Science.gov

Sample records for developed three-dimensional software

  1. Potentials for Spatial Geometry Curriculum Development with Three-Dimensional Dynamic Geometry Software in Lower Secondary Mathematics

    ERIC Educational Resources Information Center

    Miyazaki, Mikio; Kimiho, Chino; Katoh, Ryuhei; Arai, Hitoshi; Ogihara, Fumihiro; Oguchi, Yuichi; Morozumi, Tatsuo; Kon, Mayuko; Komatsu, Kotaro

    2012-01-01

    Three-dimensional dynamic geometry software has the power to enhance students' learning of spatial geometry. The purpose of this research is to clarify what potential using three-dimensional dynamic geometry software can offer us in terms of how to develop the spatial geometry curriculum in lower secondary schools. By focusing on the impacts the…

  2. Potentials for Spatial Geometry Curriculum Development with Three-Dimensional Dynamic Geometry Software in Lower Secondary Mathematics

    ERIC Educational Resources Information Center

    Miyazaki, Mikio; Kimiho, Chino; Katoh, Ryuhei; Arai, Hitoshi; Ogihara, Fumihiro; Oguchi, Yuichi; Morozumi, Tatsuo; Kon, Mayuko; Komatsu, Kotaro

    2012-01-01

    Three-dimensional dynamic geometry software has the power to enhance students' learning of spatial geometry. The purpose of this research is to clarify what potential using three-dimensional dynamic geometry software can offer us in terms of how to develop the spatial geometry curriculum in lower secondary schools. By focusing on the impacts the…

  3. [Development of software for three-dimensional reconstruction and automatic quantification of intravascular ultrasound images. Initial experience].

    PubMed

    Sanz, Roberto; Bodí, Vicente; Sanchís, Juan; Moratal, David; Núñez, Julio; Palau, Patricia; García, Diego; Rieta, José J; Sanchís, Juan M; Chorro, Francisco J; Llácer, Angel

    2006-09-01

    Quantification of intravascular ultrasound (IVUS) images is essential in ischemic heart disease and interventional cardiology. Manual analysis is very slow and expensive. We describe an automated computerized method of analysis that requires only minimal initial input from a specialist. This study was carried out by interventional cardiologists and biomedical engineers working in close collaboration. We developed software in which it was necessary only to identify the media-adventitia boundary in a few images taken from the whole sequence. A three-dimensional reconstruction was then generated from each sequence, from which measurements of areas and volumes could be derived automatically. In total, 2300 randomly selected images from video sequences of 11 patients were analyzed. Results obtained using the proposed method differed only minimally from those obtained with the manual method: for vessel area measurements, the variability was 0.08 (0.07) (mean absolute error [standard deviation] normalized to the actual value; this corresponds to an error of 0.08 mm(2) per mm(2) of vessel area); for lumen area, 0.11 (0.11) (normalized), and for plaque volume, 0.5 (0.3) (normalized). Regions with severe lesions (<4 mm(2)) were correctly identified in more than 90% of cases. Specialist time needed for each reconstruction was 10 (8) minutes (vs 60 [10] minutes for manual analysis; P< .0001). The computerized method used dramatically reduced the time and effort needed for IVUS sequence analysis, and the automated measurements obtained were very promising.

  4. Development of three-dimensional nanoengineered architectures

    NASA Astrophysics Data System (ADS)

    Matsuura, Naomi

    2003-10-01

    Nanostructured arrays with feature sizes <100 nm are desirable for a wide variety of applications in the fields of optics and electronics. One limitation of traditional lithographic methods is that such small feature sizes are difficult to cost-effectively pattern at high throughputs. Consequently, it is very important to develop novel strategies for rapidly fabricating three-dimensional nanostructured arrays. True engineering of nanoscale architectures also requires the ability to control the material composition and the structural arrangement which, until now, has been limited. This thesis demonstrates two new high-throughput methods of three-dimensional nanostructured synthesis. These techniques yield large-area, array-type nanostructures with 2D and 3D periodicities, with feature sizes <100 nm. Specifically, 2D periodic air-hole arrays and 3D periodic ferroelectric inverse opal films are fabricated. In the first part of the thesis, 2D periodic, nanoporous arrays were fabricated for the first time using conventional, broad-beam ion implantation of heavy ions through self-organized, nanochannel alumina (NCA) templates. The significant features of this technique are that minimum feature sizes of ˜40 nm are achievable in a parallel process over a large area (˜cm 2) using a non-material specific process, with successful nanoscale patterning achieved in both single crystal InP and SrTiO3. In addition, this work represents the first study of the selective etch character of amorphous SrTiO3. The nanoengineering of complex profiles, including membrane structures, is also demonstrated using this novel technique. In the second part of the thesis, the first fabrication of 3D periodic, ferroelectric, BaTiO3 inverse opals, and a simple, adjustable process for the fabrication of large, high-quality, inverse opal ferroelectric films are reported. Highly ordered, ferroelectric, Pb-doped Ba0.7Sr 0.3TiO3 (BST) inverse opal films were fabricated by spin-coating a sol

  5. Three-Dimensional Liver Surgery Simulation: Computer-Assisted Surgical Planning with Three-Dimensional Simulation Software and Three-Dimensional Printing().

    PubMed

    Oshiro, Yukio; Ohkohchi, Nobuhiro

    2017-06-01

    To perform accurate hepatectomy without injury, it is necessary to understand the anatomical relationship among the branches of Glisson's sheath, hepatic veins, and tumor. In Japan, three-dimensional (3D) preoperative simulation for liver surgery is becoming increasingly common, and liver 3D modeling and 3D hepatectomy simulation by 3D analysis software for liver surgery have been covered by universal healthcare insurance since 2012. Herein, we review the history of virtual hepatectomy using computer-assisted surgery (CAS) and our research to date, and we discuss the future prospects of CAS. We have used the SYNAPSE VINCENT medical imaging system (Fujifilm Medical, Tokyo, Japan) for 3D visualization and virtual resection of the liver since 2010. We developed a novel fusion imaging technique combining 3D computed tomography (CT) with magnetic resonance imaging (MRI). The fusion image enables us to easily visualize anatomic relationships among the hepatic arteries, portal veins, bile duct, and tumor in the hepatic hilum. In 2013, we developed an original software, called Liversim, which enables real-time deformation of the liver using physical simulation, and a randomized control trial has recently been conducted to evaluate the use of Liversim and SYNAPSE VINCENT for preoperative simulation and planning. Furthermore, we developed a novel hollow 3D-printed liver model whose surface is covered with frames. This model is useful for safe liver resection, has better visibility, and the production cost is reduced to one-third of a previous model. Preoperative simulation and navigation with CAS in liver resection are expected to help planning and conducting a surgery and surgical education. Thus, a novel CAS system will contribute to not only the performance of reliable hepatectomy but also to surgical education.

  6. Three-dimensional perspective software for representation of digital imagery data. [Olympic National Park, Washington

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1980-01-01

    A generalized three dimensional perspective software capability was developed within the framework of a low cost computer oriented geographically based information system using the Earth Resources Laboratory Applications Software (ELAS) operating subsystem. This perspective software capability, developed primarily to support data display requirements at the NASA/NSTL Earth Resources Laboratory, provides a means of displaying three dimensional feature space object data in two dimensional picture plane coordinates and makes it possible to overlay different types of information on perspective drawings to better understand the relationship of physical features. An example topographic data base is constructed and is used as the basic input to the plotting module. Examples are shown which illustrate oblique viewing angles that convey spatial concepts and relationships represented by the topographic data planes.

  7. Development of an interactive anatomical three-dimensional eye model.

    PubMed

    Allen, Lauren K; Bhattacharyya, Siddhartha; Wilson, Timothy D

    2015-01-01

    The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a digital, interactive, three-dimensional (3D) model of the muscles and cranial nerves of the oculomotor system. Development of the 3D model utilized data from the Visible Human Project (VHP) dataset that was refined using multiple forms of 3D software. The model was then paired with a virtual user interface in order to create a novel 3D learning tool for the human oculomotor system. Development of the virtual eye model was done while attempting to adhere to the principles of cognitive load theory (CLT) and the reduction of extraneous load in particular. The detailed approach, digital tools employed, and the CLT guidelines are described herein.

  8. Three-dimensional Printing in Developing Countries

    PubMed Central

    Ibrahim, Ahmed M. S.; Jose, Rod R.; Rabie, Amr N.; Gerstle, Theodore L.; Lee, Bernard T.

    2015-01-01

    Summary: The advent of 3-dimensional (3D) printing technology has facilitated the creation of customized objects. The lack of regulation in developing countries renders conventional means of addressing various healthcare issues challenging. 3D printing may provide a venue for addressing many of these concerns in an inexpensive and easily accessible fashion. These may potentially include the production of basic medical supplies, vaccination beads, laboratory equipment, and prosthetic limbs. As this technology continues to improve and prices are reduced, 3D printing has the potential ability to promote initiatives across the entire developing world, resulting in improved surgical care and providing a higher quality of healthcare to its residents. PMID:26301132

  9. Is Three-Dimensional Soft Tissue Prediction by Software Accurate?

    PubMed

    Nam, Ki-Uk; Hong, Jongrak

    2015-11-01

    The authors assessed whether virtual surgery, performed with a soft tissue prediction program, could correctly simulate the actual surgical outcome, focusing on soft tissue movement. Preoperative and postoperative computed tomography (CT) data for 29 patients, who had undergone orthognathic surgery, were obtained and analyzed using the Simplant Pro software. The program made a predicted soft tissue image (A) based on presurgical CT data. After the operation, we obtained actual postoperative CT data and an actual soft tissue image (B) was generated. Finally, the 2 images (A and B) were superimposed and analyzed differences between the A and B. Results were grouped in 2 classes: absolute values and vector values. In the absolute values, the left mouth corner was the most significant error point (2.36 mm). The right mouth corner (2.28 mm), labrale inferius (2.08 mm), and the pogonion (2.03 mm) also had significant errors. In vector values, prediction of the right-left side had a left-sided tendency, the superior-inferior had a superior tendency, and the anterior-posterior showed an anterior tendency. As a result, with this program, the position of points tended to be located more left, anterior, and superior than the "real" situation. There is a need to improve the prediction accuracy for soft tissue images. Such software is particularly valuable in predicting craniofacial soft tissues landmarks, such as the pronasale. With this software, landmark positions were most inaccurate in terms of anterior-posterior predictions.

  10. Development of Three-Dimensional Completion of Complex Objects

    ERIC Educational Resources Information Center

    Soska, Kasey C.; Johnson, Scott P.

    2013-01-01

    Three-dimensional (3D) object completion, the ability to perceive the backs of objects seen from a single viewpoint, emerges at around 6 months of age. Yet, only relatively simple 3D objects have been used in assessing its development. This study examined infants' 3D object completion when presented with more complex stimuli. Infants…

  11. Development of Three-Dimensional Completion of Complex Objects

    ERIC Educational Resources Information Center

    Soska, Kasey C.; Johnson, Scott P.

    2013-01-01

    Three-dimensional (3D) object completion, the ability to perceive the backs of objects seen from a single viewpoint, emerges at around 6 months of age. Yet, only relatively simple 3D objects have been used in assessing its development. This study examined infants' 3D object completion when presented with more complex stimuli. Infants…

  12. Three-dimensional cell to tissue development process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)

    2008-01-01

    An improved three-dimensional cell to tissue development process using a specific time varying electromagnetic force, pulsed, square wave, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region.

  13. [Study on the methods for establishing virtual three-dimensional models of cerebral arteries with the three-dimensional moulding software].

    PubMed

    Wei, Xin; Xie, Xiaodong; Wang, Chaohua

    2007-12-01

    This study was conducted to establish the methods of virtual three-dimensional cerebral arteries models by use of three-dimensional moulding software. The virtual models of the cerebral arteries were established using the three-dimensional moulding software of 3D Studio MAX R3 with 46 cases of normal cerebral DSA image as the original. The results showed there was similarity in appearance between the virtual cerebral arteries and DSA image. This is of benefit to understanding the vascular three-dimensional spatial relation in visual sense. Several models of different variant anatomy could be easily established on the copy files of the virtual cerebral arteries model. The virtual model could help learners to create and increase the three-dimensional space concept of arteries and aneurysms in clinical teaching. The results indicated that the virtual three-dimensional cerebral arteries models could display the three-dimensional spatial relation of the cerebral arterial system distinctly, and could serve as a morphologic foundation in the researches on vascular disease.

  14. Development of a new three-dimensional cranial imaging system.

    PubMed

    Littlefield, Timothy R; Kelly, Kevin M; Cherney, Jennifer C; Beals, Stephen P; Pomatto, Jeanne K

    2004-01-01

    The development of a new three-dimensional (3D) imaging system designed to obtain a digital image of an infant's cranium is described. This system is intended to replace the manual plaster-casting technique currently used during the process of fabricating cranial remodeling bands. The system uses 18 triangulated digital cameras and the projection of random infrared patterns to capture a 360 degrees image of an infant's cranium instantaneously, including the face and top of the head. Accuracy was calculated by comparing models digitized with this system with the same models digitized with high-precision inspection equipment. Safety was documented under guidelines established by the American Council of Governmental Industrial Hygienists. Images were acquired in 0.008 seconds and processed for viewing in software within 2.5 minutes. Accuracy was calculated to be +/-0.236 mm. Hazard analysis confirmed the system to be safe for direct continuous exposure. The data acquired may be viewed as a point cloud, wire frame, or surface on which a digital photograph (ie, texture) is automatically overlaid. Physical models are created by exporting the digital data to a multiaxis milling machine or stereolithography machine. Quantitative data (linear and surface measurements, curvature, and volumes) can be obtained directly from the digital data. The cranial imaging system is a safe and accurate method of obtaining digital 3D images of an infant's cranium. Along with the obvious clinical and manufacturing benefits, it also has significant potential as a research tool for documenting the natural history and evaluating the treatment of plagiocephaly.

  15. Development of three-dimensional memory (3D-M)

    NASA Astrophysics Data System (ADS)

    Yu, Hong-Yu; Shen, Chen; Jiang, Lingli; Dong, Bin; Zhang, Guobiao

    2016-10-01

    Since the invention of 3-D ROM in 1996, three-dimensional memory (3D-M) has been under development for nearly two decades. In this presentation, we'll review the 3D-M history and compare different 3D-Ms (including 3D-OTP from Matrix Semiconductor, 3D-NAND from Samsung and 3D-XPoint from Intel/Micron).

  16. Three-Dimensional Path Planning Software-Assisted Transjugular Intrahepatic Portosystemic Shunt: A Technical Modification

    SciTech Connect

    Tsauo, Jiaywei Luo, Xuefeng; Ye, Linchao; Li, Xiao

    2015-06-15

    PurposeThis study was designed to report our results with a modified technique of three-dimensional (3D) path planning software assisted transjugular intrahepatic portosystemic shunt (TIPS).Methods3D path planning software was recently developed to facilitate TIPS creation by using two carbon dioxide portograms acquired at least 20° apart to generate a 3D path for overlay needle guidance. However, one shortcoming is that puncturing along the overlay would be technically impossible if the angle of the liver access set and the angle of the 3D path are not the same. To solve this problem, a prototype 3D path planning software was fitted with a utility to calculate the angle of the 3D path. Using this, we modified the angle of the liver access set accordingly during the procedure in ten patients.ResultsFailure for technical reasons occurred in three patients (unsuccessful wedged hepatic venography in two cases, software technical failure in one case). The procedure was successful in the remaining seven patients, and only one needle pass was required to obtain portal vein access in each case. The course of puncture was comparable to the 3D path in all patients. No procedure-related complication occurred following the procedures.ConclusionsAdjusting the angle of the liver access set to match the angle of the 3D path determined by the software appears to be a favorable modification to the technique of 3D path planning software assisted TIPS.

  17. Artificial three-dimensional niches deconstruct pancreas development in vitro.

    PubMed

    Greggio, Chiara; De Franceschi, Filippo; Figueiredo-Larsen, Manuel; Gobaa, Samy; Ranga, Adrian; Semb, Henrik; Lutolf, Matthias; Grapin-Botton, Anne

    2013-11-01

    In the context of a cellular therapy for diabetes, methods for pancreatic progenitor expansion and subsequent differentiation into insulin-producing beta cells would be extremely valuable. Here we establish three-dimensional culture conditions in Matrigel that enable the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the medium composition we generate either hollow spheres, which are mainly composed of pancreatic progenitors, or complex organoids that spontaneously undergo pancreatic morphogenesis and differentiation. The in vitro maintenance and expansion of pancreatic progenitors require active Notch and FGF signaling, thus recapitulating in vivo niche signaling interactions. Our experiments reveal new aspects of pancreas development, such as a community effect by which small groups of cells better maintain progenitor properties and expand more efficiently than isolated cells, as well as the requirement for three-dimensionality. Finally, growth conditions in chemically defined biomaterials pave the way for testing the biophysical and biochemical properties of the niche that sustains pancreatic progenitors.

  18. Three-Dimensional Cell Cultures in Drug Discovery and Development

    PubMed Central

    Fang, Ye; Eglen, Richard M.

    2017-01-01

    The past decades have witnessed significant efforts toward the development of three-dimensional (3D) cell cultures as systems that better mimic in vivo physiology. Today, 3D cell cultures are emerging, not only as a new tool in early drug discovery but also as potential therapeutics to treat disease. In this review, we assess leading 3D cell culture technologies and their impact on drug discovery, including spheroids, organoids, scaffolds, hydrogels, organs-on-chips, and 3D bioprinting. We also discuss the implementation of these technologies in compound identification, screening, and development, ranging from disease modeling to assessment of efficacy and safety profiles. PMID:28520521

  19. Software for compartmental translation analysis and virtual three-dimensional visualization of the pivot shift phenomenon.

    PubMed

    Suero, Eduardo M; Citak, Musa; Choi, Daniel; Bosscher, Marianne Roberta Frederiek; Citak, Mustafa; Pearle, Andrew D; Plaskos, Christopher

    2011-01-01

    Anterior cruciate ligament (ACL) injury may cause knee instability and may result in damage to the menisci and the articular cartilage. The pivot shift test is commonly used to identify rotational instability of the knee following injury to the ACL. The magnitude of lateral compartment translation correlates well with the grade of the pivot shift. However, commonly used navigation systems do not readily provide individualized compartmental translation. We aimed to develop software to (a) quantify individual medial and lateral compartmental translation in the knee during the pivot shift test, and (b) generate animated three-dimensional renderings of recorded pivot shift examinations. Twelve paired cadaveric knees were used to test the software. Three mechanized pivot shift tests were performed on each knee with the ACL intact and again after sectioning the ACL. Using the Pivot Shift Processor, we successfully analyzed the data recorded using the navigation system. After sectioning the ACL, there was a greater increase in tibiofemoral translation in the lateral compartment compared to the medial compartment. The Pivot Shift Visualizer successfully produced a 3D rendering of the knee joint and the recorded pivot shift maneuvers. This virtual representation of the pivot shift phenomenon from multiple points of view allows for efficient side-by-side comparison of tibiofemoral motion tracking across conditions, which is not possible in the in vivo / in vitro settings. This, in turn, could lead to a better understanding of the kinematics in play during the pivot shift phenomenon.

  20. Development of Three-Dimensional DRAGON Grid Technology

    NASA Technical Reports Server (NTRS)

    Zheng, Yao; Kiou, Meng-Sing; Civinskas, Kestutis C.

    1999-01-01

    For a typical three dimensional flow in a practical engineering device, the time spent in grid generation can take 70 percent of the total analysis effort, resulting in a serious bottleneck in the design/analysis cycle. The present research attempts to develop a procedure that can considerably reduce the grid generation effort. The DRAGON grid, as a hybrid grid, is created by means of a Direct Replacement of Arbitrary Grid Overlapping by Nonstructured grid. The DRAGON grid scheme is an adaptation to the Chimera thinking. The Chimera grid is a composite structured grid, composing a set of overlapped structured grids, which are independently generated and body-fitted. The grid is of high quality and amenable for efficient solution schemes. However, the interpolation used in the overlapped region between grids introduces error, especially when a sharp-gradient region is encountered. The DRAGON grid scheme is capable of completely eliminating the interpolation and preserving the conservation property. It maximizes the advantages of the Chimera scheme and adapts the strengths of the unstructured and while at the same time keeping its weaknesses minimal. In the present paper, we describe the progress towards extending the DRAGON grid technology into three dimensions. Essential and programming aspects of the extension, and new challenges for the three-dimensional cases, are addressed.

  1. Development of a three-dimensional turbulent duct flow analysis

    NASA Technical Reports Server (NTRS)

    Eiseman, P. R.; Levy, R.; Mcdonald, H.; Briley, W. R.

    1978-01-01

    A method for computing three-dimensional turbulent subsonic flow in curved ducts is described. An approximate set of governing equations is given for viscous flows which have a primary flow direction. The derivation is coordinate invariant, and the resulting equations are expressed in terms of tensors. General tube-like coordinates were developed for a general class of geometries applicable to many internal flow problems. The coordinates are then particularized to pipes having superelliptic cross sections whose shape can vary continuously between a circle and a near rectangle. The analysis is applied to a series of relevant aerodynamic problems including transition from nearly square to round pipes and flow through a pipe with an S-shaped bend.

  2. Three-Dimensional Root Phenotyping with a Novel Imaging and Software Platform1[C][W][OA

    PubMed Central

    Clark, Randy T.; MacCurdy, Robert B.; Jung, Janelle K.; Shaff, Jon E.; McCouch, Susan R.; Aneshansley, Daniel J.; Kochian, Leon V.

    2011-01-01

    A novel imaging and software platform was developed for the high-throughput phenotyping of three-dimensional root traits during seedling development. To demonstrate the platform’s capacity, plants of two rice (Oryza sativa) genotypes, Azucena and IR64, were grown in a transparent gellan gum system and imaged daily for 10 d. Rotational image sequences consisting of 40 two-dimensional images were captured using an optically corrected digital imaging system. Three-dimensional root reconstructions were generated and analyzed using a custom-designed software, RootReader3D. Using the automated and interactive capabilities of RootReader3D, five rice root types were classified and 27 phenotypic root traits were measured to characterize these two genotypes. Where possible, measurements from the three-dimensional platform were validated and were highly correlated with conventional two-dimensional measurements. When comparing gellan gum-grown plants with those grown under hydroponic and sand culture, significant differences were detected in morphological root traits (P < 0.05). This highly flexible platform provides the capacity to measure root traits with a high degree of spatial and temporal resolution and will facilitate novel investigations into the development of entire root systems or selected components of root systems. In combination with the extensive genetic resources that are now available, this platform will be a powerful resource to further explore the molecular and genetic determinants of root system architecture. PMID:21454799

  3. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing.

    PubMed

    Wan, Wei; Sun, Junliang; Su, Jie; Hovmöller, Sven; Zou, Xiaodong

    2013-12-01

    Implementation of a computer program package for automated collection and processing of rotation electron diffraction (RED) data is described. The software package contains two computer programs: RED data collection and RED data processing. The RED data collection program controls the transmission electron microscope and the camera. Electron beam tilts at a fine step (0.05-0.20°) are combined with goniometer tilts at a coarse step (2.0-3.0°) around a common tilt axis, which allows a fine relative tilt to be achieved between the electron beam and the crystal in a large tilt range. An electron diffraction (ED) frame is collected at each combination of beam tilt and goniometer tilt. The RED data processing program processes three-dimensional ED data generated by the RED data collection program or by other approaches. It includes shift correction of the ED frames, peak hunting for diffraction spots in individual ED frames and identification of these diffraction spots as reflections in three dimensions. Unit-cell parameters are determined from the positions of reflections in three-dimensional reciprocal space. All reflections are indexed, and finally a list with hkl indices and intensities is output. The data processing program also includes a visualizer to view and analyse three-dimensional reciprocal lattices reconstructed from the ED frames. Details of the implementation are described. Data collection and data processing with the software RED are demonstrated using a calcined zeolite sample, silicalite-1. The structure of the calcined silicalite-1, with 72 unique atoms, could be solved from the RED data by routine direct methods.

  4. Three-dimensional Radio and X-Ray Modeling and Data Analysis Software: Revealing Flare Complexity

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Fleishman, Gregory D.; Kuznetsov, Alexey A.; Kontar, Eduard P.; Gary, Dale E.

    2015-02-01

    Many problems in solar physics require analysis of imaging data obtained in multiple wavelength domains with differing spatial resolution in a framework supplied by advanced three-dimensional (3D) physical models. To facilitate this goal, we have undertaken a major enhancement of our IDL-based simulation tools developed earlier for modeling microwave and X-ray emission. The enhanced software architecture allows the user to (1) import photospheric magnetic field maps and perform magnetic field extrapolations to generate 3D magnetic field models; (2) investigate the magnetic topology by interactively creating field lines and associated flux tubes; (3) populate the flux tubes with user-defined nonuniform thermal plasma and anisotropic, nonuniform, nonthermal electron distributions; (4) investigate the spatial and spectral properties of radio and X-ray emission calculated from the model; and (5) compare the model-derived images and spectra with observational data. The package integrates shared-object libraries containing fast gyrosynchrotron emission codes, IDL-based soft and hard X-ray codes, and potential and linear force-free field extrapolation routines. The package accepts user-defined radiation and magnetic field extrapolation plug-ins. We use this tool to analyze a relatively simple single-loop flare and use the model to constrain the magnetic 3D structure and spatial distribution of the fast electrons inside this loop. We iteratively compute multi-frequency microwave and multi-energy X-ray images from realistic magnetic flux tubes obtained from pre-flare extrapolations, and compare them with imaging data obtained by SDO, NoRH, and RHESSI. We use this event to illustrate the tool's use for the general interpretation of solar flares to address disparate problems in solar physics.

  5. THREE-DIMENSIONAL RADIO AND X-RAY MODELING AND DATA ANALYSIS SOFTWARE: REVEALING FLARE COMPLEXITY

    SciTech Connect

    Nita, Gelu M.; Fleishman, Gregory D.; Gary, Dale E.; Kuznetsov, Alexey A.; Kontar, Eduard P.

    2015-02-01

    Many problems in solar physics require analysis of imaging data obtained in multiple wavelength domains with differing spatial resolution in a framework supplied by advanced three-dimensional (3D) physical models. To facilitate this goal, we have undertaken a major enhancement of our IDL-based simulation tools developed earlier for modeling microwave and X-ray emission. The enhanced software architecture allows the user to (1) import photospheric magnetic field maps and perform magnetic field extrapolations to generate 3D magnetic field models; (2) investigate the magnetic topology by interactively creating field lines and associated flux tubes; (3) populate the flux tubes with user-defined nonuniform thermal plasma and anisotropic, nonuniform, nonthermal electron distributions; (4) investigate the spatial and spectral properties of radio and X-ray emission calculated from the model; and (5) compare the model-derived images and spectra with observational data. The package integrates shared-object libraries containing fast gyrosynchrotron emission codes, IDL-based soft and hard X-ray codes, and potential and linear force-free field extrapolation routines. The package accepts user-defined radiation and magnetic field extrapolation plug-ins. We use this tool to analyze a relatively simple single-loop flare and use the model to constrain the magnetic 3D structure and spatial distribution of the fast electrons inside this loop. We iteratively compute multi-frequency microwave and multi-energy X-ray images from realistic magnetic flux tubes obtained from pre-flare extrapolations, and compare them with imaging data obtained by SDO, NoRH, and RHESSI. We use this event to illustrate the tool's use for the general interpretation of solar flares to address disparate problems in solar physics.

  6. Technical Development of Slurry Three-Dimensional Printer

    NASA Astrophysics Data System (ADS)

    Jiang, Cho-Pei; Hsu, Huang-Jan; Lee, Shyh-Yuan

    2017-09-01

    The aim of this paper is to review the technical development of slurry three-dimensional printer (3DP) which based on photo-polymerization and constrained surface method. Basically, slurry consists of ceramic powder, resin and photo-initiator. The light engines for solidifying the photo-curable slurry can be classified as laser, liquid crystal panel (LCD), digital light processing (DLP). The slurry can be reacted and solidified by selective ray according to the reaction spectrum of photo-initiator. Ceramic powder used in this study is zirconia oxide. Experimental results show that ceramic particle size affects the viscosity of slurry severely resulting in low accuracy and the occurrence of micro crack in the layer casting procedure. Therefore, the effect of particle size on the curability and accuracy of built green part is discussed. A single dental crown is proposed to be fabricated by these three light engines as a benchmark for comparison. In addition, the cost and the limitation are compared in the aspect of dental crown fabrication. Consequently, the lowest cost is LCD-type slurry 3DP system. DLP-type slurry 3DP can produce green body with the fastest fabrication time. The volumetric error of sintered part that made by these three fabrication methods is similar because the composition of slurry is the same.

  7. Developments in three-dimensional stereo brightfield microscopy.

    PubMed

    Willis, B; Turner, J N; Collins, D N; Roysam, B; Holmes, T J

    1993-04-01

    We present recent developments of a widefield computer/microscope system and image reconstruction algorithm for producing three-dimensional (3D) increased depth of field images in the form of brightfield stereo pairs of thick specimens. The theoretical principle of this image reconstruction technique is based on Weiner-type inverse filtering. A number of extensions and refinements to our previous work have included further testing of the system with a broader class of specimens and the implementation of several pragmatic refinements important for future 3D microscopy systems. These refinements include histogram modification routines for improving visualization, a preprocessing routine to eliminate edge artifacts due to circular convolution and other effects, stereo viewing angle optimization, a rule of thumb estimate for the axial sampling rate, and incorporation of a variation of the Fast Fourier Transform and filtering operations that significantly reduce computational time. Images of spyrogyra, neonatal rat hippocampal neurons, and cervical/vaginal cell smears are presented to show the utility of these methods for 3D visualization. The primary advantages of these methods are that they operate with an ordinary transmitted light microscope and are inexpensively implemented on a personal computer with reasonable computation time.

  8. Development of Three-Dimensional Object Completion in Infancy

    ERIC Educational Resources Information Center

    Soska, Kasey C.; Johnson, Scott P.

    2008-01-01

    Three-dimensional (3D) object completion was investigated by habituating 4- and 6-month-old infants (n = 24 total) with a computer-generated wedge stimulus that pivoted 15[degrees], providing only a limited view. Two displays, rotating 360[degrees], were then shown: a complete, solid volume and an incomplete, hollow form composed only of the sides…

  9. Development of a Three-Dimensional Hand Model Using Three-Dimensional Stereophotogrammetry: Assessment of Image Reproducibility

    PubMed Central

    Hoevenaren, Inge A.; Meulstee, J.; Krikken, E.; Bergé, S. J.; Ulrich, D. J. O.; Maal, Thomas J. J.

    2015-01-01

    Purpose Using three-dimensional (3D) stereophotogrammetry precise images and reconstructions of the human body can be produced. Over the last few years, this technique is mainly being developed in the field of maxillofacial reconstructive surgery, creating fusion images with computed tomography (CT) data for precise planning and prediction of treatment outcome. Though, in hand surgery 3D stereophotogrammetry is not yet being used in clinical settings. Methods A total of 34 three-dimensional hand photographs were analyzed to investigate the reproducibility. For every individual, 3D photographs were captured at two different time points (baseline T0 and one week later T1). Using two different registration methods, the reproducibility of the methods was analyzed. Furthermore, the differences between 3D photos of men and women were compared in a distance map as a first clinical pilot testing our registration method. Results The absolute mean registration error for the complete hand was 1.46 mm. This reduced to an error of 0.56 mm isolating the region to the palm of the hand. When comparing hands of both sexes, it was seen that the male hand was larger (broader base and longer fingers) than the female hand. Conclusions This study shows that 3D stereophotogrammetry can produce reproducible images of the hand without harmful side effects for the patient, so proving to be a reliable method for soft tissue analysis. Its potential use in everyday practice of hand surgery needs to be further explored. PMID:26366860

  10. Recent developments in three-dimensional numerical estuarine models

    USGS Publications Warehouse

    Cheng, Ralph T.; Smith, Peter E.; Casulli, Vincenzo

    1993-01-01

    For a fixed cost, computing power increases 5 to 10 times every five years. The readily available computing resources have inspired new modal formulations and innovative model applications. Significant progress has been advanced in three-dimensional numerical estuarine modeling within the past three or four years. This paper attempts to review and summarize properties of new 3-D estuarine hydrodynamic models. The emphasis of the review is placed on the formulation, numerical methods. The emphasis of the review is placed on the formulation, numerical methods, spatial and temporal resolution, computational efficiency, and turbulence closure of new models. Recent research has provided guidelines for the proper use of 3-D models involving in the σ-transformation. Other models resort to a fixed level discretization in the vertical. The semi-implicit treatment in time-stepping models appears to have gained momentum. Future research in three-dimensional numerical modeling remains to be on computational efficiency and turbulent closure.

  11. Three-dimensional representation software as image enhancement tool in small-bowel capsule endoscopy: a feasibility study.

    PubMed

    Koulaouzidis, Anastasios; Karargyris, Alexandros; Rondonotti, Emanuele; Noble, Colin L; Douglas, Sarah; Alexandridis, Efstratios; Zahid, Ali M; Bathgate, Andrew J; Trimble, Ken C; Plevris, John N

    2013-11-01

    Three-dimensional imaging in capsule endoscopy is not currently feasible due to hardware limitations. However, software algorithms that enable three-dimensional reconstruction in capsule endoscopy are available. Feasibility study. A phantom was designed to test the accuracy of three-dimensional reconstruction. Thereafter, 192 small-bowel capsule endoscopy images (of vascular: 50; inflammatory: 73; protruding structures: 69) were reviewed with the aid of a purpose-built three-dimensional reconstruction software. Seven endoscopists rated visualisation improved or non-improved. Subgroup analyses performed for diagnostic category, diagnosis, image surface morphology and colour and SBCE equipment used (PillCam(®) vs. MiroCam(®)). Overall, phantom experiments showed that the three-dimensional reconstruction software was accurate at 90% of red, 70% of yellow and 45% of white phantom models. Enhanced visualisation for 56% of vascular, 23% of inflammatory and <10% of protruding structures was noted (P=0.007, 0.172 and 0.008, respectively). Furthermore, three-dimensional software application enhanced 53.7% of red, 21.8% of white, 17.3% of red and white, and 9.2% of images of lesions with colour similar to that of the surrounding mucosa, P<0.0001. Application of a three-dimensional reconstruction software in capsule endoscopy leads to image enhancement for a significant proportion of vascular, but less so for inflammatory and protruding lesions. Until optics technology allows hardware-enabled three-dimensional reconstruction, it seems a plausible alternative. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Photonic Paint Developed with Metallic Three-Dimensional Photonic Crystals

    PubMed Central

    Sun, Po; Williams, John D.

    2012-01-01

    This work details the design and simulation of an inconspicuous photonic paint that can be applied onto an object for anticounterfeit and tag, track, and locate (TTL) applications. The paint consists of three-dimensional metallic tilted woodpile photonic crystals embedded into a visible and infrared transparent polymer film, which can be applied to almost any surface. The tilted woodpile photonic crystals are designed with a specific pass band detectable at nearly all incident angles of light. When painted onto a surface, these crystals provide a unique reflective infra-red optical signature that can be easily observed and recorded to verify the location or contents of a package.

  13. Design and test of a PC-based portable three-dimensional ultrasound software system Ultra3D.

    PubMed

    Xu, X George; Hum Na, Yong; Zhang, Tiantian

    2008-02-01

    Currently, portable ultrasound units lack three-dimensional (3D) image display, limiting their potential usefulness especially under remote and hostile operating environments where information must be intuitive and objective. A freehand 3D image processing and visualization software package, Ultra3D, has been developed and tested, especially to work with a miniaturized linear-array transducer probe that is connected to a laptop PC. This paper presents the software design and method to integrate Ultra3D into Terason's miniaturized SmartProbe for freehand 3D ultrasound imaging. Since images generated by Ultra3D are in a digital imaging and communications in medicine (DICOM) format, data sharing with others is easy.

  14. Three dimensional planning target volumes: a model and a software tool.

    PubMed

    Austin-Seymour, M; Kalet, I; McDonald, J; Kromhout-Schiro, S; Jacky, J; Hummel, S; Unger, J

    1995-12-01

    Three dimensional (3D) target volumes are an essential component of conformal therapy because the goal is to shape the treatment volume to the target volume. The planning target volume (PTV) is defined by ICRU 50 as the clinical target volume (CTV) plus a margin to ensure that the CTV receives the prescribed dose. The margin must include all interfractional and intrafractional treatment variations. This paper describes a software tool that automatically generates 3D PTVs from CTVs for lung cancers and immobile head and neck cancers. Values for the interfractional and intrafractional treatment variations were determined by a literature review and by targeted interviews with physicians. The software tool is written in Common LISP and conforms to the specifications for shareable software of the Radiotherapy Treatment Planning Tools Collaborative Working Group. The tool is a rule-based expert system in which the inputs are the CTV contours, critical structure contours, and qualitative information about the specific patient. The output is PTV contours, which are a cylindrical expansion of the CTV. A model for creating PTVs from CTVs is embedded in the tool. The interfractional variation of setup uncertainty and the intrafractional variations of movement of the CTV (e.g., respiration) and patient motion are included in the model. Measured data for the component variations is consistent with modeling the components as independent samples from 3D Gaussian distributions. The components are combined using multivariate normal statistics to yield the cylindrical expansion factors. Rules are used to represent the values of the components for certain patient conditions (e.g., setup uncertainty for a head and neck patient immobilized in a mask). The tool uses a rule interpreter to combine qualitative information about a specific patient with rules representing the value of the components and to enter the appropriate component values for that patient into the cylindrical expansion

  15. Three-dimensional analysis of pulmonary nodules by MSCT with Advanced Lung Analysis (ALA1) software.

    PubMed

    Volterrani, L; Mazzei, M A; Scialpi, M; Carcano, M; Carbone, S F; Ricci, V; Guazzi, G; Lupattelli, L

    2006-04-01

    The purpose of this study was to test the reproducibility of the three-dimensional (3D) Advanced Lung Analysis software (3D-ALA, GE Healthcare) in the estimation of pulmonary nodule volume. We retrospectively reviewed the unenhanced multislice CT scans (Lightspeed Pro 16 GE) of 77 patients with a solitary pulmonary nodule (n=71) or metastatic pulmonary disease (n=6). A total of 103 pulmonary nodules (19 well-circumscribed, 45 juxtavascular and 39 juxtapleural) were analysed grouped into five classes based on diameter: <5 mm, 10 nodules (9.7%); >or=5 to <10 mm, 25 nodules (24.2%); >or=10 mm to <15 mm, 41 nodules (39.8%); >or=5 to <18 mm, 14 nodules (13.6% ); >or=8 to <30 mm, 13 nodules (12.62%). The following acquisition parameters were used: slice thickness 0.625 mm, reconstruction interval 0.4 mm, pitch 0.562:1, 140 kV, 300 mAs, field of view 13 cm, bone kernel. For each of the 103 nodules three, 3D volume measurements were obtained by the 3D-ALA software. The reproducibility of nodule segmentation was evaluated according to a visual score (1=optimal, >or=95%; 2=fair, 90-95%; 3=poor, software allowed segmentation in all nodules (type 1 segmentation n=43, type 2 n=35, type 3 segmentation n=25). ALA-1 provided an identical 3D volume measurement in 62 nodules: [16 out of 19 well circumscribed (84.2%), 31 out of 45 juxtavascular (68.8%), 15 out of 39 juxtapleural (38.4%)]. Repeatability of 3D volume measurement was not possible in 41 out of 103 nodules [3 out of 19 (15.7%) well-circumscribed, 14 out of 45 (31.1%) juxtavascular, 24 out of 39 (61.5%) juxtapleural]. Among the 41 nodules with nonrepeatable 3D volume measurement, segmentation was scored as 1 in 2 out of 41 (4.8%), as 2 in 15 out of 41 (36.5%) and as 3 in 24 out of 41 (58.5%). The

  16. Three-dimensional preoperative planning software and a novel information transfer technology improve glenoid component positioning.

    PubMed

    Iannotti, Joseph; Baker, Justin; Rodriguez, Eric; Brems, John; Ricchetti, Eric; Mesiha, Mena; Bryan, Jason

    2014-05-07

    We hypothesized that a novel surgical method, in which three-dimensional (3-D) preoperative planning software is generated to create a patient-specific surgical model that is used with a reusable and adjustable tool, could substantially improve the positioning accuracy of the glenoid guide pin used in total shoulder arthroplasty. We tested this method using bone models from patients with shoulder pathology and compared the results with those achieved using surgical methods representing the current standard of care. Three surgeons with a variety of surgical experience placed a guide pin in nine bone models from patients with a variety of glenohumeral arthritis severity using (1) standard instrumentation alone, (2) standard instrumentation and 3-D preoperative surgical planning, and (3) the reusable transfer device and 3-D preoperative surgical planning. A postoperative 3-D computed tomography scan of the bone model was made and registered to the preoperative plan, and the differences between the actual and planned pin locations and trajectories were measured. Use of the standard instrumentation combined with 3-D preoperative planning software improved guide pin positioning compared with standard instrumentation and preoperative planning using 2-D imaging. The accuracy of pin positioning increased by 4.5° ± 1.0° in version (p < 0.001), 3.3° ± 1.3° in inclination (p = 0.013), and 0.4 ± 0.2 mm in location (p = 0.042). Use of the adjustable and reusable device and the 3-D software improved pin positioning by a further 3.7° ± 0.9° in version, 8.1° ± 1.2° in inclination, and 1.2 ± 0.2 mm in location (p < 0.001 for all) compared with standard instrumentation and the 3-D software; the improvement compared with use of standard instrumentation with 2-D imaging was 8.2° ± 0.9° in version, 11.4° ± 1.2° in inclination, and 1.7 ± 0.2 mm in location (p < 0.001 for all). Use of 3-D preoperative planning and use of the patient-specific bone model and

  17. Development and Application of a Three-Dimensional Artificial Visual System

    PubMed Central

    Coggins, James M.; Fogarty, Kevin E.; Fay, Frederic S.

    1985-01-01

    A three-dimensional artificial visual system has been developed to aid in the analysis of three-dimensional fluorescence images of smooth muscle cells. The artificial visual system consists of three sets of three-dimensional spatial filters that locate the discrete bodies of protein concentration in a cell, classify the concentration bodies as globular or oval, and determine the three-dimensional orientation of the oval bodies. A graphic model of the protein distribution is then created. ImagesFigure 1Figure 2

  18. Accuracy of open-source software segmentation and paper-based printed three-dimensional models.

    PubMed

    Szymor, Piotr; Kozakiewicz, Marcin; Olszewski, Raphael

    2016-02-01

    In this study, we aimed to verify the accuracy of models created with the help of open-source Slicer 3.6.3 software (Surgical Planning Lab, Harvard Medical School, Harvard University, Boston, MA, USA) and the Mcor Matrix 300 paper-based 3D printer. Our study focused on the accuracy of recreating the walls of the right orbit of a cadaveric skull. Cone beam computed tomography (CBCT) of the skull was performed (0.25-mm pixel size, 0.5-mm slice thickness). Acquired DICOM data were imported into Slicer 3.6.3 software, where segmentation was performed. A virtual model was created and saved as an .STL file and imported into Netfabb Studio professional 4.9.5 software. Three different virtual models were created by cutting the original file along three different planes (coronal, sagittal, and axial). All models were printed with a Selective Deposition Lamination Technology Matrix 300 3D printer using 80 gsm A4 paper. The models were printed so that their cutting plane was parallel to the paper sheets creating the model. Each model (coronal, sagittal, and axial) consisted of three separate parts (∼200 sheets of paper each) that were glued together to form a final model. The skull and created models were scanned with a three-dimensional (3D) optical scanner (Breuckmann smart SCAN) and were saved as .STL files. Comparisons of the orbital walls of the skull, the virtual model, and each of the three paper models were carried out with GOM Inspect 7.5SR1 software. Deviations measured between the models analysed were presented in the form of a colour-labelled map and covered with an evenly distributed network of points automatically generated by the software. An average of 804.43 ± 19.39 points for each measurement was created. Differences measured in each point were exported as a .csv file. The results were statistically analysed using Statistica 10, with statistical significance set at p < 0.05. The average number of points created on models for each measurement was 804

  19. [Extraction of buildings three-dimensional information from high-resolution satellite imagery based on Barista software].

    PubMed

    Zhang, Pei-feng; Hu, Yuan-man; He, Hong-shi

    2010-05-01

    The demand for accurate and up-to-date spatial information of urban buildings is becoming more and more important for urban planning, environmental protection, and other vocations. Today's commercial high-resolution satellite imagery offers the potential to extract the three-dimensional information of urban buildings. This paper extracted the three-dimensional information of urban buildings from QuickBird imagery, and validated the precision of the extraction based on Barista software. It was shown that the extraction of three-dimensional information of the buildings from high-resolution satellite imagery based on Barista software had the advantages of low professional level demand, powerful universality, simple operation, and high precision. One pixel level of point positioning and height determination accuracy could be achieved if the digital elevation model (DEM) and sensor orientation model had higher precision and the off-Nadir View Angle was relatively perfect.

  20. Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software

    PubMed Central

    Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique

    2011-01-01

    Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this paper, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. PMID:21769885

  1. Development of a Three-Dimensional PSE Code for Compressible Flows: Stability of Three-Dimensional Compressible Boundary Layers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; Jeyasingham, Samarasingham

    1999-01-01

    A program is developed to investigate the linear stability of three-dimensional compressible boundary layer flows over bodies of revolutions. The problem is formulated as a two dimensional (2D) eigenvalue problem incorporating the meanflow variations in the normal and azimuthal directions. Normal mode solutions are sought in the whole plane rather than in a line normal to the wall as is done in the classical one dimensional (1D) stability theory. The stability characteristics of a supersonic boundary layer over a sharp cone with 50 half-angle at 2 degrees angle of attack is investigated. The 1D eigenvalue computations showed that the most amplified disturbances occur around x(sub 2) = 90 degrees and the azimuthal mode number for the most amplified disturbances range between m = -30 to -40. The frequencies of the most amplified waves are smaller in the middle region where the crossflow dominates the instability than the most amplified frequencies near the windward and leeward planes. The 2D eigenvalue computations showed that due to the variations in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the most amplified disturbances are shifted to 120 degrees compared to 90 degrees for the parallel theory. It is also observed that the nonparallel amplification rates are smaller than that is obtained from the parallel theory.

  2. IBSIMU: A three-dimensional simulation software for charged particle optics

    SciTech Connect

    Kalvas, T.; Tarvainen, O.; Ropponen, T.; Steczkiewicz, O.; Aerje, J.; Clark, H.

    2010-02-15

    A general-purpose three-dimensional (3D) simulation code IBSIMU for charged particle optics with space charge is under development at JYFL. The code was originally developed for designing a slit-beam plasma extraction and nanosecond scale chopping for pulsed neutron generator, but has been developed further and has been used for many applications. The code features a nonlinear FDM Poisson's equation solver based on fast stabilized biconjugate gradient method with ILU0 preconditioner for solving electrostatic fields. A generally accepted nonlinear plasma model is used for plasma extraction. Magnetic fields can be imported to the simulations from other programs. The particle trajectories are solved using adaptive Runge-Kutta method. Steady-state and time-dependent problems can be modeled in cylindrical coordinates, two-dimensional (slit) geometry, or full 3D. The code is used via C++ programming language for versatility but it features an interactive easy-to-use postprocessing tool for diagnosing fields and particle trajectories. The open source distribution and public documentation make the code well suited for scientific use. IBSIMU has been used for modeling the 14 GHz ECR ion source extraction and for designing a four-electrode extraction for a 2.45 GHz microwave ion source at Jyvaeskylae. A grid extraction has also been designed for producing large uniform beam for creating conditions similar to solar wind. The code has also been used to design a H{sup -} extraction with electron dumping for the Cyclotron Institute of Texas A and M University.

  3. Measuring stone volume - three-dimensional software reconstruction or an ellipsoid algebra formula?

    PubMed

    Finch, William; Johnston, Richard; Shaida, Nadeem; Winterbottom, Andrew; Wiseman, Oliver

    2014-04-01

    To determine the optimal method for assessing stone volume, and thus stone burden, by comparing the accuracy of scalene, oblate, and prolate ellipsoid volume equations with three-dimensional (3D)-reconstructed stone volume. Kidney stone volume may be helpful in predicting treatment outcome for renal stones. While the precise measurement of stone volume by 3D reconstruction can be accomplished using modern computer tomography (CT) scanning software, this technique is not available in all hospitals or with routine acute colic scanning protocols. Therefore, maximum diameters as measured by either X-ray or CT are used in the calculation of stone volume based on a scalene ellipsoid formula, as recommended by the European Association of Urology. In all, 100 stones with both X-ray and CT (1-2-mm slices) were reviewed. Complete and partial staghorn stones were excluded. Stone volume was calculated using software designed to measure tissue density of a certain range within a specified region of interest. Correlation coefficients among all measured outcomes were compared. Stone volumes were analysed to determine the average 'shape' of the stones. The maximum stone diameter on X-ray was 3-25 mm and on CT was 3-36 mm, with a reasonable correlation (r = 0.77). Smaller stones (<9 mm) trended towards prolate ellipsoids ('rugby-ball' shaped), stones of 9-15 mm towards oblate ellipsoids (disc shaped), and stones >15 mm towards scalene ellipsoids. There was no difference in stone shape by location within the kidney. As the average shape of renal stones changes with diameter, no single equation for estimating stone volume can be recommended. As the maximum diameter increases, calculated stone volume becomes less accurate, suggesting that larger stones have more asymmetric shapes. We recommend that research looking at stone clearance rates should use 3D-reconstructed stone volumes when available, followed by prolate, oblate, or scalene ellipsoid formulas depending on the

  4. The development of a three-dimensional partially elliptic flow computer program for combustor research

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.

    1978-01-01

    A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.

  5. Bergamo 3D Rhinoplasty Software: Select, Store, and Share Surgical Maneuvers in a Three-Dimensional Nasal Model.

    PubMed

    Codazzi, Denis; Bruschi, Stefano; Mazzola, Riccardo F; Bocchiotti, Maria Alessandra; Bogetti, Paolo; Ortelli, Luca; Robotti, Enrico

    2016-02-01

    Rhinoplasty is considered the most challenging chapter of plastic surgery due to its variability and the continuing evolution of surgical maneuvers. Worksheets became essential to unequivocally record surgical steps and to demonstrate their reciprocal effects/interactions during the follow-up period. After 1989, no other software was created to upgrade the Gunter Rhinoplasty Diagrams, the forefather and benchmark of the rhinoplasty "virtual" worksheet maker. The authors built a new standard three-dimensional nasal framework model in STL format. All the basic components were modified to simulate the interaction among sutures, grafts, and the most common maneuvers performed during rhinoplasty. The authors created a total of 669 (99 built-in units and 285 unilateral units) three-dimensional figures which can be selected by the surgeon from among 230 options. The interface for the surgeon is Bergamo 3D Rhinoplasty Software. Bergamo 3D Rhinoplasty Software is made up of the database section, which gathers all the patient's personal information and documents, and the surgery section, which groups multiple selection lists in 10 surgical areas. Eighty percent of the options modify the original shape of the three-dimensional model. Several options help the surgeon to tailor the final result and to export it both in desktop software and in a real three-dimensional printed model. Bergamo Rhinoplasty Software revolutionizes the concept of patient and surgical data storage. Furthermore, the immediacy of three dimensions facilitates communication with patients, allows case sharing with colleagues, simplifies teaching, and encourages the surgeon's self-analysis and professional growth. Customization of the original model and of the maneuvers is the main limitation of the software, because of the currently existing technology in 2014.

  6. IBSIMU: a three-dimensional simulation software for charged particle optics.

    PubMed

    Kalvas, T; Tarvainen, O; Ropponen, T; Steczkiewicz, O; Arje, J; Clark, H

    2010-02-01

    A general-purpose three-dimensional (3D) simulation code IBSIMU for charged particle optics with space charge is under development at JYFL. The code was originally developed for designing a slit-beam plasma extraction and nanosecond scale chopping for pulsed neutron generator, but has been developed further and has been used for many applications. The code features a nonlinear FDM Poisson's equation solver based on fast stabilized biconjugate gradient method with ILU0 preconditioner for solving electrostatic fields. A generally accepted nonlinear plasma model is used for plasma extraction. Magnetic fields can be imported to the simulations from other programs. The particle trajectories are solved using adaptive Runge-Kutta method. Steady-state and time-dependent problems can be modeled in cylindrical coordinates, two-dimensional (slit) geometry, or full 3D. The code is used via C++ programming language for versatility but it features an interactive easy-to-use postprocessing tool for diagnosing fields and particle trajectories. The open source distribution and public documentation make the code well suited for scientific use. IBSIMU has been used for modeling the 14 GHz ECR ion source extraction and for designing a four-electrode extraction for a 2.45 GHz microwave ion source at Jyväskylä. A grid extraction has also been designed for producing large uniform beam for creating conditions similar to solar wind. The code has also been used to design a H(-) extraction with electron dumping for the Cyclotron Institute of Texas A&M University.

  7. Visualization software for a global three-dimensional upper atmosphere model

    NASA Technical Reports Server (NTRS)

    Foster, Benjamin T.; Roble, Raymond G.; Ridley, E. Cicely

    1995-01-01

    A software environment has been developed to assist in analysis and visualization of numerical outputs from NCAR's thermospheric general circulation models. The codes produce vector graphics, raster imagery, and time dependent animation of model results, with provision for comparison with empirical models and relevant data from satellite and ground based instruments. Separate programs are executed on the NCAR CRAY YMP8/864 and HAO divisional Sun workstations, providing both large volume highspeed batch and custom interactive computing environments. The visualization system assembles a suite of existing software packages including NCAR Graphics, IDL, netCDF, and the Xt intrinsics library with the Athena widget set.

  8. Xlink Analyzer: software for analysis and visualization of cross-linking data in the context of three-dimensional structures.

    PubMed

    Kosinski, Jan; von Appen, Alexander; Ori, Alessandro; Karius, Kai; Müller, Christoph W; Beck, Martin

    2015-03-01

    Structural characterization of large multi-subunit protein complexes often requires integrating various experimental techniques. Cross-linking mass spectrometry (XL-MS) identifies proximal protein residues and thus is increasingly used to map protein interactions and determine the relative orientation of subunits within the structure of protein complexes. To fully adapt XL-MS as a structure characterization technique, we developed Xlink Analyzer, a software tool for visualization and analysis of XL-MS data in the context of the three-dimensional structures. Xlink Analyzer enables automatic visualization of cross-links, identifies cross-links violating spatial restraints, calculates violation statistics, maps chemically modified surfaces, and allows interactive manipulations that facilitate analysis of XL-MS data and aid designing new experiments. We demonstrate these features by mapping interaction sites within RNA polymerase I and the Rvb1/2 complex. Xlink Analyzer is implemented as a plugin to UCSF Chimera, a standard structural biology software tool, and thus enables seamless integration of XL-MS data with, e.g. fitting of X-ray structures to EM maps. Xlink Analyzer is available for download at http://www.beck.embl.de/XlinkAnalyzer.html.

  9. Development of an Interactive Anatomical Three-Dimensional Eye Model

    ERIC Educational Resources Information Center

    Allen, Lauren K.; Bhattacharyya, Siddhartha; Wilson, Timothy D.

    2015-01-01

    The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a…

  10. Developments and trends in three-dimensional mesh generation

    NASA Technical Reports Server (NTRS)

    Baker, Timothy J.

    1989-01-01

    An intense research effort over the last few years has produced several competing and apparently diverse methods for generating meshes. Recent progress is reviewed and the central themes are emphasized which form a solid foundation for future developments in mesh generation.

  11. Development of an Interactive Anatomical Three-Dimensional Eye Model

    ERIC Educational Resources Information Center

    Allen, Lauren K.; Bhattacharyya, Siddhartha; Wilson, Timothy D.

    2015-01-01

    The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a…

  12. Development of three-dimensional radiotherapy techniques in breast cancer

    NASA Astrophysics Data System (ADS)

    Coles, Charlotte E.

    Radiotherapy following conservation surgery decreases local relapse and death from breast cancer. Currently, the challenge is to minimise the morbidity caused by this treatment without losing efficacy. Despite many advances in radiation techniques in other sites of the body, the majority of breast cancer patients are still planned and treated using 2-dimensional simple radiotherapy techniques. In addition, breast irradiation currently consumes 30% of the UK's radiotherapy workload. Therefore, any change to more complex treatment should be of proven benefit. The primary objective of this research is to develop and evaluate novel radiotherapy techniques to decrease irradiation of normal structures and improve localisation of the tumour bed. I have developed a forward-planned intensity modulated (IMRT) breast radiotherapy technique, which has shown improved dosimetry results compared to standard breast radiotherapy. Subsequently, I have developed and implemented a phase III randomised controlled breast IMRT trial. This National Cancer Research Network adopted trial will answer an important question regarding the clinical benefit of breast IMRT. It will provide DNA samples linked with high quality clinical outcome data, for a national translational radiogenomics study investigating variation in normal tissue toxicity. Thus, patients with significant late normal tissue side effects despite good dose homogeneity will provide the best model for finding differences due to underlying genetics. I evaluated a novel technique using high definition free-hand 3-dimensional (3D) ultrasound in a phantom study, and the results suggested that this is an accurate and reproducible method for tumour bed localisation. I then compared recognised methods of tumour bed localisation with the 3D ultrasound method in a clinical study. The 3D ultrasound technique appeared to accurately represent the shape and spatial position of the tumour cavity. This tumour bed localisation research

  13. Three-dimensional developing flow model for photocatalytic monolith reactors

    SciTech Connect

    Hossain, Md.M.; Raupp, G.B.; Hay, S.O.; Obee, T.N.

    1999-06-01

    A first-principles mathematical model describes performance of a titania-coated honeycomb monolith photocatalytic oxidation (PCO) reactor for air purification. The single-channel, 3-D convection-diffusion-reaction model assumes steady-state operation, negligible axial dispersion, and negligible homogeneous reaction. The reactor model accounts rigorously for entrance effects arising from the developing fluid-flow field and uses a previously developed first-principles radiation-field submodel for the UV flux profile down the monolith length. The model requires specification of an intrinsic photocatalytic reaction rate dependent on local UV light intensity and local reactant concentration, and uses reaction-rate expressions and kinetic parameters determined independently using a flat-plate reactor. Model predictions matched experimental pilot-scale formaldehyde conversion measurements for a range of inlet formaldehyde concentrations, air humidity levels, monolith lengths, and for various monolith/lamp-bank configurations. This agreement was realized without benefit of any adjustable photocatalytic reactor model parameters, radiation-field submodel parameters, or kinetic submodel parameters. The model tends to systematically overpredict toluene conversion data by about 33%, which falls within the accepted limits of experimental kinetic parameter accuracy. With further validation, the model could be used in PCO reactor design and to develop quantitative energy utilization metrics.

  14. Development of volcanic passive margins: Three-dimensional laboratory models

    NASA Astrophysics Data System (ADS)

    Callot, Jean-Paul; Geoffroy, Laurent; Brun, Jean-Pierre

    2002-12-01

    Continental breakup above an anomalously hot mantle may lead to the development of volcanic margins. Volcanic margins are characterized by (1) thick seaward dipping lava flow sequences, (2) central intrusive complexes associated with dyke swarms parallel to the coast, and (3) high seismic velocity bodies in the lower crust attributable to magma underplating. A conceptual model for volcanic margins development has recently been proposed based on onshore studies of the Greenland margins and the British Tertiary Igneous Province. It is proposed that the long-lived central intrusions are genetically linked to underlying persistent zones of mantle fusion. These localized melting domains (or soft spots), equivalent to small mantle diapirs, may locally soften the extending continental lithosphere. The low-viscosity diapirs would (1) localize tectonic strain and (2) feed the volcanic margin with magma. Thus such soft spots can control the along-strike magmatic and tectonic segmentation of volcanic margins. Recent geophysical investigations appear to show that the along-strike structure of volcanic passive margins is compatible with such a segmentation process. Here we present a set of scaled experiments designed to study how such localized rheological heterogeneities in the sub-Moho mantle may have a mechanical effect on continental breakup. Four-layer models were constructed using sand and silicone putties to represent the brittle and ductile layers of both crust and mantle. The soft spots are simulated by low-viscosity silicone putty emplaced within the brittle material. At the scale of the entire breakup zone, the soft spots display an oceanic-type strength profile defining low-strength zones where continental breakup is initiated. The rift orientation and segmentation are strongly controlled by the distribution of the low-viscosity heterogeneities, rather than by the direction of regional extension. The experiments are compared with the geometry and segmentation of the

  15. Photogrammetry of the three-dimensional shape and texture of a nanoscale particle using scanning electron microscopy and free software.

    PubMed

    Gontard, Lionel C; Schierholz, Roland; Yu, Shicheng; Cintas, Jesús; Dunin-Borkowski, Rafal E

    2016-10-01

    We apply photogrammetry in a scanning electron microscope (SEM) to study the three-dimensional shape and surface texture of a nanoscale LiTi2(PO4)3 particle. We highlight the fact that the technique can be applied non-invasively in any SEM using free software (freeware) and does not require special sample preparation. Three-dimensional information is obtained in the form of a surface mesh, with the texture of the sample stored as a separate two-dimensional image (referred to as a UV Map). The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass, while the UV map can be used to study the surface texture using conventional image processing techniques. We also illustrate the use of 3D printing to visualize the reconstructed model.

  16. Complementing anatomy education using three-dimensional anatomy mobile software applications on tablet computers.

    PubMed

    Lewis, T L; Burnett, B; Tunstall, R G; Abrahams, P H

    2014-04-01

    Anatomy has traditionally been a cornerstone of medical education, which has been taught via dissection and didactic lectures. The rising prevalence of mobile tablet technology means medical software applications ("apps") play an increasingly important role in medical education. The applications highlighted in this article will aid anatomical educators to identify which are the most useful in clinical, academic, and educational environments. These have been systematically identified by downloading all applications with keywords related to anatomy and then carrying out qualitative assessment. Novel anatomy applications from developers such as Visible Body, 3D4Medical, and Pocket Anatomy allow students to visualize and manipulate complex anatomical structures using detailed 3D models. They often contain additional content including clinical correlations and a range of media from instructional videos to interactive quiz functions. The strength of tablet technology lies in its ability to consolidate and present anatomical information to the user in the most appropriate manner for their learning style. The only question mark remains over the level of detail and accuracy of these applications. Innovative medical educators who embrace tablet technology will find that anatomy applications serve as a useful learning tool when used in conjunction with existing teaching setups.

  17. Real Stereopsis Test Using a Three-Dimensional Display with Tridef Software

    PubMed Central

    Han, Jinu; Han, So Young; Lee, Seung Koo; Lee, Jong Bok

    2014-01-01

    Purpose To investigate horizontal image disparity in three-dimensional (3-D) perception using 3-D animations in normal control patients and patients with intermittent exotropia, anisometropic amblyopia, and partially accommodative esotropia. Materials and Methods A total of 133 subjects were included. Stereopsis was measured using the Titmus Stereo test (Stereo Optical Inc., Chicago, IL, USA) and a 3-D stereopsis test with a 15 inch 3-D display laptop, adjusting 3-D parameters of 0 mm horizontal disparity to 15 mm horizontal disparity. Results When compared with normal controls, the average threshold of the 3-D stereopsis test was significantly reduced for esotropia patients (p<0.001) and for anisometric amblyopia patients (p<0.001), compared to normal controls. No significant difference was observed between normal controls and intermittent exotropia patients (p=0.082). The 3-D stereopsis test was correlated with the Titmus Stereo test (Spearman's rho=0.690, p<0.001). Mean difference in stereoacuity was 1.323 log seconds of arc (95% limits of agreement: 0.486 to 2.112), and 125 (92.5%) patients were within the limits of agreement. Conclusion This study demonstrated that a 3-D stereopsis test with animation is highly correlated with the Titmus Stereo test; nevertheless, 3-D stereopsis with animations generates more image disparities than the conventional Titmus Stereo test. The 3-D stereopsis test is highly predictive for estimating real stereopsis in a 3-D movie theater. PMID:25323907

  18. Development of a three-dimensional time-dependent flow field model

    NASA Technical Reports Server (NTRS)

    Farmer, R. C.; Waldrop, W. R.; Pitts, F. H.; Shah, K. R.

    1975-01-01

    A three-dimensional, time-dependent mathematical model to represent Mobile Bay was developed. Computer programs were developed which numerically solve the appropriate conservation equations for predicting bay and estuary flow fields. The model is useful for analyzing the dispersion of sea water into fresh water and the transport of sediment, and for relating field and physical model data.

  19. Development of a three dimensional circulation model based on fractional step method

    NASA Astrophysics Data System (ADS)

    Abualtayef, Mazen; Kuroiwa, Masamitsu; Seif, Ahmed Khaled; Matsubara, Yuhei; Aly, Ahmed M.; Sayed, Ahmed A.; Sambe, Alioune Nar

    2010-03-01

    A numerical model was developed for simulating a three-dimensional multilayer hydrodynamic and thermodynamic model in domains with irregular bottom topography. The model was designed for examining the interactions between flow and topography. The model was based on the three-dimensional Navier-Stokes equations and was solved using the fractional step method, which combines the finite difference method in the horizontal plane and the finite element method in the vertical plane. The numerical techniques were described and the model test and application were presented. For the model application to the northern part of Ariake Sea, the hydrodynamic.

  20. Development of a three-dimensional surface imaging system for melanocytic skin lesion evaluation

    NASA Astrophysics Data System (ADS)

    Tosca, Androniki; Kokolakis, Athanasios; Lasithiotakis, Konstantinos; Zacharopoulos, Athanasios; Zabulis, Xenophon; Marnelakis, Ioannis; Ripoll, Jorge; Stephanidis, Constantine

    2013-01-01

    Even though surface morphology is always taken into account when assessing clinically pigmented skin lesions, it is not captured by most modern imaging systems using digital imaging. Our aim is to develop a novel three-dimensional (3D) imaging technique to record detailed information of the surface anatomy of melanocytic lesions that will enable improved classification through digital imaging. The apparatus consists of three high-resolution cameras, a light source, and accompanying software. Volume measurements of specific phantoms using volumetric tubes render slightly lower values than those obtained by our 3D imaging system (mean%±SD, 3.8%±0.98, P<0.05). To examine the reproducibility of the method, sequential imaging of melanocytic lesions is carried out. The mean%±SD differences of area, major axis length, volume, and maximum height are 2.1%±1.1, 0.9%±0.8, 3.8%±2.9, and 2.5%±3.5, respectively. Thirty melanocytic lesions are assessed, including common and dysplastic nevi and melanomas. There is a significant difference between nevi and melanomas in terms of variance in height and boundary asymmetry (P<0.001). Moreover, dysplastic nevi have significantly higher variances in pigment density values than common nevi (P<0.001). Preliminary data suggest that our instrument has great potential in the evaluation of the melanocytic lesions. However, these findings should be confirmed in larger-scale studies.

  1. Development of an Unstructured, Three-Dimensional Material Response Design Tool

    NASA Technical Reports Server (NTRS)

    Schulz, Joseph; Stern, Eric; Palmer, Grant; Muppidi, Suman; Schroeder, Olivia

    2017-01-01

    A preliminary verification and validation of a new material response model is presented. This model, Icarus, is intended to serve as a design tool for the thermal protection systems of re-entry vehicles. Currently, the capability of the model is limited to simulating the pyrolysis of a material as a result of the radiative and convective surface heating imposed on the material from the surrounding high enthalpy gas. Since the major focus behind the development of Icarus has been model extensibility, the hope is that additional physics can be quickly added. The extensibility is critical since thermal protection systems are becoming increasing complex, e.g. woven carbon polymers. Additionally, as a three-dimensional, unstructured, finite-volume model, Icarus is capable of modeling complex geometries as well as multi-dimensional physics, which have been shown to be important in some scenarios and are not captured by one-dimensional models. In this paper, the mathematical and numerical formulation is presented followed by a discussion of the software architecture and some preliminary verification and validation studies.

  2. Development Report on the Idaho National Laboratory Sitewide Three-Dimensional Aquifer Model

    SciTech Connect

    Thomas R. Wood; Catherine M. Helm-Clark; Hai Huang; Swen Magnuson; Travis McLing; Brennon Orr; Michael J. Rohe; Mitchell A. Plummer; Robert Podgorney; Erik Whitmore; Michael S. Roddy

    2007-09-01

    A sub-regional scale, three-dimensional flow model of the Snake River Plain Aquifer was developed to support remediation decisions for Waste Area Group 10, Operable Unit 10 08 at the Idaho National Laboratory (INL) Site. This model has been calibrated primarily to water levels and secondarily to groundwater velocities interpreted from stable isotope disequilibrium studies and the movement of anthropogenic contaminants in the aquifer from facilities at the INL. The three-dimensional flow model described in this report is one step in the process of constructing a fully three-dimensional groundwater flow and contaminant transport model as prescribed in the Idaho National Engineering and Environmental Laboratory Operable Unit 10-08 Sitewide Groundwater Model Work Plan. An updated three-dimensional hydrogeologic conceptual model is presented along with the geologic basis for the conceptual model. Sediment-dominated three-dimensional volumes were used to represent the geology and constrain groundwater flow as part of the conceptual model. Hydrological, geochemical, and geological data were summarized and evaluated to infer aquifer behavior. A primary observation from development and evaluation of the conceptual model was that relative to flow on a regional scale, the aquifer can be treated with steady-state conditions. Boundary conditions developed for the three-dimensional flow model are presented along with inverse simulations that estimate parameterization of hydraulic conductivity. Inverse simulations were performed using the pilot-point method to estimate permeability distributions. Thermal modeling at the regional aquifer scale and at the sub-regional scale using the inverted permeabilities is presented to corroborate the results of the flow model. The results from the flow model show good agreement with simulated and observed water levels almost always within 1 meter. Simulated velocities show generally good agreement with some discrepancies in an interpreted low

  3. POLYS 2.0: An open source software package for building three-dimensional structures of polysaccharides.

    PubMed

    Engelsen, Søren B; Hansen, Peter I; Pérez, Serge

    2014-07-01

    This article describes an update of POLYS, the POLYSaccharide builder, for generating three-dimensional structures of polysaccharides and complex carbohydrates (Engelsen et al., Biopolymers 1996, 39, 417-433). POLYS is written in portable ANSI C and is now released under an open source license. Using this software, complex branched carbohydrate structures and polysaccharides can be constructed from their primary structure and the relevant monosaccharides stored in database containing information on optimized glycosidic linkage geometries. The constructed three-dimensional structures are described as Cartesian coordinate files which can be used as input to other molecular modeling software. The new version of POLYS includes a large database of monosaccharides and a helical generator to build and optimize regular single helix or double helix structures. To demonstrate the efficiency of POLYS to build carbohydrate structures, four examples of increasing complexity are presented in the manuscript, from simple alpha glucans over complex starch fragments and the double helical structure of amylopectin to the mega-oligosaccharide RhamnoGalacturonan II.

  4. Students' Development of Three-Dimensional Visualization in the Geometer's Sketchpad Environment.

    ERIC Educational Resources Information Center

    McClintock, Edwin; Jiang, Zhonghong; July, Raquel

    This paper reports on a series of four studies carried out over a period of four years. These related studies were clinical and qualitative as they investigated middle and high school students' development of geometric thought, particularly as it related to three- dimensional visualization. The studies were carried out in the constructivist…

  5. Development of a percentile based three-dimensional model of the buttocks in computer system

    NASA Astrophysics Data System (ADS)

    Wang, Lijing; He, Xueli; Li, Hongpeng

    2016-05-01

    There are diverse products related to human buttocks, which need to be designed, manufactured and evaluated with 3D buttock model. The 3D buttock model used in present research field is just simple approximate model similar to human buttocks. The 3D buttock percentile model is highly desired in the ergonomics design and evaluation for these products. So far, there is no research on the percentile sizing system of human 3D buttock model. So the purpose of this paper is to develop a new method for building three-dimensional buttock percentile model in computer system. After scanning the 3D shape of buttocks, the cloud data of 3D points is imported into the reverse engineering software (Geomagic) for the reconstructing of the buttock surface model. Five characteristic dimensions of the buttock are measured through mark-points after models being imported into engineering software CATIA. A series of space points are obtained by the intersecting of the cutting slices and 3D buttock surface model, and then are ordered based on the sequence number of the horizontal and vertical slices. The 1st, 5th, 50th, 95th, 99th percentile values of the five dimensions and the spatial coordinate values of the space points are obtained, and used to reconstruct percentile buttock models. This research proposes a establishing method of percentile sizing system of buttock 3D model based on the percentile values of the ischial tuberosities diameter, the distances from margin to ischial tuberosity and the space coordinates value of coordinate points, for establishing the Nth percentile 3D buttock model and every special buttock types model. The proposed method also serves as a useful guidance for the other 3D percentile models establishment for other part in human body with characteristic points.

  6. Usefulness of three-dimensional(3D) simulation software in hepatectomy for pediatric hepatoblastoma.

    PubMed

    Zhang, Gang; Zhou, Xian-Jun; Zhu, Cheng-Zhan; Dong, Qian; Su, Lin

    2016-09-01

    Hepatoblastoma (HB) is the most common malignant liver tumor in childhood. Complete HB surgical resection which is technically demanding is the cornerstone of effective therapy with a good prognosis. The aim of our study is to evaluate the usefulness of 3D simulation software in assisting hepatectomy in pediatric patients with HB. 21 children with HB who underwent hepatectomy were enrolled in this study. All patients underwent computer tomography (CT) imaging preoperatively. CT images from 11 cases (from September 2013 to August 2015) were reconstructed with Hisense CAS, and performed hetpatectomy. While 10 cases (from September 2011 to August 2013) without 3D simulation were token as the control group. The clinical outcome were analyzed and compared between the 2 groups. All the HB were successfully removed for all patients and there was no positive margins in the surgical specimens, no complications, and no recurrences. For the reconstructing group, 3D simulation software successfully reconstructed the 3D images of liver and were used as a navigator in the operation room during hepatectomy. Anatomic hepatectomy were successfully completed for all patients after operation planning using the software. There was no obvious discrepancy between the virtual and the actual hepatectomy. The mean operation time was shorter (142.18 ± 21.87 min VS. the control group, 173.5 ± 54.88 min, p = 0.047) and intraoperative bleeding was less (28.73 ± 14.17 ml VS. 42.8 ± 41.12 ml, p = 0.011) in the reconstructing group. Moreover, postoperative hospital stay tended to be shorter in the reconstructing group (11.18 ± 2.78d VS. the control group 13 ± 3.46d, P = 0.257). 3D simulation software facilitates the investigation of the complex liver structure, contributes to the optimal operation planning, and enables an individualized anatomic hepatectomy for each pediatric patient with HB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. ADFNE: Open source software for discrete fracture network engineering, two and three dimensional applications

    NASA Astrophysics Data System (ADS)

    Fadakar Alghalandis, Younes

    2017-05-01

    Rapidly growing topic, the discrete fracture network engineering (DFNE), has already attracted many talents from diverse disciplines in academia and industry around the world to challenge difficult problems related to mining, geothermal, civil, oil and gas, water and many other projects. Although, there are few commercial software capable of providing some useful functionalities fundamental for DFNE, their costs, closed code (black box) distributions and hence limited programmability and tractability encouraged us to respond to this rising demand with a new solution. This paper introduces an open source comprehensive software package for stochastic modeling of fracture networks in two- and three-dimension in discrete formulation. Functionalities included are geometric modeling (e.g., complex polygonal fracture faces, and utilizing directional statistics), simulations, characterizations (e.g., intersection, clustering and connectivity analyses) and applications (e.g., fluid flow). The package is completely written in Matlab scripting language. Significant efforts have been made to bring maximum flexibility to the functions in order to solve problems in both two- and three-dimensions in an easy and united way that is suitable for beginners, advanced and experienced users.

  8. FACSGen 2.0 animation software: generating three-dimensional FACS-valid facial expressions for emotion research.

    PubMed

    Krumhuber, Eva G; Tamarit, Lucas; Roesch, Etienne B; Scherer, Klaus R

    2012-04-01

    In this article, we present FACSGen 2.0, new animation software for creating static and dynamic three-dimensional facial expressions on the basis of the Facial Action Coding System (FACS). FACSGen permits total control over the action units (AUs), which can be animated at all levels of intensity and applied alone or in combination to an infinite number of faces. In two studies, we tested the validity of the software for the AU appearance defined in the FACS manual and the conveyed emotionality of FACSGen expressions. In Experiment 1, four FACS-certified coders evaluated the complete set of 35 single AUs and 54 AU combinations for AU presence or absence, appearance quality, intensity, and asymmetry. In Experiment 2, lay participants performed a recognition task on emotional expressions created with FACSGen software and rated the similarity of expressions displayed by human and FACSGen faces. Results showed good to excellent classification levels for all AUs by the four FACS coders, suggesting that the AUs are valid exemplars of FACS specifications. Lay participants' recognition rates for nine emotions were high, and comparisons of human and FACSGen expressions were very similar. The findings demonstrate the effectiveness of the software in producing reliable and emotionally valid expressions, and suggest its application in numerous scientific areas, including perception, emotion, and clinical and neuroscience research. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  9. Development and analysis of a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system.

    PubMed

    Oh, Min Seok; Kong, Hong Jin; Kim, Tae Hoon; Jo, Sung Eun; Kim, Byung Wook; Park, Dong Jo

    2011-05-01

    In this paper, a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system that uses a Geiger-mode avalanche photodiode (GAPD) of relatively short dead time (45 ns) is described. A passively Q-switched microchip laser is used as a laser source and a compact peripheral component interconnect system, which includes a time-to-digital converter (TDC), is set up for fast signal processing. The combination of a GAPD with short dead time and a TDC with a multistop function enables the system to operate in a single-hit or a multihit mode during the acquisition of time-of-flight data. The software for the three-dimensional visualization and an algorithm for the removal of noise are developed. For the photon-counting LADAR system, we establish a theoretical model of target-detection and false-alarm probabilities in both the single-hit and multihit modes with a Poisson statistic; this model provides the prediction of the performance of the system and a technique for the acquisition of a noise image with a GAPD. Both the noise image and the three-dimensional image of a scene acquired by the photon-counting LADAR system during the day are presented.

  10. Determining Favorable Maxillary Implant Locations Using Three-Dimensional Simulation Software and Computed Tomography Data.

    PubMed

    Gonda, Tomoya; Kamei, Koichiro; Maeda, Yoshinobu

    Success rates for maxillary implant treatment are lower than for mandibular treatment because of the presence of poorer bone quality or quantity in the maxilla. The purpose of this study was to determine favorable implant positions in the maxilla using implant simulation software and clinical anatomical morphology together with bone quality data obtained by computed tomography (CT). A convenience research sample of 10 edentulous subjects was recruited, and research information from right and left edentulous sites was obtained from each subject. The height, width, angulation, and Hounsfield unit value of the maxillary alveolar bone were measured using CT data obtained from the subjects. Bone height in the incisor area was significantly greater than in the molar area, and bone width in the incisor area was significantly narrower than in the molar area. The average bone quality in the maxillary molar area was significantly higher when compared with the premolar and incisor areas. The angle between the occlusal plane and the bisector of the alveolar bone in the incisor area was reduced when compared with the molar area. The premolar region appears to be the most favorable area in the maxillary arch for implant placement with regard to bone height, width, angulation, and quality.

  11. An interactive three-dimensional digital atlas and quantitative database of human development.

    PubMed

    de Bakker, Bernadette S; de Jong, Kees H; Hagoort, Jaco; de Bree, Karel; Besselink, Clara T; de Kanter, Froukje E C; Veldhuis, Tyas; Bais, Babette; Schildmeijer, Reggie; Ruijter, Jan M; Oostra, Roelof-Jan; Christoffels, Vincent M; Moorman, Antoon F M

    2016-11-25

    Current knowledge about human development is based on the description of a limited number of embryonic specimens published in original articles and textbooks, often more than 100 years ago. It is exceedingly difficult to verify this knowledge, given the restricted availability of human embryos. We created a three-dimensional digital atlas and database spanning the first 2 months of human development, based on analysis of nearly 15,000 histological sections of the renowned Carnegie Collection of human embryonic specimens. We identified and labeled up to 150 organs and structures per specimen and made three-dimensional models to quantify growth, establish changes in the position of organs, and clarify current ambiguities. The atlas provides an educational and reference resource for studies on early human development, growth, and congenital malformations. Copyright © 2016, American Association for the Advancement of Science.

  12. Integration of oncologic margins in three-dimensional virtual planning for head and neck surgery, including a validation of the software pathway.

    PubMed

    Kraeima, Joep; Schepers, Rutger H; van Ooijen, Peter M A; Steenbakkers, Roel J H M; Roodenburg, Jan L N; Witjes, Max J H

    2015-10-01

    Three-dimensional (3D) virtual planning of reconstructive surgery, after resection, is a frequently used method for improving accuracy and predictability. However, when applied to malignant cases, the planning of the oncologic resection margins is difficult due to visualisation of tumours in the current 3D planning. Embedding tumour delineation on a magnetic resonance image, similar to the routinely performed radiotherapeutic contouring of tumours, is expected to provide better margin planning. A new software pathway was developed for embedding tumour delineation on magnetic resonance imaging (MRI) within the 3D virtual surgical planning. The software pathway was validated by the use of five bovine cadavers implanted with phantom tumour objects. MRI and computed tomography (CT) images were fused and the tumour was delineated using radiation oncology software. This data was converted to the 3D virtual planning software by means of a conversion algorithm. Tumour volumes and localization were determined in both software stages for comparison analysis. The approach was applied to three clinical cases. A conversion algorithm was developed to translate the tumour delineation data to the 3D virtual plan environment. The average difference in volume of the tumours was 1.7%. This study reports a validated software pathway, providing multi-modality image fusion for 3D virtual surgical planning. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. On the development of three-dimensional vortex breakdown in cylindrical regions

    NASA Astrophysics Data System (ADS)

    Herrada, M. A.; Fernandez-Feria, R.

    2006-08-01

    Three-dimensional and axisymmetric numerical simulations of the incompressible Navier-Stokes equations have been conducted to study the appearance and development of vortex breakdown in a family of columnar vortex flows in a straight pipe without wall friction. The numerical simulations show that the basic form of breakdown is axisymmetric, and a transition to helical breakdown modes is shown to be caused by a sufficiently large pocket of absolute instability inside the original axisymmetric "bubble" of recirculating flow. Depending on the values of the Reynolds and swirl parameters, two distinct unstable modes corresponding to azimuthal wave numbers n =+1 and n =+2 have been found to yield a helical or a double-helical breakdown mode, respectively. By means of a simple linear spatial stability analysis carried out in the sections of the pipe where the basic axisymmetric flow presents reverse flow, we have identified the frequencies and the dominant azimuthal wave numbers observed in the three-dimensional simulations.

  14. Fragment Finder: a web-based software to identify similar three-dimensional structural motif

    PubMed Central

    Ananthalakshmi, P.; Kumar, Ch. Kiran; Jeyasimhan, M.; Sumathi, K.; Sekar, K.

    2005-01-01

    FF (Fragment Finder) is a web-based interactive search engine developed to retrieve the user-desired similar 3D structural fragments from the selected subset of 25 or 90% non-homologous protein chains. The search is based on the comparison of the main chain backbone conformational angles (φ and ϕ). Additionally, the queried motifs can be superimposed to find out how similar the structural fragments are, so that the information can be effectively used in molecular modeling. The engine has facilities to view the resultant superposed or individual 3D structure(s) on the client machine. The proposed web server is made freely accessible at the following URL: or . PMID:15980587

  15. Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor

    PubMed Central

    Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng

    2016-01-01

    In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor. PMID:27649194

  16. Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor.

    PubMed

    Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng

    2016-09-15

    In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor.

  17. Three-dimensional desirability spaces for quality-by-design-based HPLC development.

    PubMed

    Mokhtar, Hatem I; Abdel-Salam, Randa A; Hadad, Ghada M

    2015-04-01

    In this study, three-dimensional desirability spaces were introduced as a graphical representation method of design space. This was illustrated in the context of application of quality-by-design concepts on development of a stability indicating gradient reversed-phase high-performance liquid chromatography method for the determination of vinpocetine and α-tocopheryl acetate in a capsule dosage form. A mechanistic retention model to optimize gradient time, initial organic solvent concentration and ternary solvent ratio was constructed for each compound from six experimental runs. Then, desirability function of each optimized criterion and subsequently the global desirability function were calculated throughout the knowledge space. The three-dimensional desirability spaces were plotted as zones exceeding a threshold value of desirability index in space defined by the three optimized method parameters. Probabilistic mapping of desirability index aided selection of design space within the potential desirability subspaces. Three-dimensional desirability spaces offered better visualization and potential design spaces for the method as a function of three method parameters with ability to assign priorities to this critical quality as compared with the corresponding resolution spaces.

  18. Research on the development of space target detecting system and three-dimensional reconstruction technology

    NASA Astrophysics Data System (ADS)

    Li, Dong; Wei, Zhen; Song, Dawei; Sun, Wenfeng; Fan, Xiaoyan

    2016-11-01

    With the development of space technology, the number of spacecrafts and debris are increasing year by year. The demand for detecting and identification of spacecraft is growing strongly, which provides support to the cataloguing, crash warning and protection of aerospace vehicles. The majority of existing approaches for three-dimensional reconstruction is scattering centres correlation, which is based on the radar high resolution range profile (HRRP). This paper proposes a novel method to reconstruct the threedimensional scattering centre structure of target from a sequence of radar ISAR images, which mainly consists of three steps. First is the azimuth scaling of consecutive ISAR images based on fractional Fourier transform (FrFT). The later is the extraction of scattering centres and matching between adjacent ISAR images using grid method. Finally, according to the coordinate matrix of scattering centres, the three-dimensional scattering centre structure is reconstructed using improved factorization method. The three-dimensional structure is featured with stable and intuitive characteristic, which provides a new way to improve the identification probability and reduce the complexity of the model matching library. A satellite model is reconstructed using the proposed method from four consecutive ISAR images. The simulation results prove that the method has gotten a satisfied consistency and accuracy.

  19. The THYC three-dimensional thermal-hydraulic codes for rod bundles: Recent developments and tests

    SciTech Connect

    Aubry, S.; Olive, J.; Caremoli, C.; Rascle, P.

    1995-12-01

    Pressurized water reactor (PWR) or liquid-metal fast breeder reactor cores or fuel assemblies, PWR steam generators, condensers, and tubular heat exchangers are basic components of a nuclear power plant that involve two-phase flows in tube or rod bundles. A deep knowledge of the detailed flow patterns on the shell side is necessary to evaluate departure from nucleate boiling (DNB) margins in reactor cores, singularity effects (grids, wire spacers, support plates, and baffles), corrosion on the steam generator tube sheet, bypass effects, and vibration risks. For that purpose, Electricite de France has developed since 1986 a general purpose thermal-HYdraulic Code (THYC) to study three-dimensional single- and two-phase flows in rod or tube bundles (PWR codes, steam generators, condensers, and heat exchangers). It considers the three-dimensional domain to contain two kinds of components: fluid and solids. The THYC model is obtained by space-time averaging of the instantaneous equations (mass, momentum, and energy) of each phase over control volumes including fluid and solids. The physical model of THYC is validated under several French and international experiments for single- and two-phase flows. The THYC is used for the calculation of transients such as steam-line break (coupled with a three-dimensional neutronics code), for DNB predictions, and for various steam generator or condenser studies.

  20. Near-field structures in three-dimensional spatially-developing wakes

    NASA Technical Reports Server (NTRS)

    Buell, Jeffrey C.; Mansour, Nagi N.

    1989-01-01

    The effects of three-dimensional perturbations on a spatially-developing plane Gaussian wake are studied and quantified using a new numerical code. Results are presented for a elatively simple case since it appears that no 3-D spatially-developing simulations of plane wakes have been performed in the past. The inlet perturbation consists of a 2-D time-periodic forcing plus a spanwise-periodic array of steady streamwise vortices. The distortion of the 2-D vortices caused by the streamwise vortices will be discussed. The vorticity fields are compared to passive scalar fields which simulate the injection of smoke or low heat into the wake.

  1. Near-field structures in three-dimensional spatially-developing wakes

    NASA Astrophysics Data System (ADS)

    Buell, Jeffrey C.; Mansour, Nagi N.

    The effects of three-dimensional perturbations on a spatially-developing plane Gaussian wake are studied and quantified using a new numerical code. Results are presented for a elatively simple case since it appears that no 3-D spatially-developing simulations of plane wakes have been performed in the past. The inlet perturbation consists of a 2-D time-periodic forcing plus a spanwise-periodic array of steady streamwise vortices. The distortion of the 2-D vortices caused by the streamwise vortices will be discussed. The vorticity fields are compared to passive scalar fields which simulate the injection of smoke or low heat into the wake.

  2. Note: Design and development of an integrated three-dimensional scanner for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Rashmi, T.; Dharsana, G.; Sriramshankar, R.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2013-11-01

    A compact scanning head for the Atomic Force Microscope (AFM) greatly enhances the portability of AFM and facilitates easy integration with other tools. This paper reports the design and development of a three-dimensional (3D) scanner integrated into an AFM micro-probe. The scanner is realized by means of a novel design for the AFM probe along with a magnetic actuation system. The integrated scanner, the actuation system, and their associated mechanical mounts are fabricated and evaluated. The experimentally calibrated actuation ranges are shown to be over 1 μm along all the three axes.

  3. [Development of three-dimensional stereo viewer for high-resolution data].

    PubMed

    Nakai, T; Muraki, S; Kato, C; Sugio, T; Matsuo, K; Miki, Y; Kobayashi, H; Ueda, H; Ogata, M; Liu, X; Konishi, J; Togashi, K

    2001-02-01

    In order to visualize high-resolution three-dimensional (3D) data as a stereogram, a real-time volume-rendering system using a hardware graphic board and conventional PC was developed. A 256(3) data set could be visualized at a redrawing rate of 12 Hz, and a 512(3) data set at a rate of 2.5 Hz. It was demonstrated that stereogram visualization using volume graphic hardware architecture potentially enables rapid examination of high-resolution 3D data by changing visualization parameters such as level, window, transfer function for opacity, and color map or coordinate direction.

  4. Note: Design and development of an integrated three-dimensional scanner for atomic force microscopy

    SciTech Connect

    Rashmi, T.; Dharsana, G.; Sriramshankar, R.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2013-11-15

    A compact scanning head for the Atomic Force Microscope (AFM) greatly enhances the portability of AFM and facilitates easy integration with other tools. This paper reports the design and development of a three-dimensional (3D) scanner integrated into an AFM micro-probe. The scanner is realized by means of a novel design for the AFM probe along with a magnetic actuation system. The integrated scanner, the actuation system, and their associated mechanical mounts are fabricated and evaluated. The experimentally calibrated actuation ranges are shown to be over 1 μm along all the three axes.

  5. Reynolds shear stress development in pressure-driven three-dimensional turbulent boundary-layers

    NASA Technical Reports Server (NTRS)

    Anderson, S. D.; Eaton, J. K.

    1987-01-01

    The development of the Reynolds stresses has been examined experimentally in an initially two-dimensional boundary layer which is driven to three dimensionality by a spanwise pressure gradient. The pressure field was imposed by an upstream-facing wedge. Two different wedge angles were used in order to vary the level of boundary layer skewing. Bradshaw's Al parameter was found to decrease with the rate of decrease being dependent on the level of skewing between the freestream and the wall flow. It was also concluded that the ratio of the cross-stream to streamwise shear stress components was governed by the rate of freestream turning.

  6. Development of an electrohydrodynamic ion-drag micropump using three-dimensional carbon micromesh electrodes

    NASA Astrophysics Data System (ADS)

    Yoon, Dong Hyun; Sato, Hironobu; Nakahara, Asahi; Sekiguchi, Tetsushi; Konishi, Satoshi; Shoji, Shuichi

    2014-09-01

    An electrohydrodynamic (EHD) ion-drag micropump using three-dimensional carbon micromesh electrodes was developed. The carbon micromesh electrodes were created by the pyrolysis of SU-8 structures. The carbon electrodes and microchannel were formed on a quartz substrate, and the microchannel was sealed by an SU-8 slab structure. The pumping behaviors were evaluated using Fluorinert as a non-conductive sample solution. The maximum pressure and volume flow rate were approximately 23 Pa and 400 nL/min, respectively, under an applied voltage of 500 V.

  7. Recent Developments in Three Dimensional Radiation Transport Using the Green's Function Technique

    NASA Technical Reports Server (NTRS)

    Rockell, Candice; Tweed, John; Blattnig, Steve R.; Mertens, Christopher J.

    2010-01-01

    In the future, astronauts will be sent into space for longer durations of time compared to previous missions. The increased risk of exposure to dangerous radiation, such as Galactic Cosmic Rays and Solar Particle Events, is of great concern. Consequently, steps must be taken to ensure astronaut safety by providing adequate shielding. In order to better determine and verify shielding requirements, an accurate and efficient radiation transport code based on a fully three dimensional radiation transport model using the Green's function technique is being developed

  8. Mouse fetal whole intestine culture system for ex vivo manipulation of signaling pathways and three-dimensional live imaging of villus development.

    PubMed

    Walton, Katherine D; Kolterud, Asa

    2014-09-04

    Most morphogenetic processes in the fetal intestine have been inferred from thin sections of fixed tissues, providing snapshots of changes over developmental stages. Three-dimensional information from thin serial sections can be challenging to interpret because of the difficulty of reconstructing serial sections perfectly and maintaining proper orientation of the tissue over serial sections. Recent findings by Grosse et al., 2011 highlight the importance of three- dimensional information in understanding morphogenesis of the developing villi of the intestine(1). Three-dimensional reconstruction of singly labeled intestinal cells demonstrated that the majority of the intestinal epithelial cells contact both the apical and basal surfaces. Furthermore, three-dimensional reconstruction of the actin cytoskeleton at the apical surface of the epithelium demonstrated that the intestinal lumen is continuous and that secondary lumens are an artifact of sectioning. Those two points, along with the demonstration of interkinetic nuclear migration in the intestinal epithelium, defined the developing intestinal epithelium as a pseudostratified epithelium and not stratified as previously thought(1). The ability to observe the epithelium three-dimensionally was seminal to demonstrating this point and redefining epithelial morphogenesis in the fetal intestine. With the evolution of multi-photon imaging technology and three-dimensional reconstruction software, the ability to visualize intact, developing organs is rapidly improving. Two-photon excitation allows less damaging penetration deeper into tissues with high resolution. Two-photon imaging and 3D reconstruction of the whole fetal mouse intestines in Walton et al., 2012 helped to define the pattern of villus outgrowth(2). Here we describe a whole organ culture system that allows ex vivo development of villi and extensions of that culture system to allow the intestines to be three-dimensionally imaged during their development.

  9. The feasibility of using 5D CNS software in obtaining standard fetal head measurements from volumes acquired by three-dimensional ultrasonography: comparison with two-dimensional ultrasound.

    PubMed

    Rizzo, Giuseppe; Aiello, Elisa; Pietrolucci, Maria Elena; Arduini, Domenico

    2016-01-01

    To evaluate the performance of a new software (5D CNS) developed to automatically recognize the axial planes of the fetal brain from three-dimensional volumes and to obtain the basic standard biometric measurements. The accuracy, reproducibility, and time required for analysis of 5D CNS were compared with that of two-dimensional (2D) ultrasound. This was a prospective study of 120 uncomplicated singleton pregnancies undergoing routine second trimester examination. For every pregnancy standard biometric measurements including biparietal diameter, head circumference, distal lateral ventricle width, transverse cerebellar diameter and cisterna magna width were obtained using 2D ultrasound and three-dimensional (3D) ultrasound with 5D CNS software. Reliability and agreement of the two techniques were evaluated using intraclass correlation coefficients (ICCs) and proportionate Bland-Altman plots were constructed. The time necessary to complete the measurements with either technique was compared and intraobserver and interobserver agreements of measurements calculated. In 118/120 (98.3%), 5D CNS successfully reconstructed the axial diagnostic planes and calculated all the basic biometric head and brain measurements. The agreement between the two techniques was high for all the measurements considered (all ICCS > 0.920). The time necessary to measure the biometric variables considered was significantly shorter with 5D CNS (54 versus 115 s, p < 0.0001) than with 2D ultrasonography. No significant differences were found in 5D CNS repeated measurements obtained either by the same observer or by two independent observers. 5D CNS software allows us to obtain reliable biometric measurements of the fetal brain and to reduce the examination time. Its application may improve work-flow efficiency in ultrasonographic practices.

  10. Development of a three-dimensionally movable phantom system for dosimetric verifications

    SciTech Connect

    Nakayama, Hiroshi; Mizowaki, Takashi; Narita, Yuichiro; Kawada, Noriyuki; Takahashi, Kunio; Mihara, Kazumasa; Hiraoka, Masahiro

    2008-05-15

    The authors developed a three-dimensionally movable phantom system (3D movable phantom system) which can reproduce three-dimensional movements to experimentally verify the impact of radiotherapy treatment-related movements on dose distribution. The phantom system consists of three integrated components: a three-dimensional driving mechanism (3D driving mechanism), computer control system, and phantoms for film dosimetry. The 3D driving mechanism is a quintessential part of this system. It is composed of three linear-motion tables (single-axis robots) which are joined orthogonally to each other. This mechanism has a motion range of 100 mm, with a maximum velocity of 200 mm/s in each dimension, and 3D motion ability of arbitrary patterns. These attributes are sufficient to reproduce almost all organ movements. The positional accuracy of this 3D movable phantom system in a state of geostationary is less than 0.1 mm. The maximum error in terms of the absolute position on movement was 0.56 mm. The positional reappearance error on movement was up to 0.23 mm. The observed fluctuation of time was 0.012 s in the cycle of 4.5 s of oscillation. These results suggested that the 3D movable phantom system exhibited a sufficient level of accuracy in terms of geometry and timing to reproduce interfractional organ movement or setup errors in order to assess the influence of these errors on high-precision radiotherapy such as stereotactic irradiation and intensity-modulated radiotherapy. In addition, the authors 3D movable phantom system will also be useful in evaluating the adequacy and efficacy of new treatment techniques such as gating or tracking radiotherapy.

  11. Development of Holistic Three-Dimensional Models for Cold Spray Supersonic Jet

    NASA Astrophysics Data System (ADS)

    Zahiri, S. H.; Phan, T. D.; Masood, S. H.; Jahedi, M.

    2014-08-01

    A three-dimensional, computational fluid dynamics (CFD) model is developed to estimate cold spray gas conditions. This model is calibrated and validated with respect to thermal history of a substrate exposed to the cold spray supersonic jet. The proposed holistic model is important to track state of gas and particles from injection point to the substrate surface with significant benefits for optimization of very rapid "nanoseconds" cold spray deposition. The three-dimensional model is developed with careful attention with respect to computation time to benefit broader cold spray industry with limited access to supercomputers. The k-ɛ-type CFD model is evaluated using measured temperature for a titanium substrate exposed to cold spray nitrogen at 800 °C and 3 MPa. The model important parameters are detailed including domain meshing method with turbulence, and dissipation coefficients during spraying. Heat transfer and radiation are considered for the de Laval nozzle used in experiments. The calibrated holistic model successfully estimated state of the gas for chosen high temperature and high pressure cold spray parameters used in this study. Further to this, the holistic model predictions with respect to the substrate maximum temperature had a good agreement with earlier findings in the literature.

  12. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture.

    PubMed

    Preynat-Seauve, Olivier; Suter, David M; Tirefort, Diderik; Turchi, Laurent; Virolle, Thierry; Chneiweiss, Herve; Foti, Michelangelo; Lobrinus, Johannes-Alexander; Stoppini, Luc; Feki, Anis; Dubois-Dauphin, Michel; Krause, Karl Heinz

    2009-03-01

    Researches on neural differentiation using embryonic stem cells (ESC) require analysis of neurogenesis in conditions mimicking physiological cellular interactions as closely as possible. In this study, we report an air-liquid interface-based culture of human ESC. This culture system allows three-dimensional cell expansion and neural differentiation in the absence of added growth factors. Over a 3-month period, a macroscopically visible, compact tissue developed. Histological coloration revealed a dense neural-like neural tissue including immature tubular structures. Electron microscopy, immunochemistry, and electrophysiological recordings demonstrated a dense network of neurons, astrocytes, and oligodendrocytes able to propagate signals. Within this tissue, tubular structures were niches of cells resembling germinal layers of human fetal brain. Indeed, the tissue contained abundant proliferating cells expressing markers of neural progenitors. Finally, the capacity to generate neural tissues on air-liquid interface differed for different ESC lines, confirming variations of their neurogenic potential. In conclusion, this study demonstrates in vitro engineering of a human neural-like tissue with an organization that bears resemblance to early developing brain. As opposed to previously described methods, this differentiation (a) allows three-dimensional organization, (b) yields dense interconnected neural tissue with structurally and functionally distinct areas, and (c) is spontaneously guided by endogenous developmental cues.

  13. On development of a three-dimensional particle motion tracking system

    NASA Astrophysics Data System (ADS)

    Dave, R. N.; Ashok, A. S.; Bukiet, B. G.

    Development of a non-intrusive particle tracking technique is considered. Evaluation of the existing methods show that they are not suitable for three-dimensional motion tracking. A novel system based on the principle of magnetic induction coupling is presented. This technique can be used to track the position and orientation of a single particle in a three-dimensional flow of a mass of particles. The system consists of two or more small transmitters, powered by small batteries, mounted inside the particle, and six or more receivers which acquire the induced voltages. This paper presents details of the techniques used to derive the position and orientation information from the voltages induced in the receivers. The feasibility of the proposed technique is established through simulated and actual experiments. Practical issues such as the effect of signal noise are considered. The technique presented here has a wide range of applications due to its non-intrusive nature, and is particularly useful when optical techniques are not feasible. Directions for future work are provided.

  14. Development and validation of a two-phase, three-dimensional model for PEM fuel cells.

    SciTech Connect

    Chen, Ken Shuang

    2010-04-01

    The objectives of this presentation are: (1) To develop and validate a two-phase, three-dimensional transport modelfor simulating PEM fuel cell performance under a wide range of operating conditions; (2) To apply the validated PEM fuel cell model to improve fundamental understanding of key phenomena involved and to identify rate-limiting steps and develop recommendations for improvements so as to accelerate the commercialization of fuel cell technology; (3) The validated PEMFC model can be employed to improve and optimize PEM fuel cell operation. Consequently, the project helps: (i) address the technical barriers on performance, cost, and durability; and (ii) achieve DOE's near-term technical targets on performance, cost, and durability in automotive and stationary applications.

  15. Design and development of three-dimensional DNA crystals utilizing CGAA parallel base paired motifs

    NASA Astrophysics Data System (ADS)

    Muser, Stephanie Elizabeth

    Three-dimensional (3D) DNA crystals hold great potential for various applications such as the development of molecular scaffolds for use in protein structure determination by x-ray crystallography. The programmability and predictability of DNA make it a powerful tool for self-assembly but it is hindered by the linearity of the duplex structure. Predictable noncanonical base pairs and motifs have the potential to connect linear double-helical DNA segments into complex 3D structures. The sequence d(GCGAAAGCT) has been observed to form 3D crystals containing both noncanonical parallel pairs and canonical Watson-Crick pairs. This provided a template structure that we used in expanding the design and development of 3D DNA crystals along with exploring the use of predictable noncanonical motifs. The structures we determined contained all but one or two of the designed secondary structure interactions, depending on pH.

  16. Development of a three-dimensional Navier-Stokes code on CDC star-100 computer

    NASA Technical Reports Server (NTRS)

    Vatsa, V. N.; Goglia, G. L.

    1978-01-01

    A three-dimensional code in body-fitted coordinates was developed using MacCormack's algorithm. The code is structured to be compatible with any general configuration, provided that the metric coefficients for the transformation are available. The governing equations are developed in primitive variables in order to facilitate the incorporation of physical boundary conditions and turbulence-closure models. MacCormack's two-step, unsplit, time-marching algorithm is used to solve the unsteady Navier-Stokes equations until steady-state solution is achieved. Cases discussed include (1) flat plate in supersonic free stream; (2) supersonic flow along an axial corner; (3) subsonic flow in an axial corner at M infinity = 0.95; and (4) supersonic flow in an axial corner at M infinity 1.5.

  17. Development and anisotropy of three-dimensional turbulence in a current sheet

    SciTech Connect

    Onofri, M.; Veltri, P.; Malara, F.

    2007-06-15

    The nonlinear evolution of three-dimensional reconnection instabilities are studied in a current sheet where many resonant surfaces are simultaneously present at different locations of the simulation domain. The nonlinear evolution produces the development of anisotropic magnetohydrodynamic turbulence. The development of the energy spectrum is followed until the energy is transported to the dissipative length scale and the anisotropy of the spectrum is analyzed. The energy cascade is affected by the Alfven effect and it takes place mainly in the direction perpendicular to the local average magnetic field. Anisotropy is also affected by propagation of perturbations across the main magnetic field, due to the growth of a transverse component related to reconnection. The direction of anisotropy varies with the position in space. The spectral index is different both from what is found in homogeneous isotropic turbulence and from the values predicted for magnetohydrodynamic turbulence with a uniform large-scale magnetic field.

  18. Three-Dimensional Electron Optics Model Developed for Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2000-01-01

    A three-dimensional traveling-wave tube (TWT) electron beam optics model including periodic permanent magnet (PPM) focusing has been developed at the NASA Glenn Research Center at Lewis Field. This accurate model allows a TWT designer to develop a focusing structure while reducing the expensive and time-consuming task of building the TWT and hot-testing it (with the electron beam). In addition, the model allows, for the first time, an investigation of the effect on TWT operation of the important azimuthally asymmetric features of the focusing stack. The TWT is a vacuum device that amplifies signals by transferring energy from an electron beam to a radiofrequency (RF) signal. A critically important component is the focusing structure, which keeps the electron beam from diverging and intercepting the RF slow wave circuit. Such an interception can result in excessive circuit heating and decreased efficiency, whereas excessive growth in the beam diameter can lead to backward wave oscillations and premature saturation, indicating a serious reduction in tube performance. The most commonly used focusing structure is the PPM stack, which consists of a sequence of cylindrical iron pole pieces and opposite-polarity magnets. Typically, two-dimensional electron optics codes are used in the design of magnetic focusing devices. In general, these codes track the beam from the gun downstream by solving equations of motion for the electron beam in static-electric and magnetic fields in an azimuthally symmetric structure. Because these two-dimensional codes cannot adequately simulate a number of important effects, the simulation code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm) was used at Glenn to develop a three-dimensional electron optics model. First, a PPM stack was modeled in three dimensions. Then, the fields obtained using the magnetostatic solver were loaded into a particle-in-cell solver where the fully three-dimensional behavior of the beam

  19. Dose calculation software for helical tomotherapy, utilizing patient CT data to calculate an independent three-dimensional dose cube

    SciTech Connect

    Thomas, Simon J.; Eyre, Katie R.; Tudor, G. Samuel J.; Fairfoul, Jamie

    2012-01-15

    Purpose: Treatment plans for the TomoTherapy unit are produced with a planning system that is integral to the unit. The authors have produced an independent dose calculation system, to enable plans to be recalculated in three dimensions, using the patient's CT data. Methods: Software has been written using MATLAB. The DICOM-RT plan object is used to determine the treatment parameters used, including the treatment sinogram. Each projection of the sinogram is segmented and used to calculate dose at multiple calculation points in a three-dimensional grid using tables of measured beam data. A fast ray-trace algorithm is used to determine effective depth for each projection angle at each calculation point. Calculations were performed on a standard desktop personal computer, with a 2.6 GHz Pentium, running Windows XP. Results: The time to perform a calculation, for 3375 points averaged 1 min 23 s for prostate plans and 3 min 40 s for head and neck plans. The mean dose within the 50% isodose was calculated and compared with the predictions of the TomoTherapy planning system. When the modified CT (which includes the TomoTherapy couch) was used, the mean difference for ten prostate patients, was -0.4% (range -0.9% to +0.3%). With the original CT (which included the CT couch), the mean difference was -1.0% (range -1.7% to 0.0%). The number of points agreeing with a gamma 3%/3 mm averaged 99.2% with the modified CT, 96.3% with the original CT. For ten head and neck patients, for the modified and original CT, respectively, the mean difference was +1.1% (range -0.4% to +3.1%) and 1.1% (range -0.4% to +3.0%) with 94.4% and 95.4% passing a gamma 4%/4 mm. The ability of the program to detect a variety of simulated errors has been tested. Conclusions: By using the patient's CT data, the independent dose calculation performs checks that are not performed by a measurement in a cylindrical phantom. This enables it to be used either as an additional check or to replace phantom

  20. DRAGON Grid: A Three-Dimensional Hybrid Grid Generation Code Developed

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2000-01-01

    Because grid generation can consume 70 percent of the total analysis time for a typical three-dimensional viscous flow simulation for a practical engineering device, payoffs from research and development could reduce costs and increase throughputs considerably. In this study, researchers at the NASA Glenn Research Center at Lewis Field developed a new hybrid grid approach with the advantages of flexibility, high-quality grids suitable for an accurate resolution of viscous regions, and a low memory requirement. These advantages will, in turn, reduce analysis time and increase accuracy. They result from an innovative combination of structured and unstructured grids to represent the geometry and the computation domain. The present approach makes use of the respective strengths of both the structured and unstructured grid methods, while minimizing their weaknesses. First, the Chimera grid generates high-quality, mostly orthogonal meshes around individual components. This process is flexible and can be done easily. Normally, these individual grids are required overlap each other so that the solution on one grid can communicate with another. However, when this communication is carried out via a nonconservative interpolation procedure, a spurious solution can result. Current research is aimed at entirely eliminating this undesired interpolation by directly replacing arbitrary grid overlapping with a nonstructured grid called a DRAGON grid, which uses the same set of conservation laws over the entire region, thus ensuring conservation everywhere. The DRAGON grid is shown for a typical film-cooled turbine vane with 33 holes and 3 plenum compartments. There are structured grids around each geometrical entity and unstructured grids connecting them. In fiscal year 1999, Glenn researchers developed and tested the three-dimensional DRAGON grid-generation tools. A flow solver suitable for the DRAGON grid has been developed, and a series of validation tests are underway.

  1. Three-dimensional Organization of Layered Apical Cytoskeletal Networks Associated with Mouse Airway Tissue Development

    NASA Astrophysics Data System (ADS)

    Tateishi, Kazuhiro; Nishida, Tomoki; Inoue, Kanako; Tsukita, Sachiko

    2017-03-01

    The cytoskeleton is an essential cellular component that enables various sophisticated functions of epithelial cells by forming specialized subcellular compartments. However, the functional and structural roles of cytoskeletons in subcellular compartmentalization are still not fully understood. Here we identified a novel network structure consisting of actin filaments, intermediate filaments, and microtubules directly beneath the apical membrane in mouse airway multiciliated cells and in cultured epithelial cells. Three-dimensional imaging by ultra-high voltage electron microscopy and immunofluorescence revealed that the morphological features of each network depended on the cell type and were spatiotemporally integrated in association with tissue development. Detailed analyses using Odf2 mutant mice, which lack ciliary basal feet and apical microtubules, suggested a novel contribution of the intermediate filaments to coordinated ciliary beating. These findings provide a new perspective for viewing epithelial cell differentiation and tissue morphogenesis through the structure and function of apical cytoskeletal networks.

  2. On the Development of a Deterministic Three-Dimensional Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Rockell, Candice; Tweed, John

    2011-01-01

    Since astronauts on future deep space missions will be exposed to dangerous radiations, there is a need to accurately model the transport of radiation through shielding materials and to estimate the received radiation dose. In response to this need a three dimensional deterministic code for space radiation transport is now under development. The new code GRNTRN is based on a Green's function solution of the Boltzmann transport equation that is constructed in the form of a Neumann series. Analytical approximations will be obtained for the first three terms of the Neumann series and the remainder will be estimated by a non-perturbative technique . This work discusses progress made to date and exhibits some computations based on the first two Neumann series terms.

  3. Three-dimensional Organization of Layered Apical Cytoskeletal Networks Associated with Mouse Airway Tissue Development

    PubMed Central

    Tateishi, Kazuhiro; Nishida, Tomoki; Inoue, Kanako; Tsukita, Sachiko

    2017-01-01

    The cytoskeleton is an essential cellular component that enables various sophisticated functions of epithelial cells by forming specialized subcellular compartments. However, the functional and structural roles of cytoskeletons in subcellular compartmentalization are still not fully understood. Here we identified a novel network structure consisting of actin filaments, intermediate filaments, and microtubules directly beneath the apical membrane in mouse airway multiciliated cells and in cultured epithelial cells. Three-dimensional imaging by ultra-high voltage electron microscopy and immunofluorescence revealed that the morphological features of each network depended on the cell type and were spatiotemporally integrated in association with tissue development. Detailed analyses using Odf2 mutant mice, which lack ciliary basal feet and apical microtubules, suggested a novel contribution of the intermediate filaments to coordinated ciliary beating. These findings provide a new perspective for viewing epithelial cell differentiation and tissue morphogenesis through the structure and function of apical cytoskeletal networks. PMID:28272499

  4. Development of a three dimensional numerical water quality model for continental shelf applications

    NASA Technical Reports Server (NTRS)

    Spaulding, M.; Hunter, D.

    1975-01-01

    A model to predict the distribution of water quality parameters in three dimensions was developed. The mass transport equation was solved using a non-dimensional vertical axis and an alternating-direction-implicit finite difference technique. The reaction kinetics of the constituents were incorporated into a matrix method which permits computation of the interactions of multiple constituents. Methods for the computation of dispersion coefficients and coliform bacteria decay rates were determined. Numerical investigations of dispersive and dissipative effects showed that the three-dimensional model performs as predicted by analysis of simpler cases. The model was then applied to a two dimensional vertically averaged tidal dynamics model for the Providence River. It was also extended to a steady state application by replacing the time step with an iteration sequence. This modification was verified by comparison to analytical solutions and applied to a river confluence situation.

  5. A three-dimensional culture system using alginate hydrogel prolongs hatched cattle embryo development in vitro.

    PubMed

    Zhao, Shuan; Liu, Zhen-Xing; Gao, Hui; Wu, Yi; Fang, Yuan; Wu, Shuai-Shuai; Li, Ming-Jie; Bai, Jia-Hua; Liu, Yan; Evans, Alexander; Zeng, Shen-Ming

    2015-07-15

    No successful method exists to maintain the three-dimensional architecture of hatched embryos in vitro. Alginate, a linear polysaccharide derived from brown algae, has characteristics that make it an ideal material as a three-dimensional (3D) extracellular matrix for in vitro cell, tissue, or embryo culture. In this study, alginate hydrogel was used for IVC of posthatched bovine embryos to observe their development under the 3D system. In vitro-fertilized and parthenogenetically activated posthatched bovine blastocysts were cultured in an alginate encapsulation culture system (AECS), an alginate overlay culture system (AOCS), or control culture system. After 18 days of culture, the survival rate of embryos cultured in AECS was higher than that in the control group (P < 0.05), and the embryos were expanded and elongated in AECS with the maximal length of 1.125 mm. When the AECS shrinking embryos were taken out of the alginate beads on Day 18 and cultured in the normal culture system, 9.09% of them attached to the bottoms of the plastic wells and grew rapidly, with the largest area of an attached embryo being 66.00 mm(2) on Day 32. The embryos cultured in AOCS developed monovesicular or multivesicular morphologies. Total cell number of the embryos cultured in AECS on Day 19 was significantly higher than that of embryos on Day 8. Additionally, AECS and AOCS supported differentiation of the embryonic cells. Binuclear cells were visible in Day-26 adherent embryos, and the messenger RNA expression patterns of Cdx2 and Oct4 in AOCS-cultured embryos were similar to those in vivo embryos, whereas IFNT and ISG15 messenger RNA were still expressed in Day-26 and Day-32 prolong-cultured embryos. In conclusion, AECS and AOCS did support cell proliferation, elongation, and differentiation of hatched bovine embryos during prolonged IVC. The culture system will be useful to further investigate the molecular mechanisms controlling ruminant embryo elongation and implantation.

  6. On the development of elastic three dimensional full waveform inversion in exploration geophysics

    NASA Astrophysics Data System (ADS)

    Birger Raknes, Espen; Arntsen, Børge

    2016-04-01

    Full waveform inversion (FWI) is a classical inverse method that tries to estimate subsurface models of parameters that affects wave propagation. The key requirement for the method is the numerical solution of the wave equation that is used to iteratively update the subsurface model through a optimization procedure of the dissimilarities between the synthetic and measured seismic data. Due to the computational cost to use FWI in practice, the standard procedure for applications of FWI in exploration geophysics has been to assume that the subsurface is a two-dimensional acoustic medium. One of the goals for FWI is to estimate the subsurface parameters using a three-dimensional elastic description of the medium. By incorporating more real world physics into the FWI method, the inversion results are more likely to be close to the true solution. The challenges towards this goal from a computational point of view is the extreme cost related to the numerical solution of the elastic wave equation, in addition to the required storage needs for performing one iteration of the optimization method. From a theoretical point of view, multi-parameter inversion (i.e. inversion of the density, P- and S-wave velocities) using surface seismic data is challenging because the inverse problem is ill-posed (in the Hadamard sense) and non-linear. In addition, the sensitivity in the data with respect to the elastic parameters is dependent on how the data are acquired. Hence, three-dimensional elastic FWI is challenging from both a theoretical and a computational point of view. In the recent years we have developed a three dimensional elastic FWI method where we are able to invert for the density, P-wave and S-wave velocities. To reduce the required storage needs for computing the model gradients through the adjoint state method, we have developed an efficient wave field reconstruction method that uses values on the domain boundaries to reconstruct the wave field inside the domain. To

  7. The development of microbatteries based on three-dimensional architectures for autonomous micro devices

    NASA Astrophysics Data System (ADS)

    Min, Hong-Seok

    2007-12-01

    The goal of fabricating three-dimensional (3D) microbatteries is to improve upon the performance of 2D microbatteries or thin-film batteries by reconfiguring existing materials in a more advanced architecture. 3D battery architectures offer a new approach for miniaturized power sources. These batteries are designed to have a small areal foot print and yet provide sufficient power and energy density to operate autonomous MEMS devices. The more convenient approaches for fabricating such batteries are based on micromachining techniques such as electrodeposition of high aspect ratio metal rods in an array configuration. Three types of three-dimensional microbatteries were fabricated and characterized: Ni-Zn, zinc-air, and Ag-Zn. These different types of microbatteries use different chemistries but all have the common feature of an out-of-plane array of micro-post electrodes. A 3D Ni-Zn microbattery was fabricated and demonstrated proper charge-discharge behavior for the first few cycles. The development of 3D zinc-air microbattery showed high discharge capability under various discharge conditions. Furthermore, performance of 3D zinc-air microbattery was demonstrated by successfully powering an electronic device. During discharge, the 3D zinc-air microbattery exhibited an electrode reaction which formed hollow ZnO electrodes by the Kirkendall effect. This electrode reaction strongly supports the functionality of the 3D microbattery. The fabrication of the Ag-Zn microbattery was accomplished by Ag electrode formation, separator coating, and Zn sedimentation. Due to imperfections in the separator coating, the 3D Ag-Zn microbattery had electrical shorts.

  8. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model

    USGS Publications Warehouse

    Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G.

    2008-01-01

    We are developing a three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit. The coupled model is applicable for fluvial, estuarine, shelf, and nearshore (surfzone) environments. Three-dimensional radiation-stress terms have been included in the momentum equations, along with effects of a surface wave roller model. The sediment-transport algorithms are implemented for an unlimited number of user-defined non-cohesive sediment classes. Each class has attributes of grain diameter, density, settling velocity, critical stress threshold for erosion, and erodibility constant. Suspended-sediment transport in the water column is computed with the same advection-diffusion algorithm used for all passive tracers and an additional algorithm for vertical settling that is not limited by the CFL criterion. Erosion and deposition are based on flux formulations. A multi-level bed framework tracks the distribution of every size class in each layer and stores bulk properties including layer thickness, porosity, and mass, allowing computation of bed morphology and stratigraphy. Also tracked are bed-surface properties including active-layer thickness, ripple geometry, and bed roughness. Bedload transport is calculated for mobile sediment classes in the top layer. Bottom-boundary layer submodels parameterize wave-current interactions that enhance bottom stresses and thereby facilitate sediment transport and increase bottom drag, creating a feedback to the circulation. The model is demonstrated in a series of simple test cases and a realistic application in Massachusetts Bay. ?? 2008 Elsevier Ltd. All rights reserved.

  9. Development of the Three-Dimensional Track Imager (3-DTI) for High Sensitivity Medium-Energy Gamma-Ray Polarimeter

    NASA Astrophysics Data System (ADS)

    Hunter, Stanley

    We propose to complete development of the Three-Dimensional Track Imager (3-DTI) detector. The 3-DTI development is motivated by the diverse science goals of the Advance Energetic Pair Telescope (AdEPT); a future instrument for medium-energy gamma-ray polarization. AdEPT will provide exceptional angular resolution approaching the kinematic limit for nuclear pair production ( 2 deg at 30 MeV) over the energy range from 5 MeV to >200 MeV and will be the first instrument in this energy range to be sensitive to gamma-ray polarization. The AdEPT performance can only be achieved with a low density pair-production medium coupled with high resolution electron-positron tracking and energy determination, i.e. accurate measurement of the electron-positron recoil momenta. The 3-DTI detector combines a gas time projection chamber (TPC) with a 400 um pitch two-dimensional Micro-Well Detector (MWD) to provide the high resolution three-dimensional charged particle tracking needed for AdEPT. The proposed work will address the need to tile smaller 12-25 cm2 MWDs together to achieve larger, 50 x 50 cm2 and 1 m2 areas, explore additive manufacturing of MWDs, and measure the long-term MWD performance. We will build a 50 x 50 x 100 cm3 active volume AdEPT prototype that will include zero dead-time streaming mode readout and charge integrating front-end electronics. Software will be developed for this prototype to discriminate between gamma-ray interactions and charged particles, determine the electron energies from multiple scattering and energy loss, and determine the incident direction and polarization of medium-energy gamma-rays.

  10. Feasibility and Accuracy of Automated Software for Transthoracic Three-Dimensional Left Ventricular Volume and Function Analysis: Comparisons with Two-Dimensional Echocardiography, Three-Dimensional Transthoracic Manual Method, and Cardiac Magnetic Resonance Imaging.

    PubMed

    Tamborini, Gloria; Piazzese, Concetta; Lang, Roberto M; Muratori, Manuela; Chiorino, Elisa; Mapelli, Massimo; Fusini, Laura; Ali, Sarah Ghulam; Gripari, Paola; Pontone, Gianluca; Andreini, Daniele; Pepi, Mauro

    2017-09-12

    Recently, a new automated software package (HeartModel) was developed to obtain three-dimensional (3D) left ventricular (LV) volumes using a model-based algorithm (MBA) with a "one-button" simple system and user-adjustable slider. The aims of this study were to verify the feasibility and accuracy of the MBA in comparison with other commonly used imaging techniques in a large unselected population, to evaluate possible accuracy improvements of free operator border adjustments or changes of the slider's default position, and to identify differences in method accuracy related to specific pathologies. This prospective study included consecutive 200 patients. LV volumes and ejection fraction were obtained using the MBA and compared with the two-dimensional biplane method, the 3D full-volume (3DFV) modality, and, in 90 of 200 cases, cardiac magnetic resonance (CMR) measurements. To evaluate the optimal position of the slider with respect to the 3DFV and CMR modalities, a set of threefold cross-validation experiments was performed. Optimized and manually corrected LV volumes obtained using the MBA were also tested. Linear correlation and Bland-Altman analysis were used to assess intertechnique agreement. Automatic volumes were feasible in 194 patients (94.5%), with a mean processing time of 29 ± 10 sec. MBA-derived volumes correlated significantly with all evaluated methods, with slight overestimation of two-dimensional biplane and slight underestimation of CMR measurements. Higher correlations were found between MBA and 3DFV measurements, with negligible differences both in volumes (overestimation) and in LV ejection fraction (underestimation), respectively. Optimization of the user-adjustable slider position improved the correlation and markedly reduced the bias between the MBA and 3DFV or CMR. The accuracy of MBA volumes was lower in some pathologies for incorrect definition of LV endocardium. The MBA is highly feasible, reproducible, and rapid, and it correlates

  11. Using three-dimensional geological mapping methods to inform sustainable groundwater development in a volcanic landscape, Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Gill, Bruce; Cherry, Don; Adelana, Michael; Cheng, Xiang; Reid, Mark

    2011-11-01

    This study investigated the use of three-dimensional (3D) geological methods to provide better groundwater resource estimates for the Spring Hill area in central Victoria, Australia. Geological data were gathered in 3D geological software, which was utilised to derive fundamental dimensional parameters of the groundwater system in the study area. Mining industry software and hydrogeological methods were combined to give volumetric determinations of the basalt aquifer that were used to improve estimates of the groundwater resource. The methods reduce uncertainty about the physical attributes of the aquifer systems and greatly improve conceptual understanding of their behaviour. A simple numerical water-balance model was developed to refine the estimates of aquifer volume and fluxes to approximate observed water-level behaviour in the area. This enabled a much better comparison of groundwater resource use to the natural inputs and outputs for the area. A key conclusion was that the main issues for sustainable development and use in the study area are more to do with the physical aspects of the aquifer system, rather than simply the volume of water pumped. Visualisations of the area's hydrogeology also provide improved hydrogeological understanding and communication for groundwater users and administrators.

  12. Three-dimensional analysis of the early development of the dentition

    PubMed Central

    Peterkova, R; Hovorakova, M; Peterka, M; Lesot, H

    2014-01-01

    Tooth development has attracted the attention of researchers since the 19th century. It became obvious even then that morphogenesis could not fully be appreciated from two-dimensional histological sections. Therefore, methods of three-dimensional (3D) reconstructions were employed to visualize the surface morphology of developing structures and to help appreciate the complexity of early tooth morphogenesis. The present review surveys the data provided by computer-aided 3D analyses to update classical knowledge of early odontogenesis in the laboratory mouse and in humans. 3D reconstructions have demonstrated that odontogenesis in the early stages is a complex process which also includes the development of rudimentary odontogenic structures with different fates. Their developmental, evolutionary, and pathological aspects are discussed. The combination of in situ hybridization and 3D reconstruction have demonstrated the temporo-spatial dynamics of the signalling centres that reflect transient existence of rudimentary tooth primordia at loci where teeth were present in ancestors. The rudiments can rescue their suppressed development and revitalize, and then their subsequent autonomous development can give rise to oral pathologies. This shows that tooth-forming potential in mammals can be greater than that observed from their functional dentitions. From this perspective, the mouse rudimentary tooth primordia represent a natural model to test possibilities of tooth regeneration. PMID:24495023

  13. Three-dimensional analysis of the early development of the dentition.

    PubMed

    Peterkova, R; Hovorakova, M; Peterka, M; Lesot, H

    2014-06-01

    Tooth development has attracted the attention of researchers since the 19th century. It became obvious even then that morphogenesis could not fully be appreciated from two-dimensional histological sections. Therefore, methods of three-dimensional (3D) reconstructions were employed to visualize the surface morphology of developing structures and to help appreciate the complexity of early tooth morphogenesis. The present review surveys the data provided by computer-aided 3D analyses to update classical knowledge of early odontogenesis in the laboratory mouse and in humans. 3D reconstructions have demonstrated that odontogenesis in the early stages is a complex process which also includes the development of rudimentary odontogenic structures with different fates. Their developmental, evolutionary, and pathological aspects are discussed. The combination of in situ hybridization and 3D reconstruction have demonstrated the temporo-spatial dynamics of the signalling centres that reflect transient existence of rudimentary tooth primordia at loci where teeth were present in ancestors. The rudiments can rescue their suppressed development and revitalize, and then their subsequent autonomous development can give rise to oral pathologies. This shows that tooth-forming potential in mammals can be greater than that observed from their functional dentitions. From this perspective, the mouse rudimentary tooth primordia represent a natural model to test possibilities of tooth regeneration. © 2014 Australian Dental Association.

  14. Three-dimensional imaging of the developing mouse female reproductive organs with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Burton, Jason C.; Wang, Shang; Behringer, Richard R.; Larina, Irina V.

    2016-03-01

    Infertility is a known major health concern and is estimated to impact ~15% of couples in the U.S. The majority of failed pregnancies occur before or during implantation of the fertilized embryo into the uterus. Understanding the mechanisms regulating development by studying mouse reproductive organs could significantly contribute to an improved understanding of normal development of reproductive organs and developmental causes of infertility in humans. Towards this goal, we report a three-dimensional (3D) imaging study of the developing mouse reproductive organs (ovary, oviduct, and uterus) using optical coherence tomography (OCT). In our study, OCT was used for 3D imaging of reproductive organs without exogenous contrast agents and provides micro-scale spatial resolution. Experiments were conducted in vitro on mouse reproductive organs ranging from the embryonic day 14.5 to adult stages. Structural features of the ovary, oviduct, and uterus are presented. Additionally, a comparison with traditional histological analysis is illustrated. These results provide a basis for a wide range of infertility studies in mouse models. Through integration with traditional genetic and molecular biology approaches, this imaging method can improve understanding of ovary, oviduct, and uterus development and function, serving to further contribute to our understanding of fertility and infertility.

  15. Geostatistical Procedures for Developing Three-Dimensional Aquifer Models from Drillers' Logs

    NASA Astrophysics Data System (ADS)

    Bohling, G.; Helm, C.

    2013-12-01

    The Hydrostratigraphic Drilling Record Assessment (HyDRA) project is developing procedures for employing the vast but highly qualitative hydrostratigraphic information contained in drillers' logs in the development of quantitative three-dimensional (3D) depictions of subsurface properties for use in flow and transport models to support groundwater management practices. One of the project's objectives is to develop protocols for 3D interpolation of lithological data from drillers' logs, properly accounting for the categorical nature of these data. This poster describes the geostatistical procedures developed to accomplish this objective. Using a translation table currently containing over 62,000 unique sediment descriptions encountered during the transcription of over 15,000 logs in the Kansas High Plains aquifer, the sediment descriptions are translated into 71 standardized terms, which are then mapped into a small number of categories associated with different representative property (e.g., hydraulic conductivity [K]) values. Each log is partitioned into regular intervals and the proportion of each K category within each interval is computed. To properly account for their compositional nature, a logratio transform is applied to the proportions. The transformed values are then kriged to the 3D model grid and backtransformed to determine the proportion of each category within each model cell. Various summary measures can then be computed from the proportions, including a proportion-weighted average K and an entropy measure representing the degree of mixing of categories within each cell. We also describe a related cross-validation procedure for assessing log quality.

  16. Development of particulate matter transfer coefficients using a three-dimensional air quality model

    SciTech Connect

    Seigneur, C.; Tonne, C.; Vijayaraghavan, K.; Pai, P.; Levin, L.

    1999-07-01

    Air quality model simulations constitute an effective approach to develop source-receptor relationships (so-called transfer coefficients in the risk analysis framework) because a significant fraction of particulate matter (particularly PM{sub 2.5}) is secondary and, therefore, depends on the atmospheric chemistry of the airshed. These source-receptor relationships can be made specific to source regions and major pollutants. In this study, the authors have used a comprehensive three-dimensional air quality model for PM (SAQM-AERO) to generate episodic transfer coefficients for several source regions in the Los Angeles basin (i.e., surface coastal region, elevated coastal region, central basin, and downwind region). Transfer coefficients were developed by conducting PM air quality simulations with reduced emissions of one of the four precursors (i.e., primary PM, SO{sub 2}, NO{sub x}, and VOC) from each source region. The authors have also compared the transfer coefficients generated from explicit modeling with those based on expert judgment, which were obtained by integrating information from the development of the baseline simulation and across-the-board emission reduction simulations.

  17. Three-dimensional structures and turbulence closure of the wake developing in a wall shear layer

    NASA Technical Reports Server (NTRS)

    Hah, C.

    1981-01-01

    The turbulent wake interacting with the rotating wall shear layer is investigated analytically and numerically. The turbulent wakes of the rotating blades in a compressor which are interacting with the rotating hub-wall boundary layer are analyzed. A modified version of the closure model of the pressure-strain correlation term in the Reynolds stress transport equation is developed to predict the effect of rotation, which is appreciable for the present flow because the thick hub-wall boundary layer is interacting with the rotor wake. It is noted that the Poisson type equation for the pressure-strain correlation has an extra rotation term when the entire flow field is rotating. This extra rotation term is modeled to accommodate the effect of rotation. In addition, the standard correction for the wall effect is incorporated for the utilized Reynolds stress closure model. The rotation-modified Reynolds stress closure model is used to predict the present flow, and the predictions are compared with the experimental data. The experimental data reveal that the characteristics of the three-dimensional turbulent wake interacting with the wall shear layer are considerably altered by the effects of the wall and the rotation. These features are predicted with good accuracy by the turbulence closure model developed.

  18. A three-dimensional culture system recapitulates placental syncytiotrophoblast development and microbial resistance

    PubMed Central

    McConkey, Cameron A.; Delorme-Axford, Elizabeth; Nickerson, Cheryl A.; Kim, Kwang Sik; Sadovsky, Yoel; Boyle, Jon P.; Coyne, Carolyn B.

    2016-01-01

    In eutherians, the placenta acts as a barrier and conduit at the maternal-fetal interface. Syncytiotrophoblasts, the multinucleated cells that cover the placental villous tree surfaces of the human placenta, are directly bathed in maternal blood and are formed by the fusion of progenitor cytotrophoblasts that underlie them. Despite their crucial role in fetal protection, many of the events that govern trophoblast fusion and protection from microbial infection are unknown. We describe a three-dimensional (3D)–based culture model using human JEG-3 trophoblast cells that develop syncytiotrophoblast phenotypes when cocultured with human microvascular endothelial cells. JEG-3 cells cultured in this system exhibit enhanced fusogenic activity and morphological and secretory activities strikingly similar to those of primary human syncytiotrophoblasts. RNASeq analyses extend the observed functional similarities to the transcriptome, where we observed significant overlap between syncytiotrophoblast-specific genes and 3D JEG-3 cultures. Furthermore, JEG-3 cells cultured in 3D are resistant to infection by viruses and Toxoplasma gondii, which mimics the high resistance of syncytiotrophoblasts to microbial infections in vivo. Given that this system is genetically manipulatable, it provides a new platform to dissect the mechanisms involved in syncytiotrophoblast development and microbial resistance. PMID:26973875

  19. Fully nonlinear development of the most unstable goertler vortex in a three dimensional boundary layer

    NASA Technical Reports Server (NTRS)

    Otto, S. R.; Bassom, Andrew P.

    1992-01-01

    The nonlinear development is studied of the most unstable Gortler mode within a general 3-D boundary layer upon a suitably concave surface. The structure of this mode was first identified by Denier, Hall and Seddougui (1991) who demonstrated that the growth rate of this instability is O(G sup 3/5) where G is the Gortler number (taken to be large here), which is effectively a measure of the curvature of the surface. Previous researchers have described the fate of the most unstable mode within a 2-D boundary layer. Denier and Hall (1992) discussed the fully nonlinear development of the vortex in this case and showed that the nonlinearity causes a breakdown of the flow structure. The effect of crossflow and unsteadiness upon an infinitesimal unstable mode was elucidated by Bassom and Hall (1991). They demonstrated that crossflow tends to stabilize the most unstable Gortler mode, and for certain crossflow/frequency combinations the Gortler mode may be made neutrally stable. These vortex configurations naturally lend themselves to a weakly nonlinear stability analysis; work which is described in a previous article by the present author. Here we extend the ideas of Denier and Hall (1992) to the three-dimensional boundary layer problem. It is found that the numerical solution of the fully nonlinear equations is best conducted using a method which is essentially an adaption of that utilized by Denier and Hall (1992). The influence of crossflow and unsteadiness upon the breakdown of the flow is described.

  20. Current Challenges in Development of a Database of Three-Dimensional Chemical Structures

    PubMed Central

    Maeda, Miki H.

    2015-01-01

    We are developing a database named 3DMET, a three-dimensional structure database of natural metabolites. There are two major impediments to the creation of 3D chemical structures from a set of planar structure drawings: the limited accuracy of computer programs and insufficient human resources for manual curation. We have tested some 2D–3D converters to convert 2D structure files from external databases. These automatic conversion processes yielded an excessive number of improper conversions. To ascertain the quality of the conversions, we compared IUPAC Chemical Identifier and canonical SMILES notations before and after conversion. Structures whose notations correspond to each other were regarded as a correct conversion in our present work. We found that chiral inversion is the most serious factor during the improper conversion. In the current stage of our database construction, published books or articles have been resources for additions to our database. Chemicals are usually drawn as pictures on the paper. To save human resources, an optical structure reader was introduced. The program was quite useful but some particular errors were observed during our operation. We hope our trials for producing correct 3D structures will help other developers of chemical programs and curators of chemical databases. PMID:26075200

  1. Three-dimensional perspective visualization

    NASA Technical Reports Server (NTRS)

    Hussey, Kevin

    1991-01-01

    It was demonstrated that image processing computer graphic techniques can provide an effective means of physiographic analysis of remotely sensed regions through the use of three-dimensional perspective rendering. THe methods used to simulate and animate three-dimensional surfaces from two-dimensional imagery and digital elevation models are explained. A brief historic look at JPL's efforts in this field and several examples of animations, illustrating the evolution of these techniques from 1985, are shown. JPL's current research in this area is discussed along with examples of technology transfer and potential commercial application. The software is part of the VICAR (Video Image Communication and Retrieval) image processing system which was developed at the Multimission Image Processing Laboratory of JPL.

  2. Development of a three-dimensional model of the human respiratory system for dosimetric use

    PubMed Central

    2013-01-01

    Background Determining the fate of inhaled contaminants in the human respiratory system has challenged scientists for years. Human and animal studies have provided some data, but there is a paucity of data for toxic contaminants and sensitive populations (such as children, elderly, diseased). Methods Three-dimensional modeling programs and publicly available human physiology data have been used to develop a comprehensive model of the human respiratory system. Results The in silico human respiratory system model, which includes the extrathoracic region (nasal, oral, pharyngeal, and laryngeal passages), the upper airways (trachea and main bronchi), the tracheobronchial tree, and branching networks through alveolar region, allows for virtually any variation of airway geometries and disease states. The model allows for parameterization of variables that define the subject’s airways by integrating morphological changes created by disease, age, etc. with a dynamic morphology. Conclusions The model can be used for studies of sensitive populations and the homeland security community, in cases where inhalation studies on humans cannot be conducted with toxic contaminants of interest. PMID:23634755

  3. Development and evaluation of a three-dimensional hyperthermia applicator with Water-COated Antennas (WACOA).

    PubMed

    Nadobny, Jacek; Wlodarczyk, Waldemar; Westhoff, Lothar; Gellermann, Johanna; Rau, Beate; Mönich, Gerhard; Wust, Peter

    2003-08-01

    A novel twelve-channel three-dimensional (3-D) hyperthermia applicator has been developed and evaluated, which consists of twelve separate WAter COated Antenna (WACOA) modules. The modules are arranged in three transversal antenna rings (sub-arrays) and are placed into an acrylic applicator frame as cartridge-like elements in a staggered arrangement. The operating frequency is 100 MHz. For the design of the applicator, the finite-difference time-domain (FDTD) method was used. The applicator's dimensions allow its placement into the gantry of a magnetic resonance (MR) tomograph. The WACOA modules are designed as MR-compatible specially shaped metallic cylindrical dipole structures that are placed into hermetically closed water-filled cassettes. Due to the design of the dipole structures, only a conventional coaxial feed circuitry is needed, and no external impedance matching networks are necessary. Instead, fine on-line impedance matching is realized using adjustable tuning rods and matching rings, both elements being parts of the radiating antenna structure. Experimental and numerical evaluations demonstrate a good stability of impedance matching, a low inter-channel coupling of less than -20 dB, and a good ability of field pattern steering.

  4. Three-Dimensional Magnetic Analysis Technique Developed for Evaluating Stirling Convertor Linear Alternators

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.

    2003-01-01

    The Department of Energy, the Stirling Technology Company (STC), and the NASA Glenn Research Center are developing Stirling convertors for Stirling radioisotope generators to provide electrical power for future NASA deep space missions. STC is developing the 55-We technology demonstration convertor (TDC) under contract to the Department of Energy. The Department of Energy recently named Lockheed Martin as the system integration contractor for the Stirling radioisotope generator development project. Lockheed Martin will develop the Stirling radioisotope generator engineering unit and has contract options to develop the qualification unit and the first flight unit. Glenn s role includes an in-house project to provide convertor, component, and materials testing and evaluation in support of the overall power system development. As a part of this work, Glenn has established an in-house Stirling research laboratory for testing, analyzing, and evaluating Stirling machines. STC has built four 55-We convertors for NASA, and these are being tested at Glenn. A cross-sectional view of the 55-We TDC is shown in the figure. Of critical importance to the successful development of the Stirling convertor for space power applications is the development of a lightweight and highly efficient linear alternator. In support, Glenn has been developing finite element analysis and finite element method tools for performing various linear alternator thermal and electromagnetic analyses and evaluating design configurations. A three-dimensional magnetostatic finite element model of STC's 55-We TDC linear alternator was developed to evaluate the demagnetization fields affecting the alternator magnets. Since the actual linear alternator hardware is symmetric to the quarter section about the axis of motion, only a quarter section of the alternator was modeled. The components modeled included the mover laminations, the neodymium-iron-boron magnets, the stator laminations, and the copper coils. The

  5. Encapsulated Three-Dimensional Culture Supports Development of Nonhuman Primate Secondary Follicles1

    PubMed Central

    Xu, Min; West-Farrell, Erin R.; Stouffer, Richard L.; Shea, Lonnie D.; Woodruff, Teresa K.; Zelinski, Mary B.

    2009-01-01

    In vitro ovarian follicle cultures may provide fertility-preserving options to women facing premature infertility due to cancer therapies. An encapsulated three-dimensional (3-D) culture system utilizing biomaterials to maintain cell-cell communication and support follicle development to produce a mature oocyte has been developed for the mouse. We tested whether this encapsulated 3-D system would also support development of nonhuman primate preantral follicles, for which in vitro growth has not been reported. Three questions were investigated: Does the cycle stage at which the follicles are isolated affect follicle development? Does the rigidity of the hydrogel influence follicle survival and growth? Do follicles require luteinizing hormone (LH), in addition to follicle-stimulating hormone (FSH), for steroidogenesis? Secondary follicles were isolated from adult rhesus monkeys, encapsulated within alginate hydrogels, and cultured individually for ≤30 days. Follicles isolated from the follicular phase of the menstrual cycle had a higher survival rate (P < 0.05) than those isolated from the luteal phase; however, this difference may also be attributed to differing sizes of follicles isolated during the different stages. Follicles survived and grew in two hydrogel conditions (0.5% and 0.25% alginate). Follicle diameters increased to a greater extent (P < 0.05) in the presence of FSH alone than in FSH plus LH. Regardless of gonadotropin treatment, follicles produced estradiol, androstenedione, and progesterone by 14–30 days in vitro. Thus, an alginate hydrogel maintains the 3-D structure of individual secondary macaque follicles, permits follicle growth, and supports steroidogenesis for ≤30 days in vitro. This study documents the first use of the alginate system to maintain primate tissue architecture, and findings suggest that encapsulated 3-D culture will be successful in supporting the in vitro development of human follicles. PMID:19474063

  6. Novel Three-Dimensional Image Fusion Software to Facilitate Guidance of Complex Cardiac Catheterization : 3D image fusion for interventions in CHD.

    PubMed

    Goreczny, Sebastian; Dryzek, Pawel; Morgan, Gareth J; Lukaszewski, Maciej; Moll, Jadwiga A; Moszura, Tomasz

    2017-08-01

    We report initial experience with novel three-dimensional (3D) image fusion software for guidance of transcatheter interventions in congenital heart disease. Developments in fusion imaging have facilitated the integration of 3D roadmaps from computed tomography or magnetic resonance imaging datasets. The latest software allows live fusion of two-dimensional (2D) fluoroscopy with pre-registered 3D roadmaps. We reviewed all cardiac catheterizations guided with this software (Philips VesselNavigator). Pre-catheterization imaging and catheterization data were collected focusing on fusion of 3D roadmap, intervention guidance, contrast and radiation exposure. From 09/2015 until 06/2016, VesselNavigator was applied in 34 patients for guidance (n = 28) or planning (n = 6) of cardiac catheterization. In all 28 patients successful 2D-3D registration was performed. Bony structures combined with the cardiovascular silhouette were used for fusion in 26 patients (93%), calcifications in 9 (32%), previously implanted devices in 8 (29%) and low-volume contrast injection in 7 patients (25%). Accurate initial 3D roadmap alignment was achieved in 25 patients (89%). Six patients (22%) required realignment during the procedure due to distortion of the anatomy after introduction of stiff equipment. Overall, VesselNavigator was applied successfully in 27 patients (96%) without any complications related to 3D image overlay. VesselNavigator was useful in guidance of nearly all of cardiac catheterizations. The combination of anatomical markers and low-volume contrast injections allowed reliable 2D-3D registration in the vast majority of patients.

  7. Development of a three-dimensional model of lung cancer using cultured transformed lung cells.

    PubMed

    Vertrees, Roger A; McCarthy, Maureen; Solley, Travis; Popov, Vselovod L; Roaten, John; Pauley, Matthew; Wen, Xiaodong; Goodwin, Thomas J

    2009-02-01

    Despite great strides in understanding cancer biology, the role cellular differentiation and three-dimensional (3-D) structural organization play in metastasis and malignancy remains unclear. Development of 3-D cultures may ultimately provide a model facilitating discovery and interpretation of more relevant information for the expression and role of antibodies in lung cellular pathobiology. The purpose was to develop traditional monolayer (ML) and 3-D cultures of a known transformed metastatic lung cell line and then determine similarities and differences between cultures in terms of differentiation, molecular marker expression and metastasis. A transformed lung cell line (BZR-T33) was initially transfected with green fluorescent protein (GFP) in ML culture. Nude mice were inoculated with BZR-T33 and observed for metastasis. BZR-T33 was grown as ML and 3-D cultures under identical conditions. Immunohistochemical comparison for degree of antibody expression between cultures and control tissue were studied. Electron microscopy (EM) for identification of ultra structures was done and compared between cultures. A 3-D co-culture containing GFP-transformed cells over an immortalized lung-cell line was developed. The GFP-transfected cell line formed tumors and metastasized in mice. EM identified significant mitochondrial and granular endoplasmic reticular pathology in ML not seen in 3-D. Degree of differentiation shows ultra structures and antibody expressions were more representative of control tissue in 3-D than ML. The co-culture experiment in 3-D demonstrates the ability of transformed cells to penetrate the sub-layer of immortalized cells. Development of 3-D cultures will provide a new and powerful tool to study lung biology and pathobiology.

  8. Development of the human aortic arch system captured in an interactive three-dimensional reference model.

    PubMed

    Rana, M Sameer; Sizarov, Aleksander; Christoffels, Vincent M; Moorman, Antoon F M

    2014-06-01

    Variations and mutations in the human genome, such as 22q11.2 microdeletion, can increase the risk for congenital defects, including aortic arch malformations. Animal models are increasingly expanding our molecular and genetic insights into aortic arch development. However, in order to justify animal-to-human extrapolations, a human morphological, and molecular reference model would be of great value, but is currently lacking. Here, we present interactive three-dimensional reconstructions of the developing human aortic arch system, supplemented with the protein distribution of developmental markers for patterning and growth, including T-box transcription factor TBX1, a major candidate for the phenotypes found in patients with the 22q11.2 microdeletion. These reconstructions and expression data facilitate unbiased interpretations, and reveal previously unappreciated aspects of human aortic arch development. Based on our reconstructions and on reported congenital anomalies of the pulmonary trunk and tributaries, we postulate that the pulmonary arteries originate from the aortic sac, rather than from the sixth pharyngeal arch arteries. Similar to mouse, TBX1 is expressed in pharyngeal mesenchyme and epithelia. The endothelium of the pharyngeal arch arteries is largely negative for TBX1 and family member TBX2 but expresses neural crest marker AP2α, which gradually decreases with ongoing development of vascular smooth muscle. At early stages, the pharyngeal arch arteries, aortic sac, and the dorsal aortae in particular were largely negative for proliferation marker Ki67, potentially an important parameter during aortic arch system remodeling. Together, our data support current animal-to-human extrapolations and future genetic and molecular analyses using animal models of congenital heart disease. © 2013 Wiley Periodicals, Inc.

  9. Development and validation of a three-dimensional, wave-current coupled model on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Wang, JinHua; Shen, YongMing

    2011-01-01

    Using unstructured meshes provides great flexibility for modeling the flow in complex geomorphology of tidal creeks, barriers and islands, with refined grid resolution in regions of interest and not elsewhere. In this paper, an unstructured three-dimensional fully coupled wave-current model is developed. Firstly, a parallel, unstructured wave module is developed. Variations in wave properties are governed by a wave energy equation that includes wave-current interactions and dissipation representative of wave breaking. Then, the existing Finite-Volume Coastal Ocean Model (FVCOM) is modified to couple with the wave module. The couple procedure includes depth dependent wave radiation stress terms, Stokes drift, vertical transfer of wave-generated pressure transfer to the mean momentum equation, wave dissipation as a source term in the turbulence kinetic energy equation, and mean current advection and refraction of wave energy. Several applications are presented to evaluate the developed model. In particular the wind and wave-induced storm surge generated by Hurricane Katrina is investigated. The obtained results have been compared to the in situ measurements with respect to the wave heights and water level elevations revealing good accuracy of the model in reproduction of the investigated events. In a comparison to water level measurements at Dauphin Island, inclusion of the wave induced water level setup reduced the normalized root mean square error from 0.301 to 0.257 m and increased the correlation coefficient from 0.860 to 0.929. Several runs were carried out to analyze the effects of waves. The experiments show that among the processes that represent wave effects, radiation stress and wave-induced surface stress are more important than wave-induced bottom stress in affecting the water level. The Hurricane Katrina simulations showed the importance of the inclusion of the wave effects for the hindcast of the water levels during the storm surge.

  10. Three-dimensional hydrodynamic and water quality model for TMDL development of Lake Fuxian, China.

    PubMed

    Zhao, Lei; Zhang, Xiaoling; Liu, Yong; He, Bin; Zhu, Xiang; Zou, Rui; Zhu, Yuanguan

    2012-01-01

    Lake Fuxian is the largest deep freshwater lake in China. Although its average water quality meets Class I of the China National Water Quality Standard (CNWQS), i.e., GB3838-2002, monitoring data indicate that the water quality approaches the Class II threshold in some areas. Thus it is urgent to reduce the watershed load through the total maximum daily load (TMDL) program. A three-dimensional hydrodynamic and water quality model was developed for Lake Fuxian, simulating flow circulation and pollutant fate and transport. The model development process consists of several steps, including grid generation, initial and boundary condition configurations, and model calibration processes. The model accurately reproduced the observed water surface elevation, spatiotemporal variations in temperature, and total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) concentrations, suggesting a reasonable numerical representation of the prototype system for further TMDL analyses. The TMDL was calculated using two interpretations of the water quality standards for Class I of the CNWQS based on the maximum instantaneous surface and annual average surface water concentrations. Analysis of the first scenario indicated that the TN, TP and COD loads should be reduced by 66%, 68% and 57%, respectively. Water quality was the highest priority; however, local economic development and cost feasibility for load reduction can pose significant issues. In the second interpretation, the model results showed that, under the existing conditions, the average water quality meets the Class I standard and therefore load reduction is unnecessary. Future studies are needed to conduct risk and cost assessments for realistic decision-making.

  11. Development of a Three-Dimensional Finite Element Chest Model for the 5(th) Percentile Female.

    PubMed

    Kimpara, Hideyuki; Lee, Jong B; Yang, King H; King, Albert I; Iwamoto, Masami; Watanabe, Isao; Miki, Kazuo

    2005-11-01

    Several three-dimensional (3D) finite element (FE) models of the human body have been developed to elucidate injury mechanisms due to automotive crashes. However, these models are mainly focused on 50(th) percentile male. As a first step towards a better understanding of injury biomechanics in the small female, a 3D FE model of a 5(th) percentile female human chest (FEM-5F) has been developed and validated against experimental data obtained from two sets of frontal impact, one set of lateral impact, two sets of oblique impact and a series of ballistic impacts. Two previous FE models, a small female Total HUman Model for Safety (THUMS-AF05) occupant version 1.0Beta (Kimpara et al. 2002) and the Wayne State University Human Thoracic Model (WSUHTM, Wang 1995 and Shah et al. 2001) were integrated and modified for this model development. The model incorporated not only geometrical gender differences, such as location of the internal organs and structure of the bony skeleton, but also the biomechanical differences of the ribs due to gender. It includes a detailed description of the sternum, ribs, costal cartilage, thoracic spine, skin, superficial muscles, intercostal muscles, heart, lung, diaphragm, major blood vessels and simplified abdominal internal organs and has been validated against a series of six cadaveric experiments on the small female reported by Nahum et al. (1970), Kroell et al. (1974), Viano (1989), Talantikite et al. (1998) and Wilhelm (2003). Results predicted by the model were well-matched to these experimental data for a range of impact speeds and impactor masses. More research is needed in order to increase the accuracy of predicting rib fractures so that the mechanisms responsible for small female injury can be more clearly defined.

  12. Development of Holographic Particle Velocimetry Techniques for Three-Dimensional Vortical Flows

    NASA Astrophysics Data System (ADS)

    Meng, Hui

    The lack of techniques to measure instantaneous velocity vector fields in three-dimensional (3D) space is the primary obstacle to further understanding of vortex dynamics and turbulence phenomena. Holographic Particle Velocimetry (HPV), which can record a 3D flow field laden with tracer particles on holograms using pulsed laser beams and measure the particle displacements, appears to be highly promising to this end. An HPV technique based on in-line holography has been implemented, which is characterized by geometric simplicity and minimal laser requirements. To overcome limitations (such as intrinsic speckle noise and large depth-of-focus) of in-line HPV, an analytical model has been developed which elucidates the nature of the speckle noise, quantifies the signal-to-noise-ratio of particle images as a function of particle field parameters, and suggests ways for further improvements in HPV concepts. Based upon these results, an off-axis HPV system has been developed in which speckle noise is suppressed and depth-of-focus is reduced, but the system complexity increases as well. Improving upon off-axis HPV, two innovative techniques--viz. multibeam, and in-line recording/off-axis viewing (IROV)--have been proposed. Proof-of-concept has been established for the multibeam HPV which utilizes the laser energy efficiently. The IROV technique, which enjoys the geometric simplicity of in-line HPV as well as the low speckle noise and small depth-of-focus of off-axis HPV has been developed and applied to measure an unstable vortex ring (Re = 1360) in water. The instantaneous velocity vector field in a 3D space (21 mm x 40 mm x 11 mm) is obtained at a spatial resolution of 1 mm. The vorticity distribution and circulation as a function of radius from the core center are calculated.

  13. Development of Three-Dimensional Multicellular Tissue-Like Constructs for Mutational Analysis Using Macroporous Microcarriers

    NASA Technical Reports Server (NTRS)

    Jordan, Jacqueline A.; Fraga, Denise N.; Gonda, Steve R.

    2002-01-01

    A three-dimensional (3-D), tissue-like model was developed for the genotoxic assessment of space environment. In previous experiments, we found that culturing mammalian cells in a NASA-designed bioreactor, using Cytodex-3 beads as a scaffold, generated 3-D multicellular spheroids. In an effort to generate scaffold-free spheroids, we developed a new 3-D tissue-like model by coculturing fibroblast and epithelial cell in a NASA bioreactor using macroporous Cultispher-S(TradeMark) microcarriers. Big Blue(Registered Trademark) Rat 2(Lambda) fibroblasts, genetically engineered to contain multiple copies (>60 copies/cell) of the Lac I target gene, were cocultured with radio-sensitive human epithelial cells, H184F5. Over an 8-day period, samples were periodically examined by microscopy and histology to confirm cell attachment, growth, and viability. Immunohistochemistry and western analysis were used to evaluate the expression of specific cytoskeletal and adhesion proteins. Key cell culture parameters (glucose, pH, and lactate concentrations) were monitored daily. Controls were two-dimensional mono layers of fibroblast or epithelial cells cultured in T-flasks. Analysis of 3-D spheroids from the bioreactor suggests fibroblast cells attached to and completely covered the bead surface and inner channels by day 3 in the bioreactor. Treatment of the 3-day spheroids with dispase II dissolved the Cultisphers(TradeMark) and produced multicellular, bead-less constructs. Immunohistochemistry confirmed the presence of vi.mentin, cytokeratin and E-cadherin in treated spheroids. Examination of the dispase II treated spheroids with transmission electron microscopy (TEM) also showed the presence of desmosomes. These results suggest that the controlled enzymatic degradation of an artificial matrix in the low shear environment of the NASA-designed bioreactor can produce 3-D tissue-like spheroids. 2

  14. Noninvasive assessment of mitochondrial organization in three-dimensional tissues reveals changes associated with cancer development

    PubMed Central

    Xylas, Joanna; Varone, Antonio; Quinn, Kyle P.; Pouli, Dimitra; McLaughlin-Drubin, Margaret E.; Thieu, Hong-Thao; Garcia-Moliner, Maria L.; House, Michael; Hunter, Martin; Munger, Karl; Georgakoudi, Irene

    2016-01-01

    Mitochondrial organization is often altered to accommodate cellular bioenergetic and biosynthetic demands. Changes in metabolism are a hallmark of a number of diseases, including cancer; however, the interdependence between mitochondrial metabolic function and organization is not well understood. Here, we present a noninvasive, automated and quantitative method to assess mitochondrial organization in three-dimensional (3D) tissues using exclusively endogenous two-photon excited fluorescence (TPEF) and show that mitochondrial organization reflects alterations in metabolic activities. Specifically, we examine the organization of mitochondria within live, engineered epithelial tissue equivalents that mimic normal and precancerous human squamous epithelial tissues. We identify unique patterns of mitochondrial organization in the different tissue models we examine, and we attribute these to differences in the metabolic profiles of these tissues. We find that mitochondria are clustered in tissues with high levels of glycolysis and are more highly networked in tissues where oxidative phosphorylation is more dominant. The most highly networked organization is observed within cells with high levels of glutamine consumption. Furthermore, we demonstrate that mitochondrial organization provides complementary information to traditional morphological hallmarks of cancer development, including variations in nuclear size. Finally, we present evidence that this automated quantitative analysis of endogenous TPEF images can identify differences in the mitochondrial organization of freshly excised normal and pre-cancerous human cervical tissue specimens. Thus, this method could be a promising new modality to assess the role of mitochondrial organization in the metabolic activity of 3D tissues and could be further developed to serve as an early cancer clinical diagnostic biomarker. PMID:24862444

  15. Development of a Three-Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling.

    PubMed

    Wilkinson, Dan C; Alva-Ornelas, Jackelyn A; Sucre, Jennifer M S; Vijayaraj, Preethi; Durra, Abdo; Richardson, Wade; Jonas, Steven J; Paul, Manash K; Karumbayaram, Saravanan; Dunn, Bruce; Gomperts, Brigitte N

    2017-02-01

    Stem cell technologies, especially patient-specific, induced stem cell pluripotency and directed differentiation, hold great promise for changing the landscape of medical therapies. Proper exploitation of these methods may lead to personalized organ transplants, but to regenerate organs, it is necessary to develop methods for assembling differentiated cells into functional, organ-level tissues. The generation of three-dimensional human tissue models also holds potential for medical advances in disease modeling, as full organ functionality may not be necessary to recapitulate disease pathophysiology. This is specifically true of lung diseases where animal models often do not recapitulate human disease. Here, we present a method for the generation of self-assembled human lung tissue and its potential for disease modeling and drug discovery for lung diseases characterized by progressive and irreversible scarring such as idiopathic pulmonary fibrosis (IPF). Tissue formation occurs because of the overlapping processes of cellular adhesion to multiple alveolar sac templates, bioreactor rotation, and cellular contraction. Addition of transforming growth factor-β1 to single cell-type mesenchymal organoids resulted in morphologic scarring typical of that seen in IPF but not in two-dimensional IPF fibroblast cultures. Furthermore, this lung organoid may be modified to contain multiple lung cell types assembled into the correct anatomical location, thereby allowing cell-cell contact and recapitulating the lung microenvironment. Our bottom-up approach for synthesizing patient-specific lung tissue in a scalable system allows for the development of relevant human lung disease models with the potential for high throughput drug screening to identify targeted therapies. Stem Cells Translational Medicine 2017;6:622-633.

  16. Development of a Three-Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling.

    PubMed

    Wilkinson, Dan C; Alva-Ornelas, Jackelyn A; Sucre, Jennifer M S; Vijayaraj, Preethi; Durra, Abdo; Richardson, Wade; Jonas, Steven J; Paul, Manash K; Karumbayaram, Saravanan; Dunn, Bruce; Gomperts, Brigitte N

    2016-09-15

    : Stem cell technologies, especially patient-specific, induced stem cell pluripotency and directed differentiation, hold great promise for changing the landscape of medical therapies. Proper exploitation of these methods may lead to personalized organ transplants, but to regenerate organs, it is necessary to develop methods for assembling differentiated cells into functional, organ-level tissues. The generation of three-dimensional human tissue models also holds potential for medical advances in disease modeling, as full organ functionality may not be necessary to recapitulate disease pathophysiology. This is specifically true of lung diseases where animal models often do not recapitulate human disease. Here, we present a method for the generation of self-assembled human lung tissue and its potential for disease modeling and drug discovery for lung diseases characterized by progressive and irreversible scarring such as idiopathic pulmonary fibrosis (IPF). Tissue formation occurs because of the overlapping processes of cellular adhesion to multiple alveolar sac templates, bioreactor rotation, and cellular contraction. Addition of transforming growth factor-β1 to single cell-type mesenchymal organoids resulted in morphologic scarring typical of that seen in IPF but not in two-dimensional IPF fibroblast cultures. Furthermore, this lung organoid may be modified to contain multiple lung cell types assembled into the correct anatomical location, thereby allowing cell-cell contact and recapitulating the lung microenvironment. Our bottom-up approach for synthesizing patient-specific lung tissue in a scalable system allows for the development of relevant human lung disease models with the potential for high throughput drug screening to identify targeted therapies.

  17. Development of a three-dimensional hand model using 3D stereophotogrammetry: Evaluation of landmark reproducibility.

    PubMed

    Hoevenaren, Inge A; Maal, Thomas J J; Krikken, E; de Haan, A F J; Bergé, S J; Ulrich, D J O

    2015-05-01

    Using three-dimensional (3D) photography, exact images of the human body can be produced. Over the last few years, this technique is mainly being developed in the field of maxillofacial reconstructive surgery, creating fusion images with computed tomography (CT) data for accurate planning and prediction of treatment outcome. However, in hand surgery, 3D photography is not yet being used in clinical settings. The aim of this study was to develop a valid method for imaging the hand using 3D stereophotogrammetry. The reproducibility of 30 soft tissue landmarks was determined using 3D stereophotogrammetric images. Analysis was performed by two observers on 20 3D photographs. Reproducibility and reliability of the landmark identification were determined using statistical analysis. The intra- and interobserver reproducibility of the landmarks were high. This study showed a high reliability coefficient for intraobserver (1.00) and interobserver reliability (0.99). Identification of the landmarks on the palmar aspect of individual fingers was more precise than the identification of landmarks of the thumb. This study shows that 3D photography can safely produce accurate and reproducible images of the hand, which makes the technique a reliable method for soft tissue analysis. 3D images can be a helpful tool in pre- and postoperative evaluation of reconstructive trauma surgery, in aesthetic surgery of the hand, and for educational purposes. The use in everyday practice of hand surgery and the concept of fusing 3D photography images with radiologic images of the interior hand structures needs to be further explored. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Development of Three-Dimensional Position-Sensitive Room Temperature Semiconductor Gamma-Ray Spectrometers

    SciTech Connect

    Zhong He; Wen Li; Glenn F. Knoll; D. K. Wehe

    2000-06-04

    Semiconductor detectors can provide better spectroscopic performance than scintillation or gas-filled detectors because of the small ionization energy required to generate each electron-hole pair. Indeed, cryogenically cooled high-purity germanium detectors have played the dominant role whenever the best gamma-ray spectroscopy is required. A decades-long search for other semiconductor detectors that could provide higher stopping power and could operate at room temperature has been ongoing. Wide-bandgap semiconductors, such as CdTe, CdZnTe, and HgI{sub 2}, have captured the most attention. However, the use of these semiconductors in detectors has been hindered primarily by problems of charge trapping and material nonuniformity. Introduced in 1994, single-polarity charge sensing on semiconductor detectors has shown great promise in avoiding the hole-trapping problem, and the newly demonstrated three-dimensional position-sensing technique can significantly mitigate the degradation of energy resolution due to nonuniformity of detector material. In addition, three-dimensional position sensitivity will provide unique imaging capabilities of these gamma-ray spectrometers. These devices are of interest for nuclear nonproliferation, medical imaging, gamma-ray astronomy, and high-energy physics applications. This paper describes the three-dimensional position-sensing method and reports our latest results using second-generation three-dimensional position-sensitive semiconductor spectrometers.

  19. Developing a Learning Progression for Three-Dimensional Learning of the Patterns of Evolution

    ERIC Educational Resources Information Center

    Wyner, Yael; Doherty, Jennifer H.

    2017-01-01

    This paper examines how students make progress toward three-dimensional (3D) understanding of the patterns of evolution. Specifically, it proposes a learning progression that explains how scientific practices, crosscutting concepts, and disciplinary core ideas come together in naming and grouping, length of change over time, and the role of common…

  20. Development and proof-of-concept of three-dimensional lung histology volumes

    NASA Astrophysics Data System (ADS)

    Mathew, Lindsay; Alabousi, Mostafa; Wheatley, Andrew; Aladl, Usaf; Slipetz, Deborah; Hogg, James C.; Fenster, Aaron; Parraga, Grace

    2012-03-01

    Most medical imaging is inherently three-dimensional (3D) but for validation of pathological findings, histopathology is commonly used and typically histopathology images are acquired as twodimensional slices with quantitative analysis performed in a single dimension. Histopathology is invasive, labour-intensive, and the analysis cannot be performed in real time, yet it remains the gold standard for the pathological diagnosis and validation of clinical or radiological diagnoses of disease. A major goal worldwide is to improve medical imaging resolution, sensitivity and specificity to better guide therapy and biopsy and to one day delay or replace biopsy. A key limitation however is the lack of tools to directly compare 3D macroscopic imaging acquired in patients with histopathology findings, typically provided in a single dimension (1D) or in two dimensions (2D). To directly address this, we developed methods for 2D histology slice visualization/registration to generate 3D volumes and quantified tissue components in the 3D volume for direct comparison to volumetric micro-CT and clinical CT. We used the elastase-instilled mouse emphysema lung model to evaluate our methods with murine lungs sectioned (5 μm thickness/10 μm gap) and digitized with 2μm in-plane resolution. 3D volumes were generated for wildtype and elastase mouse lung sections after semi-automated registration of all tissue slices. The 1D mean linear intercept (Lm) for wildtype (WT) (47.1 μm +/- 9.8 μm) and elastase mouse lung (64.5 μm +/- 14.0 μm) was significantly different (p<.001). We also generated 3D measurements based on tissue and airspace morphometry from the 3D volumes and all of these were significantly different (p<.0001) when comparing elastase and WT mouse lung. The ratio of the airspace-to-lung volume for the entire lung volume was also significantly and strongly correlated with Lm.

  1. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures.

    PubMed

    Yu, Yanhao; Li, Jianye; Geng, Dalong; Wang, Jialiang; Zhang, Lushuai; Andrew, Trisha L; Arnold, Michael S; Wang, Xudong

    2015-01-27

    Three-dimensional (3D) nanowire (NW) architectures are considered as superior electrode design for photovoltaic devices compared to NWs or nanoparticle systems in terms of improved large surface area and charge transport properties. In this paper, we report development of lead iodide perovskite solar cells based on a novel 3D TiO2 NW architectures. The 3D TiO2 nanostructure was synthesized via surface-reaction-limited pulsed chemical vapor deposition (SPCVD) technique that also implemented the Kirkendall effect for complete ZnO NW template conversion. It was found that the film thickness of 3D TiO2 can significantly influence the photovoltaic performance. Short-circuit current increased with the TiO2 length, while open-circuit voltage and fill factor decreased with the length. The highest power conversion efficiency (PCE) of 9.0% was achieved with ∼ 600 nm long 3D TiO2 NW structures. Compared to other 1D nanostructure arrays (TiO2 nanotubes, TiO2-coated ZnO NWs and ZnO NWs), 3D TiO2 NW architecture was able to achieve larger amounts of perovskite loading, enhanced light harvesting efficiency, and increased electron-transport property. Therefore, its PCE is 1.5, 2.3, and 2.8 times higher than those of TiO2 nanotubes, TiO2-coated ZnO NWs, and ZnO NWs, respectively. The unique morphological advantages, together with the largely suppressed hysteresis effect, make 3D hierarchical TiO2 a promising electrode selection in designing high-performance perovskite solar cells.

  2. Development and performance evaluation of a three-dimensional clinostat synchronized heavy-ion irradiation system

    NASA Astrophysics Data System (ADS)

    Ikeda, Hiroko; Souda, Hikaru; Puspitasari, Anggraeini; Held, Kathryn D.; Hidema, Jun; Nikawa, Takeshi; Yoshida, Yukari; Kanai, Tatsuaki; Takahashi, Akihisa

    2017-02-01

    Outer space is an environment characterized by microgravity and space radiation, including high-energy charged particles. Astronauts are constantly exposed to both microgravity and radiation during long-term stays in space. However, many aspects of the biological effects of combined microgravity and space radiation remain unclear. We developed a new three-dimensional (3D) clinostat synchronized heavy-ion irradiation system for use in ground-based studies of the combined exposures. Our new system uses a particle accelerator and a respiratory gating system from heavy-ion radiotherapy to irradiate samples being rotated in the 3D clinostat with carbon-ion beams only when the samples are in the horizontal position. A Peltier module and special sample holder were loaded on a static stage (standing condition) and the 3D clinostat (rotation condition) to maintain a suitable temperature under atmospheric conditions. The performance of the new device was investigated with normal human fibroblasts 1BR-hTERT in a disposable closed cell culture chamber. Live imaging revealed that cellular adhesion and growth were almost the same for the standing control sample and rotation sample over 48 h. Dose flatness and symmetry were judged according to the relative density of Gafchromic films along the X-axis and Y-axis of the positions of the irradiated sample to confirm irradiation accuracy. Doses calculated using the carbon-ion calibration curve were almost the same for standing and rotation conditions, with the difference being less than 5% at 1 Gy carbon-ion irradiation. Our new device can accurately synchronize carbon-ion irradiation and simulated microgravity while maintaining the temperature under atmospheric conditions at ground level.

  3. Development and initial validation of a short three-dimensional inventory of character strengths.

    PubMed

    Duan, Wenjie; Bu, He

    2017-04-20

    Character strength is described as a positive and organized pattern of emotions, thoughts, and behaviors. It serves as a schema that organizes categories of information toward the self, others, and the world, and provides the self-aware knowledge that facilitates the pursuit of goals, values, and ethical principles. Recent research has suggested that three reliable factors emerge from the measures of character strengths: caring, inquisitiveness, and self-control. The goal of this paper is to develop a psychometrically sound short measure of character strength. The questions were addressed in two studies using two independent samples: a cross-cultural (i.e., 518 Asians and 556 Westerners) sample, and a cross-population (i.e., 175 community participants and 171 inpatients) sample in China. Findings from the exploratory and confirmatory factor analysis suggested a cross-cultural three-factor model of character strength that could be measured by the Three-dimensional Inventory of Character Strengths (TICS). A multigroup confirmatory factor analysis further indicated that the number of factors and factor loadings was invariant in the medical and community samples. This result indicated that the brief inventory could be applied to a medical context. Internal reliability, content validity, and predictive validity were good, although the predictive validity of the three character strengths for psychological symptoms in the medical sample was more modest than that in the community sample. TICS is expected to be used for screening populations at risk, and a tool to aid mental health professionals in group-based treatment/intervention planning. It also should be noted that this short inventory should be used with caution for individual decision making.

  4. Development of Novel Three-Dimensional Printed Scaffolds for Osteochondral Regeneration

    PubMed Central

    Holmes, Benjamin; Zhu, Wei; Li, Jiaoyan; Lee, James D.

    2015-01-01

    As modern medicine advances, various methodologies are being explored and developed in order to treat severe osteochondral defects in joints. However, it is still very challenging to cure the osteochondral defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The objective of this study is to create novel three-dimensional (3D) printed osteochondral scaffolds with both excellent interfacial mechanical properties and biocompatibility for facilitating human bone marrow mesenchymal stem cell (MSC) growth and chondrogenic differentiation. For this purpose, we designed and 3D printed a series of innovative bi-phasic 3D models that mimic the osteochondral region of articulate joints. Our mechanical testing results showed that our bi-phasic scaffolds with key structures have enhanced mechanical characteristics in compression (a maximum Young's modulus of 31 MPa) and shear (a maximum fracture strength of 5768 N/mm2) when compared with homogenous designs. These results are also correlated with numerical simulation. In order to improve their biocompatibility, the scaffolds' surfaces were further modified with acetylated collagen (one of the main components in osteochondral extracellular matrix). MSC proliferation results demonstrated that incorporation of a collagen, along with biomimetically designed micro-features, can greatly enhance MSC growth after 5 days in vitro. Two weeks' chondrogenic differentiation results showed that our novel scaffolds (dubbed “key” scaffolds), both with and without surface collagen modification, displayed enhanced chondrogenesis (e.g., 130%, 114%, and 236% increases in glycosaminoglycan, type II collagen deposition, and total protein content on collagen-modified key scaffolds when compared with homogeneous controls). PMID:25088966

  5. Development of In Vitro Drug-Induced Cardiotoxicity Assay by Using Three-Dimensional Cardiac Tissues.

    PubMed

    Takeda, Maki; Miyagawa, Shigeru; Fukushima, Satsuki; Saito, Atsuhiro; Ito, Emiko; Harada, Akima; Matsuura, Ryohei; Iseoka, Hiroko; Sougawa, Nagako; Mochizuki-Oda, Noriko; Matsusaki, Michiya; Akashi, Mitsuru; Sawa, Yoshiki

    2017-10-01

    An in vitro drug-induced cardiotoxicity assay is a critical step in drug discovery for clinical use. The use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is promising for this purpose. However, single hiPSC-CMs are limited in their ability to mimic native cardiac tissue structurally and functionally, and the generation of artificial cardiac tissue using hiPSC-CMs is an ongoing challenging. We therefore developed a new method of constructing three-dimensional (3D) artificial tissues in a short time by coating extracellular matrix components on cell surfaces. We hypothesized that 3D cardiac tissues derived from hiPSC-CMs (3D-hiPSC-CT) could be used for an in vitro drug-induced cardiotoxicity assay. 3D-hiPSC-CT were generated by fibronectin and gelatin nanofilm coated single hiPSC-CMs. Histologically, the 3D-hiPSC-CT exhibited a sarcomere structure in the myocytes and extracellular matrix proteins, such as fibronectin, collagen type I/III, and laminin. The administration of cytotoxic doxorubicin at 5.0 μM induced the release of lactate dehydrogenase (LDH), while that at 2.0 μM reduced the cell viability. E-4031, hERG-type potassium channel blocker, and isoproterenol induced significant changes both in the Ca transient parameters and contractile parameters in a dose-dependent manner. The 3D-hiPSC-CT exhibited doxorubicin-sensitive cytotoxicity and hERG channel blocker/isoproterenol-sensitive electrical activity in vitro, indicating its usefulness for drug-induced cardiotoxicity assays or drug screening systems for drug discovery.

  6. Development and performance evaluation of a three-dimensional clinostat synchronized heavy-ion irradiation system.

    PubMed

    Ikeda, Hiroko; Souda, Hikaru; Puspitasari, Anggraeini; Held, Kathryn D; Hidema, Jun; Nikawa, Takeshi; Yoshida, Yukari; Kanai, Tatsuaki; Takahashi, Akihisa

    2017-02-01

    Outer space is an environment characterized by microgravity and space radiation, including high-energy charged particles. Astronauts are constantly exposed to both microgravity and radiation during long-term stays in space. However, many aspects of the biological effects of combined microgravity and space radiation remain unclear. We developed a new three-dimensional (3D) clinostat synchronized heavy-ion irradiation system for use in ground-based studies of the combined exposures. Our new system uses a particle accelerator and a respiratory gating system from heavy-ion radiotherapy to irradiate samples being rotated in the 3D clinostat with carbon-ion beams only when the samples are in the horizontal position. A Peltier module and special sample holder were loaded on a static stage (standing condition) and the 3D clinostat (rotation condition) to maintain a suitable temperature under atmospheric conditions. The performance of the new device was investigated with normal human fibroblasts 1BR-hTERT in a disposable closed cell culture chamber. Live imaging revealed that cellular adhesion and growth were almost the same for the standing control sample and rotation sample over 48h. Dose flatness and symmetry were judged according to the relative density of Gafchromic films along the X-axis and Y-axis of the positions of the irradiated sample to confirm irradiation accuracy. Doses calculated using the carbon-ion calibration curve were almost the same for standing and rotation conditions, with the difference being less than 5% at 1Gy carbon-ion irradiation. Our new device can accurately synchronize carbon-ion irradiation and simulated microgravity while maintaining the temperature under atmospheric conditions at ground level. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  7. Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos.

    PubMed

    Stegmaier, Johannes; Amat, Fernando; Lemon, William C; McDole, Katie; Wan, Yinan; Teodoro, George; Mikut, Ralf; Keller, Philipp J

    2016-01-25

    We present the Real-time Accurate Cell-shape Extractor (RACE), a high-throughput image analysis framework for automated three-dimensional cell segmentation in large-scale images. RACE is 55-330 times faster and 2-5 times more accurate than state-of-the-art methods. We demonstrate the generality of RACE by extracting cell-shape information from entire Drosophila, zebrafish, and mouse embryos imaged with confocal and light-sheet microscopes. Using RACE, we automatically reconstructed cellular-resolution tissue anisotropy maps across developing Drosophila embryos and quantified differences in cell-shape dynamics in wild-type and mutant embryos. We furthermore integrated RACE with our framework for automated cell lineaging and performed joint segmentation and cell tracking in entire Drosophila embryos. RACE processed these terabyte-sized datasets on a single computer within 1.4 days. RACE is easy to use, as it requires adjustment of only three parameters, takes full advantage of state-of-the-art multi-core processors and graphics cards, and is available as open-source software for Windows, Linux, and Mac OS. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Development of a Three Dimensional Multiscale Computational Model of the Human Epidermis

    PubMed Central

    Adra, Salem; Sun, Tao; MacNeil, Sheila; Holcombe, Mike; Smallwood, Rod

    2010-01-01

    Transforming Growth Factor (TGF-β1) is a member of the TGF-beta superfamily ligand-receptor network. and plays a crucial role in tissue regeneration. The extensive in vitro and in vivo experimental literature describing its actions nevertheless describe an apparent paradox in that during re-epithelialisation it acts as proliferation inhibitor for keratinocytes. The majority of biological models focus on certain aspects of TGF-β1 behaviour and no one model provides a comprehensive story of this regulatory factor's action. Accordingly our aim was to develop a computational model to act as a complementary approach to improve our understanding of TGF-β1. In our previous study, an agent-based model of keratinocyte colony formation in 2D culture was developed. In this study this model was extensively developed into a three dimensional multiscale model of the human epidermis which is comprised of three interacting and integrated layers: (1) an agent-based model which captures the biological rules governing the cells in the human epidermis at the cellular level and includes the rules for injury induced emergent behaviours, (2) a COmplex PAthway SImulator (COPASI) model which simulates the expression and signalling of TGF-β1 at the sub-cellular level and (3) a mechanical layer embodied by a numerical physical solver responsible for resolving the forces exerted between cells at the multi-cellular level. The integrated model was initially validated by using it to grow a piece of virtual epidermis in 3D and comparing the in virtuo simulations of keratinocyte behaviour and of TGF-β1 signalling with the extensive research literature describing this key regulatory protein. This research reinforces the idea that computational modelling can be an effective additional tool to aid our understanding of complex systems. In the accompanying paper the model is used to explore hypotheses of the functions of TGF-β1 at the cellular and subcellular level on different keratinocyte

  9. Three-Dimensional Upper Limb Movement Characteristics in Children with Hemiplegic Cerebral Palsy and Typically Developing Children

    ERIC Educational Resources Information Center

    Jaspers, Ellen; Desloovere, Kaat; Bruyninckx, Herman; Klingels, Katrijn; Molenaers, Guy; Aertbelien, Erwin; Van Gestel, Leen; Feys, Hilde

    2011-01-01

    The aim of this study was to measure which three-dimensional spatiotemporal and kinematic parameters differentiate upper limb movement characteristics in children with hemiplegic cerebral palsy (HCP) from those in typically developing children (TDC), during various clinically relevant tasks. We used a standardized protocol containing three reach…

  10. A New Three-Dimensional Educational Model Kit for Building DNA and RNA Molecules: Development and Evaluation

    ERIC Educational Resources Information Center

    Beltramini, Leila Maria; Araujo, Ana Paula Ulian; de Oliveira, Tales Henrique Goncalves; dos Santos Abel, Luciano Douglas; da Silva, Aparecido Rodrigues; dos Santos, Neusa Fernandes

    2006-01-01

    International specialized literature focused on research in biology education is sadly scarce, especially regarding biochemical and molecular aspects. In this light, researchers from this Centre for Structural Molecular Biotechnology developed and evaluated a three-dimensional educational model named "Building Life Molecules DNA and RNA." The…

  11. A New Three-Dimensional Educational Model Kit for Building DNA and RNA Molecules: Development and Evaluation

    ERIC Educational Resources Information Center

    Beltramini, Leila Maria; Araujo, Ana Paula Ulian; de Oliveira, Tales Henrique Goncalves; dos Santos Abel, Luciano Douglas; da Silva, Aparecido Rodrigues; dos Santos, Neusa Fernandes

    2006-01-01

    International specialized literature focused on research in biology education is sadly scarce, especially regarding biochemical and molecular aspects. In this light, researchers from this Centre for Structural Molecular Biotechnology developed and evaluated a three-dimensional educational model named "Building Life Molecules DNA and RNA." The…

  12. Three-Dimensional Upper Limb Movement Characteristics in Children with Hemiplegic Cerebral Palsy and Typically Developing Children

    ERIC Educational Resources Information Center

    Jaspers, Ellen; Desloovere, Kaat; Bruyninckx, Herman; Klingels, Katrijn; Molenaers, Guy; Aertbelien, Erwin; Van Gestel, Leen; Feys, Hilde

    2011-01-01

    The aim of this study was to measure which three-dimensional spatiotemporal and kinematic parameters differentiate upper limb movement characteristics in children with hemiplegic cerebral palsy (HCP) from those in typically developing children (TDC), during various clinically relevant tasks. We used a standardized protocol containing three reach…

  13. Development of an abbreviated-typed three-dimensional optical measuring apparatus for textile

    NASA Astrophysics Data System (ADS)

    Komatsubara, Ryohei

    2002-10-01

    This research evaluates the objectivity of textile goods by using the non-contact three dimensional measuring method. The object of the measurement is a seam and wrinkle of the shirt. The evaluation of textile goods was due to watching, and it was difficult to do an absolute evaluation. The existing three-dimensional measurement device is made to correspond to textile goods, and we convert into the series to which ruggedness information is decided by ISO and can output it. The measurement device uses the pattern projection method which introduces the phase shift, and can do high density measurement in a short time. Technical paper of ISO is made for this measurement device, and the work of standardization is proceeded.

  14. Development and Application of a Three-Dimensional Finite Element Vapor Intrusion Model

    PubMed Central

    Pennell, Kelly G.; Bozkurt, Ozgur; Suuberg, Eric M.

    2010-01-01

    Details of a three-dimensional finite element model of soil vapor intrusion, including the overall modeling process and the stepwise approach, are provided. The model is a quantitative modeling tool that can help guide vapor intrusion characterization efforts. It solves the soil gas continuity equation coupled with the chemical transport equation, allowing for both advective and diffusive transport. Three-dimensional pressure, velocity, and chemical concentration fields are produced from the model. Results from simulations involving common site features, such as impervious surfaces, porous foundation sub-base material, and adjacent structures are summarized herein. The results suggest that site-specific features are important to consider when characterizing vapor intrusion risks. More importantly, the results suggest that soil gas or subslab gas samples taken without proper regard for particular site features may not be suitable for evaluating vapor intrusion risks; rather, careful attention needs to be given to the many factors that affect chemical transport into and around buildings. PMID:19418819

  15. On the development of efficient algorithms for three dimensional fluid flow

    NASA Astrophysics Data System (ADS)

    MacCormack, R. W.

    The difficulties of constructing efficient algorithms for three-dimensional flow are discussed. Reasonable candidates are analyzed and tested, and most are found to have obvious shortcomings. Yet, there is promise that an efficient class of algorithms exist between the severely time-step sized-limited explicit or approximately factored algorithms and the computationally intensive direct inversion of large sparse matrices by Gaussian elimination.

  16. Development and Application of a Three-Dimensional Seismo-Acoustic Coupled-Mode Model

    DTIC Science & Technology

    2015-09-30

    comparison to measured data. RESULTS Modeling acoustic data recorded in a scale model experiment Three-dimensional modeling of data recorded in a 1:7500... acoustic field in 3D, and the time domain signals were beamformed for comparison with the measured data. The modeled time series are generated by...Muir, “Laboratory P- and S-wave measurements of a reconstituted muddy sediment with comparison to card-house theory,” Journal of the Acoustical

  17. Development of Finite-Volume Methods for Three-Dimensional Transonic Flows.

    DTIC Science & Technology

    1980-08-01

    Thompson , J . F . (1978) "Three-Dimensional Body Fitted Coordinate Systems for... J . F ., Thames, F. C. J., and Mastin, C. W. (1974) "Automatic Numerical General of Body Fitted Curvilinear Coordinate System for Fields Containing any Number of Arbitrary Two Dimensional Bodies," J. Comp. Phys., Vol. 15, No. 3. ...R. L. (1978) "Automatic Boundary Clustering in Grid Generation with Elliptic Partial Differential Equations." Under review, to be published. Thompson

  18. Development of a three-dimensional variational data assimilation system for the Seto Island Sea, Japan

    NASA Astrophysics Data System (ADS)

    Kurosawa, K.; Uchiyama, Y.

    2016-12-01

    By optimally combined ocean models with observation data, numerical oceanic reanalysis and forecast systems allow us to predict the ocean more precisely. In general, data assimilation is exploited to prepare the initial condition for the forecast. This technique has widely been employed in atmospheric prediction, whereas oceanic prediction lags behind weather forecast. Accurate oceanic prediction systems have been demanded for operational purposes such as for fisheries, vessel navigation, marine construction, offshore platform management, marine monitoring, etc. In particular, in crowded harbors and estuaries including the Seto Inland Sea (SIS), Japan, data assimilation has seldom been adapted because data from satellites and Argo floats essential to successful oceanic predictions is desperately limited. In addition, although static data assimilation, typically three-dimensional variational data assimilation (3DVAR), is computationally cheap and statistically optimal, but is not physically balanced. For instance, 3DVAR is known to modify velocity and density fields merely mathematically, yet it does not adequately consider quasi-geostrophic balance, which is generally true in most cases. In the present study, we develop a 3DVAR system for Regional Oceanic Modeling Systems (ROMS) and apply to the high-resolution SIS model in a double nested configuration (Kosako et al., 2015). The SIS is the largest estuary in Japan with a number of autonomous in-situ monitoring of vertical profiles of temperature and salinity, tens of tidal gages, along with continuous surface current measurement using HF radars. We first present a theoretical framework of the 3DVAR algorithm by considering geostrophic and thermal-wind balance to find plausible relationships among physical variables to avoid undesirable modifications. Subsequently, the developed 3DVAR is coupled with the SIS ROMS model to compare the model outcomes against some observation data. The 3DVAR ROMS model for the SIS

  19. Development and application of color schlieren technique for investigation of three-dimensional concentration field

    NASA Astrophysics Data System (ADS)

    Srivastava, Atul

    2013-11-01

    The present work describes the development and application of rainbow schlieren deflectometry technique for the investigation of the three-dimensional concentration field around a crystal growing from its aqueous solution. The imaging technique employs a diverging beam of light to record the projection data of the concentration field. In contrast to the conventional schlieren methods, the present system makes use of a microscopic objective lens to act as the de-collimating lens for focusing the light beam onto the color filter to get the desired schlieren effect. In order to record the projection data of the concentration field from different view angles for tomographic reconstruction, the experiments are conducted in an octagonal growth cell. Detailed quantitative analysis of the schlieren images has then been carried out for each view angle to determine the path-integrated concentration distribution. Principles of tomography have been employed for the reconstruction of concentration field at select horizontal planes above the growing crystal. Results have been presented in the form of rainbow schlieren images of the convective field, path-averaged solute concentration distribution around the growing for each view angle and local concentration distribution at select horizontal planes above the crystal top surface. Recorded color schlieren images have been compared with those of the conventional monochrome schlieren and interferometric techniques for the same experimental conditions. The extent of color re-distribution as seen from the recorded rainbow schlieren images correlate well with the bright intensity regions of monochrome schlieren images and the extent of fringe deformation in the interferometric images. The comparison has been performed for a small as well as a comparatively larger-sized crystal. For small sized-crystal, the observed color redistribution is seen to be weak and restricted to the crystal vicinity only whereas the color changes are more

  20. Development of three-dimensional position-sensitive room temperature semiconductor gamma-ray spectrometers

    SciTech Connect

    He, Z.; Li, W.; Knoll, G.F.; Wehe, D.K.

    2000-07-01

    Semiconductor detectors can provide better spectroscopic performance than scintillation or gas-filled detectors because of the small ionization energy required to generate each electron-hole pair. Indeed, cryogenically cooled high-purity germanium detectors have played the dominant role whenever the best gamma-ray spectroscopy is required. A decades-long search for other semiconductor detectors that could provide higher stopping power and could operate at room temperature has been ongoing. Wide-band-gap semiconductors, such as CdTe, CdZnTe, and HgI{sub 2}, have captured the most attention. However, the use of these semiconductors in detectors has been hindered primarily by problems of charge trapping and material nonuniformity. Introduced in 1994, single-polarity charge sensing on semiconductor detectors has shown great promise in avoiding the hole-trapping problem, and the newly demonstrated three-dimensional position-sensing technique can significantly mitigate the degradation of energy resolution due to the nonuniformity of detector material. In addition, three-dimensional position sensitivity will provide unique imaging capabilities of these gamma-ray spectrometers. These devices are of interest for nuclear nonproliferation, medical imaging, gamma-ray astronomy, and high-energy physics applications. This paper reports the latest results using second-generation three-dimensional position-sensitive semiconductor spectrometers. The improvements over the first generation devices include: (1) Larger volume; (2) Improved anode design; (3) More reliable connections; (4) Enhanced electronic capability; and (5) Measurement of electron drift times. The new detectors and readout electronics (from IDE AS) are being assembled and tested.

  1. Development of Three-Dimensional Dental Scanning Apparatus Using Structured Illumination

    PubMed Central

    Park, Anjin; Lee, Byeong Ha; Eom, Joo Beom

    2017-01-01

    We demonstrated a three-dimensional (3D) dental scanning apparatus based on structured illumination. A liquid lens was used for tuning focus and a piezomotor stage was used for the shift of structured light. A simple algorithm, which detects intensity modulation, was used to perform optical sectioning with structured illumination. We reconstructed a 3D point cloud, which represents the 3D coordinates of the digitized surface of a dental gypsum cast by piling up sectioned images. We performed 3D registration of an individual 3D point cloud, which includes alignment and merging the 3D point clouds to exhibit a 3D model of the dental cast. PMID:28714897

  2. A hybrid numerical method for three-dimensional spatially-developing free-shear flows

    NASA Technical Reports Server (NTRS)

    Buell, Jeffrey C.

    1991-01-01

    The present novel algorithm for 3D incompressible Navier-Stokes equations treats a domain which is (1) infinite in the vertical direction, using a mapped spectral method; (2) finite in the streamwise direction, using a classical Fourier method; and (3) homogeneous in the spanwise direction, using high-order compact finite differencing. A projection method is employed which ensures the exact conservation of mass, as well as the satisfaction of the boundary conditions at infinity. The novel aspects of these methods are noted, and the code they constitute is validated in light of several test cases. Results are presented for two- and three-dimensional mixing layers.

  3. Laparoscopic splenic hilar lymph node dissection for proximal gastric cancer using integrated three-dimensional anatomic simulation software.

    PubMed

    Kinoshita, Takahiro; Shibasaki, Hidehito; Enomoto, Naoki; Sahara, Yatsuka; Sunagawa, Hideki; Nishida, Toshirou

    2016-06-01

    Laparoscopic lymph node (LN) dissection along the distal splenic artery (Station No. 11d) and around the splenic hilum (Station No. 10) remains challenging even for skilled surgeons. The major reason for the difficulty is the complex, multifarious anatomy of the splenic vessels. The latest integrated three-dimensional (3D) simulations may facilitate this procedure. Usefulness of 3D simulation was investigated during 20 laparoscopic total gastrectomies with splenic hilar LN dissection while preserving the spleen and pancreas (LTG + PSP) or with splenectomy (LTG + S). Clinical information acquired by 3D simulation and the consistency of the virtual and real images were evaluated. Furthermore, clinical data of these patients were compared with that of the patients who underwent the same surgery before the introduction of 3D simulation (n = 10), to clarify its efficacy. The vascular architecture and morphologic characteristics were clearly demonstrated in 3D simulation, with sufficient consistency. The median durations of 14 LTG + PSP and 6 LTG + S operations were 318 and 322 min, respectively. The estimated blood losses were 18 and 38 g, respectively. There were no deaths. One postoperative peritoneal abscess (grade II according to Clavien-Dindo) was recorded. A comparison of clinical parameters between surgeries without or with 3D simulation showed no differences in operation time, blood loss, or complication rate; however, the number of retrieved No. 10 LNs has significantly increased in cases with the use of 3D simulation (p = 0.006). This kind of surgery is not easy to perform, but the latest 3D computed tomography simulation technology has made it possible to reduce the degree of difficulty and also to enhance the quality of surgery, potentially leading to widespread use of these techniques.

  4. The fetal larynx and pharynx: structure and development on two- and three-dimensional ultrasound.

    PubMed

    Liberty, G; Boldes, R; Shen, O; Shaul, C; Cohen, S M; Yagel, S

    2013-08-01

    To present a systematic approach for evaluating the fetal pharynx and larynx based on two- and three-dimensional ultrasound (2D-US and 3D-US) modalities, describing the sonographic appearance and function of the fetal upper respiratory tract and measuring the anatomical components of the pharynx and larynx. Gravidae presenting from the late first trimester to mid-gestation for routine booked examinations with structurally normal singleton fetuses of confirmed gestational age were enrolled. Transabdominal 2D-US was performed for anatomical and functional evaluation of the pharynx and larynx. Color Doppler was used to show fluid motion in the target area. 3D-US (Voluson® E6 with RAB-4-8-D transducer) scans of the fetal neck were acquired during fetal quiescence and in the absence of movements of the pharynx and larynx. Multiplanar reconstruction (MPR) in post-processing allowed adjustment of the volume to obtain the coronal plane. After a learning period to understand the sonographic anatomy of the target area, we measured the pharynx width and height, the upper, middle and lower larynx width and the larynx height. Render mode was applied for spatial evaluation of the target area. We developed a new methodological approach for structured evaluation of the fetal pharynx and larynx based on five spatial planes: posterior and anterior coronal planes and high, mid and low axial planes. We examined 582 fetuses during the second trimester of pregnancy; target anatomy was imaged successfully in 218 patients at 11-24 gestational weeks. Acquisition added approximately 1 min to examination time. Rates of successful visualization and measurements increased significantly as pregnancy progressed, being 23% (46/194) at 11-13 weeks, 29% (69/240) at 14-16 weeks, 35% (18/51) at 17-19 weeks and 88% (85/97) at 20-24 weeks (P < 0.01). Pharynx components identified were: the sphenoid bone, pterygoid processes, constrictor muscles, piriform recesses and uvula. Larynx components

  5. Development and analysis of three-dimensionally reinforced cellular matrix composites

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    2000-10-01

    The objective of this research was to develop a new class of lightweight three-dimensional textile reinforced cellular matrix composite (3-D CMC) materials using a high-pressure foaming method. The scope of the research includes fabrication, experimental evaluation and mathematical modeling of the new composite materials. Principles of thermodynamics and transport phenomena involved in the cell nucleation and bubble growth in plastics using gas blowing agents were reviewed. The determinative factors for the foaming process were the foaming pressure, surface tension, viscous and inertial resistance forces. Foaming of epoxy resins by pressure quenching were carried out using a high-pressure vessel with a digital temperature controller and nitrogen gas as the blowing agent, at 100°C and 28--110.5 bar. The cure time was 2--2.5 hr., well before the time of gel point, 293 min., determined by means of dynamic mechanical spectroscopy. It was found that the foam density decreased monotonously and the average bubble radius slightly decreased, while the cell density increased, with the increasing foaming pressure. Cure time of 2 and 2.5 hours have no influence on the foam density, but have opposite influences on the bubble radius and cell density. Samples of 3-D woven carbon CMC materials were fabricated using the high-pressure foaming apparatus at a foaming pressure of 60 bar as the epoxy resin cured for 1.5--2 hr. at 100°C. Photomicrographs of cross-sections of the samples revealed that the epoxy resins in the epoxy pockets of the 3-D CMC samples were removed during foaming. Average density was found 1.009 g/cm 3 for TM samples and 1.076 g/cm3 for TS samples, corresponding to weight reduction of 36.92% and 28.37%, respectively, as compared with the 3-D RMC material, where TM and TS samples used 3-D woven carbon preforms of different weaving parameters. Tensile test, 3-point bending and high velocity projectile impact test were conducted to evaluate the mechanical

  6. 3DNA: a versatile, integrated software system for the analysis, rebuilding, and visualization of three-dimensional nucleic-acid structures

    PubMed Central

    Lu, Xiang-Jun; Olson, Wilma K.

    2010-01-01

    We present a set of protocols showing how to use the 3DNA suite of programs to analyze, rebuild, and visualize three-dimensional nucleic-acid structures. The software determines a wide range of conformational parameters, including the identities and rigid-body parameters of interacting bases and base-pair steps, the nucleotides comprising helical fragments, the area of overlap of stacked bases, etc. The reconstruction of three-dimensional structure takes advantage of rigorously defined rigid-body parameters, producing rectangular block representations of the nucleic-acid bases and base pairs and all-atom models with approximate sugar-phosphate backbones. The visualization components create vector-based drawings and scenes that can be rendered as raster-graphics images, allowing for easy generation of publication-quality figures. The utility programs use geometric variables to control the view and scale of an object, for comparison of related structures. The commands run in seconds even for large structures. The software and related information are available at http://3dna.rutgers.edu/. PMID:18600227

  7. Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories.

    PubMed

    Pruessner, J C; Li, L M; Serles, W; Pruessner, M; Collins, D L; Kabani, N; Lupien, S; Evans, A C

    2000-04-01

    Within the medial temporal lobe, both the hippocampus and amygdala are frequently targeted by researchers and clinicians for volumetric analysis based on magnetic resonance imaging (MRI). However, different data acquisition techniques, analysis software and anatomical boundaries have in the past made it difficult to compare results of MRI studies from different laboratories. In order to reduce these differences, a segmentation protocol was established with 40 healthy normal control subjects recently scanned in our laboratory. Data acquisition was performed with a three-dimensional gradient echo technique, and scans were corrected for non-uniformity and registered into standard stereotaxic space prior to segmentation. Volumetric analysis was performed manually using three-dimensional software that allows simultaneous analysis of sagittal, coronal and horizontal images. Intra- and inter-rater coefficients yielded correlation coefficients comparable with other protocols. The hippocampal volume was larger in the right hemisphere (3324 versus 3208 mm(3)), while no interhemispheric differences for the amygdala (1154 versus 1160 mm(3)) could be observed. Most importantly, results from recent segmentation protocols for hippocampus and amygdala seem to approach each other with regard to mean volumes and interhemispheric differences. This indicates that the advances in scanning technique, volume preparation and segmentation protocols allow a more precise definition of medial temporal lobe structures with MRI, and that results for mean volumes for hippocampus and amygdala from different laboratories will eventually become comparable.

  8. Introductory Molecular Orbital Theory: An Honors General Chemistry Computational Lab as Implemented Using Three-Dimensional Modeling Software

    ERIC Educational Resources Information Center

    Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.

    2012-01-01

    In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…

  9. Introductory Molecular Orbital Theory: An Honors General Chemistry Computational Lab as Implemented Using Three-Dimensional Modeling Software

    ERIC Educational Resources Information Center

    Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.

    2012-01-01

    In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…

  10. Three-Dimensional Cell Culture Models for Infectious Disease and Drug Development

    NASA Technical Reports Server (NTRS)

    Nickerson, Cheryl A.; Honer zu Bentrup, Kerstin; Ott, C. Mark

    2005-01-01

    Three-dimensional (3-D) cell cultures hold enormous potential to advance our understanding of infectious disease and to effectively translate basic cellular research into clinical applications. Using novel NASA bioreactor technology, the rotating wall vessel (RWV), we have engineered physiologically relevant 3-D human tissue culture models for infectious disease studies. The design of the RWV is based on the understanding that organs and tissues function in a 3-D environment, and that this 3-D architecture is critical for the differentiated form and function of tissues in vivo. The RWV provides large numbers of cells which are amenable to a wide variety of experimental manipulations and provides an easy, reproducible, and cost-effective approach to enhance differentiated features of cell culture models.

  11. The Development of a Full Field Three-Dimensional Microscale Flow Measurement Technique for Application to Near Contact Line Flows

    NASA Technical Reports Server (NTRS)

    He, Qun; Hallinan, Kevin

    1996-01-01

    The goal of this paper is to present details of the development of a new three-dimensional velocity field measurement technique which can be used to provide more insight into the dynamics of thin evaporating liquid films (not limited to just low heat inputs for the heat transfer) and which also could prove useful for the study of spreading and wetting phenomena and other microscale flows.

  12. Fibrin promotes development and function of macaque primary follicles during encapsulated three-dimensional culture.

    PubMed

    Xu, J; Lawson, M S; Yeoman, R R; Molskness, T A; Ting, A Y; Stouffer, R L; Zelinski, M B

    2013-08-01

    Does fibrin introduced into the extracellular matrix affect the growth and maturation of individual primate follicles during encapsulated three-dimensional (3D) culture? While not altering follicle survival, fibrin-alginate (FIBRIN) improves macaque primary, but not secondary, follicle development during encapsulated 3D culture in terms of growth, steroidogenesis, anti-Müllerian hormone (AMH)/vascular endothelial growth factor (VEGF) production and oocyte maturation. Efforts to grow non-human primate ovarian follicles from the secondary to the antral stage during encapsulated 3D culture have been successful. However, the growth and maturation of primary follicles in vitro has not been reported in primates, especially in chemically defined conditions. In vitro follicle maturation was investigated using the rhesus macaque (Macaca mulatta). Ovaries (n = 7 pairs) were obtained during the early follicular phase of the menstrual cycle (cycle day 1-4). Primary (80-120 µm diameter) and secondary (125-225 µm diameter) follicles were isolated mechanically, randomly assigned to experimental groups, encapsulated into alginate (0.25% w/v) or FIBRIN (25 mg/ml fibrinogen-0.25% alginate) and cultured for 13 and 5 weeks, respectively. Individual follicles were cultured in alpha minimum essential medium supplemented with FSH. Follicle survival and growth were assessed by microscopy. Follicles that reached the antral stage were treated with recombinant hCG. Metaphase II (MII) oocytes were inseminated via ICSI. Follicle morphology was evaluated by hematoxylin and eosin (H&E) staining. Immunohistochemistry was performed for cytochrome P450 family 17 subfamily A polypeptide 1 (CYP17A1) and 19 subfamily A polypeptide 1 (CYP19A1). Culture medium was analyzed for estradiol (E2) and progesterone by chemiluminescence, androstenedione (A4) by radioimmunoassay, as well as anti-Müllerian hormone (AMH) and vascular endothelial growth factor (VEGF) by enzyme-linked immunosorbent assay. A

  13. Three-Dimensional Photo Structures

    ERIC Educational Resources Information Center

    Vieth, Ken

    2006-01-01

    People influence lives in many ways. Through the author's desire to encourage high school students to reflect on the influential people in their lives, he developed this three-dimensional project in which they create a celebratory three-dimensional structure that shares their impressions of themselves and those who have influenced them. This…

  14. Three-dimensional reconstruction of the topographical cerebral surface anatomy for presurgical planning with free OsiriX Software.

    PubMed

    Harput, Mehmet V; Gonzalez-Lopez, Pablo; Türe, Uğur

    2014-09-01

    During surgery for intrinsic brain lesions, it is important to distinguish the pathological gyrus from the surrounding normal sulci and gyri. This task is usually tedious because of the pia-arachnoid membranes with their arterial and venous complexes that obscure the underlying anatomy. Moreover, most tumors grow in the white matter without initially distorting the cortical anatomy, making their direct visualization more difficult. To create and evaluate a simple and free surgical planning tool to simulate the anatomy of the surgical field with and without vessels. We used free computer software (OsiriX Medical Imaging Software) that allowed us to create 3-dimensional reconstructions of the cerebral surface with and without cortical vessels. These reconstructions made use of magnetic resonance images from 51 patients with neocortical supratentorial lesions operated on over a period of 21 months (June 2011 to February 2013). The 3-dimensional (3-D) anatomic images were compared with the true surgical view to evaluate their accuracy. In all patients, the landmarks determined by 3-D reconstruction were cross-checked during surgery with high-resolution ultrasonography; in select cases, they were also checked with indocyanine green videoangiography. The reconstructed neurovascular structures were confirmed intraoperatively in all patients. We found this technique to be extremely useful in achieving pure lesionectomy, as it defines tumor's borders precisely. A 3-D reconstruction of the cortical surface can be easily created with free OsiriX software. This technique helps the surgeon perfect the mentally created 3-D picture of the tumor location to carry out cleaner, safer surgeries.

  15. Three-dimensional analysis of a developing sinkhole using GPR and dynamic cone penetrometer (DCP) testing

    NASA Astrophysics Data System (ADS)

    Brook, Martin; Gaines, Andrew; Nobes, David

    2016-04-01

    Ground penetrating radar (GPR) imaging is one of the most promising non-destructive and non-invasive methods that have offered new opportunities for mapping shallow subsurface disturbances in urbanized and industrialized zones. However, difficulties often arise in choosing the optimum antenna frequency to image subsurface features. While high frequency antennas may provide lots of detail, lower frequency antennas may provide information on larger-scale features that provide more site context. In this study, we performed GPR surveys to investigate a zone of subtle surface subsidence and pavement cracking on reclaimed land at a quayside. A 3-stage approach was used, and included: (1) a 250 MHz antenna survey to delineate the spatial extent of the area of interest; (2) a 500 MHz antenna survey to yield greater detail; and (3) direct verification of some of the key features using dynamic cone penetrometer (DCP) testing to "ground-truth" anomalies. This staged approach proved successful in imaging the sub-grade, and minor voids within approximately 2 m depth. Moreover, the quality of the data can be further improved by using GPR-Slice software in conjunction with DCP data to develop a 3D ground model. Through this approach, a combination of GPR survey and direct testing, we demonstrate the efficiency and quality of this method in mapping shallow subsidence features. An interpretation of the process-origin of the collapse feature is also proposed.

  16. 4DCapture/4DPlayer: evolving software packages for capturing, analyzing and displaying two- and three-dimensional motion data

    NASA Astrophysics Data System (ADS)

    Walton, James S.; Hodgson, Peter N.; Hallamasek, Karen G.

    2007-01-01

    In September 2002, during the 25 th Congress on High Speed Photography and Photonics, 4DVideo described a general purpose software application for the PC platform. This software (4DCapture TM) is designed to capture, analyze and display multiple video sequences. The application extracts trajectories and other kinematic information from (highspeed) video streams. Since 4DCapture TM was originally described, it has matured, and a second application (4DPlayer TM) has been introduced to support the distribution and viewing of video streams and kinematic data acquired by 4DCapture TM. 4DPlayer TM is "freeware". It may be redistributed to third parties, but it may not be modified. 4DCapture TM provides a structured environment for experimental data. Cameras are treated as transducers-that is, a source of technical data. The application provides an interface to the cameras for previewing the object-space, calibrating the images, and testing. This application can automatically track multiple landmarks seen from two or more views in two or three dimensions. Trajectories can be processed within the main application or they can be exported to a spreadsheet where they can be processed or passed along to a more sophisticated, data analysis application. 4DCapture TM also incorporates a simple animation capability and a friendly (FlowStack TM) user interface that assists the end-user to capture and treat image sequences in a natural progression. 4DCapture TM employs the AVI 2.0 standard and DirectX technology. 4DPlayer TM can be used to view multiple video sequences simultaneously and perform simple measurements of displacements and angles that vary over time. This application can detect and display the coordinates of landmarks previously identified by 4DCapture TM that have been embedded in the video streams.

  17. Dental application of novel finite element analysis software for three-dimensional finite element modeling of a dentulous mandible from its computed tomography images.

    PubMed

    Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich

    2013-12-01

    This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.

  18. Development of three-dimensional integrated microchannel-electrode system to understand the particles' movement with electrokinetics.

    PubMed

    Yao, J; Obara, H; Sapkota, A; Takei, M

    2016-03-01

    An optical transparent 3-D Integrated Microchannel-Electrode System (3-DIMES) has been developed to understand the particles' movement with electrokinetics in the microchannel. In this system, 40 multilayered electrodes are embedded at the 2 opposite sides along the 5 square cross-sections of the microchannel by using Micro Electro-Mechanical Systems technology in order to achieve the optical transparency at the other 2 opposite sides. The concept of the 3-DIMES is that the particles are driven by electrokinetic forces which are dielectrophoretic force, thermal buoyancy, electrothermal force, and electroosmotic force in a three-dimensional scope by selecting the excitation multilayered electrodes. As a first step to understand the particles' movement driven by electrokinetic forces in high conductive fluid (phosphate buffer saline (PBS)) with the 3-DIMES, the velocities of particles' movement with one pair of the electrodes are measured three dimensionally by Particle Image Velocimetry technique in PBS; meanwhile, low conductive fluid (deionized water) is used as a reference. Then, the particles' movement driven by the electrokinetic forces is discussed theoretically to estimate dominant forces exerting on the particles. Finally, from the theoretical estimation, the particles' movement mainly results from the dominant forces which are thermal buoyancy and electrothermal force, while the velocity vortex formed at the 2 edges of the electrodes is because of the electroosmotic force. The conclusions suggest that the 3-DIMES with PBS as high conductive fluid helps to understand the three-dimensional advantageous flow structures for cell manipulation in biomedical applications.

  19. Development of three-dimensional integrated microchannel-electrode system to understand the particles' movement with electrokinetics

    PubMed Central

    Obara, H.; Sapkota, A.; Takei, M.

    2016-01-01

    An optical transparent 3-D Integrated Microchannel-Electrode System (3-DIMES) has been developed to understand the particles' movement with electrokinetics in the microchannel. In this system, 40 multilayered electrodes are embedded at the 2 opposite sides along the 5 square cross-sections of the microchannel by using Micro Electro-Mechanical Systems technology in order to achieve the optical transparency at the other 2 opposite sides. The concept of the 3-DIMES is that the particles are driven by electrokinetic forces which are dielectrophoretic force, thermal buoyancy, electrothermal force, and electroosmotic force in a three-dimensional scope by selecting the excitation multilayered electrodes. As a first step to understand the particles' movement driven by electrokinetic forces in high conductive fluid (phosphate buffer saline (PBS)) with the 3-DIMES, the velocities of particles' movement with one pair of the electrodes are measured three dimensionally by Particle Image Velocimetry technique in PBS; meanwhile, low conductive fluid (deionized water) is used as a reference. Then, the particles' movement driven by the electrokinetic forces is discussed theoretically to estimate dominant forces exerting on the particles. Finally, from the theoretical estimation, the particles' movement mainly results from the dominant forces which are thermal buoyancy and electrothermal force, while the velocity vortex formed at the 2 edges of the electrodes is because of the electroosmotic force. The conclusions suggest that the 3-DIMES with PBS as high conductive fluid helps to understand the three-dimensional advantageous flow structures for cell manipulation in biomedical applications. PMID:27042247

  20. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping.

    PubMed

    Mashiko, Toshihiro; Otani, Keisuke; Kawano, Ryutaro; Konno, Takehiko; Kaneko, Naoki; Ito, Yumiko; Watanabe, Eiju

    2015-03-01

    We developed a method for fabricating a three-dimensional hollow and elastic aneurysm model useful for surgical simulation and surgical training. In this article, we explain the hollow elastic model prototyping method and report on the effects of applying it to presurgical simulation and surgical training. A three-dimensional printer using acrylonitrile-butadiene-styrene as a modeling material was used to produce a vessel model. The prototype was then coated with liquid silicone. After the silicone had hardened, the acrylonitrile-butadiene-styrene was melted with xylene and removed, leaving an outer layer as a hollow elastic model. Simulations using the hollow elastic model were performed in 12 patients. In all patients, the clipping proceeded as scheduled. The surgeon's postoperative assessment was favorable in all cases. This method enables easy fabrication at low cost. Simulation using the hollow elastic model is thought to be useful for understanding of three-dimensional aneurysm structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Three-dimensional ultrasound scanning.

    PubMed

    Fenster, Aaron; Parraga, Grace; Bax, Jeff

    2011-08-06

    The past two decades have witnessed developments of new imaging techniques that provide three-dimensional images about the interior of the human body in a manner never before available. Ultrasound (US) imaging is an important cost-effective technique used routinely in the management of a number of diseases. However, two-dimensional viewing of three-dimensional anatomy, using conventional two-dimensional US, limits our ability to quantify and visualize the anatomy and guide therapy, because multiple two-dimensional images must be integrated mentally. This practice is inefficient, and may lead to variability and incorrect diagnoses. Investigators and companies have addressed these limitations by developing three-dimensional US techniques. Thus, in this paper, we review the various techniques that are in current use in three-dimensional US imaging systems, with a particular emphasis placed on the geometric accuracy of the generation of three-dimensional images. The principles involved in three-dimensional US imaging are then illustrated with a diagnostic and an interventional application: (i) three-dimensional carotid US imaging for quantification and monitoring of carotid atherosclerosis and (ii) three-dimensional US-guided prostate biopsy.

  2. Three-dimensional ultrasound scanning

    PubMed Central

    Fenster, Aaron; Parraga, Grace; Bax, Jeff

    2011-01-01

    The past two decades have witnessed developments of new imaging techniques that provide three-dimensional images about the interior of the human body in a manner never before available. Ultrasound (US) imaging is an important cost-effective technique used routinely in the management of a number of diseases. However, two-dimensional viewing of three-dimensional anatomy, using conventional two-dimensional US, limits our ability to quantify and visualize the anatomy and guide therapy, because multiple two-dimensional images must be integrated mentally. This practice is inefficient, and may lead to variability and incorrect diagnoses. Investigators and companies have addressed these limitations by developing three-dimensional US techniques. Thus, in this paper, we review the various techniques that are in current use in three-dimensional US imaging systems, with a particular emphasis placed on the geometric accuracy of the generation of three-dimensional images. The principles involved in three-dimensional US imaging are then illustrated with a diagnostic and an interventional application: (i) three-dimensional carotid US imaging for quantification and monitoring of carotid atherosclerosis and (ii) three-dimensional US-guided prostate biopsy. PMID:22866228

  3. Development of an explicit non-staggered scheme for solving three-dimensional Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Sheu, Tony W. H.; Chung, Y. W.; Li, J. H.; Wang, Y. C.

    2016-10-01

    An explicit finite-difference scheme for solving the three-dimensional Maxwell's equations in non-staggered grids is presented. We aspire to obtain time-dependent solutions of the Faraday's and Ampère's equations and predict the electric and magnetic fields within the discrete zero-divergence context (or Gauss's law). The local conservation laws in Maxwell's equations are numerically preserved using the explicit second-order accurate symplectic partitioned Runge-Kutta temporal scheme. Following the method of lines, the spatial derivative terms in the semi-discretized Faraday's and Ampère's equations are approximated theoretically to obtain a highly accurate numerical phase velocity. The proposed fourth-order accurate space-centered finite difference scheme minimizes the discrepancy between the exact and numerical phase velocities. This minimization process considerably reduces the dispersion and anisotropy errors normally associated with finite difference time-domain methods. The computational efficiency of getting the same level of accuracy at less computing time and the ability of preserving the symplectic property have been numerically demonstrated through several test problems.

  4. Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1991-01-01

    A streamwise upwind algorithm for solving the unsteady 3-D Navier-Stokes equations was extended to handle the moving grid system. It is noted that the finite volume concept is essential to extend the algorithm. The resulting algorithm is conservative for any motion of the coordinate system. Two extensions to an implicit method were considered and the implicit extension that makes the algorithm computationally efficient is implemented into Ames's aeroelasticity code, ENSAERO. The new flow solver has been validated through the solution of test problems. Test cases include three-dimensional problems with fixed and moving grids. The first test case shown is an unsteady viscous flow over an F-5 wing, while the second test considers the motion of the leading edge vortex as well as the motion of the shock wave for a clipped delta wing. The resulting algorithm has been implemented into ENSAERO. The upwind version leads to higher accuracy in both steady and unsteady computations than the previously used central-difference method does, while the increase in the computational time is small.

  5. Development of AN Innovative Three-Dimensional Complete Body Screening Device - 3D-CBS

    NASA Astrophysics Data System (ADS)

    Crosetto, D. B.

    2004-07-01

    This article describes an innovative technological approach that increases the efficiency with which a large number of particles (photons) can be detected and analyzed. The three-dimensional complete body screening (3D-CBS) combines the functional imaging capability of the Positron Emission Tomography (PET) with those of the anatomical imaging capability of Computed Tomography (CT). The novel techniques provide better images in a shorter time with less radiation to the patient. A primary means of accomplishing this is the use of a larger solid angle, but this requires a new electronic technique capable of handling the increased data rate. This technique, combined with an improved and simplified detector assembly, enables executing complex real-time algorithms and allows more efficiently use of economical crystals. These are the principal features of this invention. A good synergy of advanced techniques in particle detection, together with technological progress in industry (latest FPGA technology) and simple, but cost-effective ideas provide a revolutionary invention. This technology enables over 400 times PET efficiency improvement at once compared to two to three times improvements achieved every five years during the past decades. Details of the electronics are provided, including an IBM PC board with a parallel-processing architecture implemented in FPGA, enabling the execution of a programmable complex real-time algorithm for best detection of photons.

  6. Development of techniques required for the application of a laser to three dimensional visual sensing

    NASA Technical Reports Server (NTRS)

    Ryan, Arthur M.; Gerhardt, Lester A.

    1991-01-01

    The ongoing vision research at the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) is directed toward identifying and addressing the relevant issues involved in applying visual sensing to space assembly tasks. A considerable amount of effort has been devoted to passive sensing techniques such as using multiple cameras to identify objects in a scene. To compliment the capabilities of the passive visual system in the CIRSSE robotics testbed, research is being conducted in active sensing techniques. This report is description of the research associated with the testbed's laser scanner and its application as an active sensing device. The report is comprised of five major topics. First is a brief description of the CIRSSE visual system and a summary of the active sensing research that has been conducted up to this point. Second, some of the methods currently used to calibrate CIRSSE's laser scanner are described as well as an appraisal of the effectiveness of these methods. Third, is a discussion of how the laser scanner can be employed in concert with a camera to provide a three dimensional point estimation capability. Fourth, there is a description of methods that can be used to detect the presence of the laser beam in a cluttered camera image. Finally, there is a summary of the current state of this research and a description of research planned for the future.

  7. Development and validation of a three-dimensional ring-based structural tyre model

    NASA Astrophysics Data System (ADS)

    Kindt, P.; Sas, P.; Desmet, W.

    2009-10-01

    This paper presents a structural model for an unloaded tyre, based on a three-dimensional flexible ring on an elastic foundation. The ring represents the belt and the elastic foundation represents the tyre sidewall. The model is valid up to 300 Hz and includes a submodel of the wheel and the air cavity. This makes the model potentially suitable for the prediction of structure-borne interior noise. Unlike most ring models, which only consider in-plane modes, the presented model also predicts the modes that involve torsion of the belt in circumferential direction. The parameterization of the model, which does not require detailed knowledge of the tyre construction, is based on the main geometrical properties of the tyre and a limited modal test. Comparison between measured and calculated responses shows that the tyre-wheel model describes the dynamic behaviour with acceptable accuracy. Since the model is physical, it can be applied to describe other operational conditions such as loading and rotation.

  8. Comparison of Commercial Structure-From Photogrammety Software Used for Underwater Three-Dimensional Modeling of Coral Reef Environments

    NASA Astrophysics Data System (ADS)

    Burns, J. H. R.; Delparte, D.

    2017-02-01

    Structural complexity in ecosystems creates an assortment of microhabitat types and has been shown to support greater diversity and abundance of associated organisms. The 3D structure of an environment also directly affects important ecological parameters such as habitat provisioning and light availability and can therefore strongly influence ecosystem function. Coral reefs are architecturally complex 3D habitats, whose structure is intrinsically linked to the ecosystem biodiversity, productivity, and function. The field of coral ecology has, however, been primarily limited to using 2-dimensional (2D) planar survey techniques for studying the physical structure of reefs. This conventional approach fails to capture or quantify the intricate structural complexity of corals that influences habitat facilitation and biodiversity. A 3-dimensional (3D) approach can obtain accurate measurements of architectural complexity, topography, rugosity, volume, and other structural characteristics that affect biodiversity and abundance of reef organisms. Structurefrom- Motion (SfM) photogrammetry is an emerging computer vision technology that provides a simple and cost-effective method for 3D reconstruction of natural environments. SfM has been used in several studies to investigate the relationship between habitat complexity and ecological processes in coral reef ecosystems. This study compared two commercial SfM software packages, Agisoft Photoscan Pro and Pix4Dmapper Pro 3.1, in order to assess the cpaability and spatial accuracy of these programs for conducting 3D modeling of coral reef habitats at three spatial scales.

  9. Early clinical evaluation of a novel three-dimensional structure delineation software tool (SCULPTER) for radiotherapy treatment planning.

    PubMed

    McBain, C A; Moore, C J; Green, M M L; Price, G; Sykes, J S; Amer, A; Khoo, V S; Price, P

    2008-08-01

    Modern radiotherapy treatment planning (RTP) necessitates increased delineation of target volumes and organs at risk. Conventional manual delineation is a laborious, time-consuming and subjective process. It is prone to inconsistency and variability, but has the potential to be improved using automated segmentation algorithms. We carried out a pilot clinical evaluation of SCULPTER (Structure Creation Using Limited Point Topology Evidence in Radiotherapy) - a novel prototype software tool designed to improve structure delineation for RTP. Anonymized MR and CT image datasets from patients who underwent radiotherapy for bladder or prostate cancer were studied. An experienced radiation oncologist used manual and SCULPTER-assisted methods to create clinically acceptable organ delineations. SCULPTER was also tested by four other RTP professionals. Resulting contours were compared by qualitative inspection and quantitatively by using the volumes of the structures delineated and the time taken for completion. The SCULPTER tool was easy to apply to both MR and CT images and diverse anatomical sites. SCULPTER delineations closely reproduced manual contours with no significant volume differences detected, but SCULPTER delineations were significantly quicker (p<0.05) in most cases. In conclusion, clinical application of SCULPTER resulted in rapid and simple organ delineations with equivalent accuracy to manual methods, demonstrating proof-of-principle of the SCULPTER system and supporting its potential utility in RTP.

  10. SU-E-T-292: New Technique for Developing Proton Range Compensator Using Three-Dimensional Printer.

    PubMed

    Ju, S; Kim, M; Hong, C; Yim, D; Kim, J; Shin, D; Lee, S; Han, Y; Shin, J; Shin, E; Ahn, S; Choi, D

    2012-06-01

    A new system for manufacturing proton range compensator (PRC) was developed by using a three-dimensional printer (3DP). The physical accuracy and dosimetrical characteristics of the new PRC (PRC-3DP) was compared with conventional PRC (PRC-CMM) manufactured by computerized milling machine (CMM). A PRC for brain cancer treatment, with passive scattered proton beam, was calculated in the TPS (Eclipse, Varian, USA) and its data was converted into a new format for 3DP (Projet HD3000, 3D Systems, USA), using the in-house developed software. PRC-3DP was printed with UV curable acrylic plastic, while PRC- CMM was milled into PMMA using a CMM (V-CNC500, CINCINNATI, USA). We measured the 5 randomly selected points for its physical thickness of both PRCs to evaluate its physical accuracy. Stopping power ratio (SPR), spread-out bragg peak (SOBP, 90∼90%) and distal fall-off (DFO, 20∼80%) at the central axis, +2.5, and 2.5 cm in the lateral direction, and FWHM of dose profile in depth 6, 8, and 10 cm were measured to evaluate for its dosimetrical characteristics. All measured data was compared with TPS data. There was no significant difference in the physical depths between the calculated and the measured value of both RPC-3DP and RPC-CMM (p<0.05). SPR of both PRC showed similarity in value (1.022) when compared with that of the water. Average difference of SOBP between the TPS and the measured data from both PRC was 0.3773±0.0075 and 0.2762±0.0235 cm, while DFO was 0.06±0.005 and 0.0471±0.0042 cm, respectively. Average differences of FWHM between the TPS and the measured data from PRC-3DP and PRC-CMM were 0.1799±0.025 and 0.137±0.0181 cm, respectively. There was no significant difference in dosimetrical characteristic between the RTP and both PRCs (p<0.05). Physical accuracy and dosimetrical characteristics of the PRC-3DP were comparable to that of the conventional PRC-CMM, while significant system minimization was provided. This work was supported by the Technology

  11. Two- and Three-Dimensional Depiction of Subsurface Geology Using Commercial Software for Support of Groundwater Contaminant Fate and Transport Analysis - 13345

    SciTech Connect

    Ivarson, Kristine A.; Miller, Charles W.; Arola, Craig C.

    2013-07-01

    Groundwater contamination by hexavalent chromium and other nuclear reactor operation-related contaminants has resulted in the need for groundwater remedial actions within the Hanford Site reactor areas (the Hanford Site 100 Area). The large geographic extent of the resultant contaminant plumes requires an extensive level of understanding of the aquifer structure, characteristics, and configuration to support assessment and design of remedial alternatives within the former 100-D, 100-H, and 100-K reactor areas. The authors have prepared two- and three-dimensional depictions of the key subsurface geologic structures at two Hanford Site reactor operable units (100-K and 100-D/H). These depictions, prepared using commercial-off-the-shelf (COTS) visualization software, provide a basis for expanding the understanding of groundwater contaminant migration pathways, including identification of geologically-defined preferential groundwater flow pathways. These identified preferential flow pathways support the conceptual site model and help explain both historical and current contaminant distribution and transport. (authors)

  12. Use of the surface-based registration function of computer-aided design/computer-aided manufacturing software in medical simulation software for three-dimensional simulation of orthognathic surgery.

    PubMed

    Kang, Sang-Hoon; Lee, Jae-Won; Kim, Moon-Key

    2013-08-01

    Three-dimensional (3D) computed tomography image models are helpful in reproducing the maxillofacial area; however, they do not necessarily provide an accurate representation of dental occlusion and the state of the teeth. Recent efforts have focused on improvement of dental imaging by replacement of computed tomography with other detailed digital images. Unfortunately, despite the advantages of medical simulation software in dentofacial analysis, diagnosis, and surgical simulation, it lacks adequate registration tools. Following up on our previous report on orthognathic simulation surgery using computer-aided design/computer-aided manufacturing (CAD/CAM) software, we recently used the registration functions of a CAD/CAM platform in conjunction with surgical simulation software. Therefore, we would like to introduce a new technique, which involves use of the registration functions of CAD/CAM software followed by transfer of the images into medical simulation software. This technique may be applicable when using various registration function tools from different software platforms.

  13. Development of an Acellular Tumor Extracellular Matrix as a Three-Dimensional Scaffold for Tumor Engineering

    PubMed Central

    Liu, Zhi-Gang; Lei, Guang-Yan; Liu, Jia; Gao, Wei; Hu, Ye-Rong

    2014-01-01

    Tumor engineering is defined as the construction of three-dimensional (3D) tumors in vitro with tissue engineering approaches. The present 3D scaffolds for tumor engineering have several limitations in terms of structure and function. To get an ideal 3D scaffold for tumor culture, A549 human pulmonary adenocarcinoma cells were implanted into immunodeficient mice to establish xenotransplatation models. Tumors were retrieved at 30-day implantation and sliced into sheets. They were subsequently decellularized by four procedures. Two decellularization methods, Tris-Trypsin-Triton multi-step treatment and sodium dodecyl sulfate (SDS) treatment, achieved complete cellular removal and thus were chosen for evaluation of histological and biochemical properties. Native tumor tissues were used as controls. Human breast cancer MCF-7 cells were cultured onto the two 3D scaffolds for further cell growth and growth factor secretion investigations, with the two-dimensional (2D) culture and cells cultured onto the Matrigel scaffolds used as controls. Results showed that Tris-Trypsin-Triton multi-step treated tumor sheets had well-preserved extracellular matrix structures and components. Their porosity was increased but elastic modulus was decreased compared with the native tumor samples. They supported MCF-7 cell repopulation and proliferation, as well as expression of growth factors. When cultured within the Tris-Trypsin-Triton treated scaffold, A549 cells and human colorectal adenocarcinoma cells (SW-480) had similar behaviors to MCF-7 cells, but human esophageal squamous cell carcinoma cells (KYSE-510) had a relatively slow cell repopulation rate. This study provides evidence that Tris-Trypsin-Triton treated acellular tumor extracellular matrices are promising 3D scaffolds with ideal spatial arrangement, biomechanical properties and biocompatibility for improved modeling of 3D tumor microenvironments. PMID:25072252

  14. Development of a cost effective three-dimensional posture analysis tool: validity and reliability

    PubMed Central

    2013-01-01

    Background The lack of clear understanding of the association between sitting posture and adolescent musculoskeletal pain, might reflect invalid and/or unreliable posture measurement instruments. The psychometric properties of any new measurement instrument should be demonstrated prior to use for research or clinical purposes. This paper describes psychometric testing of a new three-dimensional (3D), portable, non-invasive posture analysis tool (3D-PAT), from sequential studies using a mannequin and high school students. Methods The first study compared the 3D-(X-, Y- and Z-) coordinates of reflective markers placed on a mannequin using the 3D-PAT, and the Vicon motion analysis system. This study also tested the reliability of taking repeated measures of the 3D-coordinates of the reflective markers. The second study determined the concurrent validity and test-retest reliability of the 3D-PAT measurements of nine sitting postural angles of high school students undertaking a standard computing task. In both studies, concordance correlation coefficients and Intraclass correlation coefficients described test-retest reliability, whilst Pearson product moment correlation coefficients and Bland-Altman plots demonstrated concurrent validity. Results The 3D-PAT provides reliable and valid 3D measurements of five of the nine postural angles i.e. head flexion, neck flexion, cranio-cervical angle, trunk flexion and head lateral bending in adolescents undertaking a standard task. Conclusions The 3D-PAT is appropriate for research and clinical settings to measure five upper quadrant postural angles in three dimensions. As a measurement instrument it can provide further understanding of the relationship between sitting posture, changes to sitting posture and adolescent musculoskeletal pain. PMID:24289665

  15. Three-dimensional nanomagnetism

    DOE PAGES

    Fernandez-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier; ...

    2017-06-09

    Magnetic nanostructures are being developed for use in many aspects of our daily life, spanning areas such as data storage, sensing and biomedicine. Whereas patterned nanomagnets are traditionally two-dimensional planar structures, recent work is expanding nanomagnetism into three dimensions; a move triggered by the advance of unconventional synthesis methods and the discovery of new magnetic effects. In three-dimensional nanomagnets more complex magnetic configurations become possible, many with unprecedented properties. Here we review the creation of these structures and their implications for the emergence of new physics, the development of instrumentation and computational methods, and exploitation in numerous applications.

  16. Three-dimensional nanomagnetism

    NASA Astrophysics Data System (ADS)

    Fernández-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier; Hertel, Riccardo; Fischer, Peter; Cowburn, Russell P.

    2017-06-01

    Magnetic nanostructures are being developed for use in many aspects of our daily life, spanning areas such as data storage, sensing and biomedicine. Whereas patterned nanomagnets are traditionally two-dimensional planar structures, recent work is expanding nanomagnetism into three dimensions; a move triggered by the advance of unconventional synthesis methods and the discovery of new magnetic effects. In three-dimensional nanomagnets more complex magnetic configurations become possible, many with unprecedented properties. Here we review the creation of these structures and their implications for the emergence of new physics, the development of instrumentation and computational methods, and exploitation in numerous applications.

  17. Influence of the lateral wall velocity on three-dimensional disturbance development in plane Poiseuille-Couette flow

    NASA Astrophysics Data System (ADS)

    Savenkov, I. V.

    2017-05-01

    The linear stage of three-dimensional disturbance development in the Poiseuille-Couette flow in the case when both walls can move in the lateral direction is investigated by applying the asymptotic triple-deck theory. It is shown that the lateral wall velocity has no effect on the streamwise velocity of a wave packet. The packet does not bifurcate, but drifts in the lateral direction at the speed equal to the arithmetic mean of the walls' speeds. Characteristic "ripples" in the lateral direction are observed at the stage of packet formation.

  18. Development of a three-dimensional unit cell to model the micromechanical response of a collagen-based extracellular matrix.

    PubMed

    Susilo, Monica E; Roeder, Blayne A; Voytik-Harbin, Sherry L; Kokini, Klod; Nauman, Eric A

    2010-04-01

    The three-dimensional microstructure and mechanical properties of the collagen fibrils within the extracellular matrix (ECM) is now being recognized as a primary factor in regulating cell proliferation and differentiation. Therefore, an appreciation of the mechanical aspects by which a cell interacts with its ECM is required for the development of engineered tissues. Ultimately, using these interactions to design tissue equivalents requires mathematical models with three-dimensional architecture. In this study, a three-dimensional model of a collagen fibril matrix undergoing uniaxial tensile stress was developed by making use of cellular solids. A structure consisting of thin struts was chosen to represent the arrangement of collagen fibrils within an engineered ECM. To account for the large deformation of tissues, the collagen fibrils were modeled as hyperelastic neo-Hookean or Mooney-Rivlin materials. The use of cellular solids allowed the fibril properties to be related to the ECM properties in closed form, which, in turn, allowed the estimation of fibril properties using ECM experimental data. A set of previously obtained experimental data consisting of simultaneous measures of the fibril microstructure and mechanical tests was used to evaluate the model's capability to estimate collagen fibril mechanical property when given tissue-scale data and to predict the tissue-scale mechanical properties when given estimated fibril stiffness. The fibril tangent modulus was found to be 1.26 + or - 0.70 and 1.62 + or - 0.88 MPa when the fibril was modeled as neo-Hookean and Mooney-Rivlin material, respectively. There was no statistical significance of the estimated fibril tangent modulus among the different groups. Sensitivity analysis showed that the fibril mechanical properties and volume fraction were the two input parameters which required accurate values. While the volume fraction was easily obtained from the initial image of the gel, the fibril mechanical properties

  19. Agile Software Development

    ERIC Educational Resources Information Center

    Biju, Soly Mathew

    2008-01-01

    Many software development firms are now adopting the agile software development method. This method involves the customer at every level of software development, thus reducing the impact of change in the requirement at a later stage. In this article, the principles of the agile method for software development are explored and there is a focus on…

  20. Agile Software Development

    ERIC Educational Resources Information Center

    Biju, Soly Mathew

    2008-01-01

    Many software development firms are now adopting the agile software development method. This method involves the customer at every level of software development, thus reducing the impact of change in the requirement at a later stage. In this article, the principles of the agile method for software development are explored and there is a focus on…

  1. Cutting balloon angioplasty for carotid artery in-stent stenosis supported by three-dimensional rotational angiography with automated vessel analysis software.

    PubMed

    Akiyama, Yasuhiko; Moritake, Kouzo; Miyazaki, Takeshi; Kowari, Kentaro; Sato, Hidetoshi; Shimada, Toshio

    2008-05-01

    In-stent stenosis is a possible long-term complication of carotid artery stenting. A simple and safe technique of cutting balloon angioplasty is described for carotid in-stent stenosis. The stented vessel is imaged by three-dimensional (3D) rotational angiography, the acquired projection images are transferred to a workstation, and the stenotic lesion and implanted stent are reconstructed. The diameter of the implanted stent in the stenotic region is measured by automated analysis software. Cutting balloon angioplasty carries the risk of vessel injury by the cutting balloon microblades, but the implanted stent acts as a barrier to protect the vessel. Therefore, cutting balloon inflation up to the stent diameter is safe and results in maximal vessel dilation. The key to success is precise measurement of the stent diameter and choice of a cutting balloon catheter of the appropriate size. 3D rotational angiography provides high-quality images of the vasculature of a stented vessel and a reference for intervention based on absolute measurements. Cutting balloon angioplasty supported by 3D rotational angiography with automated vessel analysis software should be considered as a treatment strategy for high-grade carotid artery in-stent stenosis.

  2. Three-dimensional surgical modelling with an open-source software protocol: study of precision and reproducibility in mandibular reconstruction with the fibula free flap.

    PubMed

    Ganry, L; Quilichini, J; Bandini, C M; Leyder, P; Hersant, B; Meningaud, J P

    2017-08-01

    Very few surgical teams currently use totally independent and free solutions to perform three-dimensional (3D) surgical modelling for osseous free flaps in reconstructive surgery. This study assessed the precision and technical reproducibility of a 3D surgical modelling protocol using free open-source software in mandibular reconstruction with fibula free flaps and surgical guides. Precision was assessed through comparisons of the 3D surgical guide to the sterilized 3D-printed guide, determining accuracy to the millimetre level. Reproducibility was assessed in three surgical cases by volumetric comparison to the millimetre level. For the 3D surgical modelling, a difference of less than 0.1mm was observed. Almost no deformations (<0.2mm) were observed post-autoclave sterilization of the 3D-printed surgical guides. In the three surgical cases, the average precision of fibula free flap modelling was between 0.1mm and 0.4mm, and the average precision of the complete reconstructed mandible was less than 1mm. The open-source software protocol demonstrated high accuracy without complications. However, the precision of the surgical case depends on the surgeon's 3D surgical modelling. Therefore, surgeons need training on the use of this protocol before applying it to surgical cases; this constitutes a limitation. Further studies should address the transfer of expertise. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Accuracy of three-dimensional soft tissue prediction for Le Fort I osteotomy using Dolphin 3D software: a pilot study.

    PubMed

    Resnick, C M; Dang, R R; Glick, S J; Padwa, B L

    2017-03-01

    Three-dimensional (3D) soft tissue prediction is replacing two-dimensional analysis in planning for orthognathic surgery. The accuracy of different computational models to predict soft tissue changes in 3D, however, is unclear. A retrospective pilot study was implemented to assess the accuracy of Dolphin 3D software in making these predictions. Seven patients who had a single-segment Le Fort I osteotomy and had preoperative (T0) and >6-month postoperative (T1) cone beam computed tomography (CBCT) scans and 3D photographs were included. The actual skeletal change was determined by subtracting the T0 from the T1 CBCT. 3D photographs were overlaid onto the T0 CBCT and virtual skeletal movements equivalent to the achieved repositioning were applied using Dolphin 3D planner. A 3D soft tissue prediction (TP) was generated and differences between the TP and T1 images (error) were measured at 14 points and at the nasolabial angle. A mean linear prediction error of 2.91±2.16mm was found. The mean error at the nasolabial angle was 8.1±5.6°. In conclusion, the ability to accurately predict 3D soft tissue changes after Le Fort I osteotomy using Dolphin 3D software is limited.

  4. Optimal management of reconfigurable manufacturing system modeling with Petri nets developed three-dimensional - RPD3D

    NASA Astrophysics Data System (ADS)

    Teodor, F.; Marinescu, V.; Epureanu, A.

    2016-11-01

    Modeling of reconfigurable manufacturing systems would have done using existing Petri net types, but the complexity and dynamics of the new manufacturing system, mainly data reconfiguration feature, required looking for a more compact representation with many variables that to model as accurately not only the normal operation of the production system but can capture and model and reconfiguration process. Thus, it was necessary to create a new class of Petri nets, called RPD3D (Developed Petri nets with three dimensional) showing the name of both lineage (new class derived from Petri nets developed, created in 2000 by Prof. Dr. Ing Vasile Marinescu in his doctoral thesis) [1], but the most important of the new features defining (transformation from one 2D model into a 3D model).The idea was to introduce the classical model of a Petri third dimension to be able to overlay multiple levels (layers) formed in 2D or 3D Petri nets that interact with each other (receiving or giving commands to enable or disable the various modules together simulating the operation of reconfigurable manufacturing systems). The aim is to present a new type of Petri nets called RPD3D - Developed Petri three-dimensional model used for optimal control and simulation of reconfigurable manufacturing systems manufacture of products such systems.

  5. Status report on the development of a three-dimensional conceptual model for the Hanford Site unconfined aquifer system

    SciTech Connect

    Thorne, P.D.; Chamness, M.A.

    1992-11-01

    This report presents the status of development of a three-dimensional conceptual model for the unconfined aquifer system at Hanford. A conceptual model is needed to support development of a realistic three-dimensional numerical model for predicting ground-water flow and the transport of contaminants. The report focuses on developing a hydrogeologic framework, assessing available hydraulic property data, describing flow-system boundaries, and evaluating areal recharge and leakage. Geologic descriptions of samples obtained during well drilling were used to prepare cross sections that correlate relatively continuous layers. The layers were defined based on textural differences that are expected to reflect differences in hydraulic properties. Assigning hydraulic properties to the layers is a critical part of the conceptual model. Available hydraulic property data for the study area were compiled and were correlated with the geologic layers where possible. Flow-system boundaries are present within the study area at basalt outcrops and at the Columbia River. Boundary conditions have been evaluated for these areas. Available estimates of areal recharge from precipitation were compiled.

  6. Status report on the development of a three-dimensional conceptual model for the Hanford Site unconfined aquifer system

    SciTech Connect

    Thorne, P.D.; Chamness, M.A.

    1992-11-01

    This report presents the status of development of a three-dimensional conceptual model for the unconfined aquifer system at Hanford. A conceptual model is needed to support development of a realistic three-dimensional numerical model for predicting ground-water flow and the transport of contaminants. The report focuses on developing a hydrogeologic framework, assessing available hydraulic property data, describing flow-system boundaries, and evaluating areal recharge and leakage. Geologic descriptions of samples obtained during well drilling were used to prepare cross sections that correlate relatively continuous layers. The layers were defined based on textural differences that are expected to reflect differences in hydraulic properties. Assigning hydraulic properties to the layers is a critical part of the conceptual model. Available hydraulic property data for the study area were compiled and were correlated with the geologic layers where possible. Flow-system boundaries are present within the study area at basalt outcrops and at the Columbia River. Boundary conditions have been evaluated for these areas. Available estimates of areal recharge from precipitation were compiled.

  7. Three-Dimensional Imaging of the Developing Vasculature within Stem Cell-Seeded Scaffolds Cultured in ovo

    PubMed Central

    Woloszyk, Anna; Liccardo, Davide; Mitsiadis, Thimios A.

    2016-01-01

    Successful tissue engineering requires functional vascularization of the three-dimensional constructs with the aim to serve as implants for tissue replacement and regeneration. The survival of the implant is only possible if the supply of oxygen and nutrients by developing capillaries from the host is established. The chorioallantoic membrane (CAM) assay is a valuable tool to study the ingrowth and distribution of vessels into scaffolds composed by appropriate biomaterials and stem cell populations that are used in cell-based regenerative approaches. The developing vasculature of chicken embryos within cell-seeded scaffolds can be visualized with microcomputed tomography after intravenous injection of MicroFil®, which is a radiopaque contrast agent. Here, we provide a step-by-step protocol for the seeding of stem cells into silk fibroin scaffolds, the CAM culture conditions, the procedure of MicroFil® perfusion, and finally the microcomputed tomography scanning. Three-dimensional imaging of the vascularized tissue engineered constructs provides an important analytical tool for studying the potential of cell seeded scaffolds to attract vessels and form vascular networks, as well as for analyzing the number, density, length, branching, and diameter of vessels. This in ovo method can greatly help to screen implants that will be used for tissue regeneration purposes before their in vivo testing, thereby reducing the amount of animals needed for pre-clinical studies. PMID:27148081

  8. Three Dimensional Dirac Semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  9. Development of a three-dimensional tissue construct from dental human ectomesenchymal stem cells: in vitro and in vivo study.

    PubMed

    Guzmán-Uribe, Daniela; Estrada, Keila Neri Alvarado; Guillén, Amaury de Jesús Pozos; Pérez, Silvia Martín; Ibáñez, Raúl Rosales

    2012-01-01

    Application of regenerative medicine technology provides treatment for patients with several clinical problems, like loss of tissue and its function. The investigation of biological tooth replacement, dental tissue engineering and cell culture, scaffolds and growth factors are considered essential. Currently, studies reported on the making of threedimensional tissue constructs focused on the use of animal cells in the early stages of embryogenesis applied to young biomodels. The purpose of this study was the development and characterization of a three-dimensional tissue construct from human dental cells. The construct was detached, cultured and characterized in mesenchymal and epithelial cells of a human tooth germ of a 12 year old patient. The cells were characterized by specific membrane markers (STRO1, CD44), making a biocomplex using Pura Matrix as a scaffold, and it was incubated for four days and transplanted into 30 adult immunosuppressed male Wistar rats. They were evaluated at 6 days, 10 days and 2 months, obtaining histological sections stained with hematoxylin and eosin. Cell cultures were positive for specific membrane markers, showing evident deviations in morphology under phase contrast microscope. Differentiation and organization were noted at 10 days, while the constructs at 2 months showed a clear difference in morphology, organization and cell type. It was possible to obtain a three-dimensional tissue construct from human dental ectomesenchymal cells achieving a degree of tissue organization that corresponds to the presence of cellular stratification and extracellular matrix.

  10. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann; Usab, William J., Jr.

    1993-01-01

    A general solution adaptive scheme based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  11. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann

    1993-01-01

    A general solution adaptive scheme-based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  12. Development of A Three-Dimensional Tissue Construct from Dental Human Ectomesenchymal Stem Cells: In Vitro and In Vivo Study

    PubMed Central

    Guzmán-Uribe, Daniela; Estrada, Keila Neri Alvarado; Guillén, Amaury de Jesús Pozos; Pérez, Silvia Martín; Ibáñez, Raúl Rosales

    2012-01-01

    Application of regenerative medicine technology provides treatment for patients with several clinical problems, like loss of tissue and its function. The investigation of biological tooth replacement, dental tissue engineering and cell culture, scaffolds and growth factors are considered essential. Currently, studies reported on the making of threedimensional tissue constructs focused on the use of animal cells in the early stages of embryogenesis applied to young biomodels. The purpose of this study was the development and characterization of a three-dimensional tissue construct from human dental cells. The construct was detached, cultured and characterized in mesenchymal and epithelial cells of a human tooth germ of a 12 year old patient. The cells were characterized by specific membrane markers (STRO1, CD44), making a biocomplex using Pura Matrix as a scaffold, and it was incubated for four days and transplanted into 30 adult immunosuppressed male Wistar rats. They were evaluated at 6 days, 10 days and 2 months, obtaining histological sections stained with hematoxylin and eosin. Cell cultures were positive for specific membrane markers, showing evident deviations in morphology under phase contrast microscope. Differentiation and organization were noted at 10 days, while the constructs at 2 months showed a clear difference in morphology, organization and cell type. It was possible to obtain a three-dimensional tissue construct from human dental ectomesenchymal cells achieving a degree of tissue organization that corresponds to the presence of cellular stratification and extracellular matrix. PMID:23308086

  13. Quantifying three-dimensional rodent retina vascular development using optical tissue clearing and light-sheet microscopy

    NASA Astrophysics Data System (ADS)

    Singh, Jasmine N.; Nowlin, Taylor M.; Seedorf, Gregory J.; Abman, Steven H.; Shepherd, Douglas P.

    2017-07-01

    Retinal vasculature develops in a highly orchestrated three-dimensional (3-D) sequence. The stages of retinal vascularization are highly susceptible to oxygen perturbations. We demonstrate that optical tissue clearing of intact rat retinas and light-sheet microscopy provides rapid 3-D characterization of vascular complexity during retinal development. Compared with flat mount preparations that dissect the retina and primarily image the outermost vascular layers, intact cleared retinas imaged using light-sheet fluorescence microscopy display changes in the 3-D retinal vasculature rapidly without the need for point scanning techniques. Using a severe model of retinal vascular disruption, we demonstrate that a simple metric based on Sholl analysis captures the vascular changes observed during retinal development in 3-D. Taken together, these results provide a methodology for rapidly quantifying the 3-D development of the entire rodent retinal vasculature.

  14. Progress on the development of a three-dimensional capability for simulating large-scale complex geologic processes

    SciTech Connect

    Argueello, J.G.; Stone, C.M.; Fossum, A.F.

    1998-02-01

    Significant progress has been made in developing a three-dimensional capability for predicting the mechanical response of rock over spatial and time scales of geologic interest to the Oil and Gas industry. An Advanced Computational Technology Initiative (ACTI) initiated three years ago to achieve such a computational technology breakthrough has made significant progress towards its goal by adapting and improving the unique advanced quasistatic finite element technology developed by Sandia National Laboratories to the mechanics applications important to exploration and production (E and P). This capability now gives the industry a powerful tool to help reduce risk on prospects, improve pre-project initial reserve estimates, and lower operating costs. Progress to date on this program is reported herein by presenting and discussing the enhancements and adaptations that have been made to the technology, with specific examples to illustrate their use on large E and P geomechanics problems.

  15. Development of facial aging simulation system combined with three-dimensional shape prediction from facial photographs

    NASA Astrophysics Data System (ADS)

    Nagata, Takeshi; Matsuzaki, Kazutoshi; Taniguchi, Kei; Ogawa, Yoshinori; Imaizumi, Kazuhiko

    2017-03-01

    3D Facial aging changes in more than 10 years of identical persons are being measured at National Research Institute of Police Science. We performed machine learning using such measured data as teacher data and have developed the system which convert input 2D face image into 3D face model and simulate aging. Here, we report about processing and accuracy of our system.

  16. Systems in Development: Motor Skill Acquisition Facilitates Three-Dimensional Object Completion

    ERIC Educational Resources Information Center

    Soska, Kasey C.; Adolph, Karen E.; Johnson, Scott P.

    2010-01-01

    How do infants learn to perceive the backs of objects that they see only from a limited viewpoint? Infants' 3-dimensional object completion abilities emerge in conjunction with developing motor skills--independent sitting and visual-manual exploration. Infants at 4.5 to 7.5 months of age (n = 28) were habituated to a limited-view object and tested…

  17. Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1993-01-01

    In the last two decades, there have been extensive developments in computational aerodynamics, which constitutes a major part of the general area of computational fluid dynamics. Such developments are essential to advance the understanding of the physics of complex flows, to complement expensive wind-tunnel tests, and to reduce the overall design cost of an aircraft, particularly in the area of aeroelasticity. Aeroelasticity plays an important role in the design and development of aircraft, particularly modern aircraft, which tend to be more flexible. Several phenomena that can be dangerous and limit the performance of an aircraft occur because of the interaction of the flow with flexible components. For example, an aircraft with highly swept wings may experience vortex-induced aeroelastic oscillations. Also, undesirable aeroelastic phenomena due to the presence and movement of shock waves occur in the transonic range. Aeroelastically critical phenomena, such as a low transonic flutter speed, have been known to occur through limited wind-tunnel tests and flight tests. Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At Ames a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft and it solves the Euler/Navier-Stokes equations. The purpose of this contract is to continue the algorithm enhancements of ENSAERO and to apply the code to complicated geometries. During the last year

  18. Development of three-dimensional state-space wake theory and application in dynamic ground effect

    NASA Astrophysics Data System (ADS)

    Yu, Ke

    In topics of rotorcraft wake analysis, state-space wake theory has a recognized reputation for advantages in real-time simulation, preliminary design and eigenvalue analysis. Developments in the past decades greatly improved range of validity and accuracy of the state-space modeling approach. This work focuses on further improvement of the state-space wake theory and applications in representing dynamic ground effect. Extended state-space model is developed to represent non-zero mass flux on rotor disk. Its instant practical application, representing ground effect with a mass source ground rotor, is evaluated in both steady and dynamic aspects. Investigations of partial ground effect simulation by state-space model are carried out in different rotor configurations. Additional work is done in improving simulation efficiency of practical application of state-space modeling.

  19. Algorithms for Zonal Methods and Development of Three Dimensional Mesh Generation Procedures.

    DTIC Science & Technology

    1984-02-01

    zonal methods and 4D-grid generation procedures for application of finite difference methods to solve complex aircraft con- figurations. For the task...this research has been to further develop grid generation procedures and zonal methods so as to extend the applications of nonlinear finite difference ...C - - A CHIMERA GRID SCHEME .................... 51 APPENDIX D - - A CONSERVATIVE FINITE DIFFERENCE ALGORITHM FOR THE UNSTEADY TRANSONIC POTENTIAL

  20. Development of a Three Dimensional Wireless Sensor Network for Terrain-Climate Research in Remote Mountainous Environments

    NASA Astrophysics Data System (ADS)

    Kavanagh, K.; Davis, A.; Gessler, P.; Hess, H.; Holden, Z.; Link, T. E.; Newingham, B. A.; Smith, A. M.; Robinson, P.

    2011-12-01

    Developing sensor networks that are robust enough to perform in the world's remote regions is critical since these regions serve as important benchmarks compared to human-dominated areas. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. We aim to overcome these challenges by developing a three-dimensional sensor network arrayed across a topoclimatic gradient (1100-1800 meters) in a wilderness area in central Idaho. Development of this sensor array builds upon advances in sensing, networking, and power supply technologies coupled with experiences of the multidisciplinary investigators in conducting research in remote mountainous locations. The proposed gradient monitoring network will provide near real-time data from a three-dimensional (3-D) array of sensors measuring biophysical parameters used in ecosystem process models. The network will monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, tree stem growth and leaf wetness at time intervals ranging from seconds to days. The long-term goal of this project is to realize a transformative integration of smart sensor networks adaptively communicating data in real-time to ultimately achieve a 3-D visualization of ecosystem processes within remote mountainous regions. Process models will be the interface between the visualization platforms and the sensor network. This will allow us to better predict how non-human dominated terrestrial and aquatic ecosystems function and respond to climate dynamics. Access to the data will be ensured as part of the Northwest Knowledge Network being developed at the University of Idaho, through ongoing Idaho NSF-funded cyber infrastructure initiatives, and existing data management systems funded by NSF, such as

  1. Three-dimensional high-resolution diffusion tensor imaging and tractography of the developing rabbit brain.

    PubMed

    D'Arceuil, Helen; Liu, Christina; Levitt, Pat; Thompson, Barbara; Kosofsky, Barry; de Crespigny, Alex

    2008-01-01

    Diffusion tensor imaging (DTI) is sensitive to structural ordering in brain tissue particularly in the white matter tracts. Diffusion anisotropy changes with disease and also with neural development. We used high-resolution DTI of fixed rabbit brains to study developmental changes in regional diffusion anisotropy and white matter fiber tract development. Imaging was performed on a 4.7-tesla Bruker Biospec Avance scanner using custom-built solenoid coils and DTI was performed at various postnatal ages. Trace apparent diffusion coefficient, fractional diffusion anisotropy maps and fiber tracts were generated and compared across the ages. The brain was highly anisotropic at birth and white matter anisotropy increased with age. Regional DTI tractography of the internal capsule showed refinement in regional tract architecture with maturation. Interestingly, brains with congenital deficiencies of the callosal commissure showed selectively strikingly different fiber architecture compared to age-matched brains. There was also some evidence of subcortical to cortical fiber connectivity. DTI tractography of the anterior and posterior limbs of the internal capsule showed reproducibly coherent fiber tracts corresponding to known corticospinal and corticobulbar tract anatomy. There was some minor interanimal tract variability, but there was remarkable similarity between the tracts in all animals. Therefore, ex vivo DTI tractography is a potentially powerful tool for neuroscience investigations and may also reveal effects (such as fiber tract pruning during development) which may be important targets for in vivo human studies. Copyright 2007 S. Karger AG, Basel.

  2. Quantitative three-dimensional reconstruction: feasibility for studies of sexually dimorphic hypothalamic development in rats.

    PubMed

    Scallet, Andrew C; Meredith, John M

    2002-01-01

    The adult rat brain develops through an interplay of neuronal proliferation with programmed cell death. Sensory stimulation, as well as growth factors and steroids, may alter the balance between these competing processes. "Endocrine disrupters" (EDs) may do the same by mimicry or modulation of endogenous hormones. The sexually dimorphic nucleus (SDN) of the medial preoptic hypothalamus contains a high concentration of estrogen receptors (ERs). The SDN develops to a final adult volume, which may be used as an indication of the hormonal conditions during perinatal development. Although male rats have been repeatedly observed to have a greater adult SDN volume than female rats, variability between the actual measurements reported (both within and between laboratories) have been rather large. Exposure of female rats to testosterone (or excessive estradiol, beyond the binding capacity of alpha-fetoprotein) has been shown to masculinize them through a P450 aromatase that converts testosterone to estrogen in the SDN. Exposure of males to estradiol may feminize them at low doses through interference with the synthesis of their endogenous testosterone, which normally acts on SDN ERs following aromatization. We have employed computer-assisted reconstruction methods in order to render the SDN within the surrounding hypothalamus in 3-D for computation of its volume. Ongoing studies are investigating whether exposure through the diet to estrogenic endocrine disruptors such as genistein, nonylphenol, and ethinyl estradiol might produce effects similar to those of estradiol itself on the adult SDN.

  3. Three dimensional strained semiconductors

    DOEpatents

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  4. The development of photo-stimulated luminescence spectroscopy for three-dimensional stress measurements

    NASA Astrophysics Data System (ADS)

    Raghavan, Seetha

    The development of photo-stimulated luminescence spectroscopy (PSLS) for stress measurement in chromium-doped alumina has been motivated by the need for a nondestructive technique to establish the integrity of the thermally grown oxide (TGO) layer on turbine blades of jet engines. Applications of PSLS have been based on the R-line peak positions and their stress dependence has been fully exploited for planar measurements. However, factors associated with the oxide layer, such as its undulated nature and growth stresses, emphasize the need to measure other stress components unavailable with the planar model in use today. Our new findings on the piezospectroscopic nature of vibronic bands in the optical spectrum of chromium-doped alumina pave the way for a 3-D model of stress measurement never before established. The focus of this research is on developing the PSLS technique to measure 3-D stresses in chromium-doped alumina by studying the behavior of these less explored parameters and the experimental factors that affect their measurement. The development of a spectral analysis methodology based on genetic algorithms for optimization of the curve fitting was instrumental in detecting and monitoring the shifts of the peaks within the vibronic bands with stress. The stress measurement model was applied to polycrystalline alumina and thermal barrier coating specimens and data for future validation was obtained using synchrotron x-ray diffraction. This work leads to an improved stress-prediction method in non-destructive testing of the TGO and eventual life prediction of the thermal barrier coatings of aircraft engine turbine blades.

  5. Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1994-01-01

    Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations, the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At ARC a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft, and it solves the Euler/Navier-Stokes equations. The purpose of this cooperative agreement was to enhance ENSAERO in both algorithm and geometric capabilities. During the last five years, the algorithms of the code have been enhanced extensively by using high-resolution upwind algorithms and efficient implicit solvers. The zonal capability of the code has been extended from a one-to-one grid interface to a mismatching unsteady zonal interface. The geometric capability of the code has been extended from a single oscillating wing case to a full-span wing-body configuration with oscillating control surfaces. Each time a new capability was added, a proper validation case was simulated, and the capability of the code was demonstrated.

  6. Possible causal relationships between competitive swimming in growing age and three-dimensional dentoalveolar development.

    PubMed

    Silvestrini-Biavati, Armando; Capurro, Claudia; Ugolini, Alessandro; Butti, Andrea Carlo; Salvato, Antonino

    2013-07-26

    The aim of this study was to investigate possible links between competitive swimming during the growth phase and the development of the dentoalveolar arches. The study sample included 100 swimmers and a control group of 100 age-matched non-swimmers who had never practised swimming or related sports. Subjects who had had previous orthodontic treatment were excluded. Overjet, overbite, sagittal and transverse parameters, arch dimension, crowding and oral habits were recorded. In the swimmers, there was a significantly higher frequency of molar symmetry (P=0.04), together with a greater number of Class I subjects. The overjet in the swimmers was mainly normal, but the arch dimensions were significantly wider (+10% in the upper arch; P<0.001). Similarly, the swimmers showed significantly less severe crowding (P<0.001) and significantly reduced oral habits (P<0.001). Our data and analysis demonstrate that competitive swimming during the growth phase has a favourable effect on dental arch development in the sagittal, vertical and transverse planes.

  7. Developing High-Frequency Quantitative Ultrasound Techniques to Characterize Three-Dimensional Engineered Tissues

    NASA Astrophysics Data System (ADS)

    Mercado, Karla Patricia E.

    Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.

  8. Development of an artificial compound eye system for three-dimensional object detection.

    PubMed

    Ma, Mengchao; Guo, Fang; Cao, Zhaolou; Wang, Keyi

    2014-02-20

    A compound eye has the advantages of a large field of view, high sensitivity, and compact structure, showing that it can be applicable for 3D object detection. In this work, an artificial compound eye system is developed for 3D object detection, consisting of a layer of lenslets and a prism-like beam-steering lens. A calibration method is developed for this system, with which the correspondences between incident light rays and the relevant image points can be obtained precisely using an active calibration pattern at multiple positions. Theoretically, calibration patterns at two positions are sufficient for system calibration, although more positions will increase the accuracy of the result. 3D positions of point objects are calculated to evaluate the system, which are obtained by the intersection of multiple incident light rays in the least-squares sense. Experimental results show that the system can detect an object with angular accuracy of better than 1 mrad, demonstrating the feasibility of the proposed compound eye system. With a 2D scanning device, the system can be extended for general object detection in 3D space.

  9. Three-dimensional image reconstruction with free open-source OsiriX software in video-assisted thoracoscopic lobectomy and segmentectomy.

    PubMed

    Yao, Fei; Wang, Jian; Yao, Ju; Hang, Fangrong; Lei, Xu; Cao, Yongke

    2017-03-01

    The aim of this retrospective study was to evaluate the practice and the feasibility of Osirix, a free and open-source medical imaging software, in performing accurate video-assisted thoracoscopic lobectomy and segmentectomy. From July 2014 to April 2016, 63 patients received anatomical video-assisted thoracoscopic surgery (VATS), either lobectomy or segmentectomy, in our department. Three-dimensional (3D) reconstruction images of 61 (96.8%) patients were preoperatively obtained with contrast-enhanced computed tomography (CT). Preoperative resection simulations were accomplished with patient-individual reconstructed 3D images. For lobectomy, pulmonary lobar veins, arteries and bronchi were identified meticulously by carefully reviewing the 3D images on the display. For segmentectomy, the intrasegmental veins in the affected segment for division and the intersegmental veins to be preserved were identified on the 3D images. Patient preoperative characteristics, surgical outcomes and postoperative data were reviewed from a prospective database. The study cohort of 63 patients included 33 (52.4%) men and 30 (47.6%) women, of whom 46 (73.0%) underwent VATS lobectomy and 17 (27.0%) underwent VATS segmentectomy. There was 1 conversion from VATS lobectomy to open thoracotomy because of fibrocalcified lymph nodes. A VATS lobectomy was performed in 1 case after completing the segmentectomy because invasive adenocarcinoma was detected by intraoperative frozen-section analysis. There were no 30-day or 90-day operative mortalities CONCLUSIONS: The free, simple, and user-friendly software program Osirix can provide a 3D anatomic structure of pulmonary vessels and a clear vision into the space between the lesion and adjacent tissues, which allows surgeons to make preoperative simulations and improve the accuracy and safety of actual surgery. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves.

    PubMed

    Kalve, Shweta; Fotschki, Joanna; Beeckman, Tom; Vissenberg, Kris; Beemster, Gerrit T S

    2014-12-01

    Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved. © The Author 2014. Published by Oxford University Press on behalf of the Society for

  11. The feasibility of laminar screw placement in the subaxial spine: analysis using 215 three-dimensional computed tomography scans and simulation software.

    PubMed

    Shin, Sang Ik; Yeom, Jin S; Kim, Ho-Joong; Chang, Bong-Soon; Lee, Choon-Ki; Riew, K Daniel

    2012-07-01

    There have been several reports describing the usage of subaxial cervical laminar screws. However, the anatomic feasibility of placing such screws has not been thoroughly evaluated yet. To determine the feasibility of the laminar screw placement in the subaxial cervical spine using a large number of computed tomography (CT) scans and three-dimensional screw trajectory software. Three-dimensional simulation study of screw placement. Computed tomography scans of 215 consecutive patients were examined, for a total of 430 screws at each level of the subaxial cervical spine. Successful screw placement without laminar cortical breach, facet joint violation, and collision between two screws in the same level. We simulated the placement of 4.0-mm subaxial (C3-C7) cervical laminar screws. Unilateral and bilateral screw placement was simulated, and their success rates were evaluated at each level of the subaxial cervical spine. This study was not supported by any financial sources. One of the authors received royalties for a posterior cervical fixation system, which is not the topic of this article and is not used or mentioned in this article. The success rate of unilateral screw placement was the highest at C7 (91.4%), followed by C6 (31.9%), C3 (30.2%), C4 (6.3%), and C5 (4.0%). It was significantly higher (p<.001) in men than in women at C6 and C7 but not at the other levels. The success rate of bilateral screw placement was the highest at C7 (68.8%), followed by C3 (13.5%), C6 (8.8%), C4 (1.9%), and C5 (0.9%). It was significantly higher in men (83.5%) than in women (52.0%) at C7 (p<.001) but not at the other levels. The relatively high success rate at C7, particularly of unilateral placement, suggests that laminar screw placement can be a sound alternative method for fixation at this level. However, careful preoperative CT scan evaluation and patient selection are required, particularly for bilateral fixation in women. At C3 and C6, unilateral screw placement can be

  12. Cell-specific transcriptomic analyses of three-dimensional shoot development in the moss Physcomitrella patens.

    PubMed

    Frank, Margaret H; Scanlon, Michael J

    2015-08-01

    Haploid moss gametophytes harbor distinct stem cell types, including tip cells that divide in single planes to generate filamentous protonemata, and bud cells that divide in three planes to yield axial gametophore shoots. This transition from filamentous to triplanar growth occurs progressively during the moss life cycle, and is thought to mirror evolution of the first terrestrial plants from Charophycean green algal ancestors. The innovation of morphologically complex plant body plans facilitated colonization of the vertical landscape, and enabled development of complex vegetative and reproductive plant morphologies. Despite its profound evolutionary significance, the molecular programs involved in this transition from filamentous to triplanar meristematic plant growth are poorly understood. In this study, we used single-cell type transcriptomics to identify more than 4000 differentially expressed genes that distinguish uniplanar protonematal tip cells from multiplanar gametophore bud cells in the moss Physcomitrella patens. While the transcriptomes of both tip and bud cells show molecular signatures of proliferative cells, the bud cell transcriptome exhibits a wider variety of genes with significantly increased transcript abundances. Our data suggest that combined expression of genes involved in shoot patterning and asymmetric cell division accompanies the transition from uniplanar to triplanar meristematic growth in moss.

  13. Development and application of three-dimensional skin equivalents for the investigation of percutaneous worm invasion.

    PubMed

    Jannasch, M; Groeber, F; Brattig, N W; Unger, C; Walles, H; Hansmann, J

    2015-03-01

    Investigation of percutaneous helminth infection is generally based on animal models or excised skin. As desirable replacement of animal experiments, tissue-engineered skin equivalents have recently been applied in microbial and viral in vitro infection models. In the present study, the applicability of tissue-engineered skin equivalents for the investigation of percutaneous helminth invasion was evaluated. Epidermal and a full-thickness skin equivalents that suit the requirements for helminth invasion studies were developed. Quantitative invasion assays were performed with the skin-invading larvae of the helminths Strongyloides ratti and Schistosoma mansoni. Both skin equivalents provided a physical barrier to larval invasion of the nematode S. ratti, while these larvae could invade and permeate a cell-free collagen scaffold and ex vivo epidermis. In contrast, the epidermal and full-thickness skin equivalents exhibited a human host-specific susceptibility to larvae of trematode S. mansoni, which could well penetrate. Invasion of S. mansoni in cell-free collagen scaffold was lowest for all experimental conditions. Thus, reconstructed epidermis and full-thickness skin equivalents confirmed a high degree of accordance to native tissue. Additionally, not only tailless schistosomula but also cercariae could permeate the skin equivalents, and thus, delayed tail loss hypothesis was supported. The present study indicates that the limitations in predictive infection test systems for human-pathogenic invading helminths can be overcome by tissue-engineered in vitro skin equivalents allowing a substitution of the human skin for analysis of the interaction between parasites and their hosts' tissues. This novel tissue-engineered technology accomplishes the endeavor to save animal lives. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Numerical Simulation of Three-Dimensional Dendritic Growth of Alloy: Part I—Model Development and Test

    NASA Astrophysics Data System (ADS)

    Wang, Weiling; Luo, Sen; Zhu, Miaoyong

    2016-03-01

    To improve the computational efficiency of the three-dimensional (3D) cellular-automaton-finite-volume-method (CA-FVM) model for describing the dendritic growth of alloy, the block-correction technique (BCT) and the parallel computation approach are introduced. Accordingly, a serial of investigations on the efficiency of the optimized codes in dealing with the designed cases for the melt flow and the heat transfer problems is carried out. Moreover, the accuracy of the present codes is evaluated by the comparisons between the solution to the melt flow and the heat transfer problems and the results from analytical equations and the commercial software. Additionally, the capability of the present CA model is evaluated by comparing the steady growth parameters of the equiaxed dendritic tip and the morphology and the secondary dendrite arm spacing (SDAS) of columnar dendrites with the LGK analytical model and the experimental results of the unidirectional solidification of high-carbon steels. The results show that with the introduction of the 3D BCT, the iteration process of the serial tri-diagonal matrix algorithm (TDMA) code changes from the fluctuation type to the smooth one, and thus, the computational cost is reduced significantly. Moreover, the parallel Jacobi code with one two-dimensional (2D) iteration in 3D BCT is proved to be the most efficient one among the codes compiled in the present work, and therefore, accordingly it is employed to simulate the 3D dendritic growth of alloys. The calculated velocity distribution and temperature variation agree well with the results from the analytical equations and the commercial software. The predicted steady tip velocities agree with the LGK analytical model as the undercooling is 6 K to 7 K. Moreover, the predicted columnar dendritic morphology and SDAS of high-carbon Fe-C alloys during the unidirectional solidification agree with the experimental results.

  15. Development of a three-dimensional high-order strand-grids approach

    NASA Astrophysics Data System (ADS)

    Tong, Oisin

    Development of a novel high-order flux correction method on strand grids is presented. The method uses a combination of flux correction in the unstructured plane and summation-by-parts operators in the strand direction to achieve high-fidelity solutions. Low-order truncation errors are cancelled with accurate flux and solution gradients in the flux correction method, thereby achieving a formal order of accuracy of 3, although higher orders are often obtained, especially for highly viscous flows. In this work, the scheme is extended to high-Reynolds number computations in both two and three dimensions. Turbulence closure is achieved with a robust version of the Spalart-Allmaras turbulence model that accommodates negative values of the turbulence working variable, and the Menter SST turbulence model, which blends the k-epsilon and k-o turbulence models for better accuracy. A major advantage of this high-order formulation is the ability to implement traditional finite volume-like limiters to cleanly capture shocked and discontinuous flows. In this work, this approach is explored via a symmetric limited positive (SLIP) limiter. Extensive verification and validation is conducted in two and three dimensions to determine the accuracy and fidelity of the scheme for a number of different cases. Verification studies show that the scheme achieves better than third order accuracy for low and high-Reynolds number flows. Cost studies show that in three-dimensions, the third-order flux correction scheme requires only 30% more walltime than a traditional second-order scheme on strand grids to achieve the same level of convergence. In order to overcome meshing issues at sharp corners and other small-scale features, a unique approach to traditional geometry, coined "asymptotic geometry," is explored. Asymptotic geometry is achieved by filtering out small-scale features in a level set domain through min/max flow. This approach is combined with a curvature based strand shortening

  16. Three-Dimensional Audio Client Library

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2005-01-01

    The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems.

  17. Preliminary development of the LBL/USGS three-dimensional site-scale model of Yucca Mountain, Nevada

    USGS Publications Warehouse

    1995-01-01

    A three-dimensional model of moisture flow within the unsaturated zone at Yucca Mountain is being developed at Lawrence Berkeley Laboratory (LBL) in cooperation with the U.S. Geological Survey (USGS). This site-scale model covers and area of about 34 km2 and is bounded by major faults to the north, east and west. The model geometry is defined (1) to represent the variations of hydrogeological units between the ground surface and the water table; (2) to be able to reproduce the effect of abrupt changes in hydrogeological parameters at the boundaries between hyrdogeological units; and (3) to include the influence of major faults. A detailed numerical grid has been developed based on the locations of boreholes, different infiltration zones, hydrogeological units and their outcrops, major faults, and water level data. Contour maps and isopatch maps are presented defining different types of infiltration zones, and the spatial distribution of Tiva Canyon, Paintbrush, and Topopah Spring hydrogeological units. The grid geometry consists of seventeen non-uniform layers which represent the lithological variations within the four main welded and non-welded hydrogeological units. Matrix flow is approximated using the van Genuchten model, and the equivalent continuum approximation is used to account for fracture flow in the welded units. The fault zones are explicitly modeled as porous medium using various assumptions regarding their permeabilities and characteristic curves. One-, two-, and three-dimensional simulations are conducted using the TOUGH2 computer program. Steady-state simulations are performed with various uniform and non-uniform infiltration rates. The results are interpreted in terms of the effect of fault characteristics on the moisture flow distribution, and on location and formation of preferential pathways.

  18. Three dimensional multiphoton imaging of fresh and whole mount developing mouse mammary glands

    PubMed Central

    2013-01-01

    using the META detector for spectral emission scanning. Backward scattered or reflected SHG (SHG-B) was detected using a conventional confocal detector with maximum aperture and forward scattered or transmitted SHG (SHG-F) detected using a non-descanned detector. Results We show here that the developing mammary gland is encased in a thin but dense layer of collagen fibers. Sparse collagen layers are also interspersed between stromal layers of fat cells surrounding TEBs. At the margins, TEBs approach the outer collagen layer but do not penetrate it. Abnormal mammary glands from an HAI-1 transgenic FVB mouse model were found to contain TEBs with abnormal pockets of cells forming extra lumens and zones of continuous lateral bud formation interspersed with sparse collagen fibers. Parameters influencing live imaging and imaging of fixed unstained and Carmine Alum stained whole mounts were evaluated. Artifacts induced by light scattering of GFP and Carmine Alum signals from epithelial cells were identified in live tissue as primarily due to fat cells and in whole mount tissue as due to dense Carmine Alum staining of epithelium. Carmine Alum autofluorescence was detected at excitation wavelengths from 750 to 950 nm with a peak of emission at 623 nm (~602-656 nm). Images of Carmine Alum fluorescence differed dramatically at emission wavelengths of 565–615 nm versus 650–710 nm. In the latter, a mostly epithelial (nuclear) visualization of Carmine Alum predominates. Autofluorescence with a peak emission of 495 nm was derived from the fixed and processed tissue itself as it was present in the unstained whole mount. Contribution of autofluorescence to the image decreases with increasing laser excitation wavelengths. SHG-B versus SHG-F signals revealed collagen fibers and could be found within single fibers, or in different fibers within the same layer. These differences presumably reflected different states of collagen fiber maturation. Loss of SHG signals from layer to

  19. Hyoid Bone Development: An Assessment Of Optimal CT Scanner Parameters and Three-Dimensional Volume Rendering Techniques.

    PubMed

    Cotter, Meghan M; Whyms, Brian J; Kelly, Michael P; Doherty, Benjamin M; Gentry, Lindell R; Bersu, Edward T; Vorperian, Houri K

    2015-08-01

    The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared with corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques.

  20. Development and initial porcine and cadaver experience with three-dimensional printing of endoscopic and laparoscopic equipment.

    PubMed

    del Junco, Michael; Okhunov, Zhamshid; Yoon, Renai; Khanipour, Ramtin; Juncal, Samuel; Abedi, Garen; Lusch, Achim; Landman, Jaime

    2015-01-01

    Recent advances in three-dimensional (3D) printing technology have made it possible to print surgical devices. We report our initial experience with the printing and deployment of endoscopic and laparoscopic equipment. We created computer-aided designs for ureteral stents and laparoscopic trocars using SolidWorks. We developed three generations of stents, which were printed with an Objet500 Connex printer, and a fourth generation was printed with an EOSINT P395 printer. The trocars were printed with an Objet30 Pro printer. We deployed the printed stents and trocars in a female cadaver and in vivo porcine model. We compared the printed trocars to two standard trocars for defect area and length using a digital caliper. Paired T-tests and ANOVA were used to test for statistical difference. The first two generations of stents (7F and 9F) were functional failures as their diminutive inner lumen failed to allow the passage of a 0.035 guidewire. The third generation 12F stent allowed passage of a 0.035 guidewire. The 12F diameter limited its deployment, but it was introduced in a cadaver through a ureteral access sheath. The fourth-generation 9F stents were printed and deployed in a porcine model using the standard Seldinger technique. The printed trocars were functional for the maintenance of the pneumoperitoneum and instrument passage. The printed trocars had larger superficial defect areas (p<0.001) and lengths (p=0.001) compared to Karl Storz and Ethicon trocars (29.41, 18.06, and 17.22 mm(2), respectively, and 14.29, 11.39, and 12.15 mm, respectively). In this pilot study, 3D printing of ureteral stents and trocars is feasible, and these devices can be deployed in the porcine and cadaver models. Three-dimensional printing is rapidly advancing and may be clinically viable in the future.

  1. On the development of a three-dimensional finite-element groundwater flow model of the saturated zone, Yucca Mountain, Nevada

    SciTech Connect

    Czarnecki, J.B.; Faunt, C.C.; Gable, C.W.; Zyvoloski, G.A.

    1996-12-31

    Development of a preliminary three-dimensional model of the saturated zone at Yucca Mountain, the potential location for a high-level nuclear waste repository, is presented. The development of the model advances the technology of interfacing: (1)complex three-dimensional hydrogeologic framework modeling; (2) fully three-dimensional, unstructured, finite-element mesh generation; and (3) groundwater flow, heat, and transport simulation. The three-dimensional hydrogeologic framework model is developed using maps, cross sections, and well data. The framework model data are used to feed an automated mesh generator, designed to discretize irregular three-dimensional solids,a nd to assign materials properties from the hydrogeologic framework model to the tetrahedral elements. The mesh generator facilitated the addition of nodes to the finite-element mesh which correspond to the exact three-dimensional position of the potentiometric surface based on water-levels from wells. A ground water flow and heat simulator is run with the resulting finite- element mesh, within a parameter-estimation program. The application of the parameter-estimation program is designed to provide optimal values of permeability and specified fluxes over the model domain to minimize the residual between observed and simulated water levels.

  2. In vitro three-dimensional development of mouse molar tooth germs in a rotary cell culture system.

    PubMed

    Sun, Liang; Yang, Chao; Ge, Yaneng; Yu, Mei; Chen, Guoqing; Guo, Weihua; Tian, Weidong

    2014-05-01

    In vitro tooth germ cultivation is an effective method to explore the mechanism of odontogenesis. The three-dimensional rotary cell culture system (RCCS) is typically used to culture simulated organs such as cartilage, skin, and bone. In this study, we established an in vitro tooth germ culture model using RCCS to investigate whether RCCS could provide an appropriate environment for tooth germ development in vitro. Mandibular first molar tooth germs from 1-day post-natal mice were cultured in RCCS for 3, 6, and 9 days. Tooth germ development was monitored via histology (hematoxylin & eosin staining), stereoscopic microscopy, and quantitative real-time PCR (RT-PCR). Tooth germs cultured in RCCS maintained their typical spatial shape. Blood vessels were maintained on the dental follicle surface surrounding the crown. After cultivation, thick layers of dentin and enamel were secreted. Compared with tooth germs grown in jaw, the tooth germs grown in RCCS exhibited no significant difference in DMP1 or FGF10 expression at all time points. Use of RCCS enhanced the development of tooth germs and allowed the tooth germs to maintain their spatial morphology. These results indicate that RCCS may be an effective culture system to investigate the mechanism of tooth development. © 2013 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Development of lumbosacral spina bifida: three-dimensional computer graphic study of human embryos at Carnegie stage twelve.

    PubMed

    Haque, M; Ohata, K; Takami, T; Soares, S B; Aree, S N; Hakuba, A; Hara, M

    2001-11-01

    There is still some controversy as to whether sacral spina bifida in humans is the result of a defect of the primary or secondary neural tube. As somites are related to the development of vertebrae and the primary neural tube is related to the development of the spinal cord in embryos, it is very important to determine the number of somites in normal human embryos at the time of closure of the primary neural tube to understand the contribution of primary neural tube defects to the development of spina bifida. However, in the literature, the number of somites in stage 12 human embryos is still controversial. The aim of this study is to find the number of somites in human embryos at Carnegie stage 12. Four human embryos at Carnegie stage 12 were selected from the laboratory of the Congenital Anomaly Research Center in Japan. The neural tube and somites were reconstructed from their slices by a three-dimensional computer graphic reconstruction technique. The reconstructed embryos were examined from multidirectional magnified images. Thirty-three pairs of somites were present in all these reconstructed embryos. As the 33rd pair of somites corresponds to the fifth sacral segment, the presence of 33 pairs of somites at Carnegie stage 12 suggests that spina bifida develops from defects of the primary neural tube. Copyright 2001 S. Karger AG, Basel

  4. Development of one, two and three-dimensional finite element groundwater models within a generalized object-oriented framework

    NASA Astrophysics Data System (ADS)

    Desitter, A.; Bates, P. D.; Anderson, M. G.; Hervouet, J.-M.

    2000-09-01

    The past 20 years have seen a proliferation of numerical models in response to a need from governments, industry and researchers for tools that can simulate or predict environmental processes. Although this has led to significant scientific advances, in constructing such models code developers duplicate many basic tasks and functions. Ultimately therefore, the spread of progress is artificially restricted and the central focus of scientific activity may be misplaced. In this paper we examine the potential use of object-oriented programming techniques to overcome this problem and facilitate easy code reuse and maintenance in the face of rapid advances in numerical analysis research. In particular, we discuss the extent to which object oriented programming styles have an affinity for numerical environmental problems that traditional procedural programming styles do not share. We illustrate this through the development of one, two and three-dimensional finite element models for unsaturated groundwater flow using an object oriented environment developed originally for the solution of the Shallow Water equations. The complexity and quality of the solution that could be developed in a relatively limited period is demonstrated through comparison to three analytical test cases described in the literature.

  5. Development of a three-dimensional correction method for optical distortion of flow field inside a liquid droplet.

    PubMed

    Gim, Yeonghyeon; Ko, Han Seo

    2016-04-15

    In this Letter, a three-dimensional (3D) optical correction method, which was verified by simulation, was developed to reconstruct droplet-based flow fields. In the simulation, a synthetic phantom was reconstructed using a simultaneous multiplicative algebraic reconstruction technique with three detectors positioned at the synthetic object (represented by the phantom), with offset angles of 30° relative to each other. Additionally, a projection matrix was developed using the ray tracing method. If the phantom is in liquid, the image of the phantom can be distorted since the light passes through a convex liquid-vapor interface. Because of the optical distortion effect, the projection matrix used to reconstruct a 3D field should be supplemented by the revision ray, instead of the original projection ray. The revision ray can be obtained from the refraction ray occurring on the surface of the liquid. As a result, the error on the reconstruction field of the phantom could be reduced using the developed optical correction method. In addition, the developed optical method was applied to a Taylor cone which was caused by the high voltage between the droplet and the substrate.

  6. Growth and development, and auxin polar transport of transgenic Arabidopsis under simulated microgravity conditions on a three-dimensional clinostat.

    PubMed

    Shimazu, Toru; Miyamoto, Kensuke; Ueda, Junichi

    2003-12-01

    Growth and development, and auxin polar transport in Arabidopsis thaliana transformed with iaaH gene were studied under simulated microgravity conditions on a three-dimensional (3-D) clinostat. Simulated microgravity conditions on a 3-D clinostat did not affect the number of rosette leaves but promoted the growth and development (fresh weight of plant and the elongation of flower stalk) of transformants. Final growth of transformants under simulated microgravity conditions on a 3-D clinostat was almost equivalent to that grown on 1 g conditions in the presence of 1 micromoles IAM (indole-3-acetamide). The activities of auxin polar transport in the segments of flower stalk (inflorescence axis) of transformants grown on 1 g conditions were significantly promoted by the addition of IAM. Interestingly, simulated microgravity conditions on a 3-D clinostat also promoted the activities of auxin polar transport of transformants grown on the medium with or without IAM. Based on the results in this study, transgenic plants may not have an efficient homeostatic mechanism for the control of growth and development, and auxin polar transport activity in microgravity conditions in space.

  7. Software system for three-dimensional visualization of micro-object surfaces for scanning probe microscopy using OpenGL graphics library

    NASA Astrophysics Data System (ADS)

    Vakuliuk, Nickolay V.

    2002-07-01

    The software system for 3D visualization of micro objects surfaces for scanning probe microscopy is developed. The system is used as a software part of software/hardware complex of scanning probe microscope (SPM) and its kinds. The system represent the results of microscope work in 3D- view. System has convenient GUI and high level of functionality in modes of visualization and in saving result images. Program allows to operate with image of surface in real time by performing scaling, rotation, moving, setting of lighting and color values, setting level of detail for surface in real time by performing scaling, rotation, moving, setting of lighting and color values, setting level of detail for surface rendering. This viewer works together with another part of software system that is responsible for controlling the SPM. The program also can be used as an independent view of scanning probe microscope files.

  8. Gammasphere software development

    SciTech Connect

    Piercey, R.B.

    1993-01-01

    Activities of the nuclear physics group are described. Progress was made in organizing the Gammasphere Software Working Group, establishing a nuclear computing facility, participating in software development at Lawrence Berkeley, developing a common data file format, and adapting the ORNL UPAK software to run at Gammasphere. A universal histogram object was developed that defines a file format and provides for an objective-oriented programming model. An automated liquid nitrogen fill system was developed for Gammasphere (110 Ge detectors comprise the sphere).

  9. Wnt signaling is required for organization of the lens fiber cell cytoskeleton and development of lens three-dimensional architecture.

    PubMed

    Chen, Yongjuan; Stump, Richard J W; Lovicu, Frank J; Shimono, Akihiko; McAvoy, John W

    2008-12-01

    How an organ develops its characteristic shape is a major issue. This is particularly critical for the eye lens as its function depends on having appropriately ordered three-dimensional cellular architecture. Recent in vitro studies indicate that Wnt signaling plays key roles in regulating morphological events in FGF-induced fiber cell differentiation in the mammalian lens. To further investigate this the Wnt signaling antagonist, secreted frizzled-related protein 2 (Sfrp2), was overexpressed in lens fiber cells of transgenic mice. In these mice fiber cell elongation was attenuated and individual fibers exhibited irregular shapes and consequently did not align or pack regularly; microtubules, microfilaments and intermediate filaments were clearly disordered in these fibers. Furthermore, a striking feature of transgenic lenses was that fibers did not develop the convex curvature typically seen in normal lenses. This appears to be related to a lack of protrusive processes that are required for directed migratory activity at their apical and basal tips as well as for the formation of interlocking processes along their lateral margins. Components of the Wnt/Planar Cell Polarity (PCP) pathway were downregulated or inhibited. Taken together this supports a role for Wnt/PCP signaling in orchestrating the complex organization and dynamics of the fiber cell cytoskeleton.

  10. REVIEW ARTICLE: Some recent developments in two-and three-dimensional laser forming for 'macro' and 'micro' applications

    NASA Astrophysics Data System (ADS)

    Dearden, G.; Edwardson, S. P.

    2003-07-01

    Laser forming (LF) is an emerging laser process with potential for use in line bending or spatial forming of metal components and in the precise adjustment of novel miniature on-board actuators. The process is achieved by introducing thermal stresses into a work-piece by controlled irradiation with a focused laser beam. Unlike mechanical forming, there is no spring-back effect. A number of mechanisms have been identified to explain the thermo-mechanical behaviour in LF, accounting for various part geometries, laser process conditions and the complex interaction of many thermal and mechanical factors. Although these interactions are not yet fully understood, with increased knowledge of the process (in terms of theoretical models and control strategies) and the continued development of adaptive and/or predictive LF systems, the process offers significant potential value to industry. This review describes a number of recent developments and new techniques in two-and three-dimensional LF, for both macro-and micro-scale applications, and gives suggestions on the current industrial promise of the process. Macro-scale applications include rapid prototyping in industries that have relied on using expensive stamping dies and presses for design evaluations, while micro-scale applications already include the precision alignment of components during product assembly.

  11. A new three-dimensional educational model kit for building DNA and RNA molecules: Development and evaluation*.

    PubMed

    Beltramini, Leila Maria; Araújo, Ana Paula Ulian; de Oliveira, Tales Henrique Gonçalves; Dos Santos Abel, Luciano Douglas; da Silva, Aparecido Rodrigues; Dos Santos, Neusa Fernandes

    2006-05-01

    International specialized literature focused on research in biology education is sadly scarce, especially regarding biochemical and molecular aspects. In this light, researchers from this Centre for Structural Molecular Biotechnology developed and evaluated a three-dimensional educational model named "Building Life Molecules DNA and RNA." The development of the model and its evaluation as a potential tool in the teaching-learning process were based on a pilot study involving 226 learners and teachers. Questionnaires were elaborated, containing simple and objective questions, similar to those used in research on science teaching, to orient the evaluation process. Our results show that the model has high educational potential, aiding participants in their conceptual understanding of these molecular structures and their functions, DNA semiconservative replication, and RNA transcription. In addition, it was observed that this model leads students to critical associations of these concepts with actual scientific themes of molecular biology and biotechnology, such as cloning, transgenic organisms, and the genome. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.

  12. Development and Initial Porcine and Cadaver Experience with Three-Dimensional Printing of Endoscopic and Laparoscopic Equipment

    PubMed Central

    del Junco, Michael; Okhunov, Zhamshid; Yoon, Renai; Khanipour, Ramtin; Juncal, Samuel; Abedi, Garen; Lusch, Achim

    2015-01-01

    Abstract Introduction: Recent advances in three-dimensional (3D) printing technology have made it possible to print surgical devices. We report our initial experience with the printing and deployment of endoscopic and laparoscopic equipment. Materials and Methods: We created computer-aided designs for ureteral stents and laparoscopic trocars using SolidWorks. We developed three generations of stents, which were printed with an Objet500 Connex printer, and a fourth generation was printed with an EOSINT P395 printer. The trocars were printed with an Objet30 Pro printer. We deployed the printed stents and trocars in a female cadaver and in vivo porcine model. We compared the printed trocars to two standard trocars for defect area and length using a digital caliper. Paired T-tests and ANOVA were used to test for statistical difference. Results: The first two generations of stents (7F and 9F) were functional failures as their diminutive inner lumen failed to allow the passage of a 0.035 guidewire. The third generation 12F stent allowed passage of a 0.035 guidewire. The 12F diameter limited its deployment, but it was introduced in a cadaver through a ureteral access sheath. The fourth-generation 9F stents were printed and deployed in a porcine model using the standard Seldinger technique. The printed trocars were functional for the maintenance of the pneumoperitoneum and instrument passage. The printed trocars had larger superficial defect areas (p<0.001) and lengths (p=0.001) compared to Karl Storz and Ethicon trocars (29.41, 18.06, and 17.22 mm2, respectively, and 14.29, 11.39, and 12.15 mm, respectively). Conclusions: In this pilot study, 3D printing of ureteral stents and trocars is feasible, and these devices can be deployed in the porcine and cadaver models. Three-dimensional printing is rapidly advancing and may be clinically viable in the future. PMID:24983138

  13. Software Model Of Software-Development Process

    NASA Technical Reports Server (NTRS)

    Lin, Chi Y.; Synott, Debra J.; Levary, Reuven R.

    1990-01-01

    Collection of computer programs constitutes software tool for simulation of medium- to large-scale software-development projects. Necessary to include easily identifiable and more-readily quantifiable characteristics like costs, times, and numbers of errors. Mathematical model incorporating these and other factors of dynamics of software-development process implemented in the Software Life Cycle Simulator (SLICS) computer program. Simulates dynamics of software-development process. In combination with input and output expert software systems and knowledge-based management software system, develops information for use in managing large software-development project. Intended to aid managers in planning, managing, and controlling software-development processes by reducing uncertainties in budgets, required personnel, and schedules.

  14. The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia.

    PubMed

    Blanco, Teresa Mortera; Mantalaris, Athanasios; Bismarck, Alexander; Panoskaltsis, Nicki

    2010-03-01

    Acute myeloid leukaemia (AML) is a cancer of haematopoietic cells that develops in three-dimensional (3-D) bone marrow niches in vivo. The study of AML has been hampered by lack of appropriate ex vivo models that mimic this microenvironment. We hypothesised that fabrication and optimisation of suitable biomimetic scaffolds for culturing leukaemic cells ex vivo might facilitate the study of AML in its native 3-D niche. We evaluated the growth of three leukaemia subtype-specific cell lines, K-562, HL60 and Kasumi-6, on highly porous scaffolds fabricated from biodegradable and non-biodegradable polymeric materials, such as poly (L-lactic-co-glycolic acid) (PLGA), polyurethane (PU), poly (methyl-methacrylate), poly (D, L-lactade), poly (caprolactone), and polystyrene. Our results show that PLGA and PU supported the best seeding efficiency and leukaemic growth. Furthermore, the PLGA and PU scaffolds were coated with extracellular matrix (ECM) proteins, collagen type I (62.5 or 125 microg/ml) and fibronectin (25 or 50 microg/ml) to provide biorecognition signals. The 3 leukaemia subtype-specific lines grew best on PU scaffolds coated with 62.5 microg/ml collagen type I over 6 weeks in the absence of exogenous growth factors. In conclusion, PU-collagen scaffolds may provide a practical model to study the biology and treatment of primary AML in an ex vivo mimicry.

  15. Development of a three-dimensional guidance system for long-range maneuvering of a miniature autonomous underwater vehicle

    NASA Astrophysics Data System (ADS)

    Ataei, Mansour; Yousefi-Koma, Aghil

    2014-12-01

    The present paper introduces a three-dimensional guidance system developed for a miniature Autonomous Underwater Vehicle (AUV). The guidance system determines the best trajectory for the vehicle based on target behavior and vehicle capabilities. The dynamic model of this novel AUV is derived based on its special characteristics such as the horizontal posture and the independent diving mechanism. To design the guidance strategy, the main idea is to select the desired depth, presumed proportional to the horizontal distance of the AUV and the target. By connecting the two with a straight line, this strategy helps the AUV move in a trajectory sufficiently close to this line. The adjacency of the trajectory to the line leads to reasonably short travelling distances and avoids unsafe areas. Autopilots are designed using sliding mode controller. Two different engagement geometries are considered to evaluate the strategy's performance: stationary target and moving target. The simulation results show that the strategy can provide sufficiently fast and smooth trajectories in both target situations.

  16. Development of a three-dimensional angle errors detection and compensation system for two-dimensional stage

    NASA Astrophysics Data System (ADS)

    Huang, Qiang-Xian; Bian, Ya-Kui; Chen, Chen; Li, Rui-Jun

    2016-01-01

    In order to compensate three-dimensional (3D) angle errors of two-dimensional (2D) stage in motion, a 3D angle errors detection and compensation system using a modified DVD pick-up head has been developed in this paper. The modified DVD pick-up head, which consists of a commercial DVD pick-up head without objective lens and voice coil motor, is used as an angle sensor. The mechanism of the angle sensor is based on optical auto-collimation, and each sensor can detect two deflection angles of the stage simultaneously. Utilizing the angle error information obtained by two angle sensors which are set along X and Y moving direction respectively, the controlling system adjusts the nano-positioning stage by controlling the piezoelectric ceramic actuators' movement to compensate the angle errors of the stage. This system can achieve the measurement and compensation of yaw angle error, pitch angle error and roll angle error of the stage. Experimental results show that the angle detection range of this system is +/-110", the resolution is about 0.2", and the repeatability error is about 2″. After compensating, the 3D angle errors of 2D stage can be controlled within 3″. This system has the advantages of compact structure, low cost, etc.

  17. Two-dimensional and three-dimensional ultrasonography for pregnancy diagnosis and antenatal fetal development in Beetal goats

    PubMed Central

    Kumar, Kailash; Chandolia, Ramesh Kumar; Kumar, Sarvan; Pal, Madan; Sandeep, Kumar

    2015-01-01

    Aim: The objective of this study was to compare two-dimensional (2D) and three-dimensional (3D) study of the pregnant uterus and antenatal development of the fetus. Materials and Methods: 2D and 3D ultrasound were performed from day 20 to 120 of gestation, twice in week from day 20 to 60 and once in week from day 60 to 120 of gestation on six goats. The ultrasonographic images were obtained using Toshiba, Nemio-XG (Japan) 3D ultrasound machine. Results: On the 20th day of gestation, earliest diagnosis of pregnancy was done. First 3D ultrasonographic image of the conceptus, through transabdominal approach, was obtained on day 24. On 39th day, clear pictures of conceptus, amniotic membrane, and umbilicus were seen. On 76th day of gestation, internal organs of fetus viz heart, kidney, liver, urinary bladder, and stomach were seen both in 2D and 3D images. 3D imaging showed better details of uterine structures and internal organs of the fetus. Conclusions: Comparing 3D images with 2D images, it is concluded that 2D was better in visualizing fluid while 3D images were better to view details of attachment of fetus with endometrium. PMID:27047162

  18. Preliminary development of the LBL/USGS three-dimensional site-scale model of Yucca Mountain, Nevada

    SciTech Connect

    Wittwer, C.; Chen, G.; Bodvarsson, G.S.; Chornack, M.; Flint, A.; Flint, L.; Kwicklis, E.; Spengler, R.

    1995-06-01

    A 3-D model of moisture flow within the unsaturated zone at Yucca Mountain is being developed at LBL in cooperation with USGS. This site-scale model covers an area of about 34 km{sup 2} and is bounded by major faults to the north, east, and west. The relatively coarse-grid model includes about 300 horizontal grid-blocks and 17 layers. Contour maps and isopach maps are presented defining different types of infiltration zones, and the spatial distribution of Tiva Canyon, Paintbrush, and Topopah Spring hydrogeological units. Matrix flow is approximated using the van Genuchten model, and the equivalent continuum approximation is used to account for fracture flow in the welded units. One-, two-, and three-dimensional simulations are conducted using the TOUGH2 computer program. Steady-state simulations are performed with various uniform and nonuniform infiltration rates; results are interpreted in terms of effect of fault characteristics on moisture flow distribution, and on the location and formation of preferential pathways.

  19. Development of a density functional theory in three-dimensional nanoconfined space: H2 storage in metal-organic frameworks.

    PubMed

    Liu, Yu; Liu, Honglai; Hu, Ying; Jiang, Jianwen

    2009-09-10

    A density functional theory (DFT) is developed in three-dimensional nanoconfined space and applied for H(2) storage in metal-organic frameworks. Two different weighting functions based on the weighted density approximation (WDA) are adopted, respectively, for the repulsive and attractive contributions to the excess free energy. The Carnahan-Starling equation and a modified Benedicit-Webb-Rubin equation are used to calculate the excess free energy of uniform fluid. To compare with DFT predictions, grand canonical Monte Carlo simulations are carried out separately. For H(2) adsorption in MOF-5 and ZIF-8, the isotherms predicted from the DFT agree well with simulation and experiment results, and the DFT is found to be superior to the mean-field-approximation (MFA)-based theory. The adsorption energies and isosteric heats predicted are also in accord with simulation results. From the predicted density contours, the DFT shows that the preferential adsorption sites are the corners of metal clusters in MOF-5 and the top of organic linkers in ZIF-8, consistent with simulation and experimental observations.

  20. Development of a three-dimensional bone-like construct in a soft self-assembling peptide matrix.

    PubMed

    Marí-Buyé, Núria; Luque, Tomás; Navajas, Daniel; Semino, Carlos E

    2013-04-01

    This work describes the development of a three-dimensional (3D) model of osteogenesis using mouse preosteoblastic MC3T3-E1 cells and a soft synthetic matrix made out of self-assembling peptide nanofibers. By adjusting the matrix stiffness to very low values (around 120 Pa), cells were found to migrate within the matrix, interact forming a cell-cell network, and create a contracted and stiffer structure. Interestingly, during this process, cells spontaneously upregulate the expression of bone-related proteins such as collagen type I, bone sialoprotein, and osteocalcin, indicating that the 3D environment enhances their osteogenic potential. However, unlike MC3T3-E1 cultures in 2D, the addition of dexamethasone is required to acquire a final mature phenotype characterized by features such as matrix mineralization. Moreover, a slight increase in the hydrogel stiffness (threefold) or the addition of a cell contractility inhibitor (Rho kinase inhibitor) abrogates cell elongation, migration, and 3D culture contraction. However, this mechanical inhibition does not seem to noticeably affect the osteogenic process, at least at early culture times. This 3D bone model intends to emphasize cell-cell interactions, which have a critical role during tissue formation, by using a compliant unrestricted synthetic matrix.

  1. Development of a Three-Dimensional Bone-Like Construct in a Soft Self-Assembling Peptide Matrix

    PubMed Central

    Marí-Buyé, Núria; Luque, Tomás; Navajas, Daniel

    2013-01-01

    This work describes the development of a three-dimensional (3D) model of osteogenesis using mouse preosteoblastic MC3T3-E1 cells and a soft synthetic matrix made out of self-assembling peptide nanofibers. By adjusting the matrix stiffness to very low values (around 120 Pa), cells were found to migrate within the matrix, interact forming a cell–cell network, and create a contracted and stiffer structure. Interestingly, during this process, cells spontaneously upregulate the expression of bone-related proteins such as collagen type I, bone sialoprotein, and osteocalcin, indicating that the 3D environment enhances their osteogenic potential. However, unlike MC3T3-E1 cultures in 2D, the addition of dexamethasone is required to acquire a final mature phenotype characterized by features such as matrix mineralization. Moreover, a slight increase in the hydrogel stiffness (threefold) or the addition of a cell contractility inhibitor (Rho kinase inhibitor) abrogates cell elongation, migration, and 3D culture contraction. However, this mechanical inhibition does not seem to noticeably affect the osteogenic process, at least at early culture times. This 3D bone model intends to emphasize cell–cell interactions, which have a critical role during tissue formation, by using a compliant unrestricted synthetic matrix. PMID:23157379

  2. Three-dimensional development of tensile pre-strained annulus fibrosus cells for tissue regeneration: An in-vitro study

    SciTech Connect

    Chuah, Yon Jin; Lee, Wu Chean; Wong, Hee Kit; Kang, Yuejun; Hee, Hwan Tak

    2015-02-01

    Prior research has investigated the immediate response after application of tensile strain on annulus fibrosus (AF) cells for the past decade. Although mechanical strain can produce either catabolic or anabolic consequences to the cell monolayer, little is known on how to translate these findings into further tissue engineering applications. Till to date, the application and effect of tensile pre-strained cells to construct a three-dimensional (3D) AF tissue remains unknown. This study aims to investigate the effect of tensile pre-strained exposure of 1 to 24 h on the development of AF pellet culture for 3 weeks. Equibiaxial cyclic tensile strain was applied on AF monolayer cells over a period of 24 h, which was subsequently developed into a cell pellet. Investigation on cellular proliferation, phenotypic gene expression, and histological changes revealed that tensile pre-strain for 24 h had significant and lasting effect on the AF tissue development, with enhanced cell proliferation, and up-regulation of collagen type I, II, and aggrecan expression. Our results demonstrated the regenerative ability of AF cell pellets subjected to 24 h tensile pre-straining. Knowledge on the effects of tensile pre-strain exposure is necessary to optimize AF development for tissue reconstruction. Moreover, the tensile pre-strained cells may further be utilized in either cell therapy to treat mild disc degeneration disease, or the development of a disc construct for total disc replacement. - Highlights: • Establishment of tensile pre-strained cell line population for annulus development. • Tensile strain limits collagen gene expression declination in monolayer culture. • Tensile pre-strained cells up-regulate their matrix protein in 3D pellet culture.

  3. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    SciTech Connect

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model.

  4. Funding Research Software Development

    NASA Astrophysics Data System (ADS)

    Momcheva, Ivelina G.

    2017-01-01

    Astronomical software is used by each and every member of our scientific community. Purpose-build software is becoming ever more critical as we enter the regime of large datasets and simulations of increasing complexity. However, financial investments in building, maintaining and renovating the software infrastructure have been uneven. In this talk I will summarize past and current funding sources for astronomical software development, discuss other models of funding and introduce a new initiative for supporting community software at STScI. The purpose of this talk is to prompt discussion about how we allocate resources to this vital infrastructure.

  5. Three-dimensional stellarator codes

    PubMed Central

    Garabedian, P. R.

    2002-01-01

    Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367

  6. Development of a Multicellular Three-dimensional Organotypic Model of the Human Intestinal Mucosa Grown Under Microgravity.

    PubMed

    Salerno-Goncalves, Rosangela; Fasano, Alessio; Sztein, Marcelo B

    2016-07-25

    Because cells growing in a three-dimensional (3-D) environment have the potential to bridge many gaps of cell cultivation in 2-D environments (e.g., flasks or dishes). In fact, it is widely recognized that cells grown in flasks or dishes tend to de-differentiate and lose specialized features of the tissues from which they were derived. Currently, there are mainly two types of 3-D culture systems where the cells are seeded into scaffolds mimicking the native extracellular matrix (ECM): (a) static models and (b) models using bioreactors. The first breakthrough was the static 3-D models. 3-D models using bioreactors such as the rotating-wall-vessel (RWV) bioreactors are a more recent development. The original concept of the RWV bioreactors was developed at NASA's Johnson Space Center in the early 1990s and is believed to overcome the limitations of static models such as the development of hypoxic, necrotic cores. The RWV bioreactors might circumvent this problem by providing fluid dynamics that allow the efficient diffusion of nutrients and oxygen. These bioreactors consist of a rotator base that serves to support and rotate two different formats of culture vessels that differ by their aeration source type: (1) Slow Turning Lateral Vessels (STLVs) with a co-axial oxygenator in the center, or (2) High Aspect Ratio Vessels (HARVs) with oxygenation via a flat, silicone rubber gas transfer membrane. These vessels allow efficient gas transfer while avoiding bubble formation and consequent turbulence. These conditions result in laminar flow and minimal shear force that models reduced gravity (microgravity) inside the culture vessel. Here we describe the development of a multicellular 3-D organotypic model of the human intestinal mucosa composed of an intestinal epithelial cell line and primary human lymphocytes, endothelial cells and fibroblasts cultured under microgravity provided by the RWV bioreactor.

  7. Three-dimensional evidence network plot system: covariate imbalances and effects in network meta-analysis explored using a new software tool.

    PubMed

    Batson, Sarah; Score, Robert; Sutton, Alex J

    2017-06-01

    The aim of the study was to develop the three-dimensional (3D) evidence network plot system-a novel web-based interactive 3D tool to facilitate the visualization and exploration of covariate distributions and imbalances across evidence networks for network meta-analysis (NMA). We developed the 3D evidence network plot system within an AngularJS environment using a third party JavaScript library (Three.js) to create the 3D element of the application. Data used to enable the creation of the 3D element for a particular topic are inputted via a Microsoft Excel template spreadsheet that has been specifically formatted to hold these data. We display and discuss the findings of applying the tool to two NMA examples considering multiple covariates. These two examples have been previously identified as having potentially important covariate effects and allow us to document the various features of the tool while illustrating how it can be used. The 3D evidence network plot system provides an immediate, intuitive, and accessible way to assess the similarity and differences between the values of covariates for individual studies within and between each treatment contrast in an evidence network. In this way, differences between the studies, which may invalidate the usual assumptions of an NMA, can be identified for further scrutiny. Hence, the tool facilitates NMA feasibility/validity assessments and aids in the interpretation of NMA results. The 3D evidence network plot system is the first tool designed specifically to visualize covariate distributions and imbalances across evidence networks in 3D. This will be of primary interest to systematic review and meta-analysis researchers and, more generally, those assessing the validity and robustness of an NMA to inform reimbursement decisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering.

    PubMed

    Lee, Hyungseok; Han, Wonil; Kim, Hyeonji; Ha, Dong-Heon; Jang, Jinah; Kim, Byoung Soo; Cho, Dong-Woo

    2017-04-10

    The liver is an important organ and plays major roles in the human body. Because of the lack of liver donors after liver failure and drug-induced liver injury, much research has focused on developing liver alternatives and liver in vitro models for transplantation and drug screening. Although numerous studies have been conducted, these systems cannot faithfully mimic the complexity of the liver. Recently, three-dimensional (3D) cell printing technology has emerged as one of a number of innovative technologies that may help to overcome this limitation. However, a great deal of work in developing biomaterials optimized for 3D cell printing-based liver tissue engineering remains. Therefore, in this work, we developed a liver decellularized extracellular matrix (dECM) bioink for 3D cell printing applications and evaluated its characteristics. The liver dECM bioink retained the major ECM components of the liver while cellular components were effectively removed and further exhibited suitable and adjustable properties for 3D cell printing. We further studied printing parameters with the liver dECM bioink to verify the versatility and fidelity of the printing process. Stem cell differentiation and HepG2 cell functions in the liver dECM bioink in comparison to those of commercial collagen bioink were also evaluated, and the liver dECM bioink was found to induce stem cell differentiation and enhance HepG2 cell function. Consequently, the results demonstrate that the proposed liver dECM bioink is a promising bioink candidate for 3D cell printing-based liver tissue engineering.

  9. Rapid Three-Dimensional Phenotyping of Cardiovascular Development in Mouse Embryos by Micro-CT with Iodine Staining

    PubMed Central

    Degenhardt, Karl; Wright, Alexander C.; Horng, Debra; Padmanabhan, Arun; Epstein, Jonathan A.

    2011-01-01

    Background Micro-computed tomography (micro-CT) has been used extensively in research to generate high-resolution three-dimensional images of calcified tissues in small animals nondestructively. It has been especially useful for the characterization of skeletal mutations, but limited in its utility for the analysis of soft tissue such as the cardiovascular system. Visualization of the cardiovascular system has been largely restricted to structures that can be filled with radiopaque intravascular contrast agents in adult animals. Recent ex vivo studies using osmium tetroxide, iodinated contrast agents, inorganic iodine and phosphotungstic acid have demonstrated the ability to stain soft tissues differentially, allowing for high inter-tissue contrast in micro-CT images. Here, we demonstrate the application of this technology for visualization of cardiovascular structures in developing mouse embryos using Lugol’s solution (aqueous potassium iodide plus iodine). Methods and Results We show the optimization of this method to obtain ex vivo micro-CT images of embryonic and neonatal mice with excellent soft-tissue contrast. We demonstrate the utility of this method to visualize key structures during cardiovascular development at various stages of embryogenesis. Our method benefits from the ease of sample preparation, low toxicity, and low cost. Furthermore, we show how multiple cardiac defects can be demonstrated by micro-CT in a single specimen with a known genetic lesion. Indeed, a previously undescribed cardiac venous abnormality is revealed in a PlexinD1 mutant mouse. Conclusions Micro-CT of iodine stained tissue is a valuable technique for the characterization of cardiovascular development and defects in mouse models of congenital heart disease. PMID:20190279

  10. Teaching Three-Dimensional Structural Chemistry Using Crystal Structure Databases. 3. The Cambridge Structural Database System: Information Content and Access Software in Educational Applications

    ERIC Educational Resources Information Center

    Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.

    2011-01-01

    Parts 1 and 2 of this series described the educational value of experimental three-dimensional (3D) chemical structures determined by X-ray crystallography and retrieved from the crystallographic databases. In part 1, we described the information content of the Cambridge Structural Database (CSD) and discussed a representative teaching subset of…

  11. Software applications to three-dimensional visualization of forest landscapes -- A case study demontrating the use of visual nature studio (VNS) in visualizing fire spread in forest landscapes

    Treesearch

    Brian J. Williams; Bo Song; Chou Chiao-Ying; Thomas M. Williams; John. Hom

    2010-01-01

    Three-dimensional (3D) visualization is a useful tool that depicts virtual forest landscapes on computer. Previous studies in visualization have required high end computer hardware and specialized technical skills. A virtual forest landscape can be used to show different effects of disturbances and management scenarios on a computer, which allows observation of forest...

  12. The Virtual Solar System Project: Developing Conceptual Understanding of Astronomical Concepts through Building Three-Dimensional Computational Models.

    ERIC Educational Resources Information Center

    Keating, Thomas; Barnett, Michael; Barab, Sasha A.; Hay, Kenneth E.

    2002-01-01

    Describes the Virtual Solar System (VSS) course which is one of the first attempts to integrate three-dimensional (3-D) computer modeling as a central component of introductory undergraduate education. Assesses changes in student understanding of astronomy concepts as a result of participating in an experimental introductory astronomy course in…

  13. The Virtual Solar System Project: Developing Conceptual Understanding of Astronomical Concepts through Building Three-Dimensional Computational Models.

    ERIC Educational Resources Information Center

    Keating, Thomas; Barnett, Michael; Barab, Sasha A.; Hay, Kenneth E.

    2002-01-01

    Describes the Virtual Solar System (VSS) course which is one of the first attempts to integrate three-dimensional (3-D) computer modeling as a central component of introductory undergraduate education. Assesses changes in student understanding of astronomy concepts as a result of participating in an experimental introductory astronomy course in…

  14. Facial three-dimensional morphometry.

    PubMed

    Ferrario, V F; Sforza, C; Poggio, C E; Serrao, G

    1996-01-01

    Three-dimensional facial morphometry was investigated in a sample of 40 men and 40 women, with a new noninvasive computerized method. Subjects ranged in age between 19 and 32 years, had sound dentitions, and no craniocervical disorders. For each subject, 16 cutaneous facial landmarks were automatically collected by a system consisting of two infrared camera coupled device (CCD) cameras, real time hardware for the recognition of markers, and software for the three-dimensional reconstruction of landmarks' x, y, z coordinates. From these landmarks, 15 linear and 10 angular measurements, and four linear distance ratios were computed and averaged for sex. For all angular values, both samples showed a narrow variability and no significant gender differences were demonstrated. Conversely, all the linear measurements were significantly higher in men than in women. The highest intersample variability was observed for the measurements of facial height (prevalent vertical dimension), and the lowest for the measurements of facial depth (prevalent horizontal dimension). The proportions of upper and lower face height relative to the anterior face height showed a significant sex difference. Mean values were in good agreement with literature data collected with traditional methods. The described method allowed the direct and noninvasive calculation of three-dimensional linear and angular measurements that would be usefully applied in clinics as a supplement to the classic x-ray cephalometric analyses.

  15. Cleanroom software development

    NASA Technical Reports Server (NTRS)

    Dyer, M.; Mills, H. D.

    1981-01-01

    The 'cleanroom' software development process is a technical and organizational approach to developing software with certifiable reliability. Key ideas behind the process are well structured software specifications, randomized testing methods and the introduction of statistical controls; but the main point is to deny entry for defects during the development of software. This latter point suggests the use of the term 'cleanroom' in analogy to the defect prevention controls used in the manufacturing of high technology hardware. In the 'cleanroom', the entire software development process is embedded within a formal statistical design, in contrast to executing selected tests and appealing to the randomness of operational settings for drawing statistical inferences. Instead, random testing is introduced as a part of the statistical design itself so that when development and testing are completed, statistical inferences are made about the operation of the system.

  16. Development of a High-Throughput Three-Dimensional Invasion Assay for Anti-Cancer Drug Discovery

    PubMed Central

    Evensen, Nikki A.; Li, Jian; Yang, Jie; Yu, Xiaojun; Sampson, Nicole S.; Zucker, Stanley; Cao, Jian

    2013-01-01

    The lack of three-dimensional (3-D) high-throughput (HT) screening assays designed to identify anti-cancer invasion drugs is a major hurdle in reducing cancer-related mortality, with the key challenge being assay standardization. Presented is the development of a novel 3-D invasion assay with HT potential that involves surrounding cell-collagen spheres within collagen to create a 3-D environment through which cells can invade. Standardization was achieved by designing a tooled 96-well plate to create a precisely designated location for the cell-collagen spheres and by using dialdehyde dextran to inhibit collagen contraction, maintaining uniform size and shape. This permits automated readout for determination of the effect of inhibitory compounds on cancer cell invasion. Sensitivity was demonstrated by the ability to distinguish varying levels of invasiveness of cancer cell lines, and robustness was determined by calculating the Z-factor. A Z-factor of 0.65 was obtained by comparing the effects of DMSO and anti-β1-integrin antibody, an inhibitory reagent, on the invasion of Du145 cancer cells, suggesting this novel assay is suitable for large scale drug discovery. As proof of principle, the NCI Diversity Compound Library was screened against human invasive cancer cells. Nine compounds exhibiting high potency and low toxicity were identified, including DX-52-1, a compound previously reported to inhibit cell migration, a critical determinant of cancer invasion. The results indicate that this innovative HT platform is a simple, precise, and easy to replicate 3-D invasion assay for anti-cancer drug discovery. PMID:24349367

  17. Geometric properties of the fractured tibia stabilized by unreamed interlocking nail: development of a three-dimensional finite element model.

    PubMed

    Raunest, J; Kynast, W; Lesch, V; Kukulies, U; Hackländer, T; Schwarting, K H; Arnold, G

    1996-08-01

    Based upon magnetic resonance scans of five human tibiae a three-dimensional finite element model using eight nodal isoparametric elements was developed to analyze the biomechanical properties of fracture fixation by an unreamed interlocking nail. Tension phenomena and bone implant translations occurring in the borderlines of the fracture zone, bone-implant interface, and the fixation site of the interlocking screws were analyzed with the help of link elements. The proximal fracture segment was fixed with a link element so as to produce exclusively translatory shifts corresponding to the vector of the load applied. Under condition of static load F = 500 N or axial torsion MT = 15 Nm the biomechanical properties of a nailed horizontal fracture (42-A3), a three fragment lesion (42-B2), and a comminuted midshaft fracture (42-C3) were evaluated. On condition of axial load maximum dislocations of 0.1549 mm are induced in the direction of the x-axis due to the asymmetric geometry of the human tibia which promotes medially directed translations. Independent from the fracture type present a homogenous tension profile was calculated for the whole tibia diaphysis with a sigmaEQV ranging from 24.18 to 121.14 MPa due to the relative low elastic modulus of the cortical bone compared to material characteristics of the implant. However, application of a torsional moment MT = 15 Nm induces significantly increased tension maxima in the nail-interlocking screw interface with a sigmaEQV = 7, 626 MPa. Maximum translatory movements ux = 12.59 mm and uy = 23.53 mm in the x and y plane indicate that these load conditions bear a high risk of an implant failure.

  18. Development of a high-throughput three-dimensional invasion assay for anti-cancer drug discovery.

    PubMed

    Evensen, Nikki A; Li, Jian; Yang, Jie; Yu, Xiaojun; Sampson, Nicole S; Zucker, Stanley; Cao, Jian

    2013-01-01

    The lack of three-dimensional (3-D) high-throughput (HT) screening assays designed to identify anti-cancer invasion drugs is a major hurdle in reducing cancer-related mortality, with the key challenge being assay standardization. Presented is the development of a novel 3-D invasion assay with HT potential that involves surrounding cell-collagen spheres within collagen to create a 3-D environment through which cells can invade. Standardization was achieved by designing a tooled 96-well plate to create a precisely designated location for the cell-collagen spheres and by using dialdehyde dextran to inhibit collagen contraction, maintaining uniform size and shape. This permits automated readout for determination of the effect of inhibitory compounds on cancer cell invasion. Sensitivity was demonstrated by the ability to distinguish varying levels of invasiveness of cancer cell lines, and robustness was determined by calculating the Z-factor. A Z-factor of 0.65 was obtained by comparing the effects of DMSO and anti-β1-integrin antibody, an inhibitory reagent, on the invasion of Du145 cancer cells, suggesting this novel assay is suitable for large scale drug discovery. As proof of principle, the NCI Diversity Compound Library was screened against human invasive cancer cells. Nine compounds exhibiting high potency and low toxicity were identified, including DX-52-1, a compound previously reported to inhibit cell migration, a critical determinant of cancer invasion. The results indicate that this innovative HT platform is a simple, precise, and easy to replicate 3-D invasion assay for anti-cancer drug discovery.

  19. Development of three dimensional Eulerian numerical procedure toward plate-mantle simulation: accuracy test by the fluid rope coiling

    NASA Astrophysics Data System (ADS)

    Furuichi, M.; Kameyama, M.; Kageyama, A.

    2007-12-01

    Reproducing a realistic plate tectonics with mantle convection simulation is one of the greatest challenges in computational geophysics. We have developed a three dimensional Eulerian numerical procedure toward plate-mantle simulation, which includes a finite deformation of the plate in the mantle convection. Our method, combined with CIP-CSLR (Constrained Interpolation Profile method-Conservative Semi-Lagrangian advection scheme with Rational function) and ACuTE method, enables us to solve advection and force balance equations even with a large and sharp viscosity jump, which marks the interface between the plates and surrounding upper mantle materials. One of the typical phenomena represented by our method is a fluid rope coiling event, where a stream of viscous fluid is poured onto the bottom plane from a certain height. This coiling motion is due to delicate balances between bending, twisting and stretching motions of fluid rope. In the framework of the Eulerian scheme, the fluid rope and surrounding air are treated as a viscosity profile which differs by several orders of magnitude. Our method solves the complex force balances of the fluid rope and air, by a multigrid iteration technique of ACuTE algorithm. In addition, the CIP-CSLR advection scheme allows us to obtain a deforming shape of the fluid rope, as a low diffusive solution in the Eulerian frame of reference. In this presentation, we will show the simulation result of the fluid rope coiling as an accuracy test for our simulation scheme, by comparing with the simplified numerical solution for thin viscous jet.

  20. UWB Tracking Software Development

    NASA Technical Reports Server (NTRS)

    Gross, Julia; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    An Ultra-Wideband (UWB) two-cluster Angle of Arrival (AOA) tracking prototype system is currently being developed and tested at NASA Johnson Space Center for space exploration applications. This talk discusses the software development efforts for this UWB two-cluster AOA tracking system. The role the software plays in this system is to take waveform data from two UWB radio receivers as an input, feed this input into an AOA tracking algorithm, and generate the target position as an output. The architecture of the software (Input/Output Interface and Algorithm Core) will be introduced in this talk. The development of this software has three phases. In Phase I, the software is mostly Matlab driven and calls C++ socket functions to provide the communication links to the radios. This is beneficial in the early stage when it is necessary to frequently test changes in the algorithm. Phase II of the development is to have the software mostly C++ driven and call a Matlab function for the AOA tracking algorithm. This is beneficial in order to send the tracking results to other systems and also to improve the tracking update rate of the system. The third phase is part of future work and is to have the software completely C++ driven with a graphics user interface. This software design enables the fine resolution tracking of the UWB two-cluster AOA tracking system.

  1. [Three-dimensional printing and oral medicine].

    PubMed

    Hu, M

    2017-04-09

    After 30 years of development, three-dimensional printing technology has made great progress, and the model and surgical guide have been clinically applied. The three-dimensional printing of titanium and other metal prosthesis and dental crown after adequate research will be applied clinically, and three-dimensional bioprinting and related biological materials need further study. Three-dimensional printing provides opportunities for the development of oral medicine, which will change the way of clinical work, teaching and research. The dentists should integrate multi-disciplinary knowledge and understand the essence of new technology to meet the challenges of the era of digital medicine.

  2. Three-Dimensional High-Frequency Ultrasonography for Early Detection and Characterization of Embryo Implantation Site Development in the Mouse

    PubMed Central

    Peavey, Mary C.; Reynolds, Corey L.; Szwarc, Maria M.; Gibbons, William E.; Valdes, Cecilia T.

    2017-01-01

    Ultrasonography is a powerful tool to non-invasively monitor in real time the development of the human fetus in utero. Although genetically engineered mice have served as valuable in vivo models to study both embryo implantation and pregnancy progression, such studies usually require sacrifice of parous mice for subsequent phenotypic analysis. To address this issue, we used three-dimensional (3-D) reconstruction in silico of high-frequency ultrasound (HFUS) imaging data for early detection and characterization of murine embryo implantation sites and their development in utero. With HFUS imaging followed by 3-D reconstruction, we were able to precisely quantify embryo implantation site number and embryonic developmental progression in pregnant C57BL6J/129S mice from as early as 5.5 days post coitus (d.p.c.) through to 9.5 d.p.c. using a VisualSonics Vevo 2100 (MS550S) transducer. In addition to measurements of implantation site number, location, volume and spacing, embryo viability via cardiac activity monitoring was also achieved. A total of 12 dams were imaged with HFUS with approximately 100 embryos examined per embryonic day. For the post-implantation period (5.5 to 8.5 d.p.c.), 3-D reconstruction of the gravid uterus in mesh or solid overlay format enabled visual representation in silico of implantation site location, number, spacing distances, and site volume within each uterine horn. Therefore, this short technical report describes the feasibility of using 3-D HFUS imaging for early detection and analysis of post-implantation events in the pregnant mouse with the ability to longitudinally monitor the development of these early pregnancy events in a non-invasive manner. As genetically engineered mice continue to be used to characterize female reproductive phenotypes, we believe this reliable and non-invasive method to detect, quantify, and characterize early implantation events will prove to be an invaluable investigative tool for the study of female

  3. The development of an explicit thermochemical nonequilibrium algorithm and its application to compute three dimensional AFE flowfields

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.

  4. Space Flight Software Development Software for Intelligent System Health Management

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.; Crumbley, Tim

    2004-01-01

    The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.

  5. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry

    SciTech Connect

    McCaw, Travis J. Micka, John A.; DeWerd, Larry A.

    2014-05-15

    Purpose: Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. Methods: A film stack dosimeter was developed using Gafchromic{sup ®} EBT2 films. The dosimeter consists of 22 films separated by 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. Results: The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the

  6. Development of improved Gaussian dispersion models for cases of downwash past wide buildings using three- dimensional fluid modeling

    NASA Astrophysics Data System (ADS)

    Flowe, Anita Coulter

    1997-08-01

    The objectives of this work were to show that a well- tested three dimensional turbulent kinetic energy/dissipation (k-ɛ) computational model, FLUENT, can be used to model the fluid flow fields and the dispersion effects in the flow fields generated by a variety of building shapes, and to use the data sets to develop parameterizations useful to air quality modeling needs. Once the appropriateness of the computational model was proven through comparisons with experimental results, and data generated for several ratios of building width to building heights, the flow field was examined to determine the length of the recirculation cavity as a function of the ratio of building width to building height both in front of and in the rear of the building. The dimensions of the recirculation cavity in the front of the building have previously not been included in regulatory models, so both the height and length of this front recirculation cavity was parameterized as a function of the ratio of building width to building height. The maximum downdraft was also parameterized as a function of the building width to building height ratio. The dispersive effects were then examined to determine useful parameters. The average concentration in the recirculation cavity was calculated and modeled as a function of ratio of the building width to building height. Finally, because Gaussian models are generally used for regulatory modeling of dispersion effects, the dispersive field was analyzed to find improved dispersion coefficients to use in Gaussian models. The vertical and horizontal dispersion coefficients were computed as a function of distance from the dispersive source for each of the ratios of building width to building height, and then these functions were made a function of the ratio of building width to building height. These new dispersion coefficients, which were a function of both the distance from the stack and the ratio of building width to building height, were then used

  7. Three-Dimensional Lung Tumor Microenvironment Modulates Therapeutic Compound Responsiveness In Vitro – Implication for Drug Development

    PubMed Central

    Ekert, Jason E.; Johnson, Kjell; Strake, Brandy; Pardinas, Jose; Jarantow, Stephen; Perkinson, Robert; Colter, David C.

    2014-01-01

    Three-dimensional (3D) cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR) and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1) EGFR and cMET receptor expression, as determined by flow cytometry, 2) EGFR and cMET phosphorylation by MSD assay, and 3) cell proliferation in response to epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab]) was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural tumor

  8. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development.

    PubMed

    Ekert, Jason E; Johnson, Kjell; Strake, Brandy; Pardinas, Jose; Jarantow, Stephen; Perkinson, Robert; Colter, David C

    2014-01-01

    Three-dimensional (3D) cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR) and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1) EGFR and cMET receptor expression, as determined by flow cytometry, 2) EGFR and cMET phosphorylation by MSD assay, and 3) cell proliferation in response to epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab]) was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural tumor

  9. Software Development Program.

    ERIC Educational Resources Information Center

    Collin County Community Coll., McKinney, TX.

    The Software Development Program described in this report was developed at Collin County Community College as a pilot associate degree program for the State of Texas. Drawing from an employer needs assessment and a DACUM (Developing a Curriculum) process, the two-year associate in applied science (AAS) program was developed to train scientific…

  10. Three dimensional quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Ferretti, G.; Rajeev, S. G.; Yang, Z.

    1992-02-01

    The subject of this talk is the study of the low energy behavior of three (2+1) dimensional Quantum Chromodynamics. We show the existence of a phase where parity is unbroken and the flavor group U(2n) is broken into a subgroup U(n)×U(n). We derive the low energy effective action for the theory and show that it has solitonic excitations with Fermi statistic, to be identified with the three dimensional ``baryon''. Finally, we study the current algebra for this effective action and we find a co-homologically nontrivial generalization of Kac-Moody algebras to three dimension.

  11. Three-dimensional metamaterials

    SciTech Connect

    Burckel, David Bruce

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  12. MeltMigrator: A MATLAB-based software for modeling three-dimensional melt migration and crustal thickness variations at mid-ocean ridges following a rules-based approach

    NASA Astrophysics Data System (ADS)

    Bai, Hailong; Montési, Laurent G. J.; Behn, Mark D.

    2017-01-01

    MeltMigrator is a MATLAB®-based melt migration software developed to process three-dimensional mantle temperature and velocity data from user-supplied numerical models of mid-ocean ridges, calculate melt production and melt migration trajectories in the mantle, estimate melt flux along plate boundaries, and predict crustal thickness distribution on the seafloor. MeltMigrator is also capable of calculating compositional evolution depending on the choice of petrologic melting model. Programmed in modules, MeltMigrator is highly customizable and can be expanded to a wide range of applications. We have applied it to complex mid-ocean ridge model settings, including transform faults, oblique segments, ridge migration, asymmetrical spreading, background mantle flow, and ridge-plume interaction. In this technical report, we include an example application to a segmented mid-ocean ridge. MeltMigrator is available as a supplement to this paper, and it is also available from GitHub and the University of Maryland Geodynamics Group website.

  13. Cephalometric and three-dimensional assessment of the posterior airway space and imaging software reliability analysis before and after orthognathic surgery.

    PubMed

    Burkhard, John Patrik Matthias; Dietrich, Ariella Denise; Jacobsen, Christine; Roos, Malgorzota; Lübbers, Heinz-Theo; Obwegeser, Joachim Anton

    2014-10-01

    This study aimed to compare the reliability of three different imaging software programs for measuring the PAS and concurrently to investigate the morphological changes in oropharyngeal structures in mandibular prognathic patients before and after orthognathic surgery by using 2D and 3D analyzing technique. The study consists of 11 randomly chosen patients (8 females and 3 males) who underwent maxillomandibular treatment for correction of Class III anteroposterior mandibular prognathism at the University Hospital in Zurich. A set of standardized LCR and CBCT-scans were obtained from each subject preoperatively (T0), 3 months after surgery (T1) and 3 months to 2 years postoperatively (T2). Morphological changes in the posterior airway space (PAS) were evaluated longitudinally by two different observers with three different imaging software programs (OsiriX(®) 64-bit, Switzerland; Mimics(®), Belgium; BrainLab(®), Germany) and manually by analyzing cephalometric X-rays. A significant increase in the upper airway dimensions before and after surgery occurred in all measured cases. All other cephalometric distances showed no statistically significant alterations. Measuring the volume of the PAS showed no significant changes in all cases. All three software programs showed similar outputs in both cephalometric analysis and 3D measuring technique. A 3D design of the posterior airway seems to be far more reliable and precise phrasing of a statement of postoperative gradients than conventional radiography and is additionally higher compared to the corresponding manual method. In case of Class III mandibular prognathism treatment with bilateral split osteotomy of the mandible and simultaneous maxillary advancement, the negative effects of PAS volume decrease may be reduced and might prevent a developing OSAS. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Shape memory polymers: three-dimensional isotropic modeling

    NASA Astrophysics Data System (ADS)

    Balogun, Olaniyi; Mo, Changki

    2014-04-01

    This paper presents a comprehensive three-dimensional isotropic numerical simulation for a thermo-mechanical constitutive model of shape memory polymers (SMPs). In order to predict the thermo-mechanical behavior of SMPs, a one-dimensional rheological thermo-mechanical constitutive model is adopted, translated into a three-dimensional form and a time discrete form of the three-dimensional model is then presented. Numerical simulation of this model was developed using the UMAT subroutine capabilities of the finite element software ABAQUS. Evolution of the analysis was conducted by making use of the backward difference scheme, which was applied to all quantities within the model, including the material properties. A comparison of the numerical simulation results was carried out with the available experimental data. Numerical simulation results clearly exhibit the thermo-mechanical properties of the material which include shape fixity, shape recovery, and recovery stress. Finally, a prediction for the transverse and shear directions of the material is presented.

  15. The development of three-dimensional adjoint method for flow control with blowing in convergent-divergent nozzle flows

    NASA Astrophysics Data System (ADS)

    Sikarwar, Nidhi

    multiple experiments or numerical simulations. Alternatively an inverse design method can be used. An adjoint optimization method can be used to achieve the optimum blowing rate. It is shown that the method works for both geometry optimization and active control of the flow in order to deflect the flow in desirable ways. An adjoint optimization method is described. It is used to determine the blowing distribution in the diverging section of a convergent-divergent nozzle that gives a desired pressure distribution in the nozzle. Both the direct and adjoint problems and their associated boundary conditions are developed. The adjoint method is used to determine the blowing distribution required to minimize the shock strength in the nozzle to achieve a known target pressure and to achieve close to an ideally expanded flow pressure. A multi-block structured solver is developed to calculate the flow solution and associated adjoint variables. Two and three-dimensional calculations are performed for internal and external of the nozzle domains. A two step MacCormack scheme based on predictor- corrector technique is was used for some calculations. The four and five stage Runge-Kutta schemes are also used to artificially march in time. A modified Runge-Kutta scheme is used to accelerate the convergence to a steady state. Second order artificial dissipation has been added to stabilize the calculations. The steepest decent method has been used for the optimization of the blowing velocity after the gradients of the cost function with respect to the blowing velocity are calculated using adjoint method. Several examples are given of the optimization of blowing using the adjoint method.

  16. Three dimensional interactive display

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2005-01-01

    A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.

  17. Automated software development workstation

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engineering software development was automated using an expert system (rule-based) approach. The use of this technology offers benefits not available from current software development and maintenance methodologies. A workstation was built with a library or program data base with methods for browsing the designs stored; a system for graphical specification of designs including a capability for hierarchical refinement and definition in a graphical design system; and an automated code generation capability in FORTRAN. The workstation was then used in a demonstration with examples from an attitude control subsystem design for the space station. Documentation and recommendations are presented.

  18. Payload software technology: Software technology development plan

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Programmatic requirements for the advancement of software technology are identified for meeting the space flight requirements in the 1980 to 1990 time period. The development items are described, and software technology item derivation worksheets are presented along with the cost/time/priority assessments.

  19. 4DCAPTURE: a general purpose software package for capturing and analyzing two- and three-dimensional motion data acquired from video sequences

    NASA Astrophysics Data System (ADS)

    Walton, James S.; Hodgson, Peter; Hallamasek, Karen; Palmer, Jake

    2003-07-01

    4DVideo is creating a general purpose capability for capturing and analyzing kinematic data from video sequences in near real-time. The core element of this capability is a software package designed for the PC platform. The software ("4DCapture") is designed to capture and manipulate customized AVI files that can contain a variety of synchronized data streams -- including audio, video, centroid locations -- and signals acquired from more traditional sources (such as accelerometers and strain gauges.) The code includes simultaneous capture or playback of multiple video streams, and linear editing of the images (together with the ancilliary data embedded in the files). Corresponding landmarks seen from two or more views are matched automatically, and photogrammetric algorithms permit multiple landmarks to be tracked in two- and three-dimensions -- with or without lens calibrations. Trajectory data can be processed within the main application or they can be exported to a spreadsheet where they can be processed or passed along to a more sophisticated, stand-alone, data analysis application. Previous attempts to develop such applications for high-speed imaging have been limited in their scope, or by the complexity of the application itself. 4DVideo has devised a friendly ("FlowStack") user interface that assists the end-user to capture and treat image sequences in a natural progression. 4DCapture employs the AVI 2.0 standard and DirectX technology which effectively eliminates the file size limitations found in older applications. In early tests, 4DVideo has streamed three RS-170 video sources to disk for more than an hour without loss of data. At this time, the software can acquire video sequences in three ways: (1) directly, from up to three hard-wired cameras supplying RS-170 (monochrome) signals; (2) directly, from a single camera or video recorder supplying an NTSC (color) signal; and (3) by importing existing video streams in the AVI 1.0 or AVI 2.0 formats. The

  20. Three-Dimensional Porous Network Structure Developed in Hydroxyapatite-Based Nanocomposites Containing Enzyme Pretreated Silk Fibroin

    NASA Astrophysics Data System (ADS)

    Wang, Li; Nemoto, Rei; Senna, Mamoru

    2004-02-01

    Chemically modified silk fibroin (SF) with an enzyme, Proteinase K, has been incorporated into hydroxyapatite (HAp)-based nanocomposite attempting to strengthen the interfacial bonding between the mineral phase and the organic matrix. Particular emphasis is laid on the microstructure and microhardness of the composite along with the crystallographic properties of HAp. The whisker-like HAp crystallites of nanometer size show the preferential self-assembly and anisotropic crystal growth along c-axis. There appears porous microstructure with 70% of open porosity and pore size distribution of 10-115 um in the composite. Attributed to the enzyme modification, the crosslinkage between HAp clusters and SF matrix is improved to form an enhanced three-dimensional network extending throughout the composites and an increase of 35% in microhardness of the composite is achieved as well.

  1. Development of a strain visualization system for microstructures using single fluorescent molecule tracking on a three-dimensional orientation microscope

    NASA Astrophysics Data System (ADS)

    Yoshida, Shintaro; Yoshiki, Keisuke; Namazu, Takahiro; Araki, Nozomu; Hashimoto, Mamoru; Kurihara, Makoto; Hashimoto, Nobuyuki; Inoue, Shozo

    2011-09-01

    We propose a technique that employs single fluorescent molecules for visualizing the distribution of strain induced in microstructures. We sprayed single-molecule tracers on microstructures by ultrasonic atomization and traced the position and orientation of the tracers by a single-molecule detection technique with a three-dimensional (3D) orientation microscope, which consists of a conventional fluorescent microscope and a polarization-mode converter. By using 3D spline interpolation, we visualized the surface geometry of a microelectromechanical (MEMS) device. We tracked the 3D position and orientation of tracers attached to a supporting beam of the MEMS mirror. The surface declination angles calculated from the orientation of the tracers were in agreement with the tilt angle obtained from the 3D position of the tracers.

  2. Development of three-dimensional site-site Smoluchowski-Vlasov equation and application to electrolyte solutions

    SciTech Connect

    Kasahara, Kento; Sato, Hirofumi

    2014-06-28

    Site-site Smoluchowski-Vlasov (SSSV) equation enables us to directly calculate van Hove time correlation function, which describes diffusion process in molecular liquids. Recently, the theory had been extended to treat solute-solvent system by Iida and Sato [J. Chem. Phys. 137, 034506 (2012)]. Because the original framework of SSSV equation is based on conventional pair correlation function, time evolution of system is expressed in terms of one-dimensional solvation structure. Here, we propose a new SSSV equation to calculate time evolution of solvation structure in three-dimensional space. The proposed theory was applied to analyze diffusion processes in 1M NaCl aqueous solution and in lithium ion battery electrolyte solution. The results demonstrate that these processes are properly described with the theory, and the computed van Hove functions are in good agreement with those in previous works.

  3. Astronomers as Software Developers

    NASA Astrophysics Data System (ADS)

    Pildis, Rachel A.

    2016-01-01

    Astronomers know that their research requires writing, adapting, and documenting computer software. Furthermore, they often have to learn new computer languages and figure out how existing programs work without much documentation or guidance and with extreme time pressure. These are all skills that can lead to a software development job, but recruiters and employers probably won't know that. I will discuss all the highly useful experience that astronomers may not know that they already have, and how to explain that knowledge to others when looking for non-academic software positions. I will also talk about some of the pitfalls I have run into while interviewing for jobs and working as a developer, and encourage you to embrace the curiosity employers might have about your non-standard background.

  4. Three-dimensional turbulent particle dispersion submodel development. Final report, 15 April 1991--15 April 1993

    SciTech Connect

    Smith, P.J.

    1993-12-31

    Many practical combustion processes which use solid particles, liquid droplets, or slurries as fuels introduce these fuels into turbulent environments. Examples include spray combustion, pulverized coal and coal slurry combustion, fluidized beds, sorbent injection, and hazardous waste incineration. The interactions of the condensed phases with turbulent environments in such applications have not been well described. Such a description is complicated by the difficulty of describing turbulence in general, even in the absence of particles or droplets. But the complications in describing the dispersion and reaction of the condensed phases in turbulent environments do not stem entirely, or even primarily, from the uncertainties in the description of the turbulence. Even when the turbulence characteristics are known, computational methods for coupling the dynamics of the particulate phase with the continuous phase have not been well established. Several new theoretical descriptions of the turbulent dispersion of particles and droplets have been proposed over the past few years. It has been the purpose of this project to explore the potential of these theories for coupling with the other aspects of three-dimensional, reacting, turbulent, particle-laden systems, to provide computational simulations that could be useful for addressing industrial problems. Two different approaches were explored in this project. The major thrust of this project was on identifying a suitable dispersion submodel for dilute dispersed flows, implementing it in a comprehensive three-dimensional CFD code framework for combustion simulation and evaluating its performance rigorously. In another effort the potential of a dispersion submodel for densely loaded systems was analyzed. This report discusses the main issues that were resolved as part of this project.

  5. Development of novel three-dimensional reconstruction method for porous media for polymer electrolyte fuel cells using focused ion beam-scanning electron microscope tomography

    NASA Astrophysics Data System (ADS)

    Terao, Takeshi; Inoue, Gen; Kawase, Motoaki; Kubo, Norio; Yamaguchi, Makoto; Yokoyama, Kouji; Tokunaga, Tomomi; Shinohara, Kazuhiko; Hara, Yuka; Hara, Toru

    2017-04-01

    An accurate method for three-dimensional reconstruction of microstructures is developed to analyse mass transport phenomena in microporous layers (MPLs). The proposed method involves the use of focused ion beam-scanning electron microscope tomography. Numerical calculations of the structural and mass transport properties of MPLs are conducted using the reconstruction results and these results are found to be in good agreement with experimental results, demonstrating the accuracy of the new method.

  6. Three-dimensional printing physiology laboratory technology

    PubMed Central

    Sulkin, Matthew S.; Widder, Emily; Shao, Connie; Holzem, Katherine M.; Gloschat, Christopher; Gutbrod, Sarah R.

    2013-01-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories. PMID:24043254

  7. Three-dimensional printing physiology laboratory technology.

    PubMed

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  8. Three-Dimensional Complex Variables

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1988-01-01

    Report presents new theory of analytic functions of three-dimensional complex variables. While three-dimensional system subject to more limitations and more difficult to use than the two-dimensional system, useful in analysis of three-dimensional fluid flows, electrostatic potentials, and other phenomena involving harmonic functions.

  9. Three-dimensional image signals: processing methods

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  10. Development and application of a three dimensional numerical model for predicting pollutant and sediment transport using an Eulerian-Lagrangian marker particle technique

    NASA Technical Reports Server (NTRS)

    Pavish, D. L.; Spaulding, M. L.

    1977-01-01

    A computer coded Lagrangian marker particle in Eulerian finite difference cell solution to the three dimensional incompressible mass transport equation, Water Advective Particle in Cell Technique, WAPIC, was developed, verified against analytic solutions, and subsequently applied in the prediction of long term transport of a suspended sediment cloud resulting from an instantaneous dredge spoil release. Numerical results from WAPIC were verified against analytic solutions to the three dimensional incompressible mass transport equation for turbulent diffusion and advection of Gaussian dye releases in unbounded uniform and uniformly sheared uni-directional flow, and for steady-uniform plug channel flow. WAPIC was utilized to simulate an analytic solution for non-equilibrium sediment dropout from an initially vertically uniform particle distribution in one dimensional turbulent channel flow.

  11. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  12. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  13. Three-dimensional representations of complex carbohydrates and polysaccharides--SweetUnityMol: a video game-based computer graphic software.

    PubMed

    Pérez, Serge; Tubiana, Thibault; Imberty, Anne; Baaden, Marc

    2015-05-01

    A molecular visualization program tailored to deal with the range of 3D structures of complex carbohydrates and polysaccharides, either alone or in their interactions with other biomacromolecules, has been developed using advanced technologies elaborated by the video games industry. All the specific structural features displayed by the simplest to the most complex carbohydrate molecules have been considered and can be depicted. This concerns the monosaccharide identification and classification, conformations, location in single or multiple branched chains, depiction of secondary structural elements and the essential constituting elements in very complex structures. Particular attention was given to cope with the accepted nomenclature and pictorial representation used in glycoscience. This achievement provides a continuum between the most popular ways to depict the primary structures of complex carbohydrates to visualizing their 3D structures while giving the users many options to select the most appropriate modes of representations including new features such as those provided by the use of textures to depict some molecular properties. These developments are incorporated in a stand-alone viewer capable of displaying molecular structures, biomacromolecule surfaces and complex interactions of biomacromolecules, with powerful, artistic and illustrative rendering methods. They result in an open source software compatible with multiple platforms, i.e., Windows, MacOS and Linux operating systems, web pages, and producing publication-quality figures. The algorithms and visualization enhancements are demonstrated using a variety of carbohydrate molecules, from glycan determinants to glycoproteins and complex protein-carbohydrate interactions, as well as very complex mega-oligosaccharides and bacterial polysaccharides and multi-stranded polysaccharide architectures.

  14. Development of a Three-Dimensional Geologic Model of the Long Valley Volcanic System, California, Using Magnetotellurics

    NASA Astrophysics Data System (ADS)

    Peacock, J.; Mangan, M.

    2016-12-01

    The Long Valley volcanic system in Eastern California is an active and dynamic magmatic system that requires thorough geological and geophysical study to fully understand potential hazards associated with the temporal progression of fluid and melt migration. Although many geologic studies have interpreted the volcanic history of the area and multiple geophysical studies have characterized the subsurface, no single model for the Long Valley volcanic system exists. Collected magnetotelluric (MT) data was inverted to produce a three-dimensional (3-D) geologic model of the system to illuminate the subsurface electrical resistivity structure. Electrically conductive zones correlate with seismic anomalies, potential field data, earthquake locations, and estimated inflation sources from GPS data. These conductive regions include two zones of partial melt below the Mono Craters at 10 km depth, a zone of partial melt below Mammoth Mountain at 8 km, and potential zones of partial melt 10 km below the south moat and Deer Mountain. A magmatic zone also is imaged at 30 km depth below the northern edge of the caldera and could be the source feeding the volcanic system. These data sets are compiled into a 3-D visualization program from which a 3-D geologic model of the Long Valley volcanic system will be constructed.

  15. Generic design methodology for the development of three-dimensional structured-light sensory systems for measuring complex objects

    NASA Astrophysics Data System (ADS)

    Marin, Veronica E.; Chang, Wei Hao Wayne; Nejat, Goldie

    2014-11-01

    Structured-light (SL) techniques are emerging as popular noncontact approaches for obtaining three-dimensional (3-D) measurements of complex objects for real-time applications in manufacturing, bioengineering, and robotics. The performance of SL systems is determined by the emitting (i.e., projector) and capturing (i.e., camera) hardware components and the triangulation configuration between them and an object of interest. A generic design methodology is presented to determine optimal triangulation configurations for SL systems. These optimal configurations are determined with respect to a set of performance metrics: (1) minimizing the 3-D reconstruction errors, (2) maximizing the pixel-to-pixel correspondence between the projector and camera, and (3) maximizing the dispersion of the measured 3-D points within a measurement volume, while satisfying design constraints based on hardware and user-defined specifications. The proposed methodology utilizes a 3-D geometric triangulation model based on ray-tracing geometry and pin-hole models for the projector and camera. Using the methodology, a set of optimal system configurations can be determined for a given set of hardware components. The design methodology was applied to a real-time SL system for surface profiling of complex objects. Experiments were conducted with an optimal sensor configuration and its performance verified with respect to a nonoptimal hardware configuration.

  16. Development of an optical three-dimensional laser tracker using dual modulated laser diodes and a signal detector

    SciTech Connect

    Lee, Hau-Wei; Chen, Chieh-Li; Liu, Chien-Hung

    2011-03-15

    Laser trackers are widely used in industry for tasks such as the assembly of airplanes and automobiles, contour measurement, and robot calibration. However, laser trackers are expensive, and the corresponding solution procedure is very complex. The influence of measurement uncertainties is also significant. This study proposes a three-dimensional space position measurement system which consists of two tracking modules, a zero tracking angle return subsystem, and a target quadrant photodiode (QPD). The target QPD is placed on the object being tracked. The origin locking method is used to keep the rays on the origin of the target QPD. The position of the target QPD is determined using triangulation since the two laser rays are projected onto one QPD. Modulation and demodulation are utilized to separate the coupled positional values. The experiment results show that measurement errors in the X, Y, and Z directions are less than {+-}0.05% when the measured object was moved by 300, 300, and 200 mm in the X, Y, and Z axes, respectively. The theoretical measurement error estimated from the measurement model is between {+-}0.02% and {+-}0.07% within the defined measurable range. The proposed system can be applied to the measurements of machine tools and robot arms.

  17. Analytical development of dynamic equations of motion for a three-dimensional flexible link manipulator with revolute and prismatic joints.

    PubMed

    Khadem, S E; Pirmohammadi, A A

    2003-01-01

    In this paper, a mathematical model capable of handling a three-dimensional (3D) flexible n-degree of freedom manipulator having both revolute and prismatic joints is considered. This model is used to study the longitudinal, transversal, and torsional vibration characteristics of the robot manipulator and obtain kinematic and dynamic equations of motion. The presence of prismatic joints makes the mathematical derivation complex. In this paper, for the first time, prismatic joints as well as revolute joints have been considered in the structure of a 3D flexible n-degree of freedom manipulator. The kinematic and dynamic equations of motion representing longitudinal, transversal, and torsional vibration characteristics have been solved in parametric form with no discretization. In this investigation, in order to obtain an analytical solution of the vibrational equations, a novel approach is presented using the perturbation method. By solving the equations of motion, it is shown that mode shapes of the link with prismatic joints can be modeled as the equivalent clamped beam at each time instant. As an example, this method is applied to a three degrees of freedom robot with revolute and prismatic joints. The obtained equations are solved using the perturbation method and the results are used to simulate vibrational behavior of the manipulator.

  18. Development of an optical three-dimensional laser tracker using dual modulated laser diodes and a signal detector.

    PubMed

    Lee, Hau-Wei; Chen, Chieh-Li; Liu, Chien-Hung

    2011-03-01

    Laser trackers are widely used in industry for tasks such as the assembly of airplanes and automobiles, contour measurement, and robot calibration. However, laser trackers are expensive, and the corresponding solution procedure is very complex. The influence of measurement uncertainties is also significant. This study proposes a three-dimensional space position measurement system which consists of two tracking modules, a zero tracking angle return subsystem, and a target quadrant photodiode (QPD). The target QPD is placed on the object being tracked. The origin locking method is used to keep the rays on the origin of the target QPD. The position of the target QPD is determined using triangulation since the two laser rays are projected onto one QPD. Modulation and demodulation are utilized to separate the coupled positional values. The experiment results show that measurement errors in the X, Y, and Z directions are less than ±0.05% when the measured object was moved by 300, 300, and 200 mm in the X, Y, and Z axes, respectively. The theoretical measurement error estimated from the measurement model is between ±0.02% and ±0.07% within the defined measurable range. The proposed system can be applied to the measurements of machine tools and robot arms.

  19. Three Dimensional Display Of Meteorological Scientific Data

    NASA Astrophysics Data System (ADS)

    Grotch, Stanley L.

    1988-01-01

    Even a cursory reading of any daily newspaper shows that we are in the midst of a dramatic revolution in computer graphics. Virtually every day some new piece of hardware or software is announced, adding to the tools available to the working scientist. Three dimensional graphics form a significant part of this revolution having become virtually commonplace in advertising and on television.

  20. Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring

    PubMed Central

    Esteve, Vicent; Monge, Rosa; Celda, Bernardo

    2014-01-01

    A new microfluidic cell culture device compatible with real-time nuclear magnetic resonance (NMR) is presented here. The intended application is the long-term monitoring of 3D cell cultures by several techniques. The system has been designed to fit inside commercially available NMR equipment to obtain maximum readout resolution when working with small samples. Moreover, the microfluidic device integrates a fibre-optic-based sensor to monitor parameters such as oxygen, pH, or temperature during NMR monitoring, and it also allows the use of optical microscopy techniques such as confocal fluorescence microscopy. This manuscript reports the initial trials culturing neurospheres inside the microchamber of this device and the preliminary images and spatially localised spectra obtained by NMR. The images show the presence of a necrotic area in the interior of the neurospheres, as is frequently observed in histological preparations; this phenomenon appears whenever the distance between the cells and fresh nutrients impairs the diffusion of oxygen. Moreover, the spectra acquired in a volume of 8 nl inside the neurosphere show an accumulation of lactate and lipids, which are indicative of anoxic conditions. Additionally, a basis for general temperature control and monitoring and a graphical control software have been developed and are also described. The complete platform will allow biomedical assays of therapeutic agents to be performed in the early phases of therapeutic development. Thus, small quantities of drugs or advanced nanodevices may be studied long-term under simulated living conditions that mimic the flow and distribution of nutrients. PMID:25553182

  1. Microlaser-based three-dimensional display

    NASA Astrophysics Data System (ADS)

    Takeuchi, Eric B.; Bergstedt, Robert; Hargis, David E.; Higley, Paul D.

    1999-08-01

    Three dimensional (3D) displays are critical for viewing complex multi-dimensional information and for viewing representations of the three dimensional real world. A teaming arrangement between Laser Power Corporation (LPC) and Specialty Devices, Inc. (SDI) has led to the feasibility demonstration of a directly-viewed three dimensional volumetric display. LPC has developed red, green, and blue (RGB) diode pumped solid state microlaser display technology for use as a high resolution, high brightness display engine for the three dimensional display. Concurrently, SDI has developed a unique technology for viewing high resolution three dimensional volumetric images without external viewing aids (eye wear). When coupled to LPC's display engine, the resultant all solid state three dimensional display presets a true, physical three dimensionality which is directly viewable from all angles by multiple viewers without additional viewing equipment (eye wear). The resultant volumetric display will further enable applications such as the 'virtual sandbox,' visualization of radar and sonar data, air traffic control, remote surgery and diagnostics, and CAD workstations.

  2. Three Dimensional Optic Tissue Culture and Process

    NASA Technical Reports Server (NTRS)

    OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)

    1999-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.

  3. Three dimensional optic tissue culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)

    1994-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.

  4. Algorithms for Software Development

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1985-01-01

    Management aid makes changes obvious. One key element in scheme for software development control is check summing. If check sum for given line in source file is different from previous version, it is evident change has been made. Subsequent editing of file creates new lines, deletes old ones, modifies characters, moves lines, or copies (reuse) existing lines. Combination of three elements of line code permits all transactions to be detected.

  5. Documentation Driven Software Development

    DTIC Science & Technology

    2010-06-01

    Students PERCENT_SUPPORTEDNAME Andrew Chen Roberto Sandoval Doug Anunciado Robert Halle John Evans Paul Dailey Joey Rivera Bruce Lewis Doug Lange...09-146, Sep. 2009. PhD Theses 1. R. Sandoval . “Security Software Development and Integration Testing for Advanced Concept Technology...2) STUDENT/ SUPPORTED PERSONNEL MATERIAL FOR THIS REPORTING PERIOD: (a) Graduate Students: 16 A. Chen, R. Sandoval , D. Anunciado, R. Halle, J

  6. Three-dimensional laser window formation

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.

    1992-01-01

    The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report discusses in detail the aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities associated with the formation of these windows. Included in this discussion are the design criteria, bonding mediums, and evaluation testing for three-dimensional laser windows.

  7. Three-dimensional velocity measurements using LDA

    NASA Astrophysics Data System (ADS)

    Buchhave, Preben

    The design requirements for and development of an LDA that measures the three components of the fluid velocity vector are described. The problems encountered in LDA measurements in highly turbulent flows, multivariate response, velocity bias, spatial resolution, temporal resolution, and dynamic range, are discussed. The use of the fringe and/or the reference beam methods to measure the three velocity components, and the use of color, frequency shift, and polarization to separate three velocity projections are examined. Consideration is given to the coordinate transformation, the presentation of three-dimensional LDA data, and the possibility of three-dimensional bias correction. Procedures for conducting three-dimensional LDA measurements are proposed.

  8. Development of a Tailored Thyroid Gland Phantom for Fine-Needle Aspiration Cytology by Three-Dimensional Printing.

    PubMed

    Baba, Masayuki; Matsumoto, Keitaro; Yamasaki, Naoya; Shindo, Hisakazu; Yano, Hiroshi; Matsumoto, Megumi; Otsubo, Ryota; John Lawn, Murray; Matsuo, Naoto; Yamamoto, Ikuo; Hidaka, Shigekazu; Nagayasu, Takeshi

    2017-06-19

    Fine-needle aspiration cytology (FNAC) is a challenging and risky procedure for inexperienced clinicians to perform because of the proximity of the thyroid to the jugular veins, carotid arteries, and trachea. A phantom model for transfixion practice would help train clinicians in FNAC. To fabricate a tailored phantom with consideration for authenticity of size, touch, feel, and ultrasonographic (US) characteristics. A three-dimensional (3D) digital model of the human neck was reconstructed from computed tomography data of a subject. This model was used to create 3D-printed templates for various organs that require US visualization. The templates were injected with polymers that provided similar degrees of ultrasound permeability as the corresponding organs. For fabrication of each organ, the respective molds of organs, blood vessels, thyroid gland, and tumor were injected with the material. The fabricated components were then removed from the templates and colored. Individual components were then positioned in the neck mold, and agar gel was poured in. The complete phantom was then removed from the mold. Thereafter, 45 medical doctors and students performed ultrasound-guided FNAC using the phantom, following which they were queried regarding the value of the phantom. The structure, US characteristics, and elasticity of the phantom were similar to those of the human subject. In the survey, all 45 participants replied that they found the phantom useful for FNAC training, and 30 medical students professed increased interest in thyroid diseases after using the phantom. We successfully fabricated a tailored thyroid gland phantom for transfixion practice. As most of the phantom parts are injected in molds fabricated using a 3D printer, they can be easily reproduced once the molds are fabricated. This phantom is expected to serve as an effective and fully tailored training model for practicing thyroid gland transfixion. Copyright © 2017. Published by Elsevier Inc.

  9. Developing a methodology for three-dimensional correlation of PET–CT images and whole-mount histopathology in non-small-cell lung cancer

    PubMed Central

    Dahele, M.; Hwang, D.; Peressotti, C.; Sun, L.; Kusano, M.; Okhai, S.; Darling, G.; Yaffe, M.; Caldwell, C.; Mah, K.; Hornby, J.; Ehrlich, L.; Raphael, S.; Tsao, M.; Behzadi, A.; Weigensberg, C.; Ung, Y.C.

    2008-01-01

    Background Understanding the three-dimensional (3D) volumetric relationship between imaging and functional or histopathologic heterogeneity of tumours is a key concept in the development of image-guided radiotherapy. Our aim was to develop a methodologic framework to enable the reconstruction of resected lung specimens containing non-small-cell lung cancer (nsclc), to register the result in 3D with diagnostic imaging, and to import the reconstruction into a radiation treatment planning system. Methods and Results We recruited 12 patients for an investigation of radiology–pathology correlation (rpc) in nsclc. Before resection, imaging by positron emission tomography (pet) or computed tomography (ct) was obtained. Resected specimens were formalin-fixed for 1–24 hours before sectioning at 3-mm to 10-mm intervals. To try to retain the original shape, we embedded the specimens in agar before sectioning. Consecutive sections were laid out for photography and manually adjusted to maintain shape. Following embedding, the tissue blocks underwent whole-mount sectioning (4-μm sections) and staining with hematoxylin and eosin. Large histopathology slides were used to whole-mount entire sections for digitization. The correct sequence was maintained to assist in subsequent reconstruction. Using Photoshop (Adobe Systems Incorporated, San Jose, CA, U.S.A.), contours were placed on the photographic images to represent the external borders of the section and the extent of macroscopic disease. Sections were stacked in sequence and manually oriented in Photoshop. The macroscopic tumour contours were then transferred to MATLAB (The Mathworks, Natick, MA, U.S.A.) and stacked, producing 3D surface renderings of the resected specimen and embedded gross tumour. To evaluate the microscopic extent of disease, customized “tile-based” and commercial confocal panoramic laser scanning (TISSUEscope: Biomedical Photometrics, Waterloo, ON) systems were used to generate digital images of

  10. Three dimensional Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    We extend the physics of graphene to three dimensional systems by showing that Dirac points can exist on the Fermi surface of realistic materials in three dimensions. Many of the exotic electronic properties of graphene can be ascribed to the pseudorelativistic behavior of its charge carriers due to two dimensional Dirac points on the Fermi surface. We show that certain nonsymmorphic spacegroups exhibit Dirac points among the irreducible representations of the appropriate little group at high symmetry points on the surface of the Brillouin zone. We provide a list of all Brillouin zone momenta in the 230 spacegroups that can host Dirac points. We describe microscopic considerations necessary to design materials in one of the candidate spacegroups such that the Dirac point appears at the Fermi energy without any additional non-Dirac-like Fermi pockets. We use density functional theory based methods to propose six new Dirac semimetals: BiO 2 and SbO2 in the beta-cristobalite lattice (spacegroup 227), and BiCaSiO4, BiMgSiO4, BiAlInO 4, and BiZnSiO4 in the distorted spinels lattice (spacegroup 74). Additionally we derive effective Dirac Hamiltonians given group representative operators as well as tight binding models incorporating spin-orbit coupling. Finally we study the Fermi surface of zincblende (spacegroup 216) HgTe which is effectively point-like at Gamma in the Brillouin zone and exhibits accidental degeneracies along a threefold rotation axis. Whereas compressive strain gaps the band structure into a topological insulator, tensile strain shifts the accidental degeneracies away from Gamma and enlarges the Fermi surface. States on the Fermi surface exhibit nontrivial spin texture marked by winding of spins around the threefold rotation axis and by spin vortices indicating a change in the winding number. This is confirmed by microscopic calculations performed in tensile strained HgTe and Hg0.5Zn 0.5 Te as well as k.p theory. We conclude with a summary of recent

  11. [Application of three dimensional model in evaluating the effect of artificial bone implantation of hard cleft palate on the development of maxilla].

    PubMed

    Yan, Feng-Guo; Ping, Fei-Yun; Shan, Yi-Dan; Chen, Jun; Xu, Xin; Yan, Jun-Lie

    2011-05-17

    To observe the effect of artificial bone implantation of hard cleft palate on the development of maxilla. From January 1997 to December 1999, 40 patients with hard cleft palate were randomly divided into two groups: control group and implantation group (n = 20 each). The patients in the implantation group received an implantation of compound artificial bone of HA-Bone cement. All patients had a follow-up since 16 years old. A three dimensional model was established with computed tomography and rapid prototype technique to analyze the maxilla in three dimension. At the same time, a dentognathic model was employed. There were no differences in the results between the three dimensional and dentognathic models. No difference was found in the development of maxilla in length and height between the control and implantation groups. There were marked differences in the development of maxilla in width between two groups (67.6 mm ± 4.3 mm vs 61.3 mm ± 4.1 mm, 63.5 mm ± 3.9 mm vs 57.3 mm ± 3.1 mm, 26.2 mm ± 1.8 mm vs 26.4 mm ± 1.9 mm, all P < 0.05). The width of maxilla in the implantation group was markedly wider than that in the control group. The application of three dimensional model for evaluating the development of maxilla is both straightforward and accurate. Bone implantation of hard cleft palate is an obvious boost to the development of maxilla in width. It should be included into a comprehensive orthodontic treatment for patients with hard cleft palate.

  12. Assumptions Management in Software Development

    DTIC Science & Technology

    2004-08-01

    Assumptions Management in Software Development Grace A. Lewis Teeraphong Mahatham Lutz Wrage August 2004 Integration of Software ...sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally funded research and development center sponsored by the...U.S. Department of Defense. Copyright 2004 Carnegie Mellon University. NO WARRANTY THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

  13. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Initial stage of the development of three-dimensional periodic structures in laser melting

    NASA Astrophysics Data System (ADS)

    Dolgaev, Sergei I.; Kirichenko, N. A.; Simakin, Aleksandr V.; Shafeev, Georgii A.

    2004-08-01

    The initial stage of three-dimensional periodic structures developing during the laser melting of solids is numerically simulated. The temperature nonuniformity caused by reflectivity variations along a capillary wave leads to a self-consistent melt displacement under the action of the temperature gradient due to the temperature dependence of the surface tension coefficient. Based on the numerical solution of the simplified Navier—Stokes equation, the transformation of the initial sinusoidal perturbation of the melt surface is investigated at the stages of self-consistent laser heating and the subsequent cooling. The derived surface shape well agrees with experimental data.

  14. A study of the application of singular perturbation theory. [development of a real time algorithm for optimal three dimensional aircraft maneuvers

    NASA Technical Reports Server (NTRS)

    Mehra, R. K.; Washburn, R. B.; Sajan, S.; Carroll, J. V.

    1979-01-01

    A hierarchical real time algorithm for optimal three dimensional control of aircraft is described. Systematic methods are developed for real time computation of nonlinear feedback controls by means of singular perturbation theory. The results are applied to a six state, three control variable, point mass model of an F-4 aircraft. Nonlinear feedback laws are presented for computing the optimal control of throttle, bank angle, and angle of attack. Real Time capability is assessed on a TI 9900 microcomputer. The breakdown of the singular perturbation approximation near the terminal point is examined Continuation methods are examined to obtain exact optimal trajectories starting from the singular perturbation solutions.

  15. Three-dimensional echocardiographic technology.

    PubMed

    Salgo, Ivan S

    2007-05-01

    This article addresses the current state of the art of technology in three-dimensional echocardiography as it applies to transducer design, beam forming, display, and quantification. Because three-dimensional echocardiography encompasses many technical and clinical areas, this article reviews its strengths and limitations and concludes with an analysis of what to use when.

  16. Software developments for gammasphere

    SciTech Connect

    Lauritsen, T.; Ahmad, I.; Carpenter, M.P.

    1995-08-01

    This year marked the year when data acquisition development for Gammasphere evolved from planning to accomplishment, both in hardware and software. Two VME crates now contain about 10 crate-processors which are used to handle the data from VXI processors - which in turn collect the data from germanium and BGO detectors in the array. The signals from the detectors are processed and digitized in custom-built electronics boards. The processing power in the VME crates is used to digitally filter the data before they are written to tape. The goal is to have highly processed data flowing to tape, eliminating the off-line filtering and manipulation of data that was standard procedure in earlier experiments.

  17. Coastal flooding and storm protection program; field verification program. Mathematical modeling of three-dimensional coastal currents and sediment dispersion: model development and application. Final report

    SciTech Connect

    Sheng, Y.P.

    1983-09-01

    A comprehensive model of Coastal currents and sediment dispersion has been formulated and applied to the Mississippi Sound and adjacent continental shelf waters. The study combines mathematical modeling of various hydrodynamic and sedimentary processes with laboratory and field experiments. Of primary importance is the development of an efficient and comprehensive three-dimensional, finite-difference model of coastal, estuarine, and lake currents (CELC3D). The model resolves currents driven by tide, wind, and density gradient. It has been applied to the Mississippi Sound, and results agree well with measured surface displacements and currents during two episodes. Rates of entrainment and deposition of the Mississippi Sound sediments have been studied in a laboratory flume. Effects of (1) bottom shear stress, (2) bed properties, (3) salinity of water, and (4) sediment type on the erodability of sediments have been examined. Results of the laboratory study have been incorporated into the bottom boundary conditions for a three-dimensional sediment dispersion model. Gravitational settling and particle size distribution of the Mississippi Sound sediments were also studied in laboratories. Bottom boundary layer dynamics and wave effect on sediment dispersion have been studied by means of a turbulent transport model and a wave model. Model simulations of sediment dispersion in the Mississippi Sound agree well available data from ship surveys.

  18. Three-dimensional mapping of mechanical activation patterns, contractile dyssynchrony and dyscoordination by two-dimensional strain echocardiography: Rationale and design of a novel software toolbox

    PubMed Central

    De Boeck, Bart WL; Kirn, Borut; Teske, Arco J; Hummeling, Ralph W; Doevendans, Pieter A; Cramer, Maarten J; Prinzen, Frits W

    2008-01-01

    echocardiographic deformation data into a 3-D model by dedicated software allows a comprehensive analysis of spatio-temporal distribution patterns of myocardial dyssynchrony, of the global left ventricular deformation and of newer indices that may better reflect myocardial dyscoordination and/or impaired ventricular contractile efficiency. The potential value of such an analysis is highlighted in two dyssynchronous pathologies that impose particular challenges to deformation imaging. PMID:18513412

  19. Gammasphere software development. Progress report

    SciTech Connect

    Piercey, R.B.

    1994-01-01

    This report describes the activities of the nuclear physics group at Mississippi State University which were performed during 1993. Significant progress has been made in the focus areas: chairing the Gammasphere Software Working Group (SWG); assisting with the porting and enhancement of the ORNL UPAK histogramming software package; and developing standard formats for Gammasphere data products. In addition, they have established a new public ftp archive to distribute software and software development tools and information.

  20. Paleo-tribology: development of wear measurement techniques and a three-dimensional model revealing how grinding dentitions self-wear to enable functionality

    NASA Astrophysics Data System (ADS)

    Erickson, Gregory M.; Sidebottom, Mark A.; Curry, John F.; Kay, David Ian; Kuhn-Hendricks, Stephen; Norell, Mark A.; Sawyer, W. Gregory; Krick, Brandon A.

    2016-06-01

    In most mammals and a rare few reptilian lineages the evolution of precise dental occlusion led to the capacity to form functional chewing surfaces due to pressures generated while feeding. The complex dental architectures of such teeth and the biomechanics of their self-wearing nature are poorly understood. Our research team composed of paleontologists, evolutionary biologists, and engineers have developed a protocol to: (1) determine the histological make-up of grinding dentitions in extant and fossil taxa; (2) ascertain wear-relevant material properties of the tissues; (3) determine how those properties relate to inter-tissue-biomechanics leading the dental functionality using a three-dimensional Archard’s wear model developed specifically for dental applications; (4) analyze those data in phylogenetic contexts to infer evolutionary patterns as they relate to feeding. Finally we discuss industrial applications that are emerging from our paleontologically-inspired research.

  1. Three dimensional monitoring of urban development by means of ortho-rectified aerial photographs and high-resolution satellite images.

    PubMed

    Ayhan, E; Erden, O; Gormus, E T

    2008-12-01

    Nowadays, cities are developing and changing rapidly due to the increases in the population and immigration. Rapid changing brings obligation to control the cities by planning. The satellite images and the aerial photographs enable us to track the urban development and provide the opportunity to get the current data about urban. With the help of these images, cities may have interrogated dynamic structures. This study is composed of three steps. In the first step, orthophoto images have been generated in order to track urban developments by using the aerial photographs and the satellite images. In this step, the panchromatic (PAN), the multi spectral (MS) and the pan-sharpened image of IKONOS satellite have been used as input satellite data and the accuracy of orthophoto images has been investigated in detail, in terms of digital elevation model (DEM), control points, input images and their properties. In the second step, a 3D city model with database has been generated with the help of orthophoto images and the vector layouts. And in the last step, up to date urban information obtained from 3D city model. This study shows that it is possible to detect the unlicensed buildings and the areas which are going to be nationalized and it also shows that it is easy to document the existing alterations in the cities with the help of current development plans and orthophoto images. And since accessing updated data is very essential to control development and monitor the temporal alterations in urban areas, in this study it is proven that the orthophoto images generated by using aerial photos and satellite images are very reliable to use in obtaining topographical information, in change detection and in city planning. When digital orthophoto images used with GIS, they provide quick decision control mechanisms and quick data collection. Besides, they help to find efficient solutions in a short time in the planning applications.

  2. A three-dimensional simulation of transition and early turbulence in a time-developing mixing layer

    NASA Technical Reports Server (NTRS)

    Cain, A. B.; Reynolds, W. C.; Ferziger, J. H.

    1981-01-01

    The physics of the transition and early turbulence regimes in the time developing mixing layer was investigated. The sensitivity of the mixing layer to the disturbance field of the initial condition is considered. The growth of the momentum thickness, the mean velocity profile, the turbulence kinetic energy, the Reynolds stresses, the anisotropy tensor, and particle track pictures of computations are all examined in an effort to better understand the physics of these regimes. The amplitude, spectrum shape, and random phases of the initial disturbance field were varied. A scheme of generating discrete orthogonal function expansions on some nonuniform grids was developed. All cases address the early or near field of the mixing layer. The most significant result shows that the secondary instability of the mixing layer is produced by spanwise variations in the straining field of the primary vortex structures.

  3. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development

    PubMed Central

    Heers, Ashley M.; Baier, David B.; Jackson, Brandon E.; Dial, Kenneth P.

    2016-01-01

    Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small “protowings”, and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an “avian” flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg

  4. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.

    PubMed

    Heers, Ashley M; Baier, David B; Jackson, Brandon E; Dial, Kenneth P

    2016-01-01

    Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small "protowings", and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an "avian" flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg

  5. Development of three-dimensional collagen scaffolds with controlled architecture for cell migration studies using breast cancer cell lines.

    PubMed

    Campbell, Jonathan J; Husmann, Anke; Hume, Robert D; Watson, Christine J; Cameron, Ruth E

    2017-01-01

    Cancer is characterized by cell heterogeneity and the development of 3D in vitro assays that can distinguish more invasive or migratory phenotypes could enhance diagnosis or drug discovery. 3D collagen scaffolds have been used to develop analogues of complex tissues in vitro and are suited to routine biochemical and immunological assays. We sought to increase 3D model tractability and modulate the migration rate of seeded cells using an ice-templating technique to create either directional/anisotropic or non-directional/isotropic porous architectures within cross-linked collagen scaffolds. Anisotropic scaffolds supported the enhanced migration of an invasive breast cancer cell line MDA-MB-231 with an altered spatial distribution of proliferative cells in contrast to invasive MDA-MB-468 and non-invasive MCF-7 cells lines. In addition, MDA-MB-468 showed increased migration upon epithelial-to-mesenchymal transition (EMT) in anisotropic scaffolds. The provision of controlled architecture in this system may act both to increase assay robustness and as a tuneable parameter to capture detection of a migrated population within a set time, with consequences for primary tumour migration analysis. The separation of invasive clones from a cancer biomass with in vitro platforms could enhance drug development and diagnosis testing by contributing assay metrics including migration rate, as well as modelling cell-cell and cell-matrix interaction in a system compatible with routine histopathological testing.

  6. The value of pulmonary contusion volume measurement with three-dimensional computed tomography in predicting acute respiratory distress syndrome development.

    PubMed

    Wang, Shaohua; Ruan, Zheng; Zhang, Jie; Jin, Wei

    2011-12-01

    This study reports the value of accurate pulmonary contusion (PC) volume measurement with 3-dimensional computed tomography (CT) in predicting acute respiratory distress syndrome (ARDS) development. The study enrolled all patients who were diagnosed with PC on admission by CT and had a chest Abbreviated Injury Score (AIS) exceeding 2 between January 1, 2010, and October 31, 2010. PC volume was measured from 3-dimensional reconstructions of admission chest CTs and expressed as a percentage of total lung volume. Admission data were prospectively collected. The independent predictor of ARDS development was established. The accuracy and value of the predictors were analyzed, and the influence of PC volume percentage on clinical outcomes was demonstrated. The average PC volume percentage was 21.86% ± 13.90% (range, 5.6% to 61.0%), which was inconsistently correlated with the admission partial pressure of oxygen/fraction of inspired oxygen ratio (R(2) = 0.083). ARDS was diagnosed in 26 patients (43.3%) and pneumonia in 21 (35.0%). The admission partial pressure of oxygen/fraction of inspired oxygen ratio (p = 0.003) and PC volume percentage (p = 0.01) were independent predictive factors of ARDS development. Patients with a PC volume percentage exceeding the best cutoff of 21.5% were defined as the severe PC group. The partial pressure of oxygen/fraction of inspired oxygen ratio, the needed maximal positive end-expiratory pressure level, and ARDS incidence between the severe group and the general group was significantly different (p <.05). Pulmonary contusion volume measured using 3-dimensional CT is feasible in emergency departments and helpful to identify patients at high-risk for ARDS. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Development of a human three-dimensional organotypic skin-melanoma spheroid model for in vitro drug testing

    PubMed Central

    Vörsmann, H; Groeber, F; Walles, H; Busch, S; Beissert, S; Walczak, H; Kulms, D

    2013-01-01

    Despite remarkable efforts, metastatic melanoma (MM) still presents with significant mortality. Recently, mono-chemotherapies are increasingly replenished by more cancer-specific combination therapies involving death ligands and drugs interfering with cell signaling. Still, MM remains a fatal disease because tumors rapidly develop resistance to novel therapies thereby regaining tumorigenic capacity. Although genetically engineered mouse models for MM have been developed, at present no model is available that reliably mimics the human disease and is suitable for studying mechanisms of therapeutic obstacles including cell death resistance. To improve the increasing requests on new therapeutic alternatives, reliable human screening models are demanded that translate the findings from basic cellular research into clinical applications. By developing an organotypic full skin equivalent, harboring melanoma tumor spheroids of defined sizes we have invented a cell-based model that recapitulates both the 3D organization and multicellular complexity of an organ/tumor in vivo but at the same time accommodates systematic experimental intervention. By extending our previous findings on melanoma cell sensitization toward TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) by co-application of sublethal doses of ultraviolet-B radiation (UVB) or cisplatin, we show significant differences in the therapeutical outcome to exist between regular two-dimensional (2D) and complex in vivo-like 3D models. Of note, while both treatment combinations killed the same cancer cell lines in 2D culture, skin equivalent-embedded melanoma spheroids are potently killed by TRAIL+cisplatin treatment but remain almost unaffected by the TRAIL+UVB combination. Consequently, we have established an organotypic human skin-melanoma model that will facilitate efforts to improve therapeutic outcomes for malignant melanoma by providing a platform for the investigation of cytotoxic treatments and

  8. Demonstration of abnormal notochord development by three-dimensional reconstructive imaging in the rat model of esophageal atresia.

    PubMed

    Williams, A K; Qi, B Q; Beasley, S W

    2001-01-01

    The notochord (Nt) is believed to have a role in the development of axial organs. This study was undertaken to reconstruct in three dimensions (3D) the relationship of the Nt to abnormal development of the foregut (Fg) in the adriamycin-induced rat model of esophageal atresia (EA). Pregnant Sprague-Dawley rats were given 1.75 mg/kg adriamycin intraperitoneally on gestational days 6 9 inclusive; control rats received i.p. saline of equal volume, or no injection. Rats were killed between days 11 and 14 and their embryos harvested, histologically sectioned serially, and stained with hematoxylin and eosin. Digitized photographs were taken of serial transverse sections; these photos were traced and used as the basis for 3D reconstruction. From day 11 the normal Nt is no longer in contact with the respiratory or Fg mesenchyme. In adriamycin-treated embryos the Nt branches abnormally as it enters the Fg mesenchyme. Adherence of the Nt to the mesenchyme of the Fg exerts mechanical traction pulling the upper Fg dorsally. The severity of the Fg abnormalities correlates with the length of the ventral extension of the Nt within the Fg mesenchyme: the embryo develops atresia of the esophagus or trachea when the Nt is grossly abnormal. The Nt undergoes reactive thickening in the absence of Fg structures ventral to it. Thus, structural lesions of the Fg (e.g., atresias) are associated with abnormalities of the Nt. The relationship of the Nt to the Fg mesenchyme determines the severity of the abnormality induced by adriamycin: extensive adherence produces tracheal agenesis and EA.

  9. Toward three-dimensional virtual biopsy of oral lesions through the development of a confocal endomicroscope interfaced with embedded computing

    NASA Astrophysics Data System (ADS)

    Thong, Patricia S. P.; Olivo, Malini; Movania, Muhammad M.; Tandjung, Stephanus S.; Bhuvaneswari, Ramaswamy; Seah, Hock-Soon; Lin, Feng; Qian, Kemao; Soo, Khee-Chee

    2011-07-01

    Oral lesions are conventionally diagnosed using white light endoscopy and histopathology of biopsy samples. Oral lesions are often flat and difficult to visualize under white light illumination. Moreover, histopathology is timeconsuming and there is a need to develop minimally invasive optical biopsy techniques to complement current techniques. Confocal laser endomicroscopy holds promise for virtual biopsy in disease diagnosis. This technique enables fluorescence imaging of tissue structures at microscopic resolution. We have developed a prototype real-time 3- dimensional (3D) imaging system using a laser endomicroscope interfaced with embedded computing. A Field- Programmable Gate Array computing platform has been programmed to synchronize cross-sectional image grabbing and Z-depth scanning, as well as automate acquisition of confocal image stacks. A PC was used for real-time volume rendering of the confocal image stacks. We conducted pre-clinical and pilot clinical studies to image the murine and human oral cavity. High quality volume renderings of the confocal image stacks were generated using 3D texture slicing. Tissue morphology and 3D structures could be visualized. The results demonstrate the potential of the system for diagnostic imaging of the oral cavity. This paves the way toward real-time virtual biopsy of oral lesions, with the aim to achieve same-day diagnosis in a clinical setting.

  10. Development of fibroblast culture in three-dimensional activated carbon fiber-based scaffold for wound healing.

    PubMed

    Huang, Wen-Ying; Yeh, Chia-Lin; Lin, Jui-Hsiang; Yang, Jai-Sing; Ko, Tse-Hao; Lin, Yu-Hsin

    2012-06-01

    This work developed a novel bi-layer wound dressing composed of 3D activated carbon fibers that allows facilitates fibroblast cell growth and migration to a wound site for tissue reconstruction, and the gentamicin is incorporated into a poly(γ-glutamic acid)/gelatin membrane to prevent bacterial infection. In an in vitro, field emission scanning electron microscopy shows that rat skin fibroblasts appeared and spread on the surface of activated carbon fibers, and penetrated the interior and exterior of the 3D activated carbon fiber construct to a depth of roughly 200 μm. An in vivo analysis shows that fibroblast cells containing the proposed 3D scaffold had the potential of a biologically functionalized dressing to accelerate wound closure. Additionally, fibroblasts migrated to the wound site in a bi-layer wound dressing containing fibroblasts, enhancing fibronectin and type I collagen expression, resulting in faster skin regeneration than that achieved with a Tegaderm™ hydrocolloid dressing or gauze.

  11. LDAR, A Three-Dimensional Lightning Warning System: Its Development and Use by the Government, and Transition to Public Availability

    NASA Technical Reports Server (NTRS)

    Starr, Stan; Sharp, David; Merceret, Francis; Madura, John; Murphy, Martin

    1998-01-01

    NASA, at the John F. Kennedy Space Center (KSC), developed and operates a unique high precision lightning location system to provide lightning related weather warnings. These warnings are used to stop lightning-sensitive operations such as space vehicle launches and ground operations where equipment and personnel are at risk. The data is provided to the Range Weather Operations [45th Weather Squadron, U. S. Air Force (USAF)] where it is used with other meteorological data to issue weather advisories and warnings for Cape Canaveral Air Station (CCAS) and KSC operations. This system, called Lightning Detection and Ranging (LDAR), provides users with a graphical display in three dimensions of 66 MHz radio frequency events generated by lightning processes. The locations of these events provide a sound basis for the prediction of lightning hazards. NASA and Global Atmospherics, Inc. are developing a new system that will replace the unique LDAR components with commercially available and maintainable components having improved capabilities. These components will be phased in to ensure full continuity and access to this important warning technology. These LDAR systems are expected to eventually be available for installation and use by the public at specialized facilities, such as airports, and for general weather warnings via the National Weather Service (NWS) or television broadcast. The NWS in Melbourne has had access to real-time LDAR data since 1993 on an experimental basis. This use of LDAR has shown promise for the improvement of aviation forecasts and severe weather warnings. More so, it has opened the door to investigate the feasibility of issuing lightning-related public advisories. The success of its early use suggests that this technology may improve safety and potentially save lives, therefore constituting a significant benefit to the public. This paper describes the LDR system, the plans and progress of these upgrades, and the potential benefits of its use.

  12. Development and characterization of a three-dimensional co-culture model of tumor T cell infiltration.

    PubMed

    Alonso-Nocelo, M; Abuín, C; López-López, R; de la Fuente, M

    2016-04-14

    Tumor growth and metastasis entangle the alteration and recruitment of non-malignant cells to the primary tumor, among them immune cells, constituting the tumor microenvironment (TME). Communication between tumor cells and their stroma has been shown as a fundamental driving force of the tumoral process. A great deal of effort has been focused on depicting their specific interactions and crosstalk. However, most research has been carried out in 2D conventional cultures that alter cell morphology and intracellular signaling processes. Considering these premises, we have developed a 3D cell co-culture model to mimic T cell infiltration into the tumor mass and explore tumor-immune cells interactions in the TME. Expression of specific cell markers and assessment of cell proliferation were carried out to characterize the proposed 3D co-culture model. Additionally, the study and profiling of the secretome revealed a subset of particular cancer-related inflammation proteins prompted upon 3D cultivation of tumor cells in presence of lymphocytes, pointing out an intercellular communication. Altogether, these results suggest that our 3D cell co-culture model can be a useful tool to identify and study critical factors mediating the crosstalk between tumor and immune cells in the TME. Finally, the potential of this model as a drug-screening platform has been explored using docetaxel as a model antitumoral compound.

  13. Three-Dimensional Reconstruction from Cone-Beam Projections for Flat and Curved Detectors: Reconstruction Method Development.

    NASA Astrophysics Data System (ADS)

    Hu, Hui

    This dissertation is principally concerned with improving the performance of a prototype image-intensifier -based cone-beam volume computed tomography system by removing or partially removing two of its restricting factors, namely, the inaccuracy of current cone-beam reconstruction algorithm and the image distortion associated with the curved detecting surface of the image intensifier. To improve the accuracy of cone-beam reconstruction, first, the currently most accurate and computationally efficient cone-beam reconstruction method, the Feldkamp algorithm, is investigated by studying the relation of an original unknown function with its Feldkamp estimate. From this study, a partial knowledge on the unknown function can be derived in the Fourier domain from its Feldkamp estimate. Then, based on the Gerchberg-Papoulis algorithm, a modified iterative algorithm efficiently incorporating the Fourier knowledge as well as the a priori spatial knowledge on the unknown function is devised and tested to improve the cone-beam reconstruction accuracy by postprocessing the Feldkamp estimate. Two methods are developed to remove the distortion associated with the curved surface of image intensifier. A calibrating method based on a rubber-sheet remapping is designed and implemented. As an alternative, the curvature can be considered in the reconstruction algorithm. As an initial effort along this direction, a generalized convolution -backprojection reconstruction algorithm for fan-beam and any circular detector arrays is derived and studied.

  14. Note: Development of a compact x-ray particle image velocimetry for measuring opaque flows. II. Three-dimensional velocity field reconstruction

    SciTech Connect

    Jung, Sung Yong; Lee, Sang Joon

    2012-04-15

    An x-ray particle image velocimetry (PIV) system using a cone-beam type x-ray was developed. The field of view and the spatial resolution are 36 x 24.05 mm{sup 2} and 20 {mu}m, respectively. The three-dimensional velocity field was reconstructed by adopting the least squares minimum residue and simultaneous multiplicative algebraic reconstruction techniques. According to a simulation study with synthetic images, the reconstructions were acceptable with 7 projections and 50 iterations. The reconstructed and supplied flow rates differed by only about 6.49% in experimental verification. The x-ray tomographic PIV system would be useful for 3D velocity field information of opaque flows.

  15. Development and application of a program to calculate transonic flow around an oscillating three-dimensional wing using finite difference procedures

    NASA Technical Reports Server (NTRS)

    Weatherill, Warren H.; Ehlers, F. Edward

    1989-01-01

    A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. Difference equations are derived for harmonic transonic flow to include a coordinate transformation for swept and tapered planforms. A pilot program is developed for three-dimensional planar lifting surface configurations (including thickness) for the CRAY-XMP at Boeing Commercial Airplanes and for the CYBER VPS-32 at the NASA Langley Research Center. An investigation is made of the effect of the location of the outer boundaries on accuracy for very small reduced frequencies. Finally, the pilot program is applied to the flutter analysis of a rectangular wing.

  16. Open Source Software Development

    DTIC Science & Technology

    2011-01-01

    Agency’s XMM-Newton Observatory, the Sloan Digital Sky Survey, and others. These are three highly visible astrophysics research projects whose...In scientific fields like astrophysics that critically depend on software, open source is considered an essential precondition for research to...space are made, this in turn often leads to modification, extension, and new versions of the astronomical software in use that enable astrophysical

  17. Gammasphere software development. Progress report

    SciTech Connect

    Piercey, R.B.

    1993-05-01

    Activities of the nuclear physics group are described. Progress was made in organizing the Gammasphere Software Working Group, establishing a nuclear computing facility, participating in software development at Lawrence Berkeley, developing a common data file format, and adapting the ORNL UPAK software to run at Gammasphere. A universal histogram object was developed that defines a file format and provides for an objective-oriented programming model. An automated liquid nitrogen fill system was developed for Gammasphere (110 Ge detectors comprise the sphere).

  18. A three-dimensional model of error and safety in surgical health care microsystems. Rationale, development and initial testing

    PubMed Central

    2011-01-01

    Background Research estimates of inadvertent harm to patients undergoing modern healthcare demonstrate a serious problem. Much attention has been paid to analysis of the causes of error and harm, but researchers have typically focussed either on human interaction and communication or on systems design, without fully considering the other components. Existing models for analysing harm are principally derived from theory and the analysis of individual incidents, and their practical value is often limited by the assumption that identifying causal factors automatically suggests solutions. We suggest that new models based on observation are required to help analyse healthcare safety problems and evaluate proposed solutions. We propose such a model which is directed at "microsystem" level (Ward and operating theatre), and which frames problems and solutions within three dimensions. Methods We have developed a new, simple, model of safety in healthcare systems, based on analysis of real problems seen in surgical systems, in which influences on risk at the "microsystem" level are described in terms of only 3 dimensions - technology, system and culture. We used definitions of these terms which are similar or identical to those used elsewhere in the safety literature, and utilised a set of formal empirical and deductive processes to derive the model. The "3D" model assumes that new risks arise in an unpredictable stochastic manner, and that the three defined dimensions are interactive, in an unconstrained fashion. We illustrated testing of the model, using analysis of a small number of incidents in a surgical environment for which we had detailed prospective observational data. Results The model appeared to provide useful explanation and categorisation of real events. We made predictions based on the model, which are experimentally verifiable, and propose further work to test and refine it. Conclusion We suggest that, if calibrated by application to a large incident dataset

  19. Development of near zero-order release dosage forms using three-dimensional printing (3-DP) technology.

    PubMed

    Wang, Chen-Chao; Tejwani Motwani, Monica R; Roach, Willie J; Kay, Jennifer L; Yoo, Jaedeok; Surprenant, Henry L; Monkhouse, Donald C; Pryor, Timothy J

    2006-03-01

    Three near zero-order controlled-release pseudoephedrine hydrochloride (PEH) formulations demonstrating proportional release rates were developed using 3-Dimensional Printing (3-DP) technology. Mixtures of Kollidon SR and hydroxypropylmethyl cellulose (HPMC) were used as drug carriers. The release rates were adjusted by varying the Kollidon SR-HPMC ratio while keeping fabrication parameters constant. The dosage forms were composed of an immediate release core and a release rate regulating shell, fabricated with an aqueous PEH and an ethanolic triethyl citrate (TEC) binder, respectively. The dosage form design called for the drug to be released via diffusional pathways formed by HPMC in the shell matrix. The release rate was shown to increase correspondingly with the fraction of HPMC contained in the polymer blend. The designed formulations resulted in dosage forms that were insensitive to changes in pH of the dissolution medium, paddle stirring rate, and the presence/absence of a sinker. The near zero-order release properties were unchanged regardless of the dissolution test being performed on either single cubes or on a group of eight cubes encased within a gelatin capsule shell. The chemical and dissolution properties of the three formulations remained unchanged following 1 month's exposure to 25 degrees C/60% RH or 40 degrees C/75% RH environment under open container condition. The in vivo performance of the three formulations was evaluated using a single-dose, randomized, open-label, four-way crossover clinical study composed of 10 fasted healthy volunteers. The pharmacokinetic parameters were analyzed using a noncompartmental model. Qualitative rank order linear correlations between in vivo absorption profiles and in vitro dissolution parameters (with slope and intercept close to unity and origin, respectively) were obtained for all three formulations, indicating good support for a Level A in vivo/in vitro correlation.

  20. Development and validation of a black carbon mixing state resolved three-dimensional model: Aging processes and radiative impact

    SciTech Connect

    Matsui, H.; Koike, Makoto; Kondo, Yutaka; Moteki, N.; Fast, Jerome D.; Zaveri, Rahul A.

    2013-03-16

    : A new two-dimensional aerosol bin scheme, which resolves both aerosol size and black carbon (BC) mixing state for BC aging processes (e.g., condensation and coagulation), has been developed and implemented into the WRF-chem model (MS-resolved WRF-chem). The mixing state of BC simulated by this model is compared with direct measurements over the East Asian region in spring 2009. Model simulations generally reproduce the observed features of the BC mixing state, such as the size-dependent number fractions of BC-containing and BC-free particles and the coating thickness of BC-containing particles. Sensitivity simulations show that the condensation process is dominant for the growth of thinly coated BC particles, while the coagulation process is necessary to produce thickly coated BC particles. Off-line optical and radiative calculations assuming an average mixing state for each size bin show that the domain- and period-averaged absorption coefficient and heating rate by aerosols are overestimated by 30 – 40% in the boundary layer compared with a benchmark simulation with the detailed treatment of mixing state. The absolute value of aerosol radiative forcing is also overestimated (10%, 3 W m-2) at the surface. However, these overestimations are reduced considerably when all the parameters (including mass and number concentration) are calculated with the simple treatment of mixing state. This is because the overestimation of radiative parameters due to higher absorption efficiency (compared with the benchmark simulation) is largely canceled by the underestimation of BC concentrations due to efficient wet removal processes. The overall errors in radiative forcing can be much smaller because of this cancellation but for the wrong reasons.

  1. [Preliminary construction of three-dimensional visual educational system for clinical dentistry based on world wide web webpage].

    PubMed

    Hu, Jian; Xu, Xiang-yang; Song, En-min; Tan, Hong-bao; Wang, Yi-ning

    2009-09-01

    To establish a new visual educational system of virtual reality for clinical dentistry based on world wide web (WWW) webpage in order to provide more three-dimensional multimedia resources to dental students and an online three-dimensional consulting system for patients. Based on computer graphics and three-dimensional webpage technologies, the software of 3Dsmax and Webmax were adopted in the system development. In the Windows environment, the architecture of whole system was established step by step, including three-dimensional model construction, three-dimensional scene setup, transplanting three-dimensional scene into webpage, reediting the virtual scene, realization of interactions within the webpage, initial test, and necessary adjustment. Five cases of three-dimensional interactive webpage for clinical dentistry were completed. The three-dimensional interactive webpage could be accessible through web browser on personal computer, and users could interact with the webpage through rotating, panning and zooming the virtual scene. It is technically feasible to implement the visual educational system of virtual reality for clinical dentistry based on WWW webpage. Information related to clinical dentistry can be transmitted properly, visually and interactively through three-dimensional webpage.

  2. Development of a Joint Inversion Technique using Gravimetric and Muon-radiographic Data for Resolving Three-dimensional Density Structure of a Gigantic Body

    NASA Astrophysics Data System (ADS)

    Nishiyama, R.; Tanaka, H.; Tanaka, Y.; Okubo, S.; Oshima, H.; Maekawa, T.

    2012-04-01

    We have developed a method of analyzing gravimetric and muon-radiographic data for visualizing a three-dimensional density structure of a volcano. The method searches for a density structure that best explains the muon and gravity data simultaneously. For finding a solution, techniques in least-squares inversion were employed. According to the model simulation we have conducted, this new method was proved to have higher potential than previous gravimetric inversion and previous muon tomography [Taira,2010; Tanaka et al.,2010]. As a demonstration, we applied this method to Mt. Showa-Shinzan lava dome, Hokkaido, Japan. At this site, muon observation has already been performed with emulsion cloud chamber (ECC). The effective area of ECC was 1200 cm2, and the exposure time was 4 month.Tanaka et al.,[2007] calculated the amount of matter on the muon trajectories in the unit of gcm-2 (density times length). In addition to the muon data, we newly collected gravity data at 35 stations on / around the lava dome. The data was measured by using a LaCoste Romberg Gravimeter (G-875). Position of a gravity station was determined by GPS interferometry between a reference station and a moving station. Thereby, we conducted joint inversion of the muon and gravity data. The joint inversion yielded us the three-dimensional density profile of Mt.Showa-Shinzan. The density profile suggested the two features of the dome. Firstly, lava had intruded beneath the dome in a cylindrical shape whose diameter was 300 meter. This is inferred by the existence of high density(ρ > 2.4g/cc) region localized at an altitude of 220 ~ 260 meter. Secondly, we found a ultra high density region which was suspected to be a spine spreading vertically near the top of the dome.

  3. Three dimensional boundary conditions in supersonic flow

    NASA Technical Reports Server (NTRS)

    Rudman, S.; Marconi, F.

    1981-01-01

    A theoretical analysis of the flow pattern at a solid surface in three dimensional supersonic flow is presented. The additional information necessary to overcome the nonuniqueness associated with the body tangency condition in three dimensions was developed. The analysis is based on the fact that three dimensional waves propagate locally exactly as they do in axisymmetric flow when viewed in the osculating plane to the streamline. The supersonic flow over an infinite swept corner is examined by both the classical solution and the three dimensional solution in the osculating plane and the results are shown to be identical. A simple numerical algorithm is proposed which accounts for the three wave surfaces that interact at a solid boundary.

  4. Development methodology for scientific software

    SciTech Connect

    Cort, G.; Goldstone, J.A.; Nelson, R.O.; Poore, R.V.; Miller, L.; Barrus, D.M.

    1985-01-01

    We present the details of a software development methodology that addresses all phases of the software life cycle, yet is well suited for application by small projects with limited resources. The methodology has been developed at the Los Alamos Weapons Neutron Research (WNR) Facility and was utilized during the recent development of the WNR Data Acquisition Command Language. The methodology emphasizes the development and maintenance of comprehensive documentation for all software components. The impact of the methodology upon software quality and programmer productivity is assessed.

  5. Managers Handbook for Software Development

    NASA Technical Reports Server (NTRS)

    Agresti, W.; Mcgarry, F.; Card, D.; Page, J.; Church, V.; Werking, R.

    1984-01-01

    Methods and aids for the management of software development projects are presented. The recommendations are based on analyses and experiences with flight dynamics software development. The management aspects of organizing the project, producing a development plan, estimation costs, scheduling, staffing, preparing deliverable documents, using management tools, monitoring the project, conducting reviews, auditing, testing, and certifying are described.

  6. Three-dimensional colloidal lithography.

    PubMed

    Nagai, Hironori; Poteet, Austen; Zhang, Xu A; Chang, Chih-Hao

    2017-03-24

    Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle-light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd's mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.

  7. Three-dimensional colloidal lithography

    NASA Astrophysics Data System (ADS)

    Nagai, Hironori; Poteet, Austen; Zhang, Xu A.; Chang, Chih-Hao

    2017-03-01

    Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle-light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd’s mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.

  8. Three dimensional digital imaging of environmental data

    SciTech Connect

    Nichols, R.L.; Eddy, C.A.

    1991-06-14

    The Environmental Sciences Section (ESS) of the Savannah River Laboratory has recently acquired the computer hardware (Silicon Graphics Personal Iris Workstations) and software (Dynamic Graphics, Interactive Surface and Volume Modeling) to perform three dimensional analysis of hydrogeologic data. Three dimensional digital imaging of environmental data is a powerful technique that can be used to incorporate field, analytical, and modeling results from geologic, hydrologic, ecologic, and chemical studies into a comprehensive model for visualization and interpretation. This report covers the contamination of four different sites of the Savannah River Plant. Each section of this report has a computer graphic display of the concentration of contamination in the groundwater and/or sediments of each site.

  9. Managing the Software Development Process

    NASA Technical Reports Server (NTRS)

    Lubelczky, Jeffrey T.; Parra, Amy

    1999-01-01

    The goal of any software development project is to produce a product that is delivered on time, within the allocated budget, and with the capabilities expected by the customer and unfortunately, this goal is rarely achieved. However, a properly managed project in a mature software engineering environment can consistently achieve this goal. In this paper we provide an introduction to three project success factors, a properly managed project, a competent project manager, and a mature software engineering environment. We will also present an overview of the benefits of a mature software engineering environment based on 24 years of data from the Software Engineering Lab, and suggest some first steps that an organization can take to begin benefiting from this environment. The depth and breadth of software engineering exceeds this paper, various references are cited with a goal of raising awareness and encouraging further investigation into software engineering and project management practices.

  10. Managing the Software Development Process

    NASA Astrophysics Data System (ADS)

    Lubelczyk, J.; Parra, A.

    The goal of any software development project is to produce a product that is delivered on time, within the allocated budget, and with the capabilities expected by the customer and unfortunately, this goal is rarely achieved. However, a properly managed project in a mature software engineering environment can consistently achieve this goal. In this paper we provide an introduction to three project success factors, a properly managed project, a competent project manager, and a mature software engineering environment. We will also present an overview of the benefits of a mature software engineering environment based on 24 years of data from the Software Engineering Lab, and suggest some first steps that an organization can take to begin benefiting from this environment. The depth and breadth of software engineering exceeds this paper, various references are cited with a goal of raising awareness and encouraging further investigation into software engineering and project management practices.

  11. Three-dimensional marginal separation

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1988-01-01

    The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.

  12. Specifications for the development of a fully three-dimensional numerical groundwater model for regional mass transport of radionuclides from a deep waste repository

    SciTech Connect

    Prickett, T.A.

    1980-04-01

    Specifications are given which are necessary to develop a three-dimensional numerical model capable of simulating regional mass transport of radionuclides from a deep waste repository. The model to be developed will include all of the significant mass transport processes including flow, chemical, and thermal advection, mechanical dispersion, molecular diffusion, ion exchange reactions, and radioactive decay. The model specifications also include that density and viscosity fluid properties be functions of pressure, temperature, and concentration and take into account fluid and geologic heterogenieties by allowing possible assignment of individual values to every block of the model. The model specifications furthermore include the repository shape, input/output information, boundary conditions, and the need for documentation and a user's manual. Model code validation can be accomplished with the included known analytical or laboratory solutions. It is recommended that an existing finite-difference model (developed by INTERCOMP and INTERA, Inc.) be used as a starting point either as an acceptable basic code for modification or as a pattern for the development of a completely different numerical scheme. A ten-step plan is given to outline the general procedure for development of the code.

  13. Software Development Cost Estimating Handbook

    DTIC Science & Technology

    2009-04-21

    Hill AFB, UT Researching Blueprinting Technical writing I t l i i / ditin erna rev ew ng e ng Naval Center for Cost Analysis (NCCA), Arlington, VA...development processes Software estimating models Defense Acquisition Framework Data collection Acronyms T i lerm no ogy References Systems & Software...Designed for readability and comprehension Large right margin for notes Systems & Software Technology Conference 921 April 2009 Part I - Basics

  14. Development of a 12-Item Abbreviated Three-Dimensional Wisdom Scale (3D-WS-12): Item Selection and Psychometric Properties.

    PubMed

    Thomas, Michael L; Bangen, Katherine J; Ardelt, Monika; Jeste, Dilip V

    2017-01-01

    Wisdom has been reported to be associated with better mental health and quality of life among older adults. Over the past decades, there has been considerable growth in empirical research on wisdom, including the development of standardized measures. The 39-item Three-Dimensional Wisdom Scale (3D-WS) is a useful assessment tool, given its rigorous development and good psychometric properties. However, the measure's length can prohibit use. In this article, we used a sample of 1,546 community-dwelling adults aged 21 to 100 years (M = 66 years) from the Successful AGing Evaluation (SAGE) study to develop an abbreviated 12-item version of the 3D-WS: the 3D-WS-12. Balancing concerns for measurement precision, internal structure, and content validity, factor analytic methods and expert judgment were used to identify a subset of 12-items for the 3D-WS-12. Results suggest that the 3D-WS-12 can provide efficient and valid assessments of Wisdom within the context of epidemiological surveys.

  15. Three dimensional colorimetric assay assemblies

    SciTech Connect

    Charych, D.; Reichart, A.

    2000-06-27

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  16. Three dimensional colorimetric assay assemblies

    DOEpatents

    Charych, Deborah; Reichart, Anke

    2000-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  17. Three-Dimensional Lissajous Figures.

    ERIC Educational Resources Information Center

    D'Mura, John M.

    1989-01-01

    Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)

  18. Creating Three-Dimensional Scenes

    ERIC Educational Resources Information Center

    Krumpe, Norm

    2005-01-01

    Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…

  19. Three-Dimensional Lissajous Figures.

    ERIC Educational Resources Information Center

    D'Mura, John M.

    1989-01-01

    Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)

  20. Creating Three-Dimensional Scenes

    ERIC Educational Resources Information Center

    Krumpe, Norm

    2005-01-01

    Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…

  1. The Meaning and Measurement of Work Fatigue: Development and Evaluation of the Three-Dimensional Work Fatigue Inventory (3D-WFI)

    PubMed Central

    Frone, Michael R.; Tidwell, Marie-Cecile O.

    2015-01-01

    Although work fatigue represents an important construct in several substantive areas, prior conceptual definitions and measures have been inadequate in a number of ways. The goals of the present study were to develop a conceptual definition and outline the desirable characteristics of a work fatigue measure; briefly examine several prior measures of work fatigue-related constructs; and develop and evaluate a new measure of work fatigue. The Three-Dimensional Work Fatigue Inventory (3D-WFI) provides separate and commensurate assessments of physical, mental, and emotional work fatigue. Results from a pilot study (N = 207) and a broader evaluative study of U.S. wage and salary workers (N = 2,477) suggest that the 3D-WFI is psychometrically sound and evinces a meaningful pattern of relations with variables that comprise the nomological network of work fatigue. As with all new measures, additional research is required to evaluate fully the utility of the 3D-WFI in research on work fatigue. PMID:25602275

  2. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology.

    PubMed

    Nishiyama, Yuichi; Nakamura, Makoto; Henmi, Chizuka; Yamaguchi, Kumiko; Mochizuki, Shuichi; Nakagawa, Hidemoto; Takiura, Koki

    2009-03-01

    We have developed a new technology for producing three-dimensional (3D) biological structures composed of living cells and hydrogel in vitro, via the direct and accurate printing of cells with an inkjet printing system. Various hydrogel structures were constructed with our custom-made inkjet printer, which we termed 3D bioprinter. In the present study, we used an alginate hydrogel that was obtained through the reaction of a sodium alginate solution with a calcium chloride solution. For the construction of the gel structure, sodium alginate solution was ejected from the inkjet nozzle (SEA-Jet, Seiko Epson Corp., Suwa, Japan) and was mixed with a substrate composed of a calcium chloride solution. In our 3D bioprinter, the nozzle head can be moved in three dimensions. Owing to the development of the 3D bioprinter, an innovative fabrication method that enables the gentle and precise fixation of 3D gel structures was established using living cells as a material. To date, several 3D structures that include living cells have been fabricated, including lines, planes, laminated structures, and tubes, and now, experiments to construct various hydrogel structures are being carried out in our laboratory.

  3. The meaning and measurement of work fatigue: Development and evaluation of the Three-Dimensional Work Fatigue Inventory (3D-WFI).

    PubMed

    Frone, Michael R; Tidwell, Marie-Cecile O

    2015-07-01

    Although work fatigue represents an important construct in several substantive areas, prior conceptual definitions and measures have been inadequate in a number of ways. The goals of the present study were to develop a conceptual definition and outline the desirable characteristics of a work fatigue measure, briefly examine several prior measures of work fatigue-related constructs, and develop and evaluate a new measure of work fatigue. The Three-Dimensional Work Fatigue Inventory (3D-WFI) provides separate and commensurate assessments of physical, mental, and emotional work fatigue. Results from a pilot study (n = 207) and a broader evaluative study of U.S. wage and salary workers (n = 2,477) suggest that the 3D-WFI is psychometrically sound and evinces a meaningful pattern of relations with variables that comprise the nomological network of work fatigue. As with all new measures, additional research is required to evaluate fully the utility of the 3D-WFI in research on work fatigue.

  4. Fabrication of endothelialized tube in collagen gel as starting point for self-developing capillary-like network to construct three-dimensional organs in vitro.

    PubMed

    Takei, Takayuki; Sakai, Shinji; Ono, Tsutomu; Ijima, Hiroyuki; Kawakami, Koei

    2006-09-05

    A possible strategy for creating three-dimensional (3D) tissue-engineered organs in vitro with similar volumes to the primary organs is to develop a capillary network throughout the constructs to provide sufficient oxygenation and nutrition to the cells composing them. Here, we propose a novel approach for the creation of a capillary-like network in vitro, based on the spontaneous tube-forming activity of vascular endothelial cells (ECs) in collagen gel. We fabricated a linear tube of 500 microm in diameter, the inner surface of which was filled with bovine carotid artery vascular endothelial cells (BECs), in type I collagen gel as a starting point for the formation of a capillary-like network. The BECs exposed to a medium containing vascular endothelial growth factor (VEGF) migrated into the ambient gel around the tube. After 2 weeks of VEGF exposure, the distance of the migration into the ambient gel in the radial direction of the tube reached approximately 800 microm. Cross-sections of capillary-like structures composed of the migrating BECs, with a lumen-like interior space, were observed in slices of the gel around the tube stained with hematoxylin-eosin (H&E). These results demonstrate that this approach using a pre-established tube, which is composed of ECs, as a starting point for a self-developing capillary-like network is potentially useful for constructing 3D organs in vitro.

  5. Resource utilization during software development

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1988-01-01

    This paper discusses resource utilization over the life cycle of software development and discusses the role that the current 'waterfall' model plays in the actual software life cycle. Software production in the NASA environment was analyzed to measure these differences. The data from 13 different projects were collected by the Software Engineering Laboratory at NASA Goddard Space Flight Center and analyzed for similarities and differences. The results indicate that the waterfall model is not very realistic in practice, and that as technology introduces further perturbations to this model with concepts like executable specifications, rapid prototyping, and wide-spectrum languages, we need to modify our model of this process.

  6. Resource utilization during software development

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1988-01-01

    This paper discusses resource utilization over the life cycle of software development and discusses the role that the current 'waterfall' model plays in the actual software life cycle. Software production in the NASA environment was analyzed to measure these differences. The data from 13 different projects were collected by the Software Engineering Laboratory at NASA Goddard Space Flight Center and analyzed for similarities and differences. The results indicate that the waterfall model is not very realistic in practice, and that as technology introduces further perturbations to this model with concepts like executable specifications, rapid prototyping, and wide-spectrum languages, we need to modify our model of this process.

  7. Software development without languages

    NASA Technical Reports Server (NTRS)

    Osborne, Haywood S.

    1988-01-01

    Automatic programming generally involves the construction of a formal specification; i.e., one which allows unambiguous interpretation by tools for the subsequent production of the corresponding software. Previous practical efforts in this direction have focused on the serious problems of: (1) designing the optimum specification language; and (2) mapping (translating or compiling) from this specification language to the program itself. The approach proposed bypasses the above problems. It postulates that the specification proper should be an intermediate form, with the sole function of containing information sufficient to facilitate construction of programs and also of matching documentation. Thus, the means of forming the intermediary becomes a human factors task rather than a linguistic one; human users will read documents generated from the specification, rather than the specification itself.

  8. Software development without languages

    NASA Technical Reports Server (NTRS)

    Osborne, Haywood S.

    1988-01-01

    Automatic programming generally involves the construction of a formal specification; i.e., one which allows unambiguous interpretation by tools for the subsequent production of the corresponding software. Previous practical efforts in this direction have focused on the serious problems of: (1) designing the optimum specification language; and (2) mapping (translating or compiling) from this specification language to the program itself. The approach proposed bypasses the above problems. It postulates that the specification proper should be an intermediate form, with the sole function of containing information sufficient to facilitate construction of programs and also of matching documentation. Thus, the means of forming the intermediary becomes a human factors task rather than a linguistic one; human users will read documents generated from the specification, rather than the specification itself.

  9. Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    PubMed Central

    Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng

    2016-01-01

    This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft. PMID:27104525

  10. Development and application of tetrabromobisphenol A imprinted electrochemical sensor based on graphene/carbon nanotubes three-dimensional nanocomposites modified carbon electrode.

    PubMed

    Zhang, Zhaohui; Cai, Rong; Long, Fang; Wang, Jing

    2015-03-01

    A novel imprinted electrochemical sensor based on graphene/carbon nanotubes three-dimensional (3D) nanocomposites modified carbon electrode was developed for the determination of tetrabromobisphenol A. The imprinted film was prepared by one-step electrodeposition technique with pyrrole as the functional monomer and tetrabromobisphenol A as the template molecule. The imprinted sensor was used for the determination of tetrabromobisphenol A with differential pulse voltammetry. A linear relationship between the response currents and the negative logarithm of tetrabromobisphenol A concentrations was obtained in the concentrations range of 1.0×10(-11)-1.0×10(-8) mol L(-1) with a detection limit of 3.7×10(-12) mol L(-1) (S/N=3). The proposed imprinted sensor showed excellent selectivity towards tetrabromobisphenol A. With good reproducibility and stability, the imprinted electrochemical sensor was used to detect tetrabromobisphenol A in fish samples successfully with the recoveries of 93.3-107.7%. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Culture of preantral follicles in poly(ethylene) glycol-based, three-dimensional hydrogel: a relationship between swelling ratio and follicular developments

    PubMed Central

    Ahn, Jong Il; Kim, Gil Ah; Kwon, Hyo Suk; Ahn, Ji Yeon; Hubbell, Jeffrey A; Song, Yong Sang; Lee, Seung Tae; Lim, Jeong Mook

    2015-01-01

    This study was undertaken to examine how the softness of poly(ethylene) glycol (PEG)-based hydrogels, creating a three-dimensional (3D) microenvironment, influences the in vitro growth of mouse ovarian follicles. Early secondary, preantral follicles of 2 week-old mice were cultured in a crosslinked four-arm PEG hydrogel. The hydrogel swelling ratio, which relates to softness, was modified within the range 25.7–15.5 by increasing the reactive PEG concentration in the precursor solution from 5% to 15% w/v, but it did not influence follicular growth to form the pseudoantrum (60–80%; p = 0.76). Significant (p < 0.04) model effects, however, were detected in the maturation and developmental competence of the follicle-derived oocytes. A swelling ratio of > 21.4 yielded better oocyte maturation than other levels, while the highest competence to develop pronuclear and blastocyst formation was detected at 20.6. In conclusion, gel softness, as reflected in swelling ratio, was one of the essential factors for supporting folliculogenesis in vivo within a hydrogel-based, 3D microenvironment. © 2014 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd. PMID:24493269

  12. Performance of new automated transthoracic three-dimensional echocardiographic software for left ventricular volumes and function assessment in routine clinical practice: Comparison with 3 Tesla cardiac magnetic resonance.

    PubMed

    Levy, Franck; Dan Schouver, Elie; Iacuzio, Laura; Civaia, Filippo; Rusek, Stephane; Dommerc, Carinne; Marechaux, Sylvestre; Dor, Vincent; Tribouilloy, Christophe; Dreyfus, Gilles

    2017-05-26

    Three-dimensional (3D) transthoracic echocardiography (TTE) is superior to two-dimensional Simpson's method for assessment of left ventricular (LV) volumes and LV ejection fraction (LVEF). Nevertheless, 3D TTE is not incorporated into everyday practice, as current LV chamber quantification software products are time-consuming. To evaluate the feasibility, accuracy and reproducibility of new fully automated fast 3D TTE software (HeartModel(A.I.); Philips Healthcare, Andover, MA, USA) for quantification of LV volumes and LVEF in routine practice; to compare the 3D LV volumes and LVEF obtained with a cardiac magnetic resonance (CMR) reference; and to optimize automated default border settings with CMR as reference. Sixty-three consecutive patients, who had comprehensive 3D TTE and CMR examinations within 24hours, were eligible for inclusion. Nine patients (14%) were excluded because of insufficient echogenicity in the 3D TTE. Thus, 54 patients (40 men; mean age 63±13 years) were prospectively included into the study. The inter- and intraobserver reproducibilities of 3D TTE were excellent (coefficient of variation<10%) for end-diastolic volume (EDV), end-systolic volume (ESV) and LVEF. Despite a slight underestimation of EDV using 3D TTE compared with CMR (bias=-22±34mL; P<0.0001), a significant correlation was found between the two measurements (r=0.93; P=0.0001). Enlarging default border detection settings leads to frequent volume overestimation in the general population, but improved agreement with CMR in patients with LVEF≤50%. Correlations between 3D TTE and CMR for ESV and LVEF were excellent (r=0.93 and r=0.91, respectively; P<0.0001). 3D TTE using new-generation fully automated software is a feasible, fast, reproducible and accurate imaging modality for LV volumetric quantification in routine practice. Optimization of border detection settings may increase agreement with CMR for EDV assessment in dilated ventricles. Copyright © 2017 Elsevier Masson

  13. Software Development Standard Processes (SDSP)

    NASA Technical Reports Server (NTRS)

    Lavin, Milton L.; Wang, James J.; Morillo, Ronald; Mayer, John T.; Jamshidian, Barzia; Shimizu, Kenneth J.; Wilkinson, Belinda M.; Hihn, Jairus M.; Borgen, Rosana B.; Meyer, Kenneth N.; Crean, Kathleen A.; Rinker, George C.; Smith, Thomas P.; Lum, Karen T.; Hanna, Robert A.; Erickson, Daniel E.; Gamble, Edward B., Jr.; Morgan, Scott C.; Kelsay, Michael G.; Newport, Brian J.; Lewicki, Scott A.; Stipanuk, Jeane G.; Cooper, Tonja M.; Meshkat, Leila

    2011-01-01

    A JPL-created set of standard processes is to be used throughout the lifecycle of software development. These SDSPs cover a range of activities, from management and engineering activities, to assurance and support activities. These processes must be applied to software tasks per a prescribed set of procedures. JPL s Software Quality Improvement Project is currently working at the behest of the JPL Software Process Owner to ensure that all applicable software tasks follow these procedures. The SDSPs are captured as a set of 22 standards in JPL s software process domain. They were developed in-house at JPL by a number of Subject Matter Experts (SMEs) residing primarily within the Engineering and Science Directorate, but also from the Business Operations Directorate and Safety and Mission Success Directorate. These practices include not only currently performed best practices, but also JPL-desired future practices in key thrust areas like software architecting and software reuse analysis. Additionally, these SDSPs conform to many standards and requirements to which JPL projects are beholden.

  14. Three-dimensional analysis of maxillary development in patients with unilateral cleft lip and palate during the first six years of life.

    PubMed

    Stancheva, Nadezhda; Dannhauer, Karl-Heinz; Hemprich, Alexander; Krey, Karl-Friedrich

    2015-09-01

    The purpose of this work was to analyse early upper-jaw development in patients with unilateral cleft lip and palate (UCLP) treated using two different concepts and to compare shape and size developments between these two groups and a group of noncleft patients. A total of 204 maxillary casts available for this study from 50 UCLP patients were analyzed for upper-jaw development based on three-dimensional measurements performed with a Reflex Microscope from birth up to 71 months of age. Thirty-five of these 50 patients were part of an early treatment group (two-stage cleft closure with single-stage palatoplasty at an age of 10-14 months) and 15 were part of a late treatment group (two-stage cleft closure with palatoplasty at an age of 4-7 years). The control group included 39 casts of 17 noncleft patients. Analysis of shape and size between the patients in the three groups yielded statistically significant differences between the cleft and the noncleft patients. In both treatment groups, we made observations typically associated with cleft formation like lateralization, asymmetry of the greater and lesser cleft segments, and pronounced vertical deviations of the segments. Viewed in all dimensions, however, the patients in the early treatment group approached the control group more closely, although a statistically significant difference was still observed. Our results suggest that the timing of hard-palate closure is not a decisive factor for upper-jaw development. Intrinsic factors (initial cleft width, presence of tooth buds) and the surgeon's skills appear to have a much more defining role.

  15. Transcriptome Dynamics of Developing Photoreceptors in Three-Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks.

    PubMed

    Kaewkhaw, Rossukon; Kaya, Koray Dogan; Brooks, Matthew; Homma, Kohei; Zou, Jizhong; Chaitankar, Vijender; Rao, Mahendra; Swaroop, Anand

    2015-12-01

    The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures.

  16. Three-dimensional retinal organoids from mouse pluripotent stem cells mimic in vivo development with enhanced stratification and rod photoreceptor differentiation

    PubMed Central

    Chen, Holly Yu; Kaya, Koray Dogan; Dong, Lijin

    2016-01-01

    Purpose The generation of three-dimensional (3D) organoids with optic cup–like structures from pluripotent stem cells has created opportunities for investigating mammalian retinal development in vitro. However, retinal organoids in culture do not completely reflect the developmental state and in vivo architecture of the rod-dominant mouse retina. The goals of this study were to develop an efficient protocol for generating retinal organoids from stem cells and examine the morphogenesis of rods in vitro. Methods To assess rod photoreceptor differentiation in retinal organoids, we took advantage of Nrl-green fluorescent protein (GFP) mice that show rod-specific expression of GFP directed by the promoter of leucine zipper transcription factor NRL. Using embryonic and induced pluripotent stem cells (ESCs and iPSCs, respectively) derived from the Nrl-GFP mouse, we were successful in establishing long-term retinal organoid cultures using modified culture conditions (called High Efficiency Hypoxia Induced Generation of Photoreceptors in Retinal Organoids, or HIPRO). Results We demonstrated efficient differentiation of pluripotent stem cells to retinal structures. More than 70% of embryoid bodies formed optic vesicles at day (D) 7, >50% produced optic cups by D10, and most of them survived until at least D35. The HIPRO organoids included distinct inner retina neurons in a somewhat stratified architecture and mature Müller glia spanning the entire retina. Almost 70% of the cells in the retinal organoids were rod photoreceptors that exhibited elongated cilia. Transcriptome profiles of GFP+ rod photoreceptors, purified from organoids at D25–35, demonstrated a high correlation with the gene profiles of purified rods from the mouse retina at P2 to P6, indicating their early state of differentiation. Conclusions The 3D retinal organoids, generated by HIPRO method, closely mimic in vivo retinogenesis and provide an efficient in vitro model to investigate photoreceptor

  17. Three dimensional boundary layers in internal flows

    NASA Technical Reports Server (NTRS)

    Bodonyi, R. J.

    1987-01-01

    A numerical study of the effects of viscous-inviscid interactions in three-dimensional duct flows is presented. In particular interacting flows for which the oncoming flow is not fully-developed were considered. In this case there is a thin boundary layer still present upstream of the surface distortion, as opposed to the fully-developed pipe flow situation wherein the flow is viscous across the cross section.

  18. Three-dimensional motor schema based navigation

    NASA Technical Reports Server (NTRS)

    Arkin, Ronald C.

    1989-01-01

    Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.

  19. Generation of three-dimensional unstructured grids by the advancing-front method

    NASA Technical Reports Server (NTRS)

    Lohner, Rainald; Parikh, Paresh

    1988-01-01

    The generation of three-dimensional unstructured grids using the advancing-front technique is described. While this generation technique has been shown to be effective for the generation of unstructured grids in two dimensions, its extension to three-dimensional regions required the development of surface definition software and sophisticated data structures to avoid excessive CPU-time overheads for the search operations involved. After obtaining an initial triangulation of the surfaces, tetrahedrons are generated by successively deleting faces from the generation front. Details of the mesh generation algorithm are given, together with examples and timings.

  20. Impact of Agile Software Development Model on Software Maintainability

    ERIC Educational Resources Information Center

    Gawali, Ajay R.

    2012-01-01

    Software maintenance and support costs account for up to 60% of the overall software life cycle cost and often burdens tightly budgeted information technology (IT) organizations. Agile software development approach delivers business value early, but implications on software maintainability are still unknown. The purpose of this quantitative study…

  1. Impact of Agile Software Development Model on Software Maintainability

    ERIC Educational Resources Information Center

    Gawali, Ajay R.

    2012-01-01

    Software maintenance and support costs account for up to 60% of the overall software life cycle cost and often burdens tightly budgeted information technology (IT) organizations. Agile software development approach delivers business value early, but implications on software maintainability are still unknown. The purpose of this quantitative study…

  2. Development and application of a three-dimensional Taylor-Galerkin numerical model for an air quality simulation near roadway tunnel portals

    SciTech Connect

    Okamoto, Shin`ichi; Sakai, Kazuhiro; Matsumoto, Koichi

    1996-12-31

    Since highway traffic has become one of the major emission sources of air pollution, air pollution prediction near roadway tunnel portals is a very important subject. Although many models have been suggested to predict pollutant concentrations near roadways, almost all models have been suggested to predict pollutant concentrations near roadways, almost all models can only be applied to at-grade or cut-off straight highways. Therefore, we have developed a numerical model which can be applied to the site near roadway tunnels in complex terrain. The first stage of our study is to make a database of air quality and the meteorological condition near roadway tunnel portals. The second stage is a screening of the wind field models as described in our cooperative paper presented by Kimura et al. The third stage is an evaluation of the numerical schemes for the advection equation, mainly carried out based on the results of the rotating cone problem. In our limited comparative study, the most accurate and high-speed-computing scheme was a Taylor-Galerkin scheme. The three dimensional model based on this scheme, was developed by an operator splitting of locally one dimensional calculations. The final stage is a validation study of the proposed model. The composite model consists of a wind field model, a model for the jet stream from a tunnel portal, and a model for the diffusion and advection of pollutants. The calculated concentrations near a tunnel portal have been compared with the air tracer experimental data and good conformity could be obtained.

  3. Delta-like 4-mediated Notch signaling is required for early T-cell development in a three-dimensional thymic structure.

    PubMed

    Hirano, Ken-ichi; Negishi, Naoko; Yazawa, Masaki; Yagita, Hideo; Habu, Sonoko; Hozumi, Katsuto

    2015-08-01

    Delta-like 4 (Dll4)-mediated Notch signaling is critical for specifying T-cell fate, but how Dll4-mediated Notch signaling actually contributes to T-cell development in the thymus remains unclear. To explore this mechanism in the thymic three-dimensional structure, we performed fetal thymus organ culture using Dll4-deficient mice. DN1a/b+DN2mt cells, which had not yet committed to either the αβ T or γδ T/NK cell lineage, did not differentiate into the αβ T-cell lineage in Dll4-deficient thymus despite the lack of cell fate conversion into other lineages. However, DN3 cells efficiently differentiated into a later developmental stage of αβ T cells, the double-positive (DP) stage, although the proliferation was significantly impaired during the differentiation process. These findings suggest that the requirement for Notch signaling differs between the earliest and pre-TCR-bearing precursors and that continued Notch signaling is required for proper differentiation with active proliferation of αβ T lineage cells. Furthermore, we showed that Notch signaling increased the c-Myc expression in DN3 cells in the thymus and that its overexpression rescued the proliferation and differentiation of DN3 cells in the Dll4-null thymus. Therefore, c-Myc plays a central role in the transition from stage DN3 to DP as a downstream target of Notch signaling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development and Clinical Evaluation of a Three-Dimensional Cone-Beam Computed Tomography Estimation Method Using a Deformation Field Map

    SciTech Connect

    Ren, Lei; Chetty, Indrin J.; Zhang Junan; Jin Jianyue; Wu, Q. Jackie; Yan Hui; Brizel, David M.; Lee, W. Robert; Movsas, Benjamin; Yin Fangfang

    2012-04-01

    Purpose: To develop a three-dimensional (3D) cone-beam computed tomography (CBCT) estimation method using a deformation field map, and to evaluate and optimize the efficiency and accuracy of the method for use in the clinical setting. Methods and Materials: We propose a method to estimate patient CBCT images using prior information and a deformation model. Patients' previous CBCT data are used as the prior information, and the new CBCT volume to be estimated is considered as a deformation of the prior image volume. The deformation field map is solved by minimizing deformation energy and maintaining new projection data fidelity using a nonlinear conjugate gradient method. This method was implemented in 3D form using hardware acceleration and multi-resolution scheme, and it was evaluated for different scan angles, projection numbers, and scan directions using liver, lung, and prostate cancer patient data. The accuracy of the estimation was evaluated by comparing the organ volume difference and the similarity between estimated CBCT and the CBCT reconstructed from fully sampled projections. Results: Results showed that scan direction and number of projections do not have significant effects on the CBCT estimation accuracy. The total scan angle is the dominant factor affecting the accuracy of the CBCT estimation algorithm. Larger scan angles yield better estimation accuracy than smaller scan angles. Lung cancer patient data showed that the estimation error of the 3D lung tumor volume was reduced from 13.3% to 4.3% when the scan angle was increased from 60 Degree-Sign to 360 Degree-Sign using 57 projections. Conclusions: The proposed estimation method is applicable for 3D DTS, 3D CBCT, four-dimensional CBCT, and four-dimensional DTS image estimation. This method has the potential for significantly reducing the imaging dose and improving the image quality by removing the organ distortion artifacts and streak artifacts shown in images reconstructed by the conventional

  5. Volumetric Three-Dimensional Display Systems

    NASA Astrophysics Data System (ADS)

    Blundell, Barry G.; Schwarz, Adam J.

    2000-03-01

    A comprehensive study of approaches to three-dimensional visualization by volumetric display systems This groundbreaking volume provides an unbiased and in-depth discussion on a broad range of volumetric three-dimensional display systems. It examines the history, development, design, and future of these displays, and considers their potential for application to key areas in which visualization plays a major role. Drawing substantially on material that was previously unpublished or available only in patent form, the authors establish the first comprehensive technical and mathematical formalization of the field, and examine a number of different volumetric architectures. System level design strategies are presented, from which proposals for the next generation of high-definition predictable volumetric systems are developed. To ensure that researchers will benefit from work already completed, they provide: * Descriptions of several recent volumetric display systems prepared from material supplied by the teams that created them * An abstract volumetric display system design paradigm * An historical summary of 90 years of development in volumetric display system technology * An assessment of the strengths and weaknesses of many of the systems proposed to date * A unified presentation of the underlying principles of volumetric display systems * A comprehensive bibliography Beautifully supplemented with 17 color plates that illustrate volumetric images and prototype displays, Volumetric Three-Dimensional Display Systems is an indispensable resource for professionals in imaging systems development, scientific visualization, medical imaging, computer graphics, aerospace, military planning, and CAD/CAE.

  6. Quasicrystalline three-dimensional foams

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Graner, F.; Mosseri, R.; Sadoc, J.-F.

    2017-03-01

    We present a numerical study of quasiperiodic foams, in which the bubbles are generated as duals of quasiperiodic Frank–Kasper phases. These foams are investigated as potential candidates to the celebrated Kelvin problem for the partition of three-dimensional space with equal volume bubbles and minimal surface area. Interestingly, one of the computed structures falls close to (but still slightly above) the best known Weaire–Phelan periodic candidate. In addition we find a correlation between the normalized bubble surface area and the root mean squared deviation of the number of faces, giving an additional clue to understanding the main geometrical ingredients driving the Kelvin problem.

  7. Three-dimensional light bullets

    NASA Astrophysics Data System (ADS)

    Minardi, S.; Eilenberger, F.; Kartashov, Y. V.; Szameit, A.; Röpke, U.; Kobelke, J.; Schuster, K.; Bartelt, H.; Nolte, S.; Torner, L.; Lederer, F.; Tünnermann, A.; Pertsch, T.

    2012-02-01

    Three dimensional Light Bullets (3D-LBs) are the most symmetric solitary waves, being nonlinear optical wavepackets propagating without diffraction nor dispersion. Since their theoretical prediction, 3D-LB's have constituted a challenge in nonlinear science, due to the impossibility to avoid catastrophic collapse in conventional homogeneous nonlinear media. We have recently observed stable 3D-LBs in media with periodically modulated transverse refractive index profile. We found that higher order linear and nonlinear effects force the 3D-LBs to evolve along their propagation path and eventually decay. The evolution and decay mechanism entails spatiotemporal effects, which under certain conditions, leads to superluminally propagating wavepackets.

  8. Three Dimensional Particle Tracking in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Megson, Peter

    2016-11-01

    Superfluid helium is a macroscopic quantum state which exhibits exotic physical properties, such as flow without friction and ballistic heat transport. Superfluid flow is irrotational except about line-like topological phase defects with quantized circulation, known as quatized vortices. The presence of these vortices and their dynamics is the dominating factor of turbulence in superfluid flows. One commonly studied regime of superfluid turbulence is thermal counterflow, where a local heat flux drives the formation and growth of a tangle of vortices. This talk will present experimental studies of counterflow turbulence performed using a multi-camera three-dimensional imaging apparatus with micron-sized ice tracer particles as well as fluorescent nanoparticles. In particular, we will discuss the measurement of three-dimensional velocties and their autocorrelations. Additionally, we are developing new techniques for optical studies of bulk superfluid helium, with particular focus on characterizing tracer particles and particle dispersal mechanisms. Funding from NSF DMR-1407472.

  9. Three-dimensional trabecular alignment model.

    PubMed

    Bono, Eric S; Smolinski, Patrick; Casagranda, Al; Xu, Junde

    2003-04-01

    Trabecular alignment theory has been used to quantify Wolff's Law of bone remodeling. A three-dimensional finite element scheme was developed to analyze the bone remodeling phenomenon. The mathematical model proposed by Mullender et al. and later modified by Smith et al. was adopted to simulate the surface-based trabecular resorption and formation processes. Enhancements incorporated into the previous model include: mapping into three-dimensions, controlling the remodeling signal's passage through marrow, controlling the finite distance the signal may pass through the bone matrix, and including non-bone material in the finite element model. After the model is explained and thoroughly studied, three-dimensional implant surface geometries are simulated.

  10. Three dimensional fabrication at small size scales

    PubMed Central

    Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.

    2010-01-01

    Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446

  11. Three-dimensional bio-printing.

    PubMed

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  12. Development and Characterization of a Rate-Dependent Three-Dimensional Macroscopic Plasticity Model Suitable for Use in Composite Impact Problems

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2015-01-01

    Several key capabilities have been identified by the aerospace community as lacking in the material/models for composite materials currently available within commercial transient dynamic finite element codes such as LS-DYNA. Some of the specific desired features that have been identified include the incorporation of both plasticity and damage within the material model, the capability of using the material model to analyze the response of both three-dimensional solid elements and two dimensional shell elements, and the ability to simulate the response of composites composed with a variety of composite architectures, including laminates, weaves and braids. In addition, a need has been expressed to have a material model that utilizes tabulated experimentally based input to define the evolution of plasticity and damage as opposed to utilizing discrete input parameters (such as modulus and strength) and analytical functions based on curve fitting. To begin to address these needs, an orthotropic macroscopic plasticity based model suitable for implementation within LS-DYNA has been developed. Specifically, the Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The coefficients in the yield function are determined based on tabulated stress-strain curves in the various normal and shear directions, along with selected off-axis curves. Incorporating rate dependence into the yield function is achieved by using a series of tabluated input curves, each at a different constant strain rate. The non-associative flow-rule is used to compute the evolution of the effective plastic strain. Systematic procedures have been developed to determine the values of the various coefficients in the yield function and the flow rule based on the tabulated input data. An algorithm based on the radial return method has been developed to facilitate the numerical implementation of the material

  13. Three-dimensional vortex methods

    SciTech Connect

    Greengard, C.A.

    1984-08-01

    Three-dimensional vortex methods for the computation of incompressible fluid flow are presented from a unified point of view. Reformulations of the filament method and of the method of Beale and Majda show them to be very similar algorithms; in both of them, the vorticity is evaluated by a discretization of the spatial derivative of the flow map. The fact that the filament method, the one which is most often used in practice, can be formulated as a version of the Beale and Majda algorithm in a curved coordinate system is used to give a convergence theorem for the filament method. The method of Anderson is also discussed, in which vorticity is evaluated by the exact differentiation of the approximate velocity field. It is shown that, in the inviscid version of this algorithm, each approximate vector of vorticity remains tangent to a material curve moving with the computed flow, with magnitude proportional to the stretching of this vortex line. This remains true even when time discretization is taken into account. It is explained that the expanding core vortex method converges to a system of equations different from the Navier-Stokes equations. Computations with the filament method of the inviscid interaction of two vortex rings are reported, both with single filaments in each ring and with a fully three-dimensional discretization of vorticity. The dependence on parameters is discussed, and convergence of the computed solutions is observed. 36 references, 4 figures.

  14. Human mammary fibroblasts stimulate invasion of breast cancer cells in a three-dimensional culture and increase stroma development in mouse xenografts.

    PubMed

    Olsen, Charlotta J; Moreira, José; Lukanidin, Eugene M; Ambartsumian, Noona S

    2010-08-19

    Tumour phenotype is regulated in a complex fashion as a result of interactions between malignant cells and the tumour stroma. Fibroblasts are the most abundant and perhaps most active part of the tumour stroma. A better understanding of the changes that occur in fibroblasts in response to the presence of malignant cells may lead to the development of new strategies for cancer treatment. We explored the effects of fibroblasts on the growth and invasion of mammary carcinoma tumour cells in vitro and in vivo. In order to analyse secreted factors that affect invasive abilities of breast cancer cells we co-cultured human mammary fibroblasts (HMF3s) and cancer cells (MCF7S1) in three-dimensional (3D) growth conditions devoid of heterogeneous cell-cell contact. To study the possible influence of fibroblasts on MCF7S1 cancer cell growth in vivo we co-injected HMF3s and MCF7S1 cells in Balb/c nu/nu mice. In 3D co-culture both HMF3s and MCF7S1 cells demonstrated enhanced invasion into a Matrigel matrix. This was correlated with enhanced expression of the metastasis promoting S100A4 protein in fibroblasts, stimulation of the matrix metalloproteinase (MMP)-2 activity, and enhanced secretion of a range of different cytokines. Orthotopic injection of oestrogen-dependent MCF7S1 cancer cells together with fibroblasts showed stimulation of tumour growth in mice without an external oestrogen supply. The resulting tumours were characterized by increased development of extracellular matrix, as well as an increase of murine S100A4 concentration and activity of MMP-2 in the tumour interstitial fluid. Stimulation of the invasive phenotype of tumour cells in 3D co-cultures with fibroblasts could be correlated with increased production of S100A4 and MMP-2. We propose that enhanced development of mouse host-derived tumour stroma in a MCF7S1 co-injection xenograft model leads to oestrogen independency and is triggered by the initial presence of human fibroblasts.

  15. Integrated teaching of anatomy and radiology using three-dimensional image post-processing.

    PubMed

    Rengier, Fabian; Doll, Sara; von Tengg-Kobligk, Hendrik; Kirsch, Joachim; Kauczor, Hans-Ulrich; Giesel, Frederik L

    2009-12-01

    This article presents a new way of teaching by integrating both anatomy and radiology using three-dimensional image post-processing tools. One preclinical and one clinical module were developed for integrated teaching of anatomy and radiology. Potential benefits were assessed by anonymous evaluation among the 176 participating students. The students highly appreciated the new approach, especially the high degree of interactivity with the post-processing software and the possibility to correlate the real dissection with the virtual dissection. Students agreed that three-dimensional imaging and postprocessing improved their understanding of difficult anatomical topics and topographical relations. We consider the new approach to provide great additional benefits for participating students regarding preparation for everyday clinical practice. In particular, it imparts familiarity with imaging and image post-processing techniques and may improve anatomical understanding, radiological diagnostic skills and three-dimensional appreciation.

  16. Conformal Coating of Three-Dimensional Nanostructures via Atomic Layer Deposition for Development of Advanced Energy Storage Devices and Plasmonic Transparent Conductors

    NASA Astrophysics Data System (ADS)

    Malek, Gary A.

    Due to the prodigious amount of electrical energy consumed throughout the world, there exists a great demand for new and improved methods of generating electrical energy in a clean and renewable manner as well as finding more effective ways to store it. This enormous task is of great interest to scientists and engineers, and much headway is being made by utilizing three-dimensional (3D) nanostructured materials. This work explores the application of two types of 3D nanostructured materials toward fabrication of advanced electrical energy storage and conversion devices. The first nanostructured material consists of vertically aligned carbon nanofibers. This three-dimensional structure is opaque, electrically conducting, and contains active sites along the outside of each fiber that are conducive to chemical reactions. Therefore, they make the perfect 3D conducting nanostructured substrate for advanced energy storage devices. In this work, the details for transforming vertically aligned carbon nanofiber arrays into core-shell structures via atomic layer deposition as well as into a mesoporous manganese oxide coated supercapacitor electrode are given. Another unique type of three-dimensional nanostructured substrate is nanotextured glass, which is transparent but non-conducting. Therefore, it can be converted to a 3D transparent conductor for possible application in photovoltaics if it can be conformally coated with a conducting material. This work details that transformation as well as the addition of plasmonic gold nanoparticles to complete the transition to a 3D plasmonic transparent conductor.

  17. Three-Dimensional Imaging. Chapter 10

    NASA Technical Reports Server (NTRS)

    Kelso, R. M.; Delo, C.

    1999-01-01

    This chapter is concerned with three-dimensional imaging of fluid flows. Although relatively young, this field of research has already yielded an enormous range of techniques. These vary widely in cost and complexity, with the cheapest light sheet systems being within the budgets of most laboratories, and the most expensive Magnetic Resonance Imaging systems available to a select few. Taking the view that the most likely systems to be developed are those using light sheets, the authors will relate their knowledge and experience of such systems. Other systems will be described briefly and references provided. Flows are inherently three-dimensional in structure; even those generated around nominally 2-D surface geometry. It is becoming increasingly apparent to scientists and engineers that the three-dimensionalities, both large and small scale, are important in terms of overall flow structure and species, momentum, and energy transport. Furthermore, we are accustomed to seeing the world in three dimensions, so it is natural that we should wish to view, measure and interpret flows in three-dimensions. Unfortunately, 3-D images do not lend themselves to convenient presentation on the printed page, and this task is one of the challenges facing us.

  18. Teaching and Assessing Three-Dimensional M

    NASA Astrophysics Data System (ADS)

    Bateman, Robert C., Jr.; Booth, Deborah; Sirochman, Rudy; Richardson, Jane; Richardson, David

    2002-05-01

    Structural concepts such as the exact arrangement of a protein in three dimensions are crucial to almost every aspect of biology and chemistry, yet most of us have not been educated in three-dimensional literacy and all of us need a great deal of help in order to perceive and to communicate structural information successfully. It is in the undergraduate biochemistry course where students learn most concepts of molecular structure pertinent to living systems. We are addressing the issue of three-dimensional structural literacy by having undergraduate students construct kinemages, which are plain text scripts derived from Protein Data Bank coordinate files that can be viewed with the program MAGE. These annotated, interactive, three-dimensional illustrations are designed to develop a molecular story and allow exploration in the world of that story. In the process, students become familiar with the structure-based scientific literature and the Protein Data Bank. Our assessment to date has shown that students perceive kinemage authorship to be more helpful in understanding protein structure than simply viewing prepared kinemages. In addition, students perceived kinemage authorship as being beneficial to their career and a significant motivation to learn biochemistry.

  19. Three-Dimensional Imaging. Chapter 10

    NASA Technical Reports Server (NTRS)

    Kelso, R. M.; Delo, C.

    1999-01-01

    This chapter is concerned with three-dimensional imaging of fluid flows. Although relatively young, this field of research has already yielded an enormous range of techniques. These vary widely in cost and complexity, with the cheapest light sheet systems being within the budgets of most laboratories, and the most expensive Magnetic Resonance Imaging systems available to a select few. Taking the view that the most likely systems to be developed are those using light sheets, the authors will relate their knowledge and experience of such systems. Other systems will be described briefly and references provided. Flows are inherently three-dimensional in structure; even those generated around nominally 2-D surface geometry. It is becoming increasingly apparent to scientists and engineers that the three-dimensionalities, both large and small scale, are important in terms of overall flow structure and species, momentum, and energy transport. Furthermore, we are accustomed to seeing the world in three dimensions, so it is natural that we should wish to view, measure and interpret flows in three-dimensions. Unfortunately, 3-D images do not lend themselves to convenient presentation on the printed page, and this task is one of the challenges facing us.

  20. The MINERVA Software Development Process

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony; Munoz, Cesar A.; Dutle, Aaron M.

    2017-01-01

    This paper presents a software development process for safety-critical software components of cyber-physical systems. The process is called MINERVA, which stands for Mirrored Implementation Numerically Evaluated against Rigorously Verified Algorithms. The process relies on formal methods for rigorously validating code against its requirements. The software development process uses: (1) a formal specification language for describing the algorithms and their functional requirements, (2) an interactive theorem prover for formally verifying the correctness of the algorithms, (3) test cases that stress the code, and (4) numerical evaluation on these test cases of both the algorithm specifications and their implementations in code. The MINERVA process is illustrated in this paper with an application to geo-containment algorithms for unmanned aircraft systems. These algorithms ensure that the position of an aircraft never leaves a predetermined polygon region and provide recovery maneuvers when the region is inadvertently exited.

  1. Three-dimensional gauging with stereo computer vision

    NASA Astrophysics Data System (ADS)

    Wong, Kam W.; Ke, Ying; Lew, Michael S.; Obaidat, Mohammed T.

    1991-09-01

    Three-dimensional gaging involves the measurement and mapping of 3-D surfaces. Gaging accuracy depends on measurement accuracy in the images, image scale, and stereo geometry. Multiple cameras are often needed to provide adequate stereoscopic coverage of the object. This paper reports on an automatic 3-D gaging system that is being developed at the University of Illinois at Urbana-Champaign. A portable 3-D target field, consisting of 198 targets each identified with a bar code, is used to determine the interior and exterior orientation parameters of each camera. Image-processing algorithms have been developed to identify conjugate image points in stereo pair of images, and the object-space coordinates of these points are computed by stereo intersection. Software has also been developed for analysis and data editing.

  2. Development of a framework for a high-resolution, three-dimensional regional air quality simulation and its application to predicting future air quality over Japan

    NASA Astrophysics Data System (ADS)

    Chatani, Satoru; Morikawa, Tazuko; Nakatsuka, Seiji; Matsunaga, Sou; Minoura, Hiroaki

    2011-03-01

    We have developed a framework for a three-dimensional regional air quality simulation that is applicable to various air quality studies over Japan. The framework consists of the following simulation model systems: the Weather Research and Forecasting (WRF) model to simulate meteorological fields; the Community Multi-scale Air Quality (CMAQ) modeling system to simulate pollutant concentrations; emissions estimate models; and emission databases. Motor vehicle emissions in Japan are estimated using the Japan Auto-Oil Program (JATOP) vehicle emissions estimate model; anthropogenic emissions from sources other than motor vehicles in Japan are estimated using the Georeference-Based Emission Activity Modeling System (G-BEAMS); and biogenic emissions are estimated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN). The Regional Emission inventory in Asia (REAS) is used for emissions in Asian countries except for Japan. The most prominent feature of our framework is its ability to simulate multi-scale air quality. The framework allows for the simulation of emissions and the dynamic transport of pollutants in heavily polluted urban areas with a maximum resolution of 1 × 1 km, and the long-range transport of pollutants is also taken into account. This framework is used to analyze the impact of future emissions from anthropogenic sources on air quality over the Tokyo metropolitan area. NOx, NMVOC and primary PM2.5 emissions over the Tokyo metropolitan area are estimated to be reduced by 44.5%, 18.1% and 41.7%, respectively, from 2005 to 2020. The simulation predicts that concentrations of NO2 and PM2.5 over the Tokyo metropolitan area will decrease by approximately 30-40% and 15-20%, respectively, during the above period. O3 concentrations significantly increase in winter due to decreased titration by NO, whereas no significant variations are observed in spring and summer. In addition, we analyzed the impact of future long-range transport projected under

  3. Advanced Software Development Workstation Project

    NASA Technical Reports Server (NTRS)

    Lee, Daniel

    1989-01-01

    The Advanced Software Development Workstation Project, funded by Johnson Space Center, is investigating knowledge-based techniques for software reuse in NASA software development projects. Two prototypes have been demonstrated and a third is now in development. The approach is to build a foundation that provides passive reuse support, add a layer that uses domain-independent programming knowledge, add a layer that supports the acquisition of domain-specific programming knowledge to provide active support, and enhance maintainability and modifiability through an object-oriented approach. The development of new application software would use specification-by-reformulation, based on a cognitive theory of retrieval from very long-term memory in humans, and using an Ada code library and an object base. Current tasks include enhancements to the knowledge representation of Ada packages and abstract data types, extensions to support Ada package instantiation knowledge acquisition, integration with Ada compilers and relational databases, enhancements to the graphical user interface, and demonstration of the system with a NASA contractor-developed trajectory simulation package. Future work will focus on investigating issues involving scale-up and integration.

  4. Three-dimensional aromatic networks.

    PubMed

    Toyota, Shinji; Iwanaga, Tetsuo

    2014-01-01

    Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

  5. Three-dimensional display technologies.

    PubMed

    Geng, Jason

    2013-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain's power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies.

  6. Three-dimensional coil inductor

    DOEpatents

    Bernhardt, Anthony F.; Malba, Vincent

    2002-01-01

    A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.

  7. Three-dimensional vortex methods

    NASA Astrophysics Data System (ADS)

    Greengard, C. A.

    1984-08-01

    Reformulations of the filament method and of the method of Beale and Majda show them to be very similar algorithms. The method of Anderson in which vorticity is evaluated by the exact differentiation of the approximate velocity field is discussed. It is shown that, in the inviscid version of this algorithm, each approximate vector of vorticity remains tangent to a material curve moving with the computed flow, with magnitude proportional to the stretching of this vortex line. It is explained that the expanding core vortex method converges to a system of equations different from the Navier-Stokes equations. Computations with the filament method of the inviscid interaction of two vortex rings are reported, both with single filaments in each ring and with a fully three-dimensional discretization of vorticity. The dependence on parameters is discussed, and convergence of the computed solutions is observed.

  8. Software development environment, appendix F

    NASA Technical Reports Server (NTRS)

    Riddle, W. E.

    1980-01-01

    The current status in the area of software development environments is assessed. The purposes of environments, the types of environments, the constituents of an environment, the issue of environment integration, and the problems which must be solved in preparing an environment are discussed. Some general maxims to guide near-term future work are proposed.

  9. Post-Modern Software Development

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2005-01-01

    The history of software development includes elements of art, science, engineering, and fashion(though very little manufacturing). In all domains, old ideas give way or evolve to new ones: in the fine arts, the baroque gave way to rococo, romanticism, modernism, postmodernism, and so forth. What is the postmodern programming equivalent? That is, what comes after object orientation?

  10. Human factors in software development

    SciTech Connect

    Curtis, B.

    1986-01-01

    This book presents an overview of ergonomics/human factors in software development, recent research, and classic papers. Articles are drawn from the following areas of psychological research on programming: cognitive ergonomics, cognitive psychology, and psycholinguistics. Topics examined include: theoretical models of how programmers solve technical problems, the characteristics of programming languages, specification formats in behavioral research and psychological aspects of fault diagnosis.

  11. The Advanced Software Development and Commercialization Project

    SciTech Connect

    Gallopoulos, E. . Center for Supercomputing Research and Development); Canfield, T.R.; Minkoff, M.; Mueller, C.; Plaskacz, E.; Weber, D.P.; Anderson, D.M.; Therios, I.U. ); Aslam, S.; Bramley, R.; Chen, H.-C.; Cybenko, G.; Gallopoulos, E.; Gao, H.; Malony, A.; Sameh, A. . Center for Supercomputing Research

    1990-09-01

    This is the first of a series of reports pertaining to progress in the Advanced Software Development and Commercialization Project, a joint collaborative effort between the Center for Supercomputing Research and Development of the University of Illinois and the Computing and Telecommunications Division of Argonne National Laboratory. The purpose of this work is to apply techniques of parallel computing that were pioneered by University of Illinois researchers to mature computational fluid dynamics (CFD) and structural dynamics (SD) computer codes developed at Argonne. The collaboration in this project will bring this unique combination of expertise to bear, for the first time, on industrially important problems. By so doing, it will expose the strengths and weaknesses of existing techniques for parallelizing programs and will identify those problems that need to be solved in order to enable wide spread production use of parallel computers. Secondly, the increased efficiency of the CFD and SD codes themselves will enable the simulation of larger, more accurate engineering models that involve fluid and structural dynamics. In order to realize the above two goals, we are considering two production codes that have been developed at ANL and are widely used by both industry and Universities. These are COMMIX and WHAMS-3D. The first is a computational fluid dynamics code that is used for both nuclear reactor design and safety and as a design tool for the casting industry. The second is a three-dimensional structural dynamics code used in nuclear reactor safety as well as crashworthiness studies. These codes are currently available for both sequential and vector computers only. Our main goal is to port and optimize these two codes on shared memory multiprocessors. In so doing, we shall establish a process that can be followed in optimizing other sequential or vector engineering codes for parallel processors.

  12. Three-dimensional echocardiography of colour Doppler flow.

    PubMed

    Zhou, Zhi-Wen; Xu, Ya-Wei; Ashraf, Muhammad; Sahn, David J

    2010-05-01

    Three-dimensional echocardiography of colour Doppler flow developed quickly with the advent of three-dimensional echocardiography. An increasing amount of research has shown that three-dimensional echocardiography of colour Doppler flow is feasible and facilitates measurement of stroke volume and cardiac output, and assessment of heart valve and congenital heart diseases. Although the technique still has some drawbacks that hamper its widespread use, as the technology continues to improve, three-dimensional echocardiography of colour Doppler flow has the potential to serve as a powerful noninvasive clinical tool, aiding physicians in the serial assessment of heart disease and response to intervention. We review the developmental history and the most recent clinical information related to three-dimensional echocardiography of colour Doppler flow. 2010 Elsevier Masson SAS. All rights reserved.

  13. Three-dimensional reconstruction of the temporal bone.

    PubMed

    Green, J D; Marion, M S; Erickson, B J; Robb, R A; Hinojosa, R

    1990-01-01

    Study of the complex anatomy and pathology of the temporal bone has traditionally used microscopy which permits analysis in only two dimensions. Recent advances in bioimaging technology have permitted visualization and reconstruction of computed tomography images in three dimensions. We have developed a technique that applies this technology in the imaging and reconstruction of human temporal bones. Data taken from serial histologic sections of the temporal bone are entered into a computer. The sections are edited and, through the use of specially developed software, a realistic three-dimensional reconstruction is produced. The reconstructed image can be rotated along any of three axes, and structures within the temporal bone can be isolated for more detailed analysis. Applications for the study of pathologic conditions of the temporal bone will be discussed.

  14. Three-dimensional measurement and characterization of grinding tool topography

    NASA Astrophysics Data System (ADS)

    Cui, Changcai; Blunt, Liam; Jiang, Xiangqian; Xu, Xipeng; Huang, Hui; Ye, Ruifang

    2013-01-01

    A comprehensive 3-dimensional measurement and characterization method for grinding tool topography was developed. A stylus instrument (SOMICRONIC, France) was used to measure the surface of a metal-bonded diamond grinding tool. The sampled data was input the software SurfStand developed by Centre for Precision Technology (CPT) for reconstruction and further characterization of the surface. Roughness parameters pertaining to the general surface and specific feature parameters relating to the grinding grits, such as height and angle peak curvature have been calculated. The methodology of measurement has been compared with that using an optical microscope. The comparison shows that the three-dimensional characterization has distinct advantages for grinding tool topography assessment. It is precise, convenient and comprehensive so it is suitable for precision measurement and analysis where an understanding of the grinding tool and its cutting ability are required.

  15. ACCEPT: a three-dimensional finite element program for large deformation elastic-plastic-creep analysis of pressurized tubes (LWBR/AWBA Development Program)

    SciTech Connect

    Hutula, D.N.; Wiancko, B.E.

    1980-03-01

    ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports.

  16. Three-dimensional scene capturing for the virtual reality display

    NASA Astrophysics Data System (ADS)

    Dong, Jingsheng; Sang, Xinzhu; Guo, Nan; Chen, Duo; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    A virtual reality shooting and display system based on multiple degrees of freedom camera is designed and demonstrated. Three-dimensional scene display and the wide angle display can be achieved easily and quickly through the construction with the proposed system. The range of the viewing scene can be broaden with the image stitching process, and the display in the demonstrated system can achieve the effect of wide angle for applications of image mosaic. In the meantime, the system can realize 3D scene display, which can effectively reduce the complexity of the 3D scene generation, and provide a foundation for adding interactive characteristics for the 3D scene in the future. The system includes an adjustable bracket, computer software, and a virtual reality device. Multiple degrees of freedom of the adjustable bracket are developed to obtain 3D scene source images and mosaic source images easily. 5 degrees of freedom are realized, including rotation, lifting, translation, convergence and pitching. To realize the generation and display of three-dimensional scenes, two cameras are adjusted into a parallel state. With the process of image distortion eliminating and calibration, the image is transferred to the virtual reality device for display. In order to realize wide angle display, the cameras are adjusted into "V" type. The preprocessing includes image matching and fusion to realize image stitching. The mosaic image is transferred for virtual reality display with its image reading and display functions. The wide angle 3D scene display is realized by adjusting different states.

  17. Managing MDO Software Development Projects

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.; Salas, A. O.

    2002-01-01

    Over the past decade, the NASA Langley Research Center developed a series of 'grand challenge' applications demonstrating the use of parallel and distributed computation and multidisciplinary design optimization. All but the last of these applications were focused on the high-speed civil transport vehicle; the final application focused on reusable launch vehicles. Teams of discipline experts developed these multidisciplinary applications by integrating legacy engineering analysis codes. As teams became larger and the application development became more complex with increasing levels of fidelity and numbers of disciplines, the need for applying software engineering practices became evident. This paper briefly introduces the application projects and then describes the approaches taken in project management and software engineering for each project; lessons learned are highlighted.

  18. Software development for electromagnetic scattering of aircraft in near space

    NASA Astrophysics Data System (ADS)

    Xu, WangLong; Han, YiPing

    2016-11-01

    By using Intel Visual Fortran and Visual Studio 2013, a software for calculating radar cross section of the metal and the plasma three-dimensional composite target are given, based on the method of MOM and FDTD. This software can calculate radar cross section of the near space aircraft covered the plasma sheath, and this work has an important strategic significance in the future.

  19. UTILIZATION OF THREE-DIMENSIONAL INFORMATION IN ROAD CONSTRUCTION PROJECTS

    NASA Astrophysics Data System (ADS)

    Kubota, Satoshi

    In this research targeting road construction projects, schemes were investigated for utilizing three-dimensional (3D) data distributed in accordance with ISO (Internatio nal Organization for Standardization) and produced by 3D computer-aided design (CAD) software based on the concept of product data models. First, existing literature was classified by work stage as the context for utilizing 3D data. Next, the establishment of standards for exchanging 3D data, revising relevant systems, constructing road data models, realizing work process models, developing 3D CAD engines, and providing 3D data utilization environments are discussed, both as measures that should be undertaken and as future research topics for promoting the utilization of 3D data. Finally, the potential for utilizing 3D data in road construction projects by local government is examined, and the items to be implemented for this purpose are summarized.

  20. Three-dimensional display technologies

    PubMed Central

    Geng, Jason

    2014-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827

  1. Three-dimensional laser microvision.

    PubMed

    Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y

    2001-04-10

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum.

  2. Three-Dimensional Laser Microvision

    NASA Astrophysics Data System (ADS)

    Shimotahira, Hiroshi; Iizuka, Keigo; Chu, Sun-Chun; Wah, Christopher; Costen, Furnie; Yoshikuni, Yuzo

    2001-04-01

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 m; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 m.

  3. Three dimensional magnetic abacus memory

    PubMed Central

    Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A.; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten

    2014-01-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered ‘quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory. PMID:25146338

  4. Three-dimensional flow about penguin wings

    NASA Astrophysics Data System (ADS)

    Noca, Flavio; Sudki, Bassem; Lauria, Michel

    2012-11-01

    Penguins, contrary to airborne birds, do not need to compensate for gravity. Yet, the kinematics of their wings is highly three-dimensional and seems exceedingly complex for plain swimming. Is such kinematics the result of an evolutionary optimization or is it just a forced adaptation of an airborne flying apparatus to underwater swimming? Some answers will be provided based on flow dynamics around robotic penguin wings. Updates will also be presented on the development of a novel robotic arm intended to simulate penguin swimming and enable novel propulsion devices.

  5. Software Development as Music Education Research

    ERIC Educational Resources Information Center

    Brown, Andrew R.

    2007-01-01

    This paper discusses how software development can be used as a method for music education research. It explains how software development can externalize ideas, stimulate action and reflection, and provide evidence to support the educative value of new software-based experiences. Parallels between the interactive software development process and…

  6. A multiple node software development environment

    SciTech Connect

    Heinicke, P.; Nicinski, T.; Constanta-Fanourakis, P.; Petravick, D.; Pordes, R.; Ritchie, D.; White, V.

    1987-06-01

    Experimenters on over 30 DECnet nodes at Fermilab use software developed, distributed, and maintained by the Data Acquisition Software Group. A general methodology and set of tools have been developed to distribute, use and manage the software on different sites. The methodology and tools are of interest to any group developing and using software on multiple nodes.

  7. In-lab three-dimensional printing

    PubMed Central

    Partridge, Roland; Conlisk, Noel; Davies, Jamie A.

    2012-01-01

    The development of the microscope in 1590 by Zacharias Janssenby and Hans Lippershey gave the world a new way of visualizing details of morphogenesis and development. More recent improvements in this technology including confocal microscopy, scanning electron microscopy (SEM) and optical projection tomography (OPT) have enhanced the quality of the resultant image. These technologies also allow a representation to be made of a developing tissue’s three-dimensional (3-D) form. With all these techniques however, the image is delivered on a flat two-dimensional (2-D) screen. 3-D printing represents an exciting potential to reproduce the image not simply on a flat screen, but in a physical, palpable three-dimensional structure. Here we explore the scope that this holds for exploring and interacting with the structure of a developing organ in an entirely novel way. As well as being useful for visualization, 3-D printers are capable of rapidly and cost-effectively producing custom-made structures for use within the laboratory. We here describe the advantages of producing hardware for a tissue culture system using an inexpensive in-lab printer. PMID:22652907

  8. Software based controls module development

    SciTech Connect

    Graves, v.b.; kelley, g; welch, j.c.

    1999-12-10

    A project was initiated at the Oak Ridge Y-12 Plant to implement software geometric error compensation within a PC-based machine tool controller from Manufacturing Data Systems, Inc. This project may be the first in which this type of compensation system was implemented in a commercially available machine tool controller totally in software. Previous implementations typically required using an external computer and hardware to interface through the position feedback loop of the controller because direct access to the controller software was not available. The test-bed machine for this project was a 2-axis Excello 921 T-base lathe. A mathematical error model of the lathe was created using homogeneous transformation matrices to relate the positions of the machine's slides to each other and to a world reference system. Equations describing the effects of the geometric errors were derived from the model. A software architecture was developed to support geometric error compensation for machine tools with up to 3 linear axes. Rotary axes were not supported in this implementation, but the developed architecture would not preclude their support in the future. Specific implementations will be dependent upon the configuration of the machine tool. A laser measuring system from Automated Precision, Inc. was used to characterize the lathe's geometric errors as functions of axis position and direction of motion. Multiple data files generated by the laser system were combined into a single Error File that was read at system startup and used by the compensation system to provide real-time position adjustments to the axis servos. A Renishaw Ballbar was used to evaluate the compensation system. Static positioning tests were conducted in an attempt to observe improved positioning accuracy with the compensation system enabled. These tests gave inconsistent results due to the lathe's inability to position the tool repeatably. The development of the architecture and compensation

  9. Software Engineering: A New Component for Instructional Software Development.

    ERIC Educational Resources Information Center

    Chen, J. Wey; Shen, Chung-Wei

    1989-01-01

    Discussion of software engineering for computer-based instruction (CBI) focuses on a model for instructional software development. Highlights include a multidisciplinary team approach; needs analysis; feasibility study; requirement analysis; prototype construction; design phase; implementation and development; testing and evaluation; and project…

  10. Three-dimensional turbopump flowfield analysis

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Belford, K. A.; Ni, R. H.

    1992-01-01

    A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.

  11. Strategic planning for aircraft noise route impact analysis: A three dimensional approach

    NASA Technical Reports Server (NTRS)

    Bragdon, C. R.; Rowan, M. J.; Ahuja, K. K.

    1993-01-01

    The strategic routing of aircraft through navigable and controlled airspace to minimize adverse noise impact over sensitive areas is critical in the proper management and planning of the U.S. based airport system. A major objective of this phase of research is to identify, inventory, characterize, and analyze the various environmental, land planning, and regulatory data bases, along with potential three dimensional software and hardware systems that can be potentially applied for an impact assessment of any existing or planned air route. There are eight data bases that have to be assembled and developed in order to develop three dimensional aircraft route impact methodology. These data bases which cover geographical information systems, sound metrics, land use, airspace operational control measures, federal regulations and advisories, census data, and environmental attributes have been examined and aggregated. A three dimensional format is necessary for planning, analyzing space and possible noise impact, and formulating potential resolutions. The need to develop this three dimensional approach is essential due to the finite capacity of airspace for managing and planning a route system, including airport facilities. It appears that these data bases can be integrated effectively into a strategic aircraft noise routing system which should be developed as soon as possible, as part of a proactive plan applied to our FAA controlled navigable airspace for the United States.

  12. More About The Farley Three-Dimensional Braider

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1993-01-01

    Farley three-dimensional braider, undergoing development, is machine for automatic fabrication of three-dimensional braided structures. Incorporates yarns into structure at arbitrary braid angles to produce complicated shape. Braiding surface includes movable braiding segments containing pivot points, along which yarn carriers travel during braiding process. Yarn carrier travels along sequence of pivot points as braiding segments move. Combined motions position yarns for braiding onto preform. Intended for use in making fiber preforms for fiber/matrix composite parts, such as multiblade propellers. Machine also described in "Farley Three-Dimensional Braiding Machine" (LAR-13911).

  13. Three-dimensional aerodynamic shape optimization using discrete sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Burgreen, Gregory W.

    1995-01-01

    An aerodynamic shape optimization procedure based on discrete sensitivity analysis is extended to treat three-dimensional geometries. The function of sensitivity analysis is to directly couple computational fluid dynamics (CFD) with numerical optimization techniques, which facilitates the construction of efficient direct-design methods. The development of a practical three-dimensional design procedures entails many challenges, such as: (1) the demand for significant efficiency improvements over current design methods; (2) a general and flexible three-dimensional surface representation; and (3) the efficient solution of very large systems of linear algebraic equations. It is demonstrated that each of these challenges is overcome by: (1) employing fully implicit (Newton) methods for the CFD analyses; (2) adopting a Bezier-Bernstein polynomial parameterization of two- and three-dimensional surfaces; and (3) using preconditioned conjugate gradient-like linear system solvers. Whereas each of these extensions independently yields an improvement in computational efficiency, the combined effect of implementing all the extensions simultaneously results in a significant factor of 50 decrease in computational time and a factor of eight reduction in memory over the most efficient design strategies in current use. The new aerodynamic shape optimization procedure is demonstrated in the design of both two- and three-dimensional inviscid aerodynamic problems including a two-dimensional supersonic internal/external nozzle, two-dimensional transonic airfoils (resulting in supercritical shapes), three-dimensional transport wings, and three-dimensional supersonic delta wings. Each design application results in realistic and useful optimized shapes.

  14. A Legal Guide for the Software Developer.

    ERIC Educational Resources Information Center

    Minnesota Small Business Assistance Office, St. Paul.

    This booklet has been prepared to familiarize the inventor, creator, or developer of a new computer software product or software invention with the basic legal issues involved in developing, protecting, and distributing the software in the United States. Basic types of software protection and related legal matters are discussed in detail,…

  15. Three-dimensional head anthropometric analysis

    NASA Astrophysics Data System (ADS)

    Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James

    2003-05-01

    Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).

  16. Applications of three-dimensionally scanned models in orthodontics.

    PubMed

    Cha, B K; Choi, J I; Jost-Brinkmann, P G; Jeong, Y M

    2007-01-01

    The purpose of this study was to investigate clinical applications of the three-dimensional reverse engineering technologies for the analysis of orthodontic models. The measuring accuracy and the process of the 3D model scanning technique were evaluated with respect to linear, surface and volumetric parameters. Orthodontically induced dentoalveolar changes, which have been traditionally evaluated by cephalometric analysis, were assessed by the registration function of Rapidform 2002, a 3D-reverse modeling software in scanned maxillary casts. Three-dimensional digital models are valuable alternatives to conventional casts for model analysis and also yield information which could previously be gathered only by cephalometric superimposition.

  17. Automatic measurement extraction for apparel from a three-dimensional body scan

    NASA Astrophysics Data System (ADS)

    Pargas, Roy P.; Staples, Nancy J.; Davis, J. Steve

    1997-09-01

    This paper describes a project involving computer assisted measurement extraction from a three-dimensional (3D) noncontact fullbody scan. It explains the motivation behind the project, describes briefly the research plan and provides details on the measurement extraction software currently being developed. The software provides the user with tools to take measurements from a digitized image. In addition, a measurement extraction language allows the user to develop macros, or short programs, designed to automate the measurement extraction process. The paper concludes with a description of the current status of the project.

  18. Three-dimensional terahertz wave imaging.

    PubMed

    Zhang, X-C

    2004-02-15

    Pulsed terahertz (THz) wave sensing and imaging is a coherent measurement technology. Like radar, based on the phase and amplitude of the THz pulse at each frequency, THz waves provide temporal and spectroscopic information that allows us to develop various three-dimensional (3D) terahertz tomographic imaging modalities. The 3D THz tomographic imaging methods we investigated include THz time-of-flight tomography, THz computed tomography (CT) and THz binary lens tomography. THz time-of-flight uses the THz pulses as a probe beam to temporally mark the target, and then constructs a 3D image of the target using the THz waves scattered by the target. THz CT is based on geometrical optics and inspired from X-ray CT. THz binary lens tomography uses the frequency-dependent focal-length property of binary lenses to obtain tomographic images of an object. Three-dimensional THz imaging has potential in such applications as non-destructive inspection. The interaction between a coherent THz pulse and an object provides rich information about the object under study; therefore, 3D THz imaging can be used to inspect or characterize dielectric and semiconductor objects. For example, 3D THz imaging has been used to detect and identify the defects inside a Space Shuttle insulation tile.

  19. Three-dimensional television: a broadcaster's perspective

    NASA Astrophysics Data System (ADS)

    Jolly, S. J. E.; Armstrong, M.; Salmon, R. A.

    2009-02-01

    The recent resurgence of interest in the stereoscopic cinema and the increasing availability to the consumer of stereoscopic televisions and computer displays are leading broadcasters to consider, once again, the feasibility of stereoscopic broadcasting. High Definition Television is now widely deployed, and the R&D departments of broadcasters and consumer electronics manufacturers are starting to plan future enhancements to the experience of television. Improving the perception of depth via stereoscopy is a strong candidate technology. In this paper we will consider the challenges associated with the production, transmission and display of different forms of "three-dimensional" television. We will explore options available to a broadcaster wishing to start a 3D service using the technologies available at the present time, and consider how they could be improved to enable many more television programmes to be recorded and transmitted in a 3D-compatible form, paying particular attention to scenarios such as live broadcasting, where the workflows developed for the stereoscopic cinema are inapplicable. We will also consider the opportunities available for broadcasters to reach audiences with "three-dimensional" content via other media in the near future: for example, distributing content via the existing stereoscopic cinema network, or over the Internet to owners of stereoscopic computer displays.

  20. Software Development Group. Software Review Center. Microcomputing Working Paper Series.

    ERIC Educational Resources Information Center

    Perkey, Nadine; Smith, Shirley C.

    Two papers describe the roles of the Software Development Group (SDG) and the Software Review Center (SRC) at Drexel University. The first paper covers the primary role of the SDG, which is designed to assist Drexel faculty with the technical design and programming of courseware for the Apple Macintosh microcomputer; the relationship of the SDG…

  1. The nitric oxide donor S-nitrosoglutathione reduces apoptotic primary liver cell loss in a three-dimensional perfusion bioreactor culture model developed for liver support.

    PubMed

    Prince, Jose M; Vodovotz, Yoram; Baun, Matthew J; Monga, Satdarshan Pal; Billiar, Timothy R; Gerlach, Jörg C

    2010-03-01

    Artificial extracorporeal support for hepatic failure has met with limited clinical success. In hepatocytes, nitric oxide (NO) functions as an antiapoptotic modulator in response to a variety of stresses. We hypothesized that NO administration would yield improved viability and hepatocellular restructuring in a four-compartment, hollow fiber-based bioreactor with integral oxygenation for dynamic three-dimensional perfusion of hepatic cells in bioartificial liver support systems. Isolated adult rat liver cells were placed in culture medium alone (control) or medium supplemented with various concentrations of an NO donor (S-nitrosoglutathione [GSNO]) in the bioreactors. Media samples were obtained from the cell perfusion circuit to monitor cellular response. After 24 and 72 h, histology biopsies were taken to investigate spontaneous restructuring of the cells. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed to quantify apoptotic nuclei. Control bioreactors exhibited 47.9 +/- 2.9% (mean +/- standard error of the mean) apoptotic nuclei. In contrast, NO-treated bioreactors exhibited a biphasic response. Fewer apoptotic nuclei were seen in the 200 and 500 microM GSNO groups (14.4 +/- 0.4%). No effect was observed in the 10 microM GSNO group (47.3%), and increased TUNEL staining was observed in the 1000 microM GSNO group (82.6%). Media lactate dehydrogenase levels were lower in bioreactor groups treated with 200 or 500 microM GSNO (310 +/- 38 IU/L) compared with the control group (919 +/- 188 IU/L; p < 0.05). Protein synthesis was not affected, as measured by albumin levels in the media (115 +/- 19 microg/day/cell inoculum in GSNO-treated bioreactors at 24 h vs. 110 +/- 13 in controls; p = 0.851). Histologically, all of the bioreactor groups exhibited liver cell aggregates with some attached to the bioreactor capillaries. Increased numbers of cells in the aggregates and superior spontaneous restructuring of the cells were seen at

  2. Standardization of Software Application Development and Governance

    DTIC Science & Technology

    2015-03-01

    software - defined systems continues to increase. Size and complexity of the systems also continue to increase, and the design problems go beyond algorithms... software expects to meet the requirements as it is about defining system-coding methodology. There are many styles of software architectures, and they...development can take place. A software framework commonly defined as “a platform for developing applications. It provides the foundation on which software

  3. A software development and evolution model based on decision-making

    NASA Technical Reports Server (NTRS)

    Wild, J. Christian; Dong, Jinghuan; Maly, Kurt

    1991-01-01

    Design is a complex activity whose purpose is to construct an artifact which satisfies a set of constraints and requirements. However the design process is not well understood. The software design and evolution process is the focus of interest, and a three dimensional software development space organized around a decision-making paradigm is presented. An initial instantiation of this model called 3DPM(sub p) which was partly implemented, is presented. Discussion of the use of this model in software reuse and process management is given.

  4. Three dimensional identification card and applications

    NASA Astrophysics Data System (ADS)

    Zhou, Changhe; Wang, Shaoqing; Li, Chao; Li, Hao; Liu, Zhao

    2016-10-01

    Three dimensional Identification Card, with its three-dimensional personal image displayed and stored for personal identification, is supposed be the advanced version of the present two-dimensional identification card in the future [1]. Three dimensional Identification Card means that there are three-dimensional optical techniques are used, the personal image on ID card is displayed to be three-dimensional, so we can see three dimensional personal face. The ID card also stores the three-dimensional face information in its inside electronics chip, which might be recorded by using two-channel cameras, and it can be displayed in computer as three-dimensional images for personal identification. Three-dimensional ID card might be one interesting direction to update the present two-dimensional card in the future. Three-dimension ID card might be widely used in airport custom, entrance of hotel, school, university, as passport for on-line banking, registration of on-line game, etc...

  5. Design and Development of a Framework Based on Ogc Web Services for the Visualization of Three Dimensional Large-Scale Geospatial Data Over the Web

    NASA Astrophysics Data System (ADS)

    Roccatello, E.; Nozzi, A.; Rumor, M.

    2013-05-01

    This paper illustrates the key concepts behind the design and the development of a framework, based on OGC services, capable to visualize 3D large scale geospatial data streamed over the web. WebGISes are traditionally bounded to a bi-dimensional simplified representation of the reality and though they are successfully addressing the lack of flexibility and simplicity of traditional desktop clients, a lot of effort is still needed to reach desktop GIS features, like 3D visualization. The motivations behind this work lay in the widespread availability of OGC Web Services inside government organizations and in the technology support to HTML 5 and WebGL standard of the web browsers. This delivers an improved user experience, similar to desktop applications, therefore allowing to augment traditional WebGIS features with a 3D visualization framework. This work could be seen as an extension of the Cityvu project, started in 2008 with the aim of a plug-in free OGC CityGML viewer. The resulting framework has also been integrated in existing 3DGIS software products and will be made available in the next months.

  6. Three-dimensional reconstruction of the naupliar musculature and a scanning electron microscopy atlas of nauplius development of Balanus improvisus (Crustacea: Cirripedia: Thoracica).

    PubMed

    Semmler, Henrike; Høeg, Jens T; Scholtz, Gerhard; Wanninger, Andreas

    2009-03-01

    An atlas of the naupliar development of the cirripede Balanus improvisus Darwin, 1854 using scanning electron microscopy (SEM) is provided. Existing spikes on the hindbody increase in number with each moult and are an applicable character for identification of the different nauplius stages, as is the setation pattern of the first antennae. The naupliar musculature of B. improvisus was stained with phalloidin to visualise F-actin, followed by analysis using confocal laser scanning microscopy (CLSM) with subsequent application of 3D imaging software. The larval musculature is already fully established in the first nauplius stage and remains largely unchanged during all the six nauplius stages. The musculature associated with the feeding apparatus is highly elaborated and the labrum possesses lateral muscles and distal F-actin-positive structures. The alimentary tract is entirely surrounded by circular muscles. The extrinsic limb musculature comprises muscles originating from the dorsal and the ventral sides of the head shield, respectively. The hindbody shows very prominent postero-lateral muscles that insert on the dorso-lateral side of the head shield and bend towards ventro-posterior. We conclude that the key features of the naupliar gross anatomy and muscular architecture of B. improvisus are important characters for phylogenetic inferences if analysed in a comparative evolutionary framework.

  7. Three dimensional imaging of soft sphere packings under shear

    NASA Astrophysics Data System (ADS)

    Dijksman, Joshua; Zheng, Hu; Behringer, Robert

    2012-02-01

    The (microscopic) flow of three dimensional disordered athermal granular packings remains poorly understood. However, experimentally studying flow and deformations in a three dimensional packing of grains is challenging due to the opacity of such packings. We use refractive index matched scanning with hydrogel spheres to image such flows. Hydrogel is soft and has low friction, which allows for the study of contact forces via contact deformations. We look at how force networks develop in sheared packings close to the onset of mechanical rigidity.

  8. Postnatal mandibular cheek tooth development in the miniature pig based on two-dimensional and three-dimensional X-ray analyses.

    PubMed

    Ide, Yoshiaki; Nakahara, Taka; Nasu, Masanori; Matsunaga, Satoru; Iwanaga, Takehiro; Tominaga, Noriko; Tamaki, Yuichi

    2013-08-01

    The miniature pig is a useful large laboratory animal model. Various tissues and organs of miniature pigs are similar to those of humans in terms of developmental, anatomical, immunological, and physiological characteristics. The oral and maxillofacial region of miniature pigs is often used in preclinical studies of regenerative dentistry. However, there is limited information on the dentition and tooth structure of miniature pigs. The purpose of this study was to examine the time-course changes of dentition and tooth structure (especially the root) of the miniature pig mandibular cheek teeth through X-ray analyses using soft X-ray for two-dimensional observations and micro-CT for three-dimensional observations. The mandibles of male Clawn strain miniature pigs (2 weeks and 3, 5, 7, 9, 11, 14, 17, and 29 months of age) were used. X-ray analysis of the dentition of miniature pig cheek teeth showed that the eruption pattern of the miniature pig is diphyodont and that the replacement pattern is vertical. Previous definitions of deciduous and permanent teeth often varied and there has been no consensus on the number of teeth (dentition); however, we found that three molars are present in the deciduous dentition and that four premolars and three molars are present in the permanent dentition. Furthermore, we confirmed the number of tooth roots and root canals. We believe that these findings will be highly useful in future studies using miniature pig teeth.

  9. Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer.

    PubMed

    Zhang, Le; Athale, Chaitanya A; Deisboeck, Thomas S

    2007-01-07

    Experimental evidence suggests that epidermal growth factor receptor (EGFR)-mediated activation of the signaling protein phospholipase Cgamma plays a critical role in a cancer cell's phenotypic decision to either proliferate or to migrate at a given point in time. Here, we present a novel three-dimensional multiscale agent-based model to simulate this cellular decision process in the context of a virtual brain tumor. Each tumor cell is equipped with an EGFR gene-protein interaction network module that also connects to a simplified cell cycle description. The simulation results show that over time proliferative and migratory cell populations not only oscillate but also directly impact the spatio-temporal expansion patterns of the entire cancer system. The percentage change in the concentration of the sub-cellular interaction network's molecular components fluctuates, and, for the 'proliferation-to-migration' switch we find that the phenotype triggering molecular profile to some degree varies as the tumor system grows and the microenvironment changes. We discuss potential implications of these findings for experimental and clinical cancer research.

  10. Three-dimensional map construction.

    PubMed

    Jenks, G F; Brown, D A

    1966-11-18

    Three-dimensional maps are useful tools which have been neglected for some time. They shouldbe more commonly used, and familiarity with the techniques discussed in this article should dispel any qualms anyone might ve about needing artistic talent to nstruct them. The saving in time esulting from the use of an anamorphoser provides a further incentive. The anamorphoser transformations discussed above were all prepared by using straight slits, oriented at right angles to each other and placed so that all planes of the elements were parallel to each other. It is possible to vary these conditions in an infinite number of ways and thereby produce nonparallel tranceformations. Some of these variations are illustrated in Fig. 10. All the illustrations in Fig. 10 are transformations of the planimetric weather map shown in Fig. 8A. The variations used for the maps of Fig. 10 are as follows. (A) All planes parallel, with a curved rear slit; (B) all planes parallel, with curved slits front and rear; ( C) all planes parallel, with S-shaped rear slit; (D) all planes parallel, with an undulating rear slit; (E) all planes parallel, with curved front and undulating rear slit; (F) plane of the original rotated on the horizontal axis-both slits curved; (G) plane of the original rotated on thevertical axis- both slits curved; (H) plane of the original rotated on the horizontal axis -both slits straight. These are only a few of the many transformations which can be made with an anamorphoser, butthey do point toward some interesting possibilities. For example, it appears that maps based onone projection might be altered to satisfy the coordinates of a completely different projection. Note, for example, the change of parallels from concave to convex curves (Figs. 8A and 10A) and the change from converging meridians to diverging meridians (Figs. 8A and l0G). Similarly, the grids of maps B, F, and H of Fig. 10 approximate projections which are quite different from the original. Other

  11. Use of three-dimensional computer graphic animation to illustrate cleft lip and palate surgery.

    PubMed

    Cutting, C; Oliker, A; Haring, J; Dayan, J; Smith, D

    2002-01-01

    Three-dimensional (3D) computer animation is not commonly used to illustrate surgical techniques. This article describes the surgery-specific processes that were required to produce animations to teach cleft lip and palate surgery. Three-dimensional models were created using CT scans of two Chinese children with unrepaired clefts (one unilateral and one bilateral). We programmed several custom software tools, including an incision tool, a forceps tool, and a fat tool. Three-dimensional animation was found to be particularly useful for illustrating surgical concepts. Positioning the virtual "camera" made it possible to view the anatomy from angles that are impossible to obtain with a real camera. Transparency allows the underlying anatomy to be seen during surgical repair while maintaining a view of the overlaying tissue relationships. Finally, the representation of motion allows modeling of anatomical mechanics that cannot be done with static illustrations. The animations presented in this article can be viewed on-line at http://www.smiletrain.org/programs/virtual_surgery2.htm. Sophisticated surgical procedures are clarified with the use of 3D animation software and customized software tools. The next step in the development of this technology is the creation of interactive simulators that recreate the experience of surgery in a safe, digital environment. Copyright 2003 Wiley-Liss, Inc.

  12. Three-dimensional virtual model of the human temporal bone: a stand-alone, downloadable teaching tool.

    PubMed

    Wang, Haobing; Northrop, Clarinda; Burgess, Barbara; Liberman, M Charles; Merchant, Saumil N

    2006-06-01

    To develop a three-dimensional virtual model of a human temporal bone based on serial histologic sections. The three-dimensional anatomy of the human temporal bone is complex, and learning it is a challenge for students in basic science and in clinical medicine. Every fifth histologic section from a normal 14-year-old male was digitized and imported into a general purpose three-dimensional rendering and analysis software package called Amira (version 3.1). The sections were aligned, and anatomic structures of interest were segmented. The three-dimensional model is a surface rendering of these structures of interest, which currently includes the bone and air spaces of the temporal bone; the perilymph and endolymph spaces; the sensory epithelia of the cochlear and vestibular labyrinths; the ossicles and tympanic membrane; the middle ear muscles; the carotid artery; and the cochlear, vestibular, and facial nerves. For each structure, the surface transparency can be individually controlled, thereby revealing the three-dimensional relations between surface landmarks and underlying structures. The three-dimensional surface model can also be "sliced open" at any section and the appropriate raw histologic image superimposed on the cleavage plane. The image stack can also be resectioned in any arbitrary plane. This model is a powerful teaching tool for learning the complex anatomy of the human temporal bone and for relating the two-dimensional morphology seen in a histologic section to the three-dimensional anatomy. The model can be downloaded from the Eaton-Peabody Laboratory web site, packaged within a cross-platform freeware three-dimensional viewer, which allows full rotation and transparency control.

  13. THE THREE DIMENSIONAL THERMAL HYDRAULIC CODE BAGIRA.

    SciTech Connect

    KALINICHENKO,S.D.; KOHUT,P.; KROSHILIN,A.E.; KROSHILIN,V.E.; SMIRNOV,A.V.

    2003-05-04

    BAGIRA - a thermal-hydraulic program complex was primarily developed for using it in nuclear power plant simulator models, but is also used as a best-estimate analytical tool for modeling two-phase mixture flows. The code models allow consideration of phase transients and the treatment of the hydrodynamic behavior of boiling and pressurized water reactor circuits. It provides the capability to explicitly model three-dimensional flow regimes in various regions of the primary and secondary circuits such as, the mixing regions, circular downcomer, pressurizer, reactor core, main primary loops, the steam generators, the separator-reheaters. In addition, it is coupled to a severe-accident module allowing the analysis of core degradation and fuel damage behavior. Section II will present the theoretical basis for development and selected results are presented in Section III. The primary use for the code complex is to realistically model reactor core behavior in power plant simulators providing enhanced training tools for plant operators.

  14. YAM- A Framework for Rapid Software Development

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Biesiadecki, Jeffrey

    2006-01-01

    YAM is a software development framework with tools for facilitating the rapid development and integration of software in a concurrent software development environment. YAM provides solutions for thorny development challenges associated with software reuse, managing multiple software configurations, the development of software product-lines, multiple platform development and build management. YAM uses release-early, release-often development cycles to allow developers to incrementally integrate their changes into the system on a continual basis. YAM facilitates the creation and merging of branches to support the isolated development of immature software to avoid impacting the stability of the development effort. YAM uses modules and packages to organize and share software across multiple software products. It uses the concepts of link and work modules to reduce sandbox setup times even when the code-base is large. One side-benefit is the enforcement of a strong module-level encapsulation of a module s functionality and interface. This increases design transparency, system stability as well as software reuse. YAM is in use by several mid-size software development teams including ones developing mission-critical software.

  15. YAM- A Framework for Rapid Software Development

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Biesiadecki, Jeffrey

    2006-01-01

    YAM is a software development framework with tools for facilitating the rapid development and integration of software in a concurrent software development environment. YAM provides solutions for thorny development challenges associated with software reuse, managing multiple software configurations, the development of software product-lines, multiple platform development and build management. YAM uses release-early, release-often development cycles to allow developers to incrementally integrate their changes into the system on a continual basis. YAM facilitates the creation and merging of branches to support the isolated development of immature software to avoid impacting the stability of the development effort. YAM uses modules and packages to organize and share software across multiple software products. It uses the concepts of link and work modules to reduce sandbox setup times even when the code-base is large. One side-benefit is the enforcement of a strong module-level encapsulation of a module s functionality and interface. This increases design transparency, system stability as well as software reuse. YAM is in use by several mid-size software development teams including ones developing mission-critical software.

  16. Autonomous robot software development using simple software components

    NASA Astrophysics Data System (ADS)

    Burke, Thomas M.; Chung, Chan-Jin

    2004-10-01

    Developing software to control a sophisticated lane-following, obstacle-avoiding, autonomous robot can be demanding and beyond the capabilities of novice programmers - but it doesn"t have to be. A creative software design utilizing only basic image processing and a little algebra, has been employed to control the LTU-AISSIG autonomous robot - a contestant in the 2004 Intelligent Ground Vehicle Competition (IGVC). This paper presents a software design equivalent to that used during the IGVC, but with much of the complexity removed. The result is an autonomous robot software design, that is robust, reliable, and can be implemented by programmers with a limited understanding of image processing. This design provides a solid basis for further work in autonomous robot software, as well as an interesting and achievable robotics project for students.

  17. The Nitric Oxide Donor S-Nitrosoglutathione Reduces Apoptotic Primary Liver Cell Loss in a Three-Dimensional Perfusion Bioreactor Culture Model Developed for Liver Support

    PubMed Central

    Prince, Jose M.; Vodovotz, Yoram; Baun, Matthew J.; Monga, Satdarshan Pal; Billiar, Timothy R.

    2010-01-01

    Introduction Artificial extracorporeal support for hepatic failure has met with limited clinical success. In hepatocytes, nitric oxide (NO) functions as an antiapoptotic modulator in response to a variety of stresses. We hypothesized that NO administration would yield improved viability and hepatocellular restructuring in a four-compartment, hollow fiber-based bioreactor with integral oxygenation for dynamic three-dimensional perfusion of hepatic cells in bioartificial liver support systems. Methods Isolated adult rat liver cells were placed in culture medium alone (control) or medium supplemented with various concentrations of an NO donor (S-nitrosoglutathione [GSNO]) in the bioreactors. Media samples were obtained from the cell perfusion circuit to monitor cellular response. After 24 and 72 h, histology biopsies were taken to investigate spontaneous restructuring of the cells. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed to quantify apoptotic nuclei. Results Control bioreactors exhibited 47.9 ± 2.9% (mean ± standard error of the mean) apoptotic nuclei. In contrast, NO-treated bioreactors exhibited a biphasic response. Fewer apoptotic nuclei were seen in the 200 and 500 μM GSNO groups (14.4 ± 0.4%). No effect was observed in the 10 μM GSNO group (47.3%), and increased TUNEL staining was observed in the 1000 μM GSNO group (82.6%). Media lactate dehydrogenase levels were lower in bioreactor groups treated with 200 or 500 μM GSNO (310 ± 38 IU/L) compared with the control group (919 ± 188 IU/L; p < 0.05). Protein synthesis was not affected, as measured by albumin levels in the media (115 ± 19 μg/day/cell inoculum in GSNO-treated bioreactors at 24 h vs. 110 ± 13 in controls; p = 0.851). Histologically, all of the bioreactor groups exhibited liver cell aggregates with some attached to the bioreactor capillaries. Increased numbers of cells in the aggregates and

  18. Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation.

    PubMed

    Müller, Werner E G; Schröder, Heinz C; Feng, Qingling; Schlossmacher, Ute; Link, Thorben; Wang, Xiaohong

    2015-11-01

    Polymeric silica is formed from ortho-silicate during a sol-gel formation process, while biosilica is the product of an enzymatically driven bio-polycondensation reaction. Both polymers have recently been described as a template that induces an increased expression of the genes encoding bone morphogenetic protein 2 (BMP-2) and osteoprotegerin in osteoblast-related SaOS-2 cells; simultaneously or subsequently the cells respond with enhanced hydroxyapatite formation. In order to assess whether the biocompatible polymeric silica/biosilica can serve as a morphogenetically active matrix suitable for three-dimensional (3D) cell growth, or even for 3D cell bioprinting, SaOS-2 cells were embedded into a Na-alginate-based hydrogel. Four different gelatinous hydrogel matrices were used for suspending SaOS-2 cells: (a) the hydrogel alone; (b) the hydrogel with 400 μM ortho-silicate; (c) the hydrogel supplemented with 400 μM ortho-silicate and recombinant silicatein to allow biosilica synthesis to occur; and (d) the hydrogel with ortho-silicate and BSA. The SaOS-2 cells showed an increased growth if silica/biosilica components were present in the hydrogel. Likewise intensified was the formation of hydroxyapatite nodules in the silica-containing hydrogels. After an incubation period of 2 weeks, cells present in silica-containing hydrogels showed a significantly higher expression of the genes encoding the cytokine BMP-2, the major fibrillar structural protein collagen 1 and likewise of carbonic anhydrase. It is concluded that silica, and to a larger extent biosilica, retains its morphogenetic/osteogenic potential after addition to Na-alginate-based hydrogels. This property might qualify silica hydrogels to be also used as a matrix for 3D cell printing.

  19. Three-dimensional gravity and string ghosts

    SciTech Connect

    Carlip, S. ); Kogan, I.I. )

    1991-12-23

    It is known that much of the structure of string theory can be derived from three-dimensional topological field theory and gravity. We show here that, at least for simple topologies, the string diffeomorphism ghosts can also be explained in terms of three-dimensional physics.

  20. Three-dimensional planning in craniomaxillofacial surgery

    PubMed Central

    Rubio-Palau, Josep; Prieto-Gundin, Alejandra; Cazalla, Asteria Albert; Serrano, Miguel Bejarano; Fructuoso, Gemma Garcia; Ferrandis, Francisco Parri; Baró, Alejandro Rivera

    2016-01-01

    Introduction: Three-dimensional (3D) planning in oral and maxillofacial surgery has become a standard in the planification of a variety of conditions such as dental implants and orthognathic surgery. By using custom-made cutting and positioning guides, the virtual surgery is exported to the operating room, increasing precision and improving results. Materials and Methods: We present our experience in the treatment of craniofacial deformities with 3D planning. Software to plan the different procedures has been selected for each case, depending on the procedure (Nobel Clinician, Kodak 3DS, Simplant O&O, Dolphin 3D, Timeus, Mimics and 3-Matic). The treatment protocol is exposed step by step from virtual planning, design, and printing of the cutting and positioning guides to patients’ outcomes. Conclusions: 3D planning reduces the surgical time and allows predicting possible difficulties and complications. On the other hand, it increases preoperative planning time and needs a learning curve. The only drawback is the cost of the procedure. At present, the additional preoperative work can be justified because of surgical time reduction and more predictable results. In the future, the cost and time investment will be reduced. 3D planning is here to stay. It is already a fact in craniofacial surgery and the investment is completely justified by the risk reduction and precise results. PMID:28299272

  1. Experimental Internet Environment Software Development

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.

    1998-01-01

    Geographically distributed project teams need an Internet based collaborative work environment or "Intranet." The Virtual Research Center (VRC) is an experimental Intranet server that combines several services such as desktop conferencing, file archives, on-line publishing, and security. Using the World Wide Web (WWW) as a shared space paradigm, the Graphical User Interface (GUI) presents users with images of a lunar colony. Each project has a wing of the colony and each wing has a conference room, library, laboratory, and mail station. In FY95, the VRC development team proved the feasibility of this shared space concept by building a prototype using a Netscape commerce server and several public domain programs. Successful demonstrations of the prototype resulted in approval for a second phase. Phase 2, documented by this report, will produce a seamlessly integrated environment by introducing new technologies such as Java and Adobe Web Links to replace less efficient interface software.

  2. Scaffolding for Three-Dimensional Embryonic Vasculogenesis

    NASA Astrophysics Data System (ADS)

    Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.

    Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.

  3. Automatic three-dimensional underground mine mapping

    SciTech Connect

    Huber, D.F.; Vandapel, N.

    2006-01-15

    For several years, our research group has been developing methods for automated modeling of three-dimensional environments. In September 2002, we were given the opportunity to demonstrate our mapping capability in an underground coal mine. The opportunity arose as a result of the Quecreek mine accident, in which an inaccurate map caused miners to breach an abandoned, water-filled mine, trapping them for several days. Our field test illustrates the feasibility and potential of high-resolution 3D mapping of an underground coal mine using a cart-mounted 3D laser scanner In this paper we present our experimental setup, the automatic 3D modeling method used, and the results of the field test.

  4. Three dimensional carbon-nanotube polymers.

    PubMed

    Zhao, Zhisheng; Xu, Bo; Wang, Li-Min; Zhou, Xiang-Feng; He, Julong; Liu, Zhongyuan; Wang, Hui-Tian; Tian, Yongjun

    2011-09-27

    Eight fascinating sp(2)- and sp(3)-hybridized carbon allotropes have been uncovered using a newly developed ab initio particle-swarm optimization methodology for crystal structure prediction. These crystalline allotropes can be viewed respectively as three-dimensional (3D) polymers of (4,0), (5,0), (7,0), (8,0), (9,0), (3,3), (4,4), and (6,6) carbon nanotubes, termed 3D-(n, 0) or 3D-(n, n) carbons. The ground-state energy calculations show that the carbons all have lower energies than C(60) fullerene, and some are energetically more stable than the van der Waals packing configurations of their nanotube parents. Owing to their unique configurations, they have distinctive electronic properties, high Young's moduli, high tensile strength, ultrahigh hardness, good ductility, and low density, and may be potentially applied to a variety of needs.

  5. Three-Dimensional Reflectance Traction Microscopy

    PubMed Central

    Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo

    2016-01-01

    Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456

  6. Software requirements: Guidance and control software development specification

    NASA Technical Reports Server (NTRS)

    Withers, B. Edward; Rich, Don C.; Lowman, Douglas S.; Buckland, R. C.

    1990-01-01

    The software requirements for an implementation of Guidance and Control Software (GCS) are specified. The purpose of the GCS is to provide guidance and engine control to a planetary landing vehicle during its terminal descent onto a planetary surface and to communicate sensory information about that vehicle and its descent to some receiving device. The specification was developed using the structured analysis for real time system specification methodology by Hatley and Pirbhai and was based on a simulation program used to study the probability of success of the 1976 Viking Lander missions to Mars. Three versions of GCS are being generated for use in software error studies.

  7. Learning Human Aspects of Collaborative Software Development

    ERIC Educational Resources Information Center

    Hadar, Irit; Sherman, Sofia; Hazzan, Orit

    2008-01-01

    Collaboration has become increasingly widespread in the software industry as systems have become larger and more complex, adding human complexity to the technological complexity already involved in developing software systems. To deal with this complexity, human-centric software development methods, such as Extreme Programming and other agile…

  8. Modular Infrastructure for Rapid Flight Software Development

    NASA Technical Reports Server (NTRS)

    Pires, Craig

    2010-01-01

    This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).

  9. Learning Human Aspects of Collaborative Software Development

    ERIC Educational Resources Information Center

    Hadar, Irit; Sherman, Sofia; Hazzan, Orit

    2008-01-01

    Collaboration has become increasingly widespread in the software industry as systems have become larger and more complex, adding human complexity to the technological complexity already involved in developing software systems. To deal with this complexity, human-centric software development methods, such as Extreme Programming and other agile…

  10. Development of a comprehensive software engineering environment

    NASA Technical Reports Server (NTRS)

    Hartrum, Thomas C.; Lamont, Gary B.

    1987-01-01

    The generation of a set of tools for software lifecycle is a recurring theme in the software engineering literature. The development of such tools and their integration into a software development environment is a difficult task because of the magnitude (number of variables) and the complexity (combinatorics) of the software lifecycle process. An initial development of a global approach was initiated in 1982 as the Software Development Workbench (SDW). Continuing efforts focus on tool development, tool integration, human interfacing, data dictionaries, and testing algorithms. Current efforts are emphasizing natural language interfaces, expert system software development associates and distributed environments with Ada as the target language. The current implementation of the SDW is on a VAX-11/780. Other software development tools are being networked through engineering workstations.

  11. Three Dimensional Illustrating--Three-Dimensional Vision and Deception of Sensibility

    ERIC Educational Resources Information Center

    Szállassy, Noémi; Gánóczy, Anita; Kriska, György

    2009-01-01

    The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena…

  12. Developing Software for Corpus Research

    ERIC Educational Resources Information Center

    Mason, Oliver

    2008-01-01

    Despite the central role of the computer in corpus research, programming is generally not seen as a core skill within corpus linguistics. As a consequence, limitations in software for text and corpus analysis slow down the progress of research while analysts often have to rely on third party software or even manual data analysis if no suitable…

  13. Scaffold informatics and biomimetic design: three-dimensional medical reconstruction.

    PubMed

    da Silva, Jorge Vicente Lopes; Martins, Tatiana Al-Chueyr Pereira; Noritomi, Pedro Yoshito

    2012-01-01

    This chapter briefly describes the concepts underlying medical imaging reconstruction and the requirements for its integration with subsequent applications as BioCAD, rapid prototyping (RP), and rapid manufacturing (RM) of implants, scaffolds, or organs. As an introduction to the problem, principles related to data acquisition, enhancement, segmentation, and interpolation are discussed. After this, some available three-dimensional medical reconstruction software tools are presented. Finally, applications of these technologies are illustrated.

  14. Ethics in computer software design and development

    Treesearch

    Alan J. Thomson; Daniel L. Schmoldt

    2001-01-01

    Over the past 20 years, computer software has become integral and commonplace for operational and management tasks throughout agricultural and natural resource disciplines. During this software infusion, however, little thought has been afforded human impacts, both good and bad. This paper examines current ethical issues of software system design and development in...

  15. Teaching Agile Software Development: A Case Study

    ERIC Educational Resources Information Center

    Devedzic, V.; Milenkovic, S. R.

    2011-01-01

    This paper describes the authors' experience of teaching agile software development to students of computer science, software engineering, and other related disciplines, and comments on the implications of this and the lessons learned. It is based on the authors' eight years of experience in teaching agile software methodologies to various groups…

  16. Teaching Agile Software Development: A Case Study

    ERIC Educational Resources Information Center

    Devedzic, V.; Milenkovic, S. R.

    2011-01-01

    This paper describes the authors' experience of teaching agile software development to students of computer science, software engineering, and other related disciplines, and comments on the implications of this and the lessons learned. It is based on the authors' eight years of experience in teaching agile software methodologies to various groups…

  17. Effective Software Engineering Leadership for Development Programs

    ERIC Educational Resources Information Center

    Cagle West, Marsha

    2010-01-01

    Software is a critical component of systems ranging from simple consumer appliances to complex health, nuclear, and flight control systems. The development of quality, reliable, and effective software solutions requires the incorporation of effective software engineering processes and leadership. Processes, approaches, and methodologies for…

  18. Effective Software Engineering Leadership for Development Programs

    ERIC Educational Resources Information Center

    Cagle West, Marsha

    2010-01-01

    Software is a critical component of systems ranging from simple consumer appliances to complex health, nuclear, and flight control systems. The development of quality, reliable, and effective software solutions requires the incorporation of effective software engineering processes and leadership. Processes, approaches, and methodologies for…

  19. Three-dimensional subsurface imaging synthetic aperture radar

    SciTech Connect

    Moussally, G.J.

    1995-03-01

    The objective of this applied research and development project is to develop a system known as `3-D SISAR`. This system consists of a ground penetrating radar with software algorithms designed for the detection, location, and identification of buried objects in the underground hazardous waste environments found at DOE storage sites. Three-dimensional maps of the object locations will be produced which can assist the development of remediation strategies and the characterization of the digface during remediation operations. It is expected that the 3-D SISAR will also prove useful for monitoring hydrocarbon based contaminant migration after remediation. The underground imaging technique being developed under this contract utilizes a spotlight mode Synthetic Aperture Radar (SAR) approach which, due to its inherent stand-off capability, will permit the rapid survey of a site and achieve a high degree of productivity over large areas. When deployed from an airborne platform, the stand-off techniques is also seen as a way to overcome practical survey limitations encountered at vegetated sites.

  20. Continuous Software Integration and Quality Control during Software Development

    NASA Astrophysics Data System (ADS)

    Ettl, M.; Neidhardt, A.; Brisken, W.; Dassing, R.

    2012-12-01

    Modern software has to be stable, portable, fast, and reliable. This requires a sophisticated infrastructure supporting and providing the developers with additional information about the state and the quality of the project. That is why we have created a centralized software repository, where the whole code-base is managed and version controlled on a centralized server. Based on this, a hierarchical build system has been developed where each project and their sub-projects can be compiled by simply calling the top level Makefile. On the top of this, a nightly build system has been created where the top level Makefiles of each project are called every night. The results of the build including the compiler warnings are reported to the developers using generated HTML pages. In addition, all the source code is automatically checked using a static code analysis tool, called "cppcheck". This tool produces warnings, similar to those of a compiler, but more pedantic. The reports of this analysis are translated to HTML and reported to the developers similar to the nightly builds. Armed with this information,the developers can discover issues in their projects at an early development stage. In combination it reduces the number of possible issues in our software to ensure quality of our projects at different development stages. These checks are also offered to the community. They are currently used within the DiFX software correlator project.