation dataset using our imputation evaluation pipeline. The results show that GSimp outperforms other imputation methods in terms of imputation accuracy, observation distribution, univariate and multivariate analyses, and statistical sensitivity. Additionally, a parallel version of GSimp was developed for dealing with large scale metabolomics datasets. The R code for GSimp, evaluation pipeline, tutorial, real-world and simulated targeted metabolomics datasets are available at: https://github.com/WandeRum/GSimp. PMID:29385130
METHOD FOR EVALUATING MOLD GROWTH ON CEILING TILE
A method to extract mold spores from porous ceiling tiles was developed using a masticator blender. Ceiling tiles were inoculated and analyzed using four species of mold. Statistical analysis comparing results obtained by masticator extraction and the swab method was performed. T...
Kawata, Masaaki; Sato, Chikara
2007-06-01
In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.
Automatic identification of bacterial types using statistical imaging methods
NASA Astrophysics Data System (ADS)
Trattner, Sigal; Greenspan, Hayit; Tepper, Gapi; Abboud, Shimon
2003-05-01
The objective of the current study is to develop an automatic tool to identify bacterial types using computer-vision and statistical modeling techniques. Bacteriophage (phage)-typing methods are used to identify and extract representative profiles of bacterial types, such as the Staphylococcus Aureus. Current systems rely on the subjective reading of plaque profiles by human expert. This process is time-consuming and prone to errors, especially as technology is enabling the increase in the number of phages used for typing. The statistical methodology presented in this work, provides for an automated, objective and robust analysis of visual data, along with the ability to cope with increasing data volumes.
Can We Spin Straw Into Gold? An Evaluation of Immigrant Legal Status Imputation Approaches
Van Hook, Jennifer; Bachmeier, James D.; Coffman, Donna; Harel, Ofer
2014-01-01
Researchers have developed logical, demographic, and statistical strategies for imputing immigrants’ legal status, but these methods have never been empirically assessed. We used Monte Carlo simulations to test whether, and under what conditions, legal status imputation approaches yield unbiased estimates of the association of unauthorized status with health insurance coverage. We tested five methods under a range of missing data scenarios. Logical and demographic imputation methods yielded biased estimates across all missing data scenarios. Statistical imputation approaches yielded unbiased estimates only when unauthorized status was jointly observed with insurance coverage; when this condition was not met, these methods overestimated insurance coverage for unauthorized relative to legal immigrants. We next showed how bias can be reduced by incorporating prior information about unauthorized immigrants. Finally, we demonstrated the utility of the best-performing statistical method for increasing power. We used it to produce state/regional estimates of insurance coverage among unauthorized immigrants in the Current Population Survey, a data source that contains no direct measures of immigrants’ legal status. We conclude that commonly employed legal status imputation approaches are likely to produce biased estimates, but data and statistical methods exist that could substantially reduce these biases. PMID:25511332
Trial Sequential Methods for Meta-Analysis
ERIC Educational Resources Information Center
Kulinskaya, Elena; Wood, John
2014-01-01
Statistical methods for sequential meta-analysis have applications also for the design of new trials. Existing methods are based on group sequential methods developed for single trials and start with the calculation of a required information size. This works satisfactorily within the framework of fixed effects meta-analysis, but conceptual…
Quantifying Safety Margin Using the Risk-Informed Safety Margin Characterization (RISMC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, David; Bucknor, Matthew; Brunett, Acacia
2015-04-26
The Risk-Informed Safety Margin Characterization (RISMC), developed by Idaho National Laboratory as part of the Light-Water Reactor Sustainability Project, utilizes a probabilistic safety margin comparison between a load and capacity distribution, rather than a deterministic comparison between two values, as is usually done in best-estimate plus uncertainty analyses. The goal is to determine the failure probability, or in other words, the probability of the system load equaling or exceeding the system capacity. While this method has been used in pilot studies, there has been little work conducted investigating the statistical significance of the resulting failure probability. In particular, it ismore » difficult to determine how many simulations are necessary to properly characterize the failure probability. This work uses classical (frequentist) statistics and confidence intervals to examine the impact in statistical accuracy when the number of simulations is varied. Two methods are proposed to establish confidence intervals related to the failure probability established using a RISMC analysis. The confidence interval provides information about the statistical accuracy of the method utilized to explore the uncertainty space, and offers a quantitative method to gauge the increase in statistical accuracy due to performing additional simulations.« less
The Census in One Hour?: The Development of an Effective One-Shot BI Session.
ERIC Educational Resources Information Center
Sanford, Carolyn C.
1991-01-01
Describes the continuing development of a bibliographic instruction (BI) course at Carleton College for a sociology/anthropology research methods course that focuses on statistical sources. Goals and objectives of the course are explained, and various methods of teaching search strategies are described, including overhead transparencies, handouts,…
A note on the kappa statistic for clustered dichotomous data.
Zhou, Ming; Yang, Zhao
2014-06-30
The kappa statistic is widely used to assess the agreement between two raters. Motivated by a simulation-based cluster bootstrap method to calculate the variance of the kappa statistic for clustered physician-patients dichotomous data, we investigate its special correlation structure and develop a new simple and efficient data generation algorithm. For the clustered physician-patients dichotomous data, based on the delta method and its special covariance structure, we propose a semi-parametric variance estimator for the kappa statistic. An extensive Monte Carlo simulation study is performed to evaluate the performance of the new proposal and five existing methods with respect to the empirical coverage probability, root-mean-square error, and average width of the 95% confidence interval for the kappa statistic. The variance estimator ignoring the dependence within a cluster is generally inappropriate, and the variance estimators from the new proposal, bootstrap-based methods, and the sampling-based delta method perform reasonably well for at least a moderately large number of clusters (e.g., the number of clusters K ⩾50). The new proposal and sampling-based delta method provide convenient tools for efficient computations and non-simulation-based alternatives to the existing bootstrap-based methods. Moreover, the new proposal has acceptable performance even when the number of clusters is as small as K = 25. To illustrate the practical application of all the methods, one psychiatric research data and two simulated clustered physician-patients dichotomous data are analyzed. Copyright © 2014 John Wiley & Sons, Ltd.
Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics.
Chen, Wenan; Larrabee, Beth R; Ovsyannikova, Inna G; Kennedy, Richard B; Haralambieva, Iana H; Poland, Gregory A; Schaid, Daniel J
2015-07-01
Two recently developed fine-mapping methods, CAVIAR and PAINTOR, demonstrate better performance over other fine-mapping methods. They also have the advantage of using only the marginal test statistics and the correlation among SNPs. Both methods leverage the fact that the marginal test statistics asymptotically follow a multivariate normal distribution and are likelihood based. However, their relationship with Bayesian fine mapping, such as BIMBAM, is not clear. In this study, we first show that CAVIAR and BIMBAM are actually approximately equivalent to each other. This leads to a fine-mapping method using marginal test statistics in the Bayesian framework, which we call CAVIAR Bayes factor (CAVIARBF). Another advantage of the Bayesian framework is that it can answer both association and fine-mapping questions. We also used simulations to compare CAVIARBF with other methods under different numbers of causal variants. The results showed that both CAVIARBF and BIMBAM have better performance than PAINTOR and other methods. Compared to BIMBAM, CAVIARBF has the advantage of using only marginal test statistics and takes about one-quarter to one-fifth of the running time. We applied different methods on two independent cohorts of the same phenotype. Results showed that CAVIARBF, BIMBAM, and PAINTOR selected the same top 3 SNPs; however, CAVIARBF and BIMBAM had better consistency in selecting the top 10 ranked SNPs between the two cohorts. Software is available at https://bitbucket.org/Wenan/caviarbf. Copyright © 2015 by the Genetics Society of America.
Methods for Evaluating Mammography Imaging Techniques
1999-06-01
Distribution Unlimited 12b. DIS5TRIBUTION CODE 13. ABSTRACT (Maximum 200 words) This Department of Defense Breast Cancer Research Program Career...Development Award is enabling Dr. Rütter to develop bio’statistical methods for breast cancer research. Dr. Rutter is focusing on methods for...evaluating the accuracy of breast cancer screening. This four year program includes advanced training in the epidemiology of breast cancer , training in
Housing decision making methods for initiation development phase process
NASA Astrophysics Data System (ADS)
Zainal, Rozlin; Kasim, Narimah; Sarpin, Norliana; Wee, Seow Ta; Shamsudin, Zarina
2017-10-01
Late delivery and sick housing project problems were attributed to poor decision making. These problems are the string of housing developer that prefers to create their own approach based on their experiences and expertise with the simplest approach by just applying the obtainable standards and rules in decision making. This paper seeks to identify the decision making methods for housing development at the initiation phase in Malaysia. The research involved Delphi method by using questionnaire survey which involved 50 numbers of developers as samples for the primary stage of collect data. However, only 34 developers contributed to the second stage of the information gathering process. At the last stage, only 12 developers were left for the final data collection process. Finding affirms that Malaysian developers prefer to make their investment decisions based on simple interpolation of historical data and using simple statistical or mathematical techniques in producing the required reports. It was suggested that they seemed to skip several important decision-making functions at the primary development stage. These shortcomings were mainly due to time and financial constraints and the lack of statistical or mathematical expertise among the professional and management groups in the developer organisations.
Granular statistical mechanics - a personal perspective
NASA Astrophysics Data System (ADS)
Blumenfeld, R.; Edwards, S. F.
2014-10-01
The science of granular matter has expanded from an activity for specialised engineering applications to a fundamental field in its own right. This has been accompanied by an explosion of research and literature, which cannot be reviewed in one paper. A key to progress in this field is the formulation of a statistical mechanical formalism that could help develop equations of state and constitutive relations. This paper aims at reviewing some milestones in this direction. An essential basic step toward the development of any static and quasi-static theory of granular matter is a systematic and useful method to quantify the grain-scale structure and we start with a review of such a method. We then review and discuss the ongoing attempt to construct a statistical mechanical theory of granular systems. Along the way, we will clarify a number of misconceptions in the field, as well as highlight several outstanding problems.
Geostatistics and GIS: tools for characterizing environmental contamination.
Henshaw, Shannon L; Curriero, Frank C; Shields, Timothy M; Glass, Gregory E; Strickland, Paul T; Breysse, Patrick N
2004-08-01
Geostatistics is a set of statistical techniques used in the analysis of georeferenced data that can be applied to environmental contamination and remediation studies. In this study, the 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) contamination at a Superfund site in western Maryland is evaluated. Concern about the site and its future clean up has triggered interest within the community because residential development surrounds the area. Spatial statistical methods, of which geostatistics is a subset, are becoming increasingly popular, in part due to the availability of geographic information system (GIS) software in a variety of application packages. In this article, the joint use of ArcGIS software and the R statistical computing environment are demonstrated as an approach for comprehensive geostatistical analyses. The spatial regression method, kriging, is used to provide predictions of DDE levels at unsampled locations both within the site and the surrounding areas where residential development is ongoing.
DISSCO: direct imputation of summary statistics allowing covariates
Xu, Zheng; Duan, Qing; Yan, Song; Chen, Wei; Li, Mingyao; Lange, Ethan; Li, Yun
2015-01-01
Background: Imputation of individual level genotypes at untyped markers using an external reference panel of genotyped or sequenced individuals has become standard practice in genetic association studies. Direct imputation of summary statistics can also be valuable, for example in meta-analyses where individual level genotype data are not available. Two methods (DIST and ImpG-Summary/LD), that assume a multivariate Gaussian distribution for the association summary statistics, have been proposed for imputing association summary statistics. However, both methods assume that the correlations between association summary statistics are the same as the correlations between the corresponding genotypes. This assumption can be violated in the presence of confounding covariates. Methods: We analytically show that in the absence of covariates, correlation among association summary statistics is indeed the same as that among the corresponding genotypes, thus serving as a theoretical justification for the recently proposed methods. We continue to prove that in the presence of covariates, correlation among association summary statistics becomes the partial correlation of the corresponding genotypes controlling for covariates. We therefore develop direct imputation of summary statistics allowing covariates (DISSCO). Results: We consider two real-life scenarios where the correlation and partial correlation likely make practical difference: (i) association studies in admixed populations; (ii) association studies in presence of other confounding covariate(s). Application of DISSCO to real datasets under both scenarios shows at least comparable, if not better, performance compared with existing correlation-based methods, particularly for lower frequency variants. For example, DISSCO can reduce the absolute deviation from the truth by 3.9–15.2% for variants with minor allele frequency <5%. Availability and implementation: http://www.unc.edu/∼yunmli/DISSCO. Contact: yunli@med.unc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25810429
Ignjatović, Aleksandra; Stojanović, Miodrag; Milošević, Zoran; Anđelković Apostolović, Marija
2017-12-02
The interest in developing risk models in medicine not only is appealing, but also associated with many obstacles in different aspects of predictive model development. Initially, the association of biomarkers or the association of more markers with the specific outcome was proven by statistical significance, but novel and demanding questions required the development of new and more complex statistical techniques. Progress of statistical analysis in biomedical research can be observed the best through the history of the Framingham study and development of the Framingham score. Evaluation of predictive models comes from a combination of the facts which are results of several metrics. Using logistic regression and Cox proportional hazards regression analysis, the calibration test, and the ROC curve analysis should be mandatory and eliminatory, and the central place should be taken by some new statistical techniques. In order to obtain complete information related to the new marker in the model, recently, there is a recommendation to use the reclassification tables by calculating the net reclassification index and the integrated discrimination improvement. Decision curve analysis is a novel method for evaluating the clinical usefulness of a predictive model. It may be noted that customizing and fine-tuning of the Framingham risk score initiated the development of statistical analysis. Clinically applicable predictive model should be a trade-off between all abovementioned statistical metrics, a trade-off between calibration and discrimination, accuracy and decision-making, costs and benefits, and quality and quantity of patient's life.
Lotfy, Hayam Mahmoud; Salem, Hesham; Abdelkawy, Mohammad; Samir, Ahmed
2015-04-05
Five spectrophotometric methods were successfully developed and validated for the determination of betamethasone valerate and fusidic acid in their binary mixture. Those methods are isoabsorptive point method combined with the first derivative (ISO Point--D1) and the recently developed and well established methods namely ratio difference (RD) and constant center coupled with spectrum subtraction (CC) methods, in addition to derivative ratio (1DD) and mean centering of ratio spectra (MCR). New enrichment technique called spectrum addition technique was used instead of traditional spiking technique. The proposed spectrophotometric procedures do not require any separation steps. Accuracy, precision and linearity ranges of the proposed methods were determined and the specificity was assessed by analyzing synthetic mixtures of both drugs. They were applied to their pharmaceutical formulation and the results obtained were statistically compared to that of official methods. The statistical comparison showed that there is no significant difference between the proposed methods and the official ones regarding both accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.
Robust inference for group sequential trials.
Ganju, Jitendra; Lin, Yunzhi; Zhou, Kefei
2017-03-01
For ethical reasons, group sequential trials were introduced to allow trials to stop early in the event of extreme results. Endpoints in such trials are usually mortality or irreversible morbidity. For a given endpoint, the norm is to use a single test statistic and to use that same statistic for each analysis. This approach is risky because the test statistic has to be specified before the study is unblinded, and there is loss in power if the assumptions that ensure optimality for each analysis are not met. To minimize the risk of moderate to substantial loss in power due to a suboptimal choice of a statistic, a robust method was developed for nonsequential trials. The concept is analogous to diversification of financial investments to minimize risk. The method is based on combining P values from multiple test statistics for formal inference while controlling the type I error rate at its designated value.This article evaluates the performance of 2 P value combining methods for group sequential trials. The emphasis is on time to event trials although results from less complex trials are also included. The gain or loss in power with the combination method relative to a single statistic is asymmetric in its favor. Depending on the power of each individual test, the combination method can give more power than any single test or give power that is closer to the test with the most power. The versatility of the method is that it can combine P values from different test statistics for analysis at different times. The robustness of results suggests that inference from group sequential trials can be strengthened with the use of combined tests. Copyright © 2017 John Wiley & Sons, Ltd.
Point process statistics in atom probe tomography.
Philippe, T; Duguay, S; Grancher, G; Blavette, D
2013-09-01
We present a review of spatial point processes as statistical models that we have designed for the analysis and treatment of atom probe tomography (APT) data. As a major advantage, these methods do not require sampling. The mean distance to nearest neighbour is an attractive approach to exhibit a non-random atomic distribution. A χ(2) test based on distance distributions to nearest neighbour has been developed to detect deviation from randomness. Best-fit methods based on first nearest neighbour distance (1 NN method) and pair correlation function are presented and compared to assess the chemical composition of tiny clusters. Delaunay tessellation for cluster selection has been also illustrated. These statistical tools have been applied to APT experiments on microelectronics materials. Copyright © 2012 Elsevier B.V. All rights reserved.
Does daily nurse staffing match ward workload variability? Three hospitals' experiences.
Gabbay, Uri; Bukchin, Michael
2009-01-01
Nurse shortage and rising healthcare resource burdens mean that appropriate workforce use is imperative. This paper aims to evaluate whether daily nursing staffing meets ward workload needs. Nurse attendance and daily nurses' workload capacity in three hospitals were evaluated. Statistical process control was used to evaluate intra-ward nurse workload capacity and day-to-day variations. Statistical process control is a statistics-based method for process monitoring that uses charts with predefined target measure and control limits. Standardization was performed for inter-ward analysis by converting ward-specific crude measures to ward-specific relative measures by dividing observed/expected. Two charts: acceptable and tolerable daily nurse workload intensity, were defined. Appropriate staffing indicators were defined as those exceeding predefined rates within acceptable and tolerable limits (50 percent and 80 percent respectively). A total of 42 percent of the overall days fell within acceptable control limits and 71 percent within tolerable control limits. Appropriate staffing indicators were met in only 33 percent of wards regarding acceptable nurse workload intensity and in only 45 percent of wards regarding tolerable workloads. The study work did not differentiate crude nurse attendance and it did not take into account patient severity since crude bed occupancy was used. Double statistical process control charts and certain staffing indicators were used, which is open to debate. Wards that met appropriate staffing indicators prove the method's feasibility. Wards that did not meet appropriate staffing indicators prove the importance and the need for process evaluations and monitoring. Methods presented for monitoring daily staffing appropriateness are simple to implement either for intra-ward day-to-day variation by using nurse workload capacity statistical process control charts or for inter-ward evaluation using standardized measure of nurse workload intensity. The real challenge will be to develop planning systems and implement corrective interventions such as dynamic and flexible daily staffing, which will face difficulties and barriers. The paper fulfils the need for workforce utilization evaluation. A simple method using available data for daily staffing appropriateness evaluation, which is easy to implement and operate, is presented. The statistical process control method enables intra-ward evaluation, while standardization by converting crude into relative measures enables inter-ward analysis. The staffing indicator definitions enable performance evaluation. This original study uses statistical process control to develop simple standardization methods and applies straightforward statistical tools. This method is not limited to crude measures, rather it uses weighted workload measures such as nursing acuity or weighted nurse level (i.e. grade/band).
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Maier, Holger R.; Wu, Wenyan; Dandy, Graeme C.; Gupta, Hoshin V.; Zhang, Tuqiao
2018-02-01
Hydrological models are used for a wide variety of engineering purposes, including streamflow forecasting and flood-risk estimation. To develop such models, it is common to allocate the available data to calibration and evaluation data subsets. Surprisingly, the issue of how this allocation can affect model evaluation performance has been largely ignored in the research literature. This paper discusses the evaluation performance bias that can arise from how available data are allocated to calibration and evaluation subsets. As a first step to assessing this issue in a statistically rigorous fashion, we present a comprehensive investigation of the influence of data allocation on the development of data-driven artificial neural network (ANN) models of streamflow. Four well-known formal data splitting methods are applied to 754 catchments from Australia and the U.S. to develop 902,483 ANN models. Results clearly show that the choice of the method used for data allocation has a significant impact on model performance, particularly for runoff data that are more highly skewed, highlighting the importance of considering the impact of data splitting when developing hydrological models. The statistical behavior of the data splitting methods investigated is discussed and guidance is offered on the selection of the most appropriate data splitting methods to achieve representative evaluation performance for streamflow data with different statistical properties. Although our results are obtained for data-driven models, they highlight the fact that this issue is likely to have a significant impact on all types of hydrological models, especially conceptual rainfall-runoff models.
Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data.
Carmichael, Owen; Sakhanenko, Lyudmila
2015-05-15
We develop statistical methodology for a popular brain imaging technique HARDI based on the high order tensor model by Özarslan and Mareci [10]. We investigate how uncertainty in the imaging procedure propagates through all levels of the model: signals, tensor fields, vector fields, and fibers. We construct asymptotically normal estimators of the integral curves or fibers which allow us to trace the fibers together with confidence ellipsoids. The procedure is computationally intense as it blends linear algebra concepts from high order tensors with asymptotical statistical analysis. The theoretical results are illustrated on simulated and real datasets. This work generalizes the statistical methodology proposed for low angular resolution diffusion tensor imaging by Carmichael and Sakhanenko [3], to several fibers per voxel. It is also a pioneering statistical work on tractography from HARDI data. It avoids all the typical limitations of the deterministic tractography methods and it delivers the same information as probabilistic tractography methods. Our method is computationally cheap and it provides well-founded mathematical and statistical framework where diverse functionals on fibers, directions and tensors can be studied in a systematic and rigorous way.
Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data
Carmichael, Owen; Sakhanenko, Lyudmila
2015-01-01
We develop statistical methodology for a popular brain imaging technique HARDI based on the high order tensor model by Özarslan and Mareci [10]. We investigate how uncertainty in the imaging procedure propagates through all levels of the model: signals, tensor fields, vector fields, and fibers. We construct asymptotically normal estimators of the integral curves or fibers which allow us to trace the fibers together with confidence ellipsoids. The procedure is computationally intense as it blends linear algebra concepts from high order tensors with asymptotical statistical analysis. The theoretical results are illustrated on simulated and real datasets. This work generalizes the statistical methodology proposed for low angular resolution diffusion tensor imaging by Carmichael and Sakhanenko [3], to several fibers per voxel. It is also a pioneering statistical work on tractography from HARDI data. It avoids all the typical limitations of the deterministic tractography methods and it delivers the same information as probabilistic tractography methods. Our method is computationally cheap and it provides well-founded mathematical and statistical framework where diverse functionals on fibers, directions and tensors can be studied in a systematic and rigorous way. PMID:25937674
Statistical Inference on Memory Structure of Processes and Its Applications to Information Theory
2016-05-12
valued times series from a sample. (A practical algorithm to compute the estimator is a work in progress.) Third, finitely-valued spatial processes...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 mathematical statistics; time series ; Markov chains; random...proved. Second, a statistical method is developed to estimate the memory depth of discrete- time and continuously-valued times series from a sample. (A
A Third Moment Adjusted Test Statistic for Small Sample Factor Analysis
Lin, Johnny; Bentler, Peter M.
2012-01-01
Goodness of fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square; but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne’s asymptotically distribution-free method and Satorra Bentler’s mean scaling statistic were developed under the presumption of non-normality in the factors and errors. This paper finds new application to the case where factors and errors are normally distributed in the population but the skewness of the obtained test statistic is still high due to sampling error in the observed indicators. An extension of Satorra Bentler’s statistic is proposed that not only scales the mean but also adjusts the degrees of freedom based on the skewness of the obtained test statistic in order to improve its robustness under small samples. A simple simulation study shows that this third moment adjusted statistic asymptotically performs on par with previously proposed methods, and at a very small sample size offers superior Type I error rates under a properly specified model. Data from Mardia, Kent and Bibby’s study of students tested for their ability in five content areas that were either open or closed book were used to illustrate the real-world performance of this statistic. PMID:23144511
Luo, Li; Zhu, Yun
2012-01-01
Abstract The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T2, collapsing method, multivariate and collapsing (CMC) method, individual χ2 test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets. PMID:22651812
Luo, Li; Zhu, Yun; Xiong, Momiao
2012-06-01
The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T(2), collapsing method, multivariate and collapsing (CMC) method, individual χ(2) test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets.
Model Uncertainty Quantification Methods In Data Assimilation
NASA Astrophysics Data System (ADS)
Pathiraja, S. D.; Marshall, L. A.; Sharma, A.; Moradkhani, H.
2017-12-01
Data Assimilation involves utilising observations to improve model predictions in a seamless and statistically optimal fashion. Its applications are wide-ranging; from improving weather forecasts to tracking targets such as in the Apollo 11 mission. The use of Data Assimilation methods in high dimensional complex geophysical systems is an active area of research, where there exists many opportunities to enhance existing methodologies. One of the central challenges is in model uncertainty quantification; the outcome of any Data Assimilation study is strongly dependent on the uncertainties assigned to both observations and models. I focus on developing improved model uncertainty quantification methods that are applicable to challenging real world scenarios. These include developing methods for cases where the system states are only partially observed, where there is little prior knowledge of the model errors, and where the model error statistics are likely to be highly non-Gaussian.
Probabilistic Component Mode Synthesis of Nondeterministic Substructures
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1996-01-01
Standard methods of structural dynamic analysis assume that the structural characteristics are deterministic. Recognizing that these characteristics are actually statistical in nature researchers have recently developed a variety of methods that use this information to determine probabilities of a desired response characteristic, such as natural frequency, without using expensive Monte Carlo simulations. One of the problems in these methods is correctly identifying the statistical properties of primitive variables such as geometry, stiffness, and mass. We present a method where the measured dynamic properties of substructures are used instead as the random variables. The residual flexibility method of component mode synthesis is combined with the probabilistic methods to determine the cumulative distribution function of the system eigenvalues. A simple cantilever beam test problem is presented that illustrates the theory.
ERIC Educational Resources Information Center
Colon-Berlingeri, Migdalisel; Burrowes, Patricia A.
2011-01-01
Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the…
Gooding, Owen W
2004-06-01
The use of parallel synthesis techniques with statistical design of experiment (DoE) methods is a powerful combination for the optimization of chemical processes. Advances in parallel synthesis equipment and easy to use software for statistical DoE have fueled a growing acceptance of these techniques in the pharmaceutical industry. As drug candidate structures become more complex at the same time that development timelines are compressed, these enabling technologies promise to become more important in the future.
NASA Astrophysics Data System (ADS)
Ma, W.; Jafarpour, B.
2017-12-01
We develop a new pilot points method for conditioning discrete multiple-point statistical (MPS) facies simulation on dynamic flow data. While conditioning MPS simulation on static hard data is straightforward, their calibration against nonlinear flow data is nontrivial. The proposed method generates conditional models from a conceptual model of geologic connectivity, known as a training image (TI), by strategically placing and estimating pilot points. To place pilot points, a score map is generated based on three sources of information:: (i) the uncertainty in facies distribution, (ii) the model response sensitivity information, and (iii) the observed flow data. Once the pilot points are placed, the facies values at these points are inferred from production data and are used, along with available hard data at well locations, to simulate a new set of conditional facies realizations. While facies estimation at the pilot points can be performed using different inversion algorithms, in this study the ensemble smoother (ES) and its multiple data assimilation variant (ES-MDA) are adopted to update permeability maps from production data, which are then used to statistically infer facies types at the pilot point locations. The developed method combines the information in the flow data and the TI by using the former to infer facies values at select locations away from the wells and the latter to ensure consistent facies structure and connectivity where away from measurement locations. Several numerical experiments are used to evaluate the performance of the developed method and to discuss its important properties.
Quantitative studies of bird movement: A methodological review
Nichols, J.D.; Kaiser, A.
1999-01-01
The past several years have seen the development of a number of statistical models and methods for drawing inferences about bird movement using data from marked individuals. It can be difficult to keep up with this rapid development of new methods, so our purpose here is to categorize and review methods for drawing inferences about avian movement. We also outline recommendations about future work, dealing both with methodological developments and with studies directed at hypotheses about bird movement of interest from conservation, management, or ecological perspectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Tsong-Lun; Varuttamaseni, Athi; Baek, Joo-Seok
The U.S. Nuclear Regulatory Commission (NRC) encourages the use of probabilistic risk assessment (PRA) technology in all regulatory matters, to the extent supported by the state-of-the-art in PRA methods and data. Although much has been accomplished in the area of risk-informed regulation, risk assessment for digital systems has not been fully developed. The NRC established a plan for research on digital systems to identify and develop methods, analytical tools, and regulatory guidance for (1) including models of digital systems in the PRAs of nuclear power plants (NPPs), and (2) incorporating digital systems in the NRC's risk-informed licensing and oversight activities.more » Under NRC's sponsorship, Brookhaven National Laboratory (BNL) explored approaches for addressing the failures of digital instrumentation and control (I and C) systems in the current NPP PRA framework. Specific areas investigated included PRA modeling digital hardware, development of a philosophical basis for defining software failure, and identification of desirable attributes of quantitative software reliability methods. Based on the earlier research, statistical testing is considered a promising method for quantifying software reliability. This paper describes a statistical software testing approach for quantifying software reliability and applies it to the loop-operating control system (LOCS) of an experimental loop of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL).« less
Introductory Guide to the Statistics of Molecular Genetics
ERIC Educational Resources Information Center
Eley, Thalia C.; Rijsdijk, Fruhling
2005-01-01
Background: This introductory guide presents the main two analytical approaches used by molecular geneticists: linkage and association. Methods: Traditional linkage and association methods are described, along with more recent advances in methodologies such as those using a variance components approach. Results: New methods are being developed all…
In silico prediction of post-translational modifications.
Liu, Chunmei; Li, Hui
2011-01-01
Methods for predicting protein post-translational modifications have been developed extensively. In this chapter, we review major post-translational modification prediction strategies, with a particular focus on statistical and machine learning approaches. We present the workflow of the methods and summarize the advantages and disadvantages of the methods.
Self-assessed performance improves statistical fusion of image labels
Bryan, Frederick W.; Xu, Zhoubing; Asman, Andrew J.; Allen, Wade M.; Reich, Daniel S.; Landman, Bennett A.
2014-01-01
Purpose: Expert manual labeling is the gold standard for image segmentation, but this process is difficult, time-consuming, and prone to inter-individual differences. While fully automated methods have successfully targeted many anatomies, automated methods have not yet been developed for numerous essential structures (e.g., the internal structure of the spinal cord as seen on magnetic resonance imaging). Collaborative labeling is a new paradigm that offers a robust alternative that may realize both the throughput of automation and the guidance of experts. Yet, distributing manual labeling expertise across individuals and sites introduces potential human factors concerns (e.g., training, software usability) and statistical considerations (e.g., fusion of information, assessment of confidence, bias) that must be further explored. During the labeling process, it is simple to ask raters to self-assess the confidence of their labels, but this is rarely done and has not been previously quantitatively studied. Herein, the authors explore the utility of self-assessment in relation to automated assessment of rater performance in the context of statistical fusion. Methods: The authors conducted a study of 66 volumes manually labeled by 75 minimally trained human raters recruited from the university undergraduate population. Raters were given 15 min of training during which they were shown examples of correct segmentation, and the online segmentation tool was demonstrated. The volumes were labeled 2D slice-wise, and the slices were unordered. A self-assessed quality metric was produced by raters for each slice by marking a confidence bar superimposed on the slice. Volumes produced by both voting and statistical fusion algorithms were compared against a set of expert segmentations of the same volumes. Results: Labels for 8825 distinct slices were obtained. Simple majority voting resulted in statistically poorer performance than voting weighted by self-assessed performance. Statistical fusion resulted in statistically indistinguishable performance from self-assessed weighted voting. The authors developed a new theoretical basis for using self-assessed performance in the framework of statistical fusion and demonstrated that the combined sources of information (both statistical assessment and self-assessment) yielded statistically significant improvement over the methods considered separately. Conclusions: The authors present the first systematic characterization of self-assessed performance in manual labeling. The authors demonstrate that self-assessment and statistical fusion yield similar, but complementary, benefits for label fusion. Finally, the authors present a new theoretical basis for combining self-assessments with statistical label fusion. PMID:24593721
Statistical analysis and digital processing of the Mössbauer spectra
NASA Astrophysics Data System (ADS)
Prochazka, Roman; Tucek, Pavel; Tucek, Jiri; Marek, Jaroslav; Mashlan, Miroslav; Pechousek, Jiri
2010-02-01
This work is focused on using the statistical methods and development of the filtration procedures for signal processing in Mössbauer spectroscopy. Statistical tools for noise filtering in the measured spectra are used in many scientific areas. The use of a pure statistical approach in accumulated Mössbauer spectra filtration is described. In Mössbauer spectroscopy, the noise can be considered as a Poisson statistical process with a Gaussian distribution for high numbers of observations. This noise is a superposition of the non-resonant photons counting with electronic noise (from γ-ray detection and discrimination units), and the velocity system quality that can be characterized by the velocity nonlinearities. The possibility of a noise-reducing process using a new design of statistical filter procedure is described. This mathematical procedure improves the signal-to-noise ratio and thus makes it easier to determine the hyperfine parameters of the given Mössbauer spectra. The filter procedure is based on a periodogram method that makes it possible to assign the statistically important components in the spectral domain. The significance level for these components is then feedback-controlled using the correlation coefficient test results. The estimation of the theoretical correlation coefficient level which corresponds to the spectrum resolution is performed. Correlation coefficient test is based on comparison of the theoretical and the experimental correlation coefficients given by the Spearman method. The correctness of this solution was analyzed by a series of statistical tests and confirmed by many spectra measured with increasing statistical quality for a given sample (absorber). The effect of this filter procedure depends on the signal-to-noise ratio and the applicability of this method has binding conditions.
Hutton, Brian; Wolfe, Dianna; Moher, David; Shamseer, Larissa
2017-05-01
Research waste has received considerable attention from the biomedical community. One noteworthy contributor is incomplete reporting in research publications. When detailing statistical methods and results, ensuring analytic methods and findings are completely documented improves transparency. For publications describing randomised trials and systematic reviews, guidelines have been developed to facilitate complete reporting. This overview summarises aspects of statistical reporting in trials and systematic reviews of health interventions. A narrative approach to summarise features regarding statistical methods and findings from reporting guidelines for trials and reviews was taken. We aim to enhance familiarity of statistical details that should be reported in biomedical research among statisticians and their collaborators. We summarise statistical reporting considerations for trials and systematic reviews from guidance documents including the Consolidated Standards of Reporting Trials (CONSORT) Statement for reporting of trials, the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) Statement for trial protocols, the Statistical Analyses and Methods in the Published Literature (SAMPL) Guidelines for statistical reporting principles, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement for systematic reviews and PRISMA for Protocols (PRISMA-P). Considerations regarding sharing of study data and statistical code are also addressed. Reporting guidelines provide researchers with minimum criteria for reporting. If followed, they can enhance research transparency and contribute improve quality of biomedical publications. Authors should employ these tools for planning and reporting of their research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Anna, Bluszcz
Nowadays methods of measurement and assessment of the level of sustained development at the international, national and regional level are a current research problem, which requires multi-dimensional analysis. The relative assessment of the sustainability level of the European Union member states and the comparative analysis of the position of Poland relative to other countries was the aim of the conducted studies in the article. EU member states were treated as objects in the multi-dimensional space. Dimensions of space were specified by ten diagnostic variables describing the sustainability level of UE countries in three dimensions, i.e., social, economic and environmental. Because the compiled statistical data were expressed in different units of measure, taxonomic methods were used for building an aggregated measure to assess the level of sustainable development of EU member states, which through normalisation of variables enabled the comparative analysis between countries. Methodology of studies consisted of eight stages, which included, among others: defining data matrices, calculating the variability coefficient for all variables, which variability coefficient was under 10 %, division of variables into stimulants and destimulants, selection of the method of variable normalisation, developing matrices of normalised data, selection of the formula and calculating the aggregated indicator of the relative level of sustainable development of the EU countries, calculating partial development indicators for three studies dimensions: social, economic and environmental and the classification of the EU countries according to the relative level of sustainable development. Statistical date were collected based on the Polish Central Statistical Office publication.
Medical history and epidemiology: their contribution to the development of public health nursing.
Earl, Catherine E
2009-01-01
The nursing profession historically has been involved in data collection in research efforts notably from the time of the Framingham Tuberculosis Project (1914-1923). Over the past century, nurses have become more sophisticated in their abilities to design, conduct, and analyze data. This article discusses the contributions of medicine and epidemiology to the development of public health nursing and the use of statistical methods by nurses in the United States in the 19th and 20th centuries. Knowledge acquired from this article will inform educators and researchers about the importance of using quantitative analysis, evidenced-based knowledge, and statistical methods when teaching students in all health professions.
Direct statistical modeling and its implications for predictive mapping in mining exploration
NASA Astrophysics Data System (ADS)
Sterligov, Boris; Gumiaux, Charles; Barbanson, Luc; Chen, Yan; Cassard, Daniel; Cherkasov, Sergey; Zolotaya, Ludmila
2010-05-01
Recent advances in geosciences make more and more multidisciplinary data available for mining exploration. This allowed developing methodologies for computing forecast ore maps from the statistical combination of such different input parameters, all based on an inverse problem theory. Numerous statistical methods (e.g. algebraic method, weight of evidence, Siris method, etc) with varying degrees of complexity in their development and implementation, have been proposed and/or adapted for ore geology purposes. In literature, such approaches are often presented through applications on natural examples and the results obtained can present specificities due to local characteristics. Moreover, though crucial for statistical computations, "minimum requirements" needed for input parameters (number of minimum data points, spatial distribution of objects, etc) are often only poorly expressed. From these, problems often arise when one has to choose between one and the other method for her/his specific question. In this study, a direct statistical modeling approach is developed in order to i) evaluate the constraints on the input parameters and ii) test the validity of different existing inversion methods. The approach particularly focused on the analysis of spatial relationships between location of points and various objects (e.g. polygons and /or polylines) which is particularly well adapted to constrain the influence of intrusive bodies - such as a granite - and faults or ductile shear-zones on spatial location of ore deposits (point objects). The method is designed in a way to insure a-dimensionality with respect to scale. In this approach, both spatial distribution and topology of objects (polygons and polylines) can be parametrized by the user (e.g. density of objects, length, surface, orientation, clustering). Then, the distance of points with respect to a given type of objects (polygons or polylines) is given using a probability distribution. The location of points is computed assuming either independency or different grades of dependency between the two probability distributions. The results show that i)polygons surface mean value, polylines length mean value, the number of objects and their clustering are critical and ii) the validity of the different tested inversion methods strongly depends on the relative importance and on the dependency between the parameters used. In addition, this combined approach of direct and inverse modeling offers an opportunity to test the robustness of the inferred distribution point laws with respect to the quality of the input data set.
Hamel, Jean-Francois; Saulnier, Patrick; Pe, Madeline; Zikos, Efstathios; Musoro, Jammbe; Coens, Corneel; Bottomley, Andrew
2017-09-01
Over the last decades, Health-related Quality of Life (HRQoL) end-points have become an important outcome of the randomised controlled trials (RCTs). HRQoL methodology in RCTs has improved following international consensus recommendations. However, no international recommendations exist concerning the statistical analysis of such data. The aim of our study was to identify and characterise the quality of the statistical methods commonly used for analysing HRQoL data in cancer RCTs. Building on our recently published systematic review, we analysed a total of 33 published RCTs studying the HRQoL methods reported in RCTs since 1991. We focussed on the ability of the methods to deal with the three major problems commonly encountered when analysing HRQoL data: their multidimensional and longitudinal structure and the commonly high rate of missing data. All studies reported HRQoL being assessed repeatedly over time for a period ranging from 2 to 36 months. Missing data were common, with compliance rates ranging from 45% to 90%. From the 33 studies considered, 12 different statistical methods were identified. Twenty-nine studies analysed each of the questionnaire sub-dimensions without type I error adjustment. Thirteen studies repeated the HRQoL analysis at each assessment time again without type I error adjustment. Only 8 studies used methods suitable for repeated measurements. Our findings show a lack of consistency in statistical methods for analysing HRQoL data. Problems related to multiple comparisons were rarely considered leading to a high risk of false positive results. It is therefore critical that international recommendations for improving such statistical practices are developed. Copyright © 2017. Published by Elsevier Ltd.
OSPAR standard method and software for statistical analysis of beach litter data.
Schulz, Marcus; van Loon, Willem; Fleet, David M; Baggelaar, Paul; van der Meulen, Eit
2017-09-15
The aim of this study is to develop standard statistical methods and software for the analysis of beach litter data. The optimal ensemble of statistical methods comprises the Mann-Kendall trend test, the Theil-Sen slope estimation, the Wilcoxon step trend test and basic descriptive statistics. The application of Litter Analyst, a tailor-made software for analysing the results of beach litter surveys, to OSPAR beach litter data from seven beaches bordering on the south-eastern North Sea, revealed 23 significant trends in the abundances of beach litter types for the period 2009-2014. Litter Analyst revealed a large variation in the abundance of litter types between beaches. To reduce the effects of spatial variation, trend analysis of beach litter data can most effectively be performed at the beach or national level. Spatial aggregation of beach litter data within a region is possible, but resulted in a considerable reduction in the number of significant trends. Copyright © 2017 Elsevier Ltd. All rights reserved.
Detecting Genomic Clustering of Risk Variants from Sequence Data: Cases vs. Controls
Schaid, Daniel J.; Sinnwell, Jason P.; McDonnell, Shannon K.; Thibodeau, Stephen N.
2013-01-01
As the ability to measure dense genetic markers approaches the limit of the DNA sequence itself, taking advantage of possible clustering of genetic variants in, and around, a gene would benefit genetic association analyses, and likely provide biological insights. The greatest benefit might be realized when multiple rare variants cluster in a functional region. Several statistical tests have been developed, one of which is based on the popular Kulldorff scan statistic for spatial clustering of disease. We extended another popular spatial clustering method – Tango’s statistic – to genomic sequence data. An advantage of Tango’s method is that it is rapid to compute, and when single test statistic is computed, its distribution is well approximated by a scaled chi-square distribution, making computation of p-values very rapid. We compared the Type-I error rates and power of several clustering statistics, as well as the omnibus sequence kernel association test (SKAT). Although our version of Tango’s statistic, which we call “Kernel Distance” statistic, took approximately half the time to compute than the Kulldorff scan statistic, it had slightly less power than the scan statistic. Our results showed that the Ionita-Laza version of Kulldorff’s scan statistic had the greatest power over a range of clustering scenarios. PMID:23842950
Alexanderian, Alen; Zhu, Liang; Salloum, Maher; Ma, Ronghui; Yu, Meilin
2017-09-01
In this study, statistical models are developed for modeling uncertain heterogeneous permeability and porosity in tumors, and the resulting uncertainties in pressure and velocity fields during an intratumoral injection are quantified using a nonintrusive spectral uncertainty quantification (UQ) method. Specifically, the uncertain permeability is modeled as a log-Gaussian random field, represented using a truncated Karhunen-Lòeve (KL) expansion, and the uncertain porosity is modeled as a log-normal random variable. The efficacy of the developed statistical models is validated by simulating the concentration fields with permeability and porosity of different uncertainty levels. The irregularity in the concentration field bears reasonable visual agreement with that in MicroCT images from experiments. The pressure and velocity fields are represented using polynomial chaos (PC) expansions to enable efficient computation of their statistical properties. The coefficients in the PC expansion are computed using a nonintrusive spectral projection method with the Smolyak sparse quadrature. The developed UQ approach is then used to quantify the uncertainties in the random pressure and velocity fields. A global sensitivity analysis is also performed to assess the contribution of individual KL modes of the log-permeability field to the total variance of the pressure field. It is demonstrated that the developed UQ approach can effectively quantify the flow uncertainties induced by uncertain material properties of the tumor.
Allen, Peter J; Roberts, Lynne D; Baughman, Frank D; Loxton, Natalie J; Van Rooy, Dirk; Rock, Adam J; Finlay, James
2016-01-01
Although essential to professional competence in psychology, quantitative research methods are a known area of weakness for many undergraduate psychology students. Students find selecting appropriate statistical tests and procedures for different types of research questions, hypotheses and data types particularly challenging, and these skills are not often practiced in class. Decision trees (a type of graphic organizer) are known to facilitate this decision making process, but extant trees have a number of limitations. Furthermore, emerging research suggests that mobile technologies offer many possibilities for facilitating learning. It is within this context that we have developed StatHand, a free cross-platform application designed to support students' statistical decision making. Developed with the support of the Australian Government Office for Learning and Teaching, StatHand guides users through a series of simple, annotated questions to help them identify a statistical test or procedure appropriate to their circumstances. It further offers the guidance necessary to run these tests and procedures, then interpret and report their results. In this Technology Report we will overview the rationale behind StatHand, before describing the feature set of the application. We will then provide guidelines for integrating StatHand into the research methods curriculum, before concluding by outlining our road map for the ongoing development and evaluation of StatHand.
Kimko, Holly; Berry, Seth; O'Kelly, Michael; Mehrotra, Nitin; Hutmacher, Matthew; Sethuraman, Venkat
2017-01-01
The application of modeling and simulation (M&S) methods to improve decision-making was discussed during the Trends & Innovations in Clinical Trial Statistics Conference held in Durham, North Carolina, USA on May 1-4, 2016. Uses of both pharmacometric and statistical M&S were presented during the conference, highlighting the diversity of the methods employed by pharmacometricians and statisticians to address a broad range of quantitative issues in drug development. Five presentations are summarized herein, which cover the development strategy of employing M&S to drive decision-making; European initiatives on best practice in M&S; case studies of pharmacokinetic/pharmacodynamics modeling in regulatory decisions; estimation of exposure-response relationships in the presence of confounding; and the utility of estimating the probability of a correct decision for dose selection when prior information is limited. While M&S has been widely used during the last few decades, it is expected to play an essential role as more quantitative assessments are employed in the decision-making process. By integrating M&S as a tool to compile the totality of evidence collected throughout the drug development program, more informed decisions will be made.
Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 3
1988-10-01
N. F. Rieger Statistical Energy Analysis : An Overview of Its Development and Engineering Applications J. E. Manning DATA BASES DOE/DOD Environmental...Vibroacoustic Response Using the Finite Element Method and Statistical Energy Analysis F. L. Gloyna Study of Helium Effect on Spacecraft Random Vibration...Analysis S. A. Wilkerson vi DYNAMIC ANALYSIS Modeling of Vibration Transmission in a Damped Beam Structure Using Statistical Energy Analysis S. S
Statistical detection of patterns in unidimensional distributions by continuous wavelet transforms
NASA Astrophysics Data System (ADS)
Baluev, R. V.
2018-04-01
Objective detection of specific patterns in statistical distributions, like groupings or gaps or abrupt transitions between different subsets, is a task with a rich range of applications in astronomy: Milky Way stellar population analysis, investigations of the exoplanets diversity, Solar System minor bodies statistics, extragalactic studies, etc. We adapt the powerful technique of the wavelet transforms to this generalized task, making a strong emphasis on the assessment of the patterns detection significance. Among other things, our method also involves optimal minimum-noise wavelets and minimum-noise reconstruction of the distribution density function. Based on this development, we construct a self-closed algorithmic pipeline aimed to process statistical samples. It is currently applicable to single-dimensional distributions only, but it is flexible enough to undergo further generalizations and development.
Zeng, Ping; Mukherjee, Sayan; Zhou, Xiang
2017-01-01
Epistasis, commonly defined as the interaction between multiple genes, is an important genetic component underlying phenotypic variation. Many statistical methods have been developed to model and identify epistatic interactions between genetic variants. However, because of the large combinatorial search space of interactions, most epistasis mapping methods face enormous computational challenges and often suffer from low statistical power due to multiple test correction. Here, we present a novel, alternative strategy for mapping epistasis: instead of directly identifying individual pairwise or higher-order interactions, we focus on mapping variants that have non-zero marginal epistatic effects—the combined pairwise interaction effects between a given variant and all other variants. By testing marginal epistatic effects, we can identify candidate variants that are involved in epistasis without the need to identify the exact partners with which the variants interact, thus potentially alleviating much of the statistical and computational burden associated with standard epistatic mapping procedures. Our method is based on a variance component model, and relies on a recently developed variance component estimation method for efficient parameter inference and p-value computation. We refer to our method as the “MArginal ePIstasis Test”, or MAPIT. With simulations, we show how MAPIT can be used to estimate and test marginal epistatic effects, produce calibrated test statistics under the null, and facilitate the detection of pairwise epistatic interactions. We further illustrate the benefits of MAPIT in a QTL mapping study by analyzing the gene expression data of over 400 individuals from the GEUVADIS consortium. PMID:28746338
Infusing Active Learning into the Research Methods Unit
ERIC Educational Resources Information Center
Bluestone, Cheryl
2007-01-01
The research methods unit of survey psychology classes introduces important concepts of scientific reasoning and fluency, making it an ideal course in which to deliver enhanced curricula. To increase interest and engagement, the author developed an expanded research methods and statistics module to give students the opportunity to explore…
Developing and Refining the Taiwan Birth Cohort Study (TBCS): Five Years of Experience
ERIC Educational Resources Information Center
Lung, For-Wey; Chiang, Tung-Liang; Lin, Shio-Jean; Shu, Bih-Ching; Lee, Meng-Chih
2011-01-01
The Taiwan Birth Cohort Study (TBCS) is the first nationwide birth cohort database in Asia designed to establish national norms of children's development. Several challenges during database development and data analysis were identified. Challenges include sampling methods, instrument development and statistical approach to missing data. The…
Meng, Xiang-He; Shen, Hui; Chen, Xiang-Ding; Xiao, Hong-Mei; Deng, Hong-Wen
2018-03-01
Genome-wide association studies (GWAS) have successfully identified numerous genetic variants associated with diverse complex phenotypes and diseases, and provided tremendous opportunities for further analyses using summary association statistics. Recently, Pickrell et al. developed a robust method for causal inference using independent putative causal SNPs. However, this method may fail to infer the causal relationship between two phenotypes when only a limited number of independent putative causal SNPs identified. Here, we extended Pickrell's method to make it more applicable for the general situations. We extended the causal inference method by replacing the putative causal SNPs with the lead SNPs (the set of the most significant SNPs in each independent locus) and tested the performance of our extended method using both simulation and empirical data. Simulations suggested that when the same number of genetic variants is used, our extended method had similar distribution of test statistic under the null model as well as comparable power under the causal model compared with the original method by Pickrell et al. But in practice, our extended method would generally be more powerful because the number of independent lead SNPs was often larger than the number of independent putative causal SNPs. And including more SNPs, on the other hand, would not cause more false positives. By applying our extended method to summary statistics from GWAS for blood metabolites and femoral neck bone mineral density (FN-BMD), we successfully identified ten blood metabolites that may causally influence FN-BMD. We extended a causal inference method for inferring putative causal relationship between two phenotypes using summary statistics from GWAS, and identified a number of potential causal metabolites for FN-BMD, which may provide novel insights into the pathophysiological mechanisms underlying osteoporosis.
Sumner, Jeremy G; Taylor, Amelia; Holland, Barbara R; Jarvis, Peter D
2017-12-01
Recently there has been renewed interest in phylogenetic inference methods based on phylogenetic invariants, alongside the related Markov invariants. Broadly speaking, both these approaches give rise to polynomial functions of sequence site patterns that, in expectation value, either vanish for particular evolutionary trees (in the case of phylogenetic invariants) or have well understood transformation properties (in the case of Markov invariants). While both approaches have been valued for their intrinsic mathematical interest, it is not clear how they relate to each other, and to what extent they can be used as practical tools for inference of phylogenetic trees. In this paper, by focusing on the special case of binary sequence data and quartets of taxa, we are able to view these two different polynomial-based approaches within a common framework. To motivate the discussion, we present three desirable statistical properties that we argue any invariant-based phylogenetic method should satisfy: (1) sensible behaviour under reordering of input sequences; (2) stability as the taxa evolve independently according to a Markov process; and (3) explicit dependence on the assumption of a continuous-time process. Motivated by these statistical properties, we develop and explore several new phylogenetic inference methods. In particular, we develop a statistically bias-corrected version of the Markov invariants approach which satisfies all three properties. We also extend previous work by showing that the phylogenetic invariants can be implemented in such a way as to satisfy property (3). A simulation study shows that, in comparison to other methods, our new proposed approach based on bias-corrected Markov invariants is extremely powerful for phylogenetic inference. The binary case is of particular theoretical interest as-in this case only-the Markov invariants can be expressed as linear combinations of the phylogenetic invariants. A wider implication of this is that, for models with more than two states-for example DNA sequence alignments with four-state models-we find that methods which rely on phylogenetic invariants are incapable of satisfying all three of the stated statistical properties. This is because in these cases the relevant Markov invariants belong to a class of polynomials independent from the phylogenetic invariants.
Statistical reconstruction for cosmic ray muon tomography.
Schultz, Larry J; Blanpied, Gary S; Borozdin, Konstantin N; Fraser, Andrew M; Hengartner, Nicolas W; Klimenko, Alexei V; Morris, Christopher L; Orum, Chris; Sossong, Michael J
2007-08-01
Highly penetrating cosmic ray muons constantly shower the earth at a rate of about 1 muon per cm2 per minute. We have developed a technique which exploits the multiple Coulomb scattering of these particles to perform nondestructive inspection without the use of artificial radiation. In prior work [1]-[3], we have described heuristic methods for processing muon data to create reconstructed images. In this paper, we present a maximum likelihood/expectation maximization tomographic reconstruction algorithm designed for the technique. This algorithm borrows much from techniques used in medical imaging, particularly emission tomography, but the statistics of muon scattering dictates differences. We describe the statistical model for multiple scattering, derive the reconstruction algorithm, and present simulated examples. We also propose methods to improve the robustness of the algorithm to experimental errors and events departing from the statistical model.
Lotfy, Hayam Mahmoud; Hegazy, Maha A; Rezk, Mamdouh R; Omran, Yasmin Rostom
2014-05-21
Two smart and novel spectrophotometric methods namely; absorbance subtraction (AS) and amplitude modulation (AM) were developed and validated for the determination of a binary mixture of timolol maleate (TIM) and dorzolamide hydrochloride (DOR) in presence of benzalkonium chloride without prior separation, using unified regression equation. Additionally, simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of the binary mixture namely; simultaneous ratio subtraction (SRS), ratio difference (RD), ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), constant multiplication method (CM) and mean centering of ratio spectra (MCR). The proposed spectrophotometric procedures do not require any separation steps. Accuracy, precision and linearity ranges of the proposed methods were determined and the specificity was assessed by analyzing synthetic mixtures of both drugs. They were applied to their pharmaceutical formulation and the results obtained were statistically compared to that of a reported spectrophotometric method. The statistical comparison showed that there is no significant difference between the proposed methods and the reported one regarding both accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.
A practical approach for the scale-up of roller compaction process.
Shi, Weixian; Sprockel, Omar L
2016-09-01
An alternative approach for the scale-up of ribbon formation during roller compaction was investigated, which required only one batch at the commercial scale to set the operational conditions. The scale-up of ribbon formation was based on a probability method. It was sufficient in describing the mechanism of ribbon formation at both scales. In this method, a statistical relationship between roller compaction parameters and ribbon attributes (thickness and density) was first defined with DoE using a pilot Alexanderwerk WP120 roller compactor. While the milling speed was included in the design, it has no practical effect on granule properties within the study range despite its statistical significance. The statistical relationship was then adapted to a commercial Alexanderwerk WP200 roller compactor with one experimental run. The experimental run served as a calibration of the statistical model parameters. The proposed transfer method was then confirmed by conducting a mapping study on the Alexanderwerk WP200 using a factorial DoE, which showed a match between the predictions and the verification experiments. The study demonstrates the applicability of the roller compaction transfer method using the statistical model from the development scale calibrated with one experiment point at the commercial scale. Copyright © 2016 Elsevier B.V. All rights reserved.
[Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].
Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing
2015-10-01
Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.
Assessing Discriminative Performance at External Validation of Clinical Prediction Models
Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W.
2016-01-01
Introduction External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. Methods We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. Results The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. Conclusion The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients. PMID:26881753
Online Statistical Modeling (Regression Analysis) for Independent Responses
NASA Astrophysics Data System (ADS)
Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus
2017-06-01
Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.
NASA Astrophysics Data System (ADS)
Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.
2017-01-01
We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.
A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Yamakov, Vesselin; Saether, Erik; Glaessgen, Edward H/.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
ERIC Educational Resources Information Center
Schweizer, Karl; Steinwascher, Merle; Moosbrugger, Helfried; Reiss, Siegbert
2011-01-01
The development of research methodology competency is a major aim of the psychology curriculum at universities. Usually, three courses concentrating on basic statistics, advanced statistics and experimental methods, respectively, serve the achievement of this aim. However, this traditional curriculum-based course structure gives rise to the…
Ziegeweid, Jeffrey R.; Lorenz, David L.; Sanocki, Chris A.; Czuba, Christiana R.
2015-12-24
Equations developed in this study apply only to stream locations where flows are not substantially affected by regulation, diversion, or urbanization. All equations presented in this study will be incorporated into StreamStats, a web-based geographic information system tool developed by the U.S. Geological Survey. StreamStats allows users to obtain streamflow statistics, basin characteristics, and other information for user-selected locations on streams through an interactive map.
History and Development of the Schmidt-Hunter Meta-Analysis Methods
ERIC Educational Resources Information Center
Schmidt, Frank L.
2015-01-01
In this article, I provide answers to the questions posed by Will Shadish about the history and development of the Schmidt-Hunter methods of meta-analysis. In the 1970s, I headed a research program on personnel selection at the US Office of Personnel Management (OPM). After our research showed that validity studies have low statistical power, OPM…
Analysis of Pre-Service Science Teachers' Views about the Methods Which Develop Reflective Thinking
ERIC Educational Resources Information Center
Töman, Ufuk; Odabasi Çimer, Sabiha; Çimer, Atilla
2014-01-01
In this study, we investigate of science and technology pre-service teachers' opinions about the methods developed reflective thinking and we determined at the level of reflective thinking. This study is a descriptive study. Open-ended questions were used to determine the views of pre-service teachers. Questions used in the statistical analysis of…
Statistically qualified neuro-analytic failure detection method and system
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
2002-03-02
An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.
A powerful approach for association analysis incorporating imprinting effects
Xia, Fan; Zhou, Ji-Yuan; Fung, Wing Kam
2011-01-01
Motivation: For a diallelic marker locus, the transmission disequilibrium test (TDT) is a simple and powerful design for genetic studies. The TDT was originally proposed for use in families with both parents available (complete nuclear families) and has further been extended to 1-TDT for use in families with only one of the parents available (incomplete nuclear families). Currently, the increasing interest of the influence of parental imprinting on heritability indicates the importance of incorporating imprinting effects into the mapping of association variants. Results: In this article, we extend the TDT-type statistics to incorporate imprinting effects and develop a series of new test statistics in a general two-stage framework for association studies. Our test statistics enjoy the nature of family-based designs that need no assumption of Hardy–Weinberg equilibrium. Also, the proposed methods accommodate complete and incomplete nuclear families with one or more affected children. In the simulation study, we verify the validity of the proposed test statistics under various scenarios, and compare the powers of the proposed statistics with some existing test statistics. It is shown that our methods greatly improve the power for detecting association in the presence of imprinting effects. We further demonstrate the advantage of our methods by the application of the proposed test statistics to a rheumatoid arthritis dataset. Contact: wingfung@hku.hk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21798962
A powerful approach for association analysis incorporating imprinting effects.
Xia, Fan; Zhou, Ji-Yuan; Fung, Wing Kam
2011-09-15
For a diallelic marker locus, the transmission disequilibrium test (TDT) is a simple and powerful design for genetic studies. The TDT was originally proposed for use in families with both parents available (complete nuclear families) and has further been extended to 1-TDT for use in families with only one of the parents available (incomplete nuclear families). Currently, the increasing interest of the influence of parental imprinting on heritability indicates the importance of incorporating imprinting effects into the mapping of association variants. In this article, we extend the TDT-type statistics to incorporate imprinting effects and develop a series of new test statistics in a general two-stage framework for association studies. Our test statistics enjoy the nature of family-based designs that need no assumption of Hardy-Weinberg equilibrium. Also, the proposed methods accommodate complete and incomplete nuclear families with one or more affected children. In the simulation study, we verify the validity of the proposed test statistics under various scenarios, and compare the powers of the proposed statistics with some existing test statistics. It is shown that our methods greatly improve the power for detecting association in the presence of imprinting effects. We further demonstrate the advantage of our methods by the application of the proposed test statistics to a rheumatoid arthritis dataset. wingfung@hku.hk Supplementary data are available at Bioinformatics online.
Koltun, G.F.; Kula, Stephanie P.
2013-01-01
This report presents the results of a study to develop methods for estimating selected low-flow statistics and for determining annual flow-duration statistics for Ohio streams. Regression techniques were used to develop equations for estimating 10-year recurrence-interval (10-percent annual-nonexceedance probability) low-flow yields, in cubic feet per second per square mile, with averaging periods of 1, 7, 30, and 90-day(s), and for estimating the yield corresponding to the long-term 80-percent duration flow. These equations, which estimate low-flow yields as a function of a streamflow-variability index, are based on previously published low-flow statistics for 79 long-term continuous-record streamgages with at least 10 years of data collected through water year 1997. When applied to the calibration dataset, average absolute percent errors for the regression equations ranged from 15.8 to 42.0 percent. The regression results have been incorporated into the U.S. Geological Survey (USGS) StreamStats application for Ohio (http://water.usgs.gov/osw/streamstats/ohio.html) in the form of a yield grid to facilitate estimation of the corresponding streamflow statistics in cubic feet per second. Logistic-regression equations also were developed and incorporated into the USGS StreamStats application for Ohio for selected low-flow statistics to help identify occurrences of zero-valued statistics. Quantiles of daily and 7-day mean streamflows were determined for annual and annual-seasonal (September–November) periods for each complete climatic year of streamflow-gaging station record for 110 selected streamflow-gaging stations with 20 or more years of record. The quantiles determined for each climatic year were the 99-, 98-, 95-, 90-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 25-, 20-, 10-, 5-, 2-, and 1-percent exceedance streamflows. Selected exceedance percentiles of the annual-exceedance percentiles were subsequently computed and tabulated to help facilitate consideration of the annual risk of exceedance or nonexceedance of annual and annual-seasonal-period flow-duration values. The quantiles are based on streamflow data collected through climatic year 2008.
An operational definition of a statistically meaningful trend.
Bryhn, Andreas C; Dimberg, Peter H
2011-04-28
Linear trend analysis of time series is standard procedure in many scientific disciplines. If the number of data is large, a trend may be statistically significant even if data are scattered far from the trend line. This study introduces and tests a quality criterion for time trends referred to as statistical meaningfulness, which is a stricter quality criterion for trends than high statistical significance. The time series is divided into intervals and interval mean values are calculated. Thereafter, r(2) and p values are calculated from regressions concerning time and interval mean values. If r(2) ≥ 0.65 at p ≤ 0.05 in any of these regressions, then the trend is regarded as statistically meaningful. Out of ten investigated time series from different scientific disciplines, five displayed statistically meaningful trends. A Microsoft Excel application (add-in) was developed which can perform statistical meaningfulness tests and which may increase the operationality of the test. The presented method for distinguishing statistically meaningful trends should be reasonably uncomplicated for researchers with basic statistics skills and may thus be useful for determining which trends are worth analysing further, for instance with respect to causal factors. The method can also be used for determining which segments of a time trend may be particularly worthwhile to focus on.
New heterogeneous test statistics for the unbalanced fixed-effect nested design.
Guo, Jiin-Huarng; Billard, L; Luh, Wei-Ming
2011-05-01
When the underlying variances are unknown or/and unequal, using the conventional F test is problematic in the two-factor hierarchical data structure. Prompted by the approximate test statistics (Welch and Alexander-Govern methods), the authors develop four new heterogeneous test statistics to test factor A and factor B nested within A for the unbalanced fixed-effect two-stage nested design under variance heterogeneity. The actual significance levels and statistical power of the test statistics were compared in a simulation study. The results show that the proposed procedures maintain better Type I error rate control and have greater statistical power than those obtained by the conventional F test in various conditions. Therefore, the proposed test statistics are recommended in terms of robustness and easy implementation. ©2010 The British Psychological Society.
EPA-ORD MEASUREMENT SCIENCE SUPPORT FOR HOMELAND SECURITY
This presentation will describe the organization and the research and development activities of the ORD National Exposure Measurements Center and will focus on the Center's planned role in providing analytical method development, statistical sampling and design guidance, quality ...
Statistical dependency in visual scanning
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Stark, Lawrence
1986-01-01
A method to identify statistical dependencies in the positions of eye fixations is developed and applied to eye movement data from subjects who viewed dynamic displays of air traffic and judged future relative position of aircraft. Analysis of approximately 23,000 fixations on points of interest on the display identified statistical dependencies in scanning that were independent of the physical placement of the points of interest. Identification of these dependencies is inconsistent with random-sampling-based theories used to model visual search and information seeking.
Statistical methods for the beta-binomial model in teratology.
Yamamoto, E; Yanagimoto, T
1994-01-01
The beta-binomial model is widely used for analyzing teratological data involving littermates. Recent developments in statistical analyses of teratological data are briefly reviewed with emphasis on the model. For statistical inference of the parameters in the beta-binomial distribution, separation of the likelihood introduces an likelihood inference. This leads to reducing biases of estimators and also to improving accuracy of empirical significance levels of tests. Separate inference of the parameters can be conducted in a unified way. PMID:8187716
Curve fitting and modeling with splines using statistical variable selection techniques
NASA Technical Reports Server (NTRS)
Smith, P. L.
1982-01-01
The successful application of statistical variable selection techniques to fit splines is demonstrated. Major emphasis is given to knot selection, but order determination is also discussed. Two FORTRAN backward elimination programs, using the B-spline basis, were developed. The program for knot elimination is compared in detail with two other spline-fitting methods and several statistical software packages. An example is also given for the two-variable case using a tensor product basis, with a theoretical discussion of the difficulties of their use.
Fitting multidimensional splines using statistical variable selection techniques
NASA Technical Reports Server (NTRS)
Smith, P. L.
1982-01-01
This report demonstrates the successful application of statistical variable selection techniques to fit splines. Major emphasis is given to knot selection, but order determination is also discussed. Two FORTRAN backward elimination programs using the B-spline basis were developed, and the one for knot elimination is compared in detail with two other spline-fitting methods and several statistical software packages. An example is also given for the two-variable case using a tensor product basis, with a theoretical discussion of the difficulties of their use.
Cancer survival: an overview of measures, uses, and interpretation.
Mariotto, Angela B; Noone, Anne-Michelle; Howlader, Nadia; Cho, Hyunsoon; Keel, Gretchen E; Garshell, Jessica; Woloshin, Steven; Schwartz, Lisa M
2014-11-01
Survival statistics are of great interest to patients, clinicians, researchers, and policy makers. Although seemingly simple, survival can be confusing: there are many different survival measures with a plethora of names and statistical methods developed to answer different questions. This paper aims to describe and disseminate different survival measures and their interpretation in less technical language. In addition, we introduce templates to summarize cancer survival statistic organized by their specific purpose: research and policy versus prognosis and clinical decision making. Published by Oxford University Press 2014.
Cancer Survival: An Overview of Measures, Uses, and Interpretation
Noone, Anne-Michelle; Howlader, Nadia; Cho, Hyunsoon; Keel, Gretchen E.; Garshell, Jessica; Woloshin, Steven; Schwartz, Lisa M.
2014-01-01
Survival statistics are of great interest to patients, clinicians, researchers, and policy makers. Although seemingly simple, survival can be confusing: there are many different survival measures with a plethora of names and statistical methods developed to answer different questions. This paper aims to describe and disseminate different survival measures and their interpretation in less technical language. In addition, we introduce templates to summarize cancer survival statistic organized by their specific purpose: research and policy versus prognosis and clinical decision making. PMID:25417231
Hernández-Morera, Pablo; Castaño-González, Irene; Travieso-González, Carlos M.; Mompeó-Corredera, Blanca; Ortega-Santana, Francisco
2016-01-01
Purpose To develop a digital image processing method to quantify structural components (smooth muscle fibers and extracellular matrix) in the vessel wall stained with Masson’s trichrome, and a statistical method suitable for small sample sizes to analyze the results previously obtained. Methods The quantification method comprises two stages. The pre-processing stage improves tissue image appearance and the vessel wall area is delimited. In the feature extraction stage, the vessel wall components are segmented by grouping pixels with a similar color. The area of each component is calculated by normalizing the number of pixels of each group by the vessel wall area. Statistical analyses are implemented by permutation tests, based on resampling without replacement from the set of the observed data to obtain a sampling distribution of an estimator. The implementation can be parallelized on a multicore machine to reduce execution time. Results The methods have been tested on 48 vessel wall samples of the internal saphenous vein stained with Masson’s trichrome. The results show that the segmented areas are consistent with the perception of a team of doctors and demonstrate good correlation between the expert judgments and the measured parameters for evaluating vessel wall changes. Conclusion The proposed methodology offers a powerful tool to quantify some components of the vessel wall. It is more objective, sensitive and accurate than the biochemical and qualitative methods traditionally used. The permutation tests are suitable statistical techniques to analyze the numerical measurements obtained when the underlying assumptions of the other statistical techniques are not met. PMID:26761643
[Application of statistics on chronic-diseases-relating observational research papers].
Hong, Zhi-heng; Wang, Ping; Cao, Wei-hua
2012-09-01
To study the application of statistics on Chronic-diseases-relating observational research papers which were recently published in the Chinese Medical Association Magazines, with influential index above 0.5. Using a self-developed criterion, two investigators individually participated in assessing the application of statistics on Chinese Medical Association Magazines, with influential index above 0.5. Different opinions reached an agreement through discussion. A total number of 352 papers from 6 magazines, including the Chinese Journal of Epidemiology, Chinese Journal of Oncology, Chinese Journal of Preventive Medicine, Chinese Journal of Cardiology, Chinese Journal of Internal Medicine and Chinese Journal of Endocrinology and Metabolism, were reviewed. The rate of clear statement on the following contents as: research objectives, t target audience, sample issues, objective inclusion criteria and variable definitions were 99.43%, 98.57%, 95.43%, 92.86% and 96.87%. The correct rates of description on quantitative and qualitative data were 90.94% and 91.46%, respectively. The rates on correctly expressing the results, on statistical inference methods related to quantitative, qualitative data and modeling were 100%, 95.32% and 87.19%, respectively. 89.49% of the conclusions could directly response to the research objectives. However, 69.60% of the papers did not mention the exact names of the study design, statistically, that the papers were using. 11.14% of the papers were in lack of further statement on the exclusion criteria. Percentage of the papers that could clearly explain the sample size estimation only taking up as 5.16%. Only 24.21% of the papers clearly described the variable value assignment. Regarding the introduction on statistical conduction and on database methods, the rate was only 24.15%. 18.75% of the papers did not express the statistical inference methods sufficiently. A quarter of the papers did not use 'standardization' appropriately. As for the aspect of statistical inference, the rate of description on statistical testing prerequisite was only 24.12% while 9.94% papers did not even employ the statistical inferential method that should be used. The main deficiencies on the application of Statistics used in papers related to Chronic-diseases-related observational research were as follows: lack of sample-size determination, variable value assignment description not sufficient, methods on statistics were not introduced clearly or properly, lack of consideration for pre-requisition regarding the use of statistical inferences.
DISSCO: direct imputation of summary statistics allowing covariates.
Xu, Zheng; Duan, Qing; Yan, Song; Chen, Wei; Li, Mingyao; Lange, Ethan; Li, Yun
2015-08-01
Imputation of individual level genotypes at untyped markers using an external reference panel of genotyped or sequenced individuals has become standard practice in genetic association studies. Direct imputation of summary statistics can also be valuable, for example in meta-analyses where individual level genotype data are not available. Two methods (DIST and ImpG-Summary/LD), that assume a multivariate Gaussian distribution for the association summary statistics, have been proposed for imputing association summary statistics. However, both methods assume that the correlations between association summary statistics are the same as the correlations between the corresponding genotypes. This assumption can be violated in the presence of confounding covariates. We analytically show that in the absence of covariates, correlation among association summary statistics is indeed the same as that among the corresponding genotypes, thus serving as a theoretical justification for the recently proposed methods. We continue to prove that in the presence of covariates, correlation among association summary statistics becomes the partial correlation of the corresponding genotypes controlling for covariates. We therefore develop direct imputation of summary statistics allowing covariates (DISSCO). We consider two real-life scenarios where the correlation and partial correlation likely make practical difference: (i) association studies in admixed populations; (ii) association studies in presence of other confounding covariate(s). Application of DISSCO to real datasets under both scenarios shows at least comparable, if not better, performance compared with existing correlation-based methods, particularly for lower frequency variants. For example, DISSCO can reduce the absolute deviation from the truth by 3.9-15.2% for variants with minor allele frequency <5%. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Quaglio, Pietro; Yegenoglu, Alper; Torre, Emiliano; Endres, Dominik M; Grün, Sonja
2017-01-01
Repeated, precise sequences of spikes are largely considered a signature of activation of cell assemblies. These repeated sequences are commonly known under the name of spatio-temporal patterns (STPs). STPs are hypothesized to play a role in the communication of information in the computational process operated by the cerebral cortex. A variety of statistical methods for the detection of STPs have been developed and applied to electrophysiological recordings, but such methods scale poorly with the current size of available parallel spike train recordings (more than 100 neurons). In this work, we introduce a novel method capable of overcoming the computational and statistical limits of existing analysis techniques in detecting repeating STPs within massively parallel spike trains (MPST). We employ advanced data mining techniques to efficiently extract repeating sequences of spikes from the data. Then, we introduce and compare two alternative approaches to distinguish statistically significant patterns from chance sequences. The first approach uses a measure known as conceptual stability, of which we investigate a computationally cheap approximation for applications to such large data sets. The second approach is based on the evaluation of pattern statistical significance. In particular, we provide an extension to STPs of a method we recently introduced for the evaluation of statistical significance of synchronous spike patterns. The performance of the two approaches is evaluated in terms of computational load and statistical power on a variety of artificial data sets that replicate specific features of experimental data. Both methods provide an effective and robust procedure for detection of STPs in MPST data. The method based on significance evaluation shows the best overall performance, although at a higher computational cost. We name the novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE) analysis.
Quaglio, Pietro; Yegenoglu, Alper; Torre, Emiliano; Endres, Dominik M.; Grün, Sonja
2017-01-01
Repeated, precise sequences of spikes are largely considered a signature of activation of cell assemblies. These repeated sequences are commonly known under the name of spatio-temporal patterns (STPs). STPs are hypothesized to play a role in the communication of information in the computational process operated by the cerebral cortex. A variety of statistical methods for the detection of STPs have been developed and applied to electrophysiological recordings, but such methods scale poorly with the current size of available parallel spike train recordings (more than 100 neurons). In this work, we introduce a novel method capable of overcoming the computational and statistical limits of existing analysis techniques in detecting repeating STPs within massively parallel spike trains (MPST). We employ advanced data mining techniques to efficiently extract repeating sequences of spikes from the data. Then, we introduce and compare two alternative approaches to distinguish statistically significant patterns from chance sequences. The first approach uses a measure known as conceptual stability, of which we investigate a computationally cheap approximation for applications to such large data sets. The second approach is based on the evaluation of pattern statistical significance. In particular, we provide an extension to STPs of a method we recently introduced for the evaluation of statistical significance of synchronous spike patterns. The performance of the two approaches is evaluated in terms of computational load and statistical power on a variety of artificial data sets that replicate specific features of experimental data. Both methods provide an effective and robust procedure for detection of STPs in MPST data. The method based on significance evaluation shows the best overall performance, although at a higher computational cost. We name the novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE) analysis. PMID:28596729
The assignment of scores procedure for ordinal categorical data.
Chen, Han-Ching; Wang, Nae-Sheng
2014-01-01
Ordinal data are the most frequently encountered type of data in the social sciences. Many statistical methods can be used to process such data. One common method is to assign scores to the data, convert them into interval data, and further perform statistical analysis. There are several authors who have recently developed assigning score methods to assign scores to ordered categorical data. This paper proposes an approach that defines an assigning score system for an ordinal categorical variable based on underlying continuous latent distribution with interpretation by using three case study examples. The results show that the proposed score system is well for skewed ordinal categorical data.
Pounds, Stan; Cao, Xueyuan; Cheng, Cheng; Yang, Jun; Campana, Dario; Evans, William E.; Pui, Ching-Hon; Relling, Mary V.
2010-01-01
Powerful methods for integrated analysis of multiple biological data sets are needed to maximize interpretation capacity and acquire meaningful knowledge. We recently developed Projection Onto the Most Interesting Statistical Evidence (PROMISE). PROMISE is a statistical procedure that incorporates prior knowledge about the biological relationships among endpoint variables into an integrated analysis of microarray gene expression data with multiple biological and clinical endpoints. Here, PROMISE is adapted to the integrated analysis of pharmacologic, clinical, and genome-wide genotype data that incorporating knowledge about the biological relationships among pharmacologic and clinical response data. An efficient permutation-testing algorithm is introduced so that statistical calculations are computationally feasible in this higher-dimension setting. The new method is applied to a pediatric leukemia data set. The results clearly indicate that PROMISE is a powerful statistical tool for identifying genomic features that exhibit a biologically meaningful pattern of association with multiple endpoint variables. PMID:21516175
Analysis of the dependence of extreme rainfalls
NASA Astrophysics Data System (ADS)
Padoan, Simone; Ancey, Christophe; Parlange, Marc
2010-05-01
The aim of spatial analysis is to quantitatively describe the behavior of environmental phenomena such as precipitation levels, wind speed or daily temperatures. A number of generic approaches to spatial modeling have been developed[1], but these are not necessarily ideal for handling extremal aspects given their focus on mean process levels. The areal modelling of the extremes of a natural process observed at points in space is important in environmental statistics; for example, understanding extremal spatial rainfall is crucial in flood protection. In light of recent concerns over climate change, the use of robust mathematical and statistical methods for such analyses has grown in importance. Multivariate extreme value models and the class of maxstable processes [2] have a similar asymptotic motivation to the univariate Generalized Extreme Value (GEV) distribution , but providing a general approach to modeling extreme processes incorporating temporal or spatial dependence. Statistical methods for max-stable processes and data analyses of practical problems are discussed by [3] and [4]. This work illustrates methods to the statistical modelling of spatial extremes and gives examples of their use by means of a real extremal data analysis of Switzerland precipitation levels. [1] Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley, New York. [2] de Haan, L and Ferreria A. (2006). Extreme Value Theory An Introduction. Springer, USA. [3] Padoan, S. A., Ribatet, M and Sisson, S. A. (2009). Likelihood-Based Inference for Max-Stable Processes. Journal of the American Statistical Association, Theory & Methods. In press. [4] Davison, A. C. and Gholamrezaee, M. (2009), Geostatistics of extremes. Journal of the Royal Statistical Society, Series B. To appear.
Emerging technologies for pediatric and adult trauma care.
Moulton, Steven L; Haley-Andrews, Stephanie; Mulligan, Jane
2010-06-01
Current Emergency Medical Service protocols rely on provider-directed care for evaluation, management and triage of injured patients from the field to a trauma center. New methods to quickly diagnose, support and coordinate the movement of trauma patients from the field to the most appropriate trauma center are in development. These methods will enhance trauma care and promote trauma system development. Recent advances in machine learning, statistical methods, device integration and wireless communication are giving rise to new methods for vital sign data analysis and a new generation of transport monitors. These monitors will collect and synchronize exponentially growing amounts of vital sign data with electronic patient care information. The application of advanced statistical methods to these complex clinical data sets has the potential to reveal many important physiological relationships and treatment effects. Several emerging technologies are converging to yield a new generation of smart sensors and tightly integrated transport monitors. These technologies will assist prehospital providers in quickly identifying and triaging the most severely injured children and adults to the most appropriate trauma centers. They will enable the development of real-time clinical support systems of increasing complexity, able to provide timelier, more cost-effective, autonomous care.
Cost estimating methods for advanced space systems
NASA Technical Reports Server (NTRS)
Cyr, Kelley
1988-01-01
Parametric cost estimating methods for space systems in the conceptual design phase are developed. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance, and time. The relationship between weight and cost is examined in detail. A theoretical model of cost is developed and tested statistically against a historical data base of major research and development programs. It is concluded that the technique presented is sound, but that it must be refined in order to produce acceptable cost estimates.
Optimization of Statistical Methods Impact on Quantitative Proteomics Data.
Pursiheimo, Anna; Vehmas, Anni P; Afzal, Saira; Suomi, Tomi; Chand, Thaman; Strauss, Leena; Poutanen, Matti; Rokka, Anne; Corthals, Garry L; Elo, Laura L
2015-10-02
As tools for quantitative label-free mass spectrometry (MS) rapidly develop, a consensus about the best practices is not apparent. In the work described here we compared popular statistical methods for detecting differential protein expression from quantitative MS data using both controlled experiments with known quantitative differences for specific proteins used as standards as well as "real" experiments where differences in protein abundance are not known a priori. Our results suggest that data-driven reproducibility-optimization can consistently produce reliable differential expression rankings for label-free proteome tools and are straightforward in their application.
NASA Astrophysics Data System (ADS)
Kumar, Rakesh; Li, Zheng; Levin, Deborah A.
2011-05-01
In this work, we propose a new heat accommodation model to simulate freely expanding homogeneous condensation flows of gaseous carbon dioxide using a new approach, the statistical Bhatnagar-Gross-Krook method. The motivation for the present work comes from the earlier work of Li et al. [J. Phys. Chem. 114, 5276 (2010)] in which condensation models were proposed and used in the direct simulation Monte Carlo method to simulate the flow of carbon dioxide from supersonic expansions of small nozzles into near-vacuum conditions. Simulations conducted for stagnation pressures of one and three bar were compared with the measurements of gas and cluster number densities, cluster size, and carbon dioxide rotational temperature obtained by Ramos et al. [Phys. Rev. A 72, 3204 (2005)]. Due to the high computational cost of direct simulation Monte Carlo method, comparison between simulations and data could only be performed for these stagnation pressures, with good agreement obtained beyond the condensation onset point, in the farfield. As the stagnation pressure increases, the degree of condensation also increases; therefore, to improve the modeling of condensation onset, one must be able to simulate higher stagnation pressures. In simulations of an expanding flow of argon through a nozzle, Kumar et al. [AIAA J. 48, 1531 (2010)] found that the statistical Bhatnagar-Gross-Krook method provides the same accuracy as direct simulation Monte Carlo method, but, at one half of the computational cost. In this work, the statistical Bhatnagar-Gross-Krook method was modified to account for internal degrees of freedom for multi-species polyatomic gases. With the computational approach in hand, we developed and tested a new heat accommodation model for a polyatomic system to properly account for the heat release of condensation. We then developed condensation models in the framework of the statistical Bhatnagar-Gross-Krook method. Simulations were found to agree well with the experiment for all stagnation pressure cases (1-5 bar), validating the accuracy of the Bhatnagar-Gross-Krook based condensation model in capturing the physics of condensation.
Corpus-based Statistical Screening for Phrase Identification
Kim, Won; Wilbur, W. John
2000-01-01
Purpose: The authors study the extraction of useful phrases from a natural language database by statistical methods. The aim is to leverage human effort by providing preprocessed phrase lists with a high percentage of useful material. Method: The approach is to develop six different scoring methods that are based on different aspects of phrase occurrence. The emphasis here is not on lexical information or syntactic structure but rather on the statistical properties of word pairs and triples that can be obtained from a large database. Measurements: The Unified Medical Language System (UMLS) incorporates a large list of humanly acceptable phrases in the medical field as a part of its structure. The authors use this list of phrases as a gold standard for validating their methods. A good method is one that ranks the UMLS phrases high among all phrases studied. Measurements are 11-point average precision values and precision-recall curves based on the rankings. Result: The authors find of six different scoring methods that each proves effective in identifying UMLS quality phrases in a large subset of MEDLINE. These methods are applicable both to word pairs and word triples. All six methods are optimally combined to produce composite scoring methods that are more effective than any single method. The quality of the composite methods appears sufficient to support the automatic placement of hyperlinks in text at the site of highly ranked phrases. Conclusion: Statistical scoring methods provide a promising approach to the extraction of useful phrases from a natural language database for the purpose of indexing or providing hyperlinks in text. PMID:10984469
A Review of Classical Methods of Item Analysis.
ERIC Educational Resources Information Center
French, Christine L.
Item analysis is a very important consideration in the test development process. It is a statistical procedure to analyze test items that combines methods used to evaluate the important characteristics of test items, such as difficulty, discrimination, and distractibility of the items in a test. This paper reviews some of the classical methods for…
Han, Kyunghwa; Jung, Inkyung
2018-05-01
This review article presents an assessment of trends in statistical methods and an evaluation of their appropriateness in articles published in the Archives of Plastic Surgery (APS) from 2012 to 2017. We reviewed 388 original articles published in APS between 2012 and 2017. We categorized the articles that used statistical methods according to the type of statistical method, the number of statistical methods, and the type of statistical software used. We checked whether there were errors in the description of statistical methods and results. A total of 230 articles (59.3%) published in APS between 2012 and 2017 used one or more statistical method. Within these articles, there were 261 applications of statistical methods with continuous or ordinal outcomes, and 139 applications of statistical methods with categorical outcome. The Pearson chi-square test (17.4%) and the Mann-Whitney U test (14.4%) were the most frequently used methods. Errors in describing statistical methods and results were found in 133 of the 230 articles (57.8%). Inadequate description of P-values was the most common error (39.1%). Among the 230 articles that used statistical methods, 71.7% provided details about the statistical software programs used for the analyses. SPSS was predominantly used in the articles that presented statistical analyses. We found that the use of statistical methods in APS has increased over the last 6 years. It seems that researchers have been paying more attention to the proper use of statistics in recent years. It is expected that these positive trends will continue in APS.
NASA Technical Reports Server (NTRS)
Wilson, R. M.; Reichmann, E. J.; Teuber, D. L.
1984-01-01
An empirical method is developed to predict certain parameters of future solar activity cycles. Sunspot cycle statistics are examined, and curve fitting and linear regression analysis techniques are utilized.
Takeyoshi, Masahiro; Sawaki, Masakuni; Yamasaki, Kanji; Kimber, Ian
2003-09-30
The murine local lymph node assay (LLNA) is used for the identification of chemicals that have the potential to cause skin sensitization. However, it requires specific facility and handling procedures to accommodate a radioisotopic (RI) endpoint. We have developed non-radioisotopic (non-RI) endpoint of LLNA based on BrdU incorporation to avoid a use of RI. Although this alternative method appears viable in principle, it is somewhat less sensitive than the standard assay. In this study, we report investigations to determine the use of statistical analysis to improve the sensitivity of a non-RI LLNA procedure with alpha-hexylcinnamic aldehyde (HCA) in two separate experiments. Consequently, the alternative non-RI method required HCA concentrations of greater than 25% to elicit a positive response based on the criterion for classification as a skin sensitizer in the standard LLNA. Nevertheless, dose responses to HCA in the alternative method were consistent in both experiments and we examined whether the use of an endpoint based upon the statistical significance of induced changes in LNC turnover, rather than an SI of 3 or greater, might provide for additional sensitivity. The results reported here demonstrate that with HCA at least significant responses were, in each of two experiments, recorded following exposure of mice to 25% of HCA. These data suggest that this approach may be more satisfactory-at least when BrdU incorporation is measured. However, this modification of the LLNA is rather less sensitive than the standard method if employing statistical endpoint. Taken together the data reported here suggest that a modified LLNA in which BrdU is used in place of radioisotope incorporation shows some promise, but that in its present form, even with the use of a statistical endpoint, lacks some of the sensitivity of the standard method. The challenge is to develop strategies for further refinement of this approach.
Exact test-based approach for equivalence test with parameter margin.
Cassie Dong, Xiaoyu; Bian, Yuanyuan; Tsong, Yi; Wang, Tianhua
2017-01-01
The equivalence test has a wide range of applications in pharmaceutical statistics which we need to test for the similarity between two groups. In recent years, the equivalence test has been used in assessing the analytical similarity between a proposed biosimilar product and a reference product. More specifically, the mean values of the two products for a given quality attribute are compared against an equivalence margin in the form of ±f × σ R , where ± f × σ R is a function of the reference variability. In practice, this margin is unknown and is estimated from the sample as ±f × S R . If we use this estimated margin with the classic t-test statistic on the equivalence test for the means, both Type I and Type II error rates may inflate. To resolve this issue, we develop an exact-based test method and compare this method with other proposed methods, such as the Wald test, the constrained Wald test, and the Generalized Pivotal Quantity (GPQ) in terms of Type I error rate and power. Application of those methods on data analysis is also provided in this paper. This work focuses on the development and discussion of the general statistical methodology and is not limited to the application of analytical similarity.
Confounding in statistical mediation analysis: What it is and how to address it.
Valente, Matthew J; Pelham, William E; Smyth, Heather; MacKinnon, David P
2017-11-01
Psychology researchers are often interested in mechanisms underlying how randomized interventions affect outcomes such as substance use and mental health. Mediation analysis is a common statistical method for investigating psychological mechanisms that has benefited from exciting new methodological improvements over the last 2 decades. One of the most important new developments is methodology for estimating causal mediated effects using the potential outcomes framework for causal inference. Potential outcomes-based methods developed in epidemiology and statistics have important implications for understanding psychological mechanisms. We aim to provide a concise introduction to and illustration of these new methods and emphasize the importance of confounder adjustment. First, we review the traditional regression approach for estimating mediated effects. Second, we describe the potential outcomes framework. Third, we define what a confounder is and how the presence of a confounder can provide misleading evidence regarding mechanisms of interventions. Fourth, we describe experimental designs that can help rule out confounder bias. Fifth, we describe new statistical approaches to adjust for measured confounders of the mediator-outcome relation and sensitivity analyses to probe effects of unmeasured confounders on the mediated effect. All approaches are illustrated with application to a real counseling intervention dataset. Counseling psychologists interested in understanding the causal mechanisms of their interventions can benefit from incorporating the most up-to-date techniques into their mediation analyses. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Cormack Research Project: Glasgow University
NASA Technical Reports Server (NTRS)
Skinner, Susan; Ryan, James M.
1998-01-01
The aim of this project was to investigate and improve upon existing methods of analysing data from COMITEL on the Gamma Ray Observatory for neutrons emitted during solar flares. In particular, a strategy for placing confidence intervals on neutron energy distributions, due to uncertainties on the response matrix has been developed. We have also been able to demonstrate the superior performance of one of a range of possible statistical regularization strategies. A method of generating likely models of neutron energy distributions has also been developed as a tool to this end. The project involved solving an inverse problem with noise being added to the data in various ways. To achieve this pre-existing C code was used to run Fortran subroutines which performed statistical regularization on the data.
Metrology Standards for Quantitative Imaging Biomarkers
Obuchowski, Nancy A.; Kessler, Larry G.; Raunig, David L.; Gatsonis, Constantine; Huang, Erich P.; Kondratovich, Marina; McShane, Lisa M.; Reeves, Anthony P.; Barboriak, Daniel P.; Guimaraes, Alexander R.; Wahl, Richard L.
2015-01-01
Although investigators in the imaging community have been active in developing and evaluating quantitative imaging biomarkers (QIBs), the development and implementation of QIBs have been hampered by the inconsistent or incorrect use of terminology or methods for technical performance and statistical concepts. Technical performance is an assessment of how a test performs in reference objects or subjects under controlled conditions. In this article, some of the relevant statistical concepts are reviewed, methods that can be used for evaluating and comparing QIBs are described, and some of the technical performance issues related to imaging biomarkers are discussed. More consistent and correct use of terminology and study design principles will improve clinical research, advance regulatory science, and foster better care for patients who undergo imaging studies. © RSNA, 2015 PMID:26267831
Quantitative Imaging Biomarkers: A Review of Statistical Methods for Computer Algorithm Comparisons
2014-01-01
Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare various study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-change studies), designs with a reference standard (e.g. studies testing equivalence with a reference standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm precision). The statistical methods for comparing QIB algorithms are then presented for various study types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future directions for research. PMID:24919829
Sound source measurement by using a passive sound insulation and a statistical approach
NASA Astrophysics Data System (ADS)
Dragonetti, Raffaele; Di Filippo, Sabato; Mercogliano, Francesco; Romano, Rosario A.
2015-10-01
This paper describes a measurement technique developed by the authors that allows carrying out acoustic measurements inside noisy environments reducing background noise effects. The proposed method is based on the integration of a traditional passive noise insulation system with a statistical approach. The latter is applied to signals picked up by usual sensors (microphones and accelerometers) equipping the passive sound insulation system. The statistical approach allows improving of the sound insulation given only by the passive sound insulation system at low frequency. The developed measurement technique has been validated by means of numerical simulations and measurements carried out inside a real noisy environment. For the case-studies here reported, an average improvement of about 10 dB has been obtained in a frequency range up to about 250 Hz. Considerations on the lower sound pressure level that can be measured by applying the proposed method and the measurement error related to its application are reported as well.
Heath, Anna; Manolopoulou, Ioanna; Baio, Gianluca
2016-10-15
The Expected Value of Perfect Partial Information (EVPPI) is a decision-theoretic measure of the 'cost' of parametric uncertainty in decision making used principally in health economic decision making. Despite this decision-theoretic grounding, the uptake of EVPPI calculations in practice has been slow. This is in part due to the prohibitive computational time required to estimate the EVPPI via Monte Carlo simulations. However, recent developments have demonstrated that the EVPPI can be estimated by non-parametric regression methods, which have significantly decreased the computation time required to approximate the EVPPI. Under certain circumstances, high-dimensional Gaussian Process (GP) regression is suggested, but this can still be prohibitively expensive. Applying fast computation methods developed in spatial statistics using Integrated Nested Laplace Approximations (INLA) and projecting from a high-dimensional into a low-dimensional input space allows us to decrease the computation time for fitting these high-dimensional GP, often substantially. We demonstrate that the EVPPI calculated using our method for GP regression is in line with the standard GP regression method and that despite the apparent methodological complexity of this new method, R functions are available in the package BCEA to implement it simply and efficiently. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Precipitate statistics in an Al-Mg-Si-Cu alloy from scanning precession electron diffraction data
NASA Astrophysics Data System (ADS)
Sunde, J. K.; Paulsen, Ø.; Wenner, S.; Holmestad, R.
2017-09-01
The key microstructural feature providing strength to age-hardenable Al alloys is nanoscale precipitates. Alloy development requires a reliable statistical assessment of these precipitates, in order to link the microstructure with material properties. Here, it is demonstrated that scanning precession electron diffraction combined with computational analysis enable the semi-automated extraction of precipitate statistics in an Al-Mg-Si-Cu alloy. Among the main findings is the precipitate number density, which agrees well with a conventional method based on manual counting and measurements. By virtue of its data analysis objectivity, our methodology is therefore seen as an advantageous alternative to existing routines, offering reproducibility and efficiency in alloy statistics. Additional results include improved qualitative information on phase distributions. The developed procedure is generic and applicable to any material containing nanoscale precipitates.
The construction and assessment of a statistical model for the prediction of protein assay data.
Pittman, J; Sacks, J; Young, S Stanley
2002-01-01
The focus of this work is the development of a statistical model for a bioinformatics database whose distinctive structure makes model assessment an interesting and challenging problem. The key components of the statistical methodology, including a fast approximation to the singular value decomposition and the use of adaptive spline modeling and tree-based methods, are described, and preliminary results are presented. These results are shown to compare favorably to selected results achieved using comparitive methods. An attempt to determine the predictive ability of the model through the use of cross-validation experiments is discussed. In conclusion a synopsis of the results of these experiments and their implications for the analysis of bioinformatic databases in general is presented.
2013-01-01
Background Identifying the emotional state is helpful in applications involving patients with autism and other intellectual disabilities; computer-based training, human computer interaction etc. Electrocardiogram (ECG) signals, being an activity of the autonomous nervous system (ANS), reflect the underlying true emotional state of a person. However, the performance of various methods developed so far lacks accuracy, and more robust methods need to be developed to identify the emotional pattern associated with ECG signals. Methods Emotional ECG data was obtained from sixty participants by inducing the six basic emotional states (happiness, sadness, fear, disgust, surprise and neutral) using audio-visual stimuli. The non-linear feature ‘Hurst’ was computed using Rescaled Range Statistics (RRS) and Finite Variance Scaling (FVS) methods. New Hurst features were proposed by combining the existing RRS and FVS methods with Higher Order Statistics (HOS). The features were then classified using four classifiers – Bayesian Classifier, Regression Tree, K- nearest neighbor and Fuzzy K-nearest neighbor. Seventy percent of the features were used for training and thirty percent for testing the algorithm. Results Analysis of Variance (ANOVA) conveyed that Hurst and the proposed features were statistically significant (p < 0.001). Hurst computed using RRS and FVS methods showed similar classification accuracy. The features obtained by combining FVS and HOS performed better with a maximum accuracy of 92.87% and 76.45% for classifying the six emotional states using random and subject independent validation respectively. Conclusions The results indicate that the combination of non-linear analysis and HOS tend to capture the finer emotional changes that can be seen in healthy ECG data. This work can be further fine tuned to develop a real time system. PMID:23680041
Testing non-inferiority of a new treatment in three-arm clinical trials with binary endpoints.
Tang, Nian-Sheng; Yu, Bin; Tang, Man-Lai
2014-12-18
A two-arm non-inferiority trial without a placebo is usually adopted to demonstrate that an experimental treatment is not worse than a reference treatment by a small pre-specified non-inferiority margin due to ethical concerns. Selection of the non-inferiority margin and establishment of assay sensitivity are two major issues in the design, analysis and interpretation for two-arm non-inferiority trials. Alternatively, a three-arm non-inferiority clinical trial including a placebo is usually conducted to assess the assay sensitivity and internal validity of a trial. Recently, some large-sample approaches have been developed to assess the non-inferiority of a new treatment based on the three-arm trial design. However, these methods behave badly with small sample sizes in the three arms. This manuscript aims to develop some reliable small-sample methods to test three-arm non-inferiority. Saddlepoint approximation, exact and approximate unconditional, and bootstrap-resampling methods are developed to calculate p-values of the Wald-type, score and likelihood ratio tests. Simulation studies are conducted to evaluate their performance in terms of type I error rate and power. Our empirical results show that the saddlepoint approximation method generally behaves better than the asymptotic method based on the Wald-type test statistic. For small sample sizes, approximate unconditional and bootstrap-resampling methods based on the score test statistic perform better in the sense that their corresponding type I error rates are generally closer to the prespecified nominal level than those of other test procedures. Both approximate unconditional and bootstrap-resampling test procedures based on the score test statistic are generally recommended for three-arm non-inferiority trials with binary outcomes.
Chen, Tianle; Zeng, Donglin
2015-01-01
Summary Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data. PMID:26177419
NASA Technical Reports Server (NTRS)
Lee, Sangsan; Lele, Sanjiva K.; Moin, Parviz
1992-01-01
For the numerical simulation of inhomogeneous turbulent flows, a method is developed for generating stochastic inflow boundary conditions with a prescribed power spectrum. Turbulence statistics from spatial simulations using this method with a low fluctuation Mach number are in excellent agreement with the experimental data, which validates the procedure. Turbulence statistics from spatial simulations are also compared to those from temporal simulations using Taylor's hypothesis. Statistics such as turbulence intensity, vorticity, and velocity derivative skewness compare favorably with the temporal simulation. However, the statistics of dilatation show a significant departure from those obtained in the temporal simulation. To directly check the applicability of Taylor's hypothesis, space-time correlations of fluctuations in velocity, vorticity, and dilatation are investigated. Convection velocities based on vorticity and velocity fluctuations are computed as functions of the spatial and temporal separations. The profile of the space-time correlation of dilatation fluctuations is explained via a wave propagation model.
TRAPR: R Package for Statistical Analysis and Visualization of RNA-Seq Data.
Lim, Jae Hyun; Lee, Soo Youn; Kim, Ju Han
2017-03-01
High-throughput transcriptome sequencing, also known as RNA sequencing (RNA-Seq), is a standard technology for measuring gene expression with unprecedented accuracy. Numerous bioconductor packages have been developed for the statistical analysis of RNA-Seq data. However, these tools focus on specific aspects of the data analysis pipeline, and are difficult to appropriately integrate with one another due to their disparate data structures and processing methods. They also lack visualization methods to confirm the integrity of the data and the process. In this paper, we propose an R-based RNA-Seq analysis pipeline called TRAPR, an integrated tool that facilitates the statistical analysis and visualization of RNA-Seq expression data. TRAPR provides various functions for data management, the filtering of low-quality data, normalization, transformation, statistical analysis, data visualization, and result visualization that allow researchers to build customized analysis pipelines.
Applying a statistical PTB detection procedure to complement the gold standard.
Noor, Norliza Mohd; Yunus, Ashari; Bakar, S A R Abu; Hussin, Amran; Rijal, Omar Mohd
2011-04-01
This paper investigates a novel statistical discrimination procedure to detect PTB when the gold standard requirement is taken into consideration. Archived data were used to establish two groups of patients which are the control and test group. The control group was used to develop the statistical discrimination procedure using four vectors of wavelet coefficients as feature vectors for the detection of pulmonary tuberculosis (PTB), lung cancer (LC), and normal lung (NL). This discrimination procedure was investigated using the test group where the number of sputum positive and sputum negative cases that were correctly classified as PTB cases were noted. The proposed statistical discrimination method is able to detect PTB patients and LC with high true positive fraction. The method is also able to detect PTB patients that are sputum negative and therefore may be used as a complement to the gold standard. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piepel, Gregory F.; Matzke, Brett D.; Sego, Landon H.
2013-04-27
This report discusses the methodology, formulas, and inputs needed to make characterization and clearance decisions for Bacillus anthracis-contaminated and uncontaminated (or decontaminated) areas using a statistical sampling approach. Specifically, the report includes the methods and formulas for calculating the • number of samples required to achieve a specified confidence in characterization and clearance decisions • confidence in making characterization and clearance decisions for a specified number of samples for two common statistically based environmental sampling approaches. In particular, the report addresses an issue raised by the Government Accountability Office by providing methods and formulas to calculate the confidence that amore » decision area is uncontaminated (or successfully decontaminated) if all samples collected according to a statistical sampling approach have negative results. Key to addressing this topic is the probability that an individual sample result is a false negative, which is commonly referred to as the false negative rate (FNR). The two statistical sampling approaches currently discussed in this report are 1) hotspot sampling to detect small isolated contaminated locations during the characterization phase, and 2) combined judgment and random (CJR) sampling during the clearance phase. Typically if contamination is widely distributed in a decision area, it will be detectable via judgment sampling during the characterization phrase. Hotspot sampling is appropriate for characterization situations where contamination is not widely distributed and may not be detected by judgment sampling. CJR sampling is appropriate during the clearance phase when it is desired to augment judgment samples with statistical (random) samples. The hotspot and CJR statistical sampling approaches are discussed in the report for four situations: 1. qualitative data (detect and non-detect) when the FNR = 0 or when using statistical sampling methods that account for FNR > 0 2. qualitative data when the FNR > 0 but statistical sampling methods are used that assume the FNR = 0 3. quantitative data (e.g., contaminant concentrations expressed as CFU/cm2) when the FNR = 0 or when using statistical sampling methods that account for FNR > 0 4. quantitative data when the FNR > 0 but statistical sampling methods are used that assume the FNR = 0. For Situation 2, the hotspot sampling approach provides for stating with Z% confidence that a hotspot of specified shape and size with detectable contamination will be found. Also for Situation 2, the CJR approach provides for stating with X% confidence that at least Y% of the decision area does not contain detectable contamination. Forms of these statements for the other three situations are discussed in Section 2.2. Statistical methods that account for FNR > 0 currently only exist for the hotspot sampling approach with qualitative data (or quantitative data converted to qualitative data). This report documents the current status of methods and formulas for the hotspot and CJR sampling approaches. Limitations of these methods are identified. Extensions of the methods that are applicable when FNR = 0 to account for FNR > 0, or to address other limitations, will be documented in future revisions of this report if future funding supports the development of such extensions. For quantitative data, this report also presents statistical methods and formulas for 1. quantifying the uncertainty in measured sample results 2. estimating the true surface concentration corresponding to a surface sample 3. quantifying the uncertainty of the estimate of the true surface concentration. All of the methods and formulas discussed in the report were applied to example situations to illustrate application of the methods and interpretation of the results.« less
Statistical methods used in articles published by the Journal of Periodontal and Implant Science.
Choi, Eunsil; Lyu, Jiyoung; Park, Jinyoung; Kim, Hae-Young
2014-12-01
The purposes of this study were to assess the trend of use of statistical methods including parametric and nonparametric methods and to evaluate the use of complex statistical methodology in recent periodontal studies. This study analyzed 123 articles published in the Journal of Periodontal & Implant Science (JPIS) between 2010 and 2014. Frequencies and percentages were calculated according to the number of statistical methods used, the type of statistical method applied, and the type of statistical software used. Most of the published articles considered (64.4%) used statistical methods. Since 2011, the percentage of JPIS articles using statistics has increased. On the basis of multiple counting, we found that the percentage of studies in JPIS using parametric methods was 61.1%. Further, complex statistical methods were applied in only 6 of the published studies (5.0%), and nonparametric statistical methods were applied in 77 of the published studies (38.9% of a total of 198 studies considered). We found an increasing trend towards the application of statistical methods and nonparametric methods in recent periodontal studies and thus, concluded that increased use of complex statistical methodology might be preferred by the researchers in the fields of study covered by JPIS.
Handbook of Research Methods in Social and Personality Psychology
NASA Astrophysics Data System (ADS)
Reis, Harry T.; Judd, Charles M.
2000-03-01
This volume provides an overview of research methods in contemporary social psychology. Coverage includes conceptual issues in research design, methods of research, and statistical approaches. Because the range of research methods available for social psychology have expanded extensively in the past decade, both traditional and innovative methods are presented. The goal is to introduce new and established researchers alike to new methodological developments in the field.
Statistical evidence for common ancestry: Application to primates.
Baum, David A; Ané, Cécile; Larget, Bret; Solís-Lemus, Claudia; Ho, Lam Si Tung; Boone, Peggy; Drummond, Chloe P; Bontrager, Martin; Hunter, Steven J; Saucier, William
2016-06-01
Since Darwin, biologists have come to recognize that the theory of descent from common ancestry (CA) is very well supported by diverse lines of evidence. However, while the qualitative evidence is overwhelming, we also need formal methods for quantifying the evidential support for CA over the alternative hypothesis of separate ancestry (SA). In this article, we explore a diversity of statistical methods using data from the primates. We focus on two alternatives to CA, species SA (the separate origin of each named species) and family SA (the separate origin of each family). We implemented statistical tests based on morphological, molecular, and biogeographic data and developed two new methods: one that tests for phylogenetic autocorrelation while correcting for variation due to confounding ecological traits and a method for examining whether fossil taxa have fewer derived differences than living taxa. We overwhelmingly rejected both species and family SA with infinitesimal P values. We compare these results with those from two companion papers, which also found tremendously strong support for the CA of all primates, and discuss future directions and general philosophical issues that pertain to statistical testing of historical hypotheses such as CA. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Redshift data and statistical inference
NASA Technical Reports Server (NTRS)
Newman, William I.; Haynes, Martha P.; Terzian, Yervant
1994-01-01
Frequency histograms and the 'power spectrum analysis' (PSA) method, the latter developed by Yu & Peebles (1969), have been widely employed as techniques for establishing the existence of periodicities. We provide a formal analysis of these two classes of methods, including controlled numerical experiments, to better understand their proper use and application. In particular, we note that typical published applications of frequency histograms commonly employ far greater numbers of class intervals or bins than is advisable by statistical theory sometimes giving rise to the appearance of spurious patterns. The PSA method generates a sequence of random numbers from observational data which, it is claimed, is exponentially distributed with unit mean and variance, essentially independent of the distribution of the original data. We show that the derived random processes is nonstationary and produces a small but systematic bias in the usual estimate of the mean and variance. Although the derived variable may be reasonably described by an exponential distribution, the tail of the distribution is far removed from that of an exponential, thereby rendering statistical inference and confidence testing based on the tail of the distribution completely unreliable. Finally, we examine a number of astronomical examples wherein these methods have been used giving rise to widespread acceptance of statistically unconfirmed conclusions.
Statistical plant set estimation using Schroeder-phased multisinusoidal input design
NASA Technical Reports Server (NTRS)
Bayard, D. S.
1992-01-01
A frequency domain method is developed for plant set estimation. The estimation of a plant 'set' rather than a point estimate is required to support many methods of modern robust control design. The approach here is based on using a Schroeder-phased multisinusoid input design which has the special property of placing input energy only at the discrete frequency points used in the computation. A detailed analysis of the statistical properties of the frequency domain estimator is given, leading to exact expressions for the probability distribution of the estimation error, and many important properties. It is shown that, for any nominal parametric plant estimate, one can use these results to construct an overbound on the additive uncertainty to any prescribed statistical confidence. The 'soft' bound thus obtained can be used to replace 'hard' bounds presently used in many robust control analysis and synthesis methods.
A Model for Indexing Medical Documents Combining Statistical and Symbolic Knowledge.
Avillach, Paul; Joubert, Michel; Fieschi, Marius
2007-01-01
OBJECTIVES: To develop and evaluate an information processing method based on terminologies, in order to index medical documents in any given documentary context. METHODS: We designed a model using both symbolic general knowledge extracted from the Unified Medical Language System (UMLS) and statistical knowledge extracted from a domain of application. Using statistical knowledge allowed us to contextualize the general knowledge for every particular situation. For each document studied, the extracted terms are ranked to highlight the most significant ones. The model was tested on a set of 17,079 French standardized discharge summaries (SDSs). RESULTS: The most important ICD-10 term of each SDS was ranked 1st or 2nd by the method in nearly 90% of the cases. CONCLUSIONS: The use of several terminologies leads to more precise indexing. The improvement achieved in the model’s implementation performances as a result of using semantic relationships is encouraging. PMID:18693792
NASA Technical Reports Server (NTRS)
Schweikhard, W. G.; Chen, Y. S.
1986-01-01
The Melick method of inlet flow dynamic distortion prediction by statistical means is outlined. A hypothetic vortex model is used as the basis for the mathematical formulations. The main variables are identified by matching the theoretical total pressure rms ratio with the measured total pressure rms ratio. Data comparisons, using the HiMAT inlet test data set, indicate satisfactory prediction of the dynamic peak distortion for cases with boundary layer control device vortex generators. A method for the dynamic probe selection was developed. Validity of the probe selection criteria is demonstrated by comparing the reduced-probe predictions with the 40-probe predictions. It is indicated that the the number of dynamic probes can be reduced to as few as two and still retain good accuracy.
A Statistical Framework for the Functional Analysis of Metagenomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharon, Itai; Pati, Amrita; Markowitz, Victor
2008-10-01
Metagenomic studies consider the genetic makeup of microbial communities as a whole, rather than their individual member organisms. The functional and metabolic potential of microbial communities can be analyzed by comparing the relative abundance of gene families in their collective genomic sequences (metagenome) under different conditions. Such comparisons require accurate estimation of gene family frequencies. They present a statistical framework for assessing these frequencies based on the Lander-Waterman theory developed originally for Whole Genome Shotgun (WGS) sequencing projects. They also provide a novel method for assessing the reliability of the estimations which can be used for removing seemingly unreliable measurements.more » They tested their method on a wide range of datasets, including simulated genomes and real WGS data from sequencing projects of whole genomes. Results suggest that their framework corrects inherent biases in accepted methods and provides a good approximation to the true statistics of gene families in WGS projects.« less
NASA Astrophysics Data System (ADS)
Ha, Vu Thi Thanh; Hung, Vu Van; Hanh, Pham Thi Minh; Tuyen, Nguyen Viet; Hai, Tran Thi; Hieu, Ho Khac
2018-03-01
The thermodynamic and mechanical properties of III-V zinc-blende AlP, InP semiconductors and their alloys have been studied in detail from statistical moment method taking into account the anharmonicity effects of the lattice vibrations. The nearest neighbor distance, thermal expansion coefficient, bulk moduli, specific heats at the constant volume and constant pressure of the zincblende AlP, InP and AlyIn1-yP alloys are calculated as functions of the temperature. The statistical moment method calculations are performed by using the many-body Stillinger-Weber potential. The concentration dependences of the thermodynamic quantities of zinc-blende AlyIn1-yP crystals have also been discussed and compared with those of the experimental results. Our results are reasonable agreement with earlier density functional theory calculations and can provide useful qualitative information for future experiments. The moment method then can be developed extensively for studying the atomistic structure and thermodynamic properties of nanoscale materials as well.
An ANOVA approach for statistical comparisons of brain networks.
Fraiman, Daniel; Fraiman, Ricardo
2018-03-16
The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.
ERIC Educational Resources Information Center
Kowalski, Bruce R.
1980-01-01
Outlines recent advances in the development of the field of chemometrics, defined as the application of mathematical and statistical methods to chemical measurements. Emphasizes applications in the field. Cites 288 references. (CS)
Vexler, Albert; Tanajian, Hovig; Hutson, Alan D
In practice, parametric likelihood-ratio techniques are powerful statistical tools. In this article, we propose and examine novel and simple distribution-free test statistics that efficiently approximate parametric likelihood ratios to analyze and compare distributions of K groups of observations. Using the density-based empirical likelihood methodology, we develop a Stata package that applies to a test for symmetry of data distributions and compares K -sample distributions. Recognizing that recent statistical software packages do not sufficiently address K -sample nonparametric comparisons of data distributions, we propose a new Stata command, vxdbel, to execute exact density-based empirical likelihood-ratio tests using K samples. To calculate p -values of the proposed tests, we use the following methods: 1) a classical technique based on Monte Carlo p -value evaluations; 2) an interpolation technique based on tabulated critical values; and 3) a new hybrid technique that combines methods 1 and 2. The third, cutting-edge method is shown to be very efficient in the context of exact-test p -value computations. This Bayesian-type method considers tabulated critical values as prior information and Monte Carlo generations of test statistic values as data used to depict the likelihood function. In this case, a nonparametric Bayesian method is proposed to compute critical values of exact tests.
Incorporating spatial context into statistical classification of multidimensional image data
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Tilton, J. C.; Swain, P. H.
1981-01-01
Compound decision theory is employed to develop a general statistical model for classifying image data using spatial context. The classification algorithm developed from this model exploits the tendency of certain ground-cover classes to occur more frequently in some spatial contexts than in others. A key input to this contextural classifier is a quantitative characterization of this tendency: the context function. Several methods for estimating the context function are explored, and two complementary methods are recommended. The contextural classifier is shown to produce substantial improvements in classification accuracy compared to the accuracy produced by a non-contextural uniform-priors maximum likelihood classifier when these methods of estimating the context function are used. An approximate algorithm, which cuts computational requirements by over one-half, is presented. The search for an optimal implementation is furthered by an exploration of the relative merits of using spectral classes or information classes for classification and/or context function estimation.
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann; DaSilva, Arlindo; Atlas, Robert (Technical Monitor)
2001-01-01
Toward the development of a finite-volume Data Assimilation System (fvDAS), a consistent finite-volume methodology is developed for interfacing the NASA/DAO's Physical Space Statistical Analysis System (PSAS) to the joint NASA/NCAR finite volume CCM3 (fvCCM3). To take advantage of the Lagrangian control-volume vertical coordinate of the fvCCM3, a novel "shaving" method is applied to the lowest few model layers to reflect the surface pressure changes as implied by the final analysis. Analysis increments (from PSAS) to the upper air variables are then consistently put onto the Lagrangian layers as adjustments to the volume-mean quantities during the analysis cycle. This approach is demonstrated to be superior to the conventional method of using independently computed "tendency terms" for surface pressure and upper air prognostic variables.
Linnorm: improved statistical analysis for single cell RNA-seq expression data
Yip, Shun H.; Wang, Panwen; Kocher, Jean-Pierre A.; Sham, Pak Chung
2017-01-01
Abstract Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing normalization methods, including NODES, SAMstrt, SCnorm, scran, DESeq and TMM. Linnorm shows advantages in speed, technical noise removal and preservation of cell heterogeneity, which can improve existing methods in the discovery of novel subtypes, pseudo-temporal ordering of cells, clustering analysis, etc. Linnorm also performs better than existing DEG analysis methods, including BASiCS, NODES, SAMstrt, Seurat and DESeq2, in false positive rate control and accuracy. PMID:28981748
A comparison of change detection methods using multispectral scanner data
Seevers, Paul M.; Jones, Brenda K.; Qiu, Zhicheng; Liu, Yutong
1994-01-01
Change detection methods were investigated as a cooperative activity between the U.S. Geological Survey and the National Bureau of Surveying and Mapping, People's Republic of China. Subtraction of band 2, band 3, normalized difference vegetation index, and tasseled cap bands 1 and 2 data from two multispectral scanner images were tested using two sites in the United States and one in the People's Republic of China. A new statistical method also was tested. Band 2 subtraction gives the best results for detecting change from vegetative cover to urban development. The statistical method identifies areas that have changed and uses a fast classification algorithm to classify the original data of the changed areas by land cover type present for each image date.
A robust bayesian estimate of the concordance correlation coefficient.
Feng, Dai; Baumgartner, Richard; Svetnik, Vladimir
2015-01-01
A need for assessment of agreement arises in many situations including statistical biomarker qualification or assay or method validation. Concordance correlation coefficient (CCC) is one of the most popular scaled indices reported in evaluation of agreement. Robust methods for CCC estimation currently present an important statistical challenge. Here, we propose a novel Bayesian method of robust estimation of CCC based on multivariate Student's t-distribution and compare it with its alternatives. Furthermore, we extend the method to practically relevant settings, enabling incorporation of confounding covariates and replications. The superiority of the new approach is demonstrated using simulation as well as real datasets from biomarker application in electroencephalography (EEG). This biomarker is relevant in neuroscience for development of treatments for insomnia.
Lotfy, Hayam M; Mohamed, Dalia; Mowaka, Shereen
2015-01-01
Simple, specific, accurate and precise spectrophotometric methods were developed and validated for the simultaneous determination of the oral antidiabetic drugs; sitagliptin phosphate (STG) and metformin hydrochloride (MET) in combined pharmaceutical formulations. Three methods were manipulating ratio spectra namely; ratio difference (RD), ratio subtraction (RS) and a novel approach of induced amplitude modulation (IAM) methods. The first two methods were used for determination of STG, while MET was directly determined by measuring its absorbance at λmax 232 nm. However, (IAM) was used for the simultaneous determination of both drugs. Moreover, another three methods were developed based on derivative spectroscopy followed by mathematical manipulation steps namely; amplitude factor (P-factor), amplitude subtraction (AS) and modified amplitude subtraction (MAS). In addition, in this work the novel sample enrichment technique named spectrum addition was adopted. The proposed spectrophotometric methods did not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined. The selectivity of the developed methods was investigated by analyzing laboratory prepared mixtures of the drugs and their combined pharmaceutical formulations. Standard deviation values were less than 1.5 in the assay of raw materials and tablets. The obtained results were statistically compared to that of a reported spectrophotometric method. The statistical comparison showed that there was no significant difference between the proposed methods and the reported one regarding both accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.
Gaudet, Julie; Singh, Mina D; Epstein, Iris; Santa Mina, Elaine; Gula, Taras
2014-07-01
An integrative review regarding undergraduate level statistics pedagogy for nurses revealed a paucity of research to inform curricula development and delivery. The aim of the study was to explore alumni nurses' perspectives about statistics education and its application to practice. A mixed-method approach was used whereby a quantitative approach was used to complement and develop the qualitative aspect. This study was conducted in Toronto, Ontario, Canada. Participants were nursing alumni who graduated from four types of nursing degree programs (BScN) in two Ontario universities between the years 2005-2009. Data were collected via surveys (n=232) followed by interviews (n=36). Participants reported that they did not fear statistics and that they thought their math skills were very good or excellent. They felt that statistics courses were important to their nursing practice but they were not required to use statistics. Qualitative findings emerged in the two major themes: 1) nurses value statistics and 2) nurses do not feel comfortable using statistics. Nurses recognize the inherent value of statistics to improve their professional image and interprofessional communication; yet they feel denied of full participation in application to their practice. Our findings have major implications for changes in pedagogy and practice. Copyright © 2013 Elsevier Ltd. All rights reserved.
User manual for Blossom statistical package for R
Talbert, Marian; Cade, Brian S.
2005-01-01
Blossom is an R package with functions for making statistical comparisons with distance-function based permutation tests developed by P.W. Mielke, Jr. and colleagues at Colorado State University (Mielke and Berry, 2001) and for testing parameters estimated in linear models with permutation procedures developed by B. S. Cade and colleagues at the Fort Collins Science Center, U.S. Geological Survey. This manual is intended to provide identical documentation of the statistical methods and interpretations as the manual by Cade and Richards (2005) does for the original Fortran program, but with changes made with respect to command inputs and outputs to reflect the new implementation as a package for R (R Development Core Team, 2012). This implementation in R has allowed for numerous improvements not supported by the Cade and Richards (2005) Fortran implementation, including use of categorical predictor variables in most routines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, Jason D.; Doraiswamy, Sriram; Candler, Graham V., E-mail: truhlar@umn.edu, E-mail: candler@aem.umn.edu
2014-02-07
Fitting potential energy surfaces to analytic forms is an important first step for efficient molecular dynamics simulations. Here, we present an improved version of the local interpolating moving least squares method (L-IMLS) for such fitting. Our method has three key improvements. First, pairwise interactions are modeled separately from many-body interactions. Second, permutational invariance is incorporated in the basis functions, using permutationally invariant polynomials in Morse variables, and in the weight functions. Third, computational cost is reduced by statistical localization, in which we statistically correlate the cutoff radius with data point density. We motivate our discussion in this paper with amore » review of global and local least-squares-based fitting methods in one dimension. Then, we develop our method in six dimensions, and we note that it allows the analytic evaluation of gradients, a feature that is important for molecular dynamics. The approach, which we call statistically localized, permutationally invariant, local interpolating moving least squares fitting of the many-body potential (SL-PI-L-IMLS-MP, or, more simply, L-IMLS-G2), is used to fit a potential energy surface to an electronic structure dataset for N{sub 4}. We discuss its performance on the dataset and give directions for further research, including applications to trajectory calculations.« less
Brandt, Laura A.; Benscoter, Allison; Harvey, Rebecca G.; Speroterra, Carolina; Bucklin, David N.; Romañach, Stephanie; Watling, James I.; Mazzotti, Frank J.
2017-01-01
Climate envelope models are widely used to describe potential future distribution of species under different climate change scenarios. It is broadly recognized that there are both strengths and limitations to using climate envelope models and that outcomes are sensitive to initial assumptions, inputs, and modeling methods Selection of predictor variables, a central step in modeling, is one of the areas where different techniques can yield varying results. Selection of climate variables to use as predictors is often done using statistical approaches that develop correlations between occurrences and climate data. These approaches have received criticism in that they rely on the statistical properties of the data rather than directly incorporating biological information about species responses to temperature and precipitation. We evaluated and compared models and prediction maps for 15 threatened or endangered species in Florida based on two variable selection techniques: expert opinion and a statistical method. We compared model performance between these two approaches for contemporary predictions, and the spatial correlation, spatial overlap and area predicted for contemporary and future climate predictions. In general, experts identified more variables as being important than the statistical method and there was low overlap in the variable sets (<40%) between the two methods Despite these differences in variable sets (expert versus statistical), models had high performance metrics (>0.9 for area under the curve (AUC) and >0.7 for true skill statistic (TSS). Spatial overlap, which compares the spatial configuration between maps constructed using the different variable selection techniques, was only moderate overall (about 60%), with a great deal of variability across species. Difference in spatial overlap was even greater under future climate projections, indicating additional divergence of model outputs from different variable selection techniques. Our work is in agreement with other studies which have found that for broad-scale species distribution modeling, using statistical methods of variable selection is a useful first step, especially when there is a need to model a large number of species or expert knowledge of the species is limited. Expert input can then be used to refine models that seem unrealistic or for species that experts believe are particularly sensitive to change. It also emphasizes the importance of using multiple models to reduce uncertainty and improve map outputs for conservation planning. Where outputs overlap or show the same direction of change there is greater certainty in the predictions. Areas of disagreement can be used for learning by asking why the models do not agree, and may highlight areas where additional on-the-ground data collection could improve the models.
Rapid analysis of pharmaceutical drugs using LIBS coupled with multivariate analysis.
Tiwari, P K; Awasthi, S; Kumar, R; Anand, R K; Rai, P K; Rai, A K
2018-02-01
Type 2 diabetes drug tablets containing voglibose having dose strengths of 0.2 and 0.3 mg of various brands have been examined, using laser-induced breakdown spectroscopy (LIBS) technique. The statistical methods such as the principal component analysis (PCA) and the partial least square regression analysis (PLSR) have been employed on LIBS spectral data for classifying and developing the calibration models of drug samples. We have developed the ratio-based calibration model applying PLSR in which relative spectral intensity ratios H/C, H/N and O/N are used. Further, the developed model has been employed to predict the relative concentration of element in unknown drug samples. The experiment has been performed in air and argon atmosphere, respectively, and the obtained results have been compared. The present model provides rapid spectroscopic method for drug analysis with high statistical significance for online control and measurement process in a wide variety of pharmaceutical industrial applications.
NASA Technical Reports Server (NTRS)
Thomas, J. M.; Hanagud, S.
1974-01-01
The design criteria and test options for aerospace structural reliability were investigated. A decision methodology was developed for selecting a combination of structural tests and structural design factors. The decision method involves the use of Bayesian statistics and statistical decision theory. Procedures are discussed for obtaining and updating data-based probabilistic strength distributions for aerospace structures when test information is available and for obtaining subjective distributions when data are not available. The techniques used in developing the distributions are explained.
Kerr, Kathleen F.; Meisner, Allison; Thiessen-Philbrook, Heather; Coca, Steven G.
2014-01-01
The field of nephrology is actively involved in developing biomarkers and improving models for predicting patients’ risks of AKI and CKD and their outcomes. However, some important aspects of evaluating biomarkers and risk models are not widely appreciated, and statistical methods are still evolving. This review describes some of the most important statistical concepts for this area of research and identifies common pitfalls. Particular attention is paid to metrics proposed within the last 5 years for quantifying the incremental predictive value of a new biomarker. PMID:24855282
Signal-Processing Algorithm Development for the ACLAIM Sensor
NASA Technical Reports Server (NTRS)
vonLaven, Scott
1995-01-01
Methods for further minimizing the risk by making use of previous lidar observations were investigated. EOFs are likely to play an important role in these methods, and a procedure for extracting EOFs from data has been implemented, The new processing methods involving EOFs could range from extrapolation, as discussed, to more complicated statistical procedures for maintaining low unstart risk.
ERIC Educational Resources Information Center
Sandler, Andrew B.
Statistical significance is misused in educational and psychological research when it is applied as a method to establish the reliability of research results. Other techniques have been developed which can be correctly utilized to establish the generalizability of findings. Methods that do provide such estimates are known as invariance or…
Section Height Determination Methods of the Isotopographic Surface in a Complex Terrain Relief
ERIC Educational Resources Information Center
Syzdykova, Guldana D.; Kurmankozhaev, Azimhan K.
2016-01-01
A new method for determining the vertical interval of isotopographic surfaces on rugged terrain was developed. The method is based on the concept of determining the differentiated size of the vertical interval using spatial-statistical properties inherent in the modal characteristic, the degree of variability of apical heights and the chosen map…
ERIC Educational Resources Information Center
McGraner, Kristin L.; Robbins, Daniel
2010-01-01
Although many research questions in English education demand the use of qualitative methods, this paper will briefly explore how English education researchers and doctoral students may use statistics and quantitative methods to inform, complement, and/or deepen their inquiries. First, the authors will provide a general overview of the survey areas…
Statistical methods for analysing responses of wildlife to human disturbance.
Haiganoush K. Preisler; Alan A. Ager; Michael J. Wisdom
2006-01-01
1. Off-road recreation is increasing rapidly in many areas of the world, and effects on wildlife can be highly detrimental. Consequently, we have developed methods for studying wildlife responses to off-road recreation with the use of new technologies that allow frequent and accurate monitoring of human-wildlife interactions. To illustrate these methods, we studied the...
ERIC Educational Resources Information Center
Peterson, Ivars
1991-01-01
A method that enables people to obtain the benefits of statistics and probability theory without the shortcomings of conventional methods because it is free of mathematical formulas and is easy to understand and use is described. A resampling technique called the "bootstrap" is discussed in terms of application and development. (KR)
NASA Technical Reports Server (NTRS)
Abraham, Arick Reed A.; Johnson, Kenneth L.; Nichols, Charles T.; Saulsberry, Regor L.; Waller, Jess M.
2012-01-01
Broadband modal acoustic emission (AE) data were acquired during intermittent load hold tensile test profiles on Toray T1000G carbon fiber-reinforced epoxy (C/Ep) single tow specimens. A novel trend seeking statistical method to determine the onset of significant AE was developed, resulting in more linear decreases in the Felicity ratio (FR) with load, potentially leading to more accurate failure prediction. The method developed uses an exponentially weighted moving average (EWMA) control chart. Comparison of the EWMA with previously used FR onset methods, namely the discrete (n), mean (n (raised bar)), normalized (n%) and normalized mean (n(raised bar)%) methods, revealed the EWMA method yields more consistently linear FR versus load relationships between specimens. Other findings include a correlation between AE data richness and FR linearity based on the FR methods discussed in this paper, and evidence of premature failure at lower than expected loads. Application of the EWMA method should be extended to other composite materials and, eventually, composite components such as composite overwrapped pressure vessels. Furthermore, future experiments should attempt to uncover the factors responsible for infant mortality in C/Ep strands.
Understanding spatial organizations of chromosomes via statistical analysis of Hi-C data
Hu, Ming; Deng, Ke; Qin, Zhaohui; Liu, Jun S.
2015-01-01
Understanding how chromosomes fold provides insights into the transcription regulation, hence, the functional state of the cell. Using the next generation sequencing technology, the recently developed Hi-C approach enables a global view of spatial chromatin organization in the nucleus, which substantially expands our knowledge about genome organization and function. However, due to multiple layers of biases, noises and uncertainties buried in the protocol of Hi-C experiments, analyzing and interpreting Hi-C data poses great challenges, and requires novel statistical methods to be developed. This article provides an overview of recent Hi-C studies and their impacts on biomedical research, describes major challenges in statistical analysis of Hi-C data, and discusses some perspectives for future research. PMID:26124977
NASA Technical Reports Server (NTRS)
Djorgovski, George
1993-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multiparameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resource.
NASA Technical Reports Server (NTRS)
Djorgovski, Stanislav
1992-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multi parameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resources.
Lambert, Nathaniel D.; Pankratz, V. Shane; Larrabee, Beth R.; Ogee-Nwankwo, Adaeze; Chen, Min-hsin; Icenogle, Joseph P.
2014-01-01
Rubella remains a social and economic burden due to the high incidence of congenital rubella syndrome (CRS) in some countries. For this reason, an accurate and efficient high-throughput measure of antibody response to vaccination is an important tool. In order to measure rubella-specific neutralizing antibodies in a large cohort of vaccinated individuals, a high-throughput immunocolorimetric system was developed. Statistical interpolation models were applied to the resulting titers to refine quantitative estimates of neutralizing antibody titers relative to the assayed neutralizing antibody dilutions. This assay, including the statistical methods developed, can be used to assess the neutralizing humoral immune response to rubella virus and may be adaptable for assessing the response to other viral vaccines and infectious agents. PMID:24391140
Rodgers, Joseph Lee
2016-01-01
The Bayesian-frequentist debate typically portrays these statistical perspectives as opposing views. However, both Bayesian and frequentist statisticians have expanded their epistemological basis away from a singular focus on the null hypothesis, to a broader perspective involving the development and comparison of competing statistical/mathematical models. For frequentists, statistical developments such as structural equation modeling and multilevel modeling have facilitated this transition. For Bayesians, the Bayes factor has facilitated this transition. The Bayes factor is treated in articles within this issue of Multivariate Behavioral Research. The current presentation provides brief commentary on those articles and more extended discussion of the transition toward a modern modeling epistemology. In certain respects, Bayesians and frequentists share common goals.
From the necessary to the possible: the genesis of the spin-statistics theorem
NASA Astrophysics Data System (ADS)
Blum, Alexander
2014-12-01
The spin-statistics theorem, which relates the intrinsic angular momentum of a single particle to the type of quantum statistics obeyed by a system of many such particles, is one of the central theorems in quantum field theory and the physics of elementary particles. It was first formulated in 1939/40 by Wolfgang Pauli and his assistant Markus Fierz. This paper discusses the developments that led up to this first formulation, starting from early attempts in the late 1920s to explain why charged matter particles obey Fermi-Dirac statistics, while photons obey Bose-Einstein statistics. It is demonstrated how several important developments paved the way from such general philosophical musings to a general (and provable) theorem, most notably the use of quantum field theory, the discovery of new elementary particles, and the generalization of the notion of spin. It is also discussed how the attempts to prove a spin-statistics connection were driven by Pauli from formal to more physical arguments, culminating in Pauli's 1940 proof. This proof was a major success for the beleaguered theory of quantum field theory and the methods Pauli employed proved essential for the renaissance of quantum field theory and the development of renormalization techniques in the late 1940s.
Kopp-Schneider, Annette; Prieto, Pilar; Kinsner-Ovaskainen, Agnieszka; Stanzel, Sven
2013-06-01
In the framework of toxicology, a testing strategy can be viewed as a series of steps which are taken to come to a final prediction about a characteristic of a compound under study. The testing strategy is performed as a single-step procedure, usually called a test battery, using simultaneously all information collected on different endpoints, or as tiered approach in which a decision tree is followed. Design of a testing strategy involves statistical considerations, such as the development of a statistical prediction model. During the EU FP6 ACuteTox project, several prediction models were proposed on the basis of statistical classification algorithms which we illustrate here. The final choice of testing strategies was not based on statistical considerations alone. However, without thorough statistical evaluations a testing strategy cannot be identified. We present here a number of observations made from the statistical viewpoint which relate to the development of testing strategies. The points we make were derived from problems we had to deal with during the evaluation of this large research project. A central issue during the development of a prediction model is the danger of overfitting. Procedures are presented to deal with this challenge. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Generalized Approach for Measuring Relationships Among Genes.
Wang, Lijun; Ahsan, Md Asif; Chen, Ming
2017-07-21
Several methods for identifying relationships among pairs of genes have been developed. In this article, we present a generalized approach for measuring relationships between any pairs of genes, which is based on statistical prediction. We derive two particular versions of the generalized approach, least squares estimation (LSE) and nearest neighbors prediction (NNP). According to mathematical proof, LSE is equivalent to the methods based on correlation; and NNP is approximate to one popular method called the maximal information coefficient (MIC) according to the performances in simulations and real dataset. Moreover, the approach based on statistical prediction can be extended from two-genes relationships to multi-genes relationships. This application would help to identify relationships among multi-genes.
Statistical modeling of space shuttle environmental data
NASA Technical Reports Server (NTRS)
Tubbs, J. D.; Brewer, D. W.
1983-01-01
Statistical models which use a class of bivariate gamma distribution are examined. Topics discussed include: (1) the ratio of positively correlated gamma varieties; (2) a method to determine if unequal shape parameters are necessary in bivariate gamma distribution; (3) differential equations for modal location of a family of bivariate gamma distribution; and (4) analysis of some wind gust data using the analytical results developed for modeling application.
ERIC Educational Resources Information Center
Tay, Louis; Drasgow, Fritz
2012-01-01
Two Monte Carlo simulation studies investigated the effectiveness of the mean adjusted X[superscript 2]/df statistic proposed by Drasgow and colleagues and, because of problems with the method, a new approach for assessing the goodness of fit of an item response theory model was developed. It has been previously recommended that mean adjusted…
ERIC Educational Resources Information Center
Gibson, David; Broadley, Tania; Downie, Jill; Wallet, Peter
2018-01-01
The UNESCO Institute for Statistics (UIS) has been measuring ICT in education since 2009, but with such rapid change in technology and its use in education, it is important now to revise the collection mechanisms to focus on how technology is being used to enhance learning and teaching. Sustainable development goal (SDG) 4, for example, moves…
A Statistical Analysis of Brain Morphology Using Wild Bootstrapping
Ibrahim, Joseph G.; Tang, Niansheng; Rowe, Daniel B.; Hao, Xuejun; Bansal, Ravi; Peterson, Bradley S.
2008-01-01
Methods for the analysis of brain morphology, including voxel-based morphology and surface-based morphometries, have been used to detect associations between brain structure and covariates of interest, such as diagnosis, severity of disease, age, IQ, and genotype. The statistical analysis of morphometric measures usually involves two statistical procedures: 1) invoking a statistical model at each voxel (or point) on the surface of the brain or brain subregion, followed by mapping test statistics (e.g., t test) or their associated p values at each of those voxels; 2) correction for the multiple statistical tests conducted across all voxels on the surface of the brain region under investigation. We propose the use of new statistical methods for each of these procedures. We first use a heteroscedastic linear model to test the associations between the morphological measures at each voxel on the surface of the specified subregion (e.g., cortical or subcortical surfaces) and the covariates of interest. Moreover, we develop a robust test procedure that is based on a resampling method, called wild bootstrapping. This procedure assesses the statistical significance of the associations between a measure of given brain structure and the covariates of interest. The value of this robust test procedure lies in its computationally simplicity and in its applicability to a wide range of imaging data, including data from both anatomical and functional magnetic resonance imaging (fMRI). Simulation studies demonstrate that this robust test procedure can accurately control the family-wise error rate. We demonstrate the application of this robust test procedure to the detection of statistically significant differences in the morphology of the hippocampus over time across gender groups in a large sample of healthy subjects. PMID:17649909
Variational stereo imaging of oceanic waves with statistical constraints.
Gallego, Guillermo; Yezzi, Anthony; Fedele, Francesco; Benetazzo, Alvise
2013-11-01
An image processing observational technique for the stereoscopic reconstruction of the waveform of oceanic sea states is developed. The technique incorporates the enforcement of any given statistical wave law modeling the quasi-Gaussianity of oceanic waves observed in nature. The problem is posed in a variational optimization framework, where the desired waveform is obtained as the minimizer of a cost functional that combines image observations, smoothness priors and a weak statistical constraint. The minimizer is obtained by combining gradient descent and multigrid methods on the necessary optimality equations of the cost functional. Robust photometric error criteria and a spatial intensity compensation model are also developed to improve the performance of the presented image matching strategy. The weak statistical constraint is thoroughly evaluated in combination with other elements presented to reconstruct and enforce constraints on experimental stereo data, demonstrating the improvement in the estimation of the observed ocean surface.
Mathematics pre-service teachers’ statistical reasoning about meaning
NASA Astrophysics Data System (ADS)
Kristanto, Y. D.
2018-01-01
This article offers a descriptive qualitative analysis of 3 second-year pre-service teachers’ statistical reasoning about the mean. Twenty-six pre-service teachers were tested using an open-ended problem where they were expected to analyze a method in finding the mean of a data. Three of their test results are selected to be analyzed. The results suggest that the pre-service teachers did not use context to develop the interpretation of mean. Therefore, this article also offers strategies to promote statistical reasoning about mean that use various contexts.
PhenStat | Informatics Technology for Cancer Research (ITCR)
PhenStat is a freely available R package that provides a variety of statistical methods for the identification of phenotypic associations from model organisms developed for the International Mouse Phenotyping Consortium (IMPC at www.mousephenotype.org ). The methods have been developed for high throughput phenotyping pipelines implemented across various experimental designs with an emphasis on managing temporal variation and is being adapted for analysis with PDX mouse strains.
David C. Chojnacky; Randolph H. Wynne; Christine E. Blinn
2009-01-01
Methodology is lacking to easily map Forest Inventory and Analysis (FIA) inventory statistics for all attribute variables without having to develop separate models and methods for each variable. We developed a mapping method that can directly transfer tabular data to a map on which pixels can be added any way desired to estimate carbon (or any other variable) for a...
Prediction system of hydroponic plant growth and development using algorithm Fuzzy Mamdani method
NASA Astrophysics Data System (ADS)
Sudana, I. Made; Purnawirawan, Okta; Arief, Ulfa Mediaty
2017-03-01
Hydroponics is a method of farming without soil. One of the Hydroponic plants is Watercress (Nasturtium Officinale). The development and growth process of hydroponic Watercress was influenced by levels of nutrients, acidity and temperature. The independent variables can be used as input variable system to predict the value level of plants growth and development. The prediction system is using Fuzzy Algorithm Mamdani method. This system was built to implement the function of Fuzzy Inference System (Fuzzy Inference System/FIS) as a part of the Fuzzy Logic Toolbox (FLT) by using MATLAB R2007b. FIS is a computing system that works on the principle of fuzzy reasoning which is similar to humans' reasoning. Basically FIS consists of four units which are fuzzification unit, fuzzy logic reasoning unit, base knowledge unit and defuzzification unit. In addition to know the effect of independent variables on the plants growth and development that can be visualized with the function diagram of FIS output surface that is shaped three-dimensional, and statistical tests based on the data from the prediction system using multiple linear regression method, which includes multiple linear regression analysis, T test, F test, the coefficient of determination and donations predictor that are calculated using SPSS (Statistical Product and Service Solutions) software applications.
NASA Technical Reports Server (NTRS)
Ashrafi, S.
1991-01-01
K. Schatten (1991) recently developed a method for combining his prediction model with our chaotic model. The philosophy behind this combined model and his method of combination is explained. Because the Schatten solar prediction model (KS) uses a dynamo to mimic solar dynamics, accurate prediction is limited to long-term solar behavior (10 to 20 years). The Chaotic prediction model (SA) uses the recently developed techniques of nonlinear dynamics to predict solar activity. It can be used to predict activity only up to the horizon. In theory, the chaotic prediction should be several orders of magnitude better than statistical predictions up to that horizon; beyond the horizon, chaotic predictions would theoretically be just as good as statistical predictions. Therefore, chaos theory puts a fundamental limit on predictability.
Applications of quantum entropy to statistics
NASA Astrophysics Data System (ADS)
Silver, R. N.; Martz, H. F.
This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to hierarchical Bayes methods.
Developing and validating a nutrition knowledge questionnaire: key methods and considerations.
Trakman, Gina Louise; Forsyth, Adrienne; Hoye, Russell; Belski, Regina
2017-10-01
To outline key statistical considerations and detailed methodologies for the development and evaluation of a valid and reliable nutrition knowledge questionnaire. Literature on questionnaire development in a range of fields was reviewed and a set of evidence-based guidelines specific to the creation of a nutrition knowledge questionnaire have been developed. The recommendations describe key qualitative methods and statistical considerations, and include relevant examples from previous papers and existing nutrition knowledge questionnaires. Where details have been omitted for the sake of brevity, the reader has been directed to suitable references. We recommend an eight-step methodology for nutrition knowledge questionnaire development as follows: (i) definition of the construct and development of a test plan; (ii) generation of the item pool; (iii) choice of the scoring system and response format; (iv) assessment of content validity; (v) assessment of face validity; (vi) purification of the scale using item analysis, including item characteristics, difficulty and discrimination; (vii) evaluation of the scale including its factor structure and internal reliability, or Rasch analysis, including assessment of dimensionality and internal reliability; and (viii) gathering of data to re-examine the questionnaire's properties, assess temporal stability and confirm construct validity. Several of these methods have previously been overlooked. The measurement of nutrition knowledge is an important consideration for individuals working in the nutrition field. Improved methods in the development of nutrition knowledge questionnaires, such as the use of factor analysis or Rasch analysis, will enable more confidence in reported measures of nutrition knowledge.
2012-01-01
Background The detection of conserved residue clusters on a protein structure is one of the effective strategies for the prediction of functional protein regions. Various methods, such as Evolutionary Trace, have been developed based on this strategy. In such approaches, the conserved residues are identified through comparisons of homologous amino acid sequences. Therefore, the selection of homologous sequences is a critical step. It is empirically known that a certain degree of sequence divergence in the set of homologous sequences is required for the identification of conserved residues. However, the development of a method to select homologous sequences appropriate for the identification of conserved residues has not been sufficiently addressed. An objective and general method to select appropriate homologous sequences is desired for the efficient prediction of functional regions. Results We have developed a novel index to select the sequences appropriate for the identification of conserved residues, and implemented the index within our method to predict the functional regions of a protein. The implementation of the index improved the performance of the functional region prediction. The index represents the degree of conserved residue clustering on the tertiary structure of the protein. For this purpose, the structure and sequence information were integrated within the index by the application of spatial statistics. Spatial statistics is a field of statistics in which not only the attributes but also the geometrical coordinates of the data are considered simultaneously. Higher degrees of clustering generate larger index scores. We adopted the set of homologous sequences with the highest index score, under the assumption that the best prediction accuracy is obtained when the degree of clustering is the maximum. The set of sequences selected by the index led to higher functional region prediction performance than the sets of sequences selected by other sequence-based methods. Conclusions Appropriate homologous sequences are selected automatically and objectively by the index. Such sequence selection improved the performance of functional region prediction. As far as we know, this is the first approach in which spatial statistics have been applied to protein analyses. Such integration of structure and sequence information would be useful for other bioinformatics problems. PMID:22643026
Web-based data collection: detailed methods of a questionnaire and data gathering tool
Cooper, Charles J; Cooper, Sharon P; del Junco, Deborah J; Shipp, Eva M; Whitworth, Ryan; Cooper, Sara R
2006-01-01
There have been dramatic advances in the development of web-based data collection instruments. This paper outlines a systematic web-based approach to facilitate this process through locally developed code and to describe the results of using this process after two years of data collection. We provide a detailed example of a web-based method that we developed for a study in Starr County, Texas, assessing high school students' work and health status. This web-based application includes data instrument design, data entry and management, and data tables needed to store the results that attempt to maximize the advantages of this data collection method. The software also efficiently produces a coding manual, web-based statistical summary and crosstab reports, as well as input templates for use by statistical packages. Overall, web-based data entry using a dynamic approach proved to be a very efficient and effective data collection system. This data collection method expedited data processing and analysis and eliminated the need for cumbersome and expensive transfer and tracking of forms, data entry, and verification. The code has been made available for non-profit use only to the public health research community as a free download [1]. PMID:16390556
Estimation of diagnostic test accuracy without full verification: a review of latent class methods
Collins, John; Huynh, Minh
2014-01-01
The performance of a diagnostic test is best evaluated against a reference test that is without error. For many diseases, this is not possible, and an imperfect reference test must be used. However, diagnostic accuracy estimates may be biased if inaccurately verified status is used as the truth. Statistical models have been developed to handle this situation by treating disease as a latent variable. In this paper, we conduct a systematized review of statistical methods using latent class models for estimating test accuracy and disease prevalence in the absence of complete verification. PMID:24910172
Reliability and Validity of the Research Methods Skills Assessment
ERIC Educational Resources Information Center
Smith, Tamarah; Smith, Samantha
2018-01-01
The Research Methods Skills Assessment (RMSA) was created to measure psychology majors' statistics knowledge and skills. The American Psychological Association's Guidelines for the Undergraduate Major in Psychology (APA, 2007, 2013) served as a framework for development. Results from a Rasch analysis with data from n = 330 undergraduates showed…
Creating a Shared Formulary in 7 Critical Access Hospitals
ERIC Educational Resources Information Center
Wakefield, Douglas S.; Ward, Marcia M.; Loes, Jean L.; O'Brien, John; Abbas, Nancy
2010-01-01
Purpose: This paper reports a case study of 7 Critical Access Hospitals' (CAH) and 1 rural referral hospital's successful collaboration to develop a shared formulary. Methods: Study methods included document reviews, interviews with key informants, and use of descriptive statistics. Findings: Through a systematic review and decision process, CAH…
Wheat mill stream properties for discrete element method modeling
USDA-ARS?s Scientific Manuscript database
A discrete phase approach based on individual wheat kernel characteristics is needed to overcome the limitations of previous statistical models and accurately predict the milling behavior of wheat. As a first step to develop a discrete element method (DEM) model for the wheat milling process, this s...
78 FR 57860 - Draft NIH Genomic Data Sharing Policy Request for Public Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-20
... underlying disease, development of statistical research methods, the study of populations origins). If so... community will be notified through appropriate communication methods (e.g., The NIH Guide for Grants and... Sharing Policy Request for Public Comments SUMMARY: The National Institutes of Health (NIH) is seeking...
Virtualising the Quantitative Research Methods Course: An Island-Based Approach
ERIC Educational Resources Information Center
Baglin, James; Reece, John; Baker, Jenalle
2015-01-01
Many recent improvements in pedagogical practice have been enabled by the rapid development of innovative technologies, particularly for teaching quantitative research methods and statistics. This study describes the design, implementation, and evaluation of a series of specialised computer laboratory sessions. The sessions combined the use of an…
Green, Melissa A.; Kim, Mimi M.; Barber, Sharrelle; Odulana, Abedowale A.; Godley, Paul A.; Howard, Daniel L.; Corbie-Smith, Giselle M.
2013-01-01
Introduction Prevention and treatment standards are based on evidence obtained in behavioral and clinical research. However, racial and ethnic minorities remain relatively absent from the science that develops these standards. While investigators have successfully recruited participants for individual studies using tailored recruitment methods, these strategies require considerable time and resources. Research registries, typically developed around a disease or condition, serve as a promising model for a targeted recruitment method to increase minority participation in health research. This study assessed the tailored recruitment methods used to populate a health research registry targeting African-American community members. Methods We describe six recruitment methods applied between September 2004 and October 2008 to recruit members into a health research registry. Recruitment included direct (existing studies, public databases, community outreach) and indirect methods (radio, internet, and email) targeting the general population, local universities, and African American communities. We conducted retrospective analysis of the recruitment by method using descriptive statistics, frequencies, and chi-square statistics. Results During the recruitment period, 608 individuals enrolled in the research registry. The majority of enrollees were African American, female, and in good health. Direct and indirect methods were identified as successful strategies for subgroups. Findings suggest significant associations between recruitment methods and age, presence of existing health condition, prior research participation, and motivation to join the registry. Conclusions A health research registry can be a successful tool to increase minority awareness of research opportunities. Multi-pronged recruitment approaches are needed to reach diverse subpopulations. PMID:23340183
The use and misuse of statistical methodologies in pharmacology research.
Marino, Michael J
2014-01-01
Descriptive, exploratory, and inferential statistics are necessary components of hypothesis-driven biomedical research. Despite the ubiquitous need for these tools, the emphasis on statistical methods in pharmacology has become dominated by inferential methods often chosen more by the availability of user-friendly software than by any understanding of the data set or the critical assumptions of the statistical tests. Such frank misuse of statistical methodology and the quest to reach the mystical α<0.05 criteria has hampered research via the publication of incorrect analysis driven by rudimentary statistical training. Perhaps more critically, a poor understanding of statistical tools limits the conclusions that may be drawn from a study by divorcing the investigator from their own data. The net result is a decrease in quality and confidence in research findings, fueling recent controversies over the reproducibility of high profile findings and effects that appear to diminish over time. The recent development of "omics" approaches leading to the production of massive higher dimensional data sets has amplified these issues making it clear that new approaches are needed to appropriately and effectively mine this type of data. Unfortunately, statistical education in the field has not kept pace. This commentary provides a foundation for an intuitive understanding of statistics that fosters an exploratory approach and an appreciation for the assumptions of various statistical tests that hopefully will increase the correct use of statistics, the application of exploratory data analysis, and the use of statistical study design, with the goal of increasing reproducibility and confidence in the literature. Copyright © 2013. Published by Elsevier Inc.
Linnorm: improved statistical analysis for single cell RNA-seq expression data.
Yip, Shun H; Wang, Panwen; Kocher, Jean-Pierre A; Sham, Pak Chung; Wang, Junwen
2017-12-15
Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing normalization methods, including NODES, SAMstrt, SCnorm, scran, DESeq and TMM. Linnorm shows advantages in speed, technical noise removal and preservation of cell heterogeneity, which can improve existing methods in the discovery of novel subtypes, pseudo-temporal ordering of cells, clustering analysis, etc. Linnorm also performs better than existing DEG analysis methods, including BASiCS, NODES, SAMstrt, Seurat and DESeq2, in false positive rate control and accuracy. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Combining statistical inference and decisions in ecology
Williams, Perry J.; Hooten, Mevin B.
2016-01-01
Statistical decision theory (SDT) is a sub-field of decision theory that formally incorporates statistical investigation into a decision-theoretic framework to account for uncertainties in a decision problem. SDT provides a unifying analysis of three types of information: statistical results from a data set, knowledge of the consequences of potential choices (i.e., loss), and prior beliefs about a system. SDT links the theoretical development of a large body of statistical methods including point estimation, hypothesis testing, and confidence interval estimation. The theory and application of SDT have mainly been developed and published in the fields of mathematics, statistics, operations research, and other decision sciences, but have had limited exposure in ecology. Thus, we provide an introduction to SDT for ecologists and describe its utility for linking the conventionally separate tasks of statistical investigation and decision making in a single framework. We describe the basic framework of both Bayesian and frequentist SDT, its traditional use in statistics, and discuss its application to decision problems that occur in ecology. We demonstrate SDT with two types of decisions: Bayesian point estimation, and an applied management problem of selecting a prescribed fire rotation for managing a grassland bird species. Central to SDT, and decision theory in general, are loss functions. Thus, we also provide basic guidance and references for constructing loss functions for an SDT problem.
Sando, Roy; Chase, Katherine J.
2017-03-23
A common statistical procedure for estimating streamflow statistics at ungaged locations is to develop a relational model between streamflow and drainage basin characteristics at gaged locations using least squares regression analysis; however, least squares regression methods are parametric and make constraining assumptions about the data distribution. The random forest regression method provides an alternative nonparametric method for estimating streamflow characteristics at ungaged sites and requires that the data meet fewer statistical conditions than least squares regression methods.Random forest regression analysis was used to develop predictive models for 89 streamflow characteristics using Precipitation-Runoff Modeling System simulated streamflow data and drainage basin characteristics at 179 sites in central and eastern Montana. The predictive models were developed from streamflow data simulated for current (baseline, water years 1982–99) conditions and three future periods (water years 2021–38, 2046–63, and 2071–88) under three different climate-change scenarios. These predictive models were then used to predict streamflow characteristics for baseline conditions and three future periods at 1,707 fish sampling sites in central and eastern Montana. The average root mean square error for all predictive models was about 50 percent. When streamflow predictions at 23 fish sampling sites were compared to nearby locations with simulated data, the mean relative percent difference was about 43 percent. When predictions were compared to streamflow data recorded at 21 U.S. Geological Survey streamflow-gaging stations outside of the calibration basins, the average mean absolute percent error was about 73 percent.
Quantitative estimation of itopride hydrochloride and rabeprazole sodium from capsule formulation.
Pillai, S; Singhvi, I
2008-09-01
Two simple, accurate, economical and reproducible UV spectrophotometric methods and one HPLC method for simultaneous estimation of two component drug mixture of itopride hydrochloride and rabeprazole sodium from combined capsule dosage form have been developed. First developed method involves formation and solving of simultaneous equations using 265.2 nm and 290.8 nm as two wavelengths. Second method is based on two wavelength calculation, wavelengths selected for estimation of itopride hydrochloride was 278.0 nm and 298.8 nm and for rabeprazole sodium 253.6 nm and 275.2 nm. Developed HPLC method is a reverse phase chromatographic method using phenomenex C(18) column and acetonitrile: phosphate buffer (35:65 v/v) pH 7.0 as mobile phase. All developed methods obey Beer's law in concentration range employed for respective methods. Results of analysis were validated statistically and by recovery studies.
Quantitative Estimation of Itopride Hydrochloride and Rabeprazole Sodium from Capsule Formulation
Pillai, S.; Singhvi, I.
2008-01-01
Two simple, accurate, economical and reproducible UV spectrophotometric methods and one HPLC method for simultaneous estimation of two component drug mixture of itopride hydrochloride and rabeprazole sodium from combined capsule dosage form have been developed. First developed method involves formation and solving of simultaneous equations using 265.2 nm and 290.8 nm as two wavelengths. Second method is based on two wavelength calculation, wavelengths selected for estimation of itopride hydrochloride was 278.0 nm and 298.8 nm and for rabeprazole sodium 253.6 nm and 275.2 nm. Developed HPLC method is a reverse phase chromatographic method using phenomenex C18 column and acetonitrile: phosphate buffer (35:65 v/v) pH 7.0 as mobile phase. All developed methods obey Beer's law in concentration range employed for respective methods. Results of analysis were validated statistically and by recovery studies. PMID:21394269
Optimization of hole generation in Ti/CFRP stacks
NASA Astrophysics Data System (ADS)
Ivanov, Y. N.; Pashkov, A. E.; Chashhin, N. S.
2018-03-01
The article aims to describe methods for improving the surface quality and hole accuracy in Ti/CFRP stacks by optimizing cutting methods and drill geometry. The research is based on the fundamentals of machine building, theory of probability, mathematical statistics, and experiment planning and manufacturing process optimization theories. Statistical processing of experiment data was carried out by means of Statistica 6 and Microsoft Excel 2010. Surface geometry in Ti stacks was analyzed using a Taylor Hobson Form Talysurf i200 Series Profilometer, and in CFRP stacks - using a Bruker ContourGT-Kl Optical Microscope. Hole shapes and sizes were analyzed using a Carl Zeiss CONTURA G2 Measuring machine, temperatures in cutting zones were recorded with a FLIR SC7000 Series Infrared Camera. Models of multivariate analysis of variance were developed. They show effects of drilling modes on surface quality and accuracy of holes in Ti/CFRP stacks. The task of multicriteria drilling process optimization was solved. Optimal cutting technologies which improve performance were developed. Methods for assessing thermal tool and material expansion effects on the accuracy of holes in Ti/CFRP/Ti stacks were developed.
NASA Astrophysics Data System (ADS)
Karuppiah, R.; Faldi, A.; Laurenzi, I.; Usadi, A.; Venkatesh, A.
2014-12-01
An increasing number of studies are focused on assessing the environmental footprint of different products and processes, especially using life cycle assessment (LCA). This work shows how combining statistical methods and Geographic Information Systems (GIS) with environmental analyses can help improve the quality of results and their interpretation. Most environmental assessments in literature yield single numbers that characterize the environmental impact of a process/product - typically global or country averages, often unchanging in time. In this work, we show how statistical analysis and GIS can help address these limitations. For example, we demonstrate a method to separately quantify uncertainty and variability in the result of LCA models using a power generation case study. This is important for rigorous comparisons between the impacts of different processes. Another challenge is lack of data that can affect the rigor of LCAs. We have developed an approach to estimate environmental impacts of incompletely characterized processes using predictive statistical models. This method is applied to estimate unreported coal power plant emissions in several world regions. There is also a general lack of spatio-temporal characterization of the results in environmental analyses. For instance, studies that focus on water usage do not put in context where and when water is withdrawn. Through the use of hydrological modeling combined with GIS, we quantify water stress on a regional and seasonal basis to understand water supply and demand risks for multiple users. Another example where it is important to consider regional dependency of impacts is when characterizing how agricultural land occupation affects biodiversity in a region. We developed a data-driven methodology used in conjuction with GIS to determine if there is a statistically significant difference between the impacts of growing different crops on different species in various biomes of the world.
A novel statistical method for quantitative comparison of multiple ChIP-seq datasets.
Chen, Li; Wang, Chi; Qin, Zhaohui S; Wu, Hao
2015-06-15
ChIP-seq is a powerful technology to measure the protein binding or histone modification strength in the whole genome scale. Although there are a number of methods available for single ChIP-seq data analysis (e.g. 'peak detection'), rigorous statistical method for quantitative comparison of multiple ChIP-seq datasets with the considerations of data from control experiment, signal to noise ratios, biological variations and multiple-factor experimental designs is under-developed. In this work, we develop a statistical method to perform quantitative comparison of multiple ChIP-seq datasets and detect genomic regions showing differential protein binding or histone modification. We first detect peaks from all datasets and then union them to form a single set of candidate regions. The read counts from IP experiment at the candidate regions are assumed to follow Poisson distribution. The underlying Poisson rates are modeled as an experiment-specific function of artifacts and biological signals. We then obtain the estimated biological signals and compare them through the hypothesis testing procedure in a linear model framework. Simulations and real data analyses demonstrate that the proposed method provides more accurate and robust results compared with existing ones. An R software package ChIPComp is freely available at http://web1.sph.emory.edu/users/hwu30/software/ChIPComp.html. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method
NASA Astrophysics Data System (ADS)
Cave, H. M.; Tseng, K.-C.; Wu, J.-S.; Jermy, M. C.; Huang, J.-C.; Krumdieck, S. P.
2008-06-01
An unsteady sampling routine for a general parallel direct simulation Monte Carlo method called PDSC is introduced, allowing the simulation of time-dependent flow problems in the near continuum range. A post-processing procedure called DSMC rapid ensemble averaging method (DREAM) is developed to improve the statistical scatter in the results while minimising both memory and simulation time. This method builds an ensemble average of repeated runs over small number of sampling intervals prior to the sampling point of interest by restarting the flow using either a Maxwellian distribution based on macroscopic properties for near equilibrium flows (DREAM-I) or output instantaneous particle data obtained by the original unsteady sampling of PDSC for strongly non-equilibrium flows (DREAM-II). The method is validated by simulating shock tube flow and the development of simple Couette flow. Unsteady PDSC is found to accurately predict the flow field in both cases with significantly reduced run-times over single processor code and DREAM greatly reduces the statistical scatter in the results while maintaining accurate particle velocity distributions. Simulations are then conducted of two applications involving the interaction of shocks over wedges. The results of these simulations are compared to experimental data and simulations from the literature where there these are available. In general, it was found that 10 ensembled runs of DREAM processing could reduce the statistical uncertainty in the raw PDSC data by 2.5-3.3 times, based on the limited number of cases in the present study.
Pilot points method for conditioning multiple-point statistical facies simulation on flow data
NASA Astrophysics Data System (ADS)
Ma, Wei; Jafarpour, Behnam
2018-05-01
We propose a new pilot points method for conditioning discrete multiple-point statistical (MPS) facies simulation on dynamic flow data. While conditioning MPS simulation on static hard data is straightforward, their calibration against nonlinear flow data is nontrivial. The proposed method generates conditional models from a conceptual model of geologic connectivity, known as a training image (TI), by strategically placing and estimating pilot points. To place pilot points, a score map is generated based on three sources of information: (i) the uncertainty in facies distribution, (ii) the model response sensitivity information, and (iii) the observed flow data. Once the pilot points are placed, the facies values at these points are inferred from production data and then are used, along with available hard data at well locations, to simulate a new set of conditional facies realizations. While facies estimation at the pilot points can be performed using different inversion algorithms, in this study the ensemble smoother (ES) is adopted to update permeability maps from production data, which are then used to statistically infer facies types at the pilot point locations. The developed method combines the information in the flow data and the TI by using the former to infer facies values at selected locations away from the wells and the latter to ensure consistent facies structure and connectivity where away from measurement locations. Several numerical experiments are used to evaluate the performance of the developed method and to discuss its important properties.
Multivariate meta-analysis: potential and promise.
Jackson, Dan; Riley, Richard; White, Ian R
2011-09-10
The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.
Multivariate meta-analysis: Potential and promise
Jackson, Dan; Riley, Richard; White, Ian R
2011-01-01
The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052
Leyrat, Clémence; Caille, Agnès; Foucher, Yohann; Giraudeau, Bruno
2016-01-22
Despite randomization, baseline imbalance and confounding bias may occur in cluster randomized trials (CRTs). Covariate imbalance may jeopardize the validity of statistical inferences if they occur on prognostic factors. Thus, the diagnosis of a such imbalance is essential to adjust statistical analysis if required. We developed a tool based on the c-statistic of the propensity score (PS) model to detect global baseline covariate imbalance in CRTs and assess the risk of confounding bias. We performed a simulation study to assess the performance of the proposed tool and applied this method to analyze the data from 2 published CRTs. The proposed method had good performance for large sample sizes (n =500 per arm) and when the number of unbalanced covariates was not too small as compared with the total number of baseline covariates (≥40% of unbalanced covariates). We also provide a strategy for pre selection of the covariates needed to be included in the PS model to enhance imbalance detection. The proposed tool could be useful in deciding whether covariate adjustment is required before performing statistical analyses of CRTs.
2013-01-01
Background The advent of genome-wide association studies has led to many novel disease-SNP associations, opening the door to focused study on their biological underpinnings. Because of the importance of analyzing these associations, numerous statistical methods have been devoted to them. However, fewer methods have attempted to associate entire genes or genomic regions with outcomes, which is potentially more useful knowledge from a biological perspective and those methods currently implemented are often permutation-based. Results One property of some permutation-based tests is that their power varies as a function of whether significant markers are in regions of linkage disequilibrium (LD) or not, which we show from a theoretical perspective. We therefore develop two methods for quantifying the degree of association between a genomic region and outcome, both of whose power does not vary as a function of LD structure. One method uses dimension reduction to “filter” redundant information when significant LD exists in the region, while the other, called the summary-statistic test, controls for LD by scaling marker Z-statistics using knowledge of the correlation matrix of markers. An advantage of this latter test is that it does not require the original data, but only their Z-statistics from univariate regressions and an estimate of the correlation structure of markers, and we show how to modify the test to protect the type 1 error rate when the correlation structure of markers is misspecified. We apply these methods to sequence data of oral cleft and compare our results to previously proposed gene tests, in particular permutation-based ones. We evaluate the versatility of the modification of the summary-statistic test since the specification of correlation structure between markers can be inaccurate. Conclusion We find a significant association in the sequence data between the 8q24 region and oral cleft using our dimension reduction approach and a borderline significant association using the summary-statistic based approach. We also implement the summary-statistic test using Z-statistics from an already-published GWAS of Chronic Obstructive Pulmonary Disorder (COPD) and correlation structure obtained from HapMap. We experiment with the modification of this test because the correlation structure is assumed imperfectly known. PMID:24199751
Swanson, David M; Blacker, Deborah; Alchawa, Taofik; Ludwig, Kerstin U; Mangold, Elisabeth; Lange, Christoph
2013-11-07
The advent of genome-wide association studies has led to many novel disease-SNP associations, opening the door to focused study on their biological underpinnings. Because of the importance of analyzing these associations, numerous statistical methods have been devoted to them. However, fewer methods have attempted to associate entire genes or genomic regions with outcomes, which is potentially more useful knowledge from a biological perspective and those methods currently implemented are often permutation-based. One property of some permutation-based tests is that their power varies as a function of whether significant markers are in regions of linkage disequilibrium (LD) or not, which we show from a theoretical perspective. We therefore develop two methods for quantifying the degree of association between a genomic region and outcome, both of whose power does not vary as a function of LD structure. One method uses dimension reduction to "filter" redundant information when significant LD exists in the region, while the other, called the summary-statistic test, controls for LD by scaling marker Z-statistics using knowledge of the correlation matrix of markers. An advantage of this latter test is that it does not require the original data, but only their Z-statistics from univariate regressions and an estimate of the correlation structure of markers, and we show how to modify the test to protect the type 1 error rate when the correlation structure of markers is misspecified. We apply these methods to sequence data of oral cleft and compare our results to previously proposed gene tests, in particular permutation-based ones. We evaluate the versatility of the modification of the summary-statistic test since the specification of correlation structure between markers can be inaccurate. We find a significant association in the sequence data between the 8q24 region and oral cleft using our dimension reduction approach and a borderline significant association using the summary-statistic based approach. We also implement the summary-statistic test using Z-statistics from an already-published GWAS of Chronic Obstructive Pulmonary Disorder (COPD) and correlation structure obtained from HapMap. We experiment with the modification of this test because the correlation structure is assumed imperfectly known.
2013-01-01
Background The theoretical basis of genome-wide association studies (GWAS) is statistical inference of linkage disequilibrium (LD) between any polymorphic marker and a putative disease locus. Most methods widely implemented for such analyses are vulnerable to several key demographic factors and deliver a poor statistical power for detecting genuine associations and also a high false positive rate. Here, we present a likelihood-based statistical approach that accounts properly for non-random nature of case–control samples in regard of genotypic distribution at the loci in populations under study and confers flexibility to test for genetic association in presence of different confounding factors such as population structure, non-randomness of samples etc. Results We implemented this novel method together with several popular methods in the literature of GWAS, to re-analyze recently published Parkinson’s disease (PD) case–control samples. The real data analysis and computer simulation show that the new method confers not only significantly improved statistical power for detecting the associations but also robustness to the difficulties stemmed from non-randomly sampling and genetic structures when compared to its rivals. In particular, the new method detected 44 significant SNPs within 25 chromosomal regions of size < 1 Mb but only 6 SNPs in two of these regions were previously detected by the trend test based methods. It discovered two SNPs located 1.18 Mb and 0.18 Mb from the PD candidates, FGF20 and PARK8, without invoking false positive risk. Conclusions We developed a novel likelihood-based method which provides adequate estimation of LD and other population model parameters by using case and control samples, the ease in integration of these samples from multiple genetically divergent populations and thus confers statistically robust and powerful analyses of GWAS. On basis of simulation studies and analysis of real datasets, we demonstrated significant improvement of the new method over the non-parametric trend test, which is the most popularly implemented in the literature of GWAS. PMID:23394771
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzke, Brett D.; Wilson, John E.; Hathaway, J.
2008-02-12
Statistically defensible methods are presented for developing geophysical detector sampling plans and analyzing data for munitions response sites where unexploded ordnance (UXO) may exist. Detection methods for identifying areas of elevated anomaly density from background density are shown. Additionally, methods are described which aid in the choice of transect pattern and spacing to assure with degree of confidence that a target area (TA) of specific size, shape, and anomaly density will be identified using the detection methods. Methods for evaluating the sensitivity of designs to variation in certain parameters are also discussed. Methods presented have been incorporated into the Visualmore » Sample Plan (VSP) software (free at http://dqo.pnl.gov/vsp) and demonstrated at multiple sites in the United States. Application examples from actual transect designs and surveys from the previous two years are demonstrated.« less
Many-body formalism for fermions: The partition function
NASA Astrophysics Data System (ADS)
Watson, D. K.
2017-09-01
The partition function, a fundamental tenet in statistical thermodynamics, contains in principle all thermodynamic information about a system. It encapsulates both microscopic information through the quantum energy levels and statistical information from the partitioning of the particles among the available energy levels. For identical particles, this statistical accounting is complicated by the symmetry requirements of the allowed quantum states. In particular, for Fermi systems, the enforcement of the Pauli principle is typically a numerically demanding task, responsible for much of the cost of the calculations. The interplay of these three elements—the structure of the many-body spectrum, the statistical partitioning of the N particles among the available levels, and the enforcement of the Pauli principle—drives the behavior of mesoscopic and macroscopic Fermi systems. In this paper, we develop an approach for the determination of the partition function, a numerically difficult task, for systems of strongly interacting identical fermions and apply it to a model system of harmonically confined, harmonically interacting fermions. This approach uses a recently introduced many-body method that is an extension of the symmetry-invariant perturbation method (SPT) originally developed for bosons. It uses group theory and graphical techniques to avoid the heavy computational demands of conventional many-body methods which typically scale exponentially with the number of particles. The SPT application of the Pauli principle is trivial to implement since it is done "on paper" by imposing restrictions on the normal-mode quantum numbers at first order in the perturbation. The method is applied through first order and represents an extension of the SPT method to excited states. Our method of determining the partition function and various thermodynamic quantities is accurate and efficient and has the potential to yield interesting insight into the role played by the Pauli principle and the influence of large degeneracies on the emergence of the thermodynamic behavior of large-N systems.
Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P
2010-06-01
The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it was possible to interchange certain descriptors (i.e. molecular weight and melting point) without incurring a loss of model quality. Such synergy suggested that a model constructed from discrete terms in an equation may not be the most appropriate way of representing mechanistic understandings of skin absorption.
A study on the application of topic models to motif finding algorithms.
Basha Gutierrez, Josep; Nakai, Kenta
2016-12-22
Topic models are statistical algorithms which try to discover the structure of a set of documents according to the abstract topics contained in them. Here we try to apply this approach to the discovery of the structure of the transcription factor binding sites (TFBS) contained in a set of biological sequences, which is a fundamental problem in molecular biology research for the understanding of transcriptional regulation. Here we present two methods that make use of topic models for motif finding. First, we developed an algorithm in which first a set of biological sequences are treated as text documents, and the k-mers contained in them as words, to then build a correlated topic model (CTM) and iteratively reduce its perplexity. We also used the perplexity measurement of CTMs to improve our previous algorithm based on a genetic algorithm and several statistical coefficients. The algorithms were tested with 56 data sets from four different species and compared to 14 other methods by the use of several coefficients both at nucleotide and site level. The results of our first approach showed a performance comparable to the other methods studied, especially at site level and in sensitivity scores, in which it scored better than any of the 14 existing tools. In the case of our previous algorithm, the new approach with the addition of the perplexity measurement clearly outperformed all of the other methods in sensitivity, both at nucleotide and site level, and in overall performance at site level. The statistics obtained show that the performance of a motif finding method based on the use of a CTM is satisfying enough to conclude that the application of topic models is a valid method for developing motif finding algorithms. Moreover, the addition of topic models to a previously developed method dramatically increased its performance, suggesting that this combined algorithm can be a useful tool to successfully predict motifs in different kinds of sets of DNA sequences.
Voss, Frank D.
2003-01-01
In a joint effort by the Washington State Department of Agriculture, the Washington Department of Ecology, and the U.S. Geological Survey, the Environmental Protection Agency's Pesticide Root Zone Model and a Geographic Information System were used to develop and test a method for screening and mapping the susceptibility of ground water in agricultural areas to pesticide contamination. The objective was to produce a map that would be used by the Washington State Department of Agriculture to allocate resources for monitoring pesticide levels in ground water. The method was tested by producing a map showing susceptibility to leaching of the pesticide atrazine for the Columbia Basin Irrigation Project, which encompasses an area of intensive agriculture in eastern Washington. The reliability of the atrazine map was assessed by using statistical procedures to determine whether the median of the percentage of atrazine simulated to leach below the root zone in wells where atrazine was detected was statistically greater than the median percentage at wells where atrazine was not detected (at or above 0.001 microgram per liter) in 134 wells sampled by the U.S. Geological Survey. A statistical difference in medians was not found when all 134 wells were compared. However, a statistical difference was found in medians for two subsets of the 134 wells that were used in land-use studies (studies examining the quality of ground water beneath specific crops). The statistical results from wells from the land-use studies indicate that the model potentially can be used to map the relative susceptibility of agricultural areas to atrazine leaching. However, the distinction between areas of high and low susceptibility may not yet be sufficient to use the method for allocating resources to monitor water quality. Several options are offered for improving the reliability of future simulations.
Development of failure model for nickel cadmium cells
NASA Technical Reports Server (NTRS)
Gupta, A.
1980-01-01
The development of a method for the life prediction of nickel cadmium cells is discussed. The approach described involves acquiring an understanding of the mechanisms of degradation and failure and at the same time developing nondestructive evaluation techniques for the nickel cadmium cells. The development of a statistical failure model which will describe the mechanisms of degradation and failure is outlined.
NASA Astrophysics Data System (ADS)
Glavanović, Siniša; Glavanović, Marija; Tomišić, Vladislav
2016-03-01
The UV spectrophotometric methods for simultaneous quantitative determination of paracetamol and tramadol in paracetamol-tramadol tablets were developed. The spectrophotometric data obtained were processed by means of partial least squares (PLS) and genetic algorithm coupled with PLS (GA-PLS) methods in order to determine the content of active substances in the tablets. The results gained by chemometric processing of the spectroscopic data were statistically compared with those obtained by means of validated ultra-high performance liquid chromatographic (UHPLC) method. The accuracy and precision of data obtained by the developed chemometric models were verified by analysing the synthetic mixture of drugs, and by calculating recovery as well as relative standard error (RSE). A statistically good agreement was found between the amounts of paracetamol determined using PLS and GA-PLS algorithms, and that obtained by UHPLC analysis, whereas for tramadol GA-PLS results were proven to be more reliable compared to those of PLS. The simplest and the most accurate and precise models were constructed by using the PLS method for paracetamol (mean recovery 99.5%, RSE 0.89%) and the GA-PLS method for tramadol (mean recovery 99.4%, RSE 1.69%).
NASA Technical Reports Server (NTRS)
Kubota, Takuji; Iguchi, Toshio; Kojima, Masahiro; Liao, Liang; Masaki, Takeshi; Hanado, Hiroshi; Meneghini, Robert; Oki, Riko
2016-01-01
A statistical method to reduce the sidelobe clutter of the Ku-band precipitation radar (KuPR) of the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory is described and evaluated using DPR observations. The KuPR sidelobe clutter was much more severe than that of the Precipitation Radar on board the Tropical Rainfall Measuring Mission (TRMM), and it has caused the misidentification of precipitation. The statistical method to reduce sidelobe clutter was constructed by subtracting the estimated sidelobe power, based upon a multiple regression model with explanatory variables of the normalized radar cross section (NRCS) of surface, from the received power of the echo. The saturation of the NRCS at near-nadir angles, resulting from strong surface scattering, was considered in the calculation of the regression coefficients.The method was implemented in the KuPR algorithm and applied to KuPR-observed data. It was found that the received power from sidelobe clutter over the ocean was largely reduced by using the developed method, although some of the received power from the sidelobe clutter still remained. From the statistical results of the evaluations, it was shown that the number of KuPR precipitation events in the clutter region, after the method was applied, was comparable to that in the clutter-free region. This confirms the reasonable performance of the method in removing sidelobe clutter. For further improving the effectiveness of the method, it is necessary to improve the consideration of the NRCS saturation, which will be explored in future work.
Price, Charlotte; Stallard, Nigel; Creton, Stuart; Indans, Ian; Guest, Robert; Griffiths, David; Edwards, Philippa
2010-01-01
Acute inhalation toxicity of chemicals has conventionally been assessed by the median lethal concentration (LC50) test (organisation for economic co-operation and development (OECD) TG 403). Two new methods, the recently adopted acute toxic class method (ATC; OECD TG 436) and a proposed fixed concentration procedure (FCP), have recently been considered, but statistical evaluations of these methods did not investigate the influence of differential sensitivity between male and female rats on the outcomes. This paper presents an analysis of data from the assessment of acute inhalation toxicity for 56 substances. Statistically significant differences between the LC50 for males and females were found for 16 substances, with greater than 10-fold differences in the LC50 for two substances. The paper also reports a statistical evaluation of the three test methods in the presence of unanticipated gender differences. With TG 403, a gender difference leads to a slightly greater chance of under-classification. This is also the case for the ATC method, but more pronounced than for TG 403, with misclassification of nearly all substances from Globally Harmonised System (GHS) class 3 into class 4. As the FCP uses females only, if females are more sensitive, the classification is unchanged. If males are more sensitive, the procedure may lead to under-classification. Additional research on modification of the FCP is thus proposed. PMID:20488841
Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S
2015-01-16
Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.
Kline, Joshua C.
2014-01-01
Over the past four decades, various methods have been implemented to measure synchronization of motor-unit firings. In this work, we provide evidence that prior reports of the existence of universal common inputs to all motoneurons and the presence of long-term synchronization are misleading, because they did not use sufficiently rigorous statistical tests to detect synchronization. We developed a statistically based method (SigMax) for computing synchronization and tested it with data from 17,736 motor-unit pairs containing 1,035,225 firing instances from the first dorsal interosseous and vastus lateralis muscles—a data set one order of magnitude greater than that reported in previous studies. Only firing data, obtained from surface electromyographic signal decomposition with >95% accuracy, were used in the study. The data were not subjectively selected in any manner. Because of the size of our data set and the statistical rigor inherent to SigMax, we have confidence that the synchronization values that we calculated provide an improved estimate of physiologically driven synchronization. Compared with three other commonly used techniques, ours revealed three types of discrepancies that result from failing to use sufficient statistical tests necessary to detect synchronization. 1) On average, the z-score method falsely detected synchronization at 16 separate latencies in each motor-unit pair. 2) The cumulative sum method missed one out of every four synchronization identifications found by SigMax. 3) The common input assumption method identified synchronization from 100% of motor-unit pairs studied. SigMax revealed that only 50% of motor-unit pairs actually manifested synchronization. PMID:25210152
Mansouri, Majdi; Nounou, Mohamed N; Nounou, Hazem N
2017-09-01
In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to combine the advantages brought forward by the proposed EWMA-GLRT fault detection chart with the KPCA model. Thus, it is used to enhance fault detection of the Cad System in E. coli model through monitoring some of the key variables involved in this model such as enzymes, transport proteins, regulatory proteins, lysine, and cadaverine. The results demonstrate the effectiveness of the proposed KPCA-based EWMA-GLRT method over Q , GLRT, EWMA, Shewhart, and moving window-GLRT methods. The detection performance is assessed and evaluated in terms of FAR, missed detection rates, and average run length (ARL 1 ) values.
Risk prediction model: Statistical and artificial neural network approach
NASA Astrophysics Data System (ADS)
Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim
2017-04-01
Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.
Stone, Wesley W.; Crawford, Charles G.; Gilliom, Robert J.
2013-01-01
Watershed Regressions for Pesticides for multiple pesticides (WARP-MP) are statistical models developed to predict concentration statistics for a wide range of pesticides in unmonitored streams. The WARP-MP models use the national atrazine WARP models in conjunction with an adjustment factor for each additional pesticide. The WARP-MP models perform best for pesticides with application timing and methods similar to those used with atrazine. For other pesticides, WARP-MP models tend to overpredict concentration statistics for the model development sites. For WARP and WARP-MP, the less-than-ideal sampling frequency for the model development sites leads to underestimation of the shorter-duration concentration; hence, the WARP models tend to underpredict 4- and 21-d maximum moving-average concentrations, with median errors ranging from 9 to 38% As a result of this sampling bias, pesticides that performed well with the model development sites are expected to have predictions that are biased low for these shorter-duration concentration statistics. The overprediction by WARP-MP apparent for some of the pesticides is variably offset by underestimation of the model development concentration statistics. Of the 112 pesticides used in the WARP-MP application to stream segments nationwide, 25 were predicted to have concentration statistics with a 50% or greater probability of exceeding one or more aquatic life benchmarks in one or more stream segments. Geographically, many of the modeled streams in the Corn Belt Region were predicted to have one or more pesticides that exceeded an aquatic life benchmark during 2009, indicating the potential vulnerability of streams in this region.
An Analysis of Effects of Variable Factors on Weapon Performance
1993-03-01
ALTERNATIVE ANALYSIS A. CATEGORICAL DATA ANALYSIS Statistical methodology for categorical data analysis traces its roots to the work of Francis Galton in the...choice of statistical tests . This thesis examines an analysis performed by Surface Warfare Development Group (SWDG). The SWDG analysis is shown to be...incorrect due to the misapplication of testing methods. A corrected analysis is presented and recommendations suggested for changes to the testing
Guetterman, Timothy C; Creswell, John W; Wittink, Marsha; Barg, Fran K; Castro, Felipe G; Dahlberg, Britt; Watkins, Daphne C; Deutsch, Charles; Gallo, Joseph J
2017-01-01
Demand for training in mixed methods is high, with little research on faculty development or assessment in mixed methods. We describe the development of a self-rated mixed methods skills assessment and provide validity evidence. The instrument taps six research domains: "Research question," "Design/approach," "Sampling," "Data collection," "Analysis," and "Dissemination." Respondents are asked to rate their ability to define or explain concepts of mixed methods under each domain, their ability to apply the concepts to problems, and the extent to which they need to improve. We administered the questionnaire to 145 faculty and students using an internet survey. We analyzed descriptive statistics and performance characteristics of the questionnaire using the Cronbach alpha to assess reliability and an analysis of variance that compared a mixed methods experience index with assessment scores to assess criterion relatedness. Internal consistency reliability was high for the total set of items (0.95) and adequate (≥0.71) for all but one subscale. Consistent with establishing criterion validity, respondents who had more professional experiences with mixed methods (eg, published a mixed methods article) rated themselves as more skilled, which was statistically significant across the research domains. This self-rated mixed methods assessment instrument may be a useful tool to assess skills in mixed methods for training programs. It can be applied widely at the graduate and faculty level. For the learner, assessment may lead to enhanced motivation to learn and training focused on self-identified needs. For faculty, the assessment may improve curriculum and course content planning.
A close examination of double filtering with fold change and t test in microarray analysis
2009-01-01
Background Many researchers use the double filtering procedure with fold change and t test to identify differentially expressed genes, in the hope that the double filtering will provide extra confidence in the results. Due to its simplicity, the double filtering procedure has been popular with applied researchers despite the development of more sophisticated methods. Results This paper, for the first time to our knowledge, provides theoretical insight on the drawback of the double filtering procedure. We show that fold change assumes all genes to have a common variance while t statistic assumes gene-specific variances. The two statistics are based on contradicting assumptions. Under the assumption that gene variances arise from a mixture of a common variance and gene-specific variances, we develop the theoretically most powerful likelihood ratio test statistic. We further demonstrate that the posterior inference based on a Bayesian mixture model and the widely used significance analysis of microarrays (SAM) statistic are better approximations to the likelihood ratio test than the double filtering procedure. Conclusion We demonstrate through hypothesis testing theory, simulation studies and real data examples, that well constructed shrinkage testing methods, which can be united under the mixture gene variance assumption, can considerably outperform the double filtering procedure. PMID:19995439
A bootstrapping method for development of Treebank
NASA Astrophysics Data System (ADS)
Zarei, F.; Basirat, A.; Faili, H.; Mirain, M.
2017-01-01
Using statistical approaches beside the traditional methods of natural language processing could significantly improve both the quality and performance of several natural language processing (NLP) tasks. The effective usage of these approaches is subject to the availability of the informative, accurate and detailed corpora on which the learners are trained. This article introduces a bootstrapping method for developing annotated corpora based on a complex and rich linguistically motivated elementary structure called supertag. To this end, a hybrid method for supertagging is proposed that combines both of the generative and discriminative methods of supertagging. The method was applied on a subset of Wall Street Journal (WSJ) in order to annotate its sentences with a set of linguistically motivated elementary structures of the English XTAG grammar that is using a lexicalised tree-adjoining grammar formalism. The empirical results confirm that the bootstrapping method provides a satisfactory way for annotating the English sentences with the mentioned structures. The experiments show that the method could automatically annotate about 20% of WSJ with the accuracy of F-measure about 80% of which is particularly 12% higher than the F-measure of the XTAG Treebank automatically generated from the approach proposed by Basirat and Faili [(2013). Bridge the gap between statistical and hand-crafted grammars. Computer Speech and Language, 27, 1085-1104].
ERIC Educational Resources Information Center
Gilpatrick, Eleanor
This document is volume 3 of a four-volume report which describes the components of the Health Services Mobility Study (HSMS) method of task analysis, job ladder design, and curriculum development. Divided into four chapters, volume 3 is a manual for using HSMS computer based statistical procedures to design job structures and job ladders. Chapter…
Green, Melissa A; Kim, Mimi M; Barber, Sharrelle; Odulana, Abedowale A; Godley, Paul A; Howard, Daniel L; Corbie-Smith, Giselle M
2013-05-01
Prevention and treatment standards are based on evidence obtained in behavioral and clinical research. However, racial and ethnic minorities remain relatively absent from the science that develops these standards. While investigators have successfully recruited participants for individual studies using tailored recruitment methods, these strategies require considerable time and resources. Research registries, typically developed around a disease or condition, serve as a promising model for a targeted recruitment method to increase minority participation in health research. This study assessed the tailored recruitment methods used to populate a health research registry targeting African-American community members. We describe six recruitment methods applied between September 2004 and October 2008 to recruit members into a health research registry. Recruitment included direct (existing studies, public databases, community outreach) and indirect methods (radio, internet, and email) targeting the general population, local universities, and African American communities. We conducted retrospective analysis of the recruitment by method using descriptive statistics, frequencies, and chi-square statistics. During the recruitment period, 608 individuals enrolled in the research registry. The majority of enrollees were African American, female, and in good health. Direct and indirect methods were identified as successful strategies for subgroups. Findings suggest significant associations between recruitment methods and age, presence of existing health condition, prior research participation, and motivation to join the registry. A health research registry can be a successful tool to increase minority awareness of research opportunities. Multi-pronged recruitment approaches are needed to reach diverse subpopulations. Copyright © 2013. Published by Elsevier Inc.
Empirical Bayes scan statistics for detecting clusters of disease risk variants in genetic studies.
McCallum, Kenneth J; Ionita-Laza, Iuliana
2015-12-01
Recent developments of high-throughput genomic technologies offer an unprecedented detailed view of the genetic variation in various human populations, and promise to lead to significant progress in understanding the genetic basis of complex diseases. Despite this tremendous advance in data generation, it remains very challenging to analyze and interpret these data due to their sparse and high-dimensional nature. Here, we propose novel applications and new developments of empirical Bayes scan statistics to identify genomic regions significantly enriched with disease risk variants. We show that the proposed empirical Bayes methodology can be substantially more powerful than existing scan statistics methods especially so in the presence of many non-disease risk variants, and in situations when there is a mixture of risk and protective variants. Furthermore, the empirical Bayes approach has greater flexibility to accommodate covariates such as functional prediction scores and additional biomarkers. As proof-of-concept we apply the proposed methods to a whole-exome sequencing study for autism spectrum disorders and identify several promising candidate genes. © 2015, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Ben Torkia, Yosra; Ben Yahia, Manel; Khalfaoui, Mohamed; Al-Muhtaseb, Shaheen A.; Ben Lamine, Abdelmottaleb
2014-01-01
The adsorption energy distribution (AED) function of a commercial activated carbon (BDH-activated carbon) was investigated. For this purpose, the integral equation is derived by using a purely analytical statistical physics treatment. The description of the heterogeneity of the adsorbent is significantly clarified by defining the parameter N(E). This parameter represents the energetic density of the spatial density of the effectively occupied sites. To solve the integral equation, a numerical method was used based on an adequate algorithm. The Langmuir model was adopted as a local adsorption isotherm. This model is developed by using the grand canonical ensemble, which allows defining the physico-chemical parameters involved in the adsorption process. The AED function is estimated by a normal Gaussian function. This method is applied to the adsorption isotherms of nitrogen, methane and ethane at different temperatures. The development of the AED using a statistical physics treatment provides an explanation of the gas molecules behaviour during the adsorption process and gives new physical interpretations at microscopic levels.
Dynamic thiol/disulphide homeostasis in patients with basal cell carcinoma.
Demirseren, Duriye Deniz; Cicek, Cagla; Alisik, Murat; Demirseren, Mustafa Erol; Aktaş, Akın; Erel, Ozcan
2017-09-01
The aim of this study is to measure and compare the dynamic thiol/disulphide homeostasis of patients with basal cell carcinoma and healthy subjects with a newly developed and original method. Thirty four patients attending our outpatient clinic and clinically and histopathologically diagnosed as nodular basal cell carcinoma, and age and gender matched 30 healthy individuals have been involved in the study. Thiol/disulphide homeostasis tests have been measured with a novel automatic spectrophotometric method developed and the results have been compared statistically. Serum native thiol and disulphide levels in the patient and control group show a considerable variance statistically (p = 0.028, 0.039, respectively). Total thiol levels do not reveal a considerable variation (p = 0.094). Disulphide/native thiol ratios and native thiol/total thiol ratios also show a considerable variance statistically (p = 0.012, 0.013, 0.010, respectively). Thiol disulphide homeostasis in patients with basal cell carcinoma alters in the way that disulphide gets lower and thiols get higher. Thiol/disulphide level is likely to have a role in basal cell carcinoma pathogenesis.
Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons.
Obuchowski, Nancy A; Reeves, Anthony P; Huang, Erich P; Wang, Xiao-Feng; Buckler, Andrew J; Kim, Hyun J Grace; Barnhart, Huiman X; Jackson, Edward F; Giger, Maryellen L; Pennello, Gene; Toledano, Alicia Y; Kalpathy-Cramer, Jayashree; Apanasovich, Tatiyana V; Kinahan, Paul E; Myers, Kyle J; Goldgof, Dmitry B; Barboriak, Daniel P; Gillies, Robert J; Schwartz, Lawrence H; Sullivan, Daniel C
2015-02-01
Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare various study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-change studies), designs with a reference standard (e.g. studies testing equivalence with a reference standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm precision). The statistical methods for comparing QIB algorithms are then presented for various study types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future directions for research. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Bayesian Sensitivity Analysis of Statistical Models with Missing Data
ZHU, HONGTU; IBRAHIM, JOSEPH G.; TANG, NIANSHENG
2013-01-01
Methods for handling missing data depend strongly on the mechanism that generated the missing values, such as missing completely at random (MCAR) or missing at random (MAR), as well as other distributional and modeling assumptions at various stages. It is well known that the resulting estimates and tests may be sensitive to these assumptions as well as to outlying observations. In this paper, we introduce various perturbations to modeling assumptions and individual observations, and then develop a formal sensitivity analysis to assess these perturbations in the Bayesian analysis of statistical models with missing data. We develop a geometric framework, called the Bayesian perturbation manifold, to characterize the intrinsic structure of these perturbations. We propose several intrinsic influence measures to perform sensitivity analysis and quantify the effect of various perturbations to statistical models. We use the proposed sensitivity analysis procedure to systematically investigate the tenability of the non-ignorable missing at random (NMAR) assumption. Simulation studies are conducted to evaluate our methods, and a dataset is analyzed to illustrate the use of our diagnostic measures. PMID:24753718
Kim, Yun Hak; Jeong, Dae Cheon; Pak, Kyoungjune; Goh, Tae Sik; Lee, Chi-Seung; Han, Myoung-Eun; Kim, Ji-Young; Liangwen, Liu; Kim, Chi Dae; Jang, Jeon Yeob; Cha, Wonjae; Oh, Sae-Ock
2017-09-29
Accurate prediction of prognosis is critical for therapeutic decisions regarding cancer patients. Many previously developed prognostic scoring systems have limitations in reflecting recent progress in the field of cancer biology such as microarray, next-generation sequencing, and signaling pathways. To develop a new prognostic scoring system for cancer patients, we used mRNA expression and clinical data in various independent breast cancer cohorts (n=1214) from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression Omnibus (GEO). A new prognostic score that reflects gene network inherent in genomic big data was calculated using Network-Regularized high-dimensional Cox-regression (Net-score). We compared its discriminatory power with those of two previously used statistical methods: stepwise variable selection via univariate Cox regression (Uni-score) and Cox regression via Elastic net (Enet-score). The Net scoring system showed better discriminatory power in prediction of disease-specific survival (DSS) than other statistical methods (p=0 in METABRIC training cohort, p=0.000331, 4.58e-06 in two METABRIC validation cohorts) when accuracy was examined by log-rank test. Notably, comparison of C-index and AUC values in receiver operating characteristic analysis at 5 years showed fewer differences between training and validation cohorts with the Net scoring system than other statistical methods, suggesting minimal overfitting. The Net-based scoring system also successfully predicted prognosis in various independent GEO cohorts with high discriminatory power. In conclusion, the Net-based scoring system showed better discriminative power than previous statistical methods in prognostic prediction for breast cancer patients. This new system will mark a new era in prognosis prediction for cancer patients.
Kim, Yun Hak; Jeong, Dae Cheon; Pak, Kyoungjune; Goh, Tae Sik; Lee, Chi-Seung; Han, Myoung-Eun; Kim, Ji-Young; Liangwen, Liu; Kim, Chi Dae; Jang, Jeon Yeob; Cha, Wonjae; Oh, Sae-Ock
2017-01-01
Accurate prediction of prognosis is critical for therapeutic decisions regarding cancer patients. Many previously developed prognostic scoring systems have limitations in reflecting recent progress in the field of cancer biology such as microarray, next-generation sequencing, and signaling pathways. To develop a new prognostic scoring system for cancer patients, we used mRNA expression and clinical data in various independent breast cancer cohorts (n=1214) from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression Omnibus (GEO). A new prognostic score that reflects gene network inherent in genomic big data was calculated using Network-Regularized high-dimensional Cox-regression (Net-score). We compared its discriminatory power with those of two previously used statistical methods: stepwise variable selection via univariate Cox regression (Uni-score) and Cox regression via Elastic net (Enet-score). The Net scoring system showed better discriminatory power in prediction of disease-specific survival (DSS) than other statistical methods (p=0 in METABRIC training cohort, p=0.000331, 4.58e-06 in two METABRIC validation cohorts) when accuracy was examined by log-rank test. Notably, comparison of C-index and AUC values in receiver operating characteristic analysis at 5 years showed fewer differences between training and validation cohorts with the Net scoring system than other statistical methods, suggesting minimal overfitting. The Net-based scoring system also successfully predicted prognosis in various independent GEO cohorts with high discriminatory power. In conclusion, the Net-based scoring system showed better discriminative power than previous statistical methods in prognostic prediction for breast cancer patients. This new system will mark a new era in prognosis prediction for cancer patients. PMID:29100405
Comparing Methods for Assessing Reliability Uncertainty Based on Pass/Fail Data Collected Over Time
Abes, Jeff I.; Hamada, Michael S.; Hills, Charles R.
2017-12-20
In this paper, we compare statistical methods for analyzing pass/fail data collected over time; some methods are traditional and one (the RADAR or Rationale for Assessing Degradation Arriving at Random) was recently developed. These methods are used to provide uncertainty bounds on reliability. We make observations about the methods' assumptions and properties. Finally, we illustrate the differences between two traditional methods, logistic regression and Weibull failure time analysis, and the RADAR method using a numerical example.
Comparing Methods for Assessing Reliability Uncertainty Based on Pass/Fail Data Collected Over Time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abes, Jeff I.; Hamada, Michael S.; Hills, Charles R.
In this paper, we compare statistical methods for analyzing pass/fail data collected over time; some methods are traditional and one (the RADAR or Rationale for Assessing Degradation Arriving at Random) was recently developed. These methods are used to provide uncertainty bounds on reliability. We make observations about the methods' assumptions and properties. Finally, we illustrate the differences between two traditional methods, logistic regression and Weibull failure time analysis, and the RADAR method using a numerical example.
Research design and statistical methods in Pakistan Journal of Medical Sciences (PJMS).
Akhtar, Sohail; Shah, Syed Wadood Ali; Rafiq, M; Khan, Ajmal
2016-01-01
This article compares the study design and statistical methods used in 2005, 2010 and 2015 of Pakistan Journal of Medical Sciences (PJMS). Only original articles of PJMS were considered for the analysis. The articles were carefully reviewed for statistical methods and designs, and then recorded accordingly. The frequency of each statistical method and research design was estimated and compared with previous years. A total of 429 articles were evaluated (n=74 in 2005, n=179 in 2010, n=176 in 2015) in which 171 (40%) were cross-sectional and 116 (27%) were prospective study designs. A verity of statistical methods were found in the analysis. The most frequent methods include: descriptive statistics (n=315, 73.4%), chi-square/Fisher's exact tests (n=205, 47.8%) and student t-test (n=186, 43.4%). There was a significant increase in the use of statistical methods over time period: t-test, chi-square/Fisher's exact test, logistic regression, epidemiological statistics, and non-parametric tests. This study shows that a diverse variety of statistical methods have been used in the research articles of PJMS and frequency improved from 2005 to 2015. However, descriptive statistics was the most frequent method of statistical analysis in the published articles while cross-sectional study design was common study design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, B. P.; Valdez, C. A.; DeHope, A. J.
Critical to many modern forensic investigations is the chemical attribution of the origin of an illegal drug. This process greatly relies on identification of compounds indicative of its clandestine or commercial production. The results of these studies can yield detailed information on method of manufacture, sophistication of the synthesis operation, starting material source, and final product. In the present work, chemical attribution signatures (CAS) associated with the synthesis of the analgesic 3- methylfentanyl, N-(3-methyl-1-phenethylpiperidin-4-yl)-N-phenylpropanamide, were investigated. Six synthesis methods were studied in an effort to identify and classify route-specific signatures. These methods were chosen to minimize the use of scheduledmore » precursors, complicated laboratory equipment, number of overall steps, and demanding reaction conditions. Using gas and liquid chromatographies combined with mass spectrometric methods (GC-QTOF and LC-QTOF) in conjunction with inductivelycoupled plasma mass spectrometry (ICP-MS), over 240 distinct compounds and elements were monitored. As seen in our previous work with CAS of fentanyl synthesis the complexity of the resultant data matrix necessitated the use of multivariate statistical analysis. Using partial least squares discriminant analysis (PLS-DA), 62 statistically significant, route-specific CAS were identified. Statistical classification models using a variety of machine learning techniques were then developed with the ability to predict the method of 3-methylfentanyl synthesis from three blind crude samples generated by synthetic chemists without prior experience with these methods.« less
Quality evaluation of no-reference MR images using multidirectional filters and image statistics.
Jang, Jinseong; Bang, Kihun; Jang, Hanbyol; Hwang, Dosik
2018-09-01
This study aimed to develop a fully automatic, no-reference image-quality assessment (IQA) method for MR images. New quality-aware features were obtained by applying multidirectional filters to MR images and examining the feature statistics. A histogram of these features was then fitted to a generalized Gaussian distribution function for which the shape parameters yielded different values depending on the type of distortion in the MR image. Standard feature statistics were established through a training process based on high-quality MR images without distortion. Subsequently, the feature statistics of a test MR image were calculated and compared with the standards. The quality score was calculated as the difference between the shape parameters of the test image and the undistorted standard images. The proposed IQA method showed a >0.99 correlation with the conventional full-reference assessment methods; accordingly, this proposed method yielded the best performance among no-reference IQA methods for images containing six types of synthetic, MR-specific distortions. In addition, for authentically distorted images, the proposed method yielded the highest correlation with subjective assessments by human observers, thus demonstrating its superior performance over other no-reference IQAs. Our proposed IQA was designed to consider MR-specific features and outperformed other no-reference IQAs designed mainly for photographic images. Magn Reson Med 80:914-924, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
Multivariate assessment of event-related potentials with the t-CWT method.
Bostanov, Vladimir
2015-11-05
Event-related brain potentials (ERPs) are usually assessed with univariate statistical tests although they are essentially multivariate objects. Brain-computer interface applications are a notable exception to this practice, because they are based on multivariate classification of single-trial ERPs. Multivariate ERP assessment can be facilitated by feature extraction methods. One such method is t-CWT, a mathematical-statistical algorithm based on the continuous wavelet transform (CWT) and Student's t-test. This article begins with a geometric primer on some basic concepts of multivariate statistics as applied to ERP assessment in general and to the t-CWT method in particular. Further, it presents for the first time a detailed, step-by-step, formal mathematical description of the t-CWT algorithm. A new multivariate outlier rejection procedure based on principal component analysis in the frequency domain is presented as an important pre-processing step. The MATLAB and GNU Octave implementation of t-CWT is also made publicly available for the first time as free and open source code. The method is demonstrated on some example ERP data obtained in a passive oddball paradigm. Finally, some conceptually novel applications of the multivariate approach in general and of the t-CWT method in particular are suggested and discussed. Hopefully, the publication of both the t-CWT source code and its underlying mathematical algorithm along with a didactic geometric introduction to some basic concepts of multivariate statistics would make t-CWT more accessible to both users and developers in the field of neuroscience research.
Eash, David A.; Barnes, Kimberlee K.
2017-01-01
A statewide study was conducted to develop regression equations for estimating six selected low-flow frequency statistics and harmonic mean flows for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include: the annual 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 5 years, and the seasonal (October 1 through December 31) 1- and 7-day mean low flows for a recurrence interval of 10 years. Estimation equations also were developed for the harmonic-mean-flow statistic. Estimates of these seven selected statistics are provided for 208 U.S. Geological Survey continuous-record streamgages using data through September 30, 2006. The study area comprises streamgages located within Iowa and 50 miles beyond the State's borders. Because trend analyses indicated statistically significant positive trends when considering the entire period of record for the majority of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. The median number of years of record used to compute each of these seven selected statistics was 35. Geographic information system software was used to measure 54 selected basin characteristics for each streamgage. Following the removal of two streamgages from the initial data set, data collected for 206 streamgages were compiled to investigate three approaches for regionalization of the seven selected statistics. Regionalization, a process using statistical regression analysis, provides a relation for efficiently transferring information from a group of streamgages in a region to ungaged sites in the region. The three regionalization approaches tested included statewide, regional, and region-of-influence regressions. For the regional regression, the study area was divided into three low-flow regions on the basis of hydrologic characteristics, landform regions, and soil regions. A comparison of root mean square errors and average standard errors of prediction for the statewide, regional, and region-of-influence regressions determined that the regional regression provided the best estimates of the seven selected statistics at ungaged sites in Iowa. Because a significant number of streams in Iowa reach zero flow as their minimum flow during low-flow years, four different types of regression analyses were used: left-censored, logistic, generalized-least-squares, and weighted-least-squares regression. A total of 192 streamgages were included in the development of 27 regression equations for the three low-flow regions. For the northeast and northwest regions, a censoring threshold was used to develop 12 left-censored regression equations to estimate the 6 low-flow frequency statistics for each region. For the southern region a total of 12 regression equations were developed; 6 logistic regression equations were developed to estimate the probability of zero flow for the 6 low-flow frequency statistics and 6 generalized least-squares regression equations were developed to estimate the 6 low-flow frequency statistics, if nonzero flow is estimated first by use of the logistic equations. A weighted-least-squares regression equation was developed for each region to estimate the harmonic-mean-flow statistic. Average standard errors of estimate for the left-censored equations for the northeast region range from 64.7 to 88.1 percent and for the northwest region range from 85.8 to 111.8 percent. Misclassification percentages for the logistic equations for the southern region range from 5.6 to 14.0 percent. Average standard errors of prediction for generalized least-squares equations for the southern region range from 71.7 to 98.9 percent and pseudo coefficients of determination for the generalized-least-squares equations range from 87.7 to 91.8 percent. Average standard errors of prediction for weighted-least-squares equations developed for estimating the harmonic-mean-flow statistic for each of the three regions range from 66.4 to 80.4 percent. The regression equations are applicable only to stream sites in Iowa with low flows not significantly affected by regulation, diversion, or urbanization and with basin characteristics within the range of those used to develop the equations. If the equations are used at ungaged sites on regulated streams, or on streams affected by water-supply and agricultural withdrawals, then the estimates will need to be adjusted by the amount of regulation or withdrawal to estimate the actual flow conditions if that is of interest. Caution is advised when applying the equations for basins with characteristics near the applicable limits of the equations and for basins located in karst topography. A test of two drainage-area ratio methods using 31 pairs of streamgages, for the annual 7-day mean low-flow statistic for a recurrence interval of 10 years, indicates a weighted drainage-area ratio method provides better estimates than regional regression equations for an ungaged site on a gaged stream in Iowa when the drainage-area ratio is between 0.5 and 1.4. These regression equations will be implemented within the U.S. Geological Survey StreamStats web-based geographic-information-system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the seven selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these seven selected statistics are provided for the streamgage.
Techniques in teaching statistics : linking research production and research use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Moyano, I .; Smith, A.; Univ. of Massachusetts at Boston)
In the spirit of closing the 'research-practice gap,' the authors extend evidence-based principles to statistics instruction in social science graduate education. The authors employ a Delphi method to survey experienced statistics instructors to identify teaching techniques to overcome the challenges inherent in teaching statistics to students enrolled in practitioner-oriented master's degree programs. Among the teaching techniques identi?ed as essential are using real-life examples, requiring data collection exercises, and emphasizing interpretation rather than results. Building on existing research, preliminary interviews, and the ?ndings from the study, the authors develop a model describing antecedents to the strength of the link between researchmore » and practice.« less
Demirjian's method in the estimation of age: A study on human third molars
Lewis, Amitha J.; Boaz, Karen; Nagesh, K. R; Srikant, N; Gupta, Neha; Nandita, K. P; Manaktala, Nidhi
2015-01-01
Aim: The primary aim of the following study is to estimate the chronological age based on the stages of third molar development following the eight stages (A to H) method of Demirjian et al. (along with two modifications-Orhan) and secondary aim is to compare third molar development with sex and age. Materials and Methods: The sample consisted of 115 orthopantomograms from South Indian subjects with known chronological age and gender. Multiple regression analysis was performed with chronological age as the dependable variable and third molar root development as independent variable. All the statistical analysis was performed using the SPSS 11.0 package (IBM ® Corporation). Results: Statistically no significant differences were found in third molar development between males and females. Depending on the available number of wisdom teeth in an individual, R2 varied for males from 0.21 to 0.48 and for females from 0.16 to 0.38. New equations were derived for estimating the chronological age. Conclusion: The chronological age of a South Indian individual between 14 and 22 years may be estimated based on the regression formulae. However, additional studies with a larger study population must be conducted to meet the need for population-based information on third molar development. PMID:26005306
A statistical method for lung tumor segmentation uncertainty in PET images based on user inference.
Zheng, Chaojie; Wang, Xiuying; Feng, Dagan
2015-01-01
PET has been widely accepted as an effective imaging modality for lung tumor diagnosis and treatment. However, standard criteria for delineating tumor boundary from PET are yet to develop largely due to relatively low quality of PET images, uncertain tumor boundary definition, and variety of tumor characteristics. In this paper, we propose a statistical solution to segmentation uncertainty on the basis of user inference. We firstly define the uncertainty segmentation band on the basis of segmentation probability map constructed from Random Walks (RW) algorithm; and then based on the extracted features of the user inference, we use Principle Component Analysis (PCA) to formulate the statistical model for labeling the uncertainty band. We validated our method on 10 lung PET-CT phantom studies from the public RIDER collections [1] and 16 clinical PET studies where tumors were manually delineated by two experienced radiologists. The methods were validated using Dice similarity coefficient (DSC) to measure the spatial volume overlap. Our method achieved an average DSC of 0.878 ± 0.078 on phantom studies and 0.835 ± 0.039 on clinical studies.
BAYESIAN ESTIMATION OF THERMONUCLEAR REACTION RATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliadis, C.; Anderson, K. S.; Coc, A.
The problem of estimating non-resonant astrophysical S -factors and thermonuclear reaction rates, based on measured nuclear cross sections, is of major interest for nuclear energy generation, neutrino physics, and element synthesis. Many different methods have been applied to this problem in the past, almost all of them based on traditional statistics. Bayesian methods, on the other hand, are now in widespread use in the physical sciences. In astronomy, for example, Bayesian statistics is applied to the observation of extrasolar planets, gravitational waves, and Type Ia supernovae. However, nuclear physics, in particular, has been slow to adopt Bayesian methods. We presentmore » astrophysical S -factors and reaction rates based on Bayesian statistics. We develop a framework that incorporates robust parameter estimation, systematic effects, and non-Gaussian uncertainties in a consistent manner. The method is applied to the reactions d(p, γ ){sup 3}He, {sup 3}He({sup 3}He,2p){sup 4}He, and {sup 3}He( α , γ ){sup 7}Be, important for deuterium burning, solar neutrinos, and Big Bang nucleosynthesis.« less
Statistical Tests of System Linearity Based on the Method of Surrogate Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, N.; Paez, T.; Red-Horse, J.
When dealing with measured data from dynamic systems we often make the tacit assumption that the data are generated by linear dynamics. While some systematic tests for linearity and determinism are available - for example the coherence fimction, the probability density fimction, and the bispectrum - fi,u-ther tests that quanti$ the existence and the degree of nonlinearity are clearly needed. In this paper we demonstrate a statistical test for the nonlinearity exhibited by a dynamic system excited by Gaussian random noise. We perform the usual division of the input and response time series data into blocks as required by themore » Welch method of spectrum estimation and search for significant relationships between a given input fkequency and response at harmonics of the selected input frequency. We argue that systematic tests based on the recently developed statistical method of surrogate data readily detect significant nonlinear relationships. The paper elucidates the method of surrogate data. Typical results are illustrated for a linear single degree-of-freedom system and for a system with polynomial stiffness nonlinearity.« less
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-01
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-08
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.
Regression modeling of ground-water flow
Cooley, R.L.; Naff, R.L.
1985-01-01
Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)
NASA Astrophysics Data System (ADS)
Colone, L.; Hovgaard, M. K.; Glavind, L.; Brincker, R.
2018-07-01
A method for mass change detection on wind turbine blades using natural frequencies is presented. The approach is based on two statistical tests. The first test decides if there is a significant mass change and the second test is a statistical group classification based on Linear Discriminant Analysis. The frequencies are identified by means of Operational Modal Analysis using natural excitation. Based on the assumption of Gaussianity of the frequencies, a multi-class statistical model is developed by combining finite element model sensitivities in 10 classes of change location on the blade, the smallest area being 1/5 of the span. The method is experimentally validated for a full scale wind turbine blade in a test setup and loaded by natural wind. Mass change from natural causes was imitated with sand bags and the algorithm was observed to perform well with an experimental detection rate of 1, localization rate of 0.88 and mass estimation rate of 0.72.
Novick, Steven; Shen, Yan; Yang, Harry; Peterson, John; LeBlond, Dave; Altan, Stan
2015-01-01
Dissolution (or in vitro release) studies constitute an important aspect of pharmaceutical drug development. One important use of such studies is for justifying a biowaiver for post-approval changes which requires establishing equivalence between the new and old product. We propose a statistically rigorous modeling approach for this purpose based on the estimation of what we refer to as the F2 parameter, an extension of the commonly used f2 statistic. A Bayesian test procedure is proposed in relation to a set of composite hypotheses that capture the similarity requirement on the absolute mean differences between test and reference dissolution profiles. Several examples are provided to illustrate the application. Results of our simulation study comparing the performance of f2 and the proposed method show that our Bayesian approach is comparable to or in many cases superior to the f2 statistic as a decision rule. Further useful extensions of the method, such as the use of continuous-time dissolution modeling, are considered.
Performance of cancer cluster Q-statistics for case-control residential histories
Sloan, Chantel D.; Jacquez, Geoffrey M.; Gallagher, Carolyn M.; Ward, Mary H.; Raaschou-Nielsen, Ole; Nordsborg, Rikke Baastrup; Meliker, Jaymie R.
2012-01-01
Few investigations of health event clustering have evaluated residential mobility, though causative exposures for chronic diseases such as cancer often occur long before diagnosis. Recently developed Q-statistics incorporate human mobility into disease cluster investigations by quantifying space- and time-dependent nearest neighbor relationships. Using residential histories from two cancer case-control studies, we created simulated clusters to examine Q-statistic performance. Results suggest the intersection of cases with significant clustering over their life course, Qi, with cases who are constituents of significant local clusters at given times, Qit, yielded the best performance, which improved with increasing cluster size. Upon comparison, a larger proportion of true positives were detected with Kulldorf’s spatial scan method if the time of clustering was provided. We recommend using Q-statistics to identify when and where clustering may have occurred, followed by the scan method to localize the candidate clusters. Future work should investigate the generalizability of these findings. PMID:23149326
Granato, Gregory E.
2014-01-01
The U.S. Geological Survey (USGS) developed the Stochastic Empirical Loading and Dilution Model (SELDM) in cooperation with the Federal Highway Administration (FHWA) to indicate the risk for stormwater concentrations, flows, and loads to be above user-selected water-quality goals and the potential effectiveness of mitigation measures to reduce such risks. SELDM models the potential effect of mitigation measures by using Monte Carlo methods with statistics that approximate the net effects of structural and nonstructural best management practices (BMPs). In this report, structural BMPs are defined as the components of the drainage pathway between the source of runoff and a stormwater discharge location that affect the volume, timing, or quality of runoff. SELDM uses a simple stochastic statistical model of BMP performance to develop planning-level estimates of runoff-event characteristics. This statistical approach can be used to represent a single BMP or an assemblage of BMPs. The SELDM BMP-treatment module has provisions for stochastic modeling of three stormwater treatments: volume reduction, hydrograph extension, and water-quality treatment. In SELDM, these three treatment variables are modeled by using the trapezoidal distribution and the rank correlation with the associated highway-runoff variables. This report describes methods for calculating the trapezoidal-distribution statistics and rank correlation coefficients for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater BMPs and provides the calculated values for these variables. This report also provides robust methods for estimating the minimum irreducible concentration (MIC), which is the lowest expected effluent concentration from a particular BMP site or a class of BMPs. These statistics are different from the statistics commonly used to characterize or compare BMPs. They are designed to provide a stochastic transfer function to approximate the quantity, duration, and quality of BMP effluent given the associated inflow values for a population of storm events. A database application and several spreadsheet tools are included in the digital media accompanying this report for further documentation of methods and for future use. In this study, analyses were done with data extracted from a modified copy of the January 2012 version of International Stormwater Best Management Practices Database, designated herein as the January 2012a version. Statistics for volume reduction, hydrograph extension, and water-quality treatment were developed with selected data. Sufficient data were available to estimate statistics for 5 to 10 BMP categories by using data from 40 to more than 165 monitoring sites. Water-quality treatment statistics were developed for 13 runoff-quality constituents commonly measured in highway and urban runoff studies including turbidity, sediment and solids; nutrients; total metals; organic carbon; and fecal coliforms. The medians of the best-fit statistics for each category were selected to construct generalized cumulative distribution functions for the three treatment variables. For volume reduction and hydrograph extension, interpretation of available data indicates that selection of a Spearman’s rho value that is the average of the median and maximum values for the BMP category may help generate realistic simulation results in SELDM. The median rho value may be selected to help generate realistic simulation results for water-quality treatment variables. MIC statistics were developed for 12 runoff-quality constituents commonly measured in highway and urban runoff studies by using data from 11 BMP categories and more than 167 monitoring sites. Four statistical techniques were applied for estimating MIC values with monitoring data from each site. These techniques produce a range of lower-bound estimates for each site. Four MIC estimators are proposed as alternatives for selecting a value from among the estimates from multiple sites. Correlation analysis indicates that the MIC estimates from multiple sites were weakly correlated with the geometric mean of inflow values, which indicates that there may be a qualitative or semiquantitative link between the inflow quality and the MIC. Correlations probably are weak because the MIC is influenced by the inflow water quality and the capability of each individual BMP site to reduce inflow concentrations.
NASA Astrophysics Data System (ADS)
Albert, Carlo; Ulzega, Simone; Stoop, Ruedi
2016-04-01
Measured time-series of both precipitation and runoff are known to exhibit highly non-trivial statistical properties. For making reliable probabilistic predictions in hydrology, it is therefore desirable to have stochastic models with output distributions that share these properties. When parameters of such models have to be inferred from data, we also need to quantify the associated parametric uncertainty. For non-trivial stochastic models, however, this latter step is typically very demanding, both conceptually and numerically, and always never done in hydrology. Here, we demonstrate that methods developed in statistical physics make a large class of stochastic differential equation (SDE) models amenable to a full-fledged Bayesian parameter inference. For concreteness we demonstrate these methods by means of a simple yet non-trivial toy SDE model. We consider a natural catchment that can be described by a linear reservoir, at the scale of observation. All the neglected processes are assumed to happen at much shorter time-scales and are therefore modeled with a Gaussian white noise term, the standard deviation of which is assumed to scale linearly with the system state (water volume in the catchment). Even for constant input, the outputs of this simple non-linear SDE model show a wealth of desirable statistical properties, such as fat-tailed distributions and long-range correlations. Standard algorithms for Bayesian inference fail, for models of this kind, because their likelihood functions are extremely high-dimensional intractable integrals over all possible model realizations. The use of Kalman filters is illegitimate due to the non-linearity of the model. Particle filters could be used but become increasingly inefficient with growing number of data points. Hamiltonian Monte Carlo algorithms allow us to translate this inference problem to the problem of simulating the dynamics of a statistical mechanics system and give us access to most sophisticated methods that have been developed in the statistical physics community over the last few decades. We demonstrate that such methods, along with automated differentiation algorithms, allow us to perform a full-fledged Bayesian inference, for a large class of SDE models, in a highly efficient and largely automatized manner. Furthermore, our algorithm is highly parallelizable. For our toy model, discretized with a few hundred points, a full Bayesian inference can be performed in a matter of seconds on a standard PC.
Statistical Methods for Generalized Linear Models with Covariates Subject to Detection Limits.
Bernhardt, Paul W; Wang, Huixia J; Zhang, Daowen
2015-05-01
Censored observations are a common occurrence in biomedical data sets. Although a large amount of research has been devoted to estimation and inference for data with censored responses, very little research has focused on proper statistical procedures when predictors are censored. In this paper, we consider statistical methods for dealing with multiple predictors subject to detection limits within the context of generalized linear models. We investigate and adapt several conventional methods and develop a new multiple imputation approach for analyzing data sets with predictors censored due to detection limits. We establish the consistency and asymptotic normality of the proposed multiple imputation estimator and suggest a computationally simple and consistent variance estimator. We also demonstrate that the conditional mean imputation method often leads to inconsistent estimates in generalized linear models, while several other methods are either computationally intensive or lead to parameter estimates that are biased or more variable compared to the proposed multiple imputation estimator. In an extensive simulation study, we assess the bias and variability of different approaches within the context of a logistic regression model and compare variance estimation methods for the proposed multiple imputation estimator. Lastly, we apply several methods to analyze the data set from a recently-conducted GenIMS study.
The Mantel-Haenszel procedure revisited: models and generalizations.
Fidler, Vaclav; Nagelkerke, Nico
2013-01-01
Several statistical methods have been developed for adjusting the Odds Ratio of the relation between two dichotomous variables X and Y for some confounders Z. With the exception of the Mantel-Haenszel method, commonly used methods, notably binary logistic regression, are not symmetrical in X and Y. The classical Mantel-Haenszel method however only works for confounders with a limited number of discrete strata, which limits its utility, and appears to have no basis in statistical models. Here we revisit the Mantel-Haenszel method and propose an extension to continuous and vector valued Z. The idea is to replace the observed cell entries in strata of the Mantel-Haenszel procedure by subject specific classification probabilities for the four possible values of (X,Y) predicted by a suitable statistical model. For situations where X and Y can be treated symmetrically we propose and explore the multinomial logistic model. Under the homogeneity hypothesis, which states that the odds ratio does not depend on Z, the logarithm of the odds ratio estimator can be expressed as a simple linear combination of three parameters of this model. Methods for testing the homogeneity hypothesis are proposed. The relationship between this method and binary logistic regression is explored. A numerical example using survey data is presented.
The Mantel-Haenszel Procedure Revisited: Models and Generalizations
Fidler, Vaclav; Nagelkerke, Nico
2013-01-01
Several statistical methods have been developed for adjusting the Odds Ratio of the relation between two dichotomous variables X and Y for some confounders Z. With the exception of the Mantel-Haenszel method, commonly used methods, notably binary logistic regression, are not symmetrical in X and Y. The classical Mantel-Haenszel method however only works for confounders with a limited number of discrete strata, which limits its utility, and appears to have no basis in statistical models. Here we revisit the Mantel-Haenszel method and propose an extension to continuous and vector valued Z. The idea is to replace the observed cell entries in strata of the Mantel-Haenszel procedure by subject specific classification probabilities for the four possible values of (X,Y) predicted by a suitable statistical model. For situations where X and Y can be treated symmetrically we propose and explore the multinomial logistic model. Under the homogeneity hypothesis, which states that the odds ratio does not depend on Z, the logarithm of the odds ratio estimator can be expressed as a simple linear combination of three parameters of this model. Methods for testing the homogeneity hypothesis are proposed. The relationship between this method and binary logistic regression is explored. A numerical example using survey data is presented. PMID:23516463
Walsh, Daniel P.; Norton, Andrew S.; Storm, Daniel J.; Van Deelen, Timothy R.; Heisy, Dennis M.
2018-01-01
Implicit and explicit use of expert knowledge to inform ecological analyses is becoming increasingly common because it often represents the sole source of information in many circumstances. Thus, there is a need to develop statistical methods that explicitly incorporate expert knowledge, and can successfully leverage this information while properly accounting for associated uncertainty during analysis. Studies of cause-specific mortality provide an example of implicit use of expert knowledge when causes-of-death are uncertain and assigned based on the observer's knowledge of the most likely cause. To explicitly incorporate this use of expert knowledge and the associated uncertainty, we developed a statistical model for estimating cause-specific mortality using a data augmentation approach within a Bayesian hierarchical framework. Specifically, for each mortality event, we elicited the observer's belief of cause-of-death by having them specify the probability that the death was due to each potential cause. These probabilities were then used as prior predictive values within our framework. This hierarchical framework permitted a simple and rigorous estimation method that was easily modified to include covariate effects and regularizing terms. Although applied to survival analysis, this method can be extended to any event-time analysis with multiple event types, for which there is uncertainty regarding the true outcome. We conducted simulations to determine how our framework compared to traditional approaches that use expert knowledge implicitly and assume that cause-of-death is specified accurately. Simulation results supported the inclusion of observer uncertainty in cause-of-death assignment in modeling of cause-specific mortality to improve model performance and inference. Finally, we applied the statistical model we developed and a traditional method to cause-specific survival data for white-tailed deer, and compared results. We demonstrate that model selection results changed between the two approaches, and incorporating observer knowledge in cause-of-death increased the variability associated with parameter estimates when compared to the traditional approach. These differences between the two approaches can impact reported results, and therefore, it is critical to explicitly incorporate expert knowledge in statistical methods to ensure rigorous inference.
Logistic regression applied to natural hazards: rare event logistic regression with replications
NASA Astrophysics Data System (ADS)
Guns, M.; Vanacker, V.
2012-06-01
Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.
Statistical control in hydrologic forecasting.
H.G. Wilm
1950-01-01
With rapidly growing development and uses of water, a correspondingly great demand has developed for advance estimates of the volumes or rates of flow which are supplied by streams. Therefore much attention is being devoted to hydrologic forecasting, and numerous methods have been tested in efforts to make increasingly reliable estimates of future supplies.
DOT National Transportation Integrated Search
1992-01-01
The Traffic Monitoring Guide (TMG) provides a method for the development of a statistically based procedure to monitor traffic characteristics such as traffic loadings. Truck weight data in particular are a major element of the pavement management pr...
Quasi-Experimental Analysis: A Mixture of Methods and Judgment.
ERIC Educational Resources Information Center
Cordray, David S.
1986-01-01
The role of human judgment in the development and synthesis of evidence has not been adequately developed or acknowledged within quasi-experimental analysis. Corrective solutions need to confront the fact that causal analysis within complex environments will require a more active assessment that entails reasoning and statistical modeling.…
Research design and statistical methods in Pakistan Journal of Medical Sciences (PJMS)
Akhtar, Sohail; Shah, Syed Wadood Ali; Rafiq, M.; Khan, Ajmal
2016-01-01
Objective: This article compares the study design and statistical methods used in 2005, 2010 and 2015 of Pakistan Journal of Medical Sciences (PJMS). Methods: Only original articles of PJMS were considered for the analysis. The articles were carefully reviewed for statistical methods and designs, and then recorded accordingly. The frequency of each statistical method and research design was estimated and compared with previous years. Results: A total of 429 articles were evaluated (n=74 in 2005, n=179 in 2010, n=176 in 2015) in which 171 (40%) were cross-sectional and 116 (27%) were prospective study designs. A verity of statistical methods were found in the analysis. The most frequent methods include: descriptive statistics (n=315, 73.4%), chi-square/Fisher’s exact tests (n=205, 47.8%) and student t-test (n=186, 43.4%). There was a significant increase in the use of statistical methods over time period: t-test, chi-square/Fisher’s exact test, logistic regression, epidemiological statistics, and non-parametric tests. Conclusion: This study shows that a diverse variety of statistical methods have been used in the research articles of PJMS and frequency improved from 2005 to 2015. However, descriptive statistics was the most frequent method of statistical analysis in the published articles while cross-sectional study design was common study design. PMID:27022365
Statistical mechanics of neocortical interactions. Derivation of short-term-memory capacity
NASA Astrophysics Data System (ADS)
Ingber, Lester
1984-06-01
A theory developed by the author to describe macroscopic neocortical interactions demonstrates that empirical values of chemical and electrical parameters of synaptic interactions establish several minima of the path-integral Lagrangian as a function of excitatory and inhibitory columnar firings. The number of possible minima, their time scales of hysteresis and probable reverberations, and their nearest-neighbor columnar interactions are all consistent with well-established empirical rules of human short-term memory. Thus, aspects of conscious experience are derived from neuronal firing patterns, using modern methods of nonlinear nonequilibrium statistical mechanics to develop realistic explicit synaptic interactions.
Kerr, Kathleen F; Meisner, Allison; Thiessen-Philbrook, Heather; Coca, Steven G; Parikh, Chirag R
2014-08-07
The field of nephrology is actively involved in developing biomarkers and improving models for predicting patients' risks of AKI and CKD and their outcomes. However, some important aspects of evaluating biomarkers and risk models are not widely appreciated, and statistical methods are still evolving. This review describes some of the most important statistical concepts for this area of research and identifies common pitfalls. Particular attention is paid to metrics proposed within the last 5 years for quantifying the incremental predictive value of a new biomarker. Copyright © 2014 by the American Society of Nephrology.
Liu, Ying; ZENG, Donglin; WANG, Yuanjia
2014-01-01
Summary Dynamic treatment regimens (DTRs) are sequential decision rules tailored at each point where a clinical decision is made based on each patient’s time-varying characteristics and intermediate outcomes observed at earlier points in time. The complexity, patient heterogeneity, and chronicity of mental disorders call for learning optimal DTRs to dynamically adapt treatment to an individual’s response over time. The Sequential Multiple Assignment Randomized Trial (SMARTs) design allows for estimating causal effects of DTRs. Modern statistical tools have been developed to optimize DTRs based on personalized variables and intermediate outcomes using rich data collected from SMARTs; these statistical methods can also be used to recommend tailoring variables for designing future SMART studies. This paper introduces DTRs and SMARTs using two examples in mental health studies, discusses two machine learning methods for estimating optimal DTR from SMARTs data, and demonstrates the performance of the statistical methods using simulated data. PMID:25642116
Design and Test of Pseudorandom Number Generator Using a Star Network of Lorenz Oscillators
NASA Astrophysics Data System (ADS)
Cho, Kenichiro; Miyano, Takaya
We have recently developed a chaos-based stream cipher based on augmented Lorenz equations as a star network of Lorenz subsystems. In our method, the augmented Lorenz equations are used as a pseudorandom number generator. In this study, we propose a new method based on the augmented Lorenz equations for generating binary pseudorandom numbers and evaluate its security using the statistical tests of SP800-22 published by the National Institute for Standards and Technology in comparison with the performances of other chaotic dynamical models used as binary pseudorandom number generators. We further propose a faster version of the proposed method and evaluate its security using the statistical tests of TestU01 published by L’Ecuyer and Simard.
Healthy Worker Effect Phenomenon: Revisited with Emphasis on Statistical Methods – A Review
Chowdhury, Ritam; Shah, Divyang; Payal, Abhishek R.
2017-01-01
Known since 1885 but studied systematically only in the past four decades, the healthy worker effect (HWE) is a special form of selection bias common to occupational cohort studies. The phenomenon has been under debate for many years with respect to its impact, conceptual approach (confounding, selection bias, or both), and ways to resolve or account for its effect. The effect is not uniform across age groups, gender, race, and types of occupations and nor is it constant over time. Hence, assessing HWE and accounting for it in statistical analyses is complicated and requires sophisticated methods. Here, we review the HWE, factors affecting it, and methods developed so far to deal with it. PMID:29391741
Rtop - an R package for interpolation along the stream network
NASA Astrophysics Data System (ADS)
Skøien, J. O.
2009-04-01
Rtop - an R package for interpolation along the stream network Geostatistical methods have been used to a limited extent for estimation along stream networks, with a few exceptions(Gottschalk, 1993; Gottschalk, et al., 2006; Sauquet, et al., 2000; Skøien, et al., 2006). Interpolation of runoff characteristics are more complicated than the traditional random variables estimated by geostatistical methods, as the measurements have a more complicated support, and many catchments are nested. Skøien et al. (2006) presented the model Top-kriging which takes these effects into account for interpolation of stream flow characteristics (exemplified by the 100 year flood). The method has here been implemented as a package in the statistical environment R (R Development Core Team, 2004). Taking advantage of the existing methods in R for working with spatial objects, and the extensive possibilities for visualizing the result, this makes it considerably easier to apply the method on new data sets, in comparison to earlier implementation of the method. Gottschalk, L. 1993. Interpolation of runoff applying objective methods. Stochastic Hydrology and Hydraulics, 7, 269-281. Gottschalk, L., I. Krasovskaia, E. Leblois, and E. Sauquet. 2006. Mapping mean and variance of runoff in a river basin. Hydrology and Earth System Sciences, 10, 469-484. R Development Core Team. 2004. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Sauquet, E., L. Gottschalk, and E. Leblois. 2000. Mapping average annual runoff: a hierarchical approach applying a stochastic interpolation scheme. Hydrological Sciences Journal, 45 (6), 799-815. Skøien, J. O., R. Merz, and G. Blöschl. 2006. Top-kriging - geostatistics on stream networks. Hydrology and Earth System Sciences, 10, 277-287.
2014-01-01
Background Meta-regression is becoming increasingly used to model study level covariate effects. However this type of statistical analysis presents many difficulties and challenges. Here two methods for calculating confidence intervals for the magnitude of the residual between-study variance in random effects meta-regression models are developed. A further suggestion for calculating credible intervals using informative prior distributions for the residual between-study variance is presented. Methods Two recently proposed and, under the assumptions of the random effects model, exact methods for constructing confidence intervals for the between-study variance in random effects meta-analyses are extended to the meta-regression setting. The use of Generalised Cochran heterogeneity statistics is extended to the meta-regression setting and a Newton-Raphson procedure is developed to implement the Q profile method for meta-analysis and meta-regression. WinBUGS is used to implement informative priors for the residual between-study variance in the context of Bayesian meta-regressions. Results Results are obtained for two contrasting examples, where the first example involves a binary covariate and the second involves a continuous covariate. Intervals for the residual between-study variance are wide for both examples. Conclusions Statistical methods, and R computer software, are available to compute exact confidence intervals for the residual between-study variance under the random effects model for meta-regression. These frequentist methods are almost as easily implemented as their established counterparts for meta-analysis. Bayesian meta-regressions are also easily performed by analysts who are comfortable using WinBUGS. Estimates of the residual between-study variance in random effects meta-regressions should be routinely reported and accompanied by some measure of their uncertainty. Confidence and/or credible intervals are well-suited to this purpose. PMID:25196829
Fully moderated T-statistic for small sample size gene expression arrays.
Yu, Lianbo; Gulati, Parul; Fernandez, Soledad; Pennell, Michael; Kirschner, Lawrence; Jarjoura, David
2011-09-15
Gene expression microarray experiments with few replications lead to great variability in estimates of gene variances. Several Bayesian methods have been developed to reduce this variability and to increase power. Thus far, moderated t methods assumed a constant coefficient of variation (CV) for the gene variances. We provide evidence against this assumption, and extend the method by allowing the CV to vary with gene expression. Our CV varying method, which we refer to as the fully moderated t-statistic, was compared to three other methods (ordinary t, and two moderated t predecessors). A simulation study and a familiar spike-in data set were used to assess the performance of the testing methods. The results showed that our CV varying method had higher power than the other three methods, identified a greater number of true positives in spike-in data, fit simulated data under varying assumptions very well, and in a real data set better identified higher expressing genes that were consistent with functional pathways associated with the experiments.
Method development and validation of potent pyrimidine derivative by UV-VIS spectrophotometer.
Chaudhary, Anshu; Singh, Anoop; Verma, Prabhakar Kumar
2014-12-01
A rapid and sensitive ultraviolet-visible (UV-VIS) spectroscopic method was developed for the estimation of pyrimidine derivative 6-Bromo-3-(6-(2,6-dichlorophenyl)-2-(morpolinomethylamino) pyrimidine4-yl) -2H-chromen-2-one (BT10M) in bulk form. Pyrimidine derivative was monitored at 275 nm with UV detection, and there is no interference of diluents at 275 nm. The method was found to be linear in the range of 50 to 150 μg/ml. The accuracy and precision were determined and validated statistically. The method was validated as a guideline. The results showed that the proposed method is suitable for the accurate, precise, and rapid determination of pyrimidine derivative. Graphical Abstract Method development and validation of potent pyrimidine derivative by UV spectroscopy.
Active Subspace Methods for Data-Intensive Inverse Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qiqi
2017-04-27
The project has developed theory and computational tools to exploit active subspaces to reduce the dimension in statistical calibration problems. This dimension reduction enables MCMC methods to calibrate otherwise intractable models. The same theoretical and computational tools can also reduce the measurement dimension for calibration problems that use large stores of data.
Exploring Task- and Student-Related Factors in the Method of Propositional Manipulation (MPM)
ERIC Educational Resources Information Center
Leppink, Jimmie; Broers, Nick J.; Imbos, Tjaart; van der Vleuten, Cees P. M.; Berger, Martijn P. F.
2011-01-01
The method of propositional manipulation (MPM) aims to help students develop conceptual understanding of statistics by guiding them into self-explaining propositions. To explore task- and student-related factors influencing students' ability to learn from MPM, twenty undergraduate students performed six learning tasks while thinking aloud. The…
Statistical methods for analysing responses of wildlife to human disturbance
Haiganoush K. Preisler; Alan A. Ager; Michael J. Wisdom
2006-01-01
Off-road recreation is increasing rapidly in many areas of the world, and effects on wildlife can be highly detrimental. Consequently, we have developed methods for studying wildlife responses to off-road recreation with the use of new technologies that allow frequent and accurate monitoring of human-wildlife interactions. To...
Advanced statistical methods for improved data analysis of NASA astrophysics missions
NASA Technical Reports Server (NTRS)
Feigelson, Eric D.
1992-01-01
The investigators under this grant studied ways to improve the statistical analysis of astronomical data. They looked at existing techniques, the development of new techniques, and the production and distribution of specialized software to the astronomical community. Abstracts of nine papers that were produced are included, as well as brief descriptions of four software packages. The articles that are abstracted discuss analytical and Monte Carlo comparisons of six different linear least squares fits, a (second) paper on linear regression in astronomy, two reviews of public domain software for the astronomer, subsample and half-sample methods for estimating sampling distributions, a nonparametric estimation of survival functions under dependent competing risks, censoring in astronomical data due to nondetections, an astronomy survival analysis computer package called ASURV, and improving the statistical methodology of astronomical data analysis.
Allen, Peter J.; Dorozenko, Kate P.; Roberts, Lynne D.
2016-01-01
Quantitative research methods are essential to the development of professional competence in psychology. They are also an area of weakness for many students. In particular, students are known to struggle with the skill of selecting quantitative analytical strategies appropriate for common research questions, hypotheses and data types. To begin understanding this apparent deficit, we presented nine psychology undergraduates (who had all completed at least one quantitative methods course) with brief research vignettes, and asked them to explicate the process they would follow to identify an appropriate statistical technique for each. Thematic analysis revealed that all participants found this task challenging, and even those who had completed several research methods courses struggled to articulate how they would approach the vignettes on more than a very superficial and intuitive level. While some students recognized that there is a systematic decision making process that can be followed, none could describe it clearly or completely. We then presented the same vignettes to 10 psychology academics with particular expertise in conducting research and/or research methods instruction. Predictably, these “experts” were able to describe a far more systematic, comprehensive, flexible, and nuanced approach to statistical decision making, which begins early in the research process, and pays consideration to multiple contextual factors. They were sensitive to the challenges that students experience when making statistical decisions, which they attributed partially to how research methods and statistics are commonly taught. This sensitivity was reflected in their pedagogic practices. When asked to consider the format and features of an aid that could facilitate the statistical decision making process, both groups expressed a preference for an accessible, comprehensive and reputable resource that follows a basic decision tree logic. For the academics in particular, this aid should function as a teaching tool, which engages the user with each choice-point in the decision making process, rather than simply providing an “answer.” Based on these findings, we offer suggestions for tools and strategies that could be deployed in the research methods classroom to facilitate and strengthen students' statistical decision making abilities. PMID:26909064
Allen, Peter J; Dorozenko, Kate P; Roberts, Lynne D
2016-01-01
Quantitative research methods are essential to the development of professional competence in psychology. They are also an area of weakness for many students. In particular, students are known to struggle with the skill of selecting quantitative analytical strategies appropriate for common research questions, hypotheses and data types. To begin understanding this apparent deficit, we presented nine psychology undergraduates (who had all completed at least one quantitative methods course) with brief research vignettes, and asked them to explicate the process they would follow to identify an appropriate statistical technique for each. Thematic analysis revealed that all participants found this task challenging, and even those who had completed several research methods courses struggled to articulate how they would approach the vignettes on more than a very superficial and intuitive level. While some students recognized that there is a systematic decision making process that can be followed, none could describe it clearly or completely. We then presented the same vignettes to 10 psychology academics with particular expertise in conducting research and/or research methods instruction. Predictably, these "experts" were able to describe a far more systematic, comprehensive, flexible, and nuanced approach to statistical decision making, which begins early in the research process, and pays consideration to multiple contextual factors. They were sensitive to the challenges that students experience when making statistical decisions, which they attributed partially to how research methods and statistics are commonly taught. This sensitivity was reflected in their pedagogic practices. When asked to consider the format and features of an aid that could facilitate the statistical decision making process, both groups expressed a preference for an accessible, comprehensive and reputable resource that follows a basic decision tree logic. For the academics in particular, this aid should function as a teaching tool, which engages the user with each choice-point in the decision making process, rather than simply providing an "answer." Based on these findings, we offer suggestions for tools and strategies that could be deployed in the research methods classroom to facilitate and strengthen students' statistical decision making abilities.
Probabilistic biological network alignment.
Todor, Andrei; Dobra, Alin; Kahveci, Tamer
2013-01-01
Interactions between molecules are probabilistic events. An interaction may or may not happen with some probability, depending on a variety of factors such as the size, abundance, or proximity of the interacting molecules. In this paper, we consider the problem of aligning two biological networks. Unlike existing methods, we allow one of the two networks to contain probabilistic interactions. Allowing interaction probabilities makes the alignment more biologically relevant at the expense of explosive growth in the number of alternative topologies that may arise from different subsets of interactions that take place. We develop a novel method that efficiently and precisely characterizes this massive search space. We represent the topological similarity between pairs of aligned molecules (i.e., proteins) with the help of random variables and compute their expected values. We validate our method showing that, without sacrificing the running time performance, it can produce novel alignments. Our results also demonstrate that our method identifies biologically meaningful mappings under a comprehensive set of criteria used in the literature as well as the statistical coherence measure that we developed to analyze the statistical significance of the similarity of the functions of the aligned protein pairs.
Harris, Keith M; Thandrayen, Joanne; Samphoas, Chien; Se, Pros; Lewchalermwongse, Boontriga; Ratanashevorn, Rattanakorn; Perry, Megan L; Britts, Choloe
2016-04-01
This study tested a low-cost method for estimating suicide rates in developing nations that lack adequate statistics. Data comprised reported suicides from Cambodia's 2 largest newspapers. Capture-recapture modeling estimated a suicide rate of 3.8/100 000 (95% CI = 2.5-6.7) for 2012. That compares to World Health Organization estimates of 1.3 to 9.4/100 000 and a Cambodian government estimate of 3.5/100 000. Suicide rates of males were twice that of females, and rates of those <40 years were twice that of those ≥40 years. Capture-recapture modeling with newspaper reports proved a reasonable method for estimating suicide rates for countries with inadequate official data. These methods are low-cost and can be applied to regions with at least 2 newspapers with overlapping reports. Means to further improve this approach are discussed. These methods are applicable to both recent and historical data, which can benefit epidemiological work, and may also be applicable to homicides and other statistics. © 2016 APJPH.
Improving stochastic estimates with inference methods: calculating matrix diagonals.
Selig, Marco; Oppermann, Niels; Ensslin, Torsten A
2012-02-01
Estimating the diagonal entries of a matrix, that is not directly accessible but only available as a linear operator in the form of a computer routine, is a common necessity in many computational applications, especially in image reconstruction and statistical inference. Here, methods of statistical inference are used to improve the accuracy or the computational costs of matrix probing methods to estimate matrix diagonals. In particular, the generalized Wiener filter methodology, as developed within information field theory, is shown to significantly improve estimates based on only a few sampling probes, in cases in which some form of continuity of the solution can be assumed. The strength, length scale, and precise functional form of the exploited autocorrelation function of the matrix diagonal is determined from the probes themselves. The developed algorithm is successfully applied to mock and real world problems. These performance tests show that, in situations where a matrix diagonal has to be calculated from only a small number of computationally expensive probes, a speedup by a factor of 2 to 10 is possible with the proposed method. © 2012 American Physical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yi; Chen, Wei; Xu, Hongyi
To provide a seamless integration of manufacturing processing simulation and fiber microstructure modeling, two new stochastic 3D microstructure reconstruction methods are proposed for two types of random fiber composites: random short fiber composites, and Sheet Molding Compounds (SMC) chopped fiber composites. A Random Sequential Adsorption (RSA) algorithm is first developed to embed statistical orientation information into 3D RVE reconstruction of random short fiber composites. For the SMC composites, an optimized Voronoi diagram based approach is developed for capturing the substructure features of SMC chopped fiber composites. The proposed methods are distinguished from other reconstruction works by providing a way ofmore » integrating statistical information (fiber orientation tensor) obtained from material processing simulation, as well as capturing the multiscale substructures of the SMC composites.« less
Data Model Performance in Data Warehousing
NASA Astrophysics Data System (ADS)
Rorimpandey, G. C.; Sangkop, F. I.; Rantung, V. P.; Zwart, J. P.; Liando, O. E. S.; Mewengkang, A.
2018-02-01
Data Warehouses have increasingly become important in organizations that have large amount of data. It is not a product but a part of a solution for the decision support system in those organizations. Data model is the starting point for designing and developing of data warehouses architectures. Thus, the data model needs stable interfaces and consistent for a longer period of time. The aim of this research is to know which data model in data warehousing has the best performance. The research method is descriptive analysis, which has 3 main tasks, such as data collection and organization, analysis of data and interpretation of data. The result of this research is discussed in a statistic analysis method, represents that there is no statistical difference among data models used in data warehousing. The organization can utilize four data model proposed when designing and developing data warehouse.
Computerized system for assessing heart rate variability.
Frigy, A; Incze, A; Brânzaniuc, E; Cotoi, S
1996-01-01
The principal theoretical, methodological and clinical aspects of heart rate variability (HRV) analysis are reviewed. This method has been developed over the last 10 years as a useful noninvasive method of measuring the activity of the autonomic nervous system. The main components and the functioning of the computerized rhythm-analyzer system developed by our team are presented. The system is able to perform short-term (maximum 20 minutes) time domain HRV analysis and statistical analysis of the ventricular rate in any rhythm, particularly in atrial fibrillation. The performances of our system are demonstrated by using the graphics (RR histograms, delta RR histograms, RR scattergrams) and the statistical parameters resulted from the processing of three ECG recordings. These recordings are obtained from a normal subject, from a patient with advanced heart failure, and from a patient with atrial fibrillation.
NASA Technical Reports Server (NTRS)
Stephens, J. B.; Sloan, J. C.
1976-01-01
A method is described for developing a statistical air quality assessment for the launch of an aerospace vehicle from the Kennedy Space Center in terms of existing climatological data sets. The procedure can be refined as developing meteorological conditions are identified for use with the NASA-Marshall Space Flight Center Rocket Exhaust Effluent Diffusion (REED) description. Classical climatological regimes for the long range analysis can be narrowed as the synoptic and mesoscale structure is identified. Only broad synoptic regimes are identified at this stage of analysis. As the statistical data matrix is developed, synoptic regimes will be refined in terms of the resulting eigenvectors as applicable to aerospace air quality predictions.
MAFsnp: A Multi-Sample Accurate and Flexible SNP Caller Using Next-Generation Sequencing Data
Hu, Jiyuan; Li, Tengfei; Xiu, Zidi; Zhang, Hong
2015-01-01
Most existing statistical methods developed for calling single nucleotide polymorphisms (SNPs) using next-generation sequencing (NGS) data are based on Bayesian frameworks, and there does not exist any SNP caller that produces p-values for calling SNPs in a frequentist framework. To fill in this gap, we develop a new method MAFsnp, a Multiple-sample based Accurate and Flexible algorithm for calling SNPs with NGS data. MAFsnp is based on an estimated likelihood ratio test (eLRT) statistic. In practical situation, the involved parameter is very close to the boundary of the parametric space, so the standard large sample property is not suitable to evaluate the finite-sample distribution of the eLRT statistic. Observing that the distribution of the test statistic is a mixture of zero and a continuous part, we propose to model the test statistic with a novel two-parameter mixture distribution. Once the parameters in the mixture distribution are estimated, p-values can be easily calculated for detecting SNPs, and the multiple-testing corrected p-values can be used to control false discovery rate (FDR) at any pre-specified level. With simulated data, MAFsnp is shown to have much better control of FDR than the existing SNP callers. Through the application to two real datasets, MAFsnp is also shown to outperform the existing SNP callers in terms of calling accuracy. An R package “MAFsnp” implementing the new SNP caller is freely available at http://homepage.fudan.edu.cn/zhangh/softwares/. PMID:26309201
Nakae, Ken; Ikegaya, Yuji; Ishikawa, Tomoe; Oba, Shigeyuki; Urakubo, Hidetoshi; Koyama, Masanori; Ishii, Shin
2014-01-01
Crosstalk between neurons and glia may constitute a significant part of information processing in the brain. We present a novel method of statistically identifying interactions in a neuron–glia network. We attempted to identify neuron–glia interactions from neuronal and glial activities via maximum-a-posteriori (MAP)-based parameter estimation by developing a generalized linear model (GLM) of a neuron–glia network. The interactions in our interest included functional connectivity and response functions. We evaluated the cross-validated likelihood of GLMs that resulted from the addition or removal of connections to confirm the existence of specific neuron-to-glia or glia-to-neuron connections. We only accepted addition or removal when the modification improved the cross-validated likelihood. We applied the method to a high-throughput, multicellular in vitro Ca2+ imaging dataset obtained from the CA3 region of a rat hippocampus, and then evaluated the reliability of connectivity estimates using a statistical test based on a surrogate method. Our findings based on the estimated connectivity were in good agreement with currently available physiological knowledge, suggesting our method can elucidate undiscovered functions of neuron–glia systems. PMID:25393874
NASA Technical Reports Server (NTRS)
Brown, Andrew M.
2014-01-01
Numerical and Analytical methods developed to determine damage accumulation in specific engine components when speed variation included. Dither Life Ratio shown to be well over factor of 2 for specific example. Steady-State assumption shown to be accurate for most turbopump cases, allowing rapid calculation of DLR. If hot-fire speed data unknown, Monte Carlo method developed that uses speed statistics for similar engines. Application of techniques allow analyst to reduce both uncertainty and excess conservatism. High values of DLR could allow previously unacceptable part to pass HCF criteria without redesign. Given benefit and ease of implementation, recommend that any finite life turbomachine component analysis adopt these techniques. Probability Values calculated, compared, and evaluated for several industry-proposed methods for combining random and harmonic loads. Two new excel macros written to calculate combined load for any specific probability level. Closed form Curve fits generated for widely used 3(sigma) and 2(sigma) probability levels. For design of lightweight aerospace components, obtaining accurate, reproducible, statistically meaningful answer critical.
Statistical and Economic Techniques for Site-specific Nematode Management.
Liu, Zheng; Griffin, Terry; Kirkpatrick, Terrence L
2014-03-01
Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes.
Some past and present challenges of econophysics
NASA Astrophysics Data System (ADS)
Mantegna, R. N.
2016-12-01
We discuss the cultural background that was shared by some of the first econophysicists when they started to work on economic and financial problems with methods and tools of statistical physics. In particular we discuss about the role of stylized facts and statistical physical laws in economics and statistical physics respectively. As an example of the problems and potentials associated with the interaction of different communities of scholars dealing with problems observed in economic and financial systems we briefly discuss the development and the perspectives of the use of tools and concepts of networks in econophysics, economics and finance.
Contribution of Apollo lunar photography to the establishment of selenodetic control
NASA Technical Reports Server (NTRS)
Dermanis, A.
1975-01-01
Among the various types of available data relevant to the establishment of geometric control on the moon, the only one covering significant portions of the lunar surface (20%) with sufficient information content, is lunar photography, taken at the proximity of the moon from lunar orbiters. The idea of free geodetic networks is introduced as a tool for the statistical comparison of the geometric aspects of the various data used. Methods were developed for the updating of the statistics of observations and the a priori parameter estimates to obtain statistically consistent solutions by means of the optimum relative weighting concept.
Gene-Based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions.
Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y; Chen, Wei
2016-02-01
Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, here we develop Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT), which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. © 2016 WILEY PERIODICALS, INC.
Gene-based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions
Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E.; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y.; Chen, Wei
2015-01-01
Summary Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, we develop here Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT) which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. PMID:26782979
Speckle reduction in optical coherence tomography by adaptive total variation method
NASA Astrophysics Data System (ADS)
Wu, Tong; Shi, Yaoyao; Liu, Youwen; He, Chongjun
2015-12-01
An adaptive total variation method based on the combination of speckle statistics and total variation restoration is proposed and developed for reducing speckle noise in optical coherence tomography (OCT) images. The statistical distribution of the speckle noise in OCT image is investigated and measured. With the measured parameters such as the mean value and variance of the speckle noise, the OCT image is restored by the adaptive total variation restoration method. The adaptive total variation restoration algorithm was applied to the OCT images of a volunteer's hand skin, which showed effective speckle noise reduction and image quality improvement. For image quality comparison, the commonly used median filtering method was also applied to the same images to reduce the speckle noise. The measured results demonstrate the superior performance of the adaptive total variation restoration method in terms of image signal-to-noise ratio, equivalent number of looks, contrast-to-noise ratio, and mean square error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubic, William Louis; Jenkins, Rhodri W.; Moore, Cameron M.
Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.
Kubic, William Louis; Jenkins, Rhodri W.; Moore, Cameron M.; ...
2017-09-28
Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.
Guidelines for the Investigation of Mediating Variables in Business Research.
MacKinnon, David P; Coxe, Stefany; Baraldi, Amanda N
2012-03-01
Business theories often specify the mediating mechanisms by which a predictor variable affects an outcome variable. In the last 30 years, investigations of mediating processes have become more widespread with corresponding developments in statistical methods to conduct these tests. The purpose of this article is to provide guidelines for mediation studies by focusing on decisions made prior to the research study that affect the clarity of conclusions from a mediation study, the statistical models for mediation analysis, and methods to improve interpretation of mediation results after the research study. Throughout this article, the importance of a program of experimental and observational research for investigating mediating mechanisms is emphasized.
NASA Astrophysics Data System (ADS)
Attallah, Bilal; Serir, Amina; Chahir, Youssef; Boudjelal, Abdelwahhab
2017-11-01
Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.
Sabnis, Shweta S; Gandhi, Santosh V; Madgulkar, A R; Bothara, K G
Three methods viz. Absorbance Ratio Method (I), Dual Wavelength Method (II) and First Order Derivative Spectroscopic Method (III) for simultaneous estimation of Rabeprazole sodium and Itopride hydrochloride have been developed. The drugs obey Beer's law in the concentration range 2-20 microg/ml for RAB and 5-75 microg/ml for ITO. The results of analysis of drugs have been validated statistically and by recovery studies.
Dynamic association rules for gene expression data analysis.
Chen, Shu-Chuan; Tsai, Tsung-Hsien; Chung, Cheng-Han; Li, Wen-Hsiung
2015-10-14
The purpose of gene expression analysis is to look for the association between regulation of gene expression levels and phenotypic variations. This association based on gene expression profile has been used to determine whether the induction/repression of genes correspond to phenotypic variations including cell regulations, clinical diagnoses and drug development. Statistical analyses on microarray data have been developed to resolve gene selection issue. However, these methods do not inform us of causality between genes and phenotypes. In this paper, we propose the dynamic association rule algorithm (DAR algorithm) which helps ones to efficiently select a subset of significant genes for subsequent analysis. The DAR algorithm is based on association rules from market basket analysis in marketing. We first propose a statistical way, based on constructing a one-sided confidence interval and hypothesis testing, to determine if an association rule is meaningful. Based on the proposed statistical method, we then developed the DAR algorithm for gene expression data analysis. The method was applied to analyze four microarray datasets and one Next Generation Sequencing (NGS) dataset: the Mice Apo A1 dataset, the whole genome expression dataset of mouse embryonic stem cells, expression profiling of the bone marrow of Leukemia patients, Microarray Quality Control (MAQC) data set and the RNA-seq dataset of a mouse genomic imprinting study. A comparison of the proposed method with the t-test on the expression profiling of the bone marrow of Leukemia patients was conducted. We developed a statistical way, based on the concept of confidence interval, to determine the minimum support and minimum confidence for mining association relationships among items. With the minimum support and minimum confidence, one can find significant rules in one single step. The DAR algorithm was then developed for gene expression data analysis. Four gene expression datasets showed that the proposed DAR algorithm not only was able to identify a set of differentially expressed genes that largely agreed with that of other methods, but also provided an efficient and accurate way to find influential genes of a disease. In the paper, the well-established association rule mining technique from marketing has been successfully modified to determine the minimum support and minimum confidence based on the concept of confidence interval and hypothesis testing. It can be applied to gene expression data to mine significant association rules between gene regulation and phenotype. The proposed DAR algorithm provides an efficient way to find influential genes that underlie the phenotypic variance.
WEC Design Response Toolbox v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, Ryan; Michelen, Carlos; Eckert-Gallup, Aubrey
2016-03-30
The WEC Design Response Toolbox (WDRT) is a numerical toolbox for design-response analysis of wave energy converters (WECs). The WDRT was developed during a series of efforts to better understand WEC survival design. The WDRT has been designed as a tool for researchers and developers, enabling the straightforward application of statistical and engineering methods. The toolbox includes methods for short-term extreme response, environmental characterization, long-term extreme response and risk analysis, fatigue, and design wave composition.
Statistical methods and neural network approaches for classification of data from multiple sources
NASA Technical Reports Server (NTRS)
Benediktsson, Jon Atli; Swain, Philip H.
1990-01-01
Statistical methods for classification of data from multiple data sources are investigated and compared to neural network models. A problem with using conventional multivariate statistical approaches for classification of data of multiple types is in general that a multivariate distribution cannot be assumed for the classes in the data sources. Another common problem with statistical classification methods is that the data sources are not equally reliable. This means that the data sources need to be weighted according to their reliability but most statistical classification methods do not have a mechanism for this. This research focuses on statistical methods which can overcome these problems: a method of statistical multisource analysis and consensus theory. Reliability measures for weighting the data sources in these methods are suggested and investigated. Secondly, this research focuses on neural network models. The neural networks are distribution free since no prior knowledge of the statistical distribution of the data is needed. This is an obvious advantage over most statistical classification methods. The neural networks also automatically take care of the problem involving how much weight each data source should have. On the other hand, their training process is iterative and can take a very long time. Methods to speed up the training procedure are introduced and investigated. Experimental results of classification using both neural network models and statistical methods are given, and the approaches are compared based on these results.
Guetterman, Timothy C.; Creswell, John W.; Wittink, Marsha; Barg, Fran K.; Castro, Felipe G.; Dahlberg, Britt; Watkins, Daphne C.; Deutsch, Charles; Gallo, Joseph J.
2017-01-01
Introduction Demand for training in mixed methods is high, with little research on faculty development or assessment in mixed methods. We describe the development of a Self-Rated Mixed Methods Skills Assessment and provide validity evidence. The instrument taps six research domains: “Research question,” “Design/approach,” “Sampling,” “Data collection,” “Analysis,” and “Dissemination.” Respondents are asked to rate their ability to define or explain concepts of mixed methods under each domain, their ability to apply the concepts to problems, and the extent to which they need to improve. Methods We administered the questionnaire to 145 faculty and students using an internet survey. We analyzed descriptive statistics and performance characteristics of the questionnaire using Cronbach’s alpha to assess reliability and an ANOVA that compared a mixed methods experience index with assessment scores to assess criterion-relatedness. Results Internal consistency reliability was high for the total set of items (.95) and adequate (>=.71) for all but one subscale. Consistent with establishing criterion validity, respondents who had more professional experiences with mixed methods (e.g., published a mixed methods paper) rated themselves as more skilled, which was statistically significant across the research domains. Discussion This Self-Rated Mixed Methods Assessment instrument may be a useful tool to assess skills in mixed methods for training programs. It can be applied widely at the graduate and faculty level. For the learner, assessment may lead to enhanced motivation to learn and training focused on self-identified needs. For faculty, the assessment may improve curriculum and course content planning. PMID:28562495
Chao, Li-Wei; Szrek, Helena; Peltzer, Karl; Ramlagan, Shandir; Fleming, Peter; Leite, Rui; Magerman, Jesswill; Ngwenya, Godfrey B.; Pereira, Nuno Sousa; Behrman, Jere
2011-01-01
Finding an efficient method for sampling micro- and small-enterprises (MSEs) for research and statistical reporting purposes is a challenge in developing countries, where registries of MSEs are often nonexistent or outdated. This lack of a sampling frame creates an obstacle in finding a representative sample of MSEs. This study uses computer simulations to draw samples from a census of businesses and non-businesses in the Tshwane Municipality of South Africa, using three different sampling methods: the traditional probability sampling method, the compact segment sampling method, and the World Health Organization’s Expanded Programme on Immunization (EPI) sampling method. Three mechanisms by which the methods could differ are tested, the proximity selection of respondents, the at-home selection of respondents, and the use of inaccurate probability weights. The results highlight the importance of revisits and accurate probability weights, but the lesser effect of proximity selection on the samples’ statistical properties. PMID:22582004
Nonlinear scalar forcing based on a reaction analogy
NASA Astrophysics Data System (ADS)
Daniel, Don; Livescu, Daniel
2017-11-01
We present a novel reaction analogy (RA) based forcing method for generating stationary passive scalar fields in incompressible turbulence. The new method can produce more general scalar PDFs (e.g. double-delta) than current methods, while ensuring that scalar fields remain bounded, unlike existent forcing methodologies that can potentially violate naturally existing bounds. Such features are useful for generating initial fields in non-premixed combustion or for studying non-Gaussian scalar turbulence. The RA method mathematically models hypothetical chemical reactions that convert reactants in a mixed state back into its pure unmixed components. Various types of chemical reactions are formulated and the corresponding mathematical expressions derived. For large values of the scalar dissipation rate, the method produces statistically steady double-delta scalar PDFs. Gaussian scalar statistics are recovered for small values of the scalar dissipation rate. In contrast, classical forcing methods consistently produce unimodal Gaussian scalar fields. The ability of the new method to produce fully developed scalar fields is discussed using 2563, 5123, and 10243 periodic box simulations.
NASA Technical Reports Server (NTRS)
Herskovits, E. H.; Megalooikonomou, V.; Davatzikos, C.; Chen, A.; Bryan, R. N.; Gerring, J. P.
1999-01-01
PURPOSE: To determine whether there is an association between the spatial distribution of lesions detected at magnetic resonance (MR) imaging of the brain in children after closed-head injury and the development of secondary attention-deficit/hyperactivity disorder (ADHD). MATERIALS AND METHODS: Data obtained from 76 children without prior history of ADHD were analyzed. MR images were obtained 3 months after closed-head injury. After manual delineation of lesions, images were registered to the Talairach coordinate system. For each subject, registered images and secondary ADHD status were integrated into a brain-image database, which contains depiction (visualization) and statistical analysis software. Using this database, we assessed visually the spatial distributions of lesions and performed statistical analysis of image and clinical variables. RESULTS: Of the 76 children, 15 developed secondary ADHD. Depiction of the data suggested that children who developed secondary ADHD had more lesions in the right putamen than children who did not develop secondary ADHD; this impression was confirmed statistically. After Bonferroni correction, we could not demonstrate significant differences between secondary ADHD status and lesion burdens for the right caudate nucleus or the right globus pallidus. CONCLUSION: Closed-head injury-induced lesions in the right putamen in children are associated with subsequent development of secondary ADHD. Depiction software is useful in guiding statistical analysis of image data.
Fast and accurate imputation of summary statistics enhances evidence of functional enrichment
Pasaniuc, Bogdan; Zaitlen, Noah; Shi, Huwenbo; Bhatia, Gaurav; Gusev, Alexander; Pickrell, Joseph; Hirschhorn, Joel; Strachan, David P.; Patterson, Nick; Price, Alkes L.
2014-01-01
Motivation: Imputation using external reference panels (e.g. 1000 Genomes) is a widely used approach for increasing power in genome-wide association studies and meta-analysis. Existing hidden Markov models (HMM)-based imputation approaches require individual-level genotypes. Here, we develop a new method for Gaussian imputation from summary association statistics, a type of data that is becoming widely available. Results: In simulations using 1000 Genomes (1000G) data, this method recovers 84% (54%) of the effective sample size for common (>5%) and low-frequency (1–5%) variants [increasing to 87% (60%) when summary linkage disequilibrium information is available from target samples] versus the gold standard of 89% (67%) for HMM-based imputation, which cannot be applied to summary statistics. Our approach accounts for the limited sample size of the reference panel, a crucial step to eliminate false-positive associations, and it is computationally very fast. As an empirical demonstration, we apply our method to seven case–control phenotypes from the Wellcome Trust Case Control Consortium (WTCCC) data and a study of height in the British 1958 birth cohort (1958BC). Gaussian imputation from summary statistics recovers 95% (105%) of the effective sample size (as quantified by the ratio of χ2 association statistics) compared with HMM-based imputation from individual-level genotypes at the 227 (176) published single nucleotide polymorphisms (SNPs) in the WTCCC (1958BC height) data. In addition, for publicly available summary statistics from large meta-analyses of four lipid traits, we publicly release imputed summary statistics at 1000G SNPs, which could not have been obtained using previously published methods, and demonstrate their accuracy by masking subsets of the data. We show that 1000G imputation using our approach increases the magnitude and statistical evidence of enrichment at genic versus non-genic loci for these traits, as compared with an analysis without 1000G imputation. Thus, imputation of summary statistics will be a valuable tool in future functional enrichment analyses. Availability and implementation: Publicly available software package available at http://bogdan.bioinformatics.ucla.edu/software/. Contact: bpasaniuc@mednet.ucla.edu or aprice@hsph.harvard.edu Supplementary information: Supplementary materials are available at Bioinformatics online. PMID:24990607
Combining statistical inference and decisions in ecology.
Williams, Perry J; Hooten, Mevin B
2016-09-01
Statistical decision theory (SDT) is a sub-field of decision theory that formally incorporates statistical investigation into a decision-theoretic framework to account for uncertainties in a decision problem. SDT provides a unifying analysis of three types of information: statistical results from a data set, knowledge of the consequences of potential choices (i.e., loss), and prior beliefs about a system. SDT links the theoretical development of a large body of statistical methods, including point estimation, hypothesis testing, and confidence interval estimation. The theory and application of SDT have mainly been developed and published in the fields of mathematics, statistics, operations research, and other decision sciences, but have had limited exposure in ecology. Thus, we provide an introduction to SDT for ecologists and describe its utility for linking the conventionally separate tasks of statistical investigation and decision making in a single framework. We describe the basic framework of both Bayesian and frequentist SDT, its traditional use in statistics, and discuss its application to decision problems that occur in ecology. We demonstrate SDT with two types of decisions: Bayesian point estimation and an applied management problem of selecting a prescribed fire rotation for managing a grassland bird species. Central to SDT, and decision theory in general, are loss functions. Thus, we also provide basic guidance and references for constructing loss functions for an SDT problem. © 2016 by the Ecological Society of America.
Statistically Qualified Neuro-Analytic system and Method for Process Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
1998-11-04
An apparatus and method for monitoring a process involves development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two steps: deterministic model adaption and stochastic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics,augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation emor minimization technique. Stochastic model adaptation involves qualifying any remaining uncertaintymore » in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system.« less
ERIC Educational Resources Information Center
Guo, Hongwen; Zu, Jiyun; Kyllonen, Patrick; Schmitt, Neal
2016-01-01
In this report, systematic applications of statistical and psychometric methods are used to develop and evaluate scoring rules in terms of test reliability. Data collected from a situational judgment test are used to facilitate the comparison. For a well-developed item with appropriate keys (i.e., the correct answers), agreement among various…
A New Statistics-Based Online Baseline Restorer for a High Count-Rate Fully Digital System.
Li, Hongdi; Wang, Chao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Liu, Shitao; An, Shaohui; Wong, Wai-Hoi
2010-04-01
The goal of this work is to develop a novel, accurate, real-time digital baseline restorer using online statistical processing for a high count-rate digital system such as positron emission tomography (PET). In high count-rate nuclear instrumentation applications, analog signals are DC-coupled for better performance. However, the detectors, pre-amplifiers and other front-end electronics would cause a signal baseline drift in a DC-coupling system, which will degrade the performance of energy resolution and positioning accuracy. Event pileups normally exist in a high-count rate system and the baseline drift will create errors in the event pileup-correction. Hence, a baseline restorer (BLR) is required in a high count-rate system to remove the DC drift ahead of the pileup correction. Many methods have been reported for BLR from classic analog methods to digital filter solutions. However a single channel BLR with analog method can only work under 500 kcps count-rate, and normally an analog front-end application-specific integrated circuits (ASIC) is required for the application involved hundreds BLR such as a PET camera. We have developed a simple statistics-based online baseline restorer (SOBLR) for a high count-rate fully digital system. In this method, we acquire additional samples, excluding the real gamma pulses, from the existing free-running ADC in the digital system, and perform online statistical processing to generate a baseline value. This baseline value will be subtracted from the digitized waveform to retrieve its original pulse with zero-baseline drift. This method can self-track the baseline without a micro-controller involved. The circuit consists of two digital counter/timers, one comparator, one register and one subtraction unit. Simulation shows a single channel works at 30 Mcps count-rate with pileup condition. 336 baseline restorer circuits have been implemented into 12 field-programmable-gate-arrays (FPGA) for our new fully digital PET system.
White, Sarah A; van den Broek, Nynke R
2004-05-30
Before introducing a new measurement tool it is necessary to evaluate its performance. Several statistical methods have been developed, or used, to evaluate the reliability and validity of a new assessment method in such circumstances. In this paper we review some commonly used methods. Data from a study that was conducted to evaluate the usefulness of a specific measurement tool (the WHO Colour Scale) is then used to illustrate the application of these methods. The WHO Colour Scale was developed under the auspices of the WHO to provide a simple portable and reliable method of detecting anaemia. This Colour Scale is a discrete interval scale, whereas the actual haemoglobin values it is used to estimate are on a continuous interval scale and can be measured accurately using electrical laboratory equipment. The methods we consider are: linear regression, correlation coefficients, paired t-tests plotting differences against mean values and deriving limits of agreement; kappa and weighted kappa statistics, sensitivity and specificity, an intraclass correlation coefficient and the repeatability coefficient. We note that although the definition and properties of each of these methods is well established inappropriate methods continue to be used in medical literature for assessing reliability and validity, as evidenced in the context of the evaluation of the WHO Colour Scale. Copyright 2004 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Subok; Jennings, Robert; Liu Haimo
Purpose: For the last few years, development and optimization of three-dimensional (3D) x-ray breast imaging systems, such as digital breast tomosynthesis (DBT) and computed tomography, have drawn much attention from the medical imaging community, either academia or industry. However, there is still much room for understanding how to best optimize and evaluate the devices over a large space of many different system parameters and geometries. Current evaluation methods, which work well for 2D systems, do not incorporate the depth information from the 3D imaging systems. Therefore, it is critical to develop a statistically sound evaluation method to investigate the usefulnessmore » of inclusion of depth and background-variability information into the assessment and optimization of the 3D systems. Methods: In this paper, we present a mathematical framework for a statistical assessment of planar and 3D x-ray breast imaging systems. Our method is based on statistical decision theory, in particular, making use of the ideal linear observer called the Hotelling observer. We also present a physical phantom that consists of spheres of different sizes and materials for producing an ensemble of randomly varying backgrounds to be imaged for a given patient class. Lastly, we demonstrate our evaluation method in comparing laboratory mammography and three-angle DBT systems for signal detection tasks using the phantom's projection data. We compare the variable phantom case to that of a phantom of the same dimensions filled with water, which we call the uniform phantom, based on the performance of the Hotelling observer as a function of signal size and intensity. Results: Detectability trends calculated using the variable and uniform phantom methods are different from each other for both mammography and DBT systems. Conclusions: Our results indicate that measuring the system's detection performance with consideration of background variability may lead to differences in system performance estimates and comparisons. For the assessment of 3D systems, to accurately determine trade offs between image quality and radiation dose, it is critical to incorporate randomness arising from the imaging chain including background variability into system performance calculations.« less
Statistical Short-Range Forecast Guidance for Cloud Ceilings Over the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
Lambert, Winifred C.
2001-01-01
This report describes the results of the AMU's Short-Range Statistical Forecasting task. The cloud ceiling forecast over the Shuttle Landing Facility (SLF) is a critical element in determining whether a Shuttle should land. Spaceflight Meteorology Group (SMG) forecasters find that ceilings at the SLF are challenging to forecast. The AMU was tasked to develop ceiling forecast equations to minimize the challenge. Studies in the literature that showed success in improving short-term forecasts of ceiling provided the basis for the AMU task. A 20-year record of cool-season hourly surface observations from stations in east-central Florida was used for the equation development. Two methods were used: an observations-based (OBS) method that incorporated data from all stations, and a persistence climatology (PCL) method used as the benchmark. Equations were developed for 1-, 2-, and 3-hour lead times at each hour of the day. A comparison between the two methods indicated that the OBS equations performed well and produced an improvement over the PCL equations. Therefore, the conclusion of the AMU study is that OBS equations produced more accurate forecasts than the PCL equations, and can be used in operations. They provide another tool with which to make the ceiling forecasts that are critical to safe Shuttle landings at KSC.
Statistical analysis to assess automated level of suspicion scoring methods in breast ultrasound
NASA Astrophysics Data System (ADS)
Galperin, Michael
2003-05-01
A well-defined rule-based system has been developed for scoring 0-5 the Level of Suspicion (LOS) based on qualitative lexicon describing the ultrasound appearance of breast lesion. The purposes of the research are to asses and select one of the automated LOS scoring quantitative methods developed during preliminary studies in benign biopsies reduction. The study has used Computer Aided Imaging System (CAIS) to improve the uniformity and accuracy of applying the LOS scheme by automatically detecting, analyzing and comparing breast masses. The overall goal is to reduce biopsies on the masses with lower levels of suspicion, rather that increasing the accuracy of diagnosis of cancers (will require biopsy anyway). On complex cysts and fibroadenoma cases experienced radiologists were up to 50% less certain in true negatives than CAIS. Full correlation analysis was applied to determine which of the proposed LOS quantification methods serves CAIS accuracy the best. This paper presents current results of applying statistical analysis for automated LOS scoring quantification for breast masses with known biopsy results. It was found that First Order Ranking method yielded most the accurate results. The CAIS system (Image Companion, Data Companion software) is developed by Almen Laboratories and was used to achieve the results.
Randomization in cancer clinical trials: permutation test and development of a computer program.
Ohashi, Y
1990-01-01
When analyzing cancer clinical trial data where the treatment allocation is done using dynamic balancing methods such as the minimization method for balancing the distribution of important prognostic factors in each arm, conservativeness occurs if such a randomization scheme is ignored and a simple unstratified analysis is carried out. In this paper, the above conservativeness is demonstrated by computer simulation, and the development of a computer program that carries out permutation tests of the log-rank statistics for clinical trial data where the allocation is done by the minimization method or a stratified permuted block design is introduced. We are planning to use this program in practice to supplement a usual stratified analysis and model-based methods such as the Cox regression. The most serious problem in cancer clinical trials in Japan is how to carry out the quality control or data management in trials that are initiated and conducted by researchers without support from pharmaceutical companies. In the final section of this paper, one international collaborative work for developing international guidelines on data management in clinical trials of bladder cancer is briefly introduced, and the differences between the system adopted in US/European statistical centers and the Japanese system is described. PMID:2269216
Uncertainty visualisation in the Model Web
NASA Astrophysics Data System (ADS)
Gerharz, L. E.; Autermann, C.; Hopmann, H.; Stasch, C.; Pebesma, E.
2012-04-01
Visualisation of geospatial data as maps is a common way to communicate spatially distributed information. If temporal and furthermore uncertainty information are included in the data, efficient visualisation methods are required. For uncertain spatial and spatio-temporal data, numerous visualisation methods have been developed and proposed, but only few tools for visualisation of data in a standardised way exist. Furthermore, usually they are realised as thick clients, and lack functionality of handling data coming from web services as it is envisaged in the Model Web. We present an interactive web tool for visualisation of uncertain spatio-temporal data developed in the UncertWeb project. The client is based on the OpenLayers JavaScript library. OpenLayers provides standard map windows and navigation tools, i.e. pan, zoom in/out, to allow interactive control for the user. Further interactive methods are implemented using jStat, a JavaScript library for statistics plots developed in UncertWeb, and flot. To integrate the uncertainty information into existing standards for geospatial data, the Uncertainty Markup Language (UncertML) was applied in combination with OGC Observations&Measurements 2.0 and JavaScript Object Notation (JSON) encodings for vector and NetCDF for raster data. The client offers methods to visualise uncertain vector and raster data with temporal information. Uncertainty information considered for the tool are probabilistic and quantified attribute uncertainties which can be provided as realisations or samples, full probability distributions functions and statistics. Visualisation is supported for uncertain continuous and categorical data. In the client, the visualisation is realised using a combination of different methods. Based on previously conducted usability studies, a differentiation between expert (in statistics or mapping) and non-expert users has been indicated as useful. Therefore, two different modes are realised together in the tool: (i) adjacent maps showing data and uncertainty separately, and (ii) multidimensional mapping providing different visualisation methods in combination to explore the spatial, temporal and uncertainty distribution of the data. Adjacent maps allow a simpler visualisation by separating value and uncertainty maps for non-experts and a first overview. The multidimensional approach allows a more complex exploration of the data for experts by browsing through the different dimensions. It offers the visualisation of maps, statistic plots and time series in different windows and sliders to interactively move through time, space and uncertainty (thresholds).
De Luca, Carlo J; Kline, Joshua C
2014-12-01
Over the past four decades, various methods have been implemented to measure synchronization of motor-unit firings. In this work, we provide evidence that prior reports of the existence of universal common inputs to all motoneurons and the presence of long-term synchronization are misleading, because they did not use sufficiently rigorous statistical tests to detect synchronization. We developed a statistically based method (SigMax) for computing synchronization and tested it with data from 17,736 motor-unit pairs containing 1,035,225 firing instances from the first dorsal interosseous and vastus lateralis muscles--a data set one order of magnitude greater than that reported in previous studies. Only firing data, obtained from surface electromyographic signal decomposition with >95% accuracy, were used in the study. The data were not subjectively selected in any manner. Because of the size of our data set and the statistical rigor inherent to SigMax, we have confidence that the synchronization values that we calculated provide an improved estimate of physiologically driven synchronization. Compared with three other commonly used techniques, ours revealed three types of discrepancies that result from failing to use sufficient statistical tests necessary to detect synchronization. 1) On average, the z-score method falsely detected synchronization at 16 separate latencies in each motor-unit pair. 2) The cumulative sum method missed one out of every four synchronization identifications found by SigMax. 3) The common input assumption method identified synchronization from 100% of motor-unit pairs studied. SigMax revealed that only 50% of motor-unit pairs actually manifested synchronization. Copyright © 2014 the American Physiological Society.
Determining Gender by Raman Spectroscopy of a Bloodstain.
Sikirzhytskaya, Aliaksandra; Sikirzhytski, Vitali; Lednev, Igor K
2017-02-07
The development of novel methods for forensic science is a constantly growing area of modern analytical chemistry. Raman spectroscopy is one of a few analytical techniques capable of nondestructive and nearly instantaneous analysis of a wide variety of forensic evidence, including body fluid stains, at the scene of a crime. In this proof-of-concept study, Raman microspectroscopy was utilized for gender identification based on dry bloodstains. Raman spectra were acquired in mapping mode from multiple spots on a bloodstain to account for intrinsic sample heterogeneity. The obtained Raman spectroscopic data showed highly similar spectroscopic features for female and male blood samples. Nevertheless, support vector machines (SVM) and artificial neuron network (ANN) statistical methods applied to the spectroscopic data allowed for differentiating between male and female bloodstains with high confidence. More specifically, the statistical approach based on a genetic algorithm (GA) coupled with an ANN classification showed approximately 98% gender differentiation accuracy for individual bloodstains. These results demonstrate the great potential of the developed method for forensic applications, although more work is needed for method validation. When this method is fully developed, a portable Raman instrument could be used for the infield identification of traces of body fluids and to obtain phenotypic information about the donor, including gender and race, as well as for the analysis of a variety of other types of forensic evidence.
NASA Astrophysics Data System (ADS)
Boning, Duane S.; Chung, James E.
1998-11-01
Advanced process technology will require more detailed understanding and tighter control of variation in devices and interconnects. The purpose of statistical metrology is to provide methods to measure and characterize variation, to model systematic and random components of that variation, and to understand the impact of variation on both yield and performance of advanced circuits. Of particular concern are spatial or pattern-dependencies within individual chips; such systematic variation within the chip can have a much larger impact on performance than wafer-level random variation. Statistical metrology methods will play an important role in the creation of design rules for advanced technologies. For example, a key issue in multilayer interconnect is the uniformity of interlevel dielectric (ILD) thickness within the chip. For the case of ILD thickness, we describe phases of statistical metrology development and application to understanding and modeling thickness variation arising from chemical-mechanical polishing (CMP). These phases include screening experiments including design of test structures and test masks to gather electrical or optical data, techniques for statistical decomposition and analysis of the data, and approaches to calibrating empirical and physical variation models. These models can be integrated with circuit CAD tools to evaluate different process integration or design rule strategies. One focus for the generation of interconnect design rules are guidelines for the use of "dummy fill" or "metal fill" to improve the uniformity of underlying metal density and thus improve the uniformity of oxide thickness within the die. Trade-offs that can be evaluated via statistical metrology include the improvements to uniformity possible versus the effect of increased capacitance due to additional metal.
Psycho-Pedagogical Measuring Bases of Educational Competences of Students
ERIC Educational Resources Information Center
Kenzhegaliev, Kulush K.; Shayakhmetova, Aisulu A.; Zulkarnayeva, Zhamila A.; Iksatova, Balzhan K.; Shonova, Bakytgul A.
2016-01-01
The relevance of the research problem is conditioned by the weak development of measurement, assessment of educational competences at an operational level, at the level of actions, by insufficient applications of psycho-pedagogical theories and methods of mathematical statistics. The aim of the work is to develop through teaching experiments the…
Demographic Accounting and Model-Building. Education and Development Technical Reports.
ERIC Educational Resources Information Center
Stone, Richard
This report describes and develops a model for coordinating a variety of demographic and social statistics within a single framework. The framework proposed, together with its associated methods of analysis, serves both general and specific functions. The general aim of these functions is to give numerical definition to the pattern of society and…
The Development of a Decision Support System for Mobile Learning: A Case Study in Taiwan
ERIC Educational Resources Information Center
Chiu, Po-Sheng; Huang, Yueh-Min
2016-01-01
While mobile learning (m-learning) has considerable potential, most of previous strategies for developing this new approach to education were analysed using the knowledge, experience and judgement of individuals, with the support of statistical software. Although these methods provide systematic steps for the implementation of m-learning…
Attitudes towards Participation in Business Development Programmes: An Ethnic Comparison in Sweden
ERIC Educational Resources Information Center
Abbasian, Saeid; Yazdanfar, Darush
2015-01-01
Purpose: The aim of the study is to investigate whether there are any differences between the attitudes towards participation in development programmes of entrepreneurs who are immigrants and those who are native-born. Design/methodology/approach: Several statistical methods, including a binary logistic regression model, were used to analyse a…
ERIC Educational Resources Information Center
Cardina, Catherine E.; DeNysschen, Carol
2018-01-01
Purpose: This study described professional development (PD) among public school physical education (PE) teachers and compared PE teachers to teachers of other subjects. Method: Data were collected from a nationally representative sample of public school teachers in the United States. Descriptive statistics were used to describe teachers' support…
The US EPA’s ToxCastTM program seeks to combine advances in high-throughput screening technology with methodologies from statistics and computer science to develop high-throughput decision support tools for assessing chemical hazard and risk. To develop new methods of analysis of...
Sample size and power considerations in network meta-analysis
2012-01-01
Background Network meta-analysis is becoming increasingly popular for establishing comparative effectiveness among multiple interventions for the same disease. Network meta-analysis inherits all methodological challenges of standard pairwise meta-analysis, but with increased complexity due to the multitude of intervention comparisons. One issue that is now widely recognized in pairwise meta-analysis is the issue of sample size and statistical power. This issue, however, has so far only received little attention in network meta-analysis. To date, no approaches have been proposed for evaluating the adequacy of the sample size, and thus power, in a treatment network. Findings In this article, we develop easy-to-use flexible methods for estimating the ‘effective sample size’ in indirect comparison meta-analysis and network meta-analysis. The effective sample size for a particular treatment comparison can be interpreted as the number of patients in a pairwise meta-analysis that would provide the same degree and strength of evidence as that which is provided in the indirect comparison or network meta-analysis. We further develop methods for retrospectively estimating the statistical power for each comparison in a network meta-analysis. We illustrate the performance of the proposed methods for estimating effective sample size and statistical power using data from a network meta-analysis on interventions for smoking cessation including over 100 trials. Conclusion The proposed methods are easy to use and will be of high value to regulatory agencies and decision makers who must assess the strength of the evidence supporting comparative effectiveness estimates. PMID:22992327
Freeman, Jenny V; Collier, Steve; Staniforth, David; Smith, Kevin J
2008-01-01
Background Statistics is relevant to students and practitioners in medicine and health sciences and is increasingly taught as part of the medical curriculum. However, it is common for students to dislike and under-perform in statistics. We sought to address these issues by redesigning the way that statistics is taught. Methods The project brought together a statistician, clinician and educational experts to re-conceptualize the syllabus, and focused on developing different methods of delivery. New teaching materials, including videos, animations and contextualized workbooks were designed and produced, placing greater emphasis on applying statistics and interpreting data. Results Two cohorts of students were evaluated, one with old style and one with new style teaching. Both were similar with respect to age, gender and previous level of statistics. Students who were taught using the new approach could better define the key concepts of p-value and confidence interval (p < 0.001 for both). They were more likely to regard statistics as integral to medical practice (p = 0.03), and to expect to use it in their medical career (p = 0.003). There was no significant difference in the numbers who thought that statistics was essential to understand the literature (p = 0.28) and those who felt comfortable with the basics of statistics (p = 0.06). More than half the students in both cohorts felt that they were comfortable with the basics of medical statistics. Conclusion Using a variety of media, and placing emphasis on interpretation can help make teaching, learning and understanding of statistics more people-centred and relevant, resulting in better outcomes for students. PMID:18452599
Statistical testing and power analysis for brain-wide association study.
Gong, Weikang; Wan, Lin; Lu, Wenlian; Ma, Liang; Cheng, Fan; Cheng, Wei; Grünewald, Stefan; Feng, Jianfeng
2018-04-05
The identification of connexel-wise associations, which involves examining functional connectivities between pairwise voxels across the whole brain, is both statistically and computationally challenging. Although such a connexel-wise methodology has recently been adopted by brain-wide association studies (BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and depression, the multiple correction and power analysis methods designed specifically for connexel-wise analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework for connexel-wise significance testing based on the Gaussian random field theory. It includes controlling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference methods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets. Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate and increase statistical power by appropriately utilizing the spatial information of fMRI data. Importantly, our method bypasses the need of non-parametric permutation to correct for multiple comparison, thus, it can efficiently tackle large datasets with high resolution fMRI images. The utility of our method is shown in a case-control study. Our approach can identify altered functional connectivities in a major depression disorder dataset, whereas existing methods fail. A software package is available at https://github.com/weikanggong/BWAS. Copyright © 2018 Elsevier B.V. All rights reserved.
Scalable privacy-preserving data sharing methodology for genome-wide association studies.
Yu, Fei; Fienberg, Stephen E; Slavković, Aleksandra B; Uhler, Caroline
2014-08-01
The protection of privacy of individual-level information in genome-wide association study (GWAS) databases has been a major concern of researchers following the publication of "an attack" on GWAS data by Homer et al. (2008). Traditional statistical methods for confidentiality and privacy protection of statistical databases do not scale well to deal with GWAS data, especially in terms of guarantees regarding protection from linkage to external information. The more recent concept of differential privacy, introduced by the cryptographic community, is an approach that provides a rigorous definition of privacy with meaningful privacy guarantees in the presence of arbitrary external information, although the guarantees may come at a serious price in terms of data utility. Building on such notions, Uhler et al. (2013) proposed new methods to release aggregate GWAS data without compromising an individual's privacy. We extend the methods developed in Uhler et al. (2013) for releasing differentially-private χ(2)-statistics by allowing for arbitrary number of cases and controls, and for releasing differentially-private allelic test statistics. We also provide a new interpretation by assuming the controls' data are known, which is a realistic assumption because some GWAS use publicly available data as controls. We assess the performance of the proposed methods through a risk-utility analysis on a real data set consisting of DNA samples collected by the Wellcome Trust Case Control Consortium and compare the methods with the differentially-private release mechanism proposed by Johnson and Shmatikov (2013). Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kowalczyk, Donna Lee
The purpose of this study was to examine K--5 elementary teachers' reported beliefs about the use, function, and importance of Direct Instruction, the Discovery Method, and the Inquiry Method in the instruction of science in their classrooms. Eighty-two teachers completed questionnaires about their beliefs, opinions, uses, and ideas about each of the three instructional methods. Data were collected and analyzed using the Statistical Package of the Social Sciences (SPSS). Descriptive statistics and Chi-Square analyses indicated that the majority of teachers reported using all three methods to varying degrees in their classrooms. Guided Discovery was reported by the teachers as being the most frequently used method to teach science, while Pure Discovery was reportedly used the least frequently. The majority of teachers expressed the belief that a blend of all three instructional methods is the most effective strategy for teaching science at the elementary level. The teachers also reported a moderate level of confidence in teaching science. Students' ability levels, learning styles, and time/class schedule were identified as factors that most influence teachers' instructional choice. Student participation in hands-on activities, creative thinking ability, and developing an understanding of scientific concepts were reported as the learning behaviors most associated with student success in science. Data obtained from this study provide information about the nature and uses of Direct Instruction, the Discovery Method, and the Inquiry Method and teachers' perceptions and beliefs about each method's use in science education. Learning more about the science teaching and learning environment may help teachers, administrators, curriculum developers, and researchers gain greater insights about student learning, instructional effectiveness, and science curriculum development at the elementary level.
An analytic technique for statistically modeling random atomic clock errors in estimation
NASA Technical Reports Server (NTRS)
Fell, P. J.
1981-01-01
Minimum variance estimation requires that the statistics of random observation errors be modeled properly. If measurements are derived through the use of atomic frequency standards, then one source of error affecting the observable is random fluctuation in frequency. This is the case, for example, with range and integrated Doppler measurements from satellites of the Global Positioning and baseline determination for geodynamic applications. An analytic method is presented which approximates the statistics of this random process. The procedure starts with a model of the Allan variance for a particular oscillator and develops the statistics of range and integrated Doppler measurements. A series of five first order Markov processes is used to approximate the power spectral density obtained from the Allan variance.
NASA Astrophysics Data System (ADS)
Beach, Shaun E.; Semkow, Thomas M.; Remling, David J.; Bradt, Clayton J.
2017-07-01
We have developed accessible methods to demonstrate fundamental statistics in several phenomena, in the context of teaching electronic signal processing in a physics-based college-level curriculum. A relationship between the exponential time-interval distribution and Poisson counting distribution for a Markov process with constant rate is derived in a novel way and demonstrated using nuclear counting. Negative binomial statistics is demonstrated as a model for overdispersion and justified by the effect of electronic noise in nuclear counting. The statistics of digital packets on a computer network are shown to be compatible with the fractal-point stochastic process leading to a power-law as well as generalized inverse Gaussian density distributions of time intervals between packets.